GEOCHEMICAL ASSESSMENT OF MINE WATERS WITHIN ABANDONED LEAD-ZINC MINES, PICHER FIELD, NORTHEAST OKLAHOMA

By

MARK L. FINNEY

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1986

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1993

GEOCHEMICAL ASSESSMENT OF MINE WATERS WITHIN ABANDONED LEAD-ZINC MINES, PICHER FIELD, NORTHEAST OKLAHOMA

Thesis Approved:

Adviser line

Dean of the Graduate

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my graduate committee members for their guidance during this project. Dr. Arthur W. Hounslow's constant prodding helped create the drive needed to complete this document. I deeply appreciated Dr. John D. Vitek for the criticism and editorial assistance and Dr. Douglas C. Kent for joining my committee under such short notice.

A special thanks goes to Kelly Goff, science programmer, for his assistance in extracting the needed water quality data from WATSTOR, the staff at the University Center for Water Research, for their help in obtaining essential publications, and John Mott for his assistance in locating the mine water discharge points. I would also like to thank Main Hutchenson and Kathy Martin, with the Oklahoma Water Resources Board, and Judy Duncan, with the Oklahoma State Health Department, for their assistance.

I cannot adequately express my appreciation to my family for their patience and support. Finally, I would like to thank my mother, whose encouragement enabled me to pursue my goal.

TABLE OF CONTENTS

Chapter	Page
I. INTRODUCTION	1
Study Objective	1
Scope of Study	1
II. LITERATURE REVIEW	4
Acid Production	4 6 6
III. METHODOLOGY	21
Sample Location Numbering System	21 23 29 30 31 32 33 35 35 35 36 38
IV. DISCUSSION	42
Variations in mine Water Quality Spatial Variations Spatial Variations Temporal Variations Aqueous Mineral Equilibrium Precipitate Description and Analysis Iron Precipitate Dehydration Series Sorption Process	42 42 59 67 71 80 82

Chapter

Page

Summary
V. CONCLUSIONS AND RECOMMENDATIONS
Conclusions
Recommendations
APPENDIXES
APPENDIX A - MINE WATER ANALYSES 103 April 1976 to June 1977 Data 104 November 1983 to June 1985 Data 122
APPENDIX B - VERTICAL MINE WATER QUALITY DATA 131
APPENDIX C - AERIAL MINE WATER QUALITY DATA 148
APPENDIX D - TEMPORAL MINE WATER QUALITY DATA 156
APPENDIX E - WATEQ4F SIMULATION DATA

LIST OF TABLES

Table	Page
1.	Zinc and Lead Production from the Picher Field, 1904-1964 9
2.	Observed Minerals in the Picher Field
3.	Mine Sample Data, 1976-1977
4.	Selected Precipitates Associated with Acid Mine Drainage
5.	Iron and Aluminum Precipitate Stablility Fields
6.	Precipitate Collection Locations and Descriptions

LIST OF FIGURES

Figure	Page
1.	Oklahoma Portion of the Picher Field
2.	Acid Production
3.	Oxidation of Sulfide Minerals and the Release of Associated Trace Metals
4.	Stratigraphy of the Picher Field
5.	Mine Hydraulics
6.	Rise in Water Level Between April 1976 and June 1977, Birthday Mine
7.	Rise in Water Level Between April 1976 and June 1977, Consolidated No.2-Pl Mine
8.	Rise in Water Level Between April 1976 and June 1977, Lucky Bill Air Shaft
9.	Rise in Water Level Between April 1976 and June 1977, New Chicago Mine
10.	Mine Sample Location Map for 1976-1977
11.	Mine Sample Location Map for 1980-1985
12.	Mine Discharge Location OWRB 14 and OWRB 4S
13.	Vertical Variations in Water Quality Consolidated No.2-PL, April 20, 1976
14.	Saturation Indexes for Selected Minerals Consolidated No.2-PL, April 20, 1976

Figure	Page
15.	Saturation Indexes for Selected Minerals Spatial - April 1976
16.	Vertical Variations in Water Quality Farmington, June 12, 1985
17.	Saturation Indexes for Selected Minerals Farmington, June 12, 1985
18.	Saturation Indexes for Selected Minerals Spatial, June 1985
19.	Aerial Variations in Water Quality June 11, 1985
20.	Vertical Variations in Water Quality Consolidated No.2-S, June 11, 1981
21.	Temporal Variations in Chemical Parameters, Consolidated No.2 Mines
22.	Temporal Variations in Trace Metal Concentrations, Consolidated No.2 Mines
23.	Saturation Indexes for Selected Minerals Consolidated No.2 Mines
24.	Oxidation-Reduction Environments of Water within the Consolidated No.2 Mine Stopes
25.	Temporal Variations in Fe Concentrations vs. Eh Consolidated No.2 Mines
26.	Temporal Variations in Zn and Pb Concentrations vs. Eh, Consolidated No.2 Mines
27.	OWRB 14, a) Commerce Spring, b) Commerce Spring Weir
28.	OWRB 4S, a) Taproot Discharge Point, b) OWRB 4S Taproot Discharge, Encrusted Ground
29.	OWRB 4S, a) Borehole Discharge, b) OWRB 4S, Weir

Figure

30.	OWRB 4S, a) Creek Draining OWRB 4S Discharge b) Standpipe Discharge
31.	Saturation Indexes of Selected Minerals OWRB 4S and OWRB 14, June 1985
32.	Dehydration Series of Ferric Oxyhydroxide Precipitates

Page

.

CHAPTER I

INTRODUCTION

Study Objective

This study is a geochemical assessment of the water located in the mine workings, particularly the water located with the mine stopes of the Oklahoma portion of the Picher field. This was accomplished by determining the spatial and temporal variations in the quality of the mine water and the equilibrium of aqueous minerals in the mine water.

Study Area Location

The study area is the Oklahoma portion of the Picher Mine field located in Ottawa County in the far northeast corner of Oklahoma. The study area location and extent of the underground mine workings in the Oklahoma portion of the Picher field are shown on Figure 1. All mine water sampling locations were located in T29N-R23E and T28N-R23E-07 IM. Emphasis has been placed on the geochemistry of the water located within the mine stopes.

Scope of Study

Numerous studies including Playton et al (1980), Hittman (1981), OWRB

Figure 1. Oklahoma Portion of the Picher Field (Luza 1986)

(1983), Luza (1986), Spruill (1987), Kent et al (1987), and Parkhurst et al (1987) and (1988), have been conducted on the water and sediment quality of Tar Creek in response to the discharge of acid mine water. Few studies have actually addressed the geochemistry of the mine waters prior to discharge. The scope of this study includes the geochemical assessment of the mine water, with emphasis placed on the water located within the mine stopes.

The history, hydrology, hydrogeology, geology, and general water quality of the study area was obtained from Oklahoma Water Resourses Board, Oklahoma Geological Survey, and U.S. Geological Survey publications. Water quality data were obtained from the U.S. Geological Survey data base WATSTOR, Oklahoma State Health Department, and U.S. Geological and Oklahoma Geological Survey publications.

Precipitate identification and mineral speciation calculated using the U.S. Geological Survey geochemical model WATEQ4F aided in the interpretation of the chemical equilibrium of the mine water with respect to various mineral species. Precipitate samples were collected at mine discharge points and mineralogy determined using x-ray diffraction. Water quality data was evaluated using WATEQ4F to determine the chemical equilibrium of the mine water from selected mines and mine discharge points with respect to viable minerals.

CHAPTER II

LITERATURE REVIEW

Acid Production

Acidic conditions commonly associated with acid mine drainage are produced when oxygen and water come in contact with soluble iron sulfide minerals, Figure 2 (Solomons 1988). Sulfuric acid is formed from the oxidation of iron sulfide minerals because pyrite and marcasite contain more sulfur than is needed to form the iron salts, primarily FeSO₄ (Nordstrom 1982). Once oxidized in an aqueous environment, these minerals release one mole of ferrous iron and two moles of elemental sulfur or sulfur dioxide. This provides a free sulfur to hydrolyze in the presence of oxygen and form sulfuric acid. Ferrous iron is slowly oxidized to ferric iron by abiotic oxidation or rapidly with the aid of a bacterial catalysis (Noike et al. 1983). Additional acid is produced as ferric salts hydrolyze in the presence of oxygen to form insoluble ferric hydroxide and more sulfuric acid (Trexler et al 1975). This reaction significantly decreases the pH of the water because three moles of sulfuric acid are produced for every two moles of ferric hydroxide produced (Emmons 1940)

The sulfuric acid formed from the dissolution of iron sulfide minerals will rapidly oxidize and dissolve the normally insoluble sulfide minerals, sphalerite and galena, thus liberating trace elements (Emmons 1940). Upon oxidation and dissolution

4

Figure 2. Acid Production

of these minerals, trace elements are released, thus further degrading the water quality, Figure 3.

Acid Neutralization

The acidity resulting from the oxidation of pyrite can be fully neutralized by the dissolution of calcite if the weighted ratio of pyrite to calcite is less than 0.6 (Wai et al. 1981). Calcite (limestone) neutralizes sulfuric acid in the following manner.

$$H_2SO_4 + CaCO_3 = Ca^{2+} + SO_4^{2-} + H_2CO_3$$

As the calcite continues to neutralize the acid, the concentrations of Ca^{2+} and SO_4^{2-} in solution increase until the solution is supersaturated with respect to gypsum. At this point the precipitation of gypsum occurs, controlling the Ca^{2+} and SO_4^{2-} concentrations in solution. At a pH < 6.0, the dominant carbonate species present in solution would be H_2CO_3 . Once the water becomes saturated with respect to H_2CO_3 , carbonic acid dissociates and releases H_2O and CO_2 gas, as shown below (Blowes and Jambor 1990).

$$H_2SO_4 + CaCO_3 = CaSO_4 + H_2O + CO_2$$

History

Zinc and lead ores, primarily sphalerite, galena, and zinc silicate, were mined in the Picher field from 1891 through 1970. When production ended in 1970, more

FERRIC IRON OXIDATION

Sulfide Minerals:

 $Fe^{3+} + MS + 4H_2O = FeSO_4 + 8H^+ + M^{2+}$

where M is Zn, Pb, Cu, or Fe.

CHEMICAL OXIDATION

Sphalerite: $ZnS + 2O_2 = ZnSO_4$

releasing -> (Fe, Ag, Ge, Ga, In, Co, Hg, Cu, Cd, Pb)

Galena: $PbS + 2O_2 = PbSO_4$

releasing -> (Ag, Sb, Cu, Fe)

Chalcopyrite: $CuFeS_2 + 4O_2 = FeSO_4 + CuSO_4$

releasing \rightarrow (Ni, Ag, Cu)

Marcusite: $2\text{FeS}_2 + 7\text{O}_2 + 2\text{H}_2\text{O} = 2\text{FeSO}_4 + 2\text{H}_2\text{SO}_4$

releasing -> (Ni, Co)

Figure 3. Oxidation of Sulfide Minerals and the Release of Associated Trace Metals

than 5.2 million tons of zinc and 1.3 million tons of lead had been produced, Table 1 (McKnight and Fisher 1970). The extensive mining operations left approximately 2,540 acre underlain by mine workings, 481 mine shafts, 2,900 acres covered by mining and/or milling waste, and 14 major tailing ponds (Luza 1986).

The mineralized zones located in the Tri-State District contained eight principal minerals: sphalerite, galena, chalcopyrite, marcasite, pyrite, calcite and dolomite. Minor ores which included enargite, luzonite, wurzite, and barite occurred locally in small quantities (Hagni 1976). Analyses revealed that sphalerite, galena, chalcopyrite, marcasite, and pyrite contained numerous trace elements. These elements include: Fe, Ag, Ge, Ga, In, Co, Hg, Cu, Cd, and Pb in sphalerite, Ag, Sb, Ag, Cu, and Fe in galena, Ni, Ag, and Cu in marcasite, Ni and Co in pyrite, and Ag and Ni in chalcopyrite (Hagni 1976 and E/MJ 1940). The ore bodies were typically disseminated within a brecciated chert and to a lesser extent a brecciated limestone matrix (McKnight and Fisher 1970). Ore deposits containing these minerals are considered stable in an environment located below the water table, mildly alkaline, mildly reducing, and remains constant indefinitely. Once these conditions are altered, through mining activities which exposes the minerals to air and oxygenated water via dewatering and mine shafts, the minerals become unstable and oxidation takes place.

The Boone Formation (Figure 4), where the mineralized zones occurred, was a primary aquifer in Ottawa, County, and produced large quantities of water through fractures and solution openings (Reed 1955). High volume acid resistent pumps were used to dewater the Boone formation during mining operations. In the early 1930's, 43 pump stations, located within Oklahoma and Kansas, discharged more than 13 mgd

TABLE 1

ZINC AND LEAD PRODUCTION FROM THE PICHER FIELD, 1904-1964

Eubdistricts Included are Lincolnville, Quapew, Sunnysids, Picher-Oardin, Century, Commerce, Missel, and Méiross in Oklaborns; Batter Springs-Blue Mound, Treece, and Méiross in Kaness. Figures for 1904-06 from A. J. Martin (1946, p. 29, 53); those for 1807-81 based on tables published in annual volumes of Mineral Resources of the United States; those for 1922-64 based on unpublished statistical charts iurniabed by U.S. Bur. Minesj

. I	read concern	trates (gaiena)	Zinc concentr	ates (gobalerije)		Recoverable	o motal content i				
Year	<u></u>					Lead		Zine			
8h	ort tons	Vaige 1	Short tons	Value *	Short Long	Value 3	Short tons	Value !			
1904 1905 1906 1907 1908 1908 1909	150 566 669 847 2, 234 4, 300 3, 634	\$8 , 250 34, 450 51, 299 43, 644 118, 253 223, 131 187, 861	633 2, 670 3, 242 3, 159 10, 033 16, 622 13, 976	\$21, 245 103, 480 124, 528 120, 071 249, 674 569, 200 447, 043	112 422 498 500 1, 726 3, 319 2, 798	\$9, 789 40, 174 56, 374 53, 000 144, 984 285, 434 246, 224	317 1, 354 1, 624 1, 495 4, 404 7, 685 6, 305	\$32, 841 159, 772 201, 051 176, 410 413, 976 827, 820 680, 940			
1911 1912 1913 1914 1915 1916 1917 1918 1919 1918 1918 1919 1918 1918 1919 1920 10	3, 177 4, 257 7, 807 9, 402 9, 058 15, 206 33, 770 77, 487 81, 290 01, 285	170, 729 231, 678 402, 927 443, 543 494, 524 1, 275, 761 3, 401, 926 8,889, 080 5, 524, 106 9, 560, 901	* 10, 642 * 11, 881 24, 097 * 28, 367 28, 280 54, 932 171, 726 341, 175 413, 418 502, 134	330, 186 484, 429 766, 200 926, 778 1, 901, 490 4, 109, 565 11, 611, 675 17, 321, 065 17, 892, 434 22, 610, 299	2, 416 3, 280 6, 039 7, 329 6, 934 11, 777 26, 624 60, 924 63, 427 79, 755	212, 608 295, 740 531, 432 571, 662 651, 796 1, 625, 226 4, 685, 824 9, 016, 752 7, 357, 532 12, 760, 800	4, 963 5, 627 11, 649 13, 990 14, 191 28, 498 92, 339 183, 434 219, 792 270, 610	565, 782 776, 526 1, 303, 568 1, 426, 980 3, 519, 388 7, 637, 464 18, 637, 156 33, 384, 988 32, 089, 632 43, 838, 820			
1921 1922 1923 1924 1925 1926 1927 1928 1929 1929 1930	74, 580 08, 510 07, 496 13, 363 30, 410 24, 361 99, 524 87, 238 91, 087 45, 492	$\begin{array}{c} 3, 949, 045\\ 8, 240, 542\\ 10, 255, 061\\ 12, 142, 523\\ 15, 324, 698\\ 13, 226, 619\\ 8, 689, 985\\ 7, 054, 366\\ 7, 687, 831\\ 2, 994, 261\\ \end{array}$	278, 331 482, 970 633, 035 690, 809 749, 254 744, 028 591, 447 527, 495 562, 371 394, 459	6, 344, 770 16, 528, 301 25, 656, 673 28, 502, 120 38, 303, 908 34, 567, 144 22, 945, 385 19, 355, 535 22, 091, 618 12, 044, 167	59, 977 85, 628 84, 045 88, 074 100, 838 95, 832 76, 404 67, 406 69, 699 34, 291	5, 397, 930 9, 419, 080 11, 766, 300 14, 091, 840 17, 545, 812 15, 333, 120 9, 626, 904 7, 819, 086 8, 782, 074 3, 429, 100	149, 623 260, 119 332, 224 361, 073 387, 002 382, 683 303, 298 271, 116 290, 375 204, 363	14, 962, 300 29, 653, 566 45, 182, 464 46, 939, 490 58, 824, 304 57, 402, 450 38, 822, 144 33, 076, 152 38, 329, 500 19, 618, 848			
1931 1932 1933 1934 1935 1936 1938 1939 1939	24, 585 21, 130 30, 820 30, 222 44, 715 48, 545 59, 906 47, 461 53, 654 43, 290	1, 115, 883 765, 715 1, 378, 300 1, 183, 580 1, 894, 278 2, 498, 168 4, 181, 830 2, 467, 059 3, 163, 728 2, 561, 072	218, 689 167, 725 248, 933 276, 887 344, 027 391, 383 403, 783 335, 927 370, 435 400, 647	5, 119, 691 3, 066, 363 6, 507, 023 7, 527, 784 9, 916, 502 12, 291, 640 16, 752, 621 10, 340, 762 13, 075, 004 16, 874, 966	18, 990 16, 461 23, 643 23, 250 34, 035 36, 778 45, 799 36, 200 41, 396 33, 131	1, 405, 280 987, 660 1, 749, 582 1, 720, 500 2, 722, 800 3, 383, 576 5, 404, 282 3, 330, 400 3, 801, 224 3, 313, 100	115, 569 89, 686 131, 761 146, 900 182, 300 206, 974 214, 080 182, 463 206, 598 217, 028	8, 783, 244 5, 381, 160 11, 067, 924 12, 547, 400 20, 607, 400 27, 830, 400 17, 533, 728 21, 486, 192 27, 346, 528			
1941 1942 1943 1944 1945 1946 1947 1948 1947 1948 1949 1949	51, 301 41, 942 38, 536 29, 952 25, 813 25, 880 27, 805 32, 392 38, 785 39, 073	$\begin{array}{c} 3,452,758\\ 4,141,239\\ 4,652,150\\ 3,532,942\\ 3,209,989\\ 4,213,144\\ 5,299,841\\ 7,482,361\\ 7,249,558\\ 5,993,270\\ \end{array}$	$\begin{array}{c} 429,\ 660\\ 369,\ 043\\ 310,\ 980\\ 275,\ 220\\ 206,\ 580\\ 206,\ 764\\ 164,\ 574\\ 143,\ 429\\ 134,\ 513\\ 137,\ 275\end{array}$	$\begin{array}{c} 21, 569, 025\\ 25, 585, 281\\ 30, 836, 571\\ 27, 006, 030\\ 22, 402, 691\\ 23, 790, 583\\ 17, 586, 767\\ 12, 530, 196\\ 10, 382, 456\\ 12, 792, 548 \end{array}$	39, 391 32, 146 28, 851 22, 817 19, 043 19, 800 21, 104 24, 294 28, 767 29, 910	4, 490, 574 4, 307, 564 4, 327, 650 3, 650, 720 3, 275, 396 4, 316, 400 6, 077, 952 8, 697, 252 9, 090, 372 8, 075, 700	233, 173 198, 931 166, 850 148, 125 111, 486 111, 558 88, 634 76, 409 71, 895 73, 701	34, 975, 950 37, 001, 166 36, 030, 600 35, 772, 500 25, 641, 780 27, 220, 152 21, 449, 428 20, 324, 794 17, 829, 960 20, 031, 084			
1951 1952 1953 1954 1955 1956 1957 1958 1958 1959 1950 1950 1950 1950 1950	34, 468 28, 010 16, 608 24, 394 26, 917 28, 101 15, 901 7, 041 1, 607 3, 098	7, 282, 897 5, 643, 233 2, 579, 916 4, 110, 406 4, 721, 589 5, 180, 293 2, 922, 323 931, 441 211, 244 283, 818	152, 853 148, 488 90, 541 123, 340 129, 978 106, 135 56, 891 18, 001 4, 061 8, 877	18, 944, 275 17, 363, 541 6, 594, 882 8, 104, 882 9, 977, 920 9, 173, 252 4, 599, 858 1, 093, 365 282, 285 657, 838	25, 474 20, 887 12, 649 18, 237 19, 624 19, 985 11, 440 4, 991 1, 082 1, 717	8, 814, 004 6, 725, 614 3, 314, 038 4, 996, 938 5, 847, 952 6, 275, 290 3, 271, 840 1, 167, 894 248, 860 401, 778	82, 333 80, 229 48, 917 62, 281 68, 154 56, 180 30, 810 9, 688 2, 066 4, 449	29, 969, 212 26, 636, 028 11, 250, 910 13, 452, 696 17, 011, 884 15, 393, 320 7, 147, 920 1, 976, 352 475, 180 1, 147, 842			
1961 1962 1963 1964	3, 243 4, 800 5, 719 5, 333	352, 243 480, 412 604, 378 733, 391	10, 666 25, 564 30, 762 31, 228	716, 541 1, 771, 466 2, 270, 865 2, 731, 701	2, 429 3, 680 4, 219 3, 966	500, 374 677, 120 911, 304 1, 039, 092	5, 594 13, 956 16, 753 16, 824	1, 286, 620 3, 209, 880 3, 853, 190 4, 576, 128			

⁴ Allowance has been made for smelting issues of both lead and sinc. ⁹ In comparing the values of metal and concentrates it about he borne in mind that the value given for the metal is calculated from the average price for all grades, whereas the value given for the concentrates is that actually received by the producers. ³ Includes a small quantity of silicate and carbonals.

(McKnight and Fisher 1970)

	the second s				
System	Series		Group formation or member	Thick- ness (feet)	Beds
	S	0	Bluejacket Sandstone Member (of Boggy Fm.)	15-60	
ANIAN	Moine	Grou	Savannah Shale Doneley Limestone Mem.	1,20	
SYLV	Des	Krebs	McAlester Shale Warner Sandstone Mem.	30	
			Hartshorne Formation	0-50	-i In
ā	Morrow		Hale Formation	0-83+	
	L.		Fayetteville Shale	0-70	- Un
	Cheste		Batesville Sandstone	0-70	
			Hindsville Limestone	0-85	
N N			Quapaw Limestone	0-31	
Iddis	mec		Moccasin Bend Member	0-140	B-H
SSISS	Mera	ation	Baxter Springs Member	0-116	J-L
Σ	zage	Ĕ	Short Creek Oolite Mem	0.100	<-Dis
		Fo	Joplin Member	0-100	<u>M</u>
		oone	Grand Falls Chert Member	25-95	N-Q
	Ő	~	Reeds Spring Member	70-105	R
			St. Joe Limestone Member	10-32	
MISSISSIPPIAN AND DEVONIAN	Kinderhook and Upper Devonian		Chattanooga Shale		- Un
z			Cotter Limestone	143-183	- UI
CIA	Lower	_	Jefferson City Dolomite	220-340	
Š	Ordovician		Roubidoux Formation	142-190	
ORD		Van Forr	Buren Gasconade Dolomite nation Gunter Sandstone	240-300	
z			Eminence Dolomite	137-157	
3RIA	Upper		Davis Formation	1 10- 120	
AME	Cambrian	Cambrian Bonneterre Dolomite			
Ö			Lamotte Sandstone	12-50	
PRECAMBRIAN			Granite		

Figure 4. Stratigraphy of the Picher Field (Modified from McKnight 1970) to insure the mines kept free of water. By 1948, 27.8 mgd of groundwater was discharged from all sources within the Boone Formation in Ottawa, County (Reed 1955).

The dewatering of the Boone Formation and mining operations provided an avenue for oxygenated air to come in contact with the exposed sulfide minerals. Although the Boone Formation was continuously being dewatered with pumps, the walls of the mine stopes contained numerous seeps (McKnight et al 1970). The abiotic oxidation of marcasite and pyrite readily occurs in the presents of oxygen and moisture. Abiotic oxidation of iron sulfide minerals occurs slowly, but initiates the production of sulfuric acid. Once oxygenated water in the mines become strongly acidic, ferric iron rapidly oxidizes more iron sulfide minerals, thus accelerating the process several orders of magnitude (Karlson et al. 1987). Under these conditions, exposed sulfide minerals were readily oxidized.

 $MS_x \rightarrow M^{2+} + S_x^{o} + 2e^{-}$

Where M is a divalent metal. As a result of the oxidation and dissolution of many principal minerals, the water forming the seeps and contained within the mine sumps were strongly acidic, highly mineralized, and over saturated with respect to numerous secondary minerals (McKnight and Fisher 1970). Many secondary minerals such as gypsum, smithsonite, anglesite, and greenockite formed as coatings on the surface of weathered principal minerals and mine stopes (McKnight and Fisher 1970). Other secondary minerals such as goslarite, melanterite, and copiapite formed as efflorescence upon the dehydration of mine waters. A list of the primary and secondary minerals observed within the mine stopes is provided on Table 2.

By the late 1960's most of the ore within the Picher Field had been removed. The depletion of ore and the decline in the lead and zinc market lead to the closing of all major mining operations and the associated dewatering of the Boone Formation (McKnight and Fisher 1970). Once the dewatering of the mines ended in the late 1960's, the cone of depression resulting from over 50 years of pumping began to recover, rapidly flooding the mines. Natural recharge to the dewatered portion of the Boone Formation occurred through fractures and solution openings, flooding the mine workings with good quality groundwater. The flooding of the mine workings were accelerated by poor quality surface water artificially recharging the Boone Formation via abandoned boreholes, mine shafts, and collapse features, Figure 5 (Playton et al 1980 and Luza 1986). Playton (1980) estimated that the water within the Blue Goose Mine rose on an average of 2.6 feet per month between September 1975 and February 1980.

By November 1979, mine water began to discharge continuously at the Commerce Spring, elevation 790 feet MSL, and intermittently soon after at OWRB 4S, approximate elevation 799 feet MSL (Playton et al. 1980). By October 1983 most of the mine workings had filled with approximately 54,925 acre-feet of water in the Oklahoma portion of the Picher mine field (Luza 1986). Parkhurst (1985) calculated that the water within the mine workings had a 22 year resident time, and discharged an estimated 3,400 acre-feet/year.

The water within the mines was moderately acidic and contain a high

TABLE 2

OBSEVRED MINERALS IN THE PICHER FIELD

Major Minerals:

Sulfates	Carbonates	Silicate
sphalerite galena chalcopyrite marcasite pyrite	calcite dolomite	chert
Minerals:		

Minor Minerals:

	Native Elements	Sulfates	Carbonates
	Sulfur	barite	smithsonite
		anglesite	arogonite
	Sulfides	gypsum	cerussite
	bornite	starkeyite	hydrozincite
	wurtzite	chalcanthite	aurichalcite
	greenockite	melanterite	malachite
bornite wurtzite greenockite millerite covellite Sulfosalts enargite luzonite		epsomite	azurite
	covellite	goslarite	leadhillite
		linarite	
	Sulfosalts	jarosite	Oxides
	enargite	plumpojarosite	goethite
	luzonite	aluminite	hemaitite
		copiapite	cuprite
		caledonite	pyrolusite
		szomolnokite	
		carpnosiderite	
	Silicates	Arsenates	Phosphates
	hemimorphite	picropharm	nacolite vivianite
	allophane	mimetite	apatite
	chrysocolla		pyromorphite
	kaolinite		wavellite
	glauconite		diadochite
	-		

(Wolf 1976)

NOT TO SCALE

EXPLANATION

- DRILL HOLE DISCHARGING TO CREEK—Bed below potentiometric surface A
- В
- CORRODED CASING WATER RECHARGING SHALLOW AQUIFER THROUGH COL-С LAPSE ON STREAMBED-Bed above potentiometric surface
- D DRILL HOLE ALLOWING RECHARGE TO SHALLOW AQUIFER OPEN ABANDONED WELL
- E
- LEAKAGE FROM SHALLOW AQUIFER THROUGH BREAK IN CONFINING LAYER F

Figure 5. Mine Hydraulics (Spruill 1987)

concentration of sulfate, trace metals, and TDS. Concentrations of some trace metals such as zinc and iron can range from a few hundred ug/l near the surface to a few hundred thousand ug/l at the base of the mine shaft. Because of the high concentrations of metals, specifically cadmium and lead, the water within the mine stopes is considered unusable for domestic supply, irrigation, and industrial cooling without treatment (Playton 1980).

As early as April 1976 it was reported by Playton and Davis (1977) that the mine water was stratified, Figures 6 through 9. With increasing depth, pH and dissolved oxygen decreased whereas, temperature, specific conductance, sulfate, most trace metals, and TDS increased (Playton 1980 and OWRB 1983). The highest specific conductance value and concentrations of sulfate, iron, manganese, zinc, and the lowest pH occur in the lower portions of the mine shafts (Spruill 1987).

All of the mine shafts sampled display some degree of thermal stratification. Under normal circumstances, the condition of cooler water overlying warmer water would cause an unstable thermal stratification because of differences in density. In the mine shafts, the thermal density difference is over shadowed by a substantial increase in TDS with depth which causes the lower warmer water to have a higher density than the overlying cooler water (Playton 1980).

Based on bi-monthly sampling conducted between April 1976 and June 1977, Playton and others (1980) concluded that a significant linear correlation existed between specific conductance and hardness, calcium, magnesium, sulfate, lithium, and dissolved solids. Aluminum, nickel, and zinc possessed a significant linear correlation with pH when transformed to natural or Napierian logarithms. Sulfate correlates with

Figure 6. Rise in Water Level Between April 1976 and June 1977, Birthday Mine

Figure 7. Rise in Water Level Between April 1976 and June 1977, Consolidated No.2-Pl Mine

Figure 8. Rise in Water Level Between April 1976 and June 1977, Lucky Bill Air Shaft

Figure 9. Rise in Water Level Between April 1976 and June 1977, New Chicago Mine

iron, manganese, and zinc concentrations.

No significant seasonal fluctuation or aerial trends in water quality were observed between April 1976 and June 1977 (Playton 1980 and OWRB 1983). Minor fluctuations in water quality within any given mine may occur as the result of dilution and/or circulation caused by inflowing surface water (OWRB I.3 1983).

During the 1982 sampling event, an anomaly was observed at the Admiralty No.4 mine shaft. The Admiralty No.4 mine is located at a lower surface elevation and geographically down gradient from the other mines. Sampling revealed that the mine water was not stratified to the degree as in the other mines. Water sampled at the surface of the shaft was significantly lower in dissolved oxygen and higher in iron and sulfate than what was characterized by the other mines. Flocs, an aggregate of amorphous colloidal particals, of red ferric hydroxide were also observed at the surface of the Admiralty No.4 shaft indicating the upward movement of water (OWRB 1983). The low dissolved oxygen and high Fe and sulfate concentrations throughout the entire water column, ferric hydroxide flocs on the surface of the water, and the geographic location of the Admiralty No.4 mine were all evidence of the upward movement of water within the mine shaft, indicative of a groundwater discharge area.

The mine stopes generally occurred in brecciated zones composed primarily of siliceous chert, essentially devoid of limestone, thus having very little buffering capacity (Spruill 1987). The limestone and dolomite that were present in the host rock and the carbonate strata, that were intersected by the vertical mine shaft, reacted with the acid mine water during the flooding period. In the natural neutralization process,

calcium carbonate removes the H⁺ from the water, which raises the pH and increases the hardness (Hittman 1981 and OWRB 1983). Hittman (1981) speculated that the limestone may eventually loose its neutralizing capacity as precipitates, primarily gypsum, coat the limestone. This significantly hinders or even prevents the reaction from taking place. Parkhurst (1985), using the computer program PHREEQE, concluded that calcite and dolomite were undersaturated within the mine water and gypsum was nearly saturated.

The highly mineralized acidic water found within the mine workings was restricted to the mining areas. The migration of mine water, either down gradient to the west or downward into the Roubidoux, resulted in dilution from mixing with higher pH water and dispersion (Hittman 1981). As the migrating mine water moves father away from the mining area and is neutralized, the heavy metal concentration will decline because of dispersion, adsorption, and precipitation as hydroxides (Hittman 1981).

Water discharged from the mines, in conjunction with surface runoff from tailing piles and tailing ponds, were the major contributors to the degradation of the water quality in Tar Creek (OWRB 1983). A notable decrease in pH has been observed in Tar Creek down stream from mine discharge points. This has been attributed to a second stage of acid production which occurs when ferric sulfate is hydrolyzed to form ferric hydroxide (Kent et al. 1987). When the water discharged from the mine workings came in contact with the atmosphere, the remaining ferrous iron in solution oxidizes to ferric iron. Because only minute amounts of ferric iron exist in solution at a pH > 3, ferric iron and ferric sulfate are rapidly hydrolyzed to form ferric hydroxide (Hem 1962 and Nordstrom 1979). The reactions proceeds as shown below.

$$Fe^{2+} + 1/4 O_{2} + H^{+} = Fe^{3+} + 1/2 H_{2}O$$

$$Fe^{3+} + H_{2}O = Fe(OH)^{2+} + H^{+}$$

$$Fe(OH)^{2+} + H_{2}O = Fe(OH)_{2}^{+} + H^{+}$$

$$Fe(OH)_{2}^{+} + H_{2}O = Fe(OH)_{3} + H^{+}$$

or

$$Fe_2(SO_4)_3 + 6H_2O -> 2Fe(OH)_3 + 3H_2SO_4$$

ferric sulfate water ferric hydroxide sulfuric acid

This reaction produces three moles of sulfuric acid from each mole of ferric sulfate. This is responsible for significantly reducing the pH of the water in Tar Creek, whose water remains acidic until it travels down stream and encounters a larger body of water with a sufficient buffering capacity to neutralize the water (Kent et al. 1987). A detailed literature review was conducted to evaluate past studies in the Tri-State mining district, mineral equilibria, aqueous geochemistry associated with ore deposits, and acid mine drainage.

CHAPTER III

METHODOLOGY

Water quality analyses obtained from the U.S. Geological Survey data base WATSTOR were evaluated to determine spatial (both vertical and aerial) and temporal variations in water quality. Geochemical computer simulations using WATEQ4F were conducted to evaluate the equilibrium of aqueous minerals commonly associated with acid mine drainage. Finally, precipitates were collected and analyzed to aid in determining the aqueous mineral equilibrium of the mine water and to validate the geochemical modeling.

Sample Location Numbering System

Point sample locations were identified and labeled using the same methodology as used by the United State Geological Survey (USGS). The standard method of site numbering used by the USGS incorporates the Public Land Survey (PLS) system of township, range, section, and the quarter section of the location usually down to three subdivisions. It is arranged in descending order starting with the township and finishing with the smallest quarter division. If more than one sampling site is located within the same quarter, 10 acres, then a numerical designator is assigned to each site starting with the number one.

21

Sample Location and Description

In response to the increasing demand for water in the Miami-Picher area, the water located within the mine stopes was investigated as an alternative water supply. The USGS in cooperation with the OGS was contacted to provide the water quality data to determine if the water was suitable for public supply, industrial cooling, or irrigation (Playton 1977).

Between April 1976 and June 1977, water samples (Table 3) were collected at seven mines, six in Oklahoma, (Birthday, Consolidated No.2-PL, Lavrion, Lucky Bill, New Chicago, and Skelton) and one in Kansas (Lucky Jew), Figure 10. All seven mines were sampled in April 1976. Birthday, Consolidated No.2-PL, Lucky Bill, New Chicago were sampled in April 1976, August 1976, October 1976, December 1976, February 1977, April 1977, and June 1977. Skelton and Lucky Jew were sampled in April 1976, October 1976, and June 1977. Lavrion was only sampled in April 1976 because it was plugged in July 1976 (Playton 1980). These mines were chosen based on safety, accessibility and aerial distribution (Playton 1980).

Field measurements of pH, specific conductance, and water temperature were collected at multiple depths to determine optimal levels to collect water samples for detailed physical and chemical analyses. During the sampling process, water levels were recorded for the mine being sampled and the Blue Goose mine. All of the samples collected between April 1976 and June 1977 were analyzed by the USGS Central Laboratory in Salt Lake City, Utah (Playton 1980). Details of sampling methods and laboratory procedures are outlined in Playton (1977) and Playton (1980).

TABLE 3

.

MINE SAMPLE DATA, 1976-1977

Name of mine	Land-surface	d-surface Depth to water (ft) ²						Sampling depths (ft) ²							
(site location)	altitude at wine shaft (ft) ¹	Apr 1976	Aug 1976	Oct 1976	Dec 1976	Feb 1977	Apr 1977	June 1977	Apr 1976	Aug 1976	Ост 1976	Dec 1976	Feb 1977	Apr 1977	June 1977
Lucky Jew	845	183		171				164	200		200				180
(358-23E-3ADD1)									205		220				200
									211		260				210
									222						
									230		298				220
								-	259						240
								-	287						260
									298						280
															298
Lucky Bill	810	158	146	144	143	142	140	136	178	170	160	160	160	160	155
(air shaft)									198	190	190	190	190	190	190
(29N-23E-30AAA1)									204	205	210	210	200	205	205
									210	218	225	225	210	225	225
									216	228			225		
									222						
									230						
Lavrion	810	144							150	I					
(29N-23E-29CDD1)									160	I					
									170						
									182						
									191						
Skelton	825	159		- 148	3			140	16	;	160)			• 150
(29N-23E-28CCB1)															165
New Chicago	825	160	15	0 15	1 15	0 15	0 14	7 144	16	7 16	0 16	5 16	5 16	5 16	5 160
(20N-73F-28CAB)									17	4 17	4 18	0 16	0 18	0 18	5 180
(2)1-232 20002)									17	9 18	7 19	8 19:	5 19	5 18	7 187
									18	3 19	7			19	5 195
									19	2					
									19	7					
	016	15	6 14	6 14	5 14	6 16	2 14	1 137	16	8 16	0 16	2 16	0 14	5 15	5 155
SITENGAY	017	1.0		0 14					17	2 16	7 18	0 17	0 16	0 16	7 162
(20N-23E-20BBBI)									17	5 17	3	18	0 17	0 17	0 166
									18	2 17	7		18	0 18	0 170
										· 18	0				175
															180
0	2 830	16	6 15	5 15	5 15	3 15	2 15	0 146	17	9 16	5 16	5 16	5 16	5 15	2 165
Consolidated No.	2 830	10		5 25					19	1 18	5 21	5 21	5 21	5 16	5 215
(TAN-TJE-IONNRT)									21	0 21	5 23	0 23	0 22	2 23	5 225
									22	7 22	5		23	0 22	0 230
									22	29 23	0			23	0
									2	4 23	35				

l-Estimated to nearest 5 ft above mean sea level from $7\frac{1}{2}$ -minute topographic maps.

2 - Measured from land surface.

(Playton et al 1980)

Figure 10. Mine Sample Location Map for 1976-1977 (Playton 1980)

The Oklahoma Water Resources Board conducted a two part investigation of the mine water located within the Picher Field mining district. The first part of the investigation, in conjunction with the Tar Creek Task Force, implemented a monitoring program to determine the chemical quality of the water within the mine stopes (OWRB 1983). The second part of the investigation, in accordance with the Tar Creek Superfund Work Plan, Element I, Task I.3, was to identify the presence of a temporal trend in water quality (OWRB 1983).

