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CHAPTER I 

INTRODUCTION 

Background 

Commercial dish washing operations, widespread throughout the United States in 

large food service operations, such as in hospitals, educational institutions, airlines and 

hotels, could benefit greatly by automation. In most current practice, dishes are loaded 

manually into continuous feed dish conveyors, passed through a continuously operating, 

serially staged dishwasher, and manually removed and inspected for cleanliness as they exit 

the machine. The work is tedious, repetitious and monotonous and, coupled with 

undesirable hot and wet working conditions, leads to a high tum-over rate among low-paid 

employees. High tum-over causes added expense of recruiting and training new 

employees and degrades the efficiency of the system. 

As an example of generic commercial dish washing operations, we consider the 

dish-washing operation of a private 700 bed hospital in the midwestern U.S. This 

hospital, typifying current practice, operates 3 two-hour shifts, each processing 

approximately 600 trays of dishes. Each tray may consist of a cup, three silverware 

pieces, and up to six dishes of :five different types. As dishes are brought to the dishroom, 

they are passed through a prescrub sluice, stacked on trays, and presented for loading into 

a cOntinuous-feed dishwasher. Both dishes and trays are loaded manually into conveyor 

racks, while cups and silverware are placed in removable racks that can be placed on top 

the moving conveyor rack. They are then passed through a continuously operatin& serially 

staged dishwasher; manually removed and inspected for cleanliness as they exit the 

machine; and stacked into baskets to await the next food serving shift. 

1 
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Robotics and Machine Vision Automation 

In this work, we focus on the repetitious work of loading. unloading, and 

inspecting dishes, because these operations seem particularly appropriate for automation: 

robot arms can replace humans both loading, and unloading dishes, while machine vision 

can perform sorting and inspection tasks. Wash-down robots now available for food-grade 

service are ideal for wet working conditions, as well as the repetitious and monotonous 

tasks, conditions which lead to the high turnover rate of their human counterparts. In 

addition, robots require only a one-time cost with minimal service charges, need only be 

11 trained" once, and can out-perform humans due to higher endurance and speed of 

operation. 

Robots have long been applied to those operations where either working conditions 

are undesirable or even hazardous to humans, or where speed, efficiency, production 

costs, or labor costs prohibit manual labor. The Tony's Pizza plant in Salina, Kansas uses 

robots to palletize packing cases of frozen pizzas and other products in temperatures 

undesirable to humans("Palletized Production", 1992). Industrial robots have become 

common place in the automotive manufacturing industry, particularly in hazardous welding 

applications, and in assembly lines as press feeders and unloaders (Vaccari, 1992; Stephen, 

1993). Innovative tooling of end effectors allows specialized functions in manufacturing 

such as deburring bulkheads and other F-16 fighter parts as done by General Dynamics to 

increase production quality and speed (Koelsch, 1991). Precision robotic chamfering of 

titanium and Inconel aircraft-engine turbine blades and hubs by Pratt & Witney reduce 

scrap and increase productivity ("Tech Update," 1992). Material handling applications 

include palletizing packaged products, feeding blanks to vacuum molds, and placing 

printed wrappers on boxes(Schwind, 1992; Langenfeld, 1992). New niche areas for 

robotic handling and automation are constantly being identified. Commercial dish washing 



operations, currently untouched by any form of automation other that the continuous feed 

type dishwashers, are a good candidate for robotic automation. 

3 

Likewise, machine vision systems are making significant improvements in product 

quality and reducing manufacturing costs as they perform sorting, recognition, gauging and 

automated inspection tasks, and process control in real-time (Zuech, 1987). Some recent 

specific applications include a seven-second evaluation of 6 dimensional tolerances of 130 

key guides in a keyboard manufacturing company, and recognition of scratches, defects, 

and occlusions in the 4 mm diameter lenses used in compact disc player scanning heads 

(Phillip, 1992). In addition to manufacturing, machine vision has been successfully 

applied to food handling applications such as sorting lemons according to grades of 

ripeness and size and identifying culls from a stream of freshly shelled peanuts. Both 

Hershey Foods Corp. and Mars use machine vision to check for defects in their candy bars 

just prior to wrapping them (Griswold, 1993). Machine vision has proven effective in 

many instances with conditions no more demanding than those in the our dish washing 

setting, and should improve the quality of inspection for cleanliness, since the rejection of 

unclean dishes can be monitored and quantified, rather than analyzed qualitatively by a 

human inspector. 

Scope of Automation 

To automate a dish handling operation such as described above, two robots are 

needed: one to load dishes before they enter the dishwasher and one to unload them after 

they exit the final rinse section, as shown in Figure 1.1. As dishes are brought to the 

dishroom, they may be typically passed through a prescrub sluice, stacked in trays, and 

presented to the loading robot. This robot loads the dishes into the dishrack that conveys 

them through the dishwasher. Though the tool handling the dishes can accommodate each 

type of dish, optimum efficiency requires that only one type of dish be handled during each. 

loading pass. After being washed, the dishes are sorted and inspected for cleanliness by 
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machine vision, removed from the dishrack by the second robot and placed into their 

respective baskets for storage until the next meal. 
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Robotics implementation to load and unload dishes involves material handling, 

presentation of dishes, gripper design, motion control programming, synchronization with 

the conveyor, and simple error recovery. This thesis, however, is concerned with a 

particularly challenging portion of tills problem, namely identifying and inspecting the 

dishes as they come into reach of the unloading robot. The robot needs to know what type 

dish it is going to handle so it can place it in the proper location. It is also desired to avoid 

handling·a dish that is still unclean, allowing it to fall into a soak tank at the end of the 

conveyor. 

Automated inspection of dishes is probably best accomplished through machine 

vision because it has proven effective in many inspection applications in a broad spectrum 

of industries. 

Experimental Set-up 

To simulate the dishroom setting described above with integrated automation, only 

a few elements need be replicated: the dishrack conveyor, dishes, a robot (controller, arm, 

and software), and a vision system including proper lighting for illumination. Shown in 

Figure 1.2 is a schematic of the experimental setup, and photographs of the set-up are 

given in Appendix A A short section of a modified dishrack mounted to a ten foot 

conveyor operating at the same speed as the dishwasher conveyor aids simulation of the 

process of loading and unloading dishes from the dishwasher conveyor system. To 

accommodate any one type of dish in a row of the dishrack, each dishrack row is divided 

into three equal sections, each capable of carrying one large dish or two small dishes. 

Figure 1.3 shows how the dishrack accommodates both sizes. The dishes used in this 

work are real dishes borrowed from the hospital mentioned earlier. 
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Figure 1.3 Disbrack Loaded with Both Large and Small Dishes. 
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Located adjacent to the conveyor is an AdeptOne SCARA robot as shown in Figure 

1.2. The AdeptOne is a five-joint robot arm with a cylindrical workspace large enough to 

traverse the 30-inch width of the conveyor. Mounted to the robot is an end effector, or 

hand tool, designed to handle up to six dishes at a time using six flexible suction cups, each 

individually controlled. The conveyor is equipped with a belt encoder integrated with the 

robot controller to provide it with continuous information about the location of any point on 

the conveyor. 

