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Abstract 
 

 The subject of this work is the synthesis of polymer nanostructures via the 

use of surfactant surface aggregates as templates, also termed Template Assisted 

Admicellar Polymerization (TAAP). The first chapter reviews some of the most 

current nanopatterning techniques (including both top-down and bottom-up 

approaches), with particular emphasis on the fabrication of organic and inorganic 

patterned nanostructures via particle lithography. In chapter 2, highly ordered 

hexagonal arrays of latex spheres were prepared on highly ordered pyrolytic 

graphite (HOPG) from a variation of the Langmuir Blodgett technique, using an 

anionic surfactant (SDS), and a low molecular weight (ca. 10000) polyacrylamide 

as spreading agents. When a nonionic polyethoxylated (EO = 9) surfactant was 

used as the spreading agent, no ordered arrays were observed. Based on the 

correlation found between the surface tension in the presence of the latex particles 

and the critical concentration at which hexagonal arrangements of latex spheres 

occurs; a model was proposed to explain the role of the spreading agent in 

forming stable monolayers at the air/liquid interface, which in turn are necessary 

for the formation of well-ordered monolayers on a solid substrate from the LB 

technique. According to this model, solid-like regions of small numbers of latex 

spheres form at the liquid-air interface, which are then transferred to the substrate.  

These ordered regions then act as nuclei for the formation of 2D arrays of latex 

 xix



spheres on the surface upon water evaporation.  The role of other factors such as 

relative humidity, substrate and solvent choice, and pulling vs. compression speed 

were also found to affect the quality of the monolayers formed. Finally, a simple, 

easy to automate, yet effective surface tension method was proposed to predict the 

optimal conditions for the formation of ordered monolayers using a variation of 

the LB deposition method from any monodisperse set of spheres. 

In chapter 3, a novel method for the formation of nanometer-scale polymer 

structures on solid surfaces via template assisted admicellar polymerization 

(TAAP) is described. Admicellar polymerization uses a surfactant layer adsorbed 

on a surface to localize monomer to the surface prior to polymerization of the 

monomer.  TAAP refers to nanostructures that form by restricting adsorption to 

the uncovered sites of an already-templated surface.  In this case, the interstitial 

sites between adsorbed latex spheres were used as the template.  Unlike most 

other process that form polymer nanostructures, polymer dimensions can be 

significantly smaller than the interstitial size because of sphere-surfactant-

monomer interactions. As a proof of concept, nanostructures formed via TAAP 

were compared to structures prepared by others via adsorption of three different 

proteins (Bovine serum albumin, fibrinogen, and anti-mouse IgG) in the 

interstitial sites of colloidal monolayers. The size and shape of the nanostructures 

formed (honeycomb vs. pillars) was dependent upon the size of the spheres 

 xx



utilized and the method of polymer deposition (i.e. admicellar polymerization vs. 

polymer adsorption).  Thinner honeycomb walls, and larger separation distances 

between the template and the nanostructures were consistently found for TAAP.  

 In chapter 4, an in-depth study of the factors affecting TAAP is presented 

for three different monomers: aniline, pyrrole and methyl methacrylate; and three 

different surfaces: highly ordered pyrolytic graphite (HOPG), gold, and SiO2. 

Among the parameters discussed are the effect of monomer and surfactant 

concentration, surfactant chain length, polymerization time and temperature, 

solution ionic strength, substrate choice and surface treatment. Control over these 

parameters allowed the synthesis of polymer nanopillars, nanorings, honeycombs, 

and “honeytubes.” Experimental results showed that the nanostructures’ 

morphology can be effectively modified by changing the length of the 

hydrophobic chain of the surfactant. Nanostructures with fewer defects were 

found for surfactants with the longest hydrophobic tails (i.e. 12 carbon atoms). 

The hydrophobic nature of the monomer also seemed to affect the morphology of 

the nanostructure; poly(methyl methacrylate) (PMMA) honeycombs showed 

thicker walls compared to polyaniline (PANI) and polypyrrole (Ppy). In general, 

HOPG seems to be a better choice of substrate for TAAP compared to gold-

coated glass and SiO2 wafers.  Preliminary results on the formation of layered 

polymer nanostructures via multiple TAAP sequences were also presented.  
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Chapter 1.  Patterned Nanostructures from Particle 

Lithography   

I. Introduction 

 As the world advances into a new age of innovative technologies based on 

nanoscale machines and devices with potential applications in biology, medicine, 

catalysis, microelectronics and data storage, there is great demand for the 

development of nanoscale structures and arrays via efficient and reliable 

patterning methods, capable of producing arbitrarily shapes with high resolution 

and reproducibility. In particular, two-dimensional (2D) periodic nanometer 

structures on a solid surface exhibit interesting properties with applications in 

high performance microelectronic elements, optical and magnetic storage media, 

antireflective coatings, solar cells, molecular sensors, and physical masks for the 

fabrication of ordered nanostructure arrays via evaporation or reactive ion 

etching.  

A number of methods have been developed to pattern 2D nanostructures 

on surfaces, most of which can be characterized as either “bottom-up” or “top-

down” approaches. Bottom-up approaches rely on molecular or particle 

interactions to drive the nanostructure self-assembly. Top-down approaches 
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involve various lithographic methods to pattern micron and nanometer sized 

structures over large areas.1 Conventional lithographic techniques are well-

established and find wide use in industrial applications. Photolithography and its 

related analogues, x-ray or e-beam lithography, are by far the most widely used 

and highly developed of all technologies now practiced. The operational principle 

relies on the exposure of an appropriate material (resist) to electromagnetic 

radiation (e.g. UV or X-ray) to introduce a latent image, which is subsequently 

developed into relief structures through etching. In the case of writing with 

charged particles (electrons or ions) the task is accomplished using a beam or 

projected image of energetic particles rather than photons.2 Diffraction limitation 

has been long recognized as the main disadvantage of photolithography with 

respect to other patterning methods; however, significant progress in high 

resolution photolithography has been achieved in the past decade by the so-called 

“next generation” lithographic methods: immersion lithography,3,4 extreme 

ultraviolet (EUV) lithography,5,6 and molecular glass photoresists,7,8 among 

others. A review paper by Bratton et al.9 discusses some of these techniques with 

special reference to the microelectronic industry.    

In contrast to photolithography, scanning beam lithography is a serial 

process, which generally means longer processing times (this claim might be 

argued upon as photomasks required for photolithography are usually patterned 
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using scanning lithography); however, these techniques offer much higher 

resolution due to the fact that the de Broglie wavelengths of energetic particles are 

sufficiently short (< 0.1 nm) to minimize the effects of diffraction that typically 

limit photolithographic approaches.10 In particular, e-beam and focused ion beam 

lithography allow the fabrication of arbitrary patterns with sub-50 nm resolution, 

but the main tradeoff of decreasing the beam size to achieve high resolution 

patterning is the decrease in beam current, which in turn increases the time 

necessary to achieve the same imaging dose.1 X-ray lithography, on the other 

hand, has the advantage of parallel processing capabilities which significantly 

improves sample throughput, but requires substantially higher capital 

investment.11 

Scanning probe techniques (SPL) including atomic force microscopy 

(AFM), scanning tunneling microscopy (STM), and dip-pen lithography have also 

been proved successful to fabricate high-resolution nanostructures and 

nanodevices on various substrates.12-15 The technique resembles the stylus writing 

process in which a sharp edge (the tip of a cantilever) is used to draw patterns, to 

impart chemical functionality, and even to manipulate molecules and atoms with 

great precision. The ability to pattern features on a surface with atomic resolution 

makes SPL methods very attractive; however, the main drawback is the serial 

nature of the process, which results in long processing times. In order to 
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circumvent the problem of low throughput, semi-parallel approaches to SPL have 

been proposed where an array of probes is used instead of a single probe.16,17 The 

problem with these approaches is that they significantly increase the complexity 

and the cost associated with the process.  

In the past decade, molding and embossing techniques for nanopatterning 

have gained tremendous popularity as they provide an inexpensive way to pattern 

both inorganic and organic-based nanostructures over large areas of planar and 

non-planar substrates in a parallel fashion.1,2,18,19 Molding and embossing 

techniques utilize either a hard or a soft elastomeric master (usually PDMS) for 

pattern generation and transfer. Molding techniques such as step-and-flash imprint 

lithography (SFIL),20-23 replica molding (RM),24,25 microcontact printing (uCP),26 

microtransfer molding (uTM),27 and micromolding in capillaries (MIMIC)28 

involve curing a precursor (usually a monomer or prepolymer) against a 

topographically patterned master. Embossing, on the other hand, is the collective 

name for a set of lithographic techniques based on the imprinting of a 

topographically patterned mold into a flat polymer film. Nanoimprint lithography 

(NIL)29 and solvent-assisted micromolding (SAMIM)30 are examples of 

embossing.  

In general, the briefly-discussed top-down techniques offer the ability to 

create very small feature sizes in complex shapes and arrays, with high-fidelity of 
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reproduction. Major drawbacks, however, are the high cost of the equipment and 

the need for highly skilled personnel, as well as the long processing times 

(sometimes tens to thousands of hours depending on the process and application). 

Bottom-up approaches based on self-assembly phenomena constitute an 

alternative to top-down approaches. Bottom-up approaches rely on the self-

assembly of the so-called building blocks due to various forces (e.g. entropic 

interactions, electrostatic, hydrophobic, and van der Waals forces, hydrogen 

bonding, physical confinement,   electromagnetic and gravitational fields, etc.) 

acting individually or collectively on the system. A number of articles have been 

published on the subject of self-assembly with particular interest in self-

assembled monolayers (SAM’s), phase-separated block copolymers, and particle 

lithography.12,31-33  

The focus of this chapter is on the fabrication of organic and inorganic 

patterned nanostructures via particle lithography; an inexpensive, inherently 

parallel, high-throughput, and materials-general nanofabrication technique.34 

First, an overview of the history and evolution of particle lithography is presented, 

followed by a description of various methods developed to form 2D ordered 

arrays of colloidal particles on various surfaces. Next, the formation of patterned 

nanostructures from particle lithography is discussed with particular emphasis on 
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polymers, proteins, metals and semiconductor materials. Finally, the chapter is 

concluded with an overview of future challenges in particle lithography. 

 

II. History and Development of Particle Lithography 

In 1981, Fischer and Zingsheim35 were the first to use a monolayer of 

polystyrene latex spheres on a substrate as a lithographic mask for surface 

patterning.  They obtained colloidal monolayer domains of about 10 microns by 

drop-coating the sphere dispersion (10 wt %) on a glass slide. Platinum was then 

vacuum-deposited in the interstitial spaces between the spheres, and after removal 

of the latex spheres by sonication in benzene, an ordered platinum array was 

obtained. In a subsequent step, they infiltrated the platinum pattern with an epoxy 

resin (araldite). After polymerization and removal of the glass support with 

hydrofluoric acid, a conformable mask consisting of a metallic pattern embedded 

in a smooth polymer film was obtained. These masks were then used to 

demonstrate pattern replication capabilities with visible light on a negative 

photoresist and onto a molecular dye layer with nanometer resolution.  

The work by Fischer and colleagues mainly focused on the imaging 

method and the resolution capabilities of visible light; however, not much 

emphasis was placed on the importance of particle lithography as a pattern 
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fabrication technique. A major breakthrough in the field of particle lithography 

took place a year later, in 1982, when Deckman and Dunsmuir proposed the so-

called “Natural Lithography” technique, a form of microfabrication based on the 

use of spherical colloidal particles as etching or deposition masks.36 In their work, 

the authors reported the fabrication of ordered arrays of silicon posts via reactive 

ion milling on a silicon wafer masked with a densely packed, spin-cast monolayer 

of 400 nm PS spheres. Triangular silver posts were also fabricated by metal 

evaporation in the interstices of the polymer mask followed by removal of the 

latex spheres in methylene chloride. The importance of controlling various 

fabrication parameters such as the concentration and rheology of the latex 

dispersion, and the spheres/substrate surface chemistry and charge was discussed 

in the paper. Particular emphasis was given to the requirement that the colloid wet 

the substrate, and that the spin speed be optimized so as to avoid multilayer or 

incomplete coverage of the surface. However, they did not provide a systematic 

study of the factors causing packing defects in the colloidal monolayer. 