Between August 1980 and May 1982 four mines, Admiralty No.4, Consolidated No.2-S, Kenoyer, and Lawyer (New Chicago No.2), were sampled at multiple depths, Figure 11. The Lawyer Shaft collapsed in June 1981, therefore Admiralty No.4 was sampled in its place from July 1981 to May 1982 (OWRB 1983). Admiralty No.4 was sampled in June 1981 and May 1982. Consolidated No.2-S was sampled eight time from August 1980 to May 1982. In May 1981 and June 1982 Consolidated No.2-S was sampled at 20 foot intervals from 0-240 feet below land surface. Kenoyer was sampled nine time from October 1980 to May 1982. In May 1981 and June 1982 Kenoyer was sampled at 20 foot intervals from 0-260 feet below land surface. Lawyer (New Chicago No.2) was sampled seven time from August 1980 to July 1981. In May 1981 and June 1982 Lawyer was sampled at 20 foot intervals from 0-160 feet below land surface. August 1980 and May 1982 sample locations are shown in Figure 11.

In December 1981, water samples were collected from the Farmington Shaft at 2-10 foot intervals from 70 to 270 feet below land surface. Although this sample site was not mentioned in the OWRB report, the OWRB was the only known organization

Figure 11. Mine Sample Location Map for 1980-1985 (OWRB 1983)
sampling at this time. For this reason, analyses were included with the OWRB sampling data.

Field measurements of pH, specific conductance, dissolved oxygen, and temperature were aquired with a model 4041 digital Hydrolab at the time the samples were collected (OWRB 1983). Further details of sampling methods and laboratory procedures are discussed in OWRB 1983 Task I.3. Water samples were submitted to the State Environmental Laboratory of the Oklahoma State Department of Health for chemical analysis.

Because acid mine water continued to intermittently discharge into Tar Creek, the USGS undertook the task of determining the chemical evolution of the mine water and its effect on surface water chemistry, primarily Tar Creek (Parkhurst 1987). A detailed study was conducted on the mobilization and fate of heavy metals within and discharging from the mines, but the results of the full study were never published (Ragone 1988 and Oral communication with Parkhurst 1991).

Between November 1983 and February 1986 water samples were collected from abandoned mines, mine-water discharge points, and from selected surface-water locations. During this study 169 water samples were collected at 49 different locations (Parkhurst 1987). Of these, the water samples collected from six mines in Oklahoma, were used in this study. They are the Admiralty, Consolidated No.2-S, Farmington, Gordon, Kenoyer, and Lucky Syndicate mines. Water samples were collect at Admiralty, Consolidated No.2-S, Farmington, Kenoyer, and Lucky Syndicate mines on November 1983, March 1984, and June 1985, Figure 11. Gordon mine was sampled only on November 1983. Spring discharge and surface location sampled during this period include Air Shaft Pipe at OWRB 4, Borehole discharge at OWRB 4S, Weir at OWRB 4, and Commerce Spring at OWRB 14.

Field measurements of pH, specific conductance, dissolved oxygen, temperature, and redox potential were recorded at the time of sampling. Immediately upon obtaining the sample, alkalinity was determined from end-point titration (Parkhurst 1987). Water samples were collected at a single depth in all of the mine except Farmington Shaft were it was sampled at three intervals. Water samples were analyzed for major ions, trace metals, and nutrients at three laboratories, the Central Laboratory of the Water Resources Division in Arvada, Colorado, and the U.S. Geological Survey laboratories in Denver, Colorado and Reston, Virginia (Parkhurst 1987).

Water Quality Data

Water quality data used in this paper were obtained from the USGS WATSTOR data base. Refined data and sample location information and descriptions were derived from USGS, OGS, and OWRB publications.

Vertical, aerial, and temporal variations in mine water quality were determined from water quality analyses collected from selected mines between April 1976 and June 1985. During this time frame, samples of mine water were collected from April 1976 through June 1977 and from November 1983 through June 1985. Sparse intermediate mine water quality data were randomly collected from October 1980 though May 1982.

Vertical Variations

Vertical variations in water quality were determined from water analyses collected from selected mines between April 1976 and June 1981. Water samples were collected at 2 to 20 foot intervals and analyzed for temperature in °C, pH, dissolved oxygen (DO) in mg/l, and specific conductance (SC). These four physical parameters were plotted on X-Y plots to visually display numerical fluctuations with depth. Vertical water quality data and vertical plots are shown in Appendix A.

During the first sampling period, vertical variations in mine water quality were determined from samples collected at Birthday, Consolidated No.2-Pl., Lucky Bill, and New Chicago mines. Water samples were collect from these mines at variable depths on seven separate occasions between April 1976 and June 1977, as shown on Table 3.

Between August 1980 and December 1981, vertical variations in water quality were determine from limited water analyses data collected at Consolidated No.2-S, Farmington, Kenoyer, and Lawyer mines. Water samples were collected at Consolidated No. 2-S mine on May 11, 1981 and June 11, 1981 at 20 foot intervals from 0 to 240 feet below the static water level. Farmington shaft was sampled on December 1, 1981 from 70 to 270 feet below the static water level at 2 to 20 foot intervals. The Kenoyer shaft was sampled on May 11, 1981 and on June 11, 1981. Water samples were collected at 20 foot intervals from 0 to 200 feet below the static water level on May 11, 1981 and from 0 to 260 feet below static water level on June 11, 1981. Water samples were collected within the Lawyer Mine at variable intervals from 0 to 210 feet below the static water level on August 19, 1980 and at 20 foot intervals from 0 to 160 on May 12, 1981.

Vertical variations in aqueous mineral equilibrium within the mine water were evaluated using WATEQ4F. The saturation index (SI) of selected minerals were calculated with WATEQ4F to evaluate the variation in mineral saturation with depth during the period when the mines were initially flooding, Appendix D. Water quality data was collect from the Consolidated No.2-Pl mine in April 1976 at 191, 227, 229, and 234 feet down from the shaft opening and from the Farmington mine in June 1985 at 140, 176 and 194 feet below the surface of the water.

Spatial Variations

Spatial variations in mine water quality were determined from water samples collected with in the mine stopes in April 1976, June 1977, June 1981, July 1981, November 1983, and June 1985. The data used to evaluate variations in mine water quality are tabulated in Appendix B.

During the first sampling period, water analyses from samples collected in the mine stopes of five mines, Consolidated No.2-Pl, Lucky Bill, Lavrion, New Chicago, and Birthday, in April 1976, and from four mines, Consolidated No.2-S, Lucky Bill, New Chicago, and Birthday, in June 1977, were selected to evaluate spatial variations in water quality.

Samples of mine water collected in June and July of 1981 were analyzed for physical properties, SO_4 , and a few selected trace metals. Admiralty No.4, Consolidated No.2-S, and Kenoyer mines were all sampled at 200 feet below water surface, in June 1981, whereas, Consolidated No.2-S, Kenoyer, and Lawyer mines

were sampled at 180, 180, and 200 feet, respectively, in July 1981.

During the second sampling period, water samples collected within the mine stopes of Admiralty No.4, Consolidated No.2-S, Farmington, Gordon, Kenoyer, and Lucky Syndicate, in November 1983, Admiralty No.4, Consolidated No.2-S, Farmington, Kenoyer, and Lucky Syndicate mines, in March 1984, and Consolidated No.2-S, Farmington, Kenoyer, and Lucky Syndicated mines, in June 1985, were chosen to evaluate spacial changes in mine water quality.

TEMPORAL VARIATIONS

Mine-water quality data used to evaluate temporal variations in the mine water was compiled from April 1976 through June 1985. This includes quarterly sampling of four mines, Birthday, Consolidated No.2-Pl, Lucky Bill, and New Chicago from April 1976 through June 1977 and annual sampling of Admiralty No.4, Consolidated No.2-S, Kenoyer, and Lucky Syndicate mines from November 1983 though June 1985. Limited intermediate data was collected for Admiralty No.4, Consolidated No.2-S, Kenoyer, Lawyer (New Chicago No.2), and Lucky Syndicate mines from 1980 through 1982. These mines were sporadically sampled between 1980 and 1982 with variable and incomplete analyses.

Analyses from water samples collected near the base of the mine shafts, typically adjacent to the mine workings, were chosen to relay trends in water quality. Water quality data from these eight mines were plotted on X-Y graphs to visually display variations within the mine water over time. Selected constituents included temperature, pH, DO, SC, alkalinity, CO_2 , Ca, SO_4 , Al, Cd, Fe, Pb, Ni, and Zn.

Precipitate Collection

Precipitates were collected at two mine water discharge locations, OWRB 4S and OWRB 14. The first reported point where mine water discharge was observed was the Commerce Spring, Figure 12, located on Mayers Property at 28N-23E-07 BDD. This location, designated site OWRB 14 by the Oklahoma Water Resources Board, has a surface elevation of 790 feet MSL. Mine water has been discharging continuously from this location since November 1979. In June 1982, the USGS determined that the Commerce Spring was 123 feet deep using a caliber-log. The spring is thought to be an exploration hole connected to Cactus mine workings by solution openings (Hittman 1982). A weir was installed approximately 100 yards down stream to the southeast of the Commerce Spring at 28N-23E-07 CAA to measure the combined discharge from OWRB sites 13 and 14.

The second point of discharge, designated OWRB 4S by the Oklahoma Water Resources Board, is located at 29N-23E-29 CDC. It consists of the combined discharge from an opening created from a decayed tap root and a borehole which intersects Lavrion mine workings, Figure 12. These two discharge points have a surface elevation of 799 feet above MSL (OWRB 1983). Discharge from OWRB 4S occurs intermittently, controlled by the fluctuation of the mine water levels which are dictated by precipitation. Approximately 30 feet to the east of the borehole discharge is a steel stand pipe which is believed to be an air vent for the Lavrion mine. The combined discharge from these points is funnelled through a weir located approximately 100 feet to the west of the discharge points.

Precipitates were collected at OWRB 14, OWRB 4S, and associated weirs on

Figure 12. Mine Discharge Location OWRB 14 and OWRB 4S (Parkhurst et al 1988)

April 17, 1992 and on December 4, 1992. The mineralogy of the precipitates were determined using x-ray diffraction with copper radiation.

Geochemical Modeling

The computer program WATEQ4F was used to calculate the equilibriumspeciation distribution of major and trace element species within the mine stopes. Water quality data used in the WATEQ4F calculations for selected mines came from the U.S. Geological Survey Data base WATSTOR QW. Each analysis contained the physical properties, major anions and cations, and most of the trace metals As, B, Ba, Cd, Cu, Fe, Pb, Mn, Ni, Sr, Zn, Al, Se, and Li. The chemical data used in the calculations are tabulated in Appendix E.

Redox Determination

Field determined reduction-oxidation potentials were entered in the WATEQ4F runs as Eh. In analyses where the redox potentials were not determined, an initial WATEQ4F run was used to calculate the Eh and pe from the $NO_3^{=}/NH_4^{+}$ couple. The saturation indexes for selected aqueous minerals were calculated using the newly calculated Eh value, during a second computer run.

Saturation Index

In this study, the degree of saturation of aqueous minerals within the mine water was represented by the saturation index (SI), where the SI is the log of the ionic activity product of the mine water divided by the solubility product of the respective mineral. A zero SI indicates the water was at equilibrium with respect to the mineral phase; positive values indicate oversaturation, and negative values indicate undersaturation. Geochemical equilibrium calculations derived from WATEQ4F simulations do not conclusively prove the presence or absences of aqueous minerals, but rather provides an indication of the tendency for the reaction to occur.

The results of the WATEQ4F calculated saturation indexes for minerals commonly associated with acid mine drainage were used to evaluate the degree of saturation of minerals likely to precipitate in the Picher field. Selected aqueous minerals evaluated using WATEQ4F simulations are provided in Table 4.

Mineral Species

Typically gibbsite and kaolinite were thought to control the Al concentration in an acidic aqueous environment. In the Al_2O_3 - SO_3 - H_2O system, the stability of the aluminum mineral is dependant on the pH and sulfate activity of the solution, Table A. Nordstrom (1982) noted that gibbsite and kaolinite were not stable in acid sulfate water, thus in the pH range of 4-6 alunite, basaluminite, and diaspore are the likely precipitates. In the alunite/gibbsite stability range, pH 4-12, basaluminite is the most kenetically favored Al mineral to precipitate in an acid sulfate environment.

Iron concentrations in acidic mine water were primarily controlled by the precipitation of ferric oxyhydroxide minerals. WATEQ4F typically evaluates the equilibrium controls on iron concentration by the solubility of ferrous and ferric minerals. The most common of these minerals are ferric hydroxide, goethite, hematite, jarosite, $Fe_3(OH)_8$, siderite, melanterite, and greenalite. Ferric hydroxide

TABLE 4

SELECTED PRECIPITATES ASSOCIATED WITH ACID MINE DRAINAGE

CALCITE	CaCO ₂
DOLOMITE	$CaMg(CO_2)_2$
GYPSUM	$CaSO_4 * H_2O$
OUARTZ	SiO
CHALCEDONY	SiO ₂
ALUMINUM HYDROXIDE	Al(OH)
BAUXITE	
BOEHMITE	Alooh
DIASPORE	Alooh
GIBBSITE	Al(OH) ₃
ALLOPHANE	$Al_2SiO_5 * nH_2O$
JURBANITE	Al(OH)SO4
BASALUMINITE	Al(OH) ₁₀ SO ₄
ALUNITE	$KAl_3(SO_4)_2(OH)_6$
KAOLINITE	Al ₂ Si ₂ O ₅ (OH) ₄
BARITE	BaSO ₄
FERRIHYDRITE	Fe ₄₋₅ (O,OH) ₁₂
FERRIC HYDROXIDE	Fe(OH) ₃
FERROSOFERRIC HYDROXIDE	Fe ₃ (OH) ₈
GOETHITE	FeOOH
HEMATITE	Fe ₂ O ₃
SIDERITE	FeCO ₃
MELANTERITE	FeSO ₄ *7H ₂ O
GREENALITE	Fe ₃ Si ₂ O ₅ (OH) ₄
JAROSITE Na	$NaFe_3(SO_4)_2(OH)_6$
JAROSITE K	$KFe_3(SO_4)_2(OH)_6$
JAROSITE H	$HFe_3(SO_4)_2(OH)_6$
PYROLUSITE	MnO_2
RHODOCHOSITE	MnCO ₃
MnHPO4	MnHPO ₄
CUPROUSFERRITE	CuFe ₂ O ₄
SMITHSONITE	ZnCO ₃
ZnSiO3	ZnSiO ₃
OTAVITE	$CdCO_3$
CERRUSITE	PbCO ₃
ANGLESITE	PbSO ₄
PLUMBOGUMMITE	PbAl ₃ (OH) ₇ P ₂ O ₇

forms from the hydrolysis of ferric iron. Both ferric hydroxide and goethite are common precipitates associated with acid mine drainage under a wide range of pH, whereas jarosite and melanterite are the dominant ferric iron precipitates under extremely acidic conditions, Table 5. Ferrosoferric hydroxide, $Fe_3(OH)_8$, is a dominant ferrous iron species associated with reducing soils, but comprises only a small percentages in acid sulfate waters (Ball 1979). Hematite rarely forms from direct precipitation but from the dehydration of goethite and ferric hydroxide. Under the given Eh, pH, and sulfate activity, the most likely iron minerals to control the iron concentration by precipitation are ferric hydroxide, goethite, and under high alkalinities and low Eh, siderite.

The activities for copper ferrites, calculated by WATEQ4F, which include cuprousferrite and cupricferrite, typically run several orders of magnitude oversaturated with respect to equilibrium constants, but are not known to control the copper or iron concentrations in natural water (Ball 1979).

WATEQ4F Runs

Six sets of WATEQ4F computer runs were conducted to evaluate the speciation and equilibrium of aqueous minerals within the mine stopes. Water quality data and WATEQ4F calculated SI values are tabulated in Appendix E.

The first set of runs was conducted to determine the saturation index of plausible aqueous minerals during the initial phases of the mine flooding. Water quality data collected in April 1976 from the lower portions of Birthday, Consolidated No.2-Pl., Lucky Bill, and New Chicago mines, represented the water quality within

TABLE 5

ALUMINUM MINERAL	FORMULA	pH RANGE	SOURCE ¹	
Alungen	$KAl_3(SO_4)_2(OH)_6$	< 0	1982	
Jurbanite	Al(OH)SO₄	0-4	1982	
Alunite	$KAl_3(SO_4)_2(OH)_6$	3-7	1982	
Basaluminite	Al(OH) ₁₀ SO ₄	> 4	1982	
Gibbsite	Al(OH) ₃	> 6	1982	
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	> 6	1982	
IRON MINERALS				
Melanterite	FeSO ₄ *7H ₂ O	0-1.5	1982	
Pozenite	Eeso *44 0	0-1.5	1082	
Szomolnokite	FeSO *H O	0-1.5	1082	
debudration/oxidati	$1000_4 11_20$	0-1.5	1702	
		015	1082	
Copiapite re	$10^{-10}(30_4)_6(011)_2 \cdot 2011_20$	0-1.5	1902	
Jarosite	$KFe_3(SO_4)_2(OH)_6$	1.5-2.5	1979	
Ferrihydrite	$Fe_{4-5}(O,OH)_{12}$	2-5	1970	
Ferric Hydroxide	Fe(OH) ₃	> 2.5	1970	
Goethite dehydration	FeOOH	> 2.5	1979	
Hematite	Fe ₂ O ₃		1970	
Lepidocrosite	FeO*OH	4-7	1970	
~				

IRON AND ALUMINUM PRECIPITATE STABILITY FIELDS

(Precipitates associated with acid sulfate waters)

Note¹:

1982 - Nordstrom 1982 1979 - Nordstrom 1979 1970 - Langmuir 1970 the mine stopes during the initial phases of flooding.

The second set of runs was conducted to evaluate the saturation index of plausible aqueous minerals within the mine stopes after the mines had flooded and the water stabilized. Water quality data, collected in June 1985 from the lower portions of Admiralty No.4, Consolidated No.2-S, Farmington, and Kenoyer mine shafts, were used to represent the water within the mine stopes.

The third set of runs was conducted to evaluate the variation in the SI of selected minerals with depth during the period when the mines were flooding. Water quality data were collect in April 1976 at 191, 227, 229, and 234 feet down from the shaft opening of the Consolidated No.2-Pl mine. During the sampling event, the water level within the mine shaft was at an elevation of 662 feet MSL, approximately 167 feet down from the shaft opening.

The fourth set of runs was conducted to evaluation vertical variations in the SI of selected minerals commonly found in an acid mine environment after the mines had flooded and stabilized. Water quality data collected in June 1985 at 140, 176, and 194 feet below the static water level in the Farmington mine shaft was used in the runs.

The fifth set of runs was conducted to determine temporal variations in the SI of selected minerals. Water quality data collected from the lower portions of the Consolidated No.2-Pl mine shaft, from April 1976 to June 1977, and Consolidated No.2-S mine shaft, from October 1983 to June 1985, were used in the WATEQ4F runs.

The sixth set of runs was conducted to evaluate the SI of selected minerals within the springs and to provide a WATEQ4F simulation to correlate with collected

precipitates. Water quality data, collected in June 1985 at the discharge points for the OWRB 4S Borehole Discharge and Commerce Spring, were used in the WATEQ4F runs. The calculated saturation indexes are tabulated in Appendix D.

CHAPTER IV

DISCUSSION

Variations in Mine Water Quality

The water within the mine workings was evaluated for spatial and temporal variations in water quality. Spatial variations in water quality were further separated into vertical and spatial components. Emphasis was placed on the mine water quality data obtained during the first and second sampling periods.

Spatial Variations

In April 1976, the mines were in the initial stages of flooding. Water levels within the mines were low but rapidly rising. Stratification of the mine water was only observed within mines that contained water levels that extended well above the mine stopes, such as Consolidated No.2-Pl. and Lucky Bill, Figure 13.

By June 1977, the water levels within the mines had risen approximately 20 feet. All of the mines sampled displayed some degree of stratification. The temperature, pH, and specific conductance of the mine water remained relatively constant for the first few tens of feet below the surface. At the approximate depth where the water column intersected the middle to lower portions of the mine stopes, an abrupt change in water quality occured. Within a 5 foot interval, most of the water

42

Figure 13. Vertical Variations in Water Quality Consolidated No.2-PL, April 20, 1976

within the mines exhibited a sharp increase in temperature, specific conductance, sulfate and most metal concentrations, and a decrease in the pH and alkalinity.

The upper portions of the water within the Consolidated No.2-PL mine shaft were saturated with respect to allophane, oversaturated with respect to diaspore, ZnSiO₃, and otavite, became undersaturated with respect to otavite with increasing depth. Bicarbonate concentration were low throughout the entire water column, decreasing with depth resulting in the absence of carbonate mineral (aragonite, calcite, dolomite, siderite rhodocrosite, otavite, and cerrusite) in the lower portions of the shaft. The water in the upper portion of the mine shafts were undersaturated with respect to the sulfate minerals gypsum, alunite, basaluminite, jurbanite, and jarosite becoming oversaturated with depth in response to increasing sulfate concentrations.

The entire water column within the shaft was saturated with respect to barite and quartz. Dissolved Al and Fe concentrations within the mine water increased four orders of magnitude with increasing depth. The water within the mine shafts were oversaturated with respect to kaolinite, boehmite, diaspore, gibbsite, goethite, and ferric hydroxide, and maintained the same level of oversaturation throughout the entire water column, Figure 14.

During first sampling period, the mines were in the initial stages of flooding. The water levels within the mines were rapidly rising as the mines received natural recharge in the lower portion from the Boone aquifer and rapid artificial inflow of surface water via open mine shafts, collapse features, and abandoned exploration holes.

The water located within the mine stopes was characterized by moderate to

Figure 14. Saturation Indexes for Selected Minerals Consolidated No.2-PL April 20, 1976 low pH, 3.8-5.9, and low but variable alkalinities, generally < 5 mg/l (CaCO₃), never exceeding 37 mg/l (CaCO₃). Fluctuations in the alkalinity in the mine water follow the same trends observed in elevated concentrations of dissolved CO₂. As expected from the low bicarbonate concentrations, all of the mines were undersaturated with respect to carbonate minerals. High but variable calcium and sulfate concentrations generally averaged 500 mg/l and 3000 mg/l, respectively, were controlled by the precipitation of gypsum, Figure 15. The water located within the mine stopes was oversaturated with respect to barite, alunite, and basaluminite in relation to the high sulfate and Al concentration. Trace metal concentration were high with Zn > Fe > Al > Ni > Cd > Pb.

During the initial stage of the mines flooding, Zn concentration were high and relatively stable. High Zn and SiO₂ concentrations in the waters resulted in oversaturation with respect to ZnSiO₃ and quartz. Iron concentrations were high and generally increased with time. Aluminum concentration varied one to two orders of magnitude, whereas Ni, Cd, and Pb concentrations were relatively stable. The water within the mine stopes were oversaturated with respect to diaspore, kaolinite, ferric hydroxide, goethite, and jarosite, saturated with respect to boehmite and gibbsite, and near saturation with respect to allophane, jurbanite, and ferrosoferric hydroxide. This is the result of the high Al and Fe concentrations in the mine water.

No discernable aerial variations in water quality were observed for the first sampling period. The water quality within the mine stopes appeared to be primarily governed by the rapid inflow of oxygenated surface waters, especially after periods of heavy rain fall, and additional contact with ore bodies resulting from increasing water

Figure 15. Saturation Indexes for Selected Minerals Spatial - April 1976

levels.

By the second sampling period, November 1983 through June 1985, the mine workings had completely filled with water. Most of the surface inflow points had been remediated by stream diversion structures and plugging abandoned exploration holes. This restricting the inflow of oxygenated surface water to periods of intense precipitation and consequent flooding. The increased depth of water within the mines and the remediation of surface inflow points resulted in the water within the mine stopes reducing to a transitional environment.

The water within the mine shafts continued to be stratified, during the second sampling period, Figure 16. Temperature, sulfate and most trace metal concentrations increased, whereas pH decreased with depth. The water in the Farmington mine shaft was separated into three zones defined by variations in the reduction-oxidation potential of the water. The upper and lower portions of the shaft were classified as oxidizing-transitional zones while the middle interval was a transitional-reducing zone.

The upper most zone, located at 140 feet below the water surface, was characterized by a high calcium concentrations, moderate alkalinity, lower sulfate and trace metal concentrations, and a higher Eh.

The middle zone was characterized by an abrupt drop in the Eh of the mine water. Maximum concentrations of alkalinity and calcium were observed in this interval. Most trace metal concentrations remained the same, although Zn and sulfate concentrations doubled, whereas Fe, Ni, and Co increased by a order of magnitude. This is most likely the result of marcasite and pyrite dissolving.

The lower most zone was characterized by a 60 % increase in the Eh and a 50

Figure 16. Vertical Variations in Water Quality Farmington, June 12, 1985

% decrease in alkalinity. Calcium concentrations decreased but remained high, whereas Mg, Fe, Co, and sulfate concentrations increased. Zinc, Cd, and Pb concentrations increased by an order of magnitude reflecting an increase in the dissolution of sphalerite and galena under higher Eh and lower pH conditions.

The entire column of water was oversaturated with respect to quartz, barite, diaspore, allophane, goethite, and $ZnSiO_3$. The water was oversaturated with respect to ferric hydroxide and jarosite in the upper and lower portions of the mines and undersaturated in the middle portion, reflecting the changes in ferric iron with respect to variation in Eh.

The alkalinity within the mine water was moderately high, inversely following the same trend as the redox potential. Despite the increase in alkalinity, the water remains under saturated with respect to the most carbonate minerals. The high alkalinity resulted in the water becoming saturated with respect to siderite in the upper and low portions of the mine and oversaturated in the middle portion, a result of high ferrous iron concentrations reflecting the low Eh.

Sulfate concentrations in the mine water doubled, whereas Al, Zn, and Fe concentrations increase by an order of magnitude between the upper and lower sampling portions. As the sulfate concentrations increased with depth, the water within the mines became saturated with respect to gypsum and oversaturated with respect to alunite and basaluminite, Figure 17.

The Eh of the water within an individual mine shaft is related to the circulation pattern within the mine. Most mines exhibit a downward migration of water as indicated by a decrease in the Eh and increase in TDS. The water located in

Figure 17. Saturation Indexes for Selected Minerals Farmington, June 12, 1985

the upper portions of the mines possessed a high Eh from surface contact with the air and periodic inflow of oxygenated surface water during flood events. The decrease in the Eh within the middle zone most likely reflected a relatively stagnant layer of water which lies above the upper level of the mine stopes. Water circulating through the mine stopes increases the Eh of the water within the lower levels of the mine, as observed in the Farmington mine. The downward migration of water within the mine shafts can also be seen by the increase in the TDS with depth. The water in the upper portion of the mine shaft possesses the lowest TDS, while the water with the highest TDS is found in the mine stopes. Inflowing surface water and groundwater from the Boone formation is relatively low in TDS (Reed 1955). As the combined water enters into the mine workings and comes in contact with soluble ores, small portions of the minerals dissolve, increasing the dissolved solids concentration of the water. As the water continues to migrate downward, the TDS of the water increases with increasing residence time and increasing contact with additional ore. A few mines, located in the southern most portions of the Picher mine field, display little vertical variations in water quality, indicating an upward migration of water, a discharging mine.

During the second sampling period, the water within the mine stopes was characterized by a moderate and stable pH, 5.6 to 6.2. The mines had completely filled with water and stabilized, resulting in maximum contact between the mine water and the limestone strata in the overburden. This resulted in a moderate to high alkalinity. Although the bicarbonate concentrations within the mine stopes had increased by one to two orders of magnitude since April 1976, the waters remained undersaturated with respect to most carbonate minerals, with the exception of siderite. High calcium and sulfate concentrations continue to exist with concentration averaging > 500 mg/l and 2700 mg/l, respectively, primarily controlled by the precipitation of gypsum, Figure 18. Trace metal concentrations remained high with Fe > Zn > Ni > Al > Pb > Cd. Iron, Zn, and Al concentrations were stable, displaying a slight but steady decrease in concentration with time. Nickel concentrations remained constant or decreased slightly with time. Cadmium and Pb concentrations decreased in the Admiralty and Kenoyer mines, increased in the Consolidated No.2-S mine, and were stable in the Farmington mine. High sulfate, Al, and Fe concentrations resulted in the mine water becoming oversaturated with respect to barite, basaluminite, alunite, and jarosite, and saturated with respect to allophane, whereas high Al, and Fe concentrations resulted in the mine water becoming oversaturated with respect to diaspore, kaolinite, ferric hydroxide, and goethite. The mine water was oversaturated with respect to $ZnSiO_3$ and quartz, because of high Zn and SiO₂ concentration.

No spatial trends in water quality were observed within the Picher mine field during the second sampling period. Variations in water quality appear to be more of a function of depth rather than spatial location.

The Lucky Syndicate mine was an anomaly during the second sampling period. Calcium and sulfate concentrations in the mine water were consistent with the rest of the mine field, but the alkalinity was approximately three times higher, Figure 19. The saturation with respect to gypsum remains as the most probable control on the concentrations of calcium and sulfate, whereas the increase in the alkalinity has had little effect on the degree of saturation with respect to most carbonate minerals

Figure 18. Saturation Indexes for Selected Minerals Spatial, June 1985

Figure 19. Aerial Variations in Water Quality June 11, 1985

because of a substantially lower trace metal concentrations.

Trace metal concentrations in the water located within the mine stopes were generally lower than observed average from rest of the mines. Iron, Ni, and Al concentrations were an order of magnitude lower, whereas Zn concentration were two orders of magnitude lower. The water within the mine stopes was determined to be oversaturated with respect to ferric hydroxide, goethite, and diaspore, and saturated with respect to siderite and alunite. Although the mine water was determined to be oversaturated with respect to several iron precipitates, the decrease in the concentrations of Ni and Cd coinciding with the decrease in the Fe and Zn indicate that a reduction in the amount of marcasite and sphalerite dissociating was responsible for the lower concentrations.

The abnormally high alkalinity and low trace metal concentrations appear to be related to the substantially shallower mine depth and lower water column in the Lucky Syndicate mine. The Lucky syndicate mine shaft contained approximately 80 feet of water during the second sampling period. This was approximately half the depth measured in the other mines. The Alkalinity of mine water located within the Farmington mine decreased and the trace metal concentrations increased with depth.

Limited water quality data were collected during an intermediate sampling period, from August 1980 to December 1981, by the OWRB. During this time frame, the mines were almost filled, but were still receiving large quantities of oxygenated surface water, especially during periods of high precipitation. Large variations in water quality were noted during this period and the water within the mines were stratified, Figure 20.

Figure 20. Vertical Variations in Water Quality Consolidated No.2-S, June 11, 1981

Water temperatures generally remained relatively constant for in the upper 100 to 150 feet of water then began to increase with increasing depth. During the hot summer and early fall months high air temperatures warmed the mine water near the surface. This resulted in high surface water temperatures with decreasing water temperature with depth in the upper 70 feet. The water in the upper portions of the mines were characterized by a neutral pH and low to moderate alkalinity and sulfate concentrations. Dissolved oxygen, pH, and specific conductance generally remained relatively constant from 10 feet below the water surface down to the upper level of the mine stopes. At this interval, the upper to middle portion of the mine stopes, an abrupt increase in specific conductance, sulfate, and most trace metal concentrations were observed in relation to a abrupt decrease in the pH and dissolved oxygen, temperature, and specific conductance of the mine water generally remained relatively constant with increasing depth.

The water within the mine stopes between October 1980 and July 1981, were characterized by widely fluctuating pH, alkalinity, and, trace metal concentrations. The pH of the mine water was variable ranging from moderately acidic (pH 4.7) to neutral (pH 7). The alkalinity of the mine water as moderately low, generally < 200 mg/l. Trace metal concentrations were variable generally with Fe > Zn > Ni > Al > Pb > Cd, but commonly reversed to Ni < Al, and Pb < Cd between sampled dates. Iron and Zn concentrations were high but have been recorded decreasing by two orders of magnitude during a single sample date. Wide variations in the water quality were most likely caused by frequent inflows of large volumes of oxygenate surface water and acid mine water from adjacent tailing piles during periods of high precipitation.

Temporal Variations

Temporal variations in water quality were observed between the first and second sampling periods. From April 1976 to June 1985, the pH of the water within the mine stopes was relatively stable, increasing slightly with time. The alkalinity of the mine water increased approximately two orders of magnitude between June 1977 and November 1983, in relation to increased contact with limestone in the overburden during flooding, Figure 21. Although the alkalinity of the mine water increased, most carbonate minerals remained undersaturated but decrease in the degree of undersaturation, with the exception of siderite. As the alkalinity of the mine water increased, and cerrusite, remained undersaturated but decreased in the degree of undersaturation.

Calcium and sulfate concentration were high averaging 500 mg/l and 3000 mg/l. A direct correlation was observed between calcium and sulfate concentrations, most likely controlled by the precipitation of gypsum, Figures 21 and 23. In relation to the high sulfate, Al, and Fe concentrations in the mine water, the water was determined to be oversaturated with respect to barite, alunite, basaluminite, and jarosite.

Trace metal concentrations in the water located within the mine stopes were high and variable where Zn > Fe > Al > Ni > Cd > Pb during the initial stages of the mines filling and Fe > Zn > Ni > Al > Pb > Cd after the mines had filled,

Figure 21. Temporal Variations in Chemical Parameters, Consolidated No.2 Mines

Figure 22. Iron concentrations were high and generally increased with time, whereas Ni concentration remained relatively the stable. The high Fe concentrations resulted in the water being oversaturated with respect to ferric hydroxide and goethite during both sampling periods and saturated with respect to siderite during the second sampling period, Figure 23. During periods of low redox potential, the saturation index of ferric iron precipitates declined in response to the low ferric/ferrous iron ratio. In March 1984, the redox potential of the mine water reduced into a transitional environment resulting in the reduction in the degree of saturation of the ferric iron minerals. Zinc concentration were the highest during the initial stages of the mine filling, exhibiting an one half to one third reduction in concentration after the mine had filled. Despite the reduction the Zn concentrations, the mine water remained saturated with respect to ZnSiO₃. Aluminum, Pb, and Cd concentrations were high and fluctuated significantly over time, decreasing by an order of magnitude after the mines had filled. The water within the mine stopes remained oversaturated with respect to diaspore despite the substantial reduction in average Al concentration. During periods of extremely low Al concentrations, as in June 1977, all Al minerals were undersaturated.

Minerals containing phosphorus, $MnHPO_4$ and plumbogummite, increased in the degree of saturation with time in response to the increase in phosphate concentrations. Cuprousferrite and cupricferrite maintained a high level of oversaturation throughout the sampling period.

Variations in the quality of the water located within the mine stopes were primarily related to the increase in the depth of water in the mine shafts and the

Figure 22. Temporal Variations in Trace Metal Concentrations, Consolidated No.2 Mines

Figure 23. Saturation Indexes for Selected Minerals Consolidated No.2 Mines
inflow of surface water. The moderately acidic water located within the mine stopes was produced by a combination of the oxidation of marcasite and pyrite and the dissociation of carbonate minerals. During the initial stages of the mines filling, the water was primarily in contact with brecciated chert zones with little buffering capacity. As oxygenated surface water discharged into the mines, marcasite and pyrite were rapidly oxidized producing sulfuric acid. The acid produced was then neutralized by the carbonate gangue minerals calcite and dolomite. The limited amount of carbonate minerals and accelerated acid production during periods of high surface water discharge resulted in variable but moderately acidic conditions with a very low alkalinity, generally < 5 mg/l, never exceeding 37 mg/l.

A strong correlation was observed between the alkalinity and the CO_2 concentration in the mine water. Under acidic conditions, carbonic acid is a by product of the neutralization reaction. If sufficient quantities of carbonate minerals react with the acid, the water will become oversaturated with respect to carbonic acid and dissociate releasing water and CO_2 . This reaction is responsible for the large volume of CO_2 gas which is expelled from the Commerce Spring.

As the water in the mine workings continued to rise, it came in contact with the limestone located in the Boone formation and overlying strata. The combination of the increased contact with additional limestone and the remediation of surface inflow points, by stream diversion and plugging of abandoned exploration holes, allowed the pH of the water within the mine stopes to stabilize at a moderately acidic pH. At the same time the alkalinity increased by two orders of magnitude by November 1983.

The oxidation of sulfide minerals and the neutralization of sulfuric acid by

calcite and dolomite released large quantities of calcium and sulfate into the mine water. A strong correlation was observed between the calcium and sulfate concentrations in the water located within the mine stopes. Calcium and sulfate concentrations were variable and generally maintained around 500 mg/l and 3000 mg/l, respectively, by the precipitation of gypsum. This was supported by WATEQ4F calculated that the water located within the mine stopes was saturated with respect to gypsum and by the precipitation of crystalline gypsum at OWRB 4S. The high sulfate concentrations in the mine water would most likely impede the dissolution of barite nodules located in the Boone formation.

Temporal variations observed in the Eh of the water located within the mine stopes was related to the rise in the water levels in the mine shafts and the reduction in the inflow of surface water. The Eh of the water located within the mine stopes decreased over time, reverting back toward the reducing conditions which existed prior to the mining operations. During the initial stages of flooding, the water located within the mine stopes was in an oxidizing environment, Figure 24. As the water within the mine shafts rose approximately 20 feet between April 1976 and June 1977, the Eh of the water located within the mine stopes steadily decreased.

By the second sampling period, the mines had completely filled and the inflow of oxygenated water was restricted from entering the mines, occurring only during periods of high precipitation and associated flooding. The Eh of the water located within the mine stopes fluctuated and continued to decrease. The drop in the Eh resulted in the mine water reducing to a transitional environment.

Figure 24. Oxidation-Reduction Environments of Water within the Consolidated No.2 Mine Stopes: 1 April 20, 1976; 2 October 19, 1976; 3 June 7, 1977; 4 November 30, 1983; 5 March 22, 1984; 6 June 7, 1985.

Aqueous Mineral Equilibrium

High Fe and Ni concentrations in the water located within the mine stopes primarily came from the oxidation and dissolution of marcasite and pyrite. Iron concentrations increased with time whereas Ni concentrations remained relatively stable. This would indicate a constant rate in the dissolution of marcasite and pyrite. The increase in the dissolved iron concentrations in the mine water was related the decrease in the Eh of the water, Figure 25. Although iron can exist in two oxidation state, in natural waters, ferrous iron is found in solution through most of the Eh range under neutral to strongly acidic conditions, whereas ferric iron occurs only in high Eh and strongly acidic conditions, pH < 5. Dissolved iron concentrations in the mine waters were controlled by the oxidation of ferrous iron to ferric iron and the hydrolysis of ferric iron to ferric hydroxide. Under the Eh-pH conditions of the mine water, the dissolved ferric iron concentrations were controlled by the precipitation of amorphous ferric hydroxide and amorphous goethite.

During the initial stages of the mine filling when oxygenated surface water and air were in contact with the ore located in the mine stopes, Fe concentrations were relatively low rapidly increasing with time, whereas Ni concentrations remained relatively stable. Under these high oxygenated acidic conditions, a large percentage of the ferrous iron would oxidize to ferric iron and precipitate out of solution as amorphous ferric hydroxide, thus significantly reducing the Fe concentration in the mine water. In contrast, the mine water was undersaturated with respect to Ni minerals, therefor the Ni remained in solution.