The AdeptOne robot controller is also integrated with its own vision system, 

allowing ease of interaction between the two systems. An array of three cameras is 

mounted above the conveyor, upstream and outside the robot workspace. Each camera has 

a field of view (FOV) large enough to scan one section of the dish rack row (Figure 1.3). 

That is, each camera views either one large dish or two smaller dishes. A light box, which 

is an enclosure around the cameras and light sources and open at the bottom, provides 

proper illumination to the dishrack containing dishes. It was recognized that a two-task 

program, controlling simultaneously the robot and the vision systems would be needed to 

implement sorting and inspection of the dishes exiting the dishwasher. 

The details of the vision task program will be addressed in the following chapters. 

Chapter II introduces the basics of machine vision and the AdeptVision AGS system, and 

Chapter III discusses the implemented sorting and inspection routines. The design of the 

illumination system, a particulary interesting aspect of machine vision, will be discussed in 

Chapter IV. Experimental results are presented in Chapter V. Chapter VI gives 

conclusions and recommendations. 



CHAPTER IT 

MACHINE VISION BACKGROUND 

Machine Vision can be defined as automatic acquisition and analysis of images to 

obtain data for interpreting a scene or controlling an activity (Schaffer, 1986). Machine 

vision systems consist of four main components: Charge Coupled Device (CCD) cameras, 

a frame grabber, a host computer, and an image analysis software package. The cameras 

usually have a standard RS170 video format, 525 scan lines per frame, 30 frames per 

second, two fields per frame, and an image aspect ration of 4:3 (Wong, 1992). A frame 

grabber is a circuit board that acquires images on command, converts the analog signal 

from the camera to binary data, and sends the data to the computer for either immediate 

processing or for storage to be processed later. In our research, we used three Pulnix 

cameras, model TM-540, serial numbers 015207,022177, and 014969 corresponding to 

camera 1, 2, and 3 respectively, the Adept Vision AGS system which is fully integrated 

with the robot controller, a frame grabber, (or vision processor) and the VN+ software 

language compatible with the Adept MC controller. 

To aid in the understanding of the methods used for sorting and inspection (Chapter 

Ill) using the Adept Vision AGS system, some concepts such as grayscale and binary 

imaging, frame store, 11 virtual11 camera, 11ping-pong11 frame-grabbing, 11 blob11
, and vision 

11 tool11 are defined and discussed below in relation to the object recognition methods 

supported by the AGS system. 

9 
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Imaging 

Grayscale and binary refer to the two modes the frame grabber uses to convert the analog 

signal of the CCD to the digital value assigned to each pictuie element or pixel of the image. 

Grayscale imaging displays colors as different shades of gray pixels, while binary imaging 

shows only black or white pixels. CCD output is calibrated by three vision processor 

parameters: gain, offset, and binary threshold. Gain and offset affect grayscale imaging 

by respectively amplifying and biasing pixel intensity, aiding in the manipulation of 

contrast .Adjustment of these two parameters may either increase image contrast or nearly 

eliminate it, depending on the type of image needed for vision processing. 

Binary threshold indicates the intensity level of grayscale above which pixels will 

be white; pixels with intensity below the threshold will be black. Varying the threshold 

parameter can isolate a specific intensity range needed for inspection. For instance, a light­

colored object can be isolated from a group of darker objects by setting the threshold above 

the intensity of the dark objects and below that of the light-colored object 

Machine vision images are produced from single complete camera scans and are 

usually stored into vision buffers, which are blocks of memory designated specifically for 

vision images. The Adept Vision AGS system has two vision buffers, called frames stores. 

One important difference between the two types of imaging is that a binary frame store 

takes about 40 percent less time to acquire than a grayscale frame store (AdeptVision 

Programming, 1990). Therefore binary imaging is more desirable in cases where the 

highest speed is needed. 

Using binary imaging, an object on a dark background will appear on the CRT 

monitor as a white 11 blob, 11 or a group of white pixels, on a black background. Until the 

object is recognized, it is referred to as a blob. Finally, vision 11 tools 11 refer to system 

software routines that perform various measurement tasks on the frame store image. 

Examples include rulers and line and arc finders, which return measured distances and fit 

lines and arcs to edges, respectively. 
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Camera Designation 

The Vision System supports up to eight physical cameras and up to 32 "virtual" 

cameras. A virtual camera is actually a data file containing pre-set parameters, such as 

grayscale offset and gain, binary threshold values, and the identity of the physical camera 

in the system to which they apply (AdeptVisionAGS, 1990). Default identities for the first 

eight virtual cameras correspond to the eight physical cameras supported by the hardware. 

Each physical camera may be assigned to several virtual cameras, allowing for flexible 

programming. Every time a frame store is acquired, a virtual camera must be specified to 

let the system know which camera to acquire from and the values of the vision parameter 

settings to be used. The system allows parameters of any virtual camera to be changed 

during runtime. However, less processing time is required to call several different virtual 

cameras, each with their pre-set parameters to make the same inspection. 

Frame-Grabbing 

Several methods of frame-grabbing are supported by the AdeptVision system, each 

affecting the subsequent image processing in different ways. The default method, or 

mode, of frame grabbing automatically initiates region or boundary analysis on the blobs in 

the image as soon as the image is acquired. A second mode, called a future frame grab, 

initiates the image acquisition, and holds it in the frame store for future processing. No 

operation may be performed on this frame store except initiating the processing done in the 

default mode. This allows system processing to take place before the frame store is 

analyzed. The third mode, called a quick frame grab, because it is the fastest method, 

grabs an image into a frame store, but performs no automatic region or boundary analysis. 

This mode takes about 1/30 to 1/20 second to complete, compared to 1/4 second required 

by the first mode. Any of the software vision tools may be applied to the frame store 

acquired in this manner. 
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A frame-grabbing procedure called "ping-ponging' optimizes the use of the two 

frame store buffers. While one frame store is acquiring a quick frame grabt the other can 

be processed and analyzed by the appropriate vision tools, allowing images to be 

continuously acquired at a rate of 30 frames per second. 

Identification Methods 

Identification methods supported by the Adept Vision AGS system that can be 

applied to the dish sorting problem fall into two basic categories: prototype recognition and 

characteristic isolation (AdeptVision Programming, 1990). A discussion of how they 

function, as well as their respective benefits and disadvantages, is presented below. 

Prototype Recognition. 

Prototype recognition is based on whole-object pattern identification and requires 

that appropriate visual representation of each prototype be previously "taught" or stored in 

the system. This information consists of arcs and lines mathematically fitted to the 

boundary of the prototype. When a particular vision tool called the VLOCA1E command is 

issued after a frame store has been acquired, the boundary pattern of a blob in the image is 

fitted with arcs and lines and then is compared mathematically and statistically to each 

prototype known to the system. When a match is made between the blob and a stored 

prototype within the statistical allowances, the blob is identified as an object, returning the 

name of the matched prototype. The advantage of this method is that the programming is 

easy: only one vision command, VLOCATE, is required to identify a 11 blob 11
• The 

disadvantages of this method are that it is slow, requiring high overhead vision processing; 

the method is very sensitive to prototype training technique; and the recognition times may 

vary significantly with similar blobs, typically falling in the range of 100 to 400 ms for 

objects with only simple geometry (AdeptVision Programmingt 1990). Recognition time 
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increases with increased geometric complexity and the number of prototypes trained in the 

system. 