In later publications, Deckman and co-workers37,38 continued to expand 

the scope of natural lithography by pursuing control over various parameters of 

the assembly process, as well as by exploring new applications of surface textures 

produced via natural lithography, such as sake cup and oyster-like etch profiles 

obtained through localized charging and self-shadowing effects on mosaic arrays 
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of 0.8 um polystyrene spheres. The resulting nanostructures showed potential 

applications as etching diagnostic tools to determine uniformity, selectivity and 

directionality in various etching processes. In addition, the authors monitored the 

time evolution of multiple layer colloidal aggregates and the ordering process by 

optically measuring the intensity of a HeNe laser beam specularly reflected from 

the spinning substrate. They observed a sudden increase in the viscosity of the 

colloidal dispersion and ordering when the fluid layer thickness was 1-2 um. 

Based on this observation, they hypothesized that micron sized surface patterns 

should produce graphoepitaxial effects. As a matter of fact, graphoepitaxial 

effects were indeed observed with deep and shallow groove gratings. Moreover, 

the effects were accentuated when the grating periodicity and groove width were 

an integral multiple of the sphere diameter.  This work constitutes an important 

contribution to the field of particle lithography as it laid the foundation for what is 

known today as template-assisted particle lithography. This topic is further 

discussed in a later section of this chapter.  

Almost a decade later, inspired by the seminal work of Fischer35 and 

Deckman,39 Van Duyne and co-workers34 introduced the concept of “Nanosphere 

Lithography” (NSL), a more operationally descriptive term that extended the 

capabilities of natural lithography, making possible the fabrication of periodic 

particle array (PPA) surfaces having nanometer scale features from single and 
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double layer colloidal masks. Van Duyne’s group demonstrated the flexibility of 

NSL as a material general fabrication process by varying both the substrate and 

the particle materials used. They successfully patterned metals, inorganic ionic 

insulators, and an organic pi-electron semiconductor on various substrates 

including metal insulator, and semiconductor materials. Moreover, they 

introduced for the first time the use of atomic force microscopy (AFM) for studies 

of single and double layer masks formation via NSL.  

Another key contribution to the development of particle lithography is the 

work by Nagayama’s group which resulted in a better understanding of the 

mechanism driving the formation of 2D hexagonal arrays of micron, and sub-

micron size latex particles on various surfaces.40-47 By using an optical 

microscope, Nagayama and collaborators followed the self-assembly process that 

takes place when a droplet of a colloid dispersion is let to evaporate slowly on a 

flat substrate encircled by a Teflon ring. From their observations, they concluded 

that a nucleus consisting of a few spheres packed in an ordered fashion starts to 

form when the thickness of the liquid film approaches the diameter of the 

colloidal particles, and that more particles are subsequently incorporated into the 

colloidal arrangement by convective transport due to attractive capillary forces 

acting laterally on the particles as the liquid layer evaporates.  
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A comprehensive study of the role of various parameters affecting the 

particle array formation was presented in 1992 by Denkov et al.40 Among the 

factors discussed are the effect of particle size and concentration, liquid 

evaporation rate (proportional to temperature and relative humidity), meniscus 

shape, presence of surfactants and ionic strength of the solution, and surface 

wettability. In 1999, a similar study by Dushkin et al.41 evaluated the effect of 

growth conditions (i.e. evaporation rate, meniscus profile, particle size and 

concentration, and substrate quality) on the structure of 2D latex crystals by 

means of various microscopic methods: optical microscopy, transmission and 

scanning electron microscopy, surface plasmon resonance microscopy, and 

atomic force microscopy. The study suggested that the onset of the nucleation 

process was the thinning of the suspension film and the consequent increase in 

particle concentration as water evaporated from the substrate. Then, once the 

nucleus is formed, the crystal growth is mainly governed by the evaporation rate 

and the meniscus profile. Experimental observations by Dushkin et al. concerning 

the nucleation and growth of 2D colloidal crystals on a solid substrate were 

successfully modeled by Maenosono et al.42 using a discrete element simulation 

approach. A schematic of the mechanism of 2D colloidal crystal formation as 

proposed by Nagayama’s group is shown in Figure 1.1.   
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Figure 1.1. Schematic of 2D colloidal particle assembly driven by: a) convective 
flow, and b) lateral capillary forces resulting from surface tension and 
deformation of the water surface. Reprinted with permission from Ref.43 
Copyright @Elsevier Ltd. 
 

Early work in particle lithography brought forth its tremendous potential 

as a nanofabrication technique. Since its origins, new methods have been 

developed to form large (in the order of cm2), 2D ordered arrays of colloidal 

particles on different substrates with very few defects. In the following section we 

describe some of these deposition techniques. 

 

III. Methods to Form 2D Ordered Arrays of Colloidal Particles 

3.1. Convective Assembly of Colloids 
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 As proposed by Nagayama et al.,48 when a droplet of a colloidal dispersion 

is allowed to evaporate slowly on a flat substrate, under the right conditions 

lateral capillary forces acting on the particles cause them to self-assemble into 2D 

close-packed hexagonal arrays exhibiting polycrystalline domains of the order of 

a few hundreds of microns. Denkov et al.40 were the first group to employ the 

controlled evaporative method to study the mechanism of formation of 2D 

colloidal arrays on a flat substrate. Specifically, they used a crystallization cell 

equipped with a Teflon ring tightly secured onto a glass substrate by an annular 

brass plate. A drop of the colloid dispersion of known volume and concentration 

was spread over the glass substrate encircled by the Teflon ring, and the water 

evaporation rate was controlled by adjusting the temperature of an upper glass 

cover plate. The crystallization process was followed by direct imaging with a 

light microscope fitted underneath the crystallization device. Relatively large PS 

latex particles (0.8 um and 1.7 um) were used in this study. Sodium dodecyl 

sulfate (SDS) and hexadecyltrimethylammonium bromide (HTAB) surfactants 

were used to enhance the wettability of the substrate by the sphere dispersion, and 

to slow down the liquid evaporation rate. Crystalline arrays with fewer defects 

were found for an optimum surfactant concentration.   

 A slight variation of Nagayama’s radial evaporation method was recently 

employed by Tessier et al.49 to form colloidal crystals consisting of a mixture of 
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latex and gold particles.  The modified version of the crystallization cell used a 

thin piece of reinforced fluoroelastomer instead of a Teflon ring, mounted on a 

glass slide clamped between two steel plates. In both devices, the formation of a 

meniscus that is thinnest in the center of the cell is the key parameter for the 

nucleation of the colloidal crystal at the center of the cell.  

 Another variation of Nagayama’s method was proposed by Micheletto et 

al.50 In this technique, a droplet of the sphere dispersion is allowed to evaporate 

slowly onto a flat substrate, but instead of confining the dispersion to the 

boundaries of a Teflon ring, the substrate is tilted about 9o. The quality of the 

monolayers was found to be a strong function of the tilt angle and the water 

evaporation rate, which was controlled by adjusting the temperature of the 

substrate resting on a Peltier cell. The whole system was enclosed in a small 

plastic box to prevent sample contamination and instabilities in the evaporation 

rate due to external air flow. This work deserves special recognition as the first to 

achieve ordered monolayers of nanometer size colloidal particles (42 nm in 

diameter) on a substrate. Due to its simplicity, Micheletto’s method has been 

widely implemented by several groups; however, it often results in very low 

monolayer coverage (about 50%), with incomplete coverage and multiple layers 

observed throughout the surface. 
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 Recognizing the importance of the substrate tilting angle on the meniscus 

profile and the growth of thin particle arrays, Dimitrov and Nagayama51 proposed 

a dipping technique in which ordered, thin particle arrays are formed on a 

substrate by submersion and subsequent withdrawal of a clean substrate from the 

colloidal dispersion at a constant rate. The driving force in this method is water 

evaporation, which pulls the particles from the bulk into the meniscus in the 

vicinity of the three-phase contact line. For this process to work effectively, not 

only the dispersion must wet the substrate, but also the wetting film must 

approach the diameter of the particles. In addition, the particles must have enough 

mobility to slide on the substrate and find their position within the growing crystal 

before the liquid evaporates completely. For this reason, strongly adsorbing 

particles must be avoided. The particles must be monodisperse, and sufficiently 

stable in the dispersion to avoid precipitation or agglomerate formation. 

Moreover, the evaporation rate must be sufficiently slow to provide enough time 

for the particles to find their position of minimum free energy which is typically 

done by water saturating the air in contact with the substrate. 

 At a glance, this technique resembles the well-known Langmuir-Blodgett 

(LB) technique, with the difference that the particle monolayer is formed directly 

on the substrate while in contact with particles in the bulk; whereas in the LB 

technique, the monolayer is first formed at the air-liquid interface and then 
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transferred onto the substrate.  Practically, the bulk technique does not require that 

spheres are aggregated at the air-liquid interface; in the same manner, the 

concentration of spheres in the bulk must be large enough to cover the surface.  

Formation of the monolayer in the bulk rather than at the air-liquid interface 

eliminates the need for insoluble particles, or particles attached to an insoluble 

film. Another advantage is that infinitely large surfaces could be coated in theory, 

without the risk of particle depletion. This is not the case when monolayers are 

formed at the air-liquid interface, where the number of particles available is 

limited to the area of the interface. Using this approach, Dimitrov and Nagayama 

were able to form polycrystalline monolayers of PS latex particles on glass 

substrates for a wide range of particles sizes (80 nm to 2 um), over large areas (in 

the order of cm2). 

  

3.2. Colloidal Assembly via Spin-Coating 

 The evaporation process driving the self-assembly of colloidal particles in 

thin liquid films can be accelerated in a controlled fashion by placing a small 

amount of the particle dispersion on a substrate rotating at relatively high speeds 

(e.g. 3000-4000 rpm).  In this manner, colloidal monolayers have been formed 

over large areas of a substrate (of the order of cm2) in times as short as a few 
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seconds. The technique is relatively simple and does not require the use of 

expensive or complex equipment. However, in order to obtain optimum results, 

several parameters need to be controlled; in particular, the colloidal suspension 

must wet the substrate, for that reason surfactants and other surface active agents 

are mixed with the sphere dispersion. Also, there must be a strong electrostatic 

repulsion between the colloids and the substrate, otherwise particles tend to 

aggregate on the substrate. Another important variable is the spinning speed; if 

the speed velocity is too low a multilayer coating will be produced, and if the 

speed is too high, incomplete coverage and defects are usually observed. Other 

factors such as the rheology of the particle dispersion, particle size and 

concentration, and colloid substrate interactions must be optimized for each 

system. Given the number of variables playing a role in the assembly process, 

control over the process can be cumbersome. The spin-coating method has long 

been used to form colloidal monolayers on a solid substrate, in particular for 

lithographic mask applications.34,36,37,52,53

 

3.3. Colloidal Assembly at the Air-Liquid Interface 

 The formation of stable monolayers of colloidal particles at the air-liquid 

interface and subsequent transferring onto a solid support has been widely 
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implemented by a number of research groups as a mean to form 2D ordered 

colloidal arrays on various substrates. Although most processes involve some sort 

of dipping technique to transfer the monolayer initially formed at the air-liquid 

interface onto the substrate, this process must not be confused with the dipping 

technique reported by Dimitrov and Nagayama,51 in which monolayer formation 

takes place directly on the substrate while immersed in the bulk solution. 

Furthermore, unlike the convective assembly of colloids in thin liquid films where 

the assembly process is driven by capillary forces and convective transport; 

colloidal assembly at the air-liquid interface is driven by long-range forces acting 

on dipoles induced by the asymmetry of the interface between the liquid surface 

and partially immersed particles. As expected from the nature of the process, the 

assembly of colloidal particles at the air-liquid interface is highly dependent on 

the surface chemistry and charge of the particles, as well as the electrolytic 

properties of the underlying liquid. In general, a spreading agent (e.g. alcohol, 

surfactant, polymer, etc.) is used to ensure not only the partition of the spheres to 

the air-liquid interface, but also the stability of the monolayer once formed.  Other 

factors such as particle size and concentration, as well as the chemistry of the 

transferring substrate are also found to affect the quality of the monolayer formed.  