As the water levels within the mine shafts increased, the Eh of the water

Figure 25. Temporal Variations in Fe Concentrations vs. Eh Consolidated NO.2 Mines

within the mine stopes decreased. By November 1983, most of the mines had completely flooded and the water levels within the mine shafts were at equilibrium with Tar Creek. Most of the surface inflow points had been remediated, by stream diversion structures and plugging abandoned exploration holes, restricting the inflow of oxygenated surface water to periods of high precipitation. The low Eh of the mine water during the 1983-85 sampling period would provide a more stable environment for ferrous iron. With less ferrous iron oxidizing to ferric iron and consequentially precipitating out of solution as ferric hydroxide, more iron would remain in solution. By this reasoning, the same amount of marcasite and pyrite dissociated during both sampling periods, but under the lower Eh conditions more dissolved iron remained in solution.

A substantial decrease in the Zn, Cd and Pb concentrations in the water located within the mine stopes was observed between the first and second sampling periods. The drop in concentrations correlates with a decrease in the Eh of the mine water, Figure 26. High Zn and Cd concentrations come from the dissolution of sphalerite and high Pb concentrations come from the dissolution of galena. Under neutral pH and reducing conditions, which existed prior to the mine activity, sphalerite and galena are stable. In the oxidizing environment which existed during the initial stages of the mine filling, sphalerite and galena were readily dissolved, releasing high concentrations of Zn, Cd, and Pb, as observed in the first sampling period. As the Eh of the water located within the mine stopes continued to decrease, the sulfide minerals became more stable. By the second sampling period, the water located within the mine stopes had reduced to a transitional environment. Under the

Figure 26. Temporal Variations in Zn and Pb Concentrations vs. Eh, Consolidated No.2 Mines

observed Eh-pH conditions, the oxidation and dissolution of sphalerite and galena decreased, as shown by the lower Zn, Cd, and Pb concentrations recorded during the second sampling period. The reduction in the dissolution of sphalerite as the primary factor responsible for the decrease in Zn concentrations was supported by a similar decrease in Cd concentrations. Since the primary source of Zn and Cd was the dissolution of sphalerite, if the decrease in Zn concentrations were related to precipitation, then Cd would not follow the same decline in concentrations. WATEQ4F calculation indicate that the mine water was oversaturated with respect to ZnSiO₃ and quartz resulting from the high Zn and SiO₂ concentrations.

Despite the reduction in the Al concentrations in the mine water, the water located within the mine stopes remained oversaturated with respect to diaspore, kaolinite, basaluminite, and alunite during both sampling periods. The aluminum concentrations in the acid sulfate water found in the mine stopes were controlled by the precipitation of amorphous basaluminite. The Al and sulfate concentrations in the mine water were the lowest near the surface of the mine shafts, increasing with in concentration depth. Under low sulfate concentrations, the aluminum concentrations would be controlled by the precipitation of bauxite, primarily diaspore, and kaolinite.

Precipitate Description and Analysis

Precipitates were collected at two mine water discharge points to determine aqueous mineral equilibrium and to validate WATEQ4F runs. Precipitates were collection at OWRB 14 and OWRB 4S on April 17, 1992 and on December 4, 1992. A list and description of the mine discharge sampling locations are provided in Table 6.

Mine water was discharging from the Commerce Spring (OWRB 14) at the time of sampling during both sampling events, Figure 27.a. Large quantities of CO_2 gas were released into the atmosphere upon discharge. Water discharged from the spring was clear and appeared to be free of suspended colloidal particles. The area surrounding the spring and adjacent creek were coated with a pale yellow-brown precipitate with red amorphous flocs of iron precipitate coating the surface of the water.

A pale yellow-brown precipitate coating was observed adhering to the plant material surrounding the spring and bottom accumulations at the spring overflow connecting the spring with the creek. The precipitates have a low density and produce a high irregular background reading during x-ray diffraction. From this it was concluded the precipitates consists of amorphous iron.

On April 17, 1992, precipitates were collected from the weir located downstream from the Commerce spring. Water within the creek was stained red from the colloidal iron particles suspended in the water. The metal weir was coated with a thick layer of dense dark red iron precipitate. A thick sediment deposit of dark red iron precipitates was located both upstream and downstream adjacent to the weir, Figure 27.b.

During both sampling events, water was discharging from both the borehole and the taproot. The taproot discharge comprised the minimal amount of the combined discharge. Water discharging from the taproot was clear, free from

TABLE 6

PRECIPITATE COLLECTION LOCATIONS AND DESCRIPTIONS

	FIGURE	LOCATION	DESCRIPTION
	27.a	28N-23E-07 BDD	COMMERCE SPRING, excessive CO_2 discharged, red-brown (iron) flocs on water
		(OWRB 14)	
	27.b	28N-23E-07 BDD	WEIR EAST OF COMMERCE SPRING, heavy layered (iron) precipitates on weir and vegetation
		WEIR	
	28.a	29N-23E-29 CDC	TAPROOT DISCHARGE, pale yellow-tan precipitates on sediment and stump
		(OWRB 4S)	
	28.a	29N-23E-29 CDC	TAPROOT DISCHARGE, white crystals on vegetation extending out of the water.
		(OWRB 4S)	
	28.b	29N-23E-29 CDC	TAPROOT DISCHARGE, thick yellow- brown layered precipitate on sediment.
		(OWRB 4S)	
	29.a	29N-23E-29 CDC	BOREHOLE DISCHARGE, minor CO_2 discharge, yellow precipitates on tree roots within borehole
		(OWRB 4S)	
	29.b	29N-23E-29 CDC	BOREHOLE WEIR, heavy (iron) precipitate on weir and vegetation
		(OWRB 4S)	
	30.a	29N-23E-29 CDC	CREEK AT OWRB 4S, bottom coated with yellow-brown precipitate, red iron flocs on water surface
		(OWRB 4S)	
	30.b	29N-23E-29 CDC	AIR SHAFT PIPE, white, red, and black crystal precipitate inside pipe. (not discharging)
		(OWRB 4S)	

Figure 27. OWRB 14, a) Commerce Spring, b) Commerce Spring Weir

noticeable suspended colloidal particles with no noticeable release of CO_2 gas bubbles. The remnant stump which overlies the taproot discharge point was coated with precipitates, Figure 28. Portions of the stump which are exposed to air were coated with white to pale yellow-brown precipitates, some in small crystal form. Below the water surface, all surfaces are coated with a pale yellow-brown precipitate with sediment accumulations of precipitates covering the bottom. The ground lying between the taproot and the borehole was coated with a dense yellow-brown to brown layered precipitate, Figure 28.b. Small vegetation extending above the water level was coated with a white to yellow-tan crystalline precipitate.

The borehole discharge comprised the majority of the combined discharge. Water discharging form the borehole was clear, free of any noticeable suspended colloidal particles, Figure 29.a. Small amounts of CO_2 gas bubbles were observed rising from the borehole discharge. Large quantities of a foamy material, possibly iron flocculent, covered the water surface around the borehole extending tens of feet downstream, Figure 30.a. All vegetation beneath the water surface possessed a thick coating of a yellow-brown precipitate. The floor of the discharge stream was covered with a sediment deposit of the same yellow-brown precipitate.

On April 17, 1992 precipitates were collected at the weir located approximately 100 feet to the west downstream from the borehole discharge. The weir consisted of a metal plate with a broad flat box-shaped notch cut out of it to allow water to pass through it uniformly. The weir was encrusted with a reddish iron precipitate. The stream bottom up and downstream of the weir were covered in a deep layer, over one foot thick, of precipitates, Figure 29.b. The precipitates were deep

Figure 28. OWRB 4S, a) Taproot Discharge Point, b) OWRB 4S Taproot Discharge, Encrusted Ground

Figure 29. OWRB 4S, a) Borehole Discharge, b) OWRB 4S, Weir

red in color fine to coarse grained and dense, probably containing a large portion of heavy metals.

During both sampling events, the water within the air stand pipe was approximately one foot from the top of the pipe. The steel air shaft stand pipe was coated on the inside with a dense crystalline precipitate. The precipitate was white towards the top grading to yellow, red, brown, then black at and just below the water surface. On December 4, 1992 the outside of the air stand pipe was coated with a dense yellow-brown encrusted layer of precipitate with a powdery yellow surface, Figure 30.b.

The CO_2 gas which was observed accompanying the mine water discharge at both springs came from the dissolution of limestone. Calcite (limestone) reacts with the sulfuric acid in the mine water to neutralize it in the following manner.

$$H_2SO_4 + CaCO_3 = Ca^{2+} + SO_4^{2-} + H_2CO_3$$

As the calcite continues to neutralize the acid, the concentrations of Ca^{2+} and SO_4^{2-} in solution increase until the solution is supersaturated with respect to gypsum. At this point the precipitation of gypsum occurs, controlling the Ca^{2+} and SO_4^{2-} concentrations in solution. At a pH < 6.0, the dominant carbonate species present in solution would be H₂CO₃. Once the water becomes saturated with respect to H₂CO₃, carbonic acid dissociates releasing H₂O and CO₂ gas, as shown below.

$$H_2SO_4 + CaCO_3 = CaSO_4 + H_2O + CO_2$$

Figure 30. OWRB 4S, a) Creek Draining OWRB 4S Discharge b) Standpipe Discharge The extremely high volume of CO_2 gas discharged at the Commerce Spring reflexes the longer residence time and the increased contact with limestone.

The mineralogy of the precipitates were determined using x-ray diffraction with copper radiation. X-ray diffraction of the precipitates revealed that the crystalline precipitates found within the air stand pipe and on material extending above the water surface in the vicinity of the taproot and the borehole at OWRB 4S were gypsum. No peaks were recorded from the remaining samples, but a high irregular background indicated that the precipitates were amorphous or poorly crystalline. Although it has been determined that secondary iron fluorescence can cause a high background reading, field observations and documented literature pertaining to acid mine drainage and related precipitates indicated that the remaining precipitates were most likely amorphous iron and aluminum minerals, primarily amorphous varieties of ferric hydroxide, goethite, and basaluminite.

Chemical analysis of iron precipitates collected near the mine discharge point revealed that they contained high concentrations of Fe and Al (Parkhurst and others 1988). WATEQ4F runs calculated that the water discharging from OWRB 4S and OWRB 14 were oversaturated with respect to gypsum, ferric hydroxide, goethite, and basaluminite, Figure 31. Based on the above data the red flocs are amorphous ferric hydroxide, the yellow-brown precipitates are amorphous goethite and basaluminite, and the dense red precipitate found at the weirs is a poorly crystalline hematite.

Iron Precipitate Dehydration Series

Large quantities of iron precipitates have been observed deposited at the mine

Figure 31. Saturation Indexes of Selected Minerals OWRB 4S and OWRB 14, June 1985 water discharge locations, continuing long distances down stream. Upon deposition, ferric iron minerals ferric hydroxide, goethite, and hematite form a dehydration series in relation to the Eh of the water, Figure 32. Ferric hydroxide is typically the first ferric mineral to precipitate from solution resulting from the hydrolysis of ferric iron. Upon deposition, typically near the mine water discharge points, ferric hydroxide would dehydrate to form the more stable mineral goethite. Further down stream in a more stable oxidizing environment, goethite formed from either direct precipitation or from the dehydration of ferric hydroxide dehydrates to form the more thermodynamically stable mineral hematite.

Sorption Processes

Ferric hydroxide has a highly adsorptive nature and is capable of adsorbing and coprecipitating a large quantity of a variety trace elements. Adsorption and coprecipitation with ferric hydroxide were the primary control of the trace elements Zn, Pb, Ni, Mn, Cd, and Cd in the mine waters. This is supported with analyses of stream sediments collected in 1985 which detected high concentrations of Fe, Al, Zn, Pb, Ni, Mn, Co, and Cd associated with iron precipitates (Parkhurst 1988).

Summary

The water within the mine shafts was stratified during the study period, April 1976 and June 1985. The temperature of the mine water increases with depth except during the warmer summer and fall months when surface water was heated above that of the groundwater, specifically the water in reserve within the mine stopes, then the

Precipitates

thermal gradient was reversed. Typically, the specific conductance increased and the pH decreased with depth. Dissolved oxygen concentrations were typically the highest within the upper few feet of the water column, decreasing gradually with depth. An abrupt change in water quality occurred within the mine shafts in the vicinity of the middle to lower portions of the mine stopes. This zone was characterized by an abrupt increase in SC, SO₄ and most trace metal concentrations, and a decrease in pH and DO, Appendix B. In most cases the mine water was stratified with cooler water possessing a low TDS overlying a warmer but denser water because of its substantially higher TDS content. The boundary which separates these waters within any given mine generally remains fairly constant in the vicinity of the upper to middle portions of the mine stope, but commonly varies 5 to 20 feet.

Water analyses used to evaluate the water quality within the mine stopes were collected during two primary sampling events. The first sampling event occurred from April 1976 through June 1977. During this sampling period, the mines were in the initial stages of flooding. They received rapid inflow of surface water via open mine shafts, collapse features, and abandoned exploration holes. The water levels within the mines rose approximately 20 feet during this period. The water within the mine stopes was characterized by a moderate but variable pH, 3.8-5.9, and a low alkalinity, generally less than 5 mg/l. Trace metal concentrations were high with Zn > Fe > Al> Ni > Cd > Pb. The mine water contained high concentrations of Ca and SO₄ averaging 500 mg/l and 3000 mg/l, respectively. The water in the mine stopes possessed a high redox potential classifying it as an oxidizing environment. The water quality between individual mines was variable, displaying no discernable spatial trends, Appendix C. Vertical sampling of the mines indicated that the water within the mines was stratified and the boundary between the stratified units occurred near the upper portions of the mine stopes.

The second sampling period occurred from November 1983 through June 1985. During this period the mines had completely filled and the trace element concentrations began to stabilize. The inflow of surface water into the mine workings was restricted by stream diversion structures and plugging abandoned exploration holes, occurring only during periods of intense precipitation and associated flooding. The water within the mine stopes was characterized by a moderated pH, 5.6-6.2, and a moderated to locally high alkalinity, generally between 200-300 mg/l. Trace metal concentration remained high with Fe > Zn > Ni > Al > Pb > Cd. Calcium concentrations remained high, averaging over 500 mg/l, whereas sulfate concentrations averaged around 2700 mg/l. A reduction in the redox potential of the water within the mine stopes reduced the water to a transitional environment. No definable spatial trends were observed and the water remained stratified. Variations in the water quality appear to be more of a function of depth than location.

The pH of the water within the mine stopes was relatively stable, increasing slightly over time. A direct correlation was observed between Ca and SO_4 concentrations. Average concentrations of Ca and SO_4 were maintained around 500 mg/l and 3000 mg/l, respectively, by the precipitation of gypsum. This was supported by WATEQ4F calculated the water within the mine stopes was saturated with respect to gypsum and the precipitation of crystalline gypsum at OWRB 4S. The alkalinity of the mine water increased by two orders of magnitude between 1977 and 1985,

reflecting the contact with additional limestone present in the overburden strata after the mines had filled. Iron concentration remained high increasing by a factor of two in some mines, whereas Zn concentration decreased by half to one third between the first and second sampling periods. Aluminum, Cd, and Pb concentrations decreased by an order of magnitude, whereas Ni concentrations remained the same.

The decrease in dissolved Zn and Pb concentrations are related to the drop in the Eh of the mine water. Zinc, Cd, and Pb concentrations all display the same trend in decreasing concentrations over time corresponding to the decrease in the Eh of the mine water. Zinc, Cd, and Pb concentrations in the mine water come from the dissolution of sphalerite and galena which are stable under reducing conditions. During the first sampling period, the mine water was in an oxidizing environment. Under these conditions, sphalerite and galena would readily dissolve. This was confirmed by the high Zn and Pb concentrations in the water. By the second sampling period, the decrease in the Eh in the mine stopes reduced the mine water to a transitional environment. Under these conditions, sphalerite and galena are more stable. The oxidation and dissolution of these minerals would be retarded as reflected by lower concentrations of Zn and Pb in the mine water. The reduction in the amount of sphalerite dissolving was verified by the decrease in Cd concentration corresponding to the decrease in Zn concentrations over time.

The increase in the Fe concentrations were also related to the drop in the Eh of the mine water. Iron and Ni concentrations in the mine water came from the dissolution of marcasite and pyrite. In acid sulfate waters with pH > 5, iron will primarily exist in solution as ferrous iron and ferrous sulfate. In an oxidizing

environment, which existed during the first sampling period, the ferrous iron species would oxidize to ferric iron and precipitate out of solution as ferric hydroxide, thus reducing the total dissolved Fe concentration in the mine water. In the second sampling period, when the Eh of the water decreased, less ferrous iron was oxidized and precipitated out of solution. This would increase the total dissolved iron concentration in the mine water while dissociating the same amount of iron sulfide minerals, confirmed by the relatively constant concentrations of Ni vs increasing Fe concentrations in the mine water.

WATEQ4F runs and precipitate analyses indicate that concentrations of Ca, SO_4 , Al, and Fe in solution were controlled by the precipitation reactions. Calcium and sulfate concentrations in the mine water were controlled by the precipitation of gypsum. Basaluminite was the dominant Al precipitate found in the acid sulfate water located in the mine stopes, whereas diaspore and kaolinite would be the dominant precipitate in neutral low sulfate water commonly found near the surface of the mine shafts.

Iron concentrations in the mine water were controlled by the oxidation of ferrous iron to ferric iron and the precipitation of ferric hydroxide, which is dependent on the Eh-pH of the water. Ferric ion concentrations in the mine water were also controlled by the precipitation of amorphous goethite. As the alkalinity of the water within the mine stopes increased during the second sampling period, the water became oversaturated with respect to siderite, and other carbonate minerals, such as smithsonite and calcite, approached saturation.

Large quantities of amorphous ferric hydroxide, goethite, and basaluminite and

smaller quantities of crystalline gypsum were observed deposited surrounding the mine water discharge points. Upon deposition, ferric oxyhydroxide minerals go through a transformation preferentially dissolving transforming into more thermodynamically stable minerals. Ferric hydroxide and amorphous goethite are precipitated at the entrances of mine discharge points. Upon transportation down stream and deposited in a stable aerobic environment, ferric hydroxide is transformed into goethite. Goethite over time will then be transformed into hematite. This process was observed at OWRB 4S and OWRB 14, as one proceeds down stream from the discharge points.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This study is a geochemical assessment of the water located within the mine stopes of the Oklahoma portion of the Picher mine field. This was accomplished by evaluating water quality analyses for vertical, spatial, and temporal variations in water quality, determining the equilibrium of aqueous minerals in solution using the geochemical computer program WATEQ4F, and precipitate collection and analyses to validate the computer runs.

Acidic conditions associated with the water located in the mine stopes was the result of the oxidation and dissolution of iron sulfide minerals, marcasite and pyrite. Under the acidic and oxidizing conditions, the less soluble sulfide ore and gangue minerals, primarily sphalerite, galena, marcasite, and pyrite, were readily dissociated and contributed to the high concentration of trace metals found in the mine water. The high concentrations of Zn and Cd in the mine water came from the dissociation of sphalerite, Pb from galena, Ni from marcasite and pyrite, and Co primarily from pyrite and to a lesser extent from sphalerite.

The moderate acidity of the water in the mine stopes, pH 5-6, reflects the buffering capacity of the calcite and dolomite gangue minerals associated with the

89

ores and limestone in the overburden formations. In the upper portions of the mine shafts near the surface, the pH of the mine water increases because of carbonate dissolution and dilution from inflowing surface water and groundwater. Carbonate neutralization of the mine water is responsible for the extremely high volume of CO_2 gas discharged at the Commerce Spring.

Vertical Variations

Vertical variations in water quality were observed within all of the mines sampled at multiple depths. The water within the mines was stratified during the April 1976 through June 1985 sampling periods. An abrupt change in water quality was observed in the mine water near the vicinity of the upper limit of the mine stopes. Temperature, specific conductance, sulfate, and most trace metal concentrations increased with depth, whereas Eh, pH, dissolved oxygen, and alkalinity decreased.

Spatial Variations

No discernable spatial trends in water quality were observed within the mines sampled between April 1976 and June 1985. Variations in mine water quality appear to be more of a function of depth rather than spatial location. Water samples collected within the mines at during the same sampling period and at similar depths displayed similar water quality.

During the initial stages of water filling the mines, April 1976 through June 1977, the water within the mine stopes was characterized by a moderate pH ranging from 3.8 to 5.9 and a low alkalinity, generally < 5 mg/l. Trace metal concentrations

were high with Zn > Fe > Al > Ni > Cd > Pb. Calcium and sulfate concentrations were high averaging slightly more than 500 mg/l of Ca and 3000 mg/l SO₄. The water within the mines possessed a high Eh which indicated that the water was in an oxidizing environment, resulting from rapid inflow of surface water.

By November 1983, most of the mines had completely filled with water and fluctuations in trace element concentrations began to stabilize. Once the mines had filled, November 1983 through June 1985, the water in the mine stopes was characterized by a moderate pH, ranging from 5.6 to 6.2, and a moderate to high alkalinity ranging from 200 to 1000 mg/l as CaCO₃. Trace metal concentrations remained high with Fe > Zn > Ni > Al > Pb > Cd. Average calcium concentrations remained high, 500 mg/l, while average sulfate concentrations decreased slightly to 2700 mg/l. The Eh of the water within the mine stopes had decreased, which indicated that the water had reduced to a transitional environment. This resulted from the increased depth of water in the mine shafts and the restriction of surface water from entering the mine workings, occurring only during periods of intense precipitation and associated flooding.

Temporal Variations

Temporal variations in water quality were observed in water samples collected from within the mine stopes between April 1976 and June 1985. The pH of the mine water remained relatively constant or increased slightly during this period. A direct correlation was observed between Ca and SO_4 concentrations, corresponding to the precipitation of gypsum, which controlled the concentrations of these ions in solution. This was supported by WATEQ4F runs which indicated that the mine water was saturated with respect to gypsum. Small crystals of gypsum, observed at OWRB 4S, indicated that the water was saturated with respect to gypsum, verifying the WATEQ4F runs. A substantial increase in alkalinity occurred between June 1977 and November 1983 which reflects the additional contact of the water with limestone in the overburden as the mines filled.

A notable change in trace metal concentrations was observed between June 1977 and November 1983. Iron concentrations in the mine water remained stable or increased by a factor of two, whereas Zn concentrations decreased by a factor of two to three. Aluminum, Cd, and Pb concentrations decreased by an order of magnitude, while Ni concentrations remained stable.

The decrease in Zn, Cd, and Pb concentrations were related to the decreasing solubility of the sulfide minerals because of the decrease in the Eh of the water. Under lower Eh conditions, the less soluble sulfide minerals, sphalerite and galena, are more stable. The decrease in Eh and increase in pH reduced the rate of oxidation and dissolution of these minerals, reducing the Zn, Cd, and Pb in solution.

Iron concentrations have increased while Ni concentrations remained the same over time. Stable concentrations of Ni in the mine water indicate a relatively constant rate and amount of marcasite and pyrite dissolving over time. As the Eh of the mine water decreased, a larger percentage of the iron would remain in solution as ferrous iron, thus increasing the dissolved iron concentration while dissociating the same amount of iron sulfate minerals.

Aqueous Mineral Equilibrium

The equilibrium of aqueous minerals commonly associated with acid mine drainage were calculated with WATEQ4F. WATEQ4F runs in conjunction with observed precipitates were used to determine the controls of certain elements in solution.

The water within the mine stopes was oversaturated with respect to gypsum which resulted in the precipitation of gypsum and played a major roll in the control of calcium and sulfate concentrations in solution. Iron concentrations in the mine water are controlled by the oxidation of ferrous iron to ferric iron and by the precipitation of amorphous ferric hydroxide and goethite. Aluminum concentrations are controlled by the precipitation of amorphous basaluminite in the acid sulfate waters found in the mine stopes and by the precipitation of bauxite, primarily diaspore, and kaolinite in the neutral and low sulfate water found near the surface of the mine shafts.

Precipitates

Precipitates were collected at the two primary mine water discharge points, OWRB 4S and OWRB 14, to validate the WATEQ4F runs. Small crystals of gypsum, observed at OWRB 4S, indicated that the water was saturated or oversaturated with respect to gypsum, verifying the WATEQ4F runs. At the two major mine water discharge points, OWRB 4S and OWRB 14, large quantities of amorphous ferric hydroxide flocs were observed on the surface of the water. Amorphous goethite and basaluminite covered the vegetation and walls of the discharge outlets. Thick deposits of unconsolidated poorly crystalline hematite were found adjacent to both weirs,

93

located a few hundred feet down stream from the discharge points.

Upon deposition, ferric oxyhydroxide precipitates form a dehydration series, Fe(OH)₃-FeOOH-Fe₂O₃, preferentially dissolving to transform into a more thermodynamically stable mineral. Amorphous ferric hydroxide and goethite formed from direct precipitation at the mine discharge points. Amorphous ferric hydroxide continues to precipitate after discharge from the mines resulting from the oxidation of ferrous iron to ferric iron and the hydrolysis of ferric iron. Upon deposition in a stable aerobic environment ferric hydroxide preferentially dissolves to form goethite, goethite then preferentially dissolves to form hematite. This process, at OWRB 4S and OWRB 14, occurs at the discharge points and continues downstream to the respective weirs.

Future Outlook

Without more recent water quality data, one can only speculate on the evolution of the water within the mine stopes over time. Past water quality data indicates that the water within the mine stopes is reverting back to the reducing conditions which occurred before the mining operations existed. Zinc, Cd, and Pb concentrations in the mine water seem to be decreasing with time in relation to a decrease in the Eh of the water and the concentrations will continue to decrease as the water in the mines reverts back to reducing conditions.

Iron concentrations in the mine water will most likely remain high or increase with time. Marcasite and pyrite will continue to be oxidized even if the water within the mines revert back to reducing conditions. The oxidation of iron sulfide minerals can occur abiotically under very low dissolved oxygen concentration and biochemically even under anaerobic conditions. As the Eh of the mine water decreases a larger percentage of the dissolved iron will remain in solution as ferrous iron with only a small percentage oxidizing to ferric iron and precipitating.

The pH of the water within the mine stopes has remained relatively stable during the last three years of sampling, November 1983 through June 1985. This would indicate that the oxidation of marcasite and pyrite had reached equilibrium with the dissolution of limestone. The water within the mine stopes will remain slightly acidic with a moderate alkalinity until the one is exhausted or restricted from reacting with the acidic mine water by a precipitate coating.

Recommendations

To verify the evolution of the water within the mine stopes, water samples would need to be collected within the Admiralty No.4, Consolidated No.2-S, Farmington, and Kenoyer mines at the same intervals as were collected from November 1983 through June 1985. The water quality analyses would need to include the same parameters as June 1985 analyses in addition to specific conductance, dissolved oxygen, ammonia, nitrate, and nitrite concentrations. Analyzing for ammonia, nitrate, and nitrite is essential for determining the accuracy of the Eh calculated from the NH₄⁺/NO₃⁼ and NO₃⁼/NO₂ couples using WATEQ4F as compared to field determined redox potentials. Water analyses containing Fe and Ni are needed to evaluate the dissociation of marcasite and pyrite, Zn and Cd for the dissociation of sphalerite, and Pb for the dissociation of galena. The Eh and pH of the

necessary to determine the trace metal speciation with respect to the measured trace metal concentrations.

Vertical sampling of the mine shafts at 20 foot intervals should include depth, temperature, pH, Eh, specific conductance, dissolved oxygen, alkalinity, Zn, and Fe concentrations. These parameters would be necessary to define the circulation within the shaft and characterize changes in the water quality with depth.

Water quality data collected after the mines had been flooded for an extended period of time is needed to determine the stability and evolution of the water within the mine stopes. Ideally, water samples should be collected quarterly for at least two years to verify seasonal or annual trends in water quality. Unfortunately, detailed analysis of water samples are costly but without them one can only speculate on the present quality of the water within the mine stopes. Post flooding mine water quality data is essential to determine the effectiveness of the EPA no action decision on remediation of Tar Creek which receives acid mine drainage from the Picher mine field.

REFERENCES

- Barnes, H. L., Romberger, S. B., 1968, Chemical Aspects of Acid Mine Drainage, Journal Water Pollution Control Fed. 40:371-384.
- Ball, James W., Jenne, Everett A., and Nordstrom, Kirk D., 1979, WATEQ2-A Computerized Chemical Model for Trace and Major Elements Speciation and Mineral Equilibria of Natural Waters, Chemical Modeling in Aqueous Systems, ACS Symposium Series, 815-856.
- Bateman, Alan M., 1950, Economic Mineral Deposits, 2d ed., New York, Wiley.
- Bateman, Alan M., 1951, The Formation Of Mineral Deposits, 2d ed., John Wiley & Sons, Inc., New York.
- Bigham J.M., Schwertman, U., Carlson, L., and Murad, E., 1990, A Poorly Crystallized Oxyhydroxysulfate of Iron formed by Bacterial Oxidation of Fe(II) in Acid Mine Waters, Geochemica et Cosmochimica Acta, 54:2743-2758.
- Blows, David W., and Jambor, John L., 1990, The Pore-Water Geochemistry and the Mineralogy of the Vadose Zone Sulfide Tailings, Waite Amulet, Quebec, Canada, Applied Geochemistry, 5:327-346.
- Brant, Russell A. and Moulton, Edward Q., 1960, Acid Mine Drainage Manual, Ohio State University Engineering Experiment Station Bulletin 179.
- Breemen, N. Vann, 1982, Genesis, Morphology, and Classification of Acid Sulfate Soils in Coastal Plains, Acid Sulfate Weathering, SSSA Special Publication Number 10, Soil Science Society of America, 95-108.
- Brookins, Douglas G., 1988, Eh-pH Diagrams for Geochemistry, Springer-Verlag Berlin Heidelburg, New York.
- Chapman, B.M., Jones, D. R., and Jung, R.F., 1983, Process Controlling Metal Ion Attenuation in Acid Mine Drainage Streams, Geochemica et Cosmochimica Acta, 47:1957-1973.
- Czamanske, Gerald K., 1959, Sulfide Solubility in Aqueous Solutions, Economic Geology, 54:57-63.

- Drever, J. I., 1982, The Geochemistry of Natural Waters, Prentice-Hall Inc., Englewood Cliffs, N.J.
- Emmons, William H., 1940, The Principles of Economic Geology, McGraw-Hill Book Company, Inc., New York.
- Florence, T. M., 1982, The Speciation of Trace Elements in Water, Talanta, 29:345-364.
- Garrels, Robert M., 1953, Mineral Species as Functions of pH and Oxidation-Reduction Potentials, with Special Reference to the Zone of Oxidation and Secondary Enrichment of Sulphide Ore Deposits, Geochemica et Cosmochimica Acta, 5:153-168.
- Garrels, R. M. and Thompson, M. E., 1960, Oxidation of Pyrite By Iron Sulfate Solution, American Journal of Science, Bradley Volume, 258-A:57-67.
- Guilbert, John M. and Park, Charles F., 1986, The Geology of Ore Deposits, W. F. Freeman and Company, New York.
- Hagni, Richard D. and Desai, Arvind A., 1966, Solution Thinning of the M Bed Host Rock Limestone in the Tri-State District, Missouri, Kansas, Oklahoma, Economic Geology, 61:1436-1442.
- Hagni, Richard D., 1976, Tri-State Ore Deposits: The Character of Their Host Rocks and Their Genesis, Handbook of Strata-bound and Strataform Ore Deposits, Elsevier Scientific Publishing Company, Amsterdam, 457-494.
- Hammer, D.A., 1990, Constructed Wetlands for Wastewater Treatment : Municipal, Industrial, and Agricultural, Lewis Publishers, Inc.
- Hawley, John R. and Shikaze, Kim H., 1971, The Problem of Acid Mine Drainage in Ontario, Canadian Mining Journal, 92:82-93.
- Hem, J.D., 1963, Chemical Equilibria and Rates of Manganese Oxidation, Chemistry of Manganese in Natural Water, U.S. Geological Survey Water-Supply paper 1667-A, 62.
- Hem, J.D., 1976, Reactions of Metal Ions at Surfaces of Hydrous iron Oxide, Geochemica et Cosmochimica Acta, 41:527-538.
- Hem, J.D. and Cropper, W.H., 1962, Survey of Ferrous-ferric Chemical Equilibria and Redox Potential, U.S. Geological Survey Water-Supply Paper 1459, 29.
- Hittman Associates, Inc., 1981, <u>Draft Final Report</u>, Surface and Ground Water Contamination from Abandoned Lead-Zinc Mines Picher Mining District,

Ottawa County, Oklahoma, Oklahoma Water Resources Board.

- Karlson, S., Sanden, P., and Allard, B., 1987, Environmental Impacts of an Old Mine Tailings Deposit - Metal Adsorption by Particulate Matter, Nordic Hydrology, 18:313-324.
- Kent, Douglas.C., Al-Shaieb, Zuhair., Vaden, David W., and Bayley, Peter W., 1987, Hydrological and Geochemical Aspects of Ground and Surface Water Pollution Associated with Lead snd Zinc Mines in the Tri-State Mining District, Chemical Quality of Water and the Hydrologic Cycle, Lewis Publishers, Inc.
- Krauskopf, K. B., 1979, Introduction to Geochemistry, McGraw-Hill Book Company, New York, New York.
- Langmuir, Donald and Whittemore, Donald O., 1971, Variations in the Stability of Precipitated Ferric Oxyhydroxides, Nonequilibrium Systems in Natural Water Chemistry, Advances in Chemistry Series 106, American Chemical Society, 209-234.
- Lowson, Richard T., 1982, Aqueous Oxidation of Pyrite by Molecular Oxidation, Chemical Reviews, 82:5, 461-497.
- Luza, Kenneth V., 1986, Stability Problems Associated with Abandoned Underground Mines in the Picher Field Northeastern Oklahoma, Oklahoma Geological Survey Circular 88.
- McCormick, Curt A., 1980, Water Quality and Sediments of an Area Receiving Acid-Mine Drainage in Northeastern Oklahoma, Thesis.
- McKnight, Edwin T. and Fischer, Richard P., 1970, Geology and Ore Deposits of the Picher Field Oklahoma and Kansas, U.S. Geological Survey Professional Paper 588.
- Nordstrom Darrel K., 1982, Aqueous Pyrite Oxidation and the Consequent Formation of Secondary Iron Minerals, Acid Sulfate Weathering, SSSA Special Publication Number 10, Soil Science Society of America, 37-56.
- Nordstrom, D.K., 1982, The Effects of Sulfate on Aluminum Concentrations in Natural Waters: Some Stability Relations in the System Al₂O₃-SO₃-H₂O at 298 K, Geochemica et Cosmochimica Acta, 46:681-692.
- Nordstrom, Kirk D., Jenne, Everett A., and Ball, James W., 1979, Redox Equilibria of Iron in Acid mine Waters, Chemical Modeling in Aqueous Systems, ACS Symposium Series, 51-80.
- Noike, T., Nakamura, K., and Matsumoto, J., 1983, Oxidation of Ferrous Iron by Acidophilic Iron-Oxidizing Bacteria from a Stream Receiving Acid Mine Drainage, Water Resources, 17:21-27.
- Oklahoma Water Resources Board, 1983, Effects of Acid Mine Discharge on the Surface Water Resources in the Tar Creek Area Ottawa County, Oklahoma, Tar Creek Field Investigation I.1.
- Oklahoma Water Resources Board, 1983, Water Quality Characteristics of Seepage and Runoff at Two Tailings Piles in the Picher Field Ottawa County, Oklahoma, Tar Creek Field Investigation Task I.2.
- Oklahoma Water Resources Board, 1983, Water Quality Assessment of the Flooded Underground Lead and Zinc Mines of the Picher Field in Ottawa County, Oklahoma, Tar Creek Field Investigation Task I.3.
- Oklahoma Water Resources Board, 1983, Estimation of the Quantity of Water in the Flooded Underground Lead-Zinc Mines of the Picher Field, Oklahoma and Kansas, Tar Creek Field Investigation Task I.3 Subtask I.3.D.
- Oklahoma Water Resources Board, 1983, Groundwater Investigation in the Picher Field, Ottawa County, Oklahoma, Tar Creek Field Investigation Task I.4.
- Parkhurst, David L., 1987, Chemical Analyses of Water Samples from the Picher Mining Area, Northeast Oklahoma and Southeast Kansas, U.S. Geological Survey Open-File Report 87-453, Oklahoma City, Oklahoma.
- Parkhurst, David L., Doughten, Michael, and Hearn, Paul P., 1988, Chemical Analyses of Stream Sediment in the Tar Creek Basin of the Picher Mining Area, Northeast Oklahoma, U.S. Geological Survey Open-File Report 88-469, Oklahoma City, Oklahoma.
- Playton, Stephen J., davis, Robert E., and Claflin, Roger G., 1980, Chemical Quality of Water in Abandoned Zinc Mines in Northeastern Oklahoma and Southeastern Kansas, Oklahoma Geological Survey, Circular 82.
- Parkhurts, David L., 1988, Chapter D.-Fate of Heavy Metals Near Abandoned Lead and Zinc Mines Northeastern Oklahoma and Southeastern Kansas, U.S. Geological Survey Program on Toxic Waste-Ground-Water Contamination, U.S. Geological Survey Open-File Report 86-481, Reston, Virginia, D1-D9.
- Reed, Edwin W., Schoff, Stuart L., and Branson, Carl C., 1955, Ground-water Resources of Ottawa County, Oklahoma, Oklahoma Geological Survey Bulletin 72, Norman Oklahoma.

- Siebenthal, C. E., 1915, Origin of the Zinc and Lead Deposits of the Joplin Region, Missouri, Kansas, and Oklahoma, U.S. Geological Survey, Bulletin 606, Washington Government Printing Office.
- Spruill, Timothy B., 1987, Assessment of Water Resources in Lead-Zinc Mined Areas in Cherokee County, Kansas, and Adjacent Areas, U.S. Geological Survey Water-Supply Parer 2268.
- Stumm, W. and Morgan, J. J., 1970, Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters, Wiley-Interscience, New York.
- Trexler, B.D, Jr., Ralston, D.R., Reece, D.R., and Williams, R.E., 1975, Sources and Causes of Acid Mine Drainage, Pamphlet No. 165, Idaho Bureau of Mines and Geology, Moscow, Idaho, pp.81-129.
- Weidman, Sammuel, 1932, The Miami-Picher Zinc-Lead District, Oklahoma, Oklahoma Geological Survey, Bulletin No. 56, Norman Oklahoma.
- Williams, Roy E., 1975, Waste Production and Disposal in Mining, Milling, and Metallurgical Industries, Miller Freeman Publications, Inc.
- Williams Robert S. Jr., and Hammond Stephen E., 1988, Soil-Water Hydrology and Geochemistry of a Coal Spoil at a Reclaimed Surface Mine in Routt County, Colorado, U.S. Geological Survey, Water Resources Investigations Report 86-4350.