Characteristic Isolation. 

Characteristic isolation differs from prototype recognition in that it investigates only 

the areas and characteristics needed for identification. The software developer bas more 

flexibility with the analysis of the frame store, since only the information in these selected 

areas is processed, rather than the complete object pattern. Moreover, identification may 

not necessarily be affected by objects touching or overlapping each other. Vision tools 

provide information quickly and allow the software to sort the information, in contrast to 

the trial-and-error comparison of prototype recognition. In our case, only three 

characteristics need be identified to sort the five dishes, namely the plan area, the number of 

dishes present, and the radius of any one of the comers of the dish. This constitutes 

considerably less information to process than the complete dish boundary fitted by arcs and 

lines, required by prototype recognition. This, combined with the greater flexibility and 

accommodation of touching parts, favors sorting by characteristic isolation for dish sorting, 

where the dishes are distinguished by few characteristics and are more often touching than 

not. 

Now, with a basic understanding of vision nomenclature, we proceed in the next 

chapter with a discussion of the sorting and inspection routines in which characteristic 

isolation is employed to sort dishes, and ping-pong frame grabbing and binary imaging are 

used to minimize processing time. 



CHAPTER Til 

MACHINE VISION SORTING AND INSPECTION 

The sorting and inspection routines presented here are written in the V + language 

introduced in Chapter II. They run sequentially, with sorting first, followed by inspection, 

in the Task 1 Program, and will be discussed in that order. The sort and inspection 

information required by the robot control program (!'ask 0) is passed through an array that 

is global to both program tasks, which will be addressed at the end of this chapter. 

Machine Vision Sorting 

Dish Descriptions 

The first concern in machine vision sorting is specific knowledge of the objects of 

the sort. For the application in our dish washing operation, the system must be able to sort 

among five different dishes, varying in size, shape, color and material as illustrated in 

Figure 3.1. From top to bottom left to right, we have a small plastic dish, a small ceramic 

dish, a small plastic spacer, a large ceramic dish, and a large plastic spacer. All five dishes 

are basically rectangular in shape, with sides that form an angle of approximately 100 to 

115 degrees from the open face of the dish. Viewed from above, the plan views of the two 

larger dishes are approximately the same size and roughly twice the size of the plan views 

of each of the other three. Specifically, the widths of the large dish and spacer are 

approximately equal to the lengths of the small dishes and spacer. This characteristic 

allows either 6 small or 3 large dishes in a row of the conveyor rack to be presented to the 

vision system, as well as to the robot end-effector handling the dishes. If the system is 

14 



15 

Figure 3.1 Dishes Used in This Application 
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constrained to keep all dishes identical in each row, only one dish from each row need be 

analyzed to determine the type present in that row. Any sorting performed on other dishes 

in the same row would be not only redundant, but would also require considerable 

additional processing time. 

The major characteristic for-distinguishing between large and small dishes is the 

plan projected area, easily detected by the two-dimensional camera image. After some 

initial study, it was determined that the large ceramic dish could be distinguished from the 

large plastic spacer by a larger arc radius at the corners of the ceramic dish. The three 

smaller dishes consist of a plastic dish, a plastic spacer, and a small version of the large 

ceramic dish described previously. Further study revealed that the small plastic spacer 

could be separated from the other two small dishes by its characteristic short-radius corner. 

The small plastic and ceramic dishes have essentially the same arc radius at their corners, 

but can be sorted on the basis of their plan projected area, the plastic dish being the smaller 

ofthe two. 

Implemented Sorting Algorithm 

The basic scheme of the sorting routine, developed in this work, follows the 

sequence of a) acquiring a frame store, b) accessing blob data processed during frame 

store acquisition, c) applying the vision tools, and then d) sorting the objects based on the 

information gained. The language used in this software is V+, provided by Adept 

Technology (1990). The VDISPLA Y and VPICfURE commands work together to set up 

the CRT monitor display and acquire a frame store from a selected "virtual" camera. For 

our application, high speed is necessary, such that unnecessary graphics display to the 

monitor is eliminated, which reduces processing time. Threshold values for the dish 

characteristics described above are set as standards. For simplicity, when comparing area 

or arc radii with a standard, the system need know only whether the measured value is less 

than the standard or equal to or greater than the standard. 
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Once a frame store is acquired, the blobs, or dish images, are also placed in a queue 

for the VLOCA1E command. In the characteristic isolation mode used here, this command 

:finds only the centroidallocation of the queued blob, its area, and the number of boles, or 

dark spots, in the white blob (AdeptVision Reference, 1990). The number of blobs, or 

dishes, and the area of the first blob in the queue are stored as variables to be evaluated 

later. Only the first blob in the image is needed to perform the sort, since all dishes in a 

row of the dishrack are identicaL If no dishes are found in the image, a second frame, 

from Camera 2, is grabbed and analyzed for the presence of dishes before further 

processing is begun. If need requires, a third image, from Camera 3, is taken and 

processed. Obviously, if no dishes are present in the row, the sorting and inspection 

process is terminated and the system waits for the next row to come into view. 

Blob area is used for several purposes. First, the V.MIN.AREA parameter is set 

such that any blob with an area less than the area of the smallest dish is not even processed. 

This is necessary since the camera will image the dishrack as small blobs when no dishes 

are present. Blob area also distinguishes large dishes and small touching dishes from small 

non-touching dishes. If the area is 11Small11
, small dishes are assumed present, and the area 

can be used to differentiate between the small plastic and small ceramic dishes, the ceramic 

being the larger of the two. If either large dishes or small touching dishes are present, they 

will form a blob with a 11 large11 area. The dish-rack prevents any dish outside the FOV 

from overlapping one inside the FOV, thus insuring a maximum of two completely visible 

dishes to touch and appear as one. If this is the case, further processing is necessary to 

distinguish large from small dishes. 

The next operation employs arc finders, using a vision tool called VFIND.ARC. 

This routine attempts to mathematically fit, or 11:find, 11 an arc to a boundary within a sector 

specified and placed by the programmer. If an arc is found, a data array containing the arc 

radius is returned as the argument (AdeptVision Reference, 1990). Two arc finders are 

placed: one at the center of the lower edge of a blob representing a large dish or two 
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touching small dishes, called Arcl, and a second, called Arc2, at the expected location of 

the lower right hand (LRH) comer of the dish blob. The expected locations of the lower 

edge and the LRH comer are offset the appropriate amounts from the centroid found by the 

VLOCATE command. The arc finder Arcl identifies the dish as large or small, because the 

lower edge of the large dish or spacer will have a very large radius at this location while 

two small dishes, whether touching or not, will have comers at this location with much 

smaller radii. If a small radius is returned, the blob area is divided by two to allow 

distinction between the small plastic and small ceramic dishes. The arc finder Arc2 

distinguishes between dishes and spacers, regardless of size, based on the radius returned. 