 A comprehensive study of the aggregation of silica microspheres (300 nm 

in diameter) at the air-water interface was conducted by Hurd and Schaefer54 
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using optical microscopy. Monolayers were prepared according to the spreading 

method proposed by Goodwin et al.,55 in which a dispersion of latex particles in 

methanol is dispensed dropwise onto the surface of a calcium chloride solution 

(1.0 N) contained in a Langmuir trough.  

 Fulda and Tieke56 employed the traditional Langmuir-Blodgett (LB) 

technique to form relatively close packed monolayers of 0.5 um latex particles 

consisting of a polystyrene core and a hydrophobic shell of poly(acrylic acid) or 

poly(acrylamide) on copper substrates, using ethanol as the spreading agent. 

Particle monolayers were also transferred using the sub-phase lowering method 

(SL) developed by Araki et al.,57 in which the liquid level is lowered by means of 

a faucet until the particle monolayer contacts the substrate. Surface-pressure area 

isotherms of the monolayers at the air-water interface were correlated with SEM 

micrographs of the monolayers on the solid supports. Monolayers of higher 

quality resulted when the SL method was used to transfer the monolayer from the 

air-water interface to the substrate. 

 As demonstrated by Bardosova et al.,58 and Kondo et al.,59 ordered 

monolayers of colloidal particles can also be formed at the air-liquid interface by 

controlling the surface chemistry of the colloidal particles. In Bardosova’s paper, 

silica particles were made hydrophobic by reacting them with 3-

(trimethhoxysilyl)propyl methacrylate. A dispersion of the modified particles in 
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chloroform was spread at the air-water interface, and the LB technique was used 

to transfer a close-packed monolayer onto the substrate at an optimum surface 

pressure.  On the other hand, Kondo and co-workers utilized the spreading 

technique proposed by Goodwin et al.55 to study the effect of coating silica 

particles (1 um in diameter) with alkoxyl chains of different length, on the 

formation of ordered monolayers at the air-benzene interface. Using the LB 

technique, they transferred the monolayers onto mica substrates and assessed the 

quality of the monolayers with SEM. Experimental results indicate that large, 

polycrystalline monolayers result when silica particles are coated with dodecanol, 

whereas incomplete surface coverage and fractal films resulted when the particles 

were coated with butanol and decanol. The authors related the difference in 

monolayer structure to the interparticle forces at the air-liquid interface, which 

can be controlled by adjusting the degree of immersion or the range of the 

repulsive interaction. Moreover, the authors concluded that attractive forces 

among particles must be sufficiently weak to allow the formation of 

rearrangement of ordered domains during film drying. 

 The use of organic layers to assemble particles at the air-liquid interface 

has been reported by several groups. Aveyard et al.,60,61 for example, carried out 

an in-depth study of the structure of monolayers of micron-sized polystyrene latex 

spheres at the octane-water, and octane-aqueous surfactant solution interface as a 
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function of compression using a Langmuir trough; however no attempt was made 

to transfer the monolayers onto a solid support. Goldenberg et al.,62 on the other 

hand, successfully prepared close-packed arrays of latex and silica particles in the 

range of 0.74 um to 1.7 um, onto hexane or heptane thin layers on water. The 

monolayers were subsequently transferred onto glass slides by either lowering the 

liquid level in a fashion similar to the sub-phase lowering method (SL) developed 

by Araki et al.,57 or by lifting up the substrate through the monolayer. The study 

involved a variety of colloidal particles including monodispersed polystyrene 

latex, core-shell particles of polystyrene-2-hydroxyethyl methacrylate (PS-

HEMA), and polystyrene-2,3-epoxypropylmethacrylate (PS-EPMA), as well as 

plain silica particles. Experimental data confirms the presence of highly ordered 

hexagonal structures at the air-alkane interface, and points out the importance of 

the organic layer in providing the ground for strong repulsive interactions 

responsible for the formation of high quality monolayers.   

 Another popular method to assemble monolayers of colloidal particles at 

the air-liquid interface involves the use of surfactants as stabilizing agents. In a 

paper by Weitz et al.,63 2D colloidal crystals were formed when aqueous 

dispersions of negatively-charged polystyrene latex were combined with a 

mixture of cationic, didodecyldimethylammonium bromide (DDAB), and a 

neutral surfactant (Triton X-100). The surfactant mixture self-assembled into 
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positively-charged vesicles, which promoted particle adhesion via columbic 

interactions. In this manner, particle adsorption onto the vesicle’s surface was 

driven by charge neutralization, and the overall process was self-limited by lateral 

charge migration, which reverses the vesicle’s charge to prevent multiple layer 

adsorption. 

 Van Duffel et al.64 have assembled ammonium-functionalized silica 

spheres into 2D colloidal arrays of at the air-chloroform interface using a mixture 

of sodium dodecyl sulfate (SDS) and ethanol as the spreading agent. They used 

the traditional LB technique to transfer the monolayers onto glass and SiO2 

wafers, and determined the lattice constant of the crystal array by atomic force 

microscopy and optical diffraction measurements. The authors stated that no films 

could be prepared in the absence of SDS; however, no explanation was given on 

the role of the surfactant in driving the assembly process.  

 More recently, Marquez and Grady65 carried out a study of the formation 

of 2D hexagonal arrays of latex spheres on highly ordered pyrolytic graphite 

(HOPG) using a slight variation of the conventional LB technique, in which 

various spreading agents (e.g. polymers and  surfactants), were used instead of 

floating barriers, to drive the assembly of colloidal particles at the air-liquid 

interface. More details on this study can be found in chapter 2.   
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3.4. Colloidal Assembly via the Use of Electric and Magnetic Fields 

 The phenomenon of electrophoresis, i.e. the ability to move particles via 

an electric field,  was discovered in 1807 by Ruess66 while experimenting with 

particle transport in aqueous dispersions of clay. Early experiments on 

electrophoretic deposition can be traced back to the work of Hamaker67 in 1940, 

and the development of a theory for particle transport near a substrate in the 

presence of an external field, by Koelmans and Overbeek68 in 1954. Thirty years 

later, Richetti and co-workers69 reported the use of an electric field to assemble 

colloidal latex particles into 2D crystalline arrays.  Since the seminal work by 

Richetti et al., many studies have been carried out on the formation of ordered 

monolayers of colloidal particles on conductive substrates using external electric 

fields. Giersig and Mulvaney,70,71 for example, reported the preparation of 2D 

ordered gold colloid lattices via electrophoretic deposition of citrate-stabilized 

and alkanethiol-capped gold nanoparticles (14 nm in diameter) on carbon-coated 

copper mesh grids. Electrophoresis times in the range of 1-2 min, and small 

electric fields (less than +1 V cm-1) were used in the preparation of monolayers 

with crystalline domain sizes of about 1-2 microns over a few hundred squared 

microns. Longer times or significantly higher applied voltages (> 50 mV) resulted 

in multiple layer coverage. In every case, a significant portion of the substrate 
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showed incomplete surface coverage due to tear and ripping of the monolayer 

during solvent evaporation. 

 Electron-beam diffraction measurements of the lattice spacing suggested 

that particle ordering is mainly determined by the size of the surface adsorbates 

(i.e. the citrate ions and alkanethiols), and that the crystallographic orientation of 

the colloids plays no significant role. These results are consistent with 

experimental results by Schmid et al.72 for triphenylphosphine-capped gold 

monolayers.  

 In addition to the assembly of gold nanoparticles, submicron sized (0.44 

um in diameter) negatively charged latex spheres were successfully arranged into 

hexagonal close-packed monolayer and bilayers using stronger electric fields (i.e. 

+2 V cm-1 and +5 V cm-1). These results opened up an alternative to the use of 

air-liquid monolayers and the LB technique for the fabrication of optical devices 

based on 2D ordered arrays of semiconductor nanoparticles.71  

 In an attempt to better understand the mechanism of nucleation and 

growth of colloid lattices via electrophoretic assembly, Giersig and Mulvaney 

studied the evolution of aggregate formation in solution as a function of the 

polarization time for trisodium citrated stabilized gold nanoparticles. They found 

that after 5 s, only a small fraction of the carbon-coated copper grids had been 

 23



covered with randomly distributed isolated particles. The onset of particle 

aggregation took place at 10 s, and 5 s later, island formation was clearly evident. 

After 35 s, the small islands or domains had already coalesced, covering a 

significantly portion of the copper grid. The authors explained their observations 

in terms of the reduction of the diffuse layer repulsion between the negatively 

charged gold particles upon adsorption, due to shielding of the particles surface 

charge by the positive charge on the carbon electrode. Thus, the particles migrate 

over the grid surface until they find available sites with the highest positive 

electrostatic potential, which corresponds to the greatest gain in Gibbs free 

energy. As the small ordered domains coalesce, a polycrystalline monolayer 

results due to the inability of the particles to rotate or realign once they find their 

place within the colloidal lattice. 

 Important contributions to the field of electrophoretic assembly of colloids 

have been  provided by the works of Bohmer73,74 and Aksay75,76 on particle 

clustering and pattern formation in the presence of external fields. A 

hydrodynamic model based on electroosmotic flow around charged particles near 

electrode surfaces has been proposed by Bohmer et al.73 to explain the long range 

interactions responsible for cluster formation of equally charged particles during 

electrophoretic deposition. As explained by the authors, a charged particle near or 

on a flat conducting surface creates flow in the adjacent fluid due to 
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electroosmosis about the particle’s surface. Fluid is drawn laterally toward the 

particle near the electrode and pushed outward from the particle farther away 

from the electrode above the particle. This electrokinetic effect resulting from the 

deformation of the equilibrium diffuse layer is responsible for the transport of 

other particles present in the flow field towards already deposited particle rafts. 

When the potential is reversed, the direction of the flow reverses also, resulting is 

disruption and deagglomeration of particle aggregates as evidenced 

experimentally.  

 Aksay et al.,75 on the other hand, have explained particle aggregation in 

terms of an electrohydrodynamic flow theory based on concentration gradients 

arising from electrode reactions and ionic transport through the solution. 

Furthermore, they demonstrated that the assembly process could be modulated by 

adjusting the frequency or the strength of the applied electric field.  Using this 

technique they were able to fabricate ordered monolayer and multilayer close-

packed colloidal arrays of silica, polystyrene, and gold particles in the range of 

16nm to 2 um, with both dc and ac fields.76 More recently, Aksay et al.77 have 

proposed a novel method to form ordered arrays of micon-sized colloidal particles 

with optically tunable patterns via electrophoretic deposition in the presence of an 

ultraviolet illumination motif made using photochemically sensitive 

semiconductor materials. As suggested by the electrodynamic and the 
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electroosmotic theories, particle mobility increases with an increase in the current 

density and the field strength; hence, illumination of an ITO electrode with UV 

light should result in enhanced particle migration from darkened areas into lighted 

regions on photolithographically patterned ITO substrates.  

 Dielectrophoretic assembly of oriented and switchable 2D colloidal 

crystals of polystyrene latex and silica particles (0.5 um in diameter) has been 

recently reported by Velev et al.78 The technique involves the use of a cell in 

which both electrodes are placed on the same side of the suspension, such that the 

particles assemble in the planar gap between them as shown in the schematic in 

Figure 1.2. One of the advantages of this process is that colloidal arrays can be 

formed extremely fast (in most cases the assembly process takes only a few 

seconds). Additionally, the controlled modulation of the electrostatic repulsion via 

electrolyte concentration can be used to control the lattice spacing, i.e. the 

distance between adjacent particles, with a precision of approximately 10 nm.    
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Figure 1.2. Schematic of set up for colloidal assembly using external electric 
fields. Reprinted with permission from Ref.78 Copyright @American Institute of 
Physics. 
 

 A comparative study of the quality of colloidal monolayers formed via 

convective self-assembly in inclined planes, and under the influence of a periodic 

electric field, has been carried out by Schope.79 The study revealed that higher 

quality monolayers can be achieved by applying a periodic shearing electric field 

perpendicular to the crystal growth direction. In particular, the area of the 

maximum monocrystalline regions was increased from 0.33 mm2 to 1 mm2 with 

respect to the convective self-assembly method. Also, the percentage of bad spots 

due to grain boundaries or missing spheres was decreased by an order of 

magnitude when an external electric field was used to direct the colloidal self-

assembly. Moreover, Schope demonstrated that the number of dislocations 

 27



produced by polydispersity, aggregates, or even dust particles was slightly 

reduced, and that dislocations formed could be annealed during the growth of the 

monolayer, so their overall length can be substantially reduced. 