APPENDIXES

APPENDIX A

MINE WATER QUALITY ANALYSES April 1976 to June 1977 Data Novermber 1983 to June 1985 Data

SAMPLE PARAMETERS AND UNITS

SAMPLING DEPTH (FEET) TEMPERATURE, WATER (DEG. C) TURBIDITY (NTU) **OXIDATION REDUCTION POTENTIAL (MILLIVOLTS)** SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETERAT 25 DEGREES CENTIGRADE OXYGEN, DISSOLVED (MG/L) PH (STANDARD UNITS) CARBON DIOXIDE, DISSOLVED (MG/L AS CO2) ALKALINITY, WATER, WHOLE, FIELD, FET, (MG/L AS CACO3) ACIDITY, TOTAL (MG/L AS CACO3) BICARBONATE, WATER, WHOLE, FIELD, FET, (MG/L AS HCO3) CARBONATE, WATER, WHOLE, FIELD, FET, (MG/L AS CO3) NITROGEN, AMMONIA, WATER, DISSOLVED, (MG/L AS N) NITROGEN, NITRITE, DISSOLVED (MG/L AS N) NITROGEN, NITRATE, DISSOLVED (MG/L AS N) NITROGEN, NITRITE PLUS NITRATE, WATER, DISSOLVED, (MG/L AS N) CARBON, ORGANIC, TOTAL (MG/L AS C) HARDNESS, TOTAL (MG/L AS CACO3) HARDNESS, NONCARBONATE, WATER, WHOLE, FIELD, FET, (MG/L AS CACO3) CALCIUM, WATER, DISSOLVED, (MG/L AS CA) MAGNESIUM, WATER, DISSOLVED, (MG/L AS MG) SODIUM, WATER, DISSOLVED, (MG/L AS NA) SODIUM ADSORPTION RATIO SODIUM, PERCENT POTASSIUM, WATER, DISSOLVED, (MG/L AS K) CHLORIDE, WATER, DISSOLVED, (MG/L AS CL) SULFATE, WATER, DISSOLVED, (MG/L AS S04) FLUORIDE, WATER, DISSOLVED, (MG/L AS F) SILICA, DISSOLVED (MG/L AS SIO2) ARSENIC, WATER, DISSOLVED, (UG/L) ARSENIC, TOTAL (UG/L AS AS) BARIUM, WATER, DISSOLVED, (UG/L) BARIUM, TOTAL (UG/L AS BA) BERYLLIUM, WATER, DISSOLVED, (UG/L) BORON, WATER, DISSOLVED, (UG/L) BORON, TOTAL (UG/L AS B) CADMIUM, WATER, DISSOLVED, (UG/L) CADMIUM, TOTAL (UG/L AS CD) CHROMIUM, WATER, DISSOLVED, (UG/L) CHROMIUM, TOTAL (UG/L AS CR) COBALT, DISSOLVED (UG/L AS CO) COBALT, TOTAL (UG/L AS CO) COPPER, WATER, DISSOLVED, (UG/L) COPPER, TOTAL RECOVERABLE (UG/L AS CU) IRON, TOTAL (UG/L AS FE) IRON, WATER, DISSOLVED, (UG/L) LEAD, WATER, DISSOLVED, (UG/L) LEAD, TOTAL (UG/L AS PB) MANGANESE, TOTAL (UG/L AS MN) MANGANESE, WATER, DISSOLVED, (UG/L) MOLYBDENUM, WATER, DISSOLVED, (UG/L) MOLYBDENUM, TOTAL (UG/L AS MO) NICKEL, WATER, DISSOLVED, (UG/L) NICKEL, TOTAL (UG/L AS NI) STROTIUM, WATER, DISSLOVED (UG/L) VANADIUM, WATER, DISSOLVED, (UG/L) ZINC, WATER, DISSOLVED, (UG/L) ZINC, TOTAL (UG/L AS ZN) ALUMINUM, TOTAL (UG/L AS AL) ALUMINUM, WATER, DISSOLVED, (UG/L) LITHIUM, DISSOLVED (UG/L AS LI) SELENIUM, WATER, DISSOLVED, (UG/L) SELENIUM, TOTAL (UG/L AS SE)

SAMPLE PARAMETERS AND UNITS, cont'

METHYLENE BLUE ACTIVE SUBSTANCE (MG/L) SOLIDS, RESIDUE AT 110 DEG. C, SUSPENDED TOTAL, (MG/L) SOLIDS, RESIDUE ON EVAPORATION AT 180 DEG C, DISSOLVED (MG/L) SOLIDS, SUM OF CONSTITUENTS, DISSOLVED (MG/L) SOLIDS, DISSOLVED (TONS PER ACRE-FOOT) ACIDITY, WATER, WHOLE, TOTAL, (MG/L AS H) NITROGEN, AMMONIA, DISSOLVED (MG/L AS NH4) NITROGEN, NITRATE, DISSOLVED (MG/L AS NO3) NITROGEN, NITRITE, DISSOLVED (MG/L AS NO2) MERCURY, WATER, DISSOLVED (MG/L AS HO2) MERCURY, TOTAL RECOVERABLE (UG/L AS HG) C13/C12 RATIO BOT.MAT

29N-23E-28 BBB 1 BIRTHDAY MINE SHAFT

******************			=================	================================	=======================================		
SAMPLE DATE	23APR76	23APR76	1900776	1900776	08JUN77	08JUN77	08JUN77
SAMPLING DEPTH	168.0000	182.0000	162.0000	180,0000	155.0000	170.0000	180.0000
TEMP. C)	16.0000	15.0000	15.0000	15.0000	16.0000	16.0000	16.5000
TURBIDITY (NTU)	79.9999	71.9999	24.0000	160.0000	7.9000	110.0000	400.0000
SC	4099.9900	4389,9900	1900.0000	3799.9900	830.0000	3800.0000	4100.0000
PH	5.2000	5,3000	6.0000	5,6000	6.8000	5.0000	5.8000
CO2	81.0000	192.0000	82.0000	181.0000	24.0000	0.0000	99.0000
ALKALINITY	7.0000	20.0000	42.0000	37.0000	77.0000	1.0000	32.0000
ACIDITY	843.9990	893,9990	*****	*****	10.0000	1090.0000	943.0000
HCO3	8.0000	24.0000	51.0000	45.0000	94.0000	0.0000	39.0000
C03	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AMMONIA, N	0.3500	0.3300	0.1900	0.1700	0.1400	0.5100	0.0300
NITRITE, N	0.0100	0.0100	0.0100	0.0100	0.0400	0.0100	0.0100
NITRATE, N	0.0100	0.0300	0.0100	0.0100	0.3600	0.0600	0.0500
NO2+NO3, N	0.0100	0.0300	0.0100	0.0200	0.4000	0.0700	0.0600
TOC, C	0.0000	0,0000	4.2000	5,4000	2.4000	4.6000	5.1000
HARDNESS, TOTAL	2200.0000	2200.0000	890.0000	2100.0000	410.0000	2200.0000	2500.0000
HARDNESS, NONCO3	2200.0000	2200.0000	850.0000	2100.0000	330.0000	2200.0000	2400.0000
Ca	489,9990	489.9990	250.0000	490.0000	120.0000	500.0000	540.0000
Kg	230.0000	240.0000	64.0000	220.0000	27.0000	230.0000	270.0000
Na	51.9999	52.9999	40.0000	47.0000	19.0000	63.0000	44.0000
Na ADSORP RATIO	0.5000	0.5000	0,6000	0.4000	0.4000	0.6000	0.4000
Na f	5.0000	5,0000	9.0000	5.0000	9.0000	6.0000	4.0000
K	2.7000	2.6000	4.9000	4.1000	3.7000	5.0000	3.5000
Cl	6.7000	6.8000	4.7000	7.3000	2.3000	6.9000	7.2000
S04	3000.0000	3000.0000	1000.0000	3100.0000	360.0000	3200.0000	3200.0000
F	8,1000	7.2000	1.8000	2.5000	0.6000	8.6000	0.4000
SiO2	11.0000	11.0000	6.4000	12.0000	6.8000	14.0000	9.4000
As .	1.0000	2.0000	1.0000	1.0000	1.0000	3.0000	6.0000
As, TOTAL	2.0000	2.0000	1.0000	1.0000	1.0000	3.0000	6,0000
Ba	100,0000	100.0000	100.0000	100.0000	100.0000	100.0000	200.0000
Ba, TOTAL	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000
В	200.0000	200.0000	110.0000	160.0000	70.0000	180.0000	200.0000
B, TOTAL	220.0000	240.0000	150.0000	220.0000	110.0000	260.0000	250.0000
Cd	899.9990	899.9990	8.0000	60.0000	55.0000	180.0000	20,0000
Cd, TOTAL	879,9990	899.9990	130.0000	100.0000	60.0000	260.0000	80.0000
Cr	20.0000	20.0000	0.0000	0.0000	20.0000	20.0000	20.0000
Cr, TOTAL	20.0000	20.0000	20.0000	20.0000	0.0000	20,0000	20.0000
Ca	549.9990	579.9990	74.0000	71.0000	9.0000	700.0000	800.0000
Co, TOTAL	579.9990	599,9990	150.0000	600.0000	100.0000	650.0000	800,0000
Cu	36.0000	59.9999	2.0000	2.0000	8.0000	90.0000	4.0000
Cu, TOTAL	49.9999	49.9999	20.0000	20.0000	20.0000	70.0000	20.0000
Fe, TOTAL	110000.0000	110000.0000	15000.0000	150000.0000	710.0000	240000.0000	230000.0000
Fe	110000.0000	9999.9800	13000.0000	110000.0000	90.0000	220000.0000	230000.0000
Pb	78.9999	92.9999	51.0000	13.0000	7.0000	40.0000	17.0000
Pb, TOTAL	300.0000	300.0000	200.0000	200.0000	200.0000	200.0000	300.0000

BIRTHDAY MINE SHAPT, cont'

Mn, TOTAL	5499.9900	5499.9900	1300.0000	9000.0000	180.0000	5000.0000	13000.0000
Xn	5599.9900	5499.9900	930.0000	9000.0000	190.0000	5200.0000	13000.0000
No	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
No, TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Ni	3300.0000	3499.9900	500.0000	2500.0000	50.0000	3500.0000	3000.0000
NI, TOTAL	3699.9900	3899.9900	500.0000	2500.0000	50.0000	3000.0000	2800.0000
¥	39.0000	36.0000	0.8000	49.0000	0.0000	130.0000	50.0000
Zn	489999.0000	489999.0000	65000.0000	360000.0000	6700.0000	340000.0000	400000.0000
Zn, TOTAL	469999.0000	489999.0000	65000.0000	370000.0000	6400.0000	340000.0000	410000.0000
AI, TOTAL	9099.9800	8799.9800	980.0000	4000.0000	70.0000	6200.0000	100.0000
λ1	8599.9800	8899.9800	600.0000	3200.0000	50.0000	2900.0000	100.0000
Li	250.0000	250.0000	50.0000	150.0000	20.0000	200.0000	140.0000
Se	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Se, TOTAL	1.0000	1.0000	2.0000	1.0000	1.0000	1.0000	1.0000
METHYLENE BLUE	0.0000	0.0000	0.0000	0.0000	0.0000	0.1000	0.1000
TSS AT 110 °C	138.0000	134.0000	29.0000	165,0000	4.0000	84.0000	156.0000
TDS AT 180 ^o c	5149.9900	5199.9900	1590.0000	4620.0000	630.0000	4960.0000	5340.0000
SUM OF CONST	4439.9900	4360.0000	1480.0000	4390.0000	595.0000	4620.0000	4760.0000
SOLIDS	7.0000	7.0700	2.1600	6.2800	0.8600	6.7500	7.2600
ACIDITY	17.0000	18.0000			0.2000	22.0000	19.0000
NH4	0.4500	0.4300	0.2400	0.2200	0.1800	0.6600	0.0400
NO3	0.0400	0.1300	0.0400	0.0400	1.6000	0.2700	0.2200
N02	0.0000	0.0000	0.0000	0.0300	0.1300	0.0300	0.0300
Kg	0.7000	1.0000	0.5000	0.5000	0.5000	0.5000	0.5000
Mg, TOTAL	0.9000	0.9000	0.5000	0.5000	0.5000	0.5000	0.5000

29N-23E-28 BBB 1 BIRTHDAY MINE SHAFT

				=======================================	=======================================			
SAMPLE DATE	25AUG76	25AUG76	07DEC76	07DEC76	18PEB77	18FEB77	21APR77	21FEB77
SAMPLING DEPTH	160.0000	180.0000	160.0000	180.0000	160.0000	180.0000	155.0000	170.0000
TEMP. C)	16,0000	16.0000	14.5000	16.0000	15.0000	15.5000	15.0000	16.0000
TURBIDITY (NTO)	0.8000	140.0000	9.8000	130.0000	55,0000	80.0000	2.1000	33.0000
SC	1060.0000	3839.9900	1550.0000	4000.0000	3850.0000	4050.0000	1550.0000	3850.0000
PH	7.2000	5.8000	6.6000	5.7000	5.0000	5,4000	7.2000	5.0000
C02	11.0000	2.5000	45.0000	0.0000	0.0000	0.0000	8,5000	0.0000
ALKALINITY	88.0000	1.0000	92.0000	1.0000	1.0000	1.0000	69.0000	1.0000
ACIDITY	10.0000	646.0000	20,0000	894.0000	993.0000	993.0000	10.0000	447.0000
HCO3	107.0000	1.0000	112.0000	0.0000	0.0000	0.0000	84.0000	0.0000
C03	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HARDNESS, TOTAL	540.0000	1600.0000	830.0000	2400.0000	1900.0000	2100.0000	730.0000	2000.0000
HARDNESS, NONCO3	460.0000	1600.0000	740.0000	2400.0000	1900.0000	2100.0000	660.0000	2000.0000
Ca	160.0000	420.0000	230.0000	540.0000	480.0000	490.0000	200.0000	470.0000
Ha	35.0000	130.0000	62.0000	260.0000	180.0000	210.0000	55,0000	190.0000
Ka	29.0000	40.0000	63.0000	46.0000	54.0000	51.0000	59,0000	61.0000
Na ADSORP RATIO	0.5000	0.4000	1.0000	0.4000	0.5000	0,5000	1.0000	0.6000
Na 🕏	10.0000	5.0000	14.0000	4.0000	6.0000	5,0000	15.0000	6.0000
K	3.7000	3.8000	6.3000	3.0000	4.2000	3.8000	4.6000	4.6000
Cl	3.2000	9.1000	5,5000	6.9000	7.4000	6.8000	3.4000	6.4000
S04	520.0000	2100.0000	870.0000	3500.0000	2900.0000	3200.0000	760.0000	2700.0000
P	0.4000	2.9000	0.5000	1.1000	8.6000	6.5000	1.1000	7.6000
Si02	6.8000	10.0000	7.8000	12.0000	13.0000	13.0000	4.9000	13.0000
В	90.0000	240.0000	140.0000	170.0000	150.0000	160.0000	90.0000	150.0000
B, TOTAL	110.0000	130.0000	190.0000	230.0000	240.0000	220.0000	120.0000	230.0000
Cđ	60.0000	230.0000	2.0000	60.0000	360.0000	370.0000	140.0000	300,0000
Cd, TOTAL	60.0000	270.0000	20.0000	160.0000	350.0000	360.0000	130.0000	280.0000
Fe, TOTAL	240.0000	110000.0000	2000.0000	160000.0000	190000.0000	210000.0000	280.0000	190000.0000
Fe	210.0000	89000.0000	710.0000	83000.0000	180000.0000	200000.0000	140,0000	170000.0000
Pb	12,0000	40.0000	2.0000	67.0000	300.0000	300.0000	50.0000	200.0000
Pb, TOTAL	200.0000	300.0000	200.0000	300.0000	300.0000	300.0000	200.0000	300.0000
Mn, TOTAL	70.0000	12000.0000	1800.0000	11000.0000	5200.0000	7400.0000	300.0000	5000.0000
Mn	70.0000	7400.0000	1500.0000	10000.0000	5000.0000	7000.0000	300.0000	4400.0000
Ni	50.0000	1800.0000	150.0000	2900.0000	3100.0000	3200.0000	97.0000	2900.0000
N1, TOTAL	50.0000	2000.0000	500.0000	8000.0000	2900.0000	3000.0000	200.0000	2900.0000
¥	0.4000		0.0000	45,0000	110.0000	100.0000	0.0000	50.0000
Zn	9400.0000	260000.0000	4400.0000	390000.0000	340000.0000	380000.0000	8300.0000	270000.0000
Zn, TOTAL	9200.0000	340000.0000	54000.0000	390000.0000	340000.0000	390000.0000	8400.0000	310000.0000
AL, TOTAL	60.0000	4000.0000	60.0000	4000.0000	13000.0000	8900.0000	180.0000	11000.0000
Al	40.0000	4000.0000	100.0000	2000.0000	13000.0000	7900.0000	20.0000	11000.0000
61	20.0000	120.0000	40.0000	100.0000	160.0000	100.0000	30.0000	100.0000
TSS AT 110 oC	0.0000	156.0000	3.0000	149.0000	115.0000	216.0000	9.0000	70.0000
TDS AT 180 oC	864.0000		1390.0000	5000.0000	4570.0000	4860.0000	1260.0000	4300.0000
SUM OF CONST	821.0000	3090.0000	1310.0000	4880.0000	4210.0000	4600.0000	1140.0000	3920.0000
SOLIDS	1.1800	4.2000	1,8900	6.8000	6.2200	6.6100	1.7100	5,8500
ACIDITY	0.2000	13.0000	0.4000	18.0000	20.0000	20.0000	0.2000	9.0000

SAMPLE DATE 20APR76 21APR76 21APR76 21APR76 190CT76 190CT76 07JUN77 07JUN77 SAMPLING DEPTH 191.0000 227.0000 229.0000 234.0000 165,0000 230.0000 165.0000 230.0000 TEMP. C) 16.0000 16.0000 16.0000 16.0000 14.5000 14.5000 16,0000 16.0000 TURBIDITY (NTU) 3.0000 5.0000 88.0000 72.0000 -----130.0000 0.7000 200,0000 SC 940.0000 1080.0000 4600.0000 4420.0000 830.0000 3999.9900 810.0000 4100.0000 PH 7.5500 6,9000 5.0000 4.8000 6.7000 5,3000 7,4000 5.6000 C02 2,9000 11.0000 0.0000 0.0000 24.0000 56.0000 5,0000 0.0000 ALKALINITY 53.0000 47.0000 1.0000 1.0000 62.0000 6.0000 64.0000 1.0000 10.0000 ACIDITY 10.0000 894.0000 1140.0000 ---------0.0000 1090.0000 BC03 64.0000 57.0000 0.0000 0.0000 76.0000 7.0000 78.0000 0.0000 C03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 AMMONIA, N 0.0200 0.0100 0.2800 0.2800 0.0100 0.0100 0.2700 0.2700 NITRITE, N 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 NITRATE, N 0.2600 0.2400 0.0000 0.0100 0.2200 0.4200 0.2100 0.0200 NO2+NO3, N 0.2600 0.2400 0.0100 0.0100 0.2200 0.4200 0,2100 0.0300 TOC, C 5.4000 4.7000 4.7000 4.8000 1.7000 0.9000 0.7000 1.0000 HARDNESS, TOTAL 520.0000 550.0000 2200.0000 2300.0000 480.0000 2200.0000 440.0000 2200.0000 HARDNESS, NONCO3 470.0000 510.0000 2200.0000 2300.0000 420.0000 2200.0000 380.0000 2200.0000 Ca 170.0000 180.0000 500.0000 520.0000 160.0000 510.0000 150.0000 510.0000 Ηq 24.0000 25.0000 240.0000 240.0000 20.0000 230.0000 16.0000 220.0000 10.0000 11.0000 80.0000 8.0000 8.9000 81.0000 7.1000 80.0000 Na Na ADSORP RATIO 0.2000 0.2000 0.7000 0.1000 0.1000 0.2000 0.7000 0.7000 Na 8 4.0000 4.0000 7.0000 1.0000 4.0000 7.0000 3,0000 7.0000 ĸ 1.7000 1.8000 2.2000 2.2000 2.0000 4.1000 1,4000 3.8000 Cl 2.1000 1.7000 6.2000 6.8000 1.1000 7.0000 1.1000 5.9000 **S04** 520.0000 370.0000 460.0000 3100.0000 3200.0000 440.0000 3400.0000 3100.0000 F 0.3000 0.4000 1,9000 1,6000 0.7000 2.4000 0.4000 1.8000 **SiO2** 10.0000 9.8000 8.4000 9.8000 11.0000 7.7000 12.0000 8,4000 1.0000 1.0000 2.0000 1.0000 1.0000 10.0000 1.0000 6.0000 As As, TOTAL 1.0000 1.0000 3.0000 2.0000 1.0000 10.0000 1.0000 5.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 200.0000 Ba 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 Ba, TOTAL 200.0000 30.0000 100.0000 150.0000 120.0000 40.0000 170.0000 30.0000 ₿ 170.0000 Β, TOTAL 60.0000 170.000 180.0000 190.0000 70.0000 240.0000 60.0000 280.0000 Cď 90.0000 100.0000 780.0000 930.0000 80,0000 540.0000 80.0000 550.0000 Cd, TOTAL 80.0000 100.0000 780.0000 950.0000 90.0000 570.0000 70.0000 530.0000 0.0000 0.0000 20.0000 30.0000 0.0000 20.0000 20.0000 30.0000 Cr 30.0000 40.0000 20.0000 20,0000 20.0000 20.0000 Cr, TOTAL 20.0000 20.0000 Co 0,0000 3.0000 53.0000 56,0000 4.0000 61.0000 2.0000 800.0000 Co, TOTAL 800.0000 850.0000 100.0000 750.0000 100.0000 750.0000 100.0000 100.0000 100.0000 3,0000 33.0000 2.0000 13.0000 4.0000 7.0000 70.0000 Cu Cu, TOTAL 20.0000 20.0000 60.0000 100.0000 20.0000 30.0000 20.0000 30.0000 300.0000 350000.0000 Fe, TOTAL 650.0000 800.0000 250000.0000 510000.0000 140.0000 300000.0000 Fe 10.0000 670.0000 130000.0000 130000.0000 40.0000 310000.0000 70.0000 53000.0000 200.0000 3.0000 300.0000 0.0000 350.0000 Pb 2.0000 2.0000 400.0000 Pb, TOTAL 200.0000 200.0000 300.0000 500.0000 200.0000 300.0000 0.0000 400.0000

29N-23E-16 DDB 1 CONSOLIDATED #2 - PL

CONSOLIDATED No.2 - PL, cont'

Mn, TOTAL	100.0000	80.0000	5800.0000	6600.0000	40.0000	5500.0000	160.0000	5400.0000
Mn	80.0000	80.0000	5700.0000	5900.0000	30.0000	5400.0000	160.0000	5600.0000
Ko	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000
No, TOTAL	3.0000	2.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Ni	3.0000	32.0000	3400.0000	47.0000	39.0000	3400.0000	14.0000	3400.0000
NI, TOTAL	50.0000	50.0000	3300.0000	3800.0000	50.0000	3500.0000	50.0000	3500.0000
V	0.1000	0.1000	150.0000	150.0000	1.0000	130.0000	0.0000	160.0000
Zn	3200.0000	3999.9900	310000.0000	380000.0000	3900.0000	290000.0000	2100.0000	310000.0000
Zn, TOTAL	3000.0000	4899.9900	280000.0000	360000.0000	3900.0000	290000.0000	2100.0000	310000.0000
Al, TOTAL	90.0000	90.0000	7300.0000	12000.0000	150.0000	10000.0000	60.0000	200.0000
A1	10.0000	20.0000	7700.0000	10000.0000	100.0000	5000.0000	20.0000	200.0000
Li	30.0000	40.0000	210.0000	220.0000	30.0000	200.0000	20.0000	300.0000
Se	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Se, TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
METHYLENE BLUE	0.1000	0.0000	0.1000	0.1000	0.0000	0.0000	0.0000	0.0000
TSS AT 110 oC	4.0000	3.0000	106.0000	36.0000	12.0000	186.0000	0.0000	114.0000
TDS AT 180 oC	795.0000	841.0000	5160.0000	5380.0000	722.0000	5160.0000	622.0000	5100.0000
SUM OF CONST	715.0000	784.0000	4420.0000	4540.0000	686.0000	4860.0000	600.0000	4330.0000
SOLIDS	1.0800	1.1400	7.0200	7.3200	0.9800	7.0200	0.8500	6.9400
ACIDITY	0.2000	0.2000	18.0000	23.0000			0.1000	22.0000
NH4	0.0300	0.0000	0.3600	0.3600	0.0000	0.3500	0.0000	0.3500
NO3	1.2000	1.1000	0.0000	0.0400	0.9700	1.9000	0.9300	0.0900
NO2	0.0000	0.0000	0.0300	0.0000	0.0000	0.0000	0.0000	0.0300
Ng	0.7000	0.5000	0.5000	0.6000	0.5000	0.5000	0,5000	0.5000
Mg, TOTAL	0.8000	0.5000	0.5000	0.5000	0.5000	0.5000	0,5000	0.5000

29N-23E-16 DDB 1 CONSOLIDATED #2 - PL

	=======================							
SAMPLE DATE	25 A UG76	25AUG76	07DEC76	07DEC76	02FEB77	02FEB77	04APR77	04APR77
SAMPLING DEPTH	165,0000	230.0000	165.0000	230,0000	165.0000	230.0000	165.0000	230.0000
TEMP. C)	17.0000	16,0000	14.5000	15.5000	13.5000	15.0000	14.5000	15.5000
TURBIDITY (NTU)	1.0000	140.0000	1.1000	45.0000	1.0000	160.0000	1,0000	70.0000
SC	809,9990	4669,9900	900.0000	4649.9900	1030.0000	4280.0000	1080.0000	4150.0000
PH	7.7000	5.3000	7.4000	5.5000	7,6000	5.3000	7,2000	5.3000
C02	2.6000	8.0000	4.5000	101.0000	2.3000	0.000	5 6000	0.0000
ALKALINITY	66.0000	1,0000	58,0000	16.0000	47 0000	1 0000	45,0000	1 0000
ACIDITY	5.0000	894.0000	5.0000	993.0000	5,0000	1040.0000	5,0000	546.0000
HCO3	81,0000	1.0000	71,0000	20.0000	57 0000	0 0000	55 0000	0 0000
C03	0.0000	0.0000	0.000	0.0000	9.0000	0.0000	0.0000	0.000
EARDNESS, TOTAL	440.0000	1300.0000	520,0000	2400.0000	570 0000	2200 0000	570 0000	2280 0000
HARDNESS, NONCO3	370,0000	1300 0000	460.0000	2400 0000	520 0000	2200.0000	570.0000	2200.0000
f.a	150 0000	340 0000	170 0000	560 8000	180 0000	520 0000	180 0000	510 0000
¥а	16 0000	100 0000	23 0000	240 0000	29 0000	230 0000	20 0000	230 0000
Ka	7 1000	43 0000	9 7000	77 0000	12 0000	81 0000	12 0000	77 0000
Na ADSORP RATIO	0 1000	0 5000	0 2000	0 7000	0 2000	0 7000	0 2000	0 7000
Na &	3 0000	7 0000	4 0000	7 0000	A 0000	7 0000	4 0800	7 0000
R	1 6000	3 4000	1 9000	3 9000	2 1000	3 6000	2 1000	3 4000
cl	0 5000	9 1000	1 3000	7 0000	3 1000	6 8000	1 2000	6 3000
504	360 0000	1600 0000	1.0000	3500 0000	510 0000	3300 0000	500 0000	3000 0000
P	0 4000	1 7000	0 3000	1 9000	0 5000	3 5000	0.000.000	1 5000
sio2	11.0000	11,0000	12,0000	9,2000	13,0000	8.0000	12 0000	8,8000
R	40 0000	100 0000	60 0000	190 0000	40 0000	170 0000	30 0000	140 0000
B. TOTAL	120.0000	90.0000	60.0000	240.0000	70.0000	270.0000	50,0000	240.0000
Cd	110.0000	360.0000	70,0000	540.0000	65.0000	600 0000	75,0000	610.0000
Cd. TOTAL	110.0000	620.0000	90.000	540.0000	60.0000	580.0000	70,0000	580.0000
Fe. TOTAL	120.0000	290000.0000	70.0000	300000.0000	120.0000	310000.0000	480.0000	280000.0000
Pe	80.0000	210000.0000	40.0000	290000.0000	10.0000	300000.0000	40.0000	270000.0000
Ph	10.0000	200.0000	3,0000	350,0000	2.0000	450.0000	50.0000	400.0000
Pb. TOTAL	200.0000	400.0000	200.0000	300.0000	200.0000	400.0000	200.0000	400.0000
Mn. TOTAL	90.0000	6000.0000	50.0000	6000.0000	60.0000	5600.0000	100.0000	5600.0000
Mn	100.0000	4200.0000	40.0000	50.0000	60.0000	5500,0000	100.0000	5100.0000
Ni	10.0000	1500.0000	37.0000	3300.0000	36.0000	3600.0000	55.0000	3200.0000
Ni. TOTAL	50.0000	3500,0000	900.0000	6000,0000	50.0000	3400.0000	50.0000	3200.0000
V	0.5000		0.000	60.0000	0.0000	200.0000	0.0000	110.0000
Zn	2200.0000	150000.0000	3500.0000	280000.0000	3300.0000	300000.0000	4200.0000	291999.0000
Zn. TOTAL	2200.0000	300000.0000	30000.0000	280000.0000	3300.0000	300000.0000		*****
AL. TOTAL	60.0000	15000.0000	40.0000	10000.0000	40.0000	4500.0000	40.0000	4500.0000
A]	30.0000	5000.0000	100.0000	5000.0000	100.0000	1400.0000	10.0000	4500.0000
Li .	20.0000	120.0000	30,0000	190.0000	40.0000	200.0000	40.0000	190.0000
TSS AT 110 of		93.0000	0.0000	74.0000	0.0000	93.0000	2.0000	73.0000
TDS AT 180 nC	648,0000		768.0000	5090.0000	838.0000	5180.0000	845.0000	4970.0000
SUM OF CONST	589,0000	2500.0000	747.0000	5010.0000	781.0000	4790.0000	769.0000	4420.0000
SOLIDS	0.8800	3.4000	1.0400	6.9200	1.1400	7.0400	1.1500	6.7600
ACIDITY	0,1000	18.0000	0.1000	20.0000	0.1000	21,0000	0.1000	11.0000
			~					

29N-23E-29 CDD 1 LAVRION

			=========================
SAMPLE DATE	28APR76	28APR76	28APR76
SAMPLING DEPTH	160.0000	182.0000	191.0000
TEMP. C)	14.5000	15.0000	15.0000
TURBIDITY (NTU)	37.0000	10.0000	12.0000
SC	3419.9900	3680.0000	3899.9900
PH	4.8000	3,9200	4.7000
C02	0.0000	0.0000	0.0000
ALKALINITY	1.0000	1.0000	1.0000
ACIDITY	843.9990	1140.0000	993.0000
HCO3	0.0000	0.0000	0.000
C03	0.0000	0.0000	0.0000
AMHONIA, N	0.3400	0.4900	0.4500
NITRITE, N	0.0100	0.0100	0.0100
NITRATE, N	0.0000	0.0000	0.0400
NO2+NO3, N	0.1000	0.1000	0.0400
TOC, C	1.8000	1.4000	1.6000
HARDNESS, TOTAL	1700.0000	1800.0000	1800.0000
HARDNESS, NONCO3	1700.0000	1800.0000	1800.0000
Ca Va	469.9990	510.0000	520.0000
ng Na	120.0000	130.0000	120.0000
84 V- 10000 01010	54,3333	22.0000	33.0000
NA ADDOKE KAILU	0.0000	6 0000	0.0000
na v V	4 0000	4 5000	0.000
r.	1 2000	8 0000	7 8000
504	2500 0000	2900 0000	2700 0000
P	9,8000	15.0000	14.0000
Si02	13.0000	17.0000	16.0000
As	1.0000	1.0000	1.0000
As. TOTAL	1.0000	1.0000	1.0000
Ba	100.0000	100.0000	100.0000
Ba, TOTAL	100.0000	100.0000	100.0000
В	120.0000	150.0000	140.0000
B, TOTAL	130.0000	400.0000	280.0000
Cá	20.0000	13.0000	13.0000
Cd, TOTAL	979.9980	860.0000	830.0000
Cr	30.0000	60.0000	60.0000
Cr, TOTAL	20.0000	60.0000	70.0000
Co	36.0000	45.0000	44.0000
Co, TOTAL	399.9990	600.0000	650.0000
Cu	140.0000	160.0000	120.0000
Cu, TOTAL	130.0000	130.0000	130.0000
Fe, TOTAL	66999.8000	140000.0000	160000.0000
Fe	75999.8000	130600.0000	130000.0000
Pb	20.0000	16.0000	10.0000
Pb, TOTAL	300.0000	300.0000	200.0000

LAVRION, cont'

Mn, TOTAL	4799.9900	7800.0000	8400.0000
Kn	4399.9900	6500.0000	6300.0000
Ho	1.0000	1.0000	1.0000
Ha, TOTAL	1,0000	1.0000	1.0000
Ni	2300.0000	3400.0000	3100.0000
NI, TOTAL	2000.0000	3800.0000	4000.0000
¥	22.0000	60.0000	39.0000
Zn	389999.0000	420000.0000	430000.0000
Zn, TOTAL	339999.0000	420000.0000	439999.0000
Al, TOTAL	11000.0000	26000.0000	280000.0000
Al	14000.0000	29000.0000	26000.0000
Li	140.0000	200.0000	200.0000
Se	1.0000	1.0000	1.0000
Se, TOTAL	1.0000	1.0000	1.0000
METHYLENE BLUE	0.0000	0.0000	0.0000
TSS AT 110 oC	16.0000	4.0000	0.0000
TDS AT 180 oC	4079.9900	4650.0000	4360.0000
SUM OF CONST	3670.0000	4250.0000	4050.0000
SOLIDS	5.5500	6.3200	5.9300
ACIDITY	17.0000	23.0000	20.0000
NH4	0.4400	0.6300	0.5800
NO3	0.0000	0.0000	0.1800
NO2	0.0000	0.0000	0,0000
Hg	0.5000	0,5000	0.5000
Mg, TOTAL	0.5000	0.5000	0.5000

SAMPLE DATE 22APR76 22APR76 22APR76 200CT76 200CT76 07JUN77 07JUN77 SAMPLING DEPTH 210.0000 222.0000 178.0000 190.0000 225.0000 155.0000 225.0000 TEMP, C) 14.0000 14.0000 14.5000 13.0000 14.0000 14.0000 15.0000 TURBIDITY (NTU) 2.1000 180.0000 100.0000 1.4000 3.3000 0.3000 220.0000 S C 1850.0000 4210.0000 4950.0000 1030.0000 4800.0000 1100.0000 4200.0000 PH 6.5000 6.1500 5.6000 6,7000 6.3000 6.5000 5.9000 C02 190.0000 67.0000 100.0000 69.0000 8,8000 152.0000 12.0000 ALKALINITY 308.0000 48.0000 21,0000 177.0000 9.0000 250.0000 5.0000 ACIDITY 129.0000 546.0000 1090.0000 ----------79.0000 1190.0000 HCO3 375.0000 59.0000 25.0000 216.0000 11.0000 300.0000 6.0000 C03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0000 AMMONIA, N 0.0300 0.3300 0.4900 0.0100 0.5800 0.5300 0.0100 NITRITE, N 0.0100 0,0100 0.0100 0.0100 0.0100 0.0100 0.0100 NITRATE, N 0.1500 0.0100 0.0000 0.1600 0.0300 0.1900 0.0300 NO2+NO3, N 0.1600 0.1500 0.0200 0.0100 0.0300 0.2000 0.0400 TOC, C 4.0000 2.2000 2.9000 3,4000 3.2000 3.2000 1.6000 910.0000 2100.0000 2200.0000 520.0000 EARDNESS, TOTAL 2400,0000 570.0000 2400.0000 HARDNESS, NONCO3 600.0000 2100.0000 2200.0000 340.0000 2400.0000 320.0000 2400.0000 Ca 300.0000 500.0000 480.0000 180.0000 470.0000 190.0000 500.0000 Hg 39,0000 210.0000 250.0000 16.0000 290.0000 23.0000 280.0000 Na 57.0000 68.0000 87.0000 19.0000 92.0000 26.0000 86.0000 Na ADSORP RATIO 0.8000 0.6000 0.8000 0.4000 0.8000 0.5000 0.8000 Na 🖇 12.0000 7,0000 8.0000 7.0000 8.0000 9,0000 7.0000 K 8.5000 4.5000 6.0000 4.5000 8.2000 4.7000 6.2000 C1 10.0000 13.0000 4.0000 16.0000 23.0000 4.5000 15.0000 **S**04 810.0000 2800.0000 3000.0000 380.0000 3500.0000 420.0000 3400.0000 F 0.3000 5.0000 9.2000 0.7000 7.5000 0.2000 7.9000 Si02 19.0000 8.1000 7.6000 11.0000 7.8000 19.0000 10.0000 As 1.0000 2.0000 7.0000 1.0000 11.0000 1.0000 11.0000 As, TOTAL 14.0000 2.0000 8.0000 1.0000 13.0000 1.0000 8.0000 Ba 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 600.0000 100.0000 Ba. TOTAL 100.0000 100.0000 100.0000 100.0000 100.0000 600.0000 180.0000 220,0000 В 180.0000 100.0000 220.0000 150.0000 210.0000 B, TOTAL 180.0000 240.0000 250.0000 120.0000 290.0000 160.0000 310.0000 Cd 420.0000 490.0000 9.0000 12.0000 330.0000 8.0000 350.0000 Cd, TOTAL 180.0000 400.0000 460.0000 80.0000 350.0000 110.0000 300.0000 Cr 0.0000 20.0000 20.0000 0.0000 20.0000 0.0000 20.0000 Cr, TOTAL 0.0000 20.0000 20.0000 0.0000 20.0000 20.0000 20.0000 2.0000 52.9999 42.9999 2.0000 43.0000 Co 0.0000 800.0000 Co, TOTAL 160.0000 599.9990 849.9990 100.0000 850.0000 100.0000 800.0000 Cu 20.0000 4.0000 13.0000 11.0000 7.0000 8.0000 8.0000 Cu, TOTAL 30.0000 20.0000 30,0000 20.0000 20,0000 20.0000 20.0000 Fe, TOTAL 350.0000 160000.0000 290000.0000 80.0000 370000.0000 180.0000 320000.0000 Fe 290.0000 150000.0000 270000.0000 20.0000 240000.0000 20.0000 310000.0000 Pb 250.0000 69.0000 400.0000 150,0000 350,0000 99.0000

Pb, TOTAL

450.0000

300.0000

500.0000

200.0000

300.0000

200.0000

29N-23E-30 AAA 1 LUCKY BILL AIR SHAPT

250.0000

300.0000

LUCKY BILL AIR SHAPT, cont'