Figure 3.2 shows a sorting diagram that illustrates this algorithm. 

Figures 3.3 - 3.6 show a series of how the arc finders are placed on the blobs in 

this algorithm. The 11 located 11 arc in these figures does not show up well in these black and 

white photographs because they were taken from a color monitor which displayed the 

located arc in red. In Figure 3.3, the image has two blobs with small areas, indicating 

small dishes. Only one arc radius at the comer, Arc2, is needed to differentiate between 

small dishes and small spacers. Placed on the LRH comer of the right dish, Arc2 indicates 

that either a small plastic or small ceramic dish is present Dividing the blob area by two 

and checking the results separates the two possibilities, and the system has sorted small 

ceramic dishes. Arcl is not needed. 

Figure 3.4 shows an image of two small, touching plastic spacers producing one 

blob. In this case Arcl is needed to distinguish the small dishes from a large one. The arc 

finder returns the arc radius of the LRH comer of the left dish, and identifies that small 

dishes are present Then Arc2, placed on the LRH comer of the right dish, indicates that a 

small plastic spacer is present Using the first arc finder in this way accommodates 

touching small dishes that appear as one object, allowing them to be recognized as two 

small dishes. 
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Figure 3.3 Two-Blob Image Sorted as a Two Small Ceramic Dishes 

Figure 3.4 One-Blob Image Sorted as Two Small Plastic Spacers 
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The next two figures show a large ceramic dish and a large spacer respectively. In 

Figure 3.5, the Arcl returns a large radius indicating a large dish or spacer, while Arc2, 

placed at the LRH comer, returns a large radius, sorting the object as a large ceramic dish. 

In Figure 3.6, Arcl returns a large radius, indicating a large dish or spacer, and the radius 

found by Arc2 is small, indicating a spacer. 

Use of this approach requires that dishes be presented each time to the cameras in 

the same way and in the same location for proper sorting and inspection. By immobilizing 

the dishes relative to the disbrack and triggering the imaging and inspection off the belt 

location tracker, this requirement can be satisfied. Once the dish is identified, the vision 

parameters for inspection are set, and inspection is initiated. 
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Figure 3.5 One-Blob Image Sorted as a Large Ceramic Dish 

Figure 3.6 One-Blob Image Sorted as a Large Plastic Spacer. 



23 

Machine Vision Inspection 

Food Particle Detection 

A quick but thorough inspection completes the machine vision segment of the dish 

handling automation . Frequently, the dishwasher fails to completely clean every dish. To 

prevent the unloading robot from placing unclean dishes with those that are clean, machine 

vision inspection (MVI) is necessary. Therefore, the purpose ofMVI is to quickly verify 

that dishes exiting the dishwasher at the rate of 30 rows per minute have in fact been 

thoroughly cleansed and to pass this information to the robot controller. Contaminated 

dishes identified by MVI should remain untouched by the end effector and left to ride in the 

moving dishrack to the soak tank. 

Stray food particles present on a dish constitute contamination and can be detected 

by their discoloration, contrasting with the light background color of the dish. Using 

binary imaging, the discolorations appear as "holes11 in the dish image "blob11
• A simple 

method of scanning for 11 holes," i.e., food particles, in a dish image is essentially all that is 

involved for inspection. The challenge lies in insuring the detection of even the slightest 

amount of stray dirt on a dish, minimizing processing time, and converting the 

clean/unclean information to signals controlling independently the six individual pick-up 

points of the end effector. 

Insuring food particle detection requires proper setting of parameters for the 

cameras and vision system, together with proper illumination to avoid shading interference. 

Shading interference refers to the phenomena in which shadows or shading appearing on 

an object are detected in binary imaging as holes in the blob. The most obvious remedy to 

shading interference is to optimize the gain, offset and binary threshold parameteiS used in 

obtaining the frame stores to eliminate the shadows. With the use of virtual cameras, 

discussed in Chapter II, these parameters can be tuned and assigned to each dish type. Any 

food particle darker than the shading interference would appear as a hole and would be 
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detected. This also implies, however, that food particles lighter than the shading will not 

be detected. It is therefore necessary to reduce the amount of shading interference caused 

by illumination effects. Chapter IV has been devoted to this topic. 

Inspection Algorithm 

The first step in inspection is to know what type dish is present Since the dishes 

vary in color, food particles may show up better on some than others. Proper vision 

parameter settings, including the binary threshold, must be set to allow for maximum 

sensitivity to discoloration. In the implemented algorithm, sets of three virtual cameras, 

corresponding to the three physical cameras, have been tuned for each type of dish. The 

dish type is conveniently known from the sorting routine executed before inspection, and 

identifies the set of virtual cameras to be used with each physical camera for inspection. 

When a frame store is acquired from the specified virtual camera, the vision parameters 

associated with that camera are used, insuring maximum sensitivity to food particles 

regardless of the dish type. 

Two scanning routines where developed, one for the large dishes and one for the 

smaller dishes. Though these routines are different, the basic algorithm is the same. 

During image processing, "windows" specifying the region of the frame store to be 

processed are placed over the expected location of each dish, and only this area of the frame 

store is processed. Reduced area to process yields reduced processing time. In each 

window, the dish 11 blob 11 is located using the VLOCATE command; dirt-causing holes in 

the blob are automatically counted. If the number of holes counted in the dish blob is zero, 

the dish is clean; any number greater than zero indicates at least one dirty spot has been 

identified and that the dish has not been thoroughly cleansed. The hole count can be 

checked through the VFEATURE command. The scanning routine for small dishes has the 

same basic algorithm, differing only in the number and size of the windows used to 
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process each frame store image. Two windows, each covering the expected location and 

size of the small dishes are employed instead of the one window for the large dishes. 

Setting the Code for the Robot End Effector 

Once a dish has been inspected and labeled as clean, it is ready to be picked up by 

the robot end effector, or hand tool. The hand tool has an array of six suction cup grippers 

allowing it to hold six small dishes or three large dishes, with two suction cups per dish. 

The vacuum drivers are individually controlled to allow the robot to handle only those 

dishes it is instructed to pick-up. A binary code of six digits tells which vacuum drivers to 

activate when the robot moves in to remove dishes from the rack. When inspection begins, 

the code is set to 000000. As each dish is inspected and labeled as clean, the 

corresponding bit is turned on to activate that vacuum. For instance a gripper code of 

111011 would indicate than a small dish in the fourth slot did not pass inspection. All 

vacuum drivers except the fourth would be turned on, removing all from the dishrack 

except the unclean dish. 

lbis code along with dishtype information is passed from the vision task to the 

robot task in the form of a queuing list, actually a 10x2 array, which provides for 10 rows 

of dishes to be queued. The first column element contains the dishtype number, while the 

second contains the gripper code. The robot removes the dishes as they are listed in the 

10x2 array, top to bottom. Then as the array fills up at the lOth row and the robot removes 

row's of dishes from the conveyor, the array index is rolled over to the top of the array and 

continues as before, queuing rows of dishes for the robot to remove. 