 The assembly of paramagnetic colloidal particles using magnetic fields 

has also been explored by Dimitrov et al.80  When a magnetic field was applied 

normally to the interface (i.e. air-water or glass-water), non close-packed 

hexagonal arrays with interparticle distances ranging from 6 to 10 fold the 

diameter of the particles were observed at the interface. The interparticle distance 

was found to depend strongly on the distance between the interface and the 

magnet, the particle concentration and the concentration of added electrolytes. 

Experimental results were explained in terms of three main acting forces: 1) The 

magnetic field which attracted the particles toward the axis of symmetry at the 

interface; 2) Dipole-dipole magnetic repulsion forces between the particles; and 3) 

electrostatic repulsion forces due to the presence of negatively charged groups on 

the particles surface.81   

 

3.5. Other Methods 

 Rapid assembly of colloidal particles and protein monolayers using a 

Dynamic Thin Laminar Flow (DTLF) apparatus has been proposed by Picard et 
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al.82-84 The method relies on the hydrodynamic properties of thin laminar flow, 

and the assembly of particles at the air-liquid interface due to Brownian motion 

and convective evaporation. The DTLF apparatus consists of a rotating glass 

cylinder and a PTFE hemicylindrical trough equipped with six channels designed 

to control the subphase volume input, the pH, and the thin liquid film carrying the 

suspended colloidal particles on the surface of the cylinder. The whole device is 

mounted on a microscope stage to allow for direct observation of the monolayer 

formation. In a typical run, a known volume of the particle dispersion is gradually 

injected until the surface of the cylinder is completely covered with particles. 

Then, a water film on a wet hydrophilic substrate is brought in contact with the 

liquid on the cylinder, and when the two water films converge due to capillary 

effects, the colloidal monolayer gets transfer onto the substrate of interest. As the 

liquid film on the substrate evaporates through the particle monolayer, the 

monolayer finally contacts the surface of the substrate. This method for 

monolayer transferring has been coined horizontal deposition.84 

 Experimental results with sulfate stabilized and carboxyl-terminated 

polystyrene latex particles with particle sizes in the range of 53 nm to 6 um, 

indicated that the ordering process in the DTLF method depends strongly on the 

electrostatic interactions among the particles in the bulk, which can be controlled 

by adjusting the pH or the salinity of the liquid subphase. As a matter of fact, at 
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neutral pH the strong repulsive forces on the particles surface prevented 

monolayer formation; while at pH 4.0, the net charge on the particles surface was 

such that particles effectively partitioned to the air-liquid interface on the cylinder 

surface, and ordered monolayers formed on the substrate. Further reduction of the 

pH to 3.5 caused the particles to agglomerate and fractal structures resulted. 

Similar effects were observed when varying the electrolyte concentration.    

 In order to expand the flexibility of the DTLF method as a mean to 

produce particle monolayers on various substrates (e.g. glass plates, plastic films 

and metallic surfaces), Picard85 suggested an improved version of the DTLF 

apparatus which allowed automated control of the rotational and translational 

movement of the cylindrical rod over large areas (potentially in the order of m2) 

using a set of electrical motors. In this respect, particle monolayers were 

fabricated using two main operating modes depending on whether the substrate 

was hydrophobic or hydrophilic: In the first mode (i.e. the hydrophilic mode), the 

cylinder rotates in a direction opposite to the horizontal translation, and the 

particle monolayer is transferred from the air-liquid interface to the solid support 

by surface pressure effects at the liquid meniscus. In the second mode, most 

applicable to highly hydrophobic surfaces, the rotational and translational 

directions are set equal so that the hydrophobic surfaces of the particles and the 

substrate are in close proximity (a 100 um gap between the monolayer and the 

 30



substrate is maintained to prevent disruption of the monolayer ordering). Multiple 

layers were also achieved by carefully combining both deposition modes. A 

schematic of the process is shown in Figure 1.3. 

 
 

Figure 1.3. Schematic of the Dynamic Thin Laminar Flow (DTLF) apparatus 
working in: a) hydrophilic, and b) hydrophobic mode. Reprinted with permission 
from Ref.85 Copyright @American Chemical Society. 
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 It is important to note that although the modified version of the DTLF 

apparatus provided more control over the deposition process; the quality of the 

monolayers fabricated did not improve significantly with respect to earlier version 

of the DTLF device. As a matter of fact, fractal structures were observed in most 

cases, with a few exceptions in which 2D crystalline structures were obtained 

upon addition of glycerol. At the right concentration, glycerol served as a 

lubricant facilitating the sliding and rearrangement of particles on the surface. 

Concentrations other than the optimum resulted in fractal monolayers.  

 The use of a flow cell to fabricate close-packed arrays of mesoscale 

particles over large areas (ca. 1 cm2) has been reported by Park and Xia.86,87 The 

apparatus consists of a patterned photoresist material tightly sandwiched between 

two glass slides, and an opening fitted with a glass pipe connected to a rubber 

tube for the injection of the particle dispersion, and subsequent compression using 

a positive N2 pressure. The cell is designed to have a number of channels with 

prefixed dimensions, which serve to direct the assembly of the colloids under the 

combined effect of the nitrogen flow and sonication. Once the assembly process 

has been completed, the system is dried in an oven at 65oC for 4h approximately, 

and a close-packed array is left on the bottom surface of the cell.  Using this 

method, Xia and co-workers were able to form crystalline arrays for a number of 

different colloids including silica, polystyrene and poly(methyl methacrylate) 
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particles with diameters in the range of 60 nm to 10 um. One of the advantages of 

the flow cell method is that the technique is relatively insensitive to the chemical 

composition and the surface properties of the colloids; however, other 

complications can take place such as the disruption of the particle array during 

opening of the flow cell, or defects arising from instabilities in the flow of the 

particles through the small grooves in the cell.  

 Another method for the rapid and controlled deposition of crystalline 

arrays of colloidal particles on flat surfaces has been proposed by Prevo and 

Velev.88 In this technique, commonly referred to as the controlled spreading 

method, a small volume (i.e. 10 uL) of the particle dispersion is dispensed 

between two glass plates connected at a 30o angle, and the close-packed array 

results when the particles are uniformly distributed on the bottom surface by the 

horizontal displacement of the upper plate at constant speed (in the range of 1-200 

um/s) by means of an electric motor. A schematic of the process is shown in 

Figure 1.4.  
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Figure 1.4. Schematic of particle assembly via the controlled spreading method. 
Reprinted with permission from Ref.88 Copyright @American Chemical Society. 
 

 Velev’s method resembles the convective assembly method first proposed 

by Nagayama et al.,48 with the advantage that the deposition process is faster and 

it can be more precisely controlled by adjusting the angle and the traveling speed 

of the upper plate. Unlike Nagayama’s method, the evaporation rate does not 

seem to have a significant effect on the quality of the arrays formed via the 

spreading technique. On the other hand, the deposition speed (i.e. the speed at 

which the upper plate moves relative to the bottom plate) was found to be the 
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most critical parameter in the process. Experimental results suggest that for a 

given particle volume fraction, there exists an optimum velocity, coined “the 

natural assembly speed of a monolayer,” for which uniform polycrystalline 

monolayers with domain sizes in the range of 100-250 um form over large areas 

of the substrate (i.e. a few tens of squared centimeters). Higher deposition 

velocities result in incomplete monolayer coverage, whereas velocities much 

slower than the optimum deposition speed produce multiple layers of different 

thicknesses. Moreover, the deposition speed is convoluted with the particle 

volume fraction. In general, working at higher particle volume fractions allows 

the deposition speed to be increased, while preserving the quality of the 

monolayer produced. Operational diagrams relating the coating thickness and 

structure to the deposition parameters (particle volume fraction, and deposition 

speed), have been constructed from the experimental data thus making the process 

highly scalable for industrial applications.  

 More recently, Pan et al.89 have proposed a novel method to assemble 

polystyrene latex particles into large area (of the order of cm2), close-packed 

monolayers on a vortical water surface. The method is rather simple; it consists of 

a Teflon ring floating on the surface of a beaker filled with water. A magnetic 

stirrer is used to generate a vortex, and a small amount of the particles previously 

dispersed in ethanol is carefully dropped into the vortex. The combined effect of 
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the velocity gradient generated by the water motion and the centrifugal action of 

the stirring cause the particles to assemble into a close-packed monolayer at the 

vortex center. Once the monolayer is formed at the air-liquid interface, the 

underlying water volume is drained out of the beaker and replaced with clean 

water so that only the particles forming the monolayer are transferred onto the 

solid support by a simple dip-coating process as illustrated in the schematic in 

Figure 1.5.  

 
 

Figure 1.5. Schematics of colloidal assembly via the vortex method. Reprinted 
with permission from Ref.89 Copyright @American Chemical Society. 
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 The generality of the vortex method has been proved for different systems, 

including colloidal particles with different diameters in the range of 0.8-2 um, and 

substrates consisting of different materials (e.g. glass, silicon wafers and 

polystyrene), and different shapes (e.g. glass fibers, glass tubes, spherical 

surfaces, etc.). In addition to close-packed monolayers, multiple layers can also be 

fabricated by performing multiple dipping steps; however, the substrate must be 

dry prior to its immersion into the liquid in order to avoid the detachment of 

previously deposited layers. Another parameter of paramount importance in the 

vortex method is the rotation speed of the magnetic stirrer, which needs to be 

carefully controlled so as to avoid the collapse of the particle monolayer, and/or 

excessive turbulence of the water due to the migration of latex particles from the 

air-liquid interface into the bulk liquid. In this study the optimum stirring speed 

was found to be 120 rpm; however, this value is expected to change significantly 

depending on the water volume and the stirrer paddle size. Furthermore, care must 

be taken to avoid disruption of the monolayer during the water replacement step. 

This step is not trivial and may require a fair amount of trial and error to be 

performed adequately. In addition, all other considerations pertaining to the 

quality of the substrate (wetting characteristics, roughness, chemical and charge 

homogeneity, etc.), as well as the interaction between the colloids and the 

substrate, are applicable to the vortex method. 
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 Non-close packed, 2D hexagonal arrays of colloidal particles have been 

achieved by Jiang et al.90,91 by spin-coating a dispersion of silica colloids and a 

photopolymerizable monomer (ethoxylated trimethylolpropane triacrylate-

ETPTA) onto a silicon wafer previously treated with 3-acryloxypropyl 

trichlorosilane (APTCS). As shown in Figure 1.6, the technique offers the 

flexibility of producing colloidal crystal-polymer nanocomposites or non close-

packed hexagonal arrays of colloidal particles on a given substrate, after removal 

of the polymer film by oxygen plasma etching or dissolution in hydrofluoric acid. 

The non close-packed arrays are believed to form as the result of normal pressures 

produced by spin-coating and monomer photopolymerization, which push the 

particles against the substrate.92   In addition to non close-packed arrays, colloidal 

patterns with more complex shapes have also been prepared via the so-called 

template-assisted particle lithography, a technique that relies on the use of 

lithographically-produced surface relief features to direct the assembly of highly 

structured colloids through capillary and electrophoretic forces, electrostatic 

interactions, and wetting effects, among others.93-100
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Figure 1.6. Typical SEM images a) cross-sectional view, and b) top-view of a 
non close-packed monolayer colloidal crystal-polymer nanocomposite made by 
spin coating. Reprinted with permission from Ref.90 Copyright @American 
Institute of Physics. 
  

IV. Two-Dimensional Patterning via Particle Lithography 

4.1. Patterning of Metallic Materials 

 The pioneer work of Hulteen and Van Duyne34 in 1995 demonstrated the 

potential of nanosphere lithography as a material general process for the 

fabrication of patterned nanostructures on a substrate. Well-ordered, 2D particle 

arrays were successfully obtained for a variety of materials including Ag, CaF2, 

and cobal phthalocyanine (CoPc), on substrates such as mica, Si(100), Si(111), 

and Cu. The process involved three main steps: First, the mask (monolayer or 

double layer) was assembled on the substrate of interest by spin-coating a 

dispersion of polystyrene latex spheres in a mixture of non-ionic surfactant 
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(Triton x-100) and methanol. Second, the material was vacuum deposited on the 

surface in the interstitial spaces between the spheres. The amount of material and 

the deposition rate were followed using a quartz-crystal microbalance. In the final 

step the spheres were lifted off from the surface by sonicating in methylene 

chloride for a few minutes. When the deposited material (e.g. CoPc) was soluble 

in CH2Cl2, the spheres were lifted-off mechanically using tape.  