Hn, TOTAL	80.0000	4800.0000	6100.0000	30.0000	6000.0000	10.0000	5800.0000
Иn	60.0000	5000.0000	5700.0000	30.0000	6000.0000	20.0000	6200.0000
Но	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Ko, TOTAL	1.0000	1.0000	2.0000	1.0000	1.0000	1.0000	1.0000
Ni	47.0000	3000.0000	4200.0000	24.0000	5000.0000	20.0000	4500.0000
Nİ, TOTAL	200.0000	4000.0000	5400.0000	50.0000	5000.0000	50.0000	4500.0000
V	0.0000	21.0000	130.0000	0.7000	120.0000	0.0000	150.0000
Zn	68000.0000	280000.0000	490000.0000	25000.0000	440000.0000	39000.0000	440000.0000
Zn, TOTAL	68000.0000	350000.0000	480000.0000	46000.0000	440000.0000	39000.0000	440000.0000
Al, TOTAL	60.0000	2000.0000	5500.0000	40.0000	10000.0000	30.0000	5500.0000
A1	10.0000	2000.0000	5700.0000	100.0000	5000.0000	20.0000	5500.0000
Li	69.9999	160.0000	210.0000	30,0000	220.0000	40,0000	210.0000
Se	3.0000	1.0000	1.0000	2.0000	1.0000	3.0000	1.0000
Se, TOTAL	3,0000	1.0000	1.0000	2.0000	1.0000	3.0000	1.0000
METHYLENE BLUE	0.1000	0.2000	0.8000	0.1000	0.0000	0.1000	0.1000
TSS AT 110 oC	3.0000	209.0000	174.0000	12.0000	15.0000	0.0000	156.0000
TDS AT 180 oC	1580.0000	4380.0000	5470.0000	830.0000	5920.0000	910.0000	5650.0000
SUM OF CONST	1500.0000	4090.0000	4670.0000	748.0000	5100.0000	877.0000	5100.0000
SOLIDS	2.1500	5.9600	7.4400	1.1300	8.0500	1.2400	7.6800
ACIDITY	2.6000	11.0000	22.0000			1.6000	24.0000
NH4	0.0400	0,4300	0.6300	0.0100	0.7500	0.0000	0.6800
NO3	0.6600	0.0400	0.0000	0.7100	0.1300	0.8400	0.1300
NO2	0.0000	0.0300	0.0300	0.0000	0.0000	0.0300	0.0300
Kg	0.5000	0.5000	0.5000	0.5000	0.5000	0,5000	0.5000
Ng, TOTAL	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0,5000

		*======================================					**********	
SAMPLE DATE	26AUG76	26AUG76	07DEC76	07DEC76	1 192 877	17FEB77	21APR77	21APR77
SAMPLING DEPTH	205.0000	228.0000	190.0000	225.0000	190,0000	225.0000	190.0000	225.0000
TEMP. C)	14.0000	15.0000	13,0000	14.0000	13.0000	14.0000	14.0000	15.0000
TURBIDITY (NTU)	1,0000	160.0000	1.6000	140.0000	1.7000	180.0000	0,9000	160.0000
S C	879.9990	4769.9900	1100.0000	4559,9900	1380.0000	4800.0000	1500.0000	4800.0000
РН	6,9000	5.8000	6.5000	5,9000	6,5000	5,8000	6.5000	5.8000
C02	50.0000	2.5000	146.0000	70.0000	157.0000	0.0000	162.0000	0.0000
ALKALINITY	202.0000	1.0000	237.0000	29.0000	254.0000	1,0000	260.0000	1.0000
ACIDITY	25.0000	1240.0000	74.0000	1340.0000	84.0000	1140.0000	99.0000	546.0000
HCO3	246.0000	1.0000	289.0000	35.0000	310.0000	0.0000	320.0000	0.0000
C03	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HARDNESS, TOTAL	450.0000	2100.0000	580.0000	2300.0000	640.0000	2300.0000	780.0000	2400.0000
HARDNESS, NONCO3	250.0000	2100.0000	340.0000	2300.0000	380.0000	2300.0000	520.0000	2400.0000
Ca	160.0000	490.0000	200.0000	490.0000	220.0000	480.0000	270.0000	520.0000
Ka	13.0000	220.0000	19.0000	260.0000	21.0000	260.0000	26.0000	270.0000
Na	16.0000	90.0000	23.0000	81.0000	29.0000	82.0000	36.0000	85.0000
Na ADSORP RATIO	0.3000	0.8000	0.4000	0.7000	0.5000	0.8000	0.6000	0.8000
Na %	7.0000	8,0000	8.0000	7.0000	9.0000	7.0000	9.0000	7.0000
K	4.0000	9,2000	4.7000	7.0000	5.4000	6.5000	6.2000	6.8000
C1	3.8000	21.0000	4,6000	20.0000	14.0000	18,0000	6,6000	15.0000
S04	320.0000	3400.0000	430.0000	3100,0000	510.0000	3300.0000	610.0000	3500.0000
F	0.3000	9.4000	0.1000	5,5000	1,2000	7.4000	0.4000	7.9000
SiO2	19.0000	9,0000	19.0000	8,8000	22.0000	10.0000	19.0000	11.0000
B	100.0000	290.0000	110.0000	240.0000	130.0000	200.0000	130.0000	200.0000
B. TOTAL	110.0000	240.0000	140.0000	310.0000	140.0000	310.0000	250.0000	320.0000
Cd	20.0000	370.0000	13.0000	360.0000	20.0000	340.0000	140.0000	340.0000
Cd. TOTAL	70.0000	380.0000	100,0000	380,0000	110,0000	330.0000	600.0000	310.0000
Fe. TOTAL	380.0000	350000.0000	150.0000	340000.0000	170.0000	320000.0000	240.0000	320000.0000
Fe	370.0000	330000.0000	150,0000	270000.0000	70.0000	30000.0000	60.0000	290000.0000
Pb	90.0000	400.0000	97.0000	200.0000	98.0000	250,0000	150.0000	250.0000
Pb. TOTAL	200.0000	400.0000	200.0000	300,0000	200.0000	300.0000	400.0000	300.0000
Mn, TOTAL	20.0000	6600.0000	50.0000	5300.0000	60.0000	6000.0000	2700.0000	5900.0000
Mn	20.0000	6500.0000	50.0000	5400.0000	50.0000	5500.0000	50.0000	5500.0000
Ni	17.0000	5000.0000	28.0000	4100.0000	31.0000	3900.0000	49.0000	4000.0000
NÌ, TOTAL	50.0000	4600.0000	200.0000	6000,0000	50.0000	3900.0000	1800.0000	3900.0000
V	0.5000		0.0000	120.0000	0.0000	0.0000	0.0000	110.0000
Zn	20000.0000	450000.0000	27000.0000	420000.0000	35000.0000	410000.0000	49000.0000	411999.0000
Zn, TOTAL	20000.0000	470000.0000	27000.0000	430000.0000	36000.0000	420000.0000	49000.0000	
AL, TOTAL	40.0000	10000.0000	50.0000	8000.0000	40.0000	4500.0000	20000.0000	5000.0000
Al	20.0000	10000.0000	100.0000	5000.0000	100.0000	4500.0000	100.0000	5000.0000
Li	20.0000	220.0000	30.0000	110.0000	40.0000	200.0000	50.0000	210.0000
TSS AT 110 oC	0.0000	175.0000	0,0000	170.0000	0.0000	183.0000	5.0000	172.0000
TDS AT 180 oC	687.0000		904.0000	5370.0000	1030.0000	5230.0000	1200.0000	5520.0000
SUM OF CONST	679.0000	5080.0000	872.0000	4720.0000	1010.0000	4910.0000	1180.0000	5140.0000
SOLIDS	0.9300	6.9100	1.2300	7.3000	1.4000	7.1100	1.6300	7,5100
ACIDITY	0.5000	25.0000	1,5000	27.0000	1.7000	23.0000	2.0000	11.0000

29N-23E-30 AAA 1 LUCKY BILL AIR SHAFT

29N-23E-28 CAB 1 NEW CHICAGO

222222222222222222				=================	====================			
SAMPLE DATE	29APR76	29APR76	29APR76	200CT76	200CT76	08JUN77	08JUN77	08JUK77
SAMPLING DEPTH	174.0000	192.0000	197.0000	165.0000	195.0000	160.0000	180.0000	195.0000
TEMP. C)	16.0000	17.0000	17.5000	16,5000	16.0000	16.0000	15.0000	16.0000
TURBIDITY (NTU)	4.6000	10.0000	38.0000	160.0000	75.0000	0.8000	10.0000	39.0000
SC	2500.0000	2520.0000	2850.0000	3200.0000	3200.0000	2550.0000	3300.0000	3800.0000
PH	7.6000	4.8000	4.9000	7.6000	4.8000	7.1000	4,6000	3,8000
CO2	4.6000	228.0000	121.0000	6.8000	127.0000	23.0000	0.0000	0.0000
ALKALINITY	94.0000	7.0000	5.0000	138.0000	4.0000	150.0000	1.0000	1.0000
ACIDITY	40.0000	228.0000	293.0000		******	10.0000	596.0000	1140.0000
HC03	114.0000	9.0000	6.0000	168.0000	5.0000	180.0000	0.0000	0.0000
C03	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AMMONIA, N	0.0100	0.0200	0.0900	0.0100	0.1500	0.0100	0.2700	0.4800
NITRITE, N	0.0100	0.0100	0,0100	0.0100	0.0100	0.0100	0.0100	0.0100
KITRATE, N	0.1200	0.0300	0.0100	0.2100	0.0700	0.1800	0.0100	0.0100
NO2+NO3, N	0.1200	0.0300	0.0100	0.2100	0.0700	0.1800	0.0200	0.0200
TOC, C	3.4000	3.6000	3.5000	3.3000	0.8000	3.1000	0.8000	3.2000
HARDNESS, TOTAL	1600.0000	1600.0000	1600.0000	2100.0000	1900.0000	1700.0000	1900.0000	2100.0000
HARDNESS, NONCO3	1500.0000	1600.0000	1600.0000	2000.0000	1800.0000	1600.0000	1900.0000	2100.0000
Ca	430.0000	489.9990	499,9990	490.0000	510.0000	470.0000	530.0000	500.0000
Kg	130.0000	81.9999	85.9999	210.0000	140.0000	130.0000	140.0000	200.0000
Na	29.0000	28.0000	28.0000	140.0000	36.0000	32.0000	38.0000	57.0000
Na ADSORP RATIO	0.3000	0.3000	0.3000	1.3000	0.4000	0.3000	0.4000	0.5000
Na &	4.0000	4.0000	4.0000	13.0000	4.0000	4,0000	4.0000	6.0000
K	2.9000	1.9000	1.6000	4.3000	3.1000	3.2000	3.5000	4.0000
CI	4.5000	4.6000	4.8000	7.4000	5.8000	4.8000	5.4000	6.2000
504	1800.0000	2000.0000	2100.0000	2300.0000	2300.0000	1600.0000	2400.0000	3000.0000
E	1.0000	2.2000	2.6000	1.9000	5.4000	0.9000	8.3000	1.0000
\$102	9.3000	11.0000	12.0000	12.0000	14.0000	13.0000	19.0000	19.0000
As	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
AS, TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	2.0000
53	100.0000	100.0000		100.0000	100.0000	100.0000	200.0000	100.0000
Ba, TUTAL	100,0000		100.0000	100.0000	100.0000	100.0000	100.0000	100.0000
	130.0000	100.0000	180.0000	10.0000	100.0000	10.0000	130.0000	200.0000
B, TUTAL	330.0000	190.0000	190.0000	100.0000	150.0000	100.0000	210.0000	250.0000
	11.0000	10.0000	130.0000	10.0000	410.0000	12.0000	510.0000	850.0000
CQ, TUTAL	30.0000	330.0000	300.0000	20.0000	430,0000	20.0000	500.0000	820.0000
01 02 00031	20.0000	0.0000	20,0000	20.0000	50,0000	20.0000	60.0000	160.0000
Ci, IVINL	0.0000	20.0000	20.0000	20.0000	50.0000	20.0000	0000,000	130.0000
	100.0000	0.0000	0.0000		54.0000	2.0000	400.0000	600.0000
C0, 101AL	100.0000	200.0000	230.0000	2 0000	330,0000	100,0000	330.0000	
	2.0000	17.0000	30.0000	3.0000	100.0000	2.0000	100 0000	200.0000
CU, TUTAL	20.0000	49.9999	43.9339 10000 0000	20.0000		20.0000	110000 0000	100000 0000
re, TUTAL Ro	330.0000	2100,0000	10000.0000	470.0000	61000.0000	20.0000	10000.0000	210000.0000
re Dh	40.0000 11 AAAA	77.333Ö 66 0000	120 0000	2 0000	3000.0000	30.0000	120000.0000	10000.0000
ርህ DL ጥረጥነ፣	300 0000 TI'0000	20122222 200 0000	200 0000	2.0000	200.0000	1.0000 200 0000	100 0000	400.0000 Ann nnnn
ru. IVIAL	200.0000	200.0000	200.0000	200.0000	100.0000	200,0000	100.0000	400.0000

NEW CHICAGO, cont'

Mn, TOTAL	310.0000	1300.0000	1300.0000	200.0000	2000.0000	220.0000	2800.0000	4200.0000
Hn	310.0000	1100.0000	1400.0000	200.0000	1500.0000	220.0000	3100.0000	4600.0000
Mo	1,0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
No, TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Ní	150.0000	699.9990	999.9980	200.0000	1100.0000	200.0000	1700.0000	2900.0000
NI, TOTAL	200.0000	799.9990	899.9990	200.0000	1100.0000	50.0000	1600.0000	2600.0000
V	0.5000	0.7000	2.7000	0.1000	24.0000	0.0000	0.0000	17.0000
Zn	16000.0000	99999.8000	120000.0000	6500.0000	130000.0000	7300.0000	190000.0000	340000.0000
Zn, TOTAL	18000.0000	110000.0000	110000.0000	6300.0000	140000.0000	7000.0000	190000.0000	350000.0000
Al, TOTAL	200.0000	3099.9900	3699.9900	130,0000	14000.0000	20.0000	23000.0000	42000.0000
Al	30.0000	110.0000	5399.9900	20.0000	13000.0000	10.0000	24000.0000	42000.0000
Li	50.0000	89.9999	110.0000	70.0000	130.0000	60.0000	190.0000	260.0000
Se	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	2.0000	1.0000
Se, TOTAL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	2.0000	1.0000
METHYLENE BLUE	0.4000	0.0000	0.0000	0.0000	0.0000	0.1000	0.0000	0.1000
TSS AT 110 oC	4.0000	5.0000	16.0000	173.0000	90.0000	0.0000	3.0000	2.0000
TDS AT 180 oC	2450.0000	2750.0000	2930.0000	3210.0000	3480.0000	2690.0000	3850.0000	4800.0000
SUM OF CONST	2480.0000	2730.0000	2890.0000	3260.0000	3220.0000	2350.0000	3500.0000	4410.0000
SOLIDS	3.3300	3.7400	3.9800	4.3700	4.7300	3.6600	5.2400	6.5300
ACIDITY	0.8000	4.6000	5.9000			0.2000	12.0000	23.0000
NH4	0.0100	0.0300	0.1200	0.0000	0.1900	0.0100	0.3500	0.6200
NO3	0.5300	0.1300	0.0400	0.9300	0.3100	0.8000	0.0400	0.0400
NO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0300	0.0300
Ng	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
Mg, TOTAL	0.8000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000

SAMPLE DATE 26AUG76 26A0G76 06DEC76 06DEC76 02FEB77 02FEB77 21APR77 21APR77 SAMPLING DEPTH 187.0000 197.0000 165.0000 195.0000 165.0000 195.0000 165.0000 195.0000 TEMP. C) 18.0000 17.5000 14.5000 16.0000 14.5000 15.0000 15.0000 16.0000 TURBIDITY (NTU) 3.8000 11.0000 90.0000 8.4000 8.0000 45.0000 1.3000 0.5000 SC 2850.0000 3839.9900 2650.0000 2950.0000 3150,0000 3200.0000 3000.0000 3350.0000 PH 7.0000 3.8000 7.0000 4.7000 6.2000 4.2000 7.1000 4.3000 C02 27.0000 15,0000 0.0000 0.0000 24.0000 0.0000 14.0000 0.0000 ALKALINITY 136.0000 77.0000 1.0000 1.0000 20.0000 1.0000 90.0000 1.0000 ACIDITY 20.0000 745.0000 40.0000 407.0000 84,0000 298.0000 35.0000 248.0000 HCO3 94.0000 166.0000 0.0000 0.0000 24.0000 0.0000 110.0000 0.0000 0.0000 0.0000 0.0000 0.0000 C03 0.0000 0.0000 0.0000 0.0000 HARDNESS, TOTAL 2000.0000 1800.0000 2100.0000 1900.0000 2000.0000 1800.0000 2000.0000 2100.0000 HARDNESS, NONCO3 1900.0000 1800.0000 2000.0000 1900.0000 1900.0000 1800.0000 1900.0000 2100.0000 510,0000 490.0000 Ca 520.0000 510,0000 500.0000 500.0000 490.0000 600.0000 Hσ 170.0000 130.0000 140.0000 180.0000 140.0000 190.0000 200.0000 140.0000 34.0000 36.0000 44.0000 36.0000 44.0000 39,0000 45.0000 39.0000 Na Na ADSORP RATIO 0.3000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 Na 🖁 4.0000 4.0000 4.0000 4.0000 5.0000 4.0000 5.0000 4.0000 3.2000 K 4.1000 2.8000 3,7000 3,1000 3.4000 4.0000 3,2000 **C**1 8.8000 8.1000 7.0000 5,6000 7.3000 14.0000 7.3000 72.0000 **S04** 1900.0000 2300.0000 2000.0000 2600.0000 2000.0000 2200.0000 1900.0000 2500.0000 2.9000 F 1.1000 7.2000 1,3000 1,9000 3,9000 1,4000 8.0000 14,0000 13,0000 Si02 14.0000 16.0000 12.0000 15.0000 11.0000 15.0000 80,0000 100.0000 80.0000 130.0000 70.0000 140.0000 B 70.0000 140.0000 8, TOTAL 90.0000 210.0000 120.0000 150.0000 110.0000 140.0000 110.0000 140.0000 390.0000 340.0000 65.0000 560.0000 Cd 20.0000 630.0000 11.0000 8.0000 Cd, TOTAL 400.0000 150.0000 320.0000 60.0000 570.0000 50,0000 920.0000 100.0000 350.0000 120000.0000 Fe. TOTAL 510.0000 83000.0000 1000.0000 60000.0000 950.0000 42000.0000 59000.0000 30.0000 41000.0000 60.0000 100000.0000 Pe 80.0000 67000.0000 30.0000 Pb 14.0000 500.0000 2.0000 250.0000 10.0000 200.0000 200.0000 300.0000 200.0000 300.0000 200.0000 200.0000 200.0000 300.0000 Pb, TOTAL 200.0000 400,0000 1700.0000 840.0000 1800.0000 400.0000 2500,0000 Mn. TOTAL 400.0000 3500.0000 440.0000 420.0000 1900.0000 820.0000 1800.0000 420.0000 2500.0000 Kn 380.0000 2800.0000 500.0000 1100,0000 250.0000 1600.0000 Ni 91.0000 1600.0000 500.0000 1200.0000 1800.0000 Ni, TOTAL 900.0000 1200.0000 500.0000 1000.0000 250.0000 1700.0000 200.0000 0.7000 32,0000 0.0000 18,0000 0.0000 22.0000 0.0000 7.0000 V 22000.0000 170000.0000 53000.0000 120000.0000 26000.0000 130000.0000 2n 17000.0000 200000.0000 17000.0000 260000.0000 50000.0000 130000.0000 55000.0000 120000.0000 22000.0000 170000.0000 Zn, TOTAL Al, TOTAL 130.0000 2900.0000 340.0000 12000.0000 1400.0000 9000.0000 140.0000 26000.0000 Al 80.0000 100.0000 10.0000 14000.0000 820.0000 100.0000 100.0000 26000.0000 80.0000 130.0000 110.0000 130.0000 90.0000 180.0000 Ŀi 60.0000 180.0000 3.0000 6.0000 TSS AT 110 oC 0.0000 36.0000 1.0000 57.0000 0.0000 25.0000 3410.0000 3090.0000 3330.0000 3060.0000 3630.0000 3670.0000 3170.0000 TDS AT 180 oC 2990.0000 2730.0000 3680.0000 SUM OF CONST 2750.0000 3300.0000 2840.0000 3530.0000 2810.0000 3080.0000 4.9400 4.2000 4.5300 4.1600 4.3100 4.6400 SOLIDS 4.0700 4.9900 5.0000

ACIDITY

0.4000

15.0000

0.8000

8.2000

1.7000

6.0000

0.7000

29N-23E-28 CAB 1 NEW CHICAGO

29N-23E-28 CCB 1 SKELTON MINE SHAFT

SAMPLE DATE	26APR76	1800776	06JUN77
SAMPLING DEPTH	165.0000	160.0000	165.0000
TEMP. C)	16.0000	16.0000	17.0000
TURBIDITY (NTU)	26.0000	23.0000	4.8000
SC	2250.0000	2360.0000	3200.0000
PH	5.7000	5.1000	3.4300
C02	188.0000	114.0000	0.0000
ALKALINITY	48.0000	7.0000	1.0000
ACIDITY	124.0000	******	695.0000
HCO3	59.0000	9.0000	0.0000
C03	0.0000	0.0000	0.0000
AMMONIA, N	0.0800	0.1900	0.2600
NITRITE, N	0.0100	0.0100	0.0100
NITRATE, N	0.1100	0.0100	0.0200
NO2+NO3, N	0.1200	0.0100	0.0200
TOC, C	0.9000	0.6000	0.7000
HARDNESS, TOTAL	1300.0000	1300.0000	1600.0000
HARDNESS, NOKCO3	1200.0000	1300.0000	1600.0000
Ca	450.0000	440.0000	500.0000
Нg	38.0000	45.0000	88.0000
Na	22.0000	25.0000	33.0000
Na ADSORP RATIO	0.3000	0.3000	0.4000
Na 8	4.0000	4.0000	4.0000
K	1.8000	1.6000	1.3000
CI	4.7000	4.6000	5.0000
S04	1300.0000	1600.0000	2300.0000
F	1.8000	2.9000	2.3000
Si02	12.0000	14.0000	18.0000
As	1.0000	1.0000	1,0000
As, TOTAL	1.0000	2.0000	2.0000
Ba	100.0000	100.0000	200.0000
Ba, TOTAL	100.0000	100.0000	100.0000
В	60.0000	70.0000	110.0000
B, TOTAL	1700.0000	100.0000	170.0000
Cd	9.0000	470.0000	1200.0000
Cd, TOTAL	160.0000	490.0000	1100.0000
Cr	0.0000	20.0000	140.0000
Cr, TOTAL	20.0000	20.0000	150.0000
Co.	89.0000	49.0000	350.0000
Co, TOTAL	150.0000	200.0000	300.0000
Cu	3.0000	48.0000	220.0000
Cu, TOTAL	20.0000	60.0000	200.0000
Fe, TOTAL	8900.0000	29000.0000	70.0000
Fe	140.0000	28000.0000	60.0000
Pb	2.0000	30.0000	350.0000
Pb, TOTAL	200.0000	200.0000	200.0000

SKELTON MINE SHAFT, cont'

Mn,	TOTAL		620.0000	740.0000	1600.0000
Mn			670.0000	760.0000	1600.0000
Ho			1.0000	1.0000	1.0000
Mo,	TOTAL		1,0000	1.0000	1.0000
Ni			500.0000	600.0000	1300.0000
Ni,	TOTAL		600.0000	650.0000	1100.0000
V			0.0000	1.2000	11.0000
Zn		3	47000.0000	110000.0000	250000.0000
Zn,	TOTAL	3	59000.0000	110000.0000	250000.0000
AI,	TOTAL		680.0000	6000.0000	26000.0000
Al			540.0000	5500.0000	30000.0000
Li			60.0000	70.0000	140.0000
Se			1.0000	1.0000	1.0000
Se,	TOTAL		1.0000	1.0000	1.0000
HETE	IYLENE BLUE		0.0000	0.0000	0.0000
TSS	AT 110 oC		11.0000	27.0000	7.0000
TDS	AT 180 oC		2120.0000	2400.0000	3480.0000
SUM	OF CONST		1910.0000	2280.0000	3250.0000
SOLI	IDS		2.8800	3,2600	4.7300
ACIE	ITT		2.5000		14.0000
NB4			0.1000	0,2400	0.3300
NO3			0.4900	0.0400	0.0900
NO2			0.0300	0.0000	0.0000
Mg			1.3000	0.8000	0.5000
Mg,	TOTAL		0.5000	0.5000	0.5000

29N-23E-29 CBA 1 - ADMIRALTY SHAFT

***************	*=============		
SAMPLE DATE	29NOV83	23MAR84	11JUN85
SAMPLING DEPTH	150.0000	180.0000	190.0000
TEMP (DEG. C)	19.0000	15.0000	18.0000
(CODES)	1028.0000	1028.0000	1028.0000
(CODES)	80020.0000	80020.0000	80020.0000
REDOX		200.0000	320.0000
SC	4450.0000	4100.0000	
OXYGEN	0.4000	0.2000	
PH	5.8000	5.7000	5.9000
PH, LAB	3.7000	5.5000	2.8000
ALKALINITY	260.0000	260.0000	232.0000
AMMONIA, N	0.5300		0.8900
NITRITE, N	0.0100		
NO2+NO3, N·	0.1000		
P	0.0100	0.1250	0.0800
(MG/L AS CA)	570.0000	490.0000	509.0000
(MG/L AS MG)	280.0000	250.0000	193.0000
(MG/L AS NA)	93.0000	89.0000	88.0000
(MG/L AS K)	6.2000	6.5000	5.7000
(MG/L AS CL)	33.0000	28.0000	30.0000
(MG/L AS S04)	3200.0000	3200.0000	2900.0000
(MG/L AS F)	4.5000	6.1000	2.5000
(MG/L AS SIO2)	16.0000	19.0000	15.0000
BARIUM			9.0000
BERYLLIUM			1.0000
CADMIUM	22.0000	14.0000	8.0000
COBALT			322.0000
COPPER	1.0000	1.0000	30.0000
IRON	300000.0000	280000.0000	223600.0000
LEAD	40.0000	28.0000	7.2000
MANGANESE	5300.0000	5300.0000	2584.0000
MOLYBDENUM			20.0000
NICKEL	3500.0000		2900.0000
STRONTIUM			882.0000
VANADIUM			12.0000
ZINC	170000.0000	150000.0000	96920.0000
ALUMINUM	2900.0000	1400.0000	1600.0000
LITHIUM			153.0000
DBLS WL	2.0000	0.0000	0.0000
C13/C12			-8.6000
S C LAB	3930.0000	4090.0000	4020.0000

29N-23E-16 DCA 1 - CONSOLIDATED NO. 2 S

=======================================			
SAMPLE DATE	30NOV83	22MAR84	11JUN85
SAMPLING DEPTH	226.0000	225.0000	228.0000
TEMP (DEG. C)	17.0000	15.4000	17.5000
(CODES)	1028.0000	1028.0000	1028.0000
(CODES)	80020.0000	80020.0000	80020.0000
REDOX		240.0000	350.0000
SC	4050.0000	4080.0000	
OXYGEN		0.1000	
PH	5.7000	5.7000	5.8000
PH, LAB	5.1000	5.3000	2.8000
ALKALINITY	280.0000	288.0000	275.5000
AMMONIA, N	0.4100		0.6800
NITRITE, N	0.0100		
NO2+NO3, N	0.1000		
P	0.0100	0.0220	0.0290
(MG/L AS CA)	460.0000	470.0000	497.0000
(MG/L AS MG)	230.0000	250.0000	203.0000
(MG/L AS NA)	67.0000	73.0000	69.0000
(MG/L AS K)	3.8000	4.2000	3.8000
(MG/L AS CL)	10.0000	9.6000	9.4000
(MG/L AS S04)	2800.0000	2900.0000	2700.0000
(MG/L AS F)	1.2000	1.7000	0.7000
(MG/L AS SIO2)	8.6000	12.0000	10.0000
BARIUM			12.0000
BERYLLIUM			1.0000
CADMIUM	10.0000	14.0000	27.0000
COBALT			316.0000
COPPER	2.0000	1.0000	30.0000
IRON	270000.0000	290000.0000	245600.0000
LEAD	22.0000	49.0000	38.8000
MANGANESE	4400.0000	4300.0000	3554.0000
MOLYBDENUM			20.0000
NICKEL	2200.0000		2300.0000
STRONTIUM			994.0000
VANADIUM			12.0000
ZINC	110000.0000	110000.0000	91700.0000
ALUMINUM	690.0000	500.0000	450.0000
LITHIUM			161.0000
DBLS WL	26.8000	26.0000	26.0000
C13/C12			-9.4000
S C LAB	3570.0000	3880.0000	4020.0000

=======================================	=================		
SAMPLE DATE	01DEC83	01DEC83	01DEC83
SAMPLING DEPTH	138.0000	176.0000	192.0000
TEMP (DEG. C)	16.0000	17.5000	18.0000
(CODES)	1028.0000	1028.0000	1028.0000
(CODES)	80020.0000	80020.0000	80020.0000
REDOX			
SC	2800.0000	3950.0000	4650.0000
OXYGEN			
PH	6.4000	6.0000	5,6000
PH, LAB	6.6000	6.1000	5.1000
ALKALINITY	280.0000	680.0000	360,0000
AMMONIA, N	0.3100	0.9500	1.0000
NITRITE, N	0.0100	0.0100	0.0100
NO2+NO3, N	0.1000	0.1000	0.1000
P	0.0200	0.0100	0.0100
(MG/L AS CA)	560,0000	640,0000	500.0000
(MG/L AS MG)	49.0000	210.0000	260.0000
(MG/L AS NA)	52,0000	81.0000	74.0000
(MG/L AS K)	5,6000	9,2000	12.0000
(MG/I, AS, CI)	7.0000	12,0000	14.0000
(MG/I, AS S04)	1600.0000	2100.0000	3500 0000
(MG/I, AS F)	1 7000	2 0000	1 6000
(MG/I, AS STO2)	11 0000	9 6000	9 3000
BARTIM	22.0000	2.0000	2.3000
BERVILLTIM			
CADMTIM	9 0000	3 0000	29 0000
COBALT	2.0000	5.0000	23.0000
COPPER	1 0000	1 0000	1 0000
TRON	42000 0000	180000 0000	60000 0000
LEAD	1 0000	1 0000	22 0000
MANGANESE	2700 0000	2400 0000	5200,0000
MOLVEDENIIM	270010000	110010000	5200.0000
NTCKEL	520 0000	2500.0000	1500.0000
STRONTTUM	520.0000	2300.0000	1900.0000
VANADTIM			
ZINC	38000.0000	21000.0000	150000.0000
A LIMENIUM	70,0000	310,0000	1700.0000
TTTHTIM		220.0000	_,
DBLS WI	56,5000	56,5000	56,5000
C_{13}/C_{12}	2212000		
S C LAB	2510.0000	3350.0000	4230.0000
	•		

===================		=================	
SAMPLE DATE	22MAR84	22MAR84	22MAR84
SAMPLING DEPTH	140.0000	176.0000	192.0000
TEMP (DEG. C)	15.4000	15.5000	15.5000
(CODES)	1028.0000	1028.0000	1028.0000
(CODES)	80020.0000	80020.0000	80020.0000
REDOX	190.0000	205.0000	240.0000
SC	2730.0000	3810.0000	4730.0000
OXYGEN	0.2000	0.1000	0.1000
PH	6.40009	6.0000	5.6000
PH, LAB	6.5000	6.2000	5.3000
ALKALINITY	350.0000	720.0000	375.0000
AMMONIA, N			
NITRITE, N			
NO2+NO3, N			
P	0.0050	0.0060	0.0140
(MG/L AS CA)	560.0000	600.0000	450.0000
(MG/L AS MG)	45.0000	190.0000	250.0000
(MG/L AS NA)	51.0000	78.0000	72.0000
(MG/L AS K)	5.7000	9.4000	11.0000
(MG/L AS CL)	4.8000	10.0000	11.0000
(MG/L AS S04)	1600.0000	2200.0000	3700.0000
(MG/L AS F)	1.3000	1.9000	1.0000
(MG/L AS SIO2)	13.0000	15.0000	11.0000
BARIUM			
BERYLLIUM			
CADMIUM	5.0000	2.0000	18.0000
COBALT			
COPPER	1.0000	1.0000	2.0000
IRON	43000.0000	150000.0000	590000.0000
LEAD	1.0000	1.0000	34.0000
MANGANESE	2800.0000	2500.0000	5500.0000
MOLYBDENUM			
NICKEL			
STRONTIUM			
VANADIUM			
ZINC	47000.0000	23000.0000	150000.0000
ALUMINUM	60.0000	350.0000	540.0000
LITHIUM			
DBLS WL	45.5000		
C13/C12			
S C LAB	2690.0000	3470.0000	4490.0000

=======================================	===================		
SAMPLE DATE	12JUN85	12JUN85	12JUN85
SAMPLING DEPTH	140.0000	176.0000	194.0000
TEMP (DEG. C)	17.0000	17.0000	17.5000
(CODES)	1028.0000	1028.0000	1028.0000
(CODES)	80020.0000	80020.0000	80020.0000
REDOX	360.0000	140.0000	330.0000
SC			
OXYGEN			
PH	6.5000	6.1000	5.7000
PH, LAB	6.8000	6.0000	3.6000
ALKALINITY	277.0000	732.0000	368.0000
AMMONIA, N	0.5500	1.2000	1.5000
NITRITE, N			
NO2+NO3, N			
P	0.0050	0.0140	0.0250
(MG/L AS CA)	564.0000	593.0000	497.0000
(MG/L AS MG)	36.0000	183.0000	206.0000
(MG/L AS NA)	49.0000	84.0000	71.0000
(MG/L AS K)	5.5000	9.9000	14.0000
(MG/L AS CL)	6.1000	6.6000	13.0000
(MG/L AS S04)	1600.0000	2300.0000	3200.0000
(MG/L AS F)	1.3000	1.0000	0.7000
(MG/L AS SIO2)	13.0000	13.0000	10.0000
BARIUM	14.0000	21.0000	10.0000
BERYLLIUM	1.0000	1.0000	1.0000
CADMIUM	8.0000	3.0000	28.0000
COBALT	70.0000	248.0000	556.0000
COPPER	20.0000	20.0000	30.0000
IRON	22820.0000	199680.0000	512600.0000
LEAD	1.4000	1.8000	23.8000
MANGANESE	2326.0000	1400.0000	1910.0000
MOLYBDENUM	20.0000	20.0000	20.0000
NICKEL	400.0000	3000.0000	2300.0000
STRONTIUM	409.0000	599.0000	455.0000
VANADIUM	12.0000	12.0000	12.0000
ZINC	19906.0000	21660.0000	113420.0000
ALUMINUM	30.0000	270.0000	610.0000
LITHIUM	222.0000	366.0000	291.0000
DBLS WL	47.0000	47.0000	47.0000
C13/C12	-7.6000	-8.4000	
S C LAB	2560.0000	3490.0000	4200.0000

29N-23E-14 AAB 1 - FARMINGTON SHAFT

=======================================	*==========	
SAMPLE DATE	07DEC81	07DEC81
SAMPLING DEPTH	70.0000	180.0000
TEMP (DEG. C)	14.1000	15.6000
(CODES)	1028.0000	1028.0000
(CODES)	1028.0000	1028.0000
REDOX		
SC	1700.0000	3750.0000
OXYGEN		
PH	5.2000	5.6000
PH, LAB		
ALKALINITY	14.0000	600.0000
AMMONIA, N		
NITRITE, N	0.1000	0.0000
NO2+NO3, N		
P		
(MG/L AS CA)	360.0000	610.0000
(MG/L AS MG)	29.0000	180.0000
(MG/L AS NA)	43.0000	77.0000
(MG/L AS K)	6.0000	9.0000
(MG/L AS CL)	15.0000	8.1000
(MG/L AS S04)	1000.0000	2200.0000
(MG/L AS F)	1.1000	1.8000
(MG/L AS SIO2)	15.0000	6.0000
BARIUM	0.0000	0.0000
BERYLLIUM		
CADMIUM	7.0000	14.0000
COBALT		
COPPER	80.0000	70.0000
IRON	2000.0000	220000.0000
LEAD	0.0000	0.0000
MANGANESE	1200.0000	2700.0000
MOLYBDENUM		
NICKEL		
STRONTIUM		
VANADIUM		
ZINC	4400.0000	30000.0000
ALUMINUM		
LITHIUM		
DBLS WL	68.0000	68.0000
C13/C12		
S C LAB		

29N-23E-18 DBA 1GORDON AIR SHAFT

SAMPLE DATE	30NOV83				
SAMPLING DEPTH	170.0000				
TEMP (DEG. C)	19.0000				
(CODES)	1028.0000				
(CODES)	80020.0000				
REDOX					
SC	4700.0000				
OXYGEN					
PH	5.7000				
PH, LAB	3.6000				
ALKALINITY	280.0000				
AMMONIA, N	0.9000				
NITRITE, N	0.0100				
NO2+NO3, N	0.1000				
P	0.0100				
(MG/L AS CA)	690.0000				
(MG/L AS MG)	330.0000				
(MG/L AS NA)	120.0000				
(MG/L AS K)	10.0000				
(MG/L AS CL)	35.0000				
(MG/L AS S04)	3000.0000				
(MG/L AS F)	5.4000				
(MG/L AS SIO2)	18.0000				
BARIUM					
BERYLLIUM					
CADMIUM	4.0000				
COBALT					
COPPER	1.0000				
IRON	390000.0000				
LEAD	1.0000				
MANGANESE	5600.0000				
MOLYBDENUM					
NICKEL	4400.0000				
STRONTIUM					
VANADIUM					
ZINC	150000.0000				
ALUMINUM	3400.0000				
LITHIUM					
DBLS WL	30.0000				
C13/C12					
S C LAB	4270.0000				

29N-23E-20 CBB 1KENOYER SHAFT

================================			
SAMPLE DATE	29NOV83	22MAR84	11JUN85
SAMPLING DEPTH	184.0000	185.0000	182.0000
TEMP (DEG. C)	19.0000	16.1000	18.0000
(CODES)	1028.0000	1028.0000	1028.0000
(CODES)	80020.0000	80020.0000	80020.0000
REDOX		240.0000	300.0000
SC	4000.0000	3600.0000	
OXYGEN		0.3000	
PH	5.6000	5.7000	5.9000
PH, LAB	3.4000	3.6000	3.2000
ALKALINITY	260.0000	202.0000	180.0000
AMMONIA, N	0.5900		0.7300
NITRITE, N	0.0100		
NO2+NO3, N	0.1000		
P	0.0100	0.3510	0.0000
(MG/L AS CA)	500.0000	490.0000	514.0000
(MG/L AS MG)	190.0000	180.0000	134.0000
(MG/L AS NA)	91.0000	82.0000	75.0000
(MG/L AS K)	5.5000	5.5000	5.2000
(MG/L AS CL)	37.0000	33.0000	27.0000
(MG/L AS S04)	2500.0000	2300.0000	2300.0000
(MG/L AS F)	3.1000	4.2000	2.1000
(MG/L AS SIO2)	13.0000	18.0000	13.0000
BARIUM			10.0000
BERYLLIUM			1.0000
CADMIUM	12.0000	6.0000	3.0000
COBALT			171.0000
COPPER	2.0000	2.0000	20.0000
IRON	210000.0000	200000.0000	147260.0000
LEAD	1.0000	21.0000	10.0000
MANGANESE	3800.0000	3800.0000	2728.0000
MOLYBDENUM			20.0000
NICKEL	2500.0000		2000.0000
STRONTIUM			909.0000
VANADIUM			12.0000
ZINC	120000.0000	91000.0000	54760.0000
ALUMINUM	1800.0000	1100.0000	750.0000
LITHIUM			119.0000
DBLS WL	15.0000	15.0000	15.0000
C13/C12			-8.1000
S C LAB	3580.0000	3520.0000	3330.0000

29N-23E-17	BCD	1LUCKY	SYNDICATE	ATR
	202			23-2-17

=======================================	_======================================		=================
SAMPLE DATE	30NOV83	23MAR84	12JUN85
SAMPLING DEPTH	110.0000	110.0000	110.0000
TEMP (DEG. C)	19.0000	17.3000	18.5000
(CODES)	1028.0000	1028.0000	1028.0000
(CODES)	80020.0000	80020.0000	80020.0000
REDOX		230.0000	300.0000
SC	5400.0000	4830.0000	
OXYGEN		0.1000	
PH	6.2000	6.0000	6.1500
PH, LAB	6.6000	6.7000	6.7000
ALKALINITY	1000.0000	870.0000	960.0000
AMMONIA, N	0.8500		1.3000
NITRITE, N	0.0100		
NO2+NO3, N	0.1000		
P	0.0100	0.0050	0.0070
(MG/L AS CA)	540.0000	510.0000	543.0000
(MG/L AS MG)	440.0000	364.0000	413.0000
(MG/L AS NA)	310.0000	340.0000	311.0000
(MG/L AS K)	43.0000	44.0000	45.0000
(MG/L AS CL)	96.0000	85.0000	100.0000
(MG/L AS S04)	2700.0000	2900.0000	3000.0000
(MG/L AS F)	0.9000	0.6000	0.7000
(MG/L AS SIO2)	13.0000	14.0000	14.0000
BARIUM			18.0000
BERYLLIUM			1.0000
CADMIUM	1.0000	1.0000	2.0000
COBALT			200.0000
COPPER	2.0000	1.0000	30.0000
IRON	18000.0000	12000.0000	20480.0000
LEAD	1.0000	1.0000	1.4000
MANGANESE	9700.0000	7800.0000	8158.0000
MOLYBDENUM			20.0000
NICKEL	510.0000		500.0000
STRONTIUM			5348.0000
VANADIUM			12.0000
ZINC	640.0000	480.0000	534.0000
ALUMINUM	10.0000	30.0000	10.0000
LITHIUM			392.0000
DBLS WL	29.0000	28.0000	28.5000
C13/C12			
S C LAB	4950.0000	5060.0000	5310.0000

APPENDIX B

VERTICAL MINE WATER QUALITY DATA

1	BIR	THDA	Y
APRI	Ľ	23,	1976

DEPTH, ft	TEMP, ^o c	pH	CO2,mg/1	S.C.,mV	ALK,mg/l	S04,mg/l	Pe,mg/l	Zn,mg/l
168	16	5.2	81	4100	7	3000	110	490
171.5	15.5	5.2		4200				
175	15.5	5.2		4200				
182	15	5.3	192	4390	20	3000	10	490

BIRTHDAY JUNE 8, 1977

DEPTH,ft	TEMP, ^O C	рH	CO2,mg/1	S.C.,mV	ALK,mg/l	S04,mg/l	Fe,mg/l	Zn,mg/l
155	16	6.8	24	830	11	360	0.09	6.7
162	15.5	6.8		830				
166	16	5.1		3500				
170	16	5.0	0	3800	1	3200	220	340
175	. 16	5.3		3800				
180	16.5	5.8	99	4100	32	3200	230	400

-=- pH -+- O2, mg/I --- TEMP, C -□- S.C.