With the software design for food particle detection, minimum processing time, and 

integrated vision-based robot control as a foundation, we must optimize food particle 

detection. As indicated by VanDommelen (1990), the most difficult aspect of machine 

vision is proper illumination, for objects appear differently depending both on how they are 

illuminated and how they are presented to a camera In our application, the amount of dirt 
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on a dish needed for detection depends on these two factors. Chapter IV has been 

dedicated to the topic of illumination and discusses how the final design was selected. The 

speed and accuracy of the sorting algorithm and the speed of the inspection routine are 

detailed in Chapter V. 



CHAPTER IV 

ILLUMINATION DESIGN 

Need for Proper Illumination 

As in robotic motion control, the machine vision sorting and inspection routines can 

be accomplished with the assistance of Adept Technology•s available software. However, 

a special challenge exists in properly presenting dishes to the cameras and in illuminating 

them. Dish presentation issues involve where the dishes appear in the camera•s field of 

view, how the orientation angles of both dish and camera affect the image, and how to 

inspect completely a dish sitting in a dishrack. Dish presentation is influenced by the 

dishrack design. Given a dishrack design, camera positioning can be tuned such that they 

address these issues. 

Illumination design deals with the effect of lighting on the dish and how it affects 

the image seen by the camera. Ambient lighting usually is inconsistent, changes in 

intensity, and casts shadows by moving objects, such as personnel, in the surrounding 

environment In food particle detection, particles are detected because they either scatter or 

absqrb light. However, the geometry of the dishes produces interfering shading by 

scattering light, such that distinction must be made between the actual dirt-causing light 

intensity loss and shading interference. Consistent lighting is obviously necessary to 

provide reliability in the inspection process. Ambient lighting, therefore, is unacceptable. 

Instead, an enclosure referred to as a light box, containing light sources, cameras and the 

objects of inspection (dishes in the dishrack) was found necessary to provide both 

consistent lighting and proper illumination to reduce shading interference. 

27 
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Light Box Design 

Desitw Methodolofl.Y 

Designing the light box from a limited base of experience and available literature 

requires trial and error, and some creativity. Different light sources, orientations of light 

sources, non-mirror-like reflectors, diffusers and several optical filters were tried in various 

combinations to arrive at an acceptable solution. Initially, these components were arranged 

and varied to get a qualitative feel for what seemed acceptable and what was not. It was 

soon discovered that overhead lighting produced harsh shadows along the dish sides, even 

when diffusers were introduced between the light source and the dishes. Another 

discovery was that the more diffuse the lighting, the softer the shadows became, and 

shading interference declined To produce diffuse illumination, one must use a very 

diffuse light source (such as fiber optics), fluorescent lights shielded by a diffuser, or an 

indirect light source banking light off a diffusing reflector. Fluorescent lights produce the 

most diffuse lighting for large areas, whereas fiber optics are typically used for flood 

lighting from the direction of the camera fur close inspections (Harding, 1993). Diffusing 

reflectors that also eliminate variant, ambient lighting effects can be used to stabilize the 

illumination as well as increase diffusivity of the light. Reflectors with a matte finish 

diffuse light much better than shiny reflectors. In our application the most effective 

location for fluorescent light tubes was found to be at the side of and parallel with the 

dishrack conveyor, just below the level of the dishes in the rack. 

Fluorescent illumination, particularly useful in the inspection of specular surfaces 

(Chen and Tretiak, 1992) such as the dishes used in this application, was addressed by 

experimenting with ultra-violet band pass filters. 

Using this basic understanding, a concept for a light box was formed and 

experimental set-ups were constructed such that geometric shapes could be adjusted to find 

the optimum combination. The goal was to eliminate, as much as possible, the shading 
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interference described in Chapter III. To compare results from each experimental setup, a 

test dish was used with varying degrees of dirt . Each experimental setup was evaluated by 

first adjusting the grayscale gain, while viewing a binary image, to eliminate the black 

pixels due to shading or shadows on a standardized dish containing food particles. A count 

of the black pixels remaining inside the dish boundary was made and recorded. A higher 

number of black pixels counted, indicated a greater ability to detect the lightest or least 

amount of dirt particles present on a dish. The same standardized dish was used in each 

evaluation of the experimental setups. 

Fluorescent lamps were tested at a variety of locations relative to the FOV to find 

their most effective orientation. Placed overhead, they produced the largest amount of 

shading interference. Placing them above and to the side of the FOV, (either parallel with 

or perpendicular to the rows of dishes provided the same results), and shielding direct light 

from the dishes was an improvement, but could not reduce the shading interference as well 

as when the lamps were placed along side ofthe dishrack,just below the level of the 

dishes. Lowering the lamps further also increased shading interference. 

Varying the top panel of the light box also had some interesting results. For 

instance, a flat top panel performed better than a corrugated pane~ but not as well as a V­

shaped trough. Corrugations aligned with the rows (traversing the dishrack) performed 

better than when they were aligned parallel with the dishrack. 

Final Design 

Figure 4.1 shows the schematic of the final light box design. Illumination is 

provided by two banks of fluorescent lights, placed at either side of and parallel with the 

dishrack as mentioned earlier in this chapter. Each bank consists of two 4 foot lamps, 

either F40 or F32T8. The level of the light tubes is set just below the level of the dishes in 

the rack to prevent any direct lighting this being found undesirable. High-frequency 

ballasts operating at 20 kHz are used to drive the fluorescent lamps in an effort to eliminate 
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frequency beating between the lamp cycle period and the frame grabbing interval Beating 

is particularly noticeable as a flickering image in constant output mode. 

Gray scale coupons are mounted near the inside of the leading wall of the light box 

under each camera. These are used for automatic threshold control discussed later in this 

chapter. The four vertical sides of the light box are composed of white matte (non-glare) 

poster board, 1/16 inch thick. The top of the box consists of a white translucent plastic 

light diffuser, common in office lighting fixtures. Overall dimensions of the box are 36 

inches high, 48 inches wide, and 16 inches deep. The leading and trailing walls are hinged 

near the top to allow large pots and pans to pass through the light box, if typical operation 

demands, and the box is open at the bottom so as not to disturb any dishes as they proceed 

into the FOV of the cameras. The dishrack clearance, optimized in the illumination 

experimentation presented in Chapter V, is measured from the top of the dishrack to the 

bottom of the leading and trailing walls of the light box. The other two walls, enclosing the 

light box by extending from the camera height to below the level of the light tubes together 

with the leading and trailing walls, act as diffusing reflectors, scattering light diffusely into 

the center. 

Cameras and Optics 

Filters and Optics Hardware 

To avoid collision with large pots and pans that may pass through the dishwasher, 

the cameras are placed 2.5 feet above the top of the dishrack. Each camera is equipped 

with a 25 m.m focal length lens, producing a square FOV with a side length approximately 

equal to 1.2 times the length of the large dishes. Ultra-Violet (UV) band pass filters placed 

over the camera lenses where used to accentuate the presence of food particles. 

Experiments with two UV filters, model numbers 1-64 and 5-59 manufactured by Kopp 

Glass Inc., were conducted to determine which performs best in our application. 