 In subsequent studies, Van Duyne and co-workers101 demonstrated that 

size-tunable silver nanostructures can be fabricated  by adjusting the sphere 

diameter and the thickness of the deposited layer, which determine the 

nanostructures in-plane diameter and out-of-plane height, respectively. Moreover, 

the shape of the nanostructures can be varied by choosing either a monolayer, or a 

bilayer mask. Based on the geometry of the interstitial sites, triangular-shaped 

nanoparticles are typically formed when the material is vacuum-deposited through 

a closed-packed monolayer, whereas spheroids are observed when a bilayer mask 

is used. A good correlation was found between structural parameters measured by 

AFM (after correction for tip convolution effects) and theoretical predictions 

based on geometrical considerations and the assumption that the material is 

preferentially deposited on the surface through the line-of-site of the mask.  

 Using UV extinction spectroscopy, Jensen et al.102,103 measured 

experimentally the surface plasmonic properties (i.e. the collective oscillations of 
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conduction electrons resulting from light excitation) of silver arrays fabricated via 

NSL. They found that the wavelength corresponding to the extinction maximum 

of the localized surface plasmon resonance (LSPR) can be precisely tuned 

throughout the visible, near-infrared, and mid-infrared regions of the 

electromagnetic spectrum by adjusting the nanostructure dimensions and 

morphology, and by dielectric encapsulation of the nanostructures with silicon 

oxide layers grown on their surface. As demonstrated by the authors, the size of 

individual silver nanostructures can be conveniently manipulated by adjusting the 

diameter of the spheres and the thickness of the layer deposited through the mask. 

The shape, on the other hand, can be controlled by the choosing the appropriate 

colloidal mask (monolayer or bilayers), or by thermal annealing of the 

nanostructures. Moreover, they proposed a theoretical model to predict the 

extinction maxima based on the discrete dipole approximation (DDA) method and 

electrodynamic considerations.  A similar work has been carried out by 

Astilean,104 who showed the formation of size-tunable periodic arrays of silver 

and gold nanodots and nanoholes using reactive ion etching to control the size of 

the interstitial sites of a colloidal mask formed via the drop-coating technique. In 

a subsequent publication, Astilean et al.105 used visible-near infrared transmission 

and reflectivity spectroscopy to characterize the optical properties of gold films 

deposited on periodic colloidal arrays of latex particles. This work, together with 

the work of Van Duyne’s group, has significantly contributed to advancing the 
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potential applications of metal nanoparticles in Surface Enhanced Raman 

Spectroscopy (SERS) and other biosensing applications. 

 Burmeister et al.106,107 also contributed to early studies of colloid 

monolayers as lithographic masks. They added flexibility to Micheletto’s 

method50 for the formation of colloidal monolayers, initially proved successful 

only on flat, hydrophilic substrates with good wettability and smoothness; by 

proposing that a monolayer originally prepared on a glass substrate be floated on 

a water surface, and subsequently transferred onto the substrate of interest by 

simply touching it from above. Although this modification requires an additional 

step, and some additional complications may derive from the transferring of the 

monolayer from one substrate to another, the technique offers the advantage of 

transferring colloidal masks onto multiple substrate choices. As a proff of 

concept, Burmeister and co-workers showed that it is possible to fabricate ordered 

2D gold nanopillars and honeycombs with in-plane dimensions of the order of 

200 nm and out-of-plane heights of the order of 70 nm, on various substrates 

including ITO-coated glass slides, copper grids, and hydrophobic single crystal 

WSe2 substrates. 

 Nickel nanostructures with different geometrical configurations have also 

been patterned using latex spheres as lithographic masks. In a relatively simple 

procedure by Kandulski et al.,108 colloidal templates are first assembled at the air-
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liquid interface using a mixture of ethanol and a non-ionic polyethoxylated 

surfactant (EO = 10) as the spreading agent, and subsequently transferred onto a 

silicon substrate. Following metal deposition via e-beam evaporation, and sphere 

lift-off by ultrasonication in toluene, Ni nanodots arrays with different 

geometrical configurations can be obtained by controlling the revolution angle 

between the layers in the colloidal mask. Rossi and co-workers109 have also 

prepared triangular Ni nanostructures on silicon surfaces by dip-coating P-doped 

silicon wafers into a dispersion of monodispersed latex spheres (174 nm and 760 

nm in diameter), under a controlled-humidity nitrogen environment. They were 

able to fabricate Ni nanostructures of different sizes, while keeping the total 

amount of Ni covering the surface relatively constant. These samples were further 

used as electrodes in methanolic electrochemical cells, and the measured dark 

current density as a function of voltage was found to be strongly dependent on the 

dimensions of the n-Si/Ni nanocontacts. 

 Bartlett and colleagues110,111 have reported the patterning of other metals 

such as platinum, palladium and cobalt into ordered arrays of interconnected 

spherical voids with uniform sizes via electrochemical deposition of aqueous 

solutions of H2PtCl6, (NH4)2PdCl4, and Co(Ac)2 into the interstitial sites of 2D 

closed-packed latex spheres assembled on an evaporated gold substrate, followed 

by template lift-off in toluene or THF for 24h. They also proposed the use of these 
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nanostructures to fabricate more complex metallic spherical cavities by allowing 

monodispersed latex spheres to slowly self-assemble onto the previously formed 

honeycomb structures using a custom-built cell.112 The structural arrangement of 

the spheres, as well as the fraction of honeycomb holes occupied by spheres can 

be manipulated by changing the ratio between the sphere size and the center-to-

center pore distance in the metallic honeycomb structure. Once the spheres are 

positioned within the honeycomb voids, they are coated with a metallic layer via 

electrochemical deposition, and after dissolution of the latex core, metallic 

spherical cavities with fixed dimensions and spatial configurations can be formed 

on the substrate. An advantage of the electrochemical deposition technique 

relative to other methods is the ability to control the deposited film thickness by 

selecting the appropriate reduction potential for the complex ions in solution. In 

addition, highly dense metal films can be deposited with little or no shrinkage 

during template removal; however, the process is restricted to electrically 

conducting substrates.  

 Another popular technique for the patterning of metallic nanostructures 

via particle lithography is the sol-gel technique. Liu et al.,113 for example, have 

recently fabricated 2D hexagonal arrays of Fe/SiO2 magnetic nanodots with 

pyramidal tetrahedron shapes using a combination of spin-coating and the sol-gel 

method. They first spin-cast a close-packed colloidal monolayer of latex spheres 
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(1 um in diameter) on the substrate, and heated it up for a few minutes at 100oC in 

order to increase the adhesion with the substrate. Then, the metal precursor 

solution was infiltrated through the interstitial spaces of the latex mask by spin-

coating at 3500 rpm for 1 min, and dried at 90oC for 1h. In order to prevent 

oxidation of the iron, tetraethyl orthosilicate (TEOS) was added to the precursor 

solution to form a protected SiO2 shell on the surface of the Fe nanostructures. 

The template was removed by calcination in a two-step process consisting of 

sintering at 450oC for 2h, and reduction in H2 gas at 800oC for 4h. The 

morphology of the SiO2-coated Fe nanostructures was further controlled by 

adjusting the concentration of the precursor solution, the heating treatment, and 

the speed and time for the spin-coating step. The magnetic properties of the 

nanoparticles were confirmed by the observation of the magnetization direction, 

as well as higher remanence, coercivity, and lower saturated fields relative to 

featureless Fe/SiO2 thin films deposited under the same conditions as the 

patterned Fe/SiO2 nanopillars. However, the effect of nanoparticle size, shape, 

and geometrical configuration remained to be addressed. An obvious set-back of 

this method is the extremely high temperatures involved in the process. 

 A recent publication by Wright et al.114 describes a procedure in which 

particle lithography, thermal evaporation, sputtering and template stripping 

processes are combined to fabricate ultraflat ternary metallic nanopatterns 
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consisting of cobalt circles and gold triangles embedded within a titanium mesh. 

The authors claim that this method is capable of producing nanostructures 60 

percent smaller than the size of the original template. The process starts with the 

convective self-assembly of a close-packed monolayer of latex spheres on freshly 

cleaved mica substrates. In the second step, triangular-shaped gold nanostructures 

are formed by thermal evaporation through the interstices of the colloidal mask. 

These nanostructures are then buried under a titanium overlayer deposited on the 

surface via the less directional sputtering technique, so that a mesh-like 

nanostructure forms around the particle-substrate contact point. After removing 

the latex spheres by sonication in chloroform or toluene for 5 min, the exposed 

bare mica circular regions are filled with a sputtercoated cobalt layer. The entire 

assembly is glued facedown to a silicon wafer with low viscosity epoxy resin 

cured at 150oC for 2h. After stripping off the mica template in THF at room 

temperature, a ternary metallic nanopattern results on the silicon surface. The 

main advantage of Wright’s technique is the ability to pattern various materials on 

the same surface with nanometer scale precision by exploiting the directional 

characteristics of relatively simple, well-known deposition processes such as 

thermal evaporation and sputtercoating. 

 The work by Winzer et al.115 proved to be another significant 

breakthrough in the field of particle lithography as they were the first group to 
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report the formation of mesoscopic gold rings from nanosphere lithography. 

Following Van Duyne’s procedure,34 they formed close-packed monolayers of 

latex spheres on freshly cleaved mica substrates, and after evaporating the metal 

through the colloidal mask, they lifted-off the spheres from the surface leaving 

behind periodic arrays of gold nanodots or nanorings as shown in Figure 1.7.  The 

authors attributed the formation of ring nanostructures to the diffusion of gold 

from the interstitial space to the area where the spheres contact the substrate, and 

pointed out that whether triangular-shaped nanodots or nanorings form depends 

strongly on the choice of the solution containing the spheres.  The flexibility of 

the method was confirmed using latex spheres of different sizes in the range of 

140-895 nm, and by choosing a different metal for the evaporation step. In this 

respect, well-ordered cobalt nanodots were fabricated using 270 nm latex spheres. 

Their magnetic properties were evaluated by measuring the reversal of the 

magnetization direction in the presence of an external field (400 Oe.) using a 

magnetic force microscope. Single-domain cobalt nanoparticles such as the ones 

prepared by Winser and co-workers may find potential applications as quantum 

magnetic storage devices. Gold nanorings, on the other hand, may be useful in 

surface-enhanced spectroscopy and sensing applications,116-118 given their highly 

tunable plasmonic properties and electromagnetic field enhancement effects 

depending on the ratio of the ring thickness to its radius, as demonstrated by 

Aizpurua et al.119  
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simple; the substrate of interest is coated with a 9:1 dispersion of latex 

microspheres and gold nanoparticles. As the solvent evaporates, the particle 

volume fraction increases and the latex particles, present in a higher volume 

fraction relative to the gold nanoparticles, tend to crystallize first thus directing 

the crystallization of the much smaller gold nanoparticles in the interstitial sites of 

the latex mask. After the lattice is formed, the latex spheres are dissolved by 

dipping in toluene for about 15 min, and either non-connected gold nanorings or 

porous films remain on the substrate. Unlike thermal evaporation of the metal, 

this method renders highly porous nanostructures, as the metal structure itself 

consists of many colloidal nanoparticles. Whether rings or porous structures form 

depends primarily on the ratio of gold nanoparticles to latex microspheres in the 

colloidal dispersion. 