CONSOLIDI	TED	NO.:	2-PI
APRIL	20,	197	6

DEPTH,ft	TEMP, ^o c	pH	CO2,mg/l	S.C.,mV	ALK,mg/l	SO4,mg/l	Pe,mg/l	Zn,mg/l
179	16	7 8		920				
191	16	7.55	2.9	940	53	460	0.1	3.2
210	15.5	7.2		1040				
227	16	6.9	11	1080	47	520	0.67	3.4
229	16	5	0	4420	1	3100	130	310
234	16	4.8	0	4600	1	3200	130	380

CONSOLIDATED NO.2-PL JUNE 7, 1977

DEPTH,ft	TEMP, ^O C	pH	CO2,mg/l	S.C.,mV	ALK, mg/l	SO4,mg/l	Fe,mg/l	Zn, mg/l
152	14.5	6.8		1170				
165	14.5	7.2	5.6	1080	45	500	0.05	4.2
215	14.5	7.3		1080				
220	14.5	7.2		1080				
230	15.5	5.3	Û	4150	1	3000	270	292

DEPTH,ft	TEMP, ^O C	pH	CO2,mg/1	S.C.,mV	ALK,mg/l	SO4,mg/l	Fe,mg/l	Zn,mg/l
178	14	6.5	190	1850	308	810	0.29	68
198	14	6.5		1850				
204	14	6.5		1750				
210	14	6.15	67	4210	48	2800	150	280
216	14	5.6		4630				
222	14.5	5.6	100	4950	21	3000	270	490
230	14.5	5.6		4950				

LUCKY BILL April 22, 1976

LUCKY BILL JUNE 7, 1977

DEPTH,ft	TEMP, ^o c	pH	CO2,mg/l	S.C.,mV	ALK,mg/1	S04,mg/l	Fe,mg/l	Zn,mg/l
155	14	6.5	152	1100	250	420	0.02	3.9
190	14	6.6		1450				
205	14	6.4		3100				
225	15	5.9	12	4200	5	3400	310	440

NEW	CHIC	AGO
APRIL	29,	1976

DEPTH,ft	temp, ^o c	рĦ	CO2,mg/l	S.C.,mV	ALK,mg/l	SO4,mg/l	Fe,mg/l	Zn,mg/l
167	16	7.6		2520				
174	16	7.6	4.6	2500	94	1800	0.04	16
179	16	7.3		2520				
181	16	6.6		2520				
183	16.5	5.4		2680				
192	17	4.8	228	2520	7	2000	0.1	100
197	17.5	4.9	121	2850	5	2100	20	120

NEW CHICAGO JUNE 8, 1977

DEPTH,ft	TEMP, ^o c	pH	CO2,mg/1	S.C.,mV	ALK, mg/l	S04,mg/l	Fe,mg/l	Zn,mg/l
160	16	7.1	23	2550	150	1600	0.05	7.3
180	15	4.6	0	3300	1	2400	120	190
187	16	4.4		3300				
195	16	3.8	0	3800	1	3000	210	340

-**=**- pH →- O2, mg/I - × TEMP, C -= S.C.

LAWYER AUGUST 19, 1980

DEPTH,ft	TEMP, ^o c	рH	02,mg/l	S.C.,mV	ALK,mg/1	\$04, m g/1	Fe,mg/l	Zn,mg/l
10	29	7.9	6.8	2200	3	1838		
30	24	7.3	4.5	2400	120	4749		
40	23	1.1	4.3	2400	148	1569		
110	23.5	1.2	4.3	2500	154	1569		
150	22	7.1	4.3	2400	148	1614		
170	21.5	4.3	3.0	4200	3	3080		
190	21	4.6	2.9	3900	3	3080		
210	20	4.4	2.9	3950	3	3080		

GAWYER May 12, 1981

DEPTH,ft	TEMP, ^O C	рН	02,mg/l	S.C.,mV	ALK,mg/l	S04,mg/l	Pe,mg/l	Zn,mg/l
0	14.8	6.8	5.3	2820	134	1506	0.8	5.4
20	14.6	7.0	4.8	2830				
40	14.7	7.1	4.4	2820				
60	14.7	7.3	4.7	2820				
80	14.7	7.3	4.6	2820				
100	14.7	7.3	4.8	2830				
120	14.6	7.3	4.7	3460				
140	14.6	7.2	4.7	3460	174	1837	0.2	4.2
160	14.6	7.2	4.7	3460	15	3430	240	40

DEPTH, f	t temp, ^o c	pH	02,mg/1	S.C.,mV	ALK,mg/l	SO4,mg/l	Pe,mg/l	Zn,mg/l
0	14.1	7.1	9.4	1095	64	561	0.52	2.89
20	14.1	7.6	10.3	1129				
40	14.1	7.6	8.5	1120				
60	14.1	7.5	8.0	1271				
80	14.1	7.4	5.7	1274				
100	14.1	7.4	8.8	1286				
120	14.1	7.4	8.5	1272				
140	14.1	7.5	8.4	1271	78	559	0.24	92
180	14.0	7.4	1.0	1269				
200	14.9	6.2	0.9	5010				
210					171	3025	150	51
220	15.2	5.9	0.9	5430				
240	15.2	5.8	0.9	5440				

CONSOLIDATED No.2-S MAY 11, 1981

CONSOLIDATED No.2-S JUNE 11, 1981

DEPTH,ft	TEMP, ^o c	р‼	02, m g/1	S.C., mV	ALK,mg/l SO4,mg/l	Fe,mg/l	Zn,mg/l
0	19.5	6.5	0.5	986	342	0.1	6.22
20	16,7	7.1	0.6	963			
40	15.8	7.0	0.7	965			
60	15.0	7.1	6.1	965			
80	14.5	7.1	5.6	988			
100	14.5	7.1	5.6	990			
120	14.4	7.0	5.5	1007			
140	14.5	7.1	5.5	1086			
160	14.5	7.1	5.4	1091	492	0.1	5.66
180	14.7	7.1	5.2	1074			
200	14.8	7.0	0.9	1204	2932	400	339
220	15.5	5.7	0.9	4280			
240	15.6	5.5	0.7	4430			

FARMIN	PARMINGTON				
DECEMBER	1,	1981			

DEPTH,ft	TEMP, ^o c	pH	02,mg/l	S.C., mV	ALK,mg/l	SO4,mg/l	Pe,mg/l	Zn,mg/l
70	14.1	5.2		1700	14	1000	2	4.4
90	14.1	5.3	6.7	1680				
110	14.3	5.1	6.2	1660				
130	14.3	5.2	5.6	1650				
132	14.4	5.1	5.7	1650				
134	14.8	5.9	1.6	2450				
136	15.1	5.9	1.3	2740				
138	15.1	6.0	0.91	2800				
140	15.1	6.0	0.95	2810				
150	15.2	6.0	1.1	2880				
160	15.4	5.8	0.89	3060				
170	15.6	5.7	0.94	3890				
175	15.6	5.7		3740				
178	15.6	5.6		3950				
180	15.6	5.6		3750	600	2200	220	30
190	15.3	5.4		5030				
210	15.5	5.3		5120				
230	15.5	5.3		5020				
250	15.5	5.3		4450				
270	15.6	5.3						

K	KENOYER							
HAY	11,	1981						

DEPTH, f	t TEMP, ^o C	pH	02,mg/1	S.C.,mV	ALK,mg/l	SO4,mg/l	Fe,mg/l	Zn,mg/l
0	16.3	6.4	0.6	1549	170	624	0.14	9.6
20	15.6	7.1	0.6	1580				
40	15.1	7.1	0.6	1580				
60	15.1	7.0	0.5	1587				
80	15.1	7.0	0.5	1586				
100	15.1	7.1	0.5	1587				
120	15.0	6.0	0.5	1583				
140	15.2	7.0	0.6	1586	170	640	0.17	7.7
160	15.2	6.5	0.4	4410				
180	15.6	6.1	0.7	5570	175	3119	220	2.34
200	15.6	6.0	0.8	5590				

KENOYER JUNE 11, 1981

DEPTH,ft	TEMP, ^O C	pH	02,mg/l	S.C.,mV	ALK,mg/l	SO4,mg/1	Fe,mg/l	Zn,mg/l
0	18.9	6.9	2.8	1524		613	53	13.27
20	15.9	6.9	0.8	1523				
40	15.3	6.9	0.8	1509				
60	15.2	6.9	0.9	1508				
80	15.2	6.9	0.7	1506				
100	15.1	6.8	0.6	1504	172	630	0.27	13
120	15.1	6.8	0.6	1507				
140	15.0	6.9	0.5	1500				
160	15.4	6.3	0.5	3520				
180	15.5	6.0	0.5	4510				
200	15.7	5.9	0.5	4510	. 344	2600	150	190
220	15.7	5.9	0.4	4600				
240	15.6	5.9	0.4	4600				
260	15.6	5.8	0.4	4650				

APPENDIX C

.

AERIAL MINE WATER QUALITY DATA

AERIAL MINE WATER QUALITY DATA, APRIL 1976

CC	NSOLIDAT	PED LUCKY		NEW				
	No.2-PL	BILL	LAVRION	CHICAGO	BIRTHDAY	NAXIMUN	MININUM	MEAN
==								
SAMPLE DEPTH (PT)	229	222	191	197	182	229	182	204.2
TEMP. ("C)	16	14.5	15	17.5	15	17.5	14.5	15.6
S C (uS)	4420	4950	3899.99	2850	4389.99	4950	2850	4102.0
pH	5	5.6	4.7	4.9	5.3	5.6	4.7	5.1
C02	0	100	G	121	192	192	0	82.6
ALKALINITY (CaCO) 1	21	1	5	20	21	1	9.6
ECO3	0	25	0	6	24	25	0	11.0
HARDNESS, TOTAL	2200	2200	1800	1600	2200	2200	1600	2000.0
CALCIUM	500	480	520	499.99	489.99	520	480	498.0
HAGNESIUN	240	250	120	85.99	240	250	85.99	187.2
SODIUM	80	87	53	28	52.99	87	28	60.2
POTASSIUM	2.2	6	4.3	1.6	2.6	6	1.6	3.3
CHLORIDE	6.2	16	7.8	4.8	6.8	16	4.8	8.3
SULFATE	3100	3000	2700	2100	3000	3100	2100	2780.0
PLUORIDE	1.9	9.2	14	2.6	7.2	14	1.9	7.0
Si02	8.4	7.6	16	12	11	16	7.6	11.0
UNITS: NG/L								
			TRA	CE METALS				
ARSENIC	2	7	1	1	2	7	1	2.6
BARIUM	100	100	100	100	100	100	100	100.0
BORON	150	220	140	180	200	220	140	178.0
CADMIUN	780	490	13	130	899.99	899.99	13	462.6
CHROMIUM	20	20	60	20	20	60	20	28.0
COBALT	53	42.99	44	0	579.99	579.99	0	144.0
COPPER	70	13	120	36	59,99	120	13	59.8
IRON	130000	270000	130000	20000	9999.98	270000	9999.98	112000.0
LEAD	200	400	10	120	92.99	400	10	164.6
HANGANESE	5700	5700	6300	1400	5499.99	6300	1400	4920.0
OLYBDENUN	1	1	1	1	1	1	1	1.0
NICKEL	3400	4200	3100	999.99	3499.99	4200	999.99	3040.0
/ANADIUH	150	130	39	2.7	36	150	2.7	71.5
ZINC	310000	490000	430000	120000	489999	490000	120000	367999.8
ALUMINUN	7700	5700	26000	5399.99	8899.98	26000	5399.99	10740.0
LITHION	210	210	200	1.10	250	250	110	196.0
Bh (WATEQ4P), mV UNITS: UG/L	530	440		524	499	530	440	498.3

AERIAL MINE WATER QUALITY DATA, JUNE 1977

K0.2-PL BILL CHICAGO BIRTHDAY MAXIMUM KINIKUM MEAK SAMPLE DEPTH (PT) 230 225 195 180 230 180 207.5 SAMPLE DEPTH (PT) 230 225 195 180 230 180 207.5 S C (uS) 4100 4200 3800 4100 4200 3800 4050.0 PH 5.6 5.9 3.8 5.8 5.9 3.8 5.3 CO2 0 12 0 99 99 0 27.8 ALKALINITY (CaCO ₃) 5 1 32 32 1 9.8 HCO3 6 0 39 39 0 11.3 HARDMESS, TOTAL 2200 2400 540 540 500 21.25 SODIUM 80 85 57 44 86 44 66.8 SUDIATE 3100 3400 3000 3200 3400 3000 317	C	ONSOLIDATE	D LUCKY	NEN				
SIMPLE DEPTH (PT) 230 225 195 180 230 180 207.5 SC (uS) 4100 4200 3800 4100 4200 3800 4050.40 PH 5.6 5.9 3.8 5.8 5.9 3.8 5.3 CO2 0 12 0 99 99 0 27.8 ALKALINITY (CaCO ₃) 1 5.1 32 32 1 9.8 HCO3 0 6 0 39 9 0 11.3 BARDNESS, TOTAL 2200 2400 2100 2500 2500 2100 2300.0 CALCIUM 510 500 500 540 540 500 512.5 MAGRESIUM 220 280 200 270 280 200 242.5 SODITUM 80 86 57 44 86 44 66.8 PUANSIUM 3.8 6.2 7.2 15 5.9 8.6<		NO.2-PL	BILL	CHICAGO	BIRTHDAY	MAXIMUM	HINIHOH	· NBAN
SAMPLE DEPTH (PT) 230 225 195 180 230 180 207.5 TEMP. (^Q C) 16 15 16 16.5 16.5 15 15.9 S C (uS) 4100 4200 3800 4100 4200 3800 4050.0 PH 5.6 5.9 3.8 5.8 5.9 3.8 5.3 CO2 0 12 0 99 99 0 27.8 ALKALINITY (CaCO ₃) 1 5 1 32 32 1 9.8 HCO3 0 6 0 39 39 0 11.3 HARDMESS, TOTAL 2200 2400 2100 2500 2500 2100 2300.0 CALCIUM 510 500 500 540 540 500 512.5 MAGKESIUM 220 280 200 270 280 200 242.5 SODIUM 80 86 57 44 86 44 66.8 POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SULPATE 3100 3400 3000 3200 3400 3000 3175.0 FLOORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SIO2 8.4 10 19 9.4 19 8.4 11.7 UNITS: HG/L ARSENIC 6 11 1 6 11 1 6.0 BARIUM 200 600 100 200 600 100 275.0 BORON 170 210 200 200 210 170 195.0 CADMIUM 550 350 860 20 860 20 445.0 CURONIUM 30 20 140 20 140 20 5.5 COBALT 800 800 600 800 600 750.0 COPER 13 8 260 4 226 4 7.3 IRON 53000 31000 21000 31000 53000 2075.0 BORON 170 210 200 200 210 170 195.0 CADMIUM 550 350 860 20 860 20 445.0 CURONIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 600 800 600 750.0 L&AD 3500 21000 21000 31000 53000 2075.0 COPPER 13 8 260 4 71.3 IRON 53000 310000 210000 310000 53000 2075.0 L&AD 350 250 400 17 400 17 254.3 MAKGAMESE 5600 620 4600 17 400 17 254.3 MAKGAMESE 5600 6200 4600 13000 440000 310000 53000 200750.0 L&AD 3500 250 400 17 400 17 254.3 MAKGAMESE 5600 6200 4600 13000 4500 290 3450.0 VAMADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 340000 400000 440000 310000 310000 53000 275.50 VAMADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 340000 400000 440000 310000 310000 372500.0 ALUMINUM 200 5500 4200 100 42000 100 11950.0 LITHIUM 300 210 260 140 300 140 227.5					222322322		*******	*******
TEHP. (⁴ C) 16 15 16 16.5 16.5 15 15.9 S C (us) 4100 4200 3800 4100 4200 3800 4050.0 pH 5.6 5.9 3.8 5.8 5.9 3.8 5.3 C02 0 12 0 99 90 0 27.8 ALKALINITY (CaCO ₃) 1 5 1 32 32 1 9.6 HCO3 0 6 0 39 39 0 11.3 HRDBRESS, TOTAL 2200 2400 2100 2500 200 242.5 SODIUM 80 86 57 44 86 44 66.8 POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SUPATE 3100 3400 3000 3200 3400 3000	SAMPLE DEPTH (P	T) 230	225	195	180	230	180	207.5
S C (uS) 4100 4200 3800 4100 4200 3800 4050.0 PH 5.6 5.9 3.8 5.8 5.9 3.8 5.3 CO2 0 12 0 99 99 0 27.8 ALKALINITY (CaCO ₃) 1 5 1 32 32 1 9.8 HCO3 0 6 0 39 39 0 11.3 HARDMESS, TOTAL 2200 2400 2100 2500 2500 2100 2300.0 CALCIUM 510 500 500 540 540 500 512.5 HAGKESIUM 220 280 200 270 280 200 270 280 200 242.5 SODIDM 80 85 57 44 86 44 66.8 POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SULFATE 3100 3400 3000 3200 3400 3000 3175.0 FLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SIO2 8.4 10 19 9.4 19 8.4 11.7 UNITS: HG/L ARSENIC 6 11 1 6 11 1 6.0 EARIUH 200 600 100 200 600 100 275.0 BOROW 170 210 200 200 210 170 195.0 CADMIUM 30 20 140 20 140 20 440.20 452.5 COBALT 800 800 600 200 31000 53000 2004 3100 275.0 BOROW 170 210 200 200 210 170 195.0 CADMIUM 30 20 140 20 140 20 440 20 52.5 COBALT 800 3000 310000 21000 31000 53000 2075.0 BOROW 170 210 200 200 200 210 170 195.0 CADMIUM 550 350 860 20 860 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 21000 23000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 HAKGARESE 5600 6200 4600 13000 13000 4600 7350.0 MAISANESE 5600 6200 4600 1300 13000 4600 7350.0 MAISANESE 5600 6200 4600 1300 13000 4600 7350.0 MAISANESE 5600 6200 400 17 400 17 254.3 HAKGARESE 5600 6200 400 17 400 17 94.3 ZINC 310000 440000 34000 400000 440000 310000 31050.0 VAMADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 34000 40000 440000 310000 3150.0 VAMADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 34000 400000 440000 310000 3150.0 VAMADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 34000 400000 440000 310000 3150.0 VAMADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 34000 400000 440000 31000 3150.0 VAMADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 34000 400000 440000 31000 31000 3150.0 VAMADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 34000 400000 440000 31000 31000 3150.0 VAMADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 34000 400000 440000 31000 31000 3150.0 VAMADIUM 160 150 17 50 160 17 94.3	TEMP. ("C)	16	15	16	16.5	16.5	15	15.9
pH 5.6 5.9 3.8 5.8 5.9 3.8 5.3 C02 0 12 0 99 99 0 27.8 ALKALINITY (CaCO ₃) 1 5 1 32 32 1 9.8 HCO3 0 6 0 39 39 0 11.3 HARDNESS, TOTAL 2200 2400 2100 2500 2500 2100 2300.0 CALCIUM 510 500 500 540 540 500 512.5 MAGRESIUM 220 280 200 270 280 200 242.5 SODIUM 80 85 57 44 86 44 66.8 POTASSIUM 3.8 6.2 7.2 15 5.9 8.6 SULFATE 3100 3400 3000 3200 3400 3000 3175.0 FLUORIDE 1.8 7.9 1 0.4 7.9 0.4<	S C (uS)	4100	4200	3800	4100	4200	3800	4050.0
CO2 0 12 0 99 99 0 27.8 ALKALINITY (CaCO ₃) 1 5 1 32 32 1 9.8 HCO3 0 6 0 39 39 0 11.3 HADMESS, TOTAL 2200 2400 2100 2500 2500 2100 2300.0 CALCIUM 510 500 500 540 540 500 512.5 SODIUM 80 85 57 44 86 44 66.8 POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SOLFATE 3100 3400 3000 3200 3400 3000 3175.0 FLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SIO2 8.4 10 19 9.4 19	рН	5.6	5.9	3.8	5.8	5.9	3.8	5.3
ALKALINITY (CaCO ₃) 1 5 1 32 32 1 9.8 HCO3 0 6 0 39 39 0 11.3 HARDMESS, TOTAL 2200 2400 2100 2500 2500 2100 2300.0 CALCIUM 510 500 500 540 540 500 512.5 SODIUM 80 85 57 44 86 44 66.8 POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SULFATE 3100 3400 3000 3200 3400 3000 3175.0 FLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SIO2 8.4 10 19 9.4 19 8.4 11.7 UNITS: HG/L ARSENIC 6 11 1 6 11 1 6.0 BARIUM 200 600 100 200 600 100 275.0 BOROK 170 210 200 200 210 170 195.0 CADMIUM 550 350 860 20 860 20 445.0 CHONIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 266 4 260 4 71.3 IROM 53000 310000 21000 23000 310000 53000 2075.0 BOROK 170 210 200 200 210 170 195.0 CADMIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 266 4 260 4 71.3 IROM 53000 310000 210000 230000 310000 53000 2075.0 BARIUM 1 1 1 1 1 1 0 NICKEL 3400 4500 2900 3000 4600 750.0 COPPER 13 8 266 4 260 4 71.3 IROM 53000 310000 210000 230000 310000 53000 2075.0 DOGO 100 17 254.3 HARGAMESE 5600 6200 460 13000 13000 4600 7550.0 COPPER 1 1 1 1 1 1 1 0.0 HICKEL 3400 4500 2900 3000 4500 2900 3450.0 VANDIUM 1 0 1 1 1 1 1 1 1.0 HICKEL 3400 4500 2900 3000 440000 310000 53000 200750.0 HARGAMESE 5600 6200 460 13000 13000 0 17 94.3 ZINC 310000 440000 340000 400000 440000 310000 37250.0 HARGAMESE 5600 6200 4600 13000 440000 310000 53000 275.0 UNTS: UG/L	C02	0	12	0	99	99	0	27.8
HC03 0 6 0 39 39 0 11.3 HARDMESS, TOTAL 2200 2400 2100 2500 2500 2100 2300.0 CALCIUM 510 500 500 540 540 500 512.5 HAGRESIUM 220 280 200 270 280 200 242.5 SODIUM 80 86 57 44 86 44 66.8 POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SULPATE 3100 3400 3000 3200 3400 3000 3175.0 PLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SiO2 8.4 10 19 9.4 19 8.4 11.7 UHITS: HG/L 200 200 200 200 200 204 25.5 COBON 170 210 200	ALKALINITY (CaC	03) 1	5,	1	32	32	1	9.8
HARDNESS, TOTAL 2200 2400 2100 2500 2500 2100 2300.0 CALCIUM 510 500 500 540 540 500 512.5 MAGRESIUM 220 280 200 270 280 200 242.5 SODIUM 80 86 57 44 86 44 66.8 POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SULFATE 3100 3400 3000 3200 3400 3000 3175.0 FLORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SiO2 8.4 10 19 9.4 19 8.4 11.7 UNITS: HG/L 200 200 200 200 200 245.0 CRNNUM 30 20 140 20 140 </td <td>HCO3</td> <td>0</td> <td>6</td> <td>0</td> <td>39</td> <td>39</td> <td>0</td> <td>11.3</td>	HCO3	0	6	0	39	39	0	11.3
CALCIUM 510 500 500 540 540 500 512.5 MACKESIUM 220 280 200 270 280 200 242.5 SODIUM 80 86 57 44 86 44 66.8 POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SULPATE 3100 3400 3000 3200 3400 3000 3175.0 FLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SiO2 8.4 10 19 9.4 19 8.4 11.7 UHITS: HG/L TRACE METALS TRACE METALS 500 200 200 200 204 25.5 COBNIUM 30 20 140 20 12.5 25.5 20.6 20 45.0 245.0 CH	HARDNESS, TOTAL	2200	2400	2100	2500	2500	2100	2300.0
MAGRESIUM 220 280 200 270 280 200 242.5 SODIUM 80 85 57 44 86 44 66.8 POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SULPATE 3100 3400 3000 3200 3400 3000 3175.0 PLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SiO2 8.4 10 19 9.4 19 8.4 11.7 UNITS: HG/L TRACE METALS TRACE METALS 110 275.0 260 20 260 20 25.5 COBALT 800 860 20 860 20 45.0 245.0 CHROMIUM 30 20 140 20 140 20 52.5 COBALT 800 800 </td <td>CALCIUM</td> <td>510</td> <td>500</td> <td>500</td> <td>540</td> <td>540</td> <td>500</td> <td>512.5</td>	CALCIUM	510	500	500	540	540	500	512.5
SODIUM 80 85 57 44 86 44 66.8 POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SULFATE 3100 3400 3000 3200 3400 3000 3175.0 FLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SiO2 8.4 10 19 9.4 19 8.4 11.7 UNITS: MG/L 500 100 275.0 BORON 170 210 200 200 200 204 445.0 CHRONIUM 550 350 860 20 860 20 445.0 CHRONIUM 30 20 140 20 52.5 COBALT 800 800 600 750.0 COPPER 13	MAGNESIUM	220	280	200	270	280	200	242.5
POTASSIUM 3.8 6.2 4 3.5 6.2 3.5 4.4 CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SULPATE 3100 3400 3000 3200 3400 3000 3175.0 FLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SiO2 8.4 10 19 9.4 19 8.4 11.7 UNITS: HG/L 8.4 11.7 <td>SODIUM</td> <td>80</td> <td>86</td> <td>57</td> <td>44</td> <td>86</td> <td>44</td> <td>66.8</td>	SODIUM	80	86	57	44	86	44	66.8
CHLORIDE 5.9 15 6.2 7.2 15 5.9 8.6 SULFATE 3100 3400 3000 3200 3400 3000 3175.0 FLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SiO2 8.4 10 19 9.4 19 8.4 11.7 UNITS: MG/L 11 6 11 1 6.0 BARIUH 200 600 100 200 600 100 275.0 BORON 170 210 200 200 210 170 195.0 CABNIUM 550 350 860 20 860 20 445.0 CHRONIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 200750.0 LEAD 350 250 400 <t< td=""><td>POTASSIUM</td><td>3.8</td><td>6.2</td><td>4</td><td>3.5</td><td>6.2</td><td>3.5</td><td>4.4</td></t<>	POTASSIUM	3.8	6.2	4	3.5	6.2	3.5	4.4
SULFATE 3100 3400 3000 3200 3400 3000 3175.0 FLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SiO2 8.4 10 19 9.4 19 8.4 11.7 UNITS: MG/L 8.4 11.7 WITS: MG/L 9.4 19 8.4 11.7 UNITS: MG/L 6.01 1 6.01 6.0 BARIUM 200 600 100 200 600 100 275.0 BORON 170 210 200 200 200 445.0 CHROHIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 LEAD 3500 250 400 17	CHLORIDE	5.9	15	6.2	7.2	15	5.9	8.6
FLUORIDE 1.8 7.9 1 0.4 7.9 0.4 2.8 SiO2 8.4 10 19 9.4 19 8.4 11.7 UNITS: MG/L FRACE METALS FRACE METALS FRACE METALS 600 100 275.0 BORON 170 210 200 600 100 275.0 BORON 170 210 200 200 200 445.0 CHROHIUM 550 350 860 20 860 20 445.0 CHROHIUM 30 20 140 20 52.5 500 50.0 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 MANGANESE 5600 6200 4600 130	SULFATE	3100	3400	3000	3200	3400	3000	3175.0
Si02 8.4 10 19 9.4 19 8.4 11.7 UNITS: MG/L TRACE METALS ARSENIC 6 11 1 6 11 1 6.0 BARIUM 200 600 100 200 600 100 275.0 BORON 170 210 200 200 210 170 195.0 CADMIUM 550 350 860 20 860 20 445.0 CHROMIUM 30 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3	FLUORIDE	1.8	7.9	1	0.4	7.9	0.4	2.8
UNITS: MG/L TRACE METALS ARSENIC 6 11 1 6 11 1 6.0 BARIUM 200 600 100 200 600 100 275.0 BORON 170 210 200 200 210 170 195.0 CADMIUM 550 350 860 20 860 20 445.0 CHRONIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 MAKGANESE 5600 6200 4600 13000 13000 4600 7350.0 MOLYBDENUM 1 1 1 1 1 1 1 1 1.0 NICKEL 3400 4500 2900 3000 4500 2900 3450.0 VANADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 340000 400000 440000 310000 372500.0 ALUMINUM 200 5500 4200 100 42000 100 11950.0 LITHIUM 300 210 260 140 300 140 227.5 UNITS: UG/L	SiO2	8.4	10	19	9.4	19	8.4	11.7
ARSENIC 6 11 1 6 11 1 6.0 BARIUM 200 600 100 200 600 100 275.0 BORON 170 210 200 200 210 170 195.0 CADNIUM 550 350 860 20 860 20 445.0 CHROHIUN 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 490 17 400 17 254.3 MANGANESE 5600 6200 4600 13000 13000 310000 3750.0 VANADIUM 1 1 1 1 <t< td=""><td>UNITS: MG/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	UNITS: MG/L							
ARSENIC 6 11 1 6 11 1 6.0 BARIUM 200 600 100 200 600 100 275.0 BORON 170 210 200 200 210 170 195.0 CADMIUM 550 350 860 20 860 20 445.0 CHROHIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 MAKGANESE 5600 6200 4600 13000 13000 2900 3450.0 VANADIUM 1 1 1 1								
ARSENIC 6 11 1 6 11 1 6.0 BARIUM 200 600 100 200 600 100 275.0 BORON 170 210 200 200 210 170 195.0 CADMIUM 550 350 860 20 860 20 445.0 CHRONIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 MAKGANESE 5600 6200 4600 13000 13000 4600 7350.0 NOLYBDENUM 1 1 1 1 <t< td=""><td></td><td></td><td></td><td>TRA</td><td>CE METALS</td><td></td><td></td><td></td></t<>				TRA	CE METALS			
BARIUH 200 600 100 200 600 100 275.0 BORON 170 210 200 200 210 170 195.0 CADNIUM 550 350 860 20 860 20 445.0 CHROMIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LZAD 350 250 400 17 400 17 254.3 MANGANESE 5600 6200 4600 13000 13000 4600 7350.0 MOLYBDENUM 1 1 1 1 1 1 1 1 NICKEL 3400 4500 2900	ARSENIC	6	11	1	6	11	1	6.0
BORON 170 210 200 200 210 170 195.0 CADMIUM 550 350 860 20 860 20 445.0 CHRONIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 MANGANESE 5600 6200 4600 13000 13000 4600 7350.0 MOLYBDENUM 1 1 1 1 1 1 1 0 NICKEL 3400 4500 2900 3000 4500 2900 310000 310000 372500.0 ALUNINUM 2	BARIUM	200	600	100	200	600	100	275.0
CADMIUM 550 350 860 20 860 20 445.0 CHROMIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 MANGANESE 5600 6200 4600 13000 13000 4600 7350.0 MOLYBDENUM 1 1 1 1 1 1 1 1 0 NICKEL 3400 4500 2900 3000 4500 2900 3450.0 0 VANADIUM 160 150 17 50 160 17 94.3 ZINC 310000	BORON	170	210	200	200	210	170	195.0
CHROMIUM 30 20 140 20 140 20 52.5 COBALT 800 800 600 800 800 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 MANGANESE 5600 6200 4600 13000 13000 4600 7350.0 MOLYBDENUM 1 1 1 1 1 1 1 1 0 NICKEL 3400 4500 2900 3000 4500 2900 3450.0 VANADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 340000 460000 440000 310000 310000 372500.0 ALUMINUM 200	CADMIUN	550	350	860	20	860	20	445.0
COBALT 800 800 800 600 800 800 600 750.0 COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 MANGANESE 5600 6200 4600 13000 13000 4600 7350.0 MOLYBDENUM 1 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	CHRONIUM	30	20	140	20	140	20	52.5
COPPER 13 8 260 4 260 4 71.3 IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 MANGANESE 5600 6200 4600 13000 13000 4600 7350.0 MOLYBDENUM 1 1 1 1 1 1 1 1 1 1 1 1 1 0 3450.0 2900 3000 4500 2900 3450.0 2900 3450.0 2900 3450.0 2900 3450.0 2900 3450.0 2900 3450.0 2900 310000 310000 37250.0 310000 310000 372500.0 310000 340000 340000 440000 310000 310000 372500.0 ALUNINUM 200 5500 42000 100 42000 100 11950.0 11950.0 11950.0	COBALT	800	800	600	800	800	600	750.0
IRON 53000 310000 210000 230000 310000 53000 200750.0 LEAD 350 250 400 17 400 17 254.3 MANGANESE 5600 6200 4600 13000 13000 4600 7350.0 MOLYBDENUM 1	COPPER	13	8	260	4	260	4	71.3
LEAD 350 250 400 17 400 17 254.3 MANGANESE 5600 6200 4600 13000 13000 4600 7350.0 MOLYBDENUN 1 0 1 0 1 0 0 1 0 1 1 1	IRON	53000	310000	210000	230000	310000	53000	200750.0
MANGANESE 5600 6200 4600 13000 13000 4600 7350.0 MOLYBDENUM 1 <td>LEAD</td> <td>350</td> <td>250</td> <td>400</td> <td>17</td> <td>400</td> <td>17</td> <td>254.3</td>	LEAD	350	250	400	17	400	17	254.3
HOLYBDENUM1111111NICKEL3400450029003000450029003450.0VANADIUM16015017501601794.3ZINC310000440000340000400000440000310000372500.0ALUMINUM2005500420001004200010011950.0LITHIUM300210260140300140227.5UNITS:UG/L </td <td>MANGANESE</td> <td>5600</td> <td>6200</td> <td>4600</td> <td>13000</td> <td>13000</td> <td>4600</td> <td>7350.0</td>	MANGANESE	5600	6200	4600	13000	13000	4600	7350.0
NICKEL 3400 4500 2900 3000 4500 2900 3450.0 VANADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 340000 400000 440000 310000 372500.0 ALUMINUM 200 5500 42000 100 42000 100 11950.0 LITHIUM 300 210 260 140 300 140 227.5 UNITS: UG/L	MOLYBDENUM	1	1	1	1	1	1	1.0
VANADIUM 160 150 17 50 160 17 94.3 ZINC 310000 440000 340000 460000 440000 310000 372500.0 ALUNINUM 200 5500 42000 100 42000 100 11950.0 LITHIUM 300 210 260 140 300 140 227.5 UNITS: UG/L	NICKEL	3400	4500	2900	3000	4500	2900	3450.0
ZINC310000440000340000460000440000310000372500.0ALUMINUM2005500420001004200010011950.0LITHIUM300210260140300140227.5UNITS:UG/L </td <td>VANADIUM</td> <td>160</td> <td>150</td> <td>17</td> <td>50</td> <td>160</td> <td>17</td> <td>94.3</td>	VANADIUM	160	150	17	50	160	17	94.3
ALUMINUM 200 5500 42000 100 42000 100 11950.0 LITHIUM 300 210 260 140 300 140 227.5 UNITS: UG/L 300 300 140 227.5	ZINC	310000	440000	340000	400000	440000	310000	372500.0
LITHIUM 300 210 260 140 300 140 227.5 UNITS: UG/L	ALUMINUM	200	5500	42000	100	42000	100	11950.0
UNITS: UG/L	LITHIUM	300	210	260	140	300	140	227.5
	UNITS: UG/L		_ +					

		0	CONSOLIDAT	ED		
-	LAWYER	KENOYER	No.2-SS	MAXIMUM	MINIMUM	MEAN
SAMPLE DEPTH (FT)	180	180	200	200	180	186.7
TEMP (°C)	15.8	15.8	15.6	15.8	15.6	15.7
SC(uS)	3830	3790	3850	3850	3790	3823.3
OXYGEN				ERR	ERR	ERR
рH	4.8	5.8	5	5.8	4.8	5.2
ALKALINITY (CaCO))			ERR	ERR	ERR
CALCIUM				ERR	ERR	ERR
MAGNESIUM				ERR	ERR	ERR
SODIUM				ERR	ERR	ERR
POTASSIUM				ERR	ERR	ERR
CHLORIDE				ERR	ERR	ERR
SULFATE	3382	2987	2890	3382	2890	3086.3
FLUORIDE				ERR	ERR	ERR
SiO2				ERR	ERR	ERR
UNITS: MG/L						
		TRACE	e metals			
CADMITIM	80	15	73	80	15	56.0
COPPER	10	6	4	10	4	6.7
TRON	350000	230000	300000	350000	230000	293333.3
LEAD	57	41	144	144	41	80.7
MANGANESE	6500	4500	5000	6500	4500	5333.3
NICKEL	6750	4280	4650	6750	4280	5226.7
ZINC	23300	8300	70000	70000	8300	33866.7
ALUMINUM	12900	2000	2000	12900	2000	5633.3
DBLS WL						
UNITS: UG/L						

AERIAL MINE WATER QUALITY DATA, JULY 1981

AERIAL MINE WATER QUALITY DATA, JUNE 1981

	1	ADMIRALTY	CONSOLIDA	TED		
	KENOYER	No.4	No.2-S	MAXIMUM	MINIMUM	MEAN
	=======	========		========	222222223	==========
SAMPLE DEPTH (I	FT) 200	200	200	200	200	200.0
TEMP (°C)	15.6	14.3	14.8	15.6	14.3	14.9
SC(US)	4780	5000	1201	5000	1201	3660.3
OXYGEN	0.4	0.4	0.9	0.9	0.4	0.6
pH	5.6	5.5	7	7	5.5	6.0
CO2	1690	1062		1690	1062	1376.0
ALKALINITY (Ca	co ₃) 344	172		344	172	258.0
CALCIUM				ERR	ERR	ERR
MAGNESIUM				ERR	ERR	ERR
SODIUM				ERR	ERR	ERR
POTASSIUM				ERR	ERR	ERR
CHLORIDE				ERR	ERR	ERR
SULFATE	2600	4000	2932	4000	2600	3177.3
FLUORIDE				ERR	ERR	ERR
SiO2				ERR	ERR	ERR
UNITS: MG/L						
		TRA	CE METALS			
CADMITIM	1	15	78	78	1	31.3
COPPER	-			ERR	ERR	ERR
TRON	150000	340000	400000	400000	150000	296666.7
LEAD	50	130	100000	130	50	90.0
MANGANESE	•••		3900	3900	3900	3900.0
NICKEL			0,00	ERR	ERR	ERR
ZINC	190000	290000	339000	339000	190000	273000.0
ALUMINUM	±20000	230000	005000	ERR	RRA	ERR
DBLS WL UNITS: UG/L			32	32	32	32.0

AERIAL MINE WATER QUALITY DATA, NOVEMBER 1983

		(CONSOLIDATI	ED			LUCKY			
	ADMI	RALTY	NO.2-5 1	ARMINGTON	GORDON	KENOYER	SYNDICATE	HAXINUH	HINIHUH	KEAN
	====	=====			=============	=============	*******	:::::::::	=======	********
SAMPLE DEPT	(FT) H	150	226	176	170	184	110	225	110	169.3
TEMP (^o c)		19	17	17.5	19	19	19	19	17	18.4
S C (uS)		4450	4050	3950	4700	4000	5400	5400	3950	4425.0
OXYGEN		0.4						0.4	0.4	0.4
pH		5.8	5.7	6	5.7	5.6	5.2	6.2	5.6	5.8
ALKALINITY	$(CaCO_3)$	260	280	680	280	260	1000	1000	260	460.0
CALCIUM	J	570	460	640	690	500	540	690	460	566.7
MAGNESIUM		280	230	210	330	190	440	440	190	280.0
SODIUM		93	67	81	120	91	310	310	67	127.0
POTASSIUN		6.2	3.8	9.2	10	5.5	43	43	3.8	13.0
CHLORIDE		33	10	12	35	37	96	96	10	37.2
SULFATE		3200	2800	2100	3000	2500	2700	3200	2100	2716.7
FLUORIDE		4.5	1.2	2	5.4	3.1	0.9	5.4	0.9	2.9
SiO2		16	8.6	9.6	18	13	13	18	8.6	13.0
UNITS:HG/L										
					TRACE MI	ETALS				
CADHTIIN		22	10	3	4	12	1	22	1	8.7
COPPER		1	2	1	1	2	2	2	1	1.5
TRON	3	00000	270000	180000	390000	210000	18000	390000	18000	228000.0
LEAD	•	40	22	1	1	1	1	40	1	11.0
MANGANESE		5300	4400	2400	5600	3800	9700	9700	2400	5200.0
NICKEL		3500	2200	2500	4400	2500	510	4400	510	2601.7
ZINC	1	70000	110000	21000	150000	120000	640	170000	640	95273.3
ALUMINUM	-	2900	690	310	3400	1800	10	3400	10	1518.3
DBLS WL		2	26.8	56,5	30	15	29	56.5	2	26.6
UNITS: UG/	L .									