Transmittance curves for these filters are given in the appendix. The results of the 



experimental testing are presented in Chapter V and show that the UV filters increased 

sensitivity to food particle detection over a naked lens, with the 5-59 filter being the 

superior of the two. 

CCD Output Intensity Drift 
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During evaluation of various experimental setups the phenomena of intensity drift 

was encountered. For any one setup, data, i.e., pixel counts, could be taken for one 

setting of parameters at one time and within a matter of only a few minutes, data taken with 

the same settings yielded completely different results. 

To investigate this problem, the pixel count of the standardized dish was monitored 

over a period of 3.5 hours with no changes made to the parameter settings fur offset, gain, 

and threshold. Each recorded pixel count was actually the average of 10 consecutive 

readings, spannig a period of approximately 80 seconds. As shown in Figure 4.2, there 

was significant drift in the direction of increasing intensity until all but one very dark spot 

had completely disappeared from the images. This prompted a series of controlled 

experiments to isolate the cause of the problem from the following suspects: a) unstable 

cameras, b) fluctuating light intensity, and c) fluctuating power voltage. 

The first experiment consisted of monitoring the intensity of the fluorescent light 

sources, the CCD camera output, and the electrical outlet voltage feeding power to the 

li~ts. Light source intensity was monitored by employing a photoresistor bridge circuit, 

shown in Figure 4.3. The photoresistor (PR) was mounted inside the light box and remote 

from the circuit, such that manual readings of circuit voltages with a hand-held voltmeter 

would not affect the measured lighting intensity inside the box. Since an increase in light 

intensity reduces the resistance in the photoresistor, it can be shown that an increase in light 

intensity produces a decrease in voltage (m V) across the bridge. For the purpose of this 

experiment, the change in the value of the voltage is of particular interest, rather than the . 

actual value, since we sought only relative changes in intensity. 
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To monitor the CCD output from the cameras, the method of pixel counting was 

again employed, but with some modifications. Instead of using the standardized dish, a 

target of varying grayscale shown in Figure 4.4 was used to ensure a complete range, with 

no cutoff level. The vision imaging parameters were set such that the median grayscale and 

lighter shades appeared as white pixels. Also, the white pixels were counted instead of the 

black as in the preliminary experiment The 120 V wall outlet voltage was measured using 

an RMS voltmeter and recorded along with the bridge voltage and the white pixel counts 

for each camera. In this experiment, the wall outlet voltage powered both the lights and the 

bridge circuit, while the cameras were powered from a different 240 V circuit through a 

step-down transformer in-the AdeptOne MC controller cabinel 

Figures 4.6 - 4. 7 show the results of this experimenl From this data it is hard to 

conclude whether the outlet voltage feeding both the lights and the 4 volt power supply to 

the bridge circuit is the cause of the changing light intensity and ultimately the CCD outpul 

There is some correlation among the results from the three graphs, since the major peaks 

occur at the same data collection times. However, no conclusive evidence isolating one 

component as the problem source is evidenl 

A difficulty in this experiment was that the pixel count measurements where 

recorded and averaged manually, taking approximately 7 minutes to complete for each data 

poinl This prompted a second experiment, in which the basic form of the first was 

rep~ated, except that the power source for the lights and the bridge circuit was drawn from 

the transformer inside the robot controller, and the pixel count recording was automated, 

decreasing the data acquisition time to 2 seconds. This second experiment was conducted 

twice, first as just described, and then later with the camera cables to Cameras 1 and 3 

switched in an effort to isolate a defective camera from a defective I/0 port in the MC 

controller, and with high-frequency (20kHz) ballasts replacing 60Hz ballasts for the 

fluorescent lamps. The results from both of these experiments gave essentially identical . 
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Figure 4.4 Target of Varying Grayscale 
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results confirming that both power fluctuations and CCD output drift are significant 

problems that must be solved. 
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Figure 4.8 shows the power fluctuation of the outlet from the step-down 

transformer inside the MC controller unit over a 12 hour period beginning approximately at 

9:00am, with data points gathered every fifteen minutes. Notice that the power supply 

voltage fluctuates within a range of 2 volts and spans that range within a one hour interval 

as seen from 6.5 to 7.5 hours after system start-up. Note also that the voltage tended to 

increase throughout the day. 

Figure 4.9 shows the data collected from the photoresistor bridge circuit The 

power supply apparently filtered out any voltage fluctuation from the MC controller 

transformer that provided it with power, as seen by its nearly constant output The scales 

in Figure 4.9 are in units of volts for the power supply and millivolts for the bridge 

voltage. However, they both cover the same range of 250m V. From this, we can 

conclude that a change in the bridge voltage is not a function of the fluctuating outlet power 

from the MC controller transformer, but rather a change in the light intensity. The bridge 

voltage, measured in the same manner as in the previous experiment, tended to fall off 

during the day, indicating somewhat of a rise in light intensity. This correlates with an 

upward trend in the power source voltage in Figure 4.8. 
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Threshold Control 

In order to compensate for power and lighting fluctuations and C!:!Jnera intensity 

drift described above, a simple automatic real-time threshold controller based on 

proportional-integral (PI) control theory was developed for each camera. The controller 

takes a pixel count of a grayscale grid (similar to the one used for the intensity experiments) 

mounted to the coupons placed six inches above the dish rack such that they appear in the 

lower central part of the FOV of each camera. The pixel count is compared to a desired set 

point, yielding an error and an error sum necessary for the PI control algorithm, given by 

TIIi = KP[Ei + K1 ESi] (1) 

where 
llii = Threshold Setting at time tj 
KP = Proportional Gain Constant 
Kl = Integral Gain Constant 
Ei = pixel count - setpoint, at time ti 
ESi = 2: Ei, from time 0 to time ti 

An increase in threshold yields a lower pixel count, such that the error is calculated 

as the measured value (pixel count) - setpoint, rather than the usual setpoint - measured 

value. As the intensity experiments indicate, each camera responds differently to what 

appears in its FOV. For this reason, the proportional and integral gains for each camera 

where calibrated by trial-and-error. The main criteria for selecting the gain constants was a 

one second settling time which, as the above experiment shows, is much faster than the 

dynamics of the drifting ceo output The percent overshoot was not considered since 

vision processing will occur at steady state. The results for each camera are shown in 

Table I. below. 

While the Task 1 program is waiting for the next row of dishes, the system rolls 

through at least one increment of the PI compensator which provides for real-time controL 

For every change in threshold from the PI controller, the thresholds of virtual cameras 1-3 

are used as baselines from which the thresholds of virtual cameras, 4 -12, are adjusted· by 

empirically determined offsets to provide maximum food particle detection. 



TABLE I 

PI CONTROL CONSTANTS FOR AUTOMATIC THRESHOLD 
CONTROL FOR CAMERAS 1-3 

Gain Constant Camera 1 Camera 2 Camera3 

KP 
K1 

0.00575 
1.35 

0.0023475 
3.057 

0.5 
1.45 
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The compensation scheme designed and implemented above was evaluated to see 

how well it performed. During the same time the data represented in Figures 4.8 and 4.9 

above was taken, data from each camera was recorded to show the response of the each 

camera with and without the threshold controller. The results are presented in Figures 4.10 

through 4.12. 