 Hexagonally-ordered isolated Fe nanorings (150 nm external diameter, 

and 20-30 nm thick walls) have been achieved by Giersig et al.120 using a 

different approach. It involves a combination of thermal annealing and Angle-

Resolved Nanosphere Lithography (AR-NSL) through a monolayer of latex 

spheres assembled on a silicon substrate via slow evaporation of the solvent. In 

this approach, the thermal annealing induced by microwave heating in a 

water/ethanol/acetone mixture (3:1:1) allows precise control of the size of the 

interstitial cavities in the range of 25 nm to 200 nm. Metal evaporation is done via 
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e-beam deposition with simultaneous control over the evaporation angle and 

sample rotation. In this method, the ring wall thickness can be controlled by the 

adjusting the size of the interstitial aperture via thermal annealing, and by 

controlling the evaporation angle (AR-NSL), which determines the amount of 

deposited metal. 

 Han and colleagues121 have proposed an alternative route for the formation 

of isolated silver nanorings from colloidal lithography using polyelectrolyte 

hollow spheres prepared by layer-by-layer coating of polystyrene spheres (640 nm 

and 1000 nm in diameter) with poly(diallyldimethylammonium 

chloride)/poly(sodium 4-styrenesulfonate). In this method, the PE-coated spheres 

are assembled into close-packed monolayers on silicon wafers via the drop-

coating technique, followed by extraction of the PS cores by dissolution in 

toluene for 12h. A precursor solution (AgNO3) is then infiltrated into the 

negatively-charged PE shells through electrostatic interaction with the Ag + ions, 

and after reduction in a Tollen’s reagent according to the following reaction, 

silver nanorings result.   

RCHO + 2Ag(NH)3OH -> RCOO- + 2Ag(s) + NH4
+ + NH3 + H2O 

 One of the advantages of Han’s procedure to make metallic nanoarrays 

using PE hollow spheres is the fact that the size of the nanostructure can be easily 
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controlled by selecting the appropriate number of PE adsorption cycles. In 

addition, the method should work for a number of materials as long as the 

interaction between the precursor and PE shells is favorable.  

 Van Duyne’s group have also reported the formation of magnetic nickel 

nanorings via e-beam deposition or pulsed laser deposition (PLD) of the metal 

through a monolayer of latex spheres (979 nm in diameter).  Nanorings were 

never observed when the metal was thermally evaporated on the substrate. Based 

on this observation, they hypothesized that ring nanostructures form as the result 

of the bimodal kinetic energy distribution of gas-phase atoms produced by PLD 

and e-beam deposition. In other words, atoms with low kinetic energy (less than 1 

eV) travel along the line-of-site of the mask and remain in the interstitial space, 

whereas atoms with higher kinetic energy (of the order of 1-10 eV), may have 

enough energy to reach the area where the spheres contact the substrate.122  

  In addition to nanodots and nanorings, other nanoparticle geometries are 

accessible from nanosphere lithography by changing the angle between the 

surface normal of the sample and the direction of material deposition. This 

technique, referred to as Angle-Resolved Nanosphere Lithography (AR NSL), not 

only increases the flexibility of particle lithography in terms of the nanoparticle 

shapes that can be created as a function of the deposition angle (θdep), and the 

azimuthal angle (φ) of a given crystalline domain within the mask; but also allows 
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a reduction of the in-plane nanoparticle size by up to a factor of 4 while using the 

same colloidal mask.123 This is particularly important for the fabrication of 

nanopatterns in the 10-50 nm regime, where colloids’ polydispersity significantly 

limits the formation of large area, 2D ordered colloidal arrays. An overview of 

different nanoparticle structural motifs fabricated via conventional NSL and AR 

NSL has been presented in a review paper by Haynes and Van Duyne.122 In 

particular, the paper shows that silver nanostructures with varying degrees of 

overlap can be formed on mica substrates by changing θdep from 0o to 20o; 

whereas nanogaps with separation distances increasing with θdep can be obtained 

for θdep > 22o. A simple geometrical model has been proposed to determine the 

nanoparticle footprint as a function of θdep and φ has also been proposed.123 

Geometrically more complex nanostructures such as the nanochains and 

nanocontacts shown in Figure 1.8 can also be fabricated by performing multiple 

depositions with varied φ and θdep angles.  These high aspect ratio nanostructures 

have shown strong dichroic contrast (varying by one order of magnitude) 

depending on whether the polarization of the exciting light is in direction parallel 

or perpendicular to the nanoparticle long axis, thus suggesting possible 

applications as dichroic filters.124 
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Figure 1.8. AFM images of nanostructures fabricated via multiple deposition 
angle-resolved nanosphere lithography with varied φ and θdep angles. Reprinted 
with permission from Ref.124 Copyright @American Chemical Society. 
 

 Ordered iron nanorods have been achieved by Giersig et al.120 via thermal 

evaporation of Fe through the rodlike interstices formed in a close-packed 

colloidal monolayer subjected to uniaxial stretching and thermal annealing. The 

stretched colloidal monolayer and the resulting Fe nanorods are shown in Figure 

1.9.  As suggested by the computer simulation results presented in Gersig’s paper, 

more complex nanoparticle geometries could also be possible by combining 

uniaxially stretched masks and shadow NSL. Other structures such as 2D 
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hexagonal arrays of silver hollow spheres have been prepared by Chen and 

colleagues125 via colloidal templating coupled with seeding and electroless 

deposition of the metal. The colloidal template was formed by confining the 

spheres between two parallel plates separated a fixed distance, in a procedure 

analogous to molding in microcapillaries.126 In a subsequent step, the spheres 

were activated with a layer of Sn2+ ions in the form of SnCl(OH), Sn(OH)2, or 

Sn2Cl(OH)3, followed by electroless plating in a mixture of potassium sodium 

tartrate and AgNO3 in ammonia solution. The thickness of the silver shell was 

controlled by adjusting the time of electroless plating. Then, the latex cores were 

dissolved in a mixture of benzene and methanol, and an ordered array of hollow 

silver shells (45 nm thick approximately) was left on the surface. The presence of 

silver on the shells was confirmed with energy-dispersive X-ray analysis (EDX). 

These nanostructures are expected to find potential applications in Surface 

Enhanced Raman Spectroscopy.   
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Figure 1.9. SEM images of a) rodlike apertures in stretched and subsequently 
annealed 540-nm PS latex mask, and b) hcp-ordered Fe nanorods evaporated 
through this mask. Reprinted with permission from Ref.120 Copyright @Wiley-
VCH Verlag GmbH & Co KGaA. 
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4.2. Patterning of Semiconductor Materials 

 Although not as large as the attention given to metals, the patterning of 

semiconductor materials via particle lithography has received some attention by 

the scientific community. Early work by Lenzmann et al.127 in 1994, for example, 

showed that a monolayer of latex spheres deposited on a glass substrate using the 

LB technique can serve as a lithographic mask for the thermal evaporation of zinc 

sulfide nanostructures shaped as trigonal pyramids. Moreover, they demonstrated 

that the size and morphology of the nanostructures can be effectively modified by 

coating the surface of pre-existing ZnS nanopillars with thin metal films. In 

particular they showed that trigonal pyramids of ZnS transform into lentil-like 

nanostructures when a 0.2 um Y2O3 film is thermally overgrown the nanoparticle 

surface.  

 More recently, Li and Zinke-Allmang,128 have proposed an alternative 

method to fabricate size-tunable highly-ordered Ge nanoparticle arrays on n-

doped silicon substrates via NSL and thermal annealing. In their work, a 

monolayer of 300 nm polystyrene spheres previously dispersed in a solution of X-

100 Triton surfactant and methanol (1:5000 by volume) was spin-coated on a 

silicon substrate, followed by e-beam evaporation of germanium through the 

mask. Following the deposition, the spheres were removed by sonication in 

methanol for 1 min, and a hexagonal array of triangular-shaped Ge nanoparticles 
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(with 70 nm in-plane, and 6 nm out-of-plane dimensions) was left on the surface. 

The size and morphology of the Ge nanostructures was further controlled by 

thermal annealing. As seen in Figure 1.10, spherical rather than triangular-shaped 

Ge nanostructures were obtained after thermal annealing in ultra-high vacuum at 

650oC for 25 min. This morphological change was usually accompanied by a 

reduction of the in-plane size by about 50 percent and an increase of the height by 

a factor of 5, while the overall volume of the nanostructure remained constant. 

Based on this observation, the authors proposed a new approach to tuning the 

dimensions of the nanostructures by varying the thickness of the deposited Ge 

layer, which in turn sets the individual nanoparticle volume when the same size 

latex spheres are used as the deposition mask. In this manner, Li and Zinke-

Allmang demonstrated that keeping the annealing conditions constant with 

varying Ge particle volume allows control over the nanostructure size and shape, 

thus resulting in nanocrystals with various facets. 

 

 57



 

 

Figure 1.10. SEM images for the after-annealing Ge nanostructure/Si surface. a) 
normal view, and b) 45o tilt angle. Reprinted with permission from Ref.128 
Copyright @Institute of Pure and Applied Physics, Japan. 
 

 Pacifico et al.129 have reported the fabrication of 2D ordered arrays of 

quantum dots by a relatively simple procedure involving the formation of 

hexagonally packed silver triangular islands (30 nm thick) by thermal evaporation 

of the metal through the interstitial sites of a monolayer of latex spheres (3.2 and 

4.9 um in diameter) initially assembled at the air-liquid interface, and 

subsequently transferred onto a glass substrate. A self-assembled monolayer 

(SAM) of aminoethanethiol is then adsorbed onto the silver islands with the 

mercaptant moiety preferentially bounded to the metallic surface and the amine 

groups exposed to the solution. In the final step, the functionalized glass 

substrates are contacted with a chloroform solution of core-shell CdSe@ZnS 

quantum dots, so that the dots link to the surface by reacting with the amine 
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functional groups. The result is a 2D hexagonal array of quantum dots with 

tunable luminescence. Other semiconducting nanostructures, such as crystalline 

titania nanorings (rutile-phase), have also been fabricated by sintering a close-

packed monolayer of poly(styrene-co-divinylbenzene) latex spheres at 125oC for 

1h, followed by selective dissolution of the polystyrene cores in cyclohexane.130 

The resulting honeycomb structure is then used as the template for the infiltration 

of titanium isopropoxide, a TiO2 precursor, which selectively adsorbs to the inner 

surface of the honeycomb wall via strong interactions with the phenyl groups on 

the honeycomb. After calcination at 900oC, both interconnected and isolated 

titania rings with center-to-center distances relatively unchanged with respect to 

the original template, were obtained on the substrate. Energy-dispersive X-ray 

spectroscopy (EDX), and X-ray diffraction (XRD) were used to determine the 

atomic composition and the crystalline phase of the nanostructures. The merit of 

the technique relies primarily on the fact that polymeric honeycombs can be 

formed without the need of an infiltration step; however, it requires more complex 

(and perhaps more costly) colloids. In addition, when used as lithographic masks 

for the synthesis of other nanostructures such as semiconducting TiO2 nanorings, 

the shape of the resulting nanostructures is somewhat distorted and does not 

exhibit long range ordering.  
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 Cao et al.131 have applied a potentiostatic electrochemical deposition 

(ECD) method to synthesize semiconducting ZnO honeycomb arrays with 

controllable morphology (hemispherical vs. well-like structures) by appropriately 

tuning the deposition potential. The procedure starts with the formation of a PS 

monolayer crystal on ITO-coated glass substrates via the spin-coating method. In 

order to promote a better adhesion with the substrate, the monolayer is subjected 

to a sintering step at 78oC for 3 min. The ECD is carried out in an aqueous zinc 

nitrate solution for 2h, and then the spheres are ultrasonically removed in 

methylene chloride for 1 min approximately. The main limitation of this 

technique is the intrinsic need for conducting substrates. 