	(CONSOLIDATI	ED		LUCKY			
ADHI	RALTY	NO.2-5 1	PARMINGTON	KENOYER	SYNDICATE	MAXIMUN	MININUH	MEAN
====	=====	********	=======================================				=========	============
SAMPLE DEPTH (PT)	180	225	176	185	110	225	110	175.2
TEMP (^o C)	15	15.4	15.5	16.1	17.3	17.3	15	15.9
S C (uS)	4100	4080	3810	3600	4830	4830	3600	4084.0
OXYGEN	0.2	0.1	0.1	0.3	0.1	0.3	0.1	0.2
рĦ	5.7	5.7	6	5.7	6	6	5.7	5.8
ALKALINITY (CaCO ₃)	260	288	720	202	870	870	202	468.0
CALCIUM	490	470	600	490	510	600	470	512.0
MAGNESIUH	250	250	190	180	364	364	180	246.8
SODIUM	89	73	78	82	340	340	73	132.4
POTASSIUN	6.5	4.2	9.4	5.5	44	44	4.2	13.9
CHLORIDE	28	9.6	10	33	85	85	9.6	33.1
SULFATE	3200	2900	2200	2300	2900	3200	2200	2700.0
FLUOIDE	6.1	1.7	1.9	4.2	0.6	6.1	0.6	2.9
SiO2	19	12	15	18	14	19	12	15.6
UNITS: MG/L				•				
				TRACE HE	TALS			
CADNIUN	14	14	2	6	1	14	1	7.4
COPPER	1	1	1	2	1	2	1	1.2
IRON 2	80008	290000	150000	200000	12000	290000	12000	186400.0
LEAD	28	49	1	21	1	49	1	20.0

Û

MANGANESE

NICKEL

DBLS WL

UNITS: UG/L

ZINC ALUMINUM 3800 7800

ERR

ERR

4740.0

74896.0

676.0

17.3

ERR

AERIAL MINE WATER QUALITY DATA, MARCH 1984

AERIAL MINE WATER QUALITY DATA, JUNE 1985

	(CONSOLIDATE	2D		LUCKY			
i	ADMIRALTY	NO.2-S E	ARHINGTON	KENOYER	SYNDICATE	HAXINUN	MININDH	KEAK
:						===========	===========	
SAMPLE DEPTH (1	PT) 190	228	176	182	110	228	110	177.2
TEMP (^o C)	18	17.5	17	18	18.5	18.5	17	17.8
REDOX (mV)	320	350	330	300	300	350	300	320
S C (uS)						ERR	ERR	ERR
OXYGEN						ERR	ERR	ERR
рH	5.9	5.8	6.1	5.9	6.15	6.15	5.8	6.0
ALKALINITY (Ca	CO ₂) 232	275.5	732	180	960	960	180	475.9
CALCIUN	509	497	593	514	543	593	497	531.2
HAGNESIUM	193	203	183	134	413	413	134	225.2
SOBIUM	88	69	84	75	311	311	69	125.4
POTASSIUN	5.7	3.8	9.9	5.2	45	45	3.8	13.9
CHLORIDE	30	9.4	6.6	27	100	100	6.6	34.6
SULPATE	2900	2700	2300	2300	3000	3000	2300	2640.0
FLUORIDE	2.5	0.7	1	2.1	0.7	2.5	0.7	1.4
SiO2	15	10	13	13	14	15	10	13.0
UNITS: MG/L								
				201/17 W	D M M T C			
				IRAUS A	LINDO			
CADVIDA	8	27	3	. 3	: 2	27	2	8.6
COPPER	30	30	20	20	30	30	20	26.0
TRON	223600	245600	199680	147260	20480	245600	20480	167324.0
LEAD	1.3	38.8	1.8	10	1.4	38.8	1.4	11.8
WANGANESE	2584	3554	1400	2728	8158	8158	1400	3684.8
NTCKRI.	2900	2300	3000	2000	500	3000) 50(2140.0
Z TNC	96920	91700	21660	54760) 534	96920) 534	53114.8
ALUMINUM	1600) 45(270) 750) _ 1(1600) 10	616.0
DBLS WL	(26	5 47	15	5 28.5	i 41	(23.3
UNITS: UG/L								

APPENDIX D

TEMPORAL MINE WATER QUALITY DATA

BIRTHDAY SAMPLE DEPTH 180 FT

TEMPORAL MINE WATER QUALITY DATA, BIRTHDAY

	23APR76	25AUG76	190CT76	07DEC76	18FEB77	23APR77	08JUN77	HAXIHOM	HININDH	HEAN
				51553332						
SAMPLE DEPTH (FT)	182	180	180	180	180	170	180	182	170	179
TEMP. (^o C)	15	16	15	16	15.5	16	16.5	16.5	15	16
S C (uS)	4389.99	3839.99	3799.99	4000	4050	3850	4100	4389.99	3799.99	4004
pH	5.3	5.8	5.6	5.7	5.4	5	5.8	5.8	5	6
C02	192	2.5	181	C	G	0	99	192	Ũ	68
ALKALINITY (CaCO3) 20	1	37	1	1	1	32	37	1	13
HCO3	24	1	45	0	0	0	39	45	0	16
HARDNESS, TOTAL	2200	1600	2100	2400	2100	2000	2500	2500	1600	2129
CALCIUM	489.99	420	490	540	490	470	540	540	420	491
MAGNESIUM	240	130	220	260	210	190	270	270	130	217
SODIUM	52.99	40	47	46	51	61	44	61	40	49
POTASSIUM	2.6	3.8	4.1	3	3.8	4.6	3.5	4.6	2.6	4
CHLORIDE	6.8	9.1	7.3	6.9	6.8	6.4	7.2	9.1	6.4	7
SULPATE	3000	2100	3100	3500	3200	2700	3200	3500	2108	2971
FLUORIDE	7.2	2.9	2.5	1.1	6.5	7.6	0.4	7.6	0.4	4
SiO2	11	10	12	12	13	13	9.4	13	9.4	11
UNITS: MG/L										
				TRA	CE METALS					
BORON	200	240	160	170	160	150	200	240	150	183
CADHIUN	899.99	230	60	60	370	300	20	899.99	20	277
IRON	9999.98	89000	110000	83000	200000	170000	230000	230000	9999.98	127429
LEAD	92.99	40	13	67	300	200	17	300	13	104
MANGANESE	5499.99	7400	9000	10000	7000	4400	13000	13000	4400	8043
NICKEL	3499,99	1800	2500	2900	3200	2900	3000	3499.99	1800	2829
VANADIUM	36		49	45	100	50	50	100	0	47
ZINC	489999	260000	360000	390000	380000	270000	400000	489999	260000	364286
ALUHINUH	8899.98	4000	3200	2000	7900	11000	100	11000	100	5300
LITHIUM	250	120	150	160	160	160	140	250	120	163
UNITS: UG/L										

TEMPORAL MINE WATER QUALITY	DATA,	CONSOLIDATED	No.2	-PL
-----------------------------	-------	--------------	------	-----

	20APR76	25AUG76	1900176	07DEC76	02FEB77	04APR77	07JUN77	MAXIMUM	HINIHUN	MEAN
:		=======	=======	=========	z=======	=======	=======		=======	======
SAMPLE DEPTH (FT)	229	230	230	230	230	230	230	230	229	230
TEMP. (^o C)	16	16	14.5	15.5	15	15.5	16	16	14.5	16
S C (uS)	4420	4670	4000	4650	4280	4150	4100	4670	4000	4324
pH	5	5.3	5.3	5.5	5.3	5.3	5.6	5.6	5	5
CO2	0	8	56	101	0	0	٥	101	0	24
ALKALINITY (CaCO3) 1	1	6	16	1	1	1	16	1	4
HC03	0	1	7	20	0	0	0	20	0	4
HARDNESS, TOTAL	2200	1300	2200	2400	2200	2200	2200	2400	1300	2100
CALCION	500	340	510	560	520	510	510	560	340	493
MAGNESIUM	240	100	230	240	230	230	220	240	100	213
SODIUM	80	43	81	77	81	77	80	81	43	74
POTASSIUM	2.2	3.4	4.1	3.9	3.5	3.4	3.8	4.1	2.2	3
CHLORIDE	6.2	9.1	7	7	6.8-	6.3	5.9	9.1	5.9	7
SULFATE	3100	1600	3400	3500	3300	3000	3100	3500	1600	3000
FLUORIDE	1.9	1.7	2.4	1.9	3.5	1.5	1.8	3.5	1.5	2
SiO2	8.4	11	7.7	9.2	8	8.8	8.4	11	7.7	9
UNITS: HG/L										
				TR	ACE METALS)				
DODON	150	100	170	100	170	140	170	100	100	156
CARACTER CONTEN	130	260	540	540 540	500	£10	110	700	260	560
TDAN	120000	210000	210000	200000	200000	270000	53000	310000	53000	222286
L PAD	2000	210000	300	230000	450	10000	35000	450	200	321
ULNCINGCO	5700	4200	5400	50	5500	5100	5600	5700	50	4507
NICEPI.	3400	1500	3400	3300	3600	3200	3400	3600	1500	2114
VINIDIUV	150	1300	130	2300	2000	110	160	2000	1300	116
TINC	310000	150000	200000	280000	300000	201000	310000	310000	150000	276000
A FUNT MUN	7700	5000	50000	50000	1400	4500	200	7700	200	4114
LITHIN	210	1000	2000	100	200	100	200	300	100	211
at thron				1 411						

UNITS: UG/L

TEMPORAL MINE WATER QUALITY DATA, LUCKY BILL

	20APR76	25AUG76	190CT76	07DEC76	02FEB77	04APR77	07JUN77	HAXINOH	MIRINUM	MBAN	
=	=======		=======		========		=======	=========	=======	======	
SAMPLE DEPTH (FT)	222	228	225	225	225	225	225	228	222	225	
TEMP. (^o c)	14.5	15	14	14	14	15	15	15	14	15	
S C (uS)	4950	4769.99	4800	4559.99	4800	4800	4200	4950	4200	4697	
pH	5.6	5.8	6.3	5.9	5.8	5.8	5.9	6.3	5.6	6	
C02	100	2.5	8.8	70	0	0	12	100	0	28	
ALKALINITY (CaCO3)) 21	1	9	29	1	1	5	29	1	10	
HCO3	25	1	11	35	0	0	6	35	0	11	
HARDNESS, TOTAL	2200	2100	2400	2300	2300	2400	2400	2400	2100	2300	
CALCIUM	480	490	470	490	480	520	500	520	470	490	
MAGNESIUM	250	220	290	260	260	270	280	290	220	261	
SODIUN	87	90	92	81	82	85	86	92	81	86	
POTASSIUM	6	9.2	8.2	7	6.5	6.8	6.2	9.2	6	7	
CHLORIDE	16	21	23	20	18	15	15	23	15	18	
SULFATE	3000	3400	3500	3100	3300	3500	3400	3500	3000	3314	
FLUORIDE	9.2	9.4	7.5	6.6	7.4	7.9	7.9	9.4	6.6	8	
Si02	7.6	9	7.8	8.8	10	11	10	11	7.6	9	
UNITS: MG/L											
	, TRACE METALS										
BOROK	220	290	220	240	200	200	210	290	200	226	
CADHIUM	490	370	330	360	340	340	350	490	330	369	
IRON	270000	330000	240000	270000	300000	290000	310000	330000	240000	287143	
LEAD	400	400	350	200	250	250	250	400	200	300	
MANGANESE	5700	6500	6000	5400	5500	5500	6200	6500	5400	5829	
NICKEL	4200	5000	5000	4100	3900	4000	4500	5000	3900	4386	
VANADIUN	130		120	120	0	110	150	150	0	90	
ZINC	490000	450000	440000	420000	410000	411999	440000	490000	410000	437428	
ALOHINON	5700	10000	5000	5000	4500	5000	5500	10000	4500	5814	
LITHIUM	210	220	220	110	200	210	210	220	110	197	
UNITS: UG/L											

TEMPORAL MINE WATER QUALITY DATA, NEW CHICAGO

	29APR76	26AUG76	200CT76	06DEC76	02FEB77	21APR77	08JUN77	HAXINUH	HINIHUM	MEAN	
:				========		======	*******		=======	122222	
SAMPLE DEPTH (FT)	197	197	195	195	195	195	195	197	195	196	
TEMP. (°C)	17.5	17.5	16	16	15	16	16	17.5	15	16	
S C (uS)	2850	3839.99	3200	2950	3200	3350	3800	3839.99	2850	3313	
pH	4.9	3.8	4.8	4.7	4.2	4.3	3.8	4.9	3.8	4	
CO2	121	0	127	. 0	0	0	0	127	0	35	
ALKALINITY (CaCO3) 5	1	4	1	1	1	1	5	1	2	
HCO3	6	0	5	C	0	0	0	6	0	2	
HARDNESS, TOTAL	1600	1800	1900	1900	1800	2100	2100	2100	1600	1886	
CALCIUM	499.99	510	510	510	500	600	500	600	499.99	519	
HAGNESIUK	85.99	130	140	140	140	140	200	200	85.99	139	
SODIUM	28	36	36	36	39	39	57	57	28	39	
POTASSIUM	1.6	2.8	3.1	3.1	3.2	3.2	4	4	1.6	3	
CHLORIDE	4.8	8.1	5.8	5.6	14	72	6.2	72	4.8	17	
SULFATE	2100	2300	2300	2600	2200	2500	3000	3000	2100	2429	
FLUORIDE	2.6	7.2	5.4	2.9	3.9	8	1	8	1	4	
si02	12	16	14	15	14	15	19	19	12	15	
UNITS: MG/L											
	TRACE METALS										
RADAK	180	140	140	100	130	140	200	200	100	141	
CADMTHM	130	630	410	390	340	560	860	860	130	474	
TRAN	20000	67000	55000	59000	41000	100000	210000	210000	20000	78857	
LRED	120	500	300	250	200	300	400	500	120	296	
NANGANPOR	1400	2800	1500	1980	1800	2500	4600	4600	1400	2357	
NICKRI.	000 000	1600	1100	1200	1100	1600	2 900	2900	999,99	1500	
VINIDIAN) 7 7 7	30	24	1200	22	1000	17	32	2.7	18	
	120000	200000	130000	136000	120000	170000	340000	340000	120000	172857	
AT ITS A STATEMENT AT	5300 00	100	13000	14000	100	26000	42000	42000	100	14371	
.144104	110	180	130	130	130	180	260	260	110	160	
UNITS: DG/L	110	100	100	290	7.40	100	200	£. √ V	120	200	

	02JUN81	25HAY82	29NOV83	23MAR84	11JUN85	HAXINON	HINIHUH	HEAN
3	*******	=======			=========		*******	
SAMPLE DEPTH (FT)	200	200	150	180	190	200	150	184.0
TEMP (^o C)	14.3	15.2	19	15	. 18	19	14.3	16.3
REDOX (mV)				200	320	320	200	
S C (uS)		4420	4450	4100	4020	4450	4020	4247.5
OXYGEN	0.4	0	0.4	0.2		0.4	0	0.3
pH	5.5	5.7	5.8	5.7	5.9	5.9	5.5	5.7
ALKALINITY (CaCO3) 172		260	260	232	260	172	231.0
CALCIUM			570	490	509	570	490	523.0
MAGNESIUM			280	250	193	280	193	241.0
SODIUM			93	89	88	93	88	90.0
POTASSIUM			6.2	6.5	5.7	6.5	5.7	6.1
CHLORIDE			33	28	30	33	28	30.3
SULFATE	4000	3587	3200	3200	2900	4000	2900	3377.4
FLUORIDE	7.3	2.73	4.5	6.1	2.5	7.3	2.5	4.6
Si02			16	19	15	19	15	16.7
UNITS: MG/L								
				TRACE ME	TRACE METALS			
CADATUA	15		22	14	8	22	8	14.8
CADATON	14		1	1	30	30	1	10.7
TRON	340000		300000	280000	223600	340000	223600	285900.0
LPAD	130		40	200000	1.2	130	1.2	51.3
MINGINESE	100		5300	5300	2584	5300	2584	4394.7
NICKEL			3500	••••	2900	3500	2900	3200.0
TINC	290000		170000	150000	96920	290000	96920	176730.0
ALUMINUM	234444		2900	1400	1600	2900	1400	1966.7
DRLS NL			2	0	0	2	Q	0.5
UNITS: UG/L			-	·				

TEMPORAL MINE WATER QUALITY DATA, ADMIRALTY No.4

TEMPORAL MINE WATER QUALITY DATA, CONSOLIDATED No.2-S

		3000780	28MAR81	25MA¥82	30N0V83	22MAR84	11JUN85	MAXIMUN	HINIMON	MEAN
	::	======					=======	********	********	*******
SAMPLE DEPTH	(PT)	234	220	220	226	225	228	234	220	225.5
TEMP (⁰ C)	(-		15.2	15.6	17	15.4	17.5	17.5	15.2	16,1
REDOX (mV)						240	350	350	240	
S C (nS)		1090	880	. 3970	4050	4080		4080	880	2814.0
OTYGEN			0.8	0.5		0.1		0.8	0.1	0,5
oH		6.9	4.7	5.4	5.7	5.7	5.8	6.9	4.7	5.7
ALKALINITY (C	aco3) 138	171		280	288	275.5	288	138	230.5
PHOSPHOROUS					0.01	0.02	0.02	0.02	0.01	0.0
CALCIUM					460	470	497	497	460	475.7
MAGNESIUM					230	250	203	250	203	227.7
SODIUM					67	73	69	73	67	69.7
POTASSIUM					3.8	4.2	3.8	4.2	3.8	3.9
CHLORIDE					10	9.6	9.4	10	9.4	9.7
SULFATE		2685	2915	2804	2800	2900	2700	2915	2685	2800.7
PLUORIDE		1.38	1.65	1.82	1.2	1.7	0.7	1.82	0.7	1.4
Si02					8.6	12	10	12	8.6	10.2
UNITS: MG/L										
					TRACE HET	ALS				
CADNIUN		190	78		10	14	27	190	10	63.8
COPPER					2	1	30	30	1	11.0
IRON		1500	270000		270000	290000	245600	290000	1500	215420.0
LEAD		48	102		22	49	38.8	102	22	52.0
MANGANESE		5350			4400	4300	3554	5350	3554	4401.0
NICKEL					2200		2300	2300	2200	2250.0
ZINC		241000	152000		110000	110000	91700	241000	91700	140940.0
ALUMINUM					690	500	450	690	450	546.7
DBLS WL					26.8	26	26	26.8	26	26.3
Eb (WATEQ4F) UNITS: UG/L	my				470					

TEMPORAL	MINE	WATER	QUALITY	DATA,	FARMINGTON
----------	------	-------	---------	-------	------------

	07DEC81	01DEC83	22MAR84	12JUN85	HAXINUN	HININDN	MEAN
	=======		********		======	===========	=======
SAMPLE DEPTH (FT) 190	192	192	194	194	. 190	192.0
TEMP (^G C)	15.3	18	15.5	17.5	18	15.3	16.6
REDOX (mV)			240	330	330	240	
S C (uS)	5030	4650	4730	4200	5030	4200	4652.5
OXYGEN			0.1		0.1	0.1	0.1
рН	5.4	5.6	5.6	5.7	5.7	5.4	5.6
ALKALINITY (CaCO	3)	360	375	368	375	360	367.7
PHOSPHORUS		0.01	0.01	0.02	0.02	0.01	0.0
CALCIUM		500	450	497	500	450	482.3
MAGNESIUM		260	250	206	260	206	238.7
SODIUM		74	72	71	74	71	72.3
POTASSIUM		12	11	14	14	11	12.3
CHLORIDE		14	11	13	14	11	12.7
SULFATE		3500	3700	3200	3700	3200	3466.7
FLUORIDE		1.6	1	0.7	1.6	0.7	1.1
SiO2		9.3	11	10	11	9.3	10.1
UNITS: MG/L							
			TRA	CE METALS			
CADNION		29	18	28	29	18	25.0
COPPER		1	2	30	30	1	11.0
IRON		600000	590000	512600	600000	512600	567533.3
LEAD		22	34	23.8	34	22	26.6
WANGANESE		5200	5500	1910	5500	1910	4203.3
NICKEL		1500		2300	2300	1500	1900.0
ZINC		150000	150000	113420	150000	113420	137806.7
ALDHINUH		1700	540	610	1700	540	950.0
DBLS WL	68	56.5	45.5	47	68	45.5	54.3
ONITS: OG/L							

TEMPORAL MINE WATER QUALITY DATA, KENOYER

	04DEC80	27MAR81	11MAY81	11JDM81	22JUL81	25MAY82	29NOV83	22MAR84	11JUN85	MAXIMUM	HININUM	MEAN
	25281522	=====			======		:::::::	::::::	=====	======	=======	=====
SAMPLE DEPT	H (PT) 180	180	180	180	190	180	184	185	182	190	180	182.3
TEMP (^o C)	15.1	15.3	15.6	15.5	.15.8	16.1	19	16.1	18	19	15.1	16.3
REDOX (mV)								240	300	300	240	
S C (uS)	4240		5570	4510	3790	4140	4000	3600		5570	3600	4264.3
OXYGEN	0.3	0	0.7	0.5		0.6		0.3		0.7	0	0.4
рH	5.2	5.7	6.1	6	5.8	5.6	5.6	5.7	5.9	6.1	5.2	5.7
ALKALINITY	(CaCO3) 31	252	175				260	202	180	260	31	183.3
PHOSPHORUS							0.01	0.35	0	0.35	0	0.1
CALCIUM							500	490	514	514	490	501.3
MAGNESIUM							190	180	134	190	134	168.0
SODIUM							91	82	75	91	75	82.7
POTASSIUM							5.5	5.5	5.2	5.5	5.2	5,4
CHLORIDE							37	33	27	37	27	32.3
SULFATE	2847	2954	3119	3182	2987	2283	2500	2300	2300	3182	2283	2719.1
FLUORIDE	0.25	5.3	5.44	5.69	6.68	3.01	3.1	4.2	2.1	6.68	0.25	4.0
SiO 2							13	18	13	18	13	14.7
UNITS: MG/L	i											
					TRA	CE METAL	S					
CADHIUN	23	7	7	15	15		12	6	3	23	3	11.0
COPPER					6		2	2	20	20	2	7.5
IRON	350000	200000	220000	500000	230000		210000	200000	147260	500000	147260	257157.5
LEAD	47	43	96		41		1	21	10	96	1	37.0
MANGANESE				5100	4500		3800	3800	2728	5100	2728	3985.6
NICKEL					4280		2500		2000	4280	2000	2926.7
ZINC	257000	204000	2340	492000	8300		120000	91000	54760	492000	2340	153675.0
ALUMINUM					2000		1800	1100	750	2000	750	1412.5
DBLS WL							15	15	15	15	15	15.0
DHITS: UG/I	ı											

APPENDIX E

WATEQ4F SIMULATION DATA

WATEQ4F SPATIAL SIMULATION DATA, APRIL 1976

		CONSOLIDATED		NEW
PARAMETER	BIRTHDAY	NO.2-PL	LUCKY BILL	CHICAGO
	100 0000	234 0000	222 0000	197 0000
SAMPLE DEPTH	15 0000	234.0000	14 5000	17 5000
TEMP. (oC)	15.0000	10.0000	4950 0000	2850 0000
S.C. (uS)	4389.9900	4000.0000	4950.0000	2030.0000
pH	5.3000	4.0000	100 0000	101 0000
C02	192.0000	1 0000	21 0000	121.0000 E 0000
ALKALINITY	20.0000	1.0000	21.0000	5.0000
HCO3	24.0000	0.0000	25.0000	0.0000
CO3	0.0000	0.0000	0.0000	0.0000
TOC, C	0.0000	4.8000	2.9000	3.5000
CALCIUM	489.9990	520.0000	480.0000	499.9990
MAGNESIUM	240.0000	240.0000	250.0000	85.9999
SODIUM	52.9999	8.0000	87.0000	28.0000
POTASSIUM	2.6000	2.2000	6.0000	1.6000
CHLORIDE	6.8000	6.8000	16.0000	4.8000
SULFATE	3000.0000	3200.0000	3000.0000	2100.0000
FLUORIDE	7.2000	1.6000	9.2000	2.6000
SiO2	11.0000	9.8000	7.6000	12.0000
ARSENIC	0.0020	0.0010	0.0070	0.0010
BARIUM	0.1000	0.1000	0.1000	0.1000
BORON	0.2000	0.1200	0.2200	0.1800
CADMIUM	0.9000	0.9300	0.4900	0.1300
CHROMIUM	0.0200	0.0300	0.0200	0.0200
COBALT	0.5800	0.0560	0.0430	0.0000
COPPER	0.0600	0.1000	0.0130	0.0360
IRON	10.0000	130.0000	270.0000	20.0000
LEAD	0.0930	0.4000	0.4000	0.1200
MANGANESE	5.5000	5.9000	5.7000	1.4000
MOLYBDENUM	0.0010	0.0010	0.0010	0.0010
NICKEL	3.5000	0.0470	4.2000	1.0000
VANADIUM	0.0360	0.1500	0.1300	0.0027
ZINC	489.9990	380.0000	490.0000	120.0000
ALUMINUM	8.9000	10.0000	5,7000	5,4000
LITHIUM	0.2500	0.2200	0.2100	0.1100
SELENIUM	0.0010	0.0010	0.0010	0.0010
TDS AT 180 oC	5149.9900	5380.0000	5470,0000	2930.0000
NH4	0.4300	0.3600	0.6300	0.1200
NO3	0.1300	0.0400	0 0000	0.0400
NO2	0.0000	0.0000	0 0300	0 0000
MERCURY	0.0010	0 0006		0.0000
Eh (WATEO4F)	0 4990	0 5300	0.0005	0.0005
pe (WATEQ4F)	8.7280	9.2380	7.7090	9,0800

WATEQ4F SI FOR SELECTED MINERALS, APRIL 1976

	CONSOLIDATED		LUCKY	NEW	
	BIRTHDAY	NO.2-PL	BILL	CHICAGO	
CALCITE	-2.796		-2.497	-3,634	,
DOLOMITE	-5.726		-5.108	-7.828	
GYPSUM	0.01	0.048	-0.017	0	
QUARTZ	0.437	0.371	0.286	0.431	
CHALCEDONY	-0.086	-0.148	-0.24	-0.82	
Al (OH) 3	-0.936	-1.557	-1.435	-1.598	
BAUXITE					
BOEHMITE	0.842	0.224	0.341	0.187	
DIASPORE	2.636	2.009	2.14	1.958	
GIBBSITE	0.808	0.172	0.316	0.109	
ALLOPHANE (F)	0.219	-0.271	0.011	-0.26	
Alohso4	0.683	1.014	-0.401	0.573	
Al (OH) 10504	5.226	3.47	2.759	2.572	
ALUNITE	6.087	5.617	4.048	4.767	
BARITE	1.094	1.086	1.09	1.043	
FERRIHYDRITE	1.885	2.173	3.333	1.572	
FE3 (OH) 8	-0.634	0.194	4.44	-1.595	
GOETHITE	5.908	6.234	7.337	5.69	
HEMATITE	16.777	17.434	19.632	16.353	
SIDERITE	-2.885		-1.006	-3.29	
GREENALITE	-10.157	-9.501	-3.938	-11.096	
JAROSITE Na	7.751	9.441	11.314	7.859	
JAROSITE K	9.924	12.349	13.641	10.069	
JAROSITE H	5.616	8.679	8.64	6.513	
PYROLUSITE	-8.678	-9.496	-9.57	-9.752	
RHODOCHROSITE	-2.945		-2.623	-4.384	
MnHPO4					
CUPROUSFERRITE	8.216	7.734	10.311	7.017	
CUPRICFERRITE	10.654	10.558	13.435	9.318	
SMITHSONITE	-1.619		-1.312	-3.049	
ZnSiO3	0.706	-0.421	1.128	-0.495	
OTAVITE	-0.811		-0.763	-2.491	
CERRUSITE	-2.705		-1.749	-3.458	
ANGLESITE	-1.483	-0.833	-0.86	-1.378	
PLUMBOGUMMITE					
KAOLINITE	2.792	1.403	1.498	1.419	

WATEQ4F SPATIAL SIMULATION DATA, JUNE 1985

	(CONSOLIDATED						
PARAMETER	ADMIRALTY	NO.2-S	FARMINGTON	KENOYER				
SAMPLE DEPTH	190.0000	228.0000	194.0000	182.0000				
TEMP (DEG. C)	18.0000	17.5000	17.5000	18.0000				
REDOX S C	320.0000	350.0000	330.0000	300.0000				
OXYGEN								
PH	5.9000	5.8000	5.7000	5.9000				
ALKALINITY	232.0000	275.5000	368.0000	180.0000				
*HCO3	283.0000	335.5000	449.0000	219.6000				
AMMONIA, N	0.8900	0.6800	1.5000	0.7300				
*NH4	1.1440	0.8740	1.9280	0.9380				
NITRITE, N NO2±NO3 N								
DHOSPHROUS	0 0800	0 0290	0 0250	0 0000				
*P04	0.0000	0.0290	0.0250	0.0000				
CALCTIM	509 0000	497 0000	497 0000	514 0000				
MAGNESTIM	193,0000	203.0000	206 0000	134 0000				
SODTIM	88,0000	69,0000	71,0000	75 0000				
POTASTIM	5.7000	3,8000	14.0000	5.2000				
CHLORIDE	30,0000	9,4000	13.0000	27.0000				
SILFATE	2900.0000	2700.0000	3200.0000	2300.0000				
FLUORTDE	2,5000	0.7000	0.7000	2.1000				
SiO2	15,0000	10.0000	10.0000	13,0000				
BARIUM	0.0090	0.0120	0.0100	0.0100				
BERYLLIUM	0.0010	0.0010	0.0010	0.0010				
CADMIUM	0.0080	0.0270	0.0280	0.0030				
COBALT	0.3220	0.3160	0.5560	0.1710				
COPPER	0.0300	0.0300	0.0300	0.0200				
IRON	223,6000	245.6000	512.6000	147.2600				
LEAD	0.0072	0.0388	0.0238	0.0100				
MANGANESE	2.5840	3.5540	1.9100	2.7280				
MOLYBDENUM	0.0200	0.0200	0.0200	0.0200				
NICKEL	2.9000	2.3000	2.3000	2.0000				
STRONTIUM	0.8820	0.9940	0.4550	0.9090				
VANADIUM	0.0120	0.0120	0.0120	0.0120				
ZINC	96.9200	91.7000	113.4200	54.7600				
ALUMINUM	1.6000	0.4500	0.6100	0.7500				
LITHIUM	0.1530	0.1610	0.2910	0.1190				
DBLS WL	0.00	26.00	47.00	15.00				

WATEQ4F SI FOR SELECTED MINERALS, JUNE 1985

CALCITE	-1.014	-1.041	-1.049	-1.066	
DOLOMITE	-2.234	-2.264	-2.273	-2.504	
GYPSUM	0.028	0.000	0.014	0.001	
QUARTZ	0.523	0.355	0.357	0.459	
CHALCEDONY	0.012	-0.158	-0.156	-0.052	
Al (OH) 3	-0.648	-1.078	-1.019	-1.627	
BAUXITE					
BOEHMITE	1.139	0.707	0.766	0.159	
DIASPORE	2.905	2.478	2.538	1.926	
GIBBSITE	1.052	0.629	0.688	0.073	
ALLOPHANE (F)	0.529	0.2	0.201	-0.044	
Alohso4	-0.429	-0.656	-0.352	-1.481	
Al (OH) 10SO4	4.313	2.904	3.387	0.323	
ALUNITE	5.281	4.092	5.218	2.168	
BARITE	0.007	0.128	0.060	0.032	
FERRIHYDRITE	2.167	2.435	2.086	1.681	
FE3 (OH) 8	2.723	3.109	2.51	1.609	
GOETHITE	6.304	6.553	6.204	5.817	
HEMATITE	17.583	18.078	17.381	16.609	
SIDERITE	0.519	0.534	0.854	0.281	
GREENALITE	-1.509	-2.309	-2.011	-2.059	
JAROSITE Na	7.342	8.228	7.577	5.675	
JAROSITE K	9.597	10.42	10.321	7.962	
JAROSITE H	4.536	5.602	5.045	2.931	
PYROLUSITE	-12.575	-11.835	-13.229	-13.203	
RHODOCROSITE	-1.508	-1.389	-1.668	-1.542	
MnHPO4	0.229	-0.325	-0.847		
CUPROUSFERRITE	11.81	11.428	11.26	11.557	
CUPRICFERRITE	12.202	12.474	11.511	11.117	
SMITHSONITE	-0.580	-0.630	-0.563	-0.871	
ZnSiO3	1.418	1.003	0.850	1.162	
OTAVITE	-1.15	-0.635	-0.647	-1.614	
CERRUSITE	-2.314	-1.608	-1.864	-2.193	
ANGLESITE	-2.82	-2.12	-2.354	-2.673	
PLUMBOGUMMITE	2.679	1.006	0.664		
KAOLINITE	3.499	2.308	2.431	1.412	

NO. 4 NO.2-S FARMINGTON KENOYER

ADMIRALTY CONSOLIDATED

WATEQ4F VERTICAL SIMULATION DATA, CONSOLIDATED NO.2-PL

.