In Figure 4.10 the white pixel count ofthe grayscale target shown in Figure 4.4 is 

obtained with constant setting; of binary threshold, and grayscale gain, and offset, set at 

145, 20 and 60 respectively. Note that Camera 3 has a five-hour 11 warm-up" time. Each 

camera shows a hump at hours 5.5 and 6.5, which correspond to blips in the power source 

(Figure 4.8). The humps at hours 10 and 11 correspond to light intensity changes (Figure 

4.9). Thus, as expected, camera output is sensitive to both power source and light 

intensity changes. However, these are coupled effects, since both cameras and lights are 

powered by the same source. 

The threshold was designed to maintain a constant pixel count for a constant image 

source. The values of the threshold setting from the controller to maintain constant pixel 

counts are shown in Figure 4.11 while the pixel count at the controlled threshold settings 

are given in Figure 4.12. Grayscale gain and offset were left unchanged from the settings 

above. Notice the curves in Figure 4.11 track those in Figure 4.10, as the controlled 
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threshold follows the uncontrolled pixel counts for each camera. The controlled pixel 

counts given in Figure 4.12 are much more stable than their counterparts in Figure 4.10. 

A discussion of the experimental results is given in Chapter V as well as the 

presentation and discussion of the experimental results of the performance of the machine 

vision task, and the optimization of illumination design. 



Accuracy 

CHAP1ER V 

EXPERIMENTAL RESULTS 

Sorting Performance 

The accuracy of the sorting algorithm shown in Table I. The tabulated results in the 

column labeled 11 overall11 represent at least 100 events for each dish, an event being an 

attempt by the sorting algorithm to correctly identify a dish presented in the FOV of the 

camera while the complete system, robot control and machine vision, operated together. 

For each event, a record was made of whether the sort was accurate and, in the case of the 

smaller dishes, whether they were imaged as one or two blobs. The results in Table I 

show that the sorting algorithm is very accurate with small errors occurring only in the sort 

of the small plastic dish when touching, and the small spacer. The errors are due to 

incorrect arc radii returned from the arc finder. We conclude that sorting accuracy would 

be ac:ceptable for commercial dishwasing operations. 

Processing Time 

Because processing time required to sort a row of dishes is an important 

performance measure, experiments were conducted to assess this quantity. Table II shows 

the results tabulated according to which dishrack slot was the first to have dishes present 

the first slot to have dishes present. 11 Slot One" indicates that dishes were present in the 

first section of the dishbelt, requiring only an image from Camera 1; 11 Slot Two11 indicates 

that the first section was empty, requiring an image from Camera #2; "Slot Three11 indicates 
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TABLE II 

SORTING ERROR PERCENTAGE BY DISHTYPE 

Imaged as One Blob Imaged as Two Blobs 
% % 

Dish type Events Errors Error Events Errors Error 

Small Plastic Dish 70 1 1.43 50 0 0.00 
Small Spacer 68 3 4.41 57 2 3.51 
Sma II Ceramic Dish 50 0 0.00 67 0 0.00 
Large Spacer 110 0 0.00 ~-- --- ~~-

Large Ceramic Dish 125 0 0.00 --- -~- ---

Overall 

Events Errors 

120 1 
125 5 
116 0 
110 0 
125 0 

% 
Error 

0.83 
4.00 
0.00 
0.00 
0.00 

~ 
Lll 



TABI.EITI 

PROCESSING TIME REQUIRED TO SORT DISHES 

Slot One Slot Two Slot Three 
Dish type (ms) (ms) (ms) 

Small Plastic Dish 690 591 813 
Small Plastic Spacer 545 529 573 
Small Ceramic Dish 652 687 682 
Large Plastic Spacer 563 545 666 
Large Ceramic Dish 562 593 705 

that the :first two sections were empty requiring an image from Camera #3 to sort Each 

value presented in Table II is an average of 10 events. 
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We expect a longer processing interval if more than one picture must be grabbed to 

find a dish to sort The results show that this is not necessarily the case. Notice that the 

processing time for sorting a dish :first sighted in either slot one or two is essentially the 

same, while a dish in slot three takes considerable longer. This is because vision 

processing time is more greatly influenced by the complexity of an image than by the 

additional lines of code in the program needed to locate the :first blob. Cameras 1 and 3 

view the outsides of the composite three-camera FOV, which are exposed to more light 

than the inside. This additional light reflects off the dish belt enough to provide some noise 

in the image, making it more complex to analyze the images taken from the outside 

cameras. Notice also, that the smaller dishes generally produce a more complex image by 

yielding two blobs instead of one, such that they require longer times to process. On the 

other hand, the results presented in Table II, indicate that this complexity has little effect on 

sorting reliability. 



At normal dishrack speeds, the processing time for sorting and inspection is one 

row every 2 seconds. Since the largest sorting time is Table III is approximately 0.8 

seconds, there is ample time to inspect the dishes following the sort before the next row 

comes into view. Since the algorithm knows which slot has the first set of dishes, it will 

not have to re-scan an empty slot for clean dishes, which further reduces processing time. 

Inspection Performance 

Food Particle Detection 

The ability of the inspection process to detect the presence of food particles is 

represented in Figures 5.1- and 5.2. In Figure 5.1, a photograph of the test dish discussed 

in the previous chapter shows clearly the presence of food particles present on the dish. In 

the next figure, we show a binary image of the dish with shading interference eliminated by 

proper threshold setting and the optimum illumination design (including use of the 5-59 

optical filter) discussed later in this chapter (see Figure 5.6). The black spots inside the 

dish indicate the presence of food particles. Notice that all but the very lightest shades of 

the food particles can be detected. Another note is to recall that this particular dishtype has 

the highest degree of shading interference to be filtered by the binary threshold. In each of 

the other dishes, shading interference is less, allowing more of the lighter shades of food 

particles to be detected. 

The dish above the test dish in Figure 5.2 is a large cefamic dish that shows 

shading interference on the inside comers when viewed with the vision parameters for 

proper inspection of the small spacer dish. This illustrates the need for differing parameter 

settings for each dishtype, but does not pose a problem in inspecting the dish of interest, 

i.e., the test dish, since a window is placed around only the dish of interest. Everything 

outside the window, including surrounding dishes, is excluded from the inspection for 

holes in that particular dish. 



48 

Figure 5.1 Photograph of Test Dish with Food Particles 

Figure 5.2 Binary Image of Test Dish with Food Particles 
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For comparison, Figure 5.3 shows a binary image of the dish with the same 

illumination as Figure 5.2, except that the filter has been removed. As in the previous 

figure, the binary threshold was adjusted to eliminate the shading interference. Notice how 

much food particle detection increases with the use of UV band pass filters in Figure 5.2 

-
' • 

Figure 5.3 Unfiltered Binary Image of Test Dish with Food Particles 
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Processinfi Time 

Table N presents the processing time required to inspect dishes that fill one, two, 

and three slots respectively. Each value is an average of 10 events. In this experiment, 

note that as intuition would indicate, fewer frames to analyze result in smaller processing 

times. Notice also that the smaller dishes, producing slightly more complex images, 

require more processing time to perform the vision analysis. However, even for the 

slowest case, the processing time is very reasonable. In fact, the combination of the 

longest sorting time from Table ill and the longest inspection time from Table N is 

approximately 1.5 seconds, well within the two second interval between rows of dishes. 