 Large area, size-tunable periodic silicon nanopillar arrays with sub-10 nm 

resolution have been created by Kuo and collegues132,133 using a combination of 

NSL and Reactive Ion Etching (RIE). First, a close-packed monolayer of colloidal 

spheres (280 nm or 440 nm in diameter) was spin-coated on n-doped silicon 

wafers. Then, a thin chromium layer was sputter-coated through the colloidal 

template, followed by template removal via ultrasonication in CH2Cl2 for a few 

minutes. In the next step, uncovered areas were etched away via RIE and a 

hexagonal array of chromium-capped silicon nanopillars was formed on the 

surface. After removal of the chromium caps with a selective etchant (Transene), 

a SiO2 layer of known thickness was grown on the pillars surface by thermal 
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oxidation at 800oC. Upon removal of this external layer with an oxide etchant, the 

lateral dimension of the nanopillars was effectively reduced. The dependence of 

nanopillar size (lateral dimension) with oxidation time is illustrated in Figures 

1.11a-c for nanostructures subjected to thermal oxidation at 800oC for a) 60 min, 

b) 90 min, and c) 150 min, respectively. All the samples were prepared through a 

50 nm thick chromium mask. Figure 1.11d, shows the result when chromium is 

replaced by a 100 nm thick aluminum mask. An advantage of the method 

proposed by Kuo and co-workers is that the separation distance and the size of the 

nanopillars can be tuned independently by adjusting the etching time, etching gas 

composition, the dimensions of the colloidal mask, and the metal used as a mask 

for the RIE step. Moreover, the resulting nanopillars have been shown to 

effectively serve as stamps for nanoimprint lithography.  
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Figure 1.11. SEM images (45° tilt) of the size-reduced silicon nanopillar arrays 
formed using a 50 nm thick chromium mask prepared from a 440-nm double layer 
(DL) polystyrene template, after different oxidation times: a) 60 min, b) 90 min, 
c) Sub-10 nm pillar obtained using a 280 nm DL polystyrene template and 150 
min of oxidation, d) Nanopillars formed when chromium is replaced by a 100 nm 
thick aluminum mask. Reprinted with permission from Ref.132 Copyright 
@American Chemical Society; and Ref.133 Copyright @Wiley-VCH Verlag 
GmbH & Co KGaA. 
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  Given their potential applications as biosensors, field-emission and 

antenna devices to cite just a few, vertically aligned nanotubes and nanowires 

constitute another group of nanostructured materials studied by the scientific 

community.  In particular, the formation of ordered nanotube and nanowire arrays 

of semiconductor materials via colloidal lithography has been explored by several 

research groups as an alternative to more expensive and time consuming methods 

such as e-beam lithography. Rybczynski et al.,134-136 for example, have grown 

large periodic arrays of well-aligned, size-tunable carbon nanotubes onto n-doped 

Si wafers using hot filament plasma-enhanced chemical vapor deposition 

(PECVD), on an ordered array of Ni catalyst nanodots prepared via particle 

lithography from a monolayer of latex spheres previously assembled at the air-

SDS solution interface. The formation of single-wall vs. multi-wall nanotubes was 

found to depend strongly on the size and shape of the catalyst particles. Single, 

free-standing nanotubes were most likely formed for Ni dots smaller than 300 nm. 

Well-defined instead of triangular-shaped nanoparticles were also more prone to 

rendering single tubes. As expected, the nanotube density was also found to 

correlate with the template size; in general, the larger the colloidal spheres in the 

mask, the lower the nanotube areal density. The problem with using larger spheres 

to decrease the array density is multiple nanotube growth for dot sizes greater 

than 300 nm. One way to circumvent this problem is by producing smaller 

catalyst particles via evaporation through a bilayer mask. The disadvantage of this 
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approach is that the formation of good quality bilayer masks tends to be 

operationally more challenging than their monolayer analogues. In this respect, 

Park and colleagues137 have proposed two routes to decrease the size of the 

catalyst particle via angle-resolved NSL through a monolayer mask.  One way is 

to deposit the catalyst at a high angle (e.g. 30o); the other is to reduce the effective 

size of the catalyst particle by covering its surface with a non-catalytic metal (e.g. 

Cr) deposited at a different angle. Figure 1.12 shows the results obtained from 

these two approaches in comparison with the conventional deposition of Ni 

nanoparticle at 0o. As deducted from the SEM images, Park’s method can be 

effectively applied to control the areal density of the nanotubes array via AR NSL 

using a monolayer mask.  

 

a b c 

 
Figure 1.12. SEM images of CNT arrays grown on catalyst patterns formed at 
different deposition angles: a) Ni at θdep= 0°, b) Ni followed by Cr at θdep= 0° and 
15°, respectively. c) Ni at a high deposition angle θdep= 30°. Reprinted with 
permission from Ref.137 Copyright @American Institute of Physics. 
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 The formation of hexagonal arrays of vertically aligned ZnO nanowires on 

single-crystal sapphire substrates has also been explored by Rybczynski’s group 

using a vapor-liquid-solid (VLS) growth process with NSL-templated gold 

nanoparticles as the catalyst.138 Similar results were obtained by Wang and 

colleagues,139 although their experimental results showed denser nanowire arrays. 

As for the growth of aligned carbon nanotubes, whether single or multiple ZnO 

nanowires result from a single gold nanoparticle depends strongly on the size of 

the catalyst particle itself. In this respect, Rybczynski and collaborators suggested 

a threshold for single nanowire formation around 50 nm. They also found that 

multiple growth can be further reduced by a two-step annealing process whereby 

trace amounts of oxygen in the system can be effectively removed. In general, the 

main advantage of using particle lithography to fabricate ordered arrays of 

nanotubes and nanowires is that the size, shape, and areal distribution of the 

catalyst particles (and ultimately the nanotube array) can be controlled in a 

simple, efficient, inexpensive process. 

 

4.3. Patterning of Ceramic Materials 

 The increasing demand for ever smaller integrated miniature devices 

including dynamic random access memories (DRAM), sensors, and 
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microelectromechanical actuators among others, has driven a significant research 

effort aimed at the development of new alternatives for the patterning of ceramic 

materials at the nanometer scale, as well as a better understanding of the size 

reduction effect on the ferroelectric/piezoelectric properties of the nanostructures 

as the result of crystalline phase transitions and other phenomena. Due to its 

simplicity and low cost, particle lithography has been widely implemented in 

conjunction with other methods such as the sol-gel technique, pulsed laser 

deposition (PLD), and inductive coupled plasma (ICP) etching for the patterning 

of ceramic materials at the nanometer scale. A very active group in this area is 

that of Ma and co-workers, who have successfully fabricated highly ordered 

arrays of pyramid-shaped BaTiO3,140,141 and SrBi2Ta2O9
142 nanostructures on 

single-crystal Nb-doped SrTiO3 substrates using a combination of particle 

lithography and pulsed layer deposition. In their method, the spheres are removed 

by dissolution in methylene chloride, and then the resulted nanostructures are 

annealed in air at 650oC (BaTiO3), and 950oC (SrBi2Ta2O9) for 1 h. Experimental 

results show that after annealing, the nanostructures lose their typical pyramid-

like shape and break into nano-sized domains of high crystal anisotropy. As 

confirmed by their piezoresponse hysteresis loops, these nanostructures partially 

retain their ferroelectric behavior. The observed reduction in piezoresponse has 

been ascribed to crystalline defects in the colloidal mask used for the deposition 

step. In addition to the piezoresponse force measurements, the polycrystalline 
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nature and phase composition of the nanostructures was assessed by cross-

sectional transmission electron microscopy, and selected area electron diffraction 

(SAED) analysis, respectively.  

 Highly-ordered nanopore arrays of ceramic materials have also been 

actively pursued due to their high surface area, which makes them suitable for 

sensing and catalytic applications, as well as for their interesting optical and 

electric properties which open up many potential applications as nanophotonic 

and optoelectronic devices, to name a few. By far the most common method for 

the synthesis of porous ceramic nanostructures via particle lithography is the sol-

gel method, a technique that involves the hydrolysis and condensation of 

alkoxysilanes.143 Kanungo and Collinson,144 for example, have prepared ordered 

arrays of size-tunable cavities into a silica matrix by simultaneously spin-coating 

a 1:1 dispersion of latex spheres (500 nm in diameter) and the precursor solution 

onto glassy carbon substrates. They used a sol mixture consisting of 

tetramethoxysilane (TMOS), methanol, water and HCl. After film formation, the 

polystyrene spheres were removed by soaking in chloroform for 2-3h, and a 

honeycomb with well-ordered through-holes was obtained on the substrate. The 

diameter and depth of the cavities can be effectively controlled by adjusting the 

diameter of the latex spheres and by tuning the conditions of the sol-gel process. 

Nanostructures such as these, where non-conducting silica walls delimit the 
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fraction of an exposed underlying conducting substrate may find potential 

applications in electrochemical sensing, nanobatteries, and as nanosized reaction 

vessels for electrochemical deposition as recently demonstrated by Khramov et 

al.145 

 Ordered Fe2O3 nanopore arrays with controllable morphology have been 

fabricated by Cai and colleagues146 via particle lithography and the sol-gel 

technique. The unique aspect of the solution-dipping template strategy 

implemented by Cai’s group is the fact that the polystyrene colloidal template 

floats on the precursor solution due to surface tension. This confers great 

flexibility to the process as porous nanostructures can be engineered so that either 

through-holes or upper-end open cavities form, depending on the concentration of 

the sol mixture, Fe(NO3)3, and the treatment conditions (drying temperature and 

time, calcination vs. dissolution of the latex template, etc). In addition, the 

floating colloidal monolayer can be transferred onto another substrate prior to the 

drying step, thus making possible the formation of nanostructures even on 

substrates where the initial monolayer formation might be otherwise challenging. 

Moreover, the nanostructure morphology can be controlled by adjusting the 

concentration of the precursor solution as shown in the experimental results in 

Figure 1.13. At high Fe(NO3)3 concentrations (i.e. 0.8 M), complex nanostructure 

arrays such as the pore-hole/pore-particle morphology shown in Figure 1.13g tend 
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to form on the substrate. As the concentration is lowered through-pore 

honeycombs structures with thinner walls form instead. Ring-like structures are 

also observed at very low concentrations (i.e. 0.002 M). For a given 

concentration, the pore size can be controlled by changing the diameter of the 

latex spheres used as a template. The ability to control nanostructure size and 

morphology is further complemented by great flexibility in terms of precursor and 

substrate choices. Using the same technique, Cai and co-workers have been able 

to prepare similar porous nanostructures of other materials such as zinc, ZnO, 

NiO, Co2O3, CuO, CeO2, Eu2O3, Dy2O3, and In2O3.147 They have also 

demonstrated the fabrication of size-tunable hexagonally-ordered nanoparticle 

arrays from the partial dissolution of Fe2O3 and In2O3 porous films in 1M oxalic 

acid, and 10 wt% nitric acid, respectively.148  
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Figure 1.13. SEM images of ceramic nanostructures prepared with different 
precursor concentrations: a) 0.8 M, b) 0.08 M, c) 0.06 M, and d) 0.002 M. 
Samples a) to e) were prepared with 1 um PS latex spheres, whereas 200 nm 
spheres were used as a template for f). The panels in g) and h) correspond to the 
tilt views of samples a) and d), respectively. Reprinted with permission from 
Ref.146 Copyright @Wiley-VCH Verlag GmbH & Co KGaA. 
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 More recently, Cai and colleagues149,150 have proposed a new strategy for 

the formation of honeycomb/nanopillar arrays based on a combination of the sol-

gel technique and controlled heat-induced deformation of 2D close-packed 

polystyrene colloidal templates above the polystyrene glass transition temperature 

(Tg~100oC). Both silica and Fe2O3 nanostructures with various morphologies 

have been prepared from this approach. In both cases experimental results 

confirm that the interstitial sites within a close-packed PS latex monolayer can be 

effectively manipulated by choosing the appropriate sintering time. Upon 

infiltration with the precursor solution, followed by template removal via 

calcination, morphologically controlled nanostructures form on the substrate as 

shown in Figure 1.14. 2D ordered arrays of silica nanostructures with complex 

shapes (e.g. ellipsoidal-shaped nanoholes) have also been fabricated by Wang and 

collaborators via particle lithography using a combination of selective inductive 

coupled plasma (ICP) etching and the sol-gel technique.151  
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Figure 1.14. SEM images of Fe2O3 ordered nanostructures fabricated via the sol-
gel technique with a 0.5 M Fe(NO3)3 precursor solution, and colloidal monolayers 
of 1 um PS spheres sintered at 120oC for different periods of time: a) 0 min, b) 15 
min, and d) 25 min. Figure c) is a zoom of sample shown in b). Reprinted with 
permission from Ref.150 Copyright @Elsevier Ltd. 
 

4.4. Patterning of Proteins and Polymeric Materials 

 This section deals with the patterning of proteins and their synthetic 

polymer analogues. As appropriately stated in the seminal work by Nagayama152 

on the formation of well-ordered protein arrays, both proteins and polymers are a 
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class of materials that result from a chemical reaction with different information 

inputs. In the case of proteins, the synthesis process is mainly directed by the 

translation of genetic information; whereas synthetic polymers are the result of a 

statistically controlled polymerization reaction, far less informative about the final 

fate of the synthesis. Surface-patterned proteins have been widely studied by the 

scientific community as a way to improve biological activity by the proper 

confinement of chemical functionality to specific sites, with just the right 

orientation. They have also been used for the study of cell growth and rolling 

behavior, as well as in biosensing, and molecular recognition.153-159 Early works 

in protein and cell patterning have explored the self-assembly of protein 

monolayers at various interfaces including air/water, air/lipid/water, water/solid, 

and air/solid interfaces. Fromherz,160 for instance, assembled a monolayer of 

ferritin on a lipid monolayer. Better quality 2D crystals of ferritin161 and bacterial 

flagella162 were achieved by Yoshimura’s group using a metal liquid surface (e.g. 

mercury) instead of a lipid monolayer on water. The crystallization of antibodies 

and other proteins in the presence of ligand-introduced lipids, which enhance the 

specificity of protein-substrate interactions, has also been explored by other 

groups.163-165 However, the quality and reproducibility of the crystalline arrays 

were not as desired.  
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 More recently, Yi and co-workers166 presented a novel approach to 2D cell 

patterning based on the use of polymer microstructures with controlled-

geometries (rings, dots and honeycombs) to direct the assembly of bacterium, 

Serratia marcescens. The polymer nanostructures are formed by infiltration a 

siloxane elastomer precursor (polydimethylsiloxane-PDMS) into the interstitial 

sites of a close-packed array of PS spheres. Depending on the curing conditions, 

two different polymer patterns originated as the result of the temperature-

dependent rheology of the PS colloids and the PDMS: At elevated curing 

temperatures (105oC for 1h) the PDMS crosslinking rate is accelerated, and 

necking takes place in the PS colloidal template; as a result, the siloxane precursor 

can only fill in the interstitial sites, forming isolated polymer microrings and 

microdots. On the other hand, when curing is carried out at room temperature for 

long periods of time (50 h), the lower viscosity siloxane is able to penetrate 

further underneath where the spheres touch, forming PDMS honeycombs instead. 

Bacteria adsorption studies were carried out on both PDMS-honeycomb structures 

and non-templated, flat PDMS substrates. The results are shown in Figure 1.15. 

As evidenced by the strong contrast in Figure 1.15a, not only Serratia marcescens 

bacteria mimic the honeycomb template, but also they seem to adsorb with a 

higher packing density relative to the non-templated PDMS film (Figure 1.15b). 

The authors provided an explanation for this observation based on specific 

hydrophobic (PDMS)/hydrophilic (glass) interactions with the honeycomb-

 74



templated substrate, which favor a more extended configuration as opposed to a 

flatter conformation in which the bacteria’s long axis is parallel to the featureless 

PDMS film, as illustrated in the schematic in Figure 1.15c.    

 
 

Figure 1.15. a) Optical micrograph of hexagonal patterned fluorescent bacterial 
cells, and b) bacterial cells on the non-patterned flat polydimethylsiloxane 
(bacteria are bright against a dark background). c) Schematic views of bacteria 
adsorption on the polydimethylsiloxane substrate; green ellipsoids, blue layer, and 
red layer represent bacteria, glass slide, polydimethylsiloxane, respectively. 
Reprinted with kind permission from Ref.166 Copyright @Springer Science and 
Business Media. 
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  An alternative approach for protein patterning based on 2D particle 

lithography has been proposed by Garno et al.52,167 The procedure is relatively 

simple; a mixture of latex spheres and the protein solution (bovine serum 

albumin-BSA, rabbit immunoglobulin G-IgG, or staphylococcal protein A) is 

drop-coated on the substrate (mica, or gold thin films), and a hexagonal array of 

protein-coated latex spheres forms as the result of convective forces during 

drying. In the final step, the latex spheres are removed by rinsing with small 

volumes of water (about 0.5 mL water per 1 cm2 surface). Moreover, the size and 

morphology of the protein arrays can be controlled by tuning the protein-to-latex 

ratio, and by changing the size of the latex spheres used as a template. Figure 1.16 

shows three different BSA protein nanostructures prepared via particle 

lithography with 500 nm latex spheres, and various protein-sphere ratios 

corresponding to monolayer coverage (61000:1), half a monolayer (31500:1), and 

a lower sphere coverage fraction (26000:1). In every case, the height of the 

protein layer is about 4 nm, which corresponds well to the diameter of the BSA 

protein molecule as determined from X-ray crystallography measurements.168 

Similar results have been obtained by Marquez et.al.169 from the adsorption of 

IgG (20 ug/mL) and fibrinogen (50 ug/mL) protein solutions onto a colloidal 

array of PS latex spheres with diameters in the range of 0.56-5.43 um. As 

demonstrated in chapter 3, the main difference between the nanostructures 

fabricated by Marquez and those by Garno is that the former’s honeycombs 
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consist of through-holes, whereas in Garno’s process the simultaneous drop-

casting of the protein and the latex spheres allow protein penetration underneath 

the spheres.  

250 nm 250 nm

430 nm 475 nm

250 nm 250 nm

430 nm 475 nm

a b 

c 

 
 

Figure 1.16. AFM topographs and corresponding cursor profiles of different 
arrays of BSA nanostructures produced with 500 nm latex particles at different 
protein/latex ratios: a) 61,000:1; b) 30,500:1; and c) 26,000:1. Reprinted with 
permission from Ref.52 Copyright @American Chemical Society; and Ref.167 
Copyright @Royal Society of Chemistry. 
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 Gleason and colleagues170 have also explored the patterning of proteins 

and cells via colloidal lithography. They utilized a combination of gravimetric 

settling and applied electric fields (AC and DC) to drive the formation of 

fibronectin-coated colloidal particle arrays on gold-coated glass slides. The 

particle density in the final arrays was effectively controlled by varying the 

settling time, the particle concentration and the frequency of the AC field: closed-

packed arrays were formed at low frequencies (i.e. 500-700 Hz), whereas arrays 

of decreasing particle densities resulted at higher frequencies (i.e. 2000-40000 

Hz).  After particle assembly, a DC field (2.5 V) was introduced to immobilize 

the particles on the substrate irreversibly. Then, the non-attached particles were 

removed by rinsing with a phosphate-buffered saline solution, and the uncovered 

areas of the substrate were made non-adhesive to other proteins and cells by 

incubating in a 2 wt% bovine serum albumin solution at room temperature for 30 

min. These samples were further used for the study of fibroblast adhesion and 

spreading behavior as a function of fibronectin active sites. Experimental results 

revealed more compact cell morphologies on close-packed particle arrays, 

whereas a more extended cell conformation prevailed for the less dense arrays. 

 A general observation regarding the use of particle lithography for protein 

patterning is the fact that protein/sphere/substrate interactions must be optimized 

so that a strong adhesion exists between the protein and the substrate. The 
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interaction with the spheres, on the other hand, must be relatively weak in order to 

facilitate template removal without disruption of the protein nanostructure. In this 

respect, the combination of surfactant-free hydrophobic PS latex spheres and 

highly hydrophilic, flat substrates such as mica or glass have been found to work 

well for protein patterning via particle lithography. 

 Another approach to protein patterning has been presented by Valsesia and 

colleagues,171 who demonstrated the selective immobilization of protein clusters 

on polymeric nanocraters of polyacrylic acid and polyethylene glycol (PEG) 

prepared via particle lithography and plasma-enhanced chemical vapor deposition 

(PECVD). The procedure employed is as follows: first a 350 nm thick PAA layer 

was deposited onto a silicon substrate via PECVD under optimum conditions for 

maximum concentration of surface carboxylic moieties. Then, a monolayer of PS 

latex spheres (500 nm in diameter) was spin-coated on the surface of the PAA 

layer, and subsequently exposed to oxygen-plasma etching so as to transfer the 

colloidal hexagonal pattern onto the underlying PAA layer. The residual PS 

spheres served as a mask for the PECVD deposition of a 30 nm thick PEG layer, 

highly resistant to protein adhesion. Then, the colloidal mask was removed by 

ultrasonication in water. The chemical composition of the surface after each 

treatment was addressed by FTIR, and chemical force microscopy. Finally, as 

confirmed by confocal microscopy, fluorescently-tagged BSA protein was 
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selectively immobilized onto the PAA-capped nanoposts through the reaction 

with activated carboxylic functional groups. Little or no protein was adsorbed 

inside the PEG pits. 

 Michel et al.172 have also exploited the fabrication of biologically relevant 

chemical patterns and their use in surface protein patterning. The procedure is 

rather lengthy, involving as many as 10 steps. In the first step, a 12 nm TiO2 layer 

was deposited on SiO2 and quartz wafers. Then, the surface was rendered 

positively charged through layer-by-layer deposition of positively-charged 

poly(diallyldimethylammonium)chloride (PDDA), and negatively-charged 

poly(sodium 4-styrenesulfonate) (PSS). A monolayer of negatively-charged PS 

spheres (107 nm diameter) was drop-coated on the substrates, and subsequently 

subjected to thermal annealing for 60 s at 116oC. The resulting colloidal array was 

used as a mask for the etching of the polyelectrolyte layers down to the SiO2 

substrate, protecting the TiO2 layer right underneath the spheres. After removal of 

the colloidal mask by UV/ozone treatment for 1 h, nanostructured TiO2 pillars on 

a SiO2 background remained on the substrate. In the next step, these 

nanostructures were made biologically active by the selective adsorption of 

dodecyl phosphate (DDP) onto the TiO2 pillars, and polycationic poly-L-lysine-

grafted-poly(ethylene glycol) (PLL-g-PEG) adsorption on the SiO2 background by 

a process known as Selective Molecular Assembly Patterning (SMAP).173 The 
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SMAP-treated samples thus consisted of protein adhesive pillars on a non-

adsorbing PLL-g-PEG background. Finally, protein patterning was carried out by 

incubation in 40 ug/mL fluorescently-tagged streptavidin, followed by 

immobilization of biotinylated phospholipid vesicles onto streptavidin. These 

biotinylated liposomes were used as markers for the streptavidin adsorbed to the 

adhesive TiO2 nanopillars.  Although the technique has been proved successful 

for the fabrication of biologically relevant surfaces at the nanometer scale, the 

patterns formed do not possess long range ordering.  

 The formation of polymer nanostructures via particle lithography has been 

the subject of an important research effort. In particular, the fabrication of ordered 

3D macroporous polymer films has received great attention due to their potential 

applications as photonic band gap materials, porous electrodes, and filtration 

membranes, among others. Caruso and colleagues have been very active in this 

field; they demonstrated the fabrication of 3D polyaniline (PAni) and polypyrrole 

(Ppy) inverse opals using 3D colloidal arrays as the masks for the oxidative 

polymerization of aniline,174 and the electrochemical polymerization of pyrrole.175 

Sumida et al.,176 and Barlett et al.177 have also prepared inversed opals of 

polythiophene, Ppy, and PAni via electrochemical polymerization. In addition, 

poly(methyl methacrylate), poly(urethane), poly(styrene), and poly(acrylate-co-

methacrylate) have been templated by Colvin et al.,178 and Xia et al.179 Other 
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polymer nanostructures with more complex shapes have been prepared by 

reactive ion etching of multiple colloidal layers.180-182 On the other hand, despite 

its many potential applications in biosensing, microelectronics and 

optoelectronics; the fabrication of 2D polymeric nanostructures has been less 

explored. A few articles have dealt with the fabrication of water-assisted 2D 

honeycomb structures from the casting of a polymer solution onto an interface 

(air-liquid, or air-solid) under highly humid condensing environments.183-189 

However, controlling the condensation and ordering of sub-micron sized water 

droplets on a polymer solution is not a simple task. It usually requires precise 

control over many process variables such as the polymer chemistry and rheology, 

and the condensing environment in order to avoid the collapse of water droplets. 

In this respect, the use of inorganic or polymer colloids instead of water droplets 

offers more stability. Hence, the remaining portion of this section highlights some 

of the most important contributions