PARAMETER

APRIL 20-21, 1976

SAMPLE DEPTH	191.0000	227.0000	229.0000	234.0000
TEMP. (oC)	16.0000	16.0000	16.0000	16.0000
SC	940.0000	1080.0000	4420.0000	4600.0000
PH	7.5500	6.9000	5.0000	4.8000
CO2	2.9000	11.0000	0.0000	0.0000
ALKALINITY	53.0000	47.0000	1.0000	1.0000
HCO3	64.0000	57.0000	0.0000	0.0000
CO3	0.0000	0.0000	0.0000	0.0000
TOC, C	5.4000	4.7000	4.7000	4.8000
HARDNESS, T	520.0000	550.0000	2200.0000	2300.0000
CALCIUM	170.0000	180.0000	500.0000	520.0000
MAGNESIUM	24.0000	25.0000	240.0000	240.0000
SODIUM	10.0000	11.0000	80.0000	8.0000
POTASSIUM	1.7000	1.8000	2.2000	2.2000
CHLORIDE	2.1000	1.7000	6.2000	6.8000
SULFATE	460.0000	520.0000	3100.0000	3200.0000
FLUORIDE	0.3000	0.4000	1.9000	1.6000
SiO2	10.0000	9.8000	8.4000	9.8000
ARSENIC	0.0010	0.0010	0.0020	0.0010
BARIUM	0.1000	0.1000	0.1000	0.1000
BORON	0.0300	0.1000	0.1500	0.1200
CADMIUM	0.0900	0.1000	0.7800	0.9300
CHROMIUM	0.0000	0.0000	0.0200	0.0300
COBALT	0.0000	0.0030	0.0530	0.0560
COPPER	0.0040	0.0070	0.0700	0.1000
IRON	0.0100	0.6700	130.0000	130.0000
LEAD	0.0020	0.0020	0.2000	0.4000
MANGANESE	0.0800	0.0800	5.7000	5.9000
MOLYBDENUM	0.0010	0.0010	0.0010	0.0010
NICKEL	0.0030	0.0320	3.4000	0.0470
VANADIUM	0.0001	0.0001	0.1500	0.1500
ZINC	3.2000	4.0000	310.0000	380.0000
ALUMINUM	0.0100	0.0200	7.7000	10.0000
LITHIUM	0.0300	0.0400	0.2100	0.2200
SELENIUM	0.0010	0.0010	0.0010	0.0010
TDS AT 180 oC	795.0000	841.0000	5160.0000	5380.0000
Hg	0.0007	0.0005	0.0005	0.0006
*NH4	0.0260	0.0130	0.3600	0.3600
*NO3	1.1500	1.0600	0.0000	0.0440
*N02	0.0000	0.0000	0.0330	0.0000
Eh (WATEQ4F)	0.3510	0.4000	0.4500	0.5300
pe (WATEQ4F)	6.1160	6.9670		9.2380

* CALCULATED FROM N

WATEQ4F SI FOR SELECTED MINERALS, CONSOLIDATED NO.2-PL, APRIL 1976

SAMPLE DEPTH	191	227	229	234	
CALCITE	-0.174	-0.859		_ ~ ~ ~	
DOLOMITE	-1.024	-2.4			
GYPSUM	-0.725	-0.669	0.028	0.048	
OUARTZ	0.37	0.362	0.304	0.371	
CHALCEDONY	-0.15	-0.157	-0.216	-0.148	
A1 (OH) 3	-1.602	-1.239	-1.151	-1.557	
BAUXITE					
BOEHMITE	0.179	0.542	0.629	0.224	
DIASPORE	1.964	2.326	2.414	2.009	
GIBBSITE	0.127	0.49	0.577	0.172	
ALLOPHANE (F)	0.428	0.507	-0.079	-0.271	
Alohso4	-5.097	-3.388	1.013	1.014	
A1 (OH) 10 SO4	-2.776	0.022	4.686	3.47	
ALUNITE	-3.948	-0.796	6.221	5.617	
BARITE	0.892	0.915	1.084	1.086	
FERRIHYDRITE	1.345	2.654	1.48	2.173	
FE3 (OH) 8	-1.922	1.803	-0.691	0.194	
GOETHITE	5.406	6.715	5.541	6.234	
HEMATITE	15.776	18.396	16.048	17.434	
SIDERITE	-4.764	-3.054			
GREENALITE	-10.88	-7.579	-8.131	-9.501	
JAROSITE Na	-2.277	3.733	7.749	9.441	
JAROSITE K	0.432	6.425	9.657	12.349	
JAROSITE H	-5.939	0.681	5.786	8.679	
PYROLUSITE	-6.333	-7.238	-11.497	-9.496	
RHODOCHROSITE	-1.705	-2.414			
MnHPO4					
CUPROUSFERRITE	10.432	11.307	8.483	7.734	
CUPRICFERRITE	12.057	14.446	9.419	10.558	
SMITHSONITE	-0.742	-1.313			
ZnSiO3	3.254	2.071	-0.172	-0.421	
OTAVITE	1.273	0.648			
CERRUSITE	-2.1	-2.305			
ANGLESITE	-4.225	-3.689	-1.136	-0.833	
PLUMBOGUMMITE					
KAOLINITE	1.31	2.021	2.08	1.403	

WATEQ4F VERTICAL SIMULATION DATA, FARMINGTOM SHAFT

.

PARAMETER

JUNE 12, 1985

SAMPLING DE	PTH	140.00	000	176.	0000	194.	0000
TEMP (DEG.	C)	17.00	000	17.	0000	17.	5000
REDOX		360.00	000	140.	0000	330.	0000
SC							
OXYGEN							
PH		6.50	000	6.	1000	5.	7000
ALKALINITY		277.00	000	732.	0000	368.	0000
*HCO3		337.94	400	893.	0400	448.	9600
AMMONIA, N		0.5	500	1.	2000	1.	5000
*NH4		0.73	100	1.	5400	1.	9300
NITRITE, N							
NO2+NO3, N							
PHOSPHATE		0.0	050	0.	0140	0.	0250
*P04		0.0:	150	0.	0430	0.	0770
CALCIUM		564.00	000	593.	0000	497.	0000
MAGNESIUM		36.00	000	183.	0000	206.	0000
SODIUM		49.0	000	84.	0000	71.	0000
POTASSIUM		5.5	000	9.	9000	14.	0000
CHLORIDE		6.10	000	6.	6000	13.	0000
SULFATE		1600.00	000	2300.	0000	3200.	0000
FLUORIDE		1.30	000	1.	0000	0.	7000
SiO2		13.00	000	13.	0000	10.	0000
BARIUM		0.03	140	0.	0210	0.	0100
BERYLLIUM		0.0	010	0.	0010	0.	0010
CADMIUM		0.00	080	0.	0030	0.	0280
COBALT		0.0'	700	0.	2480	0.	5560
COPPER		0.02	200	0.	0200	0.	0300
IRON		22.82	200	199.	6800	512.	6000
LEAD		0.0	014	0.	0018	0.	0238
MANGANESE		2.32	260	1.	4000	1.	9100
MOLYBDENUM		0.03	200	0.	0200	0.	0200
NICKEL		0.4	000	3.	0000	2.	3000
STRONTIUM		0.4	090	Ο.	5990	0.	4550
VANADIUM		0.03	120	0.	0120	0.	0120
ZINC		19.9	060	21.	6600	113.	4200
ALUMINUM		0.03	300	0.	2700	0.	6100
LITHIUM		0.23	220	0.	3660	Ο.	2910
DBLS WL		47.0	000	47.	0000	47.	0000
S C LAB		2560.0	000	3490.	0000	4200.	0000

WATEQ4F SI FOR SELECTED MINERALS, FARMINGTON, JUNE 1985

SAMPLE DEPTH	140	176	194	
CALCITE	-0.182	-0.221	-1.049	
DOLOMITE	-1.363	-0.755	-2.273	
GYPSUM	-0.012	0.019	0.014	
QUARTZ	0.473	0.477	0.357	
CHALCEDONY	-0.042	-0.038	-0.156	
Al (OH) 3	-1.807	-1.205	-1.019	
BAUXITE				
BOEHMITE	-0.024	0.579	0.766	
DIASPORE	1.752	2.354	2.538	
GIBBSITE	-0.093	0.509	0.688	
ALLOPHANE (F)	0.019	0.29	0.201	
Alohso4	-2.899	-1.419	-0.352	
Al (OH) 10504	-1.416	1.87	3.387	
ALUNITE	-0.273	3.127	5.218	
BARITE	0.161	0.35	0.06	
FERRIHYDRITE	3.479	-0.373	2.086	
FE3 (OH) 8	5.369	-1.964	2.509	
GOETHITE	7.577	3.726	6.204	
HEMATITE	20.125	12.423	17.381	
SIDERITE	0.023	1.2	0.854	
GREENALITE	-1.572	-0.454	-2.011	
JAROSITE Na	8.78	-1.199	7.577	
JAROSITE K	11.291	1.331	10.321	
JAROSITE H	5.561	-4.237	5.045	
PYROLUSITE	-8.841	-18.381	-13.229	
RHODOCHROSITE	-0.772	-1.062	-1.668	
MnHPO4	0.19	-0.138	-0.262	
CUPROUSFERRITE	12.697	12.02	11.26	
CUPRICFERRITE	15.628	6.879	11.511	
SMITHSONITE	-0.5	-0.6	-0.563	
ZnSiO3	1.902	1	0.85	
OTAVITE	-0.355	-0.914	-0.647	
CERRUSITE	-2.487	-2.52	-1.864	
ANGLESITE	-3.877	-3.839	-2.369	
PLUMBOGUMMITE	-2.852	-0.348	1.82	
KAOLINITE	1.092	2.305	2.431	

PARAMETER	21APR76	190CT76	07JUN77	
SAMPLING DEPTH	234.0000	230.0000	230.0000	
TEMP. (oC)	16.0000	14.5000	16.0000	
SC	4600.0000	3999.9900	4100.0000	
PH	4.8000	5.3000	5.6000	
CO2	0.0000	56.0000	0.0000	
ALKALINITY	1.0000	6.0000	1.0000	
HCO3	0.0000	7.0000	0.0000	
CO3	0.0000	0.0000	0.0000	
TOC, C	4.8000	0.9000	1.0000	
HARDNESS, TOTAL	2300.0000	2200.0000	2200.0000	
CALCIUM	520.0000	510.0000	510.0000	
MAGNESIUM	240.0000	230.0000	220.0000	
SODIUM	8.0000	81.0000	80.0000	
POTASSIUM	2.2000	4.1000	3.8000	
CHLORIDE	6.8000	7.0000	5.9000	
SULFATE	3200.0000	3400.0000	3100.0000	
FLUORIDE	1.6000	2.4000	1.8000	
SiO2	9.8000	7.7000	8.4000	
ARSENIC	0.0010	0.0100	0.0060	
BARIUM	0.1000	0.1000	0.2000	
BORON	0.1200	0.1700	0.1700	
CADMIUM	0.9300	0.5400	0.5500	
CHROMIUM	0.0300	0.0200	0.0300	
COBALT	0.0560	0.0610	0.8000	
COPPER	0.1000	0.0330	0.0130	
IRON	130.0000	310.0000	53.0000	
LEAD	0.4000	0.3000	0.3500	
MANGANESE	5.9000	5.4000	5.6000	
MOLYBDENUM	0.0010	0.0010	0.0010	
NICKEL	0.0470	3.4000	3.4000	
VANADIUM	0.1500	0.1300	0.1600	
ZINC	380.0000	290.0000	310.0000	
ALUMINUM	10.0000	5.0000	0.2000	
LITHIUM	0.2200	0.2000	0.3000	
SELENIUM	0.0010	0.0010	0.0010	
TDS AT 180 oC	5380.0000	5160.0000	5100.0000	
NH4	0.3600	0.3500	0.3500	
NO3	0.0400	1.9000	0.0900	
NO2	0.0000	0.0000	0.0300	
MERCURY	0.0006	0.0005	0.0005	
En (WATEQ4F)	0.5300	0.5090	0.4750	
pe (WATEQ4F)	9.2380	8.9180	8.2830	

WATEQ4F TEMPORAL SIMULATION DATA, CONSOLIDATED NO.2-PL

.

WATEQ4F TEMPORAL SIMULATION DATA, CONSOLIDATED NO.2-S

SAMPLING DEPTH 226.000 225.000 228.0000 TEMP (DEG. C) 17.0000 15.4000 17.5000 NEDOX 0.2400 0.3500 S C 4050.0000 4080.0000 OXYGEN 0.1000 PH 5.7000 5.7000 ALKALINITY 280.0000 288.0000 ALKALINITY 280.0000 336.1000 AMMONIA, N 0.4100 0.6800 *NC2 0.0330 0.8700 NTTRITE, N 0.0100 0.8700 *NO2 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 497.0000 PHOSPHORUS 0.0100 0.2000 270.0000 SODIUM 67.0000 73.000 69.0000 SODIUM 67.0000 2.0000 2700.0000 SULFATE 2800.0000 2900.0000 2700.0000 SULFATE 2800.0000 2900.0000 2700.0000 SULGUN 0.0120 0.0120 BARIUM <td< th=""><th>PARAMETER</th><th colspan="2">30NOV83 22MAR84 115</th><th>11JUN85</th><th colspan="2">JUN85</th></td<>	PARAMETER	30NOV83 22MAR84 115		11JUN85	JUN85	
TEMP (DEG. C) 17.0000 15.4000 17.5000 REDOX 0.2400 0.3500 S C 4050.0000 4080.0000 OXYGEN 0.1000 PH 5.7000 5.8000 ALKALINITY 280.0000 288.0000 275.5000 *HCO3- 341.6000 351.4000 336.1000 AMMONIA, N 0.4100 0.6800 *NM4 0.5330 0.8700 NO2+NO3, N 0.0100 0.8700 *NO2 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 2700.0000 SODIUM 67.0000 73.0000 65.0000 SOLIM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 9.4000 SULFATE 2800.0000 2700.0000 2700.0000 SILFATE 2800.0000 2000.0000 2700.0000 SULFATE 0.0120 0.0120 0.0120 EREYLLIUM 0.0210 0.0320 0.0220 </td <td>SAMPLING DEPTH</td> <td>226.0000</td> <td>225.0000</td> <td>228.0000</td> <td></td>	SAMPLING DEPTH	226.0000	225.0000	228.0000		
REDOX 0.2400 0.3500 S C 4050.0000 4080.0000 OXYGEN 0.1000 PH 5.7000 5.8000 ALKALINITY 280.0000 288.0000 275.5000 *HCO3- 341.6000 351.4000 336.1000 AMMONIA, N 0.4100 0.6800 *NH4 0.5300 0.8700 NTTRITE, N 0.0100 - *NO2 0.0330 0.6670 0.0890 *NO3 0.4000 270.0000 23.0000 PHOSPHORUS 0.0100 - - *NO2 0.0330 0.0670 0.0890 CALCIUM 460.0000 42000 3.8000 CALCIUM 460.0000 23.0000 203.0000 SODIUM 67.0000 73.0000 24000 SODIUM 67.0000 9.4000 5102 SULFATE 2800.0000 290.0000 270.0000 SULFATE 2800.0000 2.0000 0.0120 SUA<	TEMP (DEG. C)	17.0000	15.4000	17.5000		
S C 4050.0000 4080.0000 OXYGEN 0.1000 PH 5.7000 5.8000 ALKALINITY 280.0000 288.0000 275.5000 *HC03- 341.6000 331.4000 336.1000 *MMONIA, N 0.4100 0.6800 *NH4 0.5300 0.8700 NO2+NO3, N 0.0100 - *NO3 0.4000 - PHOSPHORUS 0.0100 0.0220 0.0290 *RO4 0.0330 0.6670 0.0890 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 SODIUM 67.0000 2900.0000 270.0000 SULFATE 2800.0000 2900.0000 2700.0000 SULORIDE 1.2000 1.7000 0.0100 SULORIDE 1.2000 1.0000 0.0120 BERYLLIUM 0.0100 0.0100 0.0200 COBALT 0.0220 0.0490 0.0380 <t< td=""><td>REDOX</td><td></td><td>0.2400</td><td>0.3500</td><td></td></t<>	REDOX		0.2400	0.3500		
OXYGEN 0.1000 PH 5.7000 5.8000 ALKALINITY 280.0000 288.0000 275.5000 *HCO3- 341.6000 351.4000 336.1000 AMMONIA, N 0.4100 0.6800 *NR4 0.5300 0.8700 NITRITE, N 0.0100 0.8700 *NO2 0.0330 0.6670 0.0290 *NO3 0.4000 497.0000 497.0000 PHOSPHORUS 0.0100 203.0000 203.0000 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 SULFATE 2800.0000 2900.0000 2700.0000 SULFATE 2800.0000 290.0000 270.0000 SIO2 8.6000 12.0000 10.0000 BERYLLIVM 0.0120 0.0120 CADMIUM 0.0100 0.0140 0.0220 COBALT 0.3160 0.200<	SC	4050.0000	4080.0000			
PH 5.7000 5.7000 2.88.0000 ALKALINITY 280.0000 288.0000 275.5000 *HCG3- 341.6000 351.4000 336.1000 AMMONIA, N 0.4100 0.6800 *IN4 0.5300 0.8700 NITRITE, N 0.0100 0.8700 *NO2 0.0330 0.4000 PHOSPHORUS 0.0100 0.0220 0.0290 *PO4 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 SULFATE 2800.0000 290.0000 2700.0000 SULPATE 2800.0000 290.0000 2700.0000 SULPATE 2800.0000 290.0000 245.6000 BERYLLIUM 0.0120 0.0120 0.0200 COPLE 0.0020 0.0010 0.0380	OXYGEN		0.1000			
ALKALINITY 280.0000 288.0000 275.5000 *HCO3- 341.6000 351.4000 366.1000 AMMONIA, N 0.4100 0.6800 *NH4 0.5300 0.8700 NITRITE, N 0.0100 * *NO2 0.0330 0.0220 0.0290 *NO3 0.4000 * 0.0330 0.0670 0.0890 CALCIUM 460.0000 270.0000 497.0000 MAGNESIUM 230.0000 250.0000 20.0000 SODIUM 67.0000 73.0000 69.0000 9.4000 SULFATE 2800.0000 290.0000 2700.0000 SULFATE 2800.0000 2900.0000 2700.0000 S1000 S1000 S1000 S1000 SULFATE 2800.0000 2900.0000 2700.0000 S1000	PH	5.7000	5.7000	5.8000		
*HCO3- 341.6000 351.4000 336.1000 AMMONIA, N 0.4100 0.6800 *NH4 0.5300 0.8700 NITRITE, N 0.0100 0.0220 *NO2 0.0330 0.0220 NO2+NO3, N 0.1000 0.0220 *NO3 0.4000 PHOSPHORUS 0.0100 0.0220 CALCIUM 460.0000 470.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 SULFATE 2800.0000 2900.0000 2700.0000 SULFATE 2800.0000 2900.0000 2700.0000 SULFATE 2800.0000 2900.0000 2700.0000 SLOAT 0.0120 0.0120 0.0120 BARIUM 0.0100 0.0140 0.0270 COBALT 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MANGANESE 4.4000 4.3000 3.5540 MO	ALKALINITY	280.0000	288.0000	275.5000		
AMMONTA, N 0.4100 0.6800 *NH4 0.5300 0.8700 NITRITE, N 0.0100 *N02 0.0330 NO2+NO3, N 0.1000 *N03 0.4000 PHOSPHORUS 0.0100 0.0220 0.0290 *P04 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 297.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 SULFATE 2800.0000 2900.0000 2700.0000 SILFATE 2800.0000 2900.0000 2700.0000 SIQ2 8.6000 12.0000 10.0000 BERYLLIUM 0.0120 0.0120 BERYLLIUM 0.0100 0.0140 0.0270 COBALT 0.0220 0.0490 0.0380 MANGARESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.02100 0.0120 1.0.0200 NICKEL 2.2000 2.3000 STRONTIUM <t< td=""><td>*HCO3 -</td><td>341.6000</td><td>351.4000</td><td>336.1000</td><td></td></t<>	*HCO3 -	341.6000	351.4000	336.1000		
*NH4 0.5300 0.8700 NITRITE, N 0.0100 *NO2 0.0330 NO2+NO3, N 0.1000 *NO3 0.4000 PHOSPHORUS 0.0100 0.0220 0.700 0.0330 0.0670 PHOSPHORUS 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 SULFATE 2800.0000 2900.0000 2700.0000 SULFATE 2800.0000 2900.0000 2700.0000 SIC2 8.6000 12.0000 10.0000 BERYLLIUM 0.0120 0.0110 0.0210 CADMUM 0.0100 0.0140 0.0270 COBALT 0.0020 0.0010 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0220 0.0200 NICKEL 2.2000 2.3000	AMMONIA, N	0.4100		0.6800		
NITRITE, N 0.0100 *NO2 0.0330 NO2+NO3, N 0.1000 *NO3 0.4000 PHOSPHORUS 0.0100 0.0220 0.0290 *PO4 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 9.4000 SULFATE 2800.0000 2900.0000 2700.0000 SULFATE 2800.0000 2900.0000 2700.0000 SULFATE 2800.0000 200.0000 2700.0000 BERYLLIDM 0.0120 0.0120 BERYLLIUM 0.0100 0.0140 0.0270 COBALT 0.0020 0.0010 0.3800 COPPER 0.0020 0.0010 0.380 MANGANESE 4.4000 4.3000 3.5540 MALSENE 2.2000 2.3000 STRONTIUM 0	*NH4	0.5300		0.8700		
*NO2 0.0330 NO2+NO3, N 0.1000 *NO3 0.4000 PHOSPHORUS 0.0100 0.0220 0.0290 *PO4 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODTUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 9.4000 SULFATE 2800.0000 2900.0000 2700.0000 FLUORIDE 1.2000 1.7000 0.7000 SiO2 8.6000 12.0000 10.0000 BARIUM 0.0120 0.0120 BERYLLIUM 0.0140 0.0270 COBALT 0.3160 0.0200 COPPER 0.0020 0.0010 0.3000 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.3200 MANGANESE 4.4000 4.3000 3.5540 MALINEN 0.0	NITRITE, N	0.0100				
NO2+NO3, N 0.1000 *NO3 0.4000 PHOSPHORUS 0.0100 0.0220 0.0290 *PO4 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 9.4000 SULFATE 2800.0000 2900.0000 2700.0000 SIO2 8.6000 12.0000 10.0000 BARIUM 0.0120 0.0120 BERYLLIUM 0.0010 0.0270 COBALT 0.3160 0.0200 COPPER 0.0020 0.0010 0.3800 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MANGANESE 2.2000 2.3000 STRONTIUM 0.0120 2.3000 VANADIUM	*NO2	0.0330				
*NO3 0.4000 PHOSPHORUS 0.0100 0.0220 0.0290 *PO4 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 9.4000 SULFATE 2800.0000 2900.0000 2700.0000 FLUORIDE 1.2000 1.7000 0.7000 Sio2 8.6000 12.0000 10.0000 BERYLLIUM 0.0120 0.0120 CADMIUM 0.0100 0.0140 0.0270 COBALT 0.3160 0.0200 COPPER 0.0020 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0220 0.0490 0.0120 NICKEL 2.2000 2.3000 STRONTIUM 0.9940 VANADIUM 0.6900 0.5000 0.4500	NO2+NO3, N	0.1000				
PHOSPHORUS 0.0100 0.0220 0.0290 *P04 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 2700.0000 SULFATE 2800.0000 2900.0000 2700.0000 SIUFATE 2800.0000 17000 0.7000 SiO2 8.6000 12.0000 10.0000 BARIUM 0.0120 0.0100 0.0120 BERYLLIUM 0.0100 0.0140 0.0270 COBALT 0.0020 0.0010 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 0.120 SITRONTIUM 0.6900 0.5000 0.4500 VANADIUM 0.6900<	*NO3	0.4000				
*P04 0.0330 0.0670 0.0890 CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 9.4000 SULFATE 2800.0000 2900.0000 2700.0000 FLUORIDE 1.2000 1.7000 0.7000 SiO2 8.6000 12.0000 10.0000 BARIUM 0.0120 0.0120 BERYLLIUM 0.0110 0.0140 0.0270 COBALT 0.0020 0.0010 0.300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0120 21NC 10.0000 NICKEL 2.2000 2.3000 25400 ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 <	PHOSPHORUS	0.0100	0.0220	0.0290		
CALCIUM 460.0000 470.0000 497.0000 MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 9.4000 SULFATE 2800.0000 2900.0000 2700.0000 FLUORIDE 1.2000 1.7000 0.7000 SiO2 8.6000 12.0000 10.0000 BERYLLIUM 0.0120 0.0120 CADMIUM 0.0100 0.0140 0.0270 COBALT 0.3160 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 0.0120 2.3000 STRONTIUM 0.09940 0.0120 2.3000 VANADIUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 0.1610 0.1610 DELS WL 26.8000 26.0000 26.0000	*P04	0.0330	0.0670	0.0890		
MAGNESIUM 230.0000 250.0000 203.0000 SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 9.4000 SULFATE 2800.0000 2900.0000 2700.0000 FLUORIDE 1.2000 1.7000 0.7000 SiO2 8.6000 12.0000 10.0000 BARIUM 0.0120 0.0120 BERYLLIUM 0.0010 0.0120 COBALT 0.3160 COPFER 0.0020 0.0010 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 0.0120 STRONTIUM 0.09940 0.0120 21NC VANADIUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 0.1610 0.1610 DELS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F)	CALCIUM	460.0000	470.0000	497.0000		
SODIUM 67.0000 73.0000 69.0000 POTASSIUM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 9.4000 SULFATE 2800.0000 2900.0000 2700.0000 SiO2 8.6000 1.7000 0.7000 SiO2 8.6000 12.0000 10.0000 BARIUM 0.0120 0.0120 BERYLLIUM 0.0010 0.0140 0.0270 COBALT 0.0020 0.0010 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 0.0120 0.0120 NICKEL 2.2000 2.3000 STRONTIUM 0.0120 VANADIUM 0.6900 0.5000 0.4500 1.610 DELS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560 26.0000 26.0000 26.0000	MAGNESIUM	230.0000	250.0000	203.0000		
POTASSIUM 3.8000 4.2000 3.8000 CHLORIDE 10.0000 9.6000 2700.0000 SULFATE 2800.0000 2900.0000 2700.0000 FLUORIDE 1.2000 1.7000 0.7000 SiQ2 8.6000 12.0000 10.0000 BARIUM 0.0120 0.0120 BERYLLIUM 0.0010 0.0270 COBALT 0.3160 COPPER 0.0020 0.0010 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 0.0120 STRONTIUM 0.9940 0.0120 2.3000 STRONTIUM 0.0120 2.3000 0.0120 ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 0.1610 DELS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700	SODIUM	67.0000	73.0000	69.0000		
CHLORIDE 10.0000 9.6000 9.4000 SULFATE 2800.0000 2900.0000 2700.0000 FLUORIDE 1.2000 1.7000 0.7000 SiO2 8.6000 12.0000 10.0000 BARIUM 0.0120 0.0120 BERYLLIUM 0.0140 0.0270 COBALT 0.3160 COPPER 0.0020 0.0010 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 STRONTIUM VANADIUM 0.6900 0.0120 2.3000 ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 26.0000 26.0000	POTASSIUM	3.8000	4.2000	3.8000		
SULFATE 2800.0000 2900.0000 2700.0000 FLUORIDE 1.2000 1.7000 0.7000 SiO2 8.6000 12.0000 10.0000 BARIUM 0.0120 0.0120 BERYLLIUM 0.0010 0.0140 0.0270 COBALT 0.3160 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 STRONTIUM 0.9940 0.0120 ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 26.0000 26.0000	CHLORIDE	10.0000	9.6000	9.4000		
FLUORIDE 1.2000 1.7000 0.7000 SiO2 8.6000 12.0000 10.0000 BARIUM 0.0120 0.0010 BERYLLIUM 0.0010 0.0140 0.0270 COBALT 0.3160 0.3160 COPPER 0.0020 0.0010 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 STRONTIUM VANADIUM 0.09940 0.0120 ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 26.0000 26.0000	SULFATE	2800.0000	2900.0000	2700.0000		
S102 8.6000 12.0000 10.0000 BARIUM 0.0120 BERYLLIUM 0.0010 CADMIUM 0.0100 0.0140 COBALT 0.3160 COPPER 0.0020 0.0010 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 NICKEL 2.2000 2.3000 STRONTIUM 0.0120 ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 26.0000 26.0000	FLUORIDE	1.2000	1.7000	0.7000		
BARIUM 0.0120 BERYLLIUM 0.0100 CADMIUM 0.0100 0.0140 COBALT 0.3160 COPPER 0.0020 0.0010 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 STRONTIUM 0.9940 0.0120 VANADIUM 0.0120 21NC ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 26.0000 26.0000	5102	8.6000	12.0000	10.0000		
BERYLLIUM 0.0100 0.0140 0.0270 COBALT 0.3160 COPPER 0.0020 0.0010 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 STRONTIUM 0.9940 VANADIUM 0.0120 ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 26.0000 26.0000	BARIUM			0.0120		
CADMIOM 0.0100 0.0140 0.0270 COBALT 0.3160 COPPER 0.0020 0.0010 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 NICKEL 2.2000 2.3000 STRONTIUM 0.9940 VANADIUM 0.0120 ZINC 110.0000 110.0000 ALUMINUM 0.6900 0.5000 LITHIUM 0.1610 DBLS WL 26.8000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	BERYLLIUM	0 0100	0 01 4 0	0.0010		
COBALT 0.0020 0.0010 0.0300 IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 NICKEL 2.2000 2.3000 STRONTIUM 0.9940 VANADIUM 0.0120 ZINC 110.0000 110.0000 ALUMINUM 0.6900 0.5000 LITHIUM 0.1610 DBLS WL 26.8000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	CADMIUM	0.0100	0.0140	0.02/0		
IRON 270.0000 290.0000 245.6000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 2.3000 NICKEL 2.2000 2.3000 STRONTIUM 0.9940 VANADIUM 0.0120 ZINC 110.0000 110.0000 ALUMINUM 0.6900 0.5000 LITHIUM 0.1610 DBLS WL 26.8000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	COBALT	0 0000	0 0010	0.3100		
IRON 270.0000 290.0000 245.0000 LEAD 0.0220 0.0490 0.0380 MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 0.0200 NICKEL 2.2000 2.3000 STRONTIUM 0.9940 0.0120 VANADIUM 0.06900 0.5000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 98.1560 100000	COPPER		200.0010	245 6000		
MANGANESE 4.4000 4.3000 3.5540 MOLYBDENUM 0.0200 NICKEL 2.2000 2.3000 STRONTIUM 0.9940 VANADIUM 0.0120 ZINC 110.0000 110.0000 ALUMINUM 0.6900 0.5000 LITHIUM 0.1610 DBLS WL 26.8000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	IEAD	270.0000	290.0000	243.0000		
MANGANESE 1.1000 1.5000 5.5540 MOLYBDENUM 0.0200 NICKEL 2.2000 2.3000 STRONTIUM 0.9940 VANADIUM 0.0120 ZINC 110.0000 110.0000 ALUMINUM 0.6900 0.5000 LITHIUM 0.1610 DBLS WL 26.8000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	Mancanter	4 4000	4 3000	3 5540		
NICKEL 2.2000 2.3000 STRONTIUM 0.9940 VANADIUM 0.0120 ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 91.560	MOLVEDENIM	4.4000	4.3000	0.0200		
NICKER 2.2000 10000 STRONTIUM 0.9940 VANADIUM 0.0120 ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	NTCKEL	2 2000		2.3000		
VANADIUM 0.0120 ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	STRONTTIM	2.2000		0,9940		
ZINC 110.0000 110.0000 91.7000 ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 DBLS WL 26.8000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	VANADTIM			0.0120		
ALUMINUM 0.6900 0.5000 0.4500 LITHIUM 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	ZINC	110,0000	110,0000	91.7000		
LITHIUM 0.1610 DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	ALUMINUM	0.6900	0.5000	0.4500		
DBLS WL 26.8000 26.0000 26.0000 Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	TTTHTIM			0.1610		
Eh (WATEQ4F) 0.4700 pe (WATEQ4F) 8.1560	DBLS WL	26.8000	26.0000	26.0000		
pe (WATEQ4F) 8.1560	Eh (WATEO4F)	0.4700				
	pe (WATEQ4F)	8.1560				

WATEQ4F SI FOR SELECTED MINERALS CONSOLIDATED No.2 MINES

.

	CONSOLIDA	TED NO.2-	PL	CONSOLIDA	TED NO.2-	S
SAMPLE DATE	APR 1976 (OCT 1976	JUN 1977	NOV 1983	MAR 1984	JUN 1985
SAMPLE DEPTH	234	230	230	226	225	228
CALCITE		-3.319		-1.187	-1.189	-1.041
DOLOMITE		-2.813		-2.474	-2.472	-2.264
GYPSUM	0.048	0.064	0.05	-0.016	-0.013	0
QUARTZ	0.371	0.292	0.304	0.298	0.469	0.355
CHALCEDONY	-0.148	-0.234	-0.216	-0.217	-0.053	-0.158
Al (OH) 3	-1.557	-0.873	-3.665	-1.444	-2.477	-1.078
BAUXITE						
BOEHMITE	0.224	0.903	-1.885	0.34	-0.698	0.707
DIASPORE	2.009	2.702	-0.1	2.115	1.092	2.478
GIBBSITE	0.172	0.879	-1.937	0.27	-0.74	0.629
ALLOPHANE (F)	-0.271	0.187	-1.178	-0.037	-0.453	0.2
Alohso4	1.014	0.851	-2.683	-0.757	-1.681	-0.656
Al (OH) 10SO4	3.47	5.697	-6.553	1.815	-1.852	2.904
ALUNITE	5.617	6.644	-2.847	3.391	0.45	4.092
BARITE	1.086	1.124	1.393			0.128
FERRIHYDRITE	2.173	3.449	2.992	3.848	0.279	2.435
FE3 (OH) 8	0.194	3.882	2.809	5.367	-1.328	3.109
GOETHITE	6.234	7.453	7.053	7.947	4.317	6.553
HEMATITE	17.434	19.865	19.072	20.865	13.597	18.078
SIDERITE		-2.012		0.059	0.474	0.534
GREENALITE	-9.501	-6.302	-6.703	-4.145	-2.523	-2.309
JAROSITE Na	9.441	12.709	10.521	12.764	1.922	8.228
JAROSITE K	12.349	14.901	12.667	14.975	4.159	10.42
JAROSITE H	8.679	10.37	7.958	10.227	-0.731	5.602
PYROLUSITE	-9.496	-8.406	-8.237	-8.033	-16.215	-11.835
RHODOCHROSITE		-3.491		-1.408	-1.431	-1.389
MnHPO4				-0.12	0.152	0.323
CUPROUSFERRITE	7.734	9.304	9.423	9.462	9.535	11.428
CUPRICFERRITE	10.558	13.453	12.907	13.873	6.266	12.474
SMITHSONITE		-2.398		-0.669	-0.693	-0.63
ZnSiO3	-0.421	0.261	1.021	0.78	0.851	1.003
OTAVITE		-1.586		-1.182	-1.043	-0.635
CERRUSITE		-2.739		-1.949	-1.588	-1.608
ANGLESITE	-0.833	-0.947	-0.887	-2.337	-1.991	-2.12
PLUMBOGUMMITE				0.42	-1.659	2.303
KAOLINITE	1.403	2.635	-2.949	1.468	-0.233	2.308

OWRB 45 STAND PIPE COMMERCE BOREHOLE SPRING OWRB.4** 04JUN85 10JUN85 19JUN84 SAMPLE DATE SAMPLING DEPTH 0.0000 0.0000 0.0000 TEMP (DEG. C) 15.5000 18.0000 15.0000 250.0000 260.0000 370.0000 REDOX (mV) S C 3850.0000* 3970.0000* 4470.0000 OXYGEN 5.4000 5.9000 4.5000 PH 13.0000 160.0000 560.0000 ALKALINITY 195.2000 683.2000 15.8600 *HCO3 0.8800 1.3000 0.0000 AMMONIA, N 1.1300 1.6700 *NH4 NITRITE, N NO2+NO3, N 0.0760 >1.0000 PHOSPHOROUS 0.0650 0.2330 *P04 0.1990 3.0000 472.0000 CALCIUM 610.0000 480.0000 MAGNESIUM 205.0000 143.0000 120.0000 SODIUM 71.0000 120.0000 54.0000 POTASSIUM 5.7000 15.0000 14.0000 28.0000 CHLORIDE 46.0000 8.1000 SULFATE 3000.0000 2800.0000 2800.0000 FLUORIDE 5.3000 1.4000 15.0000 SiO2 17.0000 12.0000 39.0000 BARIUM 0.0070 0.0210 0.0000 BERYLLIUM 0.0010 0.0010 0.0000 CADMIUM 0.0420 0.0040 0.0780 COBALT 0.4100 0.2380 0.0000 COPPER 0.0200 0.0200 <0.0010 IRON 276.2000 392.2000 300.0000 LEAD 0.0452 0.0005 0.0790 MANGANESE 2.8860 4.0900 5.0000 MOLYBDENUM 0.0000 0.0200 0.0200 NICKEL 1.3000 3.1000 0.0000 STRONTIUM 0.0000 0.5000 1.7120 VANADIUM 0.0012 0.0120 0.0000 ZINC 149.5800 38.8400 180.0000 ALUMINUM 4.2000 0.6200 16.0000 LITHIUM 0.1850 0.2840 0.0000 DBLS WL 0.00 0.00 0.00

WATEQ4F SPRING SIMULATION DATA

* LAB SC ** USGS OPEN FILE REPORT 87-453 TABLE 1. UNITS IN MG/L

WATEQ4F SI FOR SELECTED MINERALS, SPRING DATA, JUNE 1985

.

OWRB 4S COMMERCE STAND PIPE BOREHOLE SPRING OWRB 4

SAMPLE DATE	04JUN85	10JUN85	19JUN84	
SAMPLE DEPTH	SURFACE	SURFACE	SURFACE	
CALCITE	-1.751	-0.544	INVALID	
DOLOMITE	-3.681	-1.505	DATA	
GYPSUM	0.007	0.072		
OUARTZ	0.619	0.428		
CHALCEDONY	0.097	-0.083		
Al (OH) 3	-1.527	-1.24		
BAUXITE				
BOEHMITE	0.252	0.547		
DIASPORE	2.042	2.313		
GIBBSITE	0.209	0.46		
ALLOPHANE (F)	0.044	0.157		
Alohso4	-0.115	-1.055		
A1 (OH) 10 SO4	2.541	1.91		
ALUNITE	4.369	3.855		
BARITE	-0.059	0.358		
FERRIHYDRITE	-0.473	1.381		
FE3 (OH) 8	-3.459	1.403		
GOETHITE	3.569	5.518		
HEMATITE	12.101	16.011		
SIDERITE	~0.111	1.163		
GREENALITE	-4.103	-0.943		
JAROSITE Na	0.609	5.047		
JAROSITE K	2.989	7.588		
JAROSITE H	-1.726	2.108		
MELANTERITE	-2.412	-2.321		
PYROLUSITE	-17.229	-14.461		
RHODOCHROSITE	-2.165	-0.925		
MnHPO4	0.262	0.711		
CUPROUSFERRITE	9.71	11.687		
CUPRICFERRITE	5.572	10.255		
SMITHSONITE	-1.1	-0.641		
ZnSiO3	0.557	0.87		
OTAVITE	-1.116	-1.108		
CERRUSITE	-2.086	-3.278		
ANGLESITE	-1.907	-4.209		
PLUMBOGUMMITE	2.4	0.129		
KAOLINITE	1.965	2.123		

$_{\rm VITA} \mathcal{V}$

Mark Logan Finney

Candidate for the Degree of

Masters of Science

Thesis: GEOCHEMICAL ASSESSMENT OF MINE WATER WITHIN ABANDONED LEAD-ZINC MINES, PICHER FIELD, NORTHEAST OKLAHOMA

Major Field: Geology

Biographical:

- Personal Data: Born in New London, Connecticut, January 15, 1963, the son of Herbert G. Finney and Cherryl M. Finney.
- Education: Graduated from Putnam City High School, Oklahoma City, Oklahoma, in May 1981; received Bachelor of Science Degree in geology from Oklahoma State University in August 1986; completed requirements for the Masters of Science Degree at Oklahoma State University in December 1993.
- Professional Experience: Hydrologist, HydroLogic, Inc., Environmental Consultants, Stillwater, Oklahoma, March 1988 to July 1992; Teaching Assistant, School of Geology, Oklahoma State University, July 1992 to December 1993.