TABLEN 

PROCESSING TIME REQUIRED TO INSPECT DISHES 

Slots 1, 2, & 3 Slots 2 & 3 Slot 3 
Dish type (ms) (ms) (ms) 

Small Plastic Dish 805 343 183 
Small Plastic Spacer 662 385 170 
Small Ceramic Dish 878 365 190 
Large Plastic Spacer 395 253 138 
Large Ceramic Dish 527 222 122 
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illumination Hardware 

Evaluation of the illumination hardware was based on the resulting ability of the 

vision processor to identify food particles on a test dish as mentioned in Chapter IV. The 

hardware variables considered were dishrack clearance, an overhead ambient light diffuser 

versus no diffuser, two types of fluorescent lamps, F40 and F32T8, powered by 20 kHz 

ballasts, and two illtra-Violet (UV) band pass lens filters, numbers 1-64 and 5-59, together 

with a naked lens. As shown in Figure 5.4, the dishrack clearance is the distance between 

the top of the dishrack and the bottom of the light box leading and trailing panels. A 

diffuser above the light box was used to diffuse the overhead ambient room lightin~ which 

consisted of common 8 foot Fluorescent lamps found in commercial industrial room 

lighting applications. The UV filters were placed directly over the camera lens. The 

transmittance curves for these filters are given in Appendix B. 

Data was collected from alternate set-ups, using the overhead diffuser with both 

types of lamp and then removing the diffuser and repeating the experiment with both lamp 

types. For each of these variations, the dishrack clearance was adjusted in increments of 

one inch from 2 inches to 5 inches. A minimum clearance of 2 inches is required for dishes 

to pass unobstructed under the light box. Again for each increment of clearance, data was 

taken with and without the two filters. For each filter, the lens aperture was adjusted to 

allow enough light to the CCD to form an image. Filter 5-59 required an aperture of 1.4; 

Filter 1-64 required an aperture of 2; the naked lens aperture was set at 5.6. 

The data collected from these set-ups is given in Figures 5.5- 5.8. For each data 

point, the binary threshold was held constant while the gain was adjusted to just eliminate 

the shading interference. Then pixel counts were taken from a series of 20 image frames 

and averaged to give the values presented in the figures. The test dish, a small spacer, 

chosen because it is the most sensitive to shading interference, remained stationary 

throughout data collection to insure consistency. Also, the outside camera (Camera 1) was 

used to perform the imaging because shading interference is greatest at the outside. 
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To interpret the results in these figures, note that higher values of black pixel counts 

indicate greater ability to determine food particles, which appear black. The results show 

that the UV filters do indeed increase the detectability of food particles on the specular­

surfaced dishes in every case. The performance. of the individual filters are approximately 

the same, although the 5-59 filters out the shading interference slightly better. This may 

occur because it is a darker filter and eliminates more of the longer wavelengths of light that 

tend to produce shadows on specular surfaces. 

The common F40 lamps provide superior results than the newer F32T8 lamps. 

This is most likely due to the fact that the F32T8lamp provides a light with more longer 

wavelengths, similar to an incandescent lamp. Since these wavelengths are filtered by the 

UV glass, the illumination provides less contrast between the food particles and the dish 

surface, rendering it harder to detect 

The diffuser above the light box improves the contrast between food particle and 

dish. This is because overhead room lighting commonly causes shadowing if not diffused. 

The illuminating lamps where placed above the dishes during the initial stages of this work 

and revealed that this location was unacceptable because of the sharp shadows they 

produced inside the dishes. 

The optimum configuration comes from Figure 5.6, indicating the use of the 5-59 

UV filter, the F40 fluorescent lamps, an overhead diffuser, and a dishrack clearance of 4 

inches. 



CHAP1ER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Basic Results 

We have focused, in this research, on the implementation of Machine Vision 

Sorting and Inspection for commercial dish washing applications. The major contributions 

of this research may be summarize4 as follows: 

1. A quick reliable method of sorting dishes as they exit the dishwasher has been 

identified and implemented. 

2. A fast and efficient inspection process for identifying dirty dishes as they exit the 

dishwasher has been designed and implemented. While this process appears to be 

acceptable, there is certainly room for improvement to insure any dirty dish to be 

detected as such. The consequence of passing a stained dish as clean is minimal 

since a stain will not contaminate other dishes and can culled during later 

inspections prior to the next serving. 

3. 1breshold imaging control in real-time has been introduced to allow for changing 

system specific variables such as fluctuating power sources that may cause changes 

in the lighting intensity, or cameras that require a warm-up period to become stable 

in their CCD output 

4. For applications were shiny or specular objects, such as the dishes used in this 

research, are inspected for dirt particles or other surface defects, indirect ultra-violet 

lighting can be obtained using fluorescent lamps and UV band pass filters, 

providing good contrast between the surface of the object and the defect by 

effectively eliminating glint 
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Future Research 

Finding the optimum illumination technique for machine vision applications can be 

somewhat limited by time and resources. It is recommended that software and graphics be 

developed for personal computer simulation of CCD imaging that would allow the designer 

to specify light box dimensions, light source types and orientations, and possibly filters. 

The simulated output of a CCD camera displayed graphically as these parameters are 

changed would eliminate the need build an experimental set-up to evaluate each idea. 

It is also recommended that means be found to efficiently illuminate dishes in the 

dishrack without the need for a light box. Banked arrangements of fiber optic point 

sources rna y have potential for this. 

Further enhancing the contrast between food particle and dish surface may be 

achieved by staining the food particles with a color dye during the prescrub operation. This 

should be investigated. 

An expansion of machine vision sorting and inspection in automated dishwashing 

should include the sorting and inspection of silverware, cups and trays. With the 

fundamentals supplied in this work, modifications could easily be made to accommodate 

the addition of these to the complete package of an automated dishroom. 
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APPENDIX A 

PHOTOGRAPHS OF THE EXPERIMETAL SET-UP 
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Figure A1 Experimental Set-up with AdeptOne SCARA Robot, Six­
point Vacuum-type Gripper, Modified Dishrack in the 
Up Position Mounted to the Conveyor Belt, Light Box, 
and Cameras 
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Figure A2 Side View of Light Box with Side Panel 
Removed, Cameras Overhead, and 
Dishrack Showing Closed, Transition, 
and Opened Positions. 
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Figure A3 Six-Point End-Effector Removing Dishes from the Dishrack 

Figure A4 Dishes Being Placed in Proper Stacks by the Robot End­
Effector 
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APPENDIXB 

TRANS:MITTANCE CURVES FOR ULTRA-VIOLET 

FILTERS 1-64 AND 5-59 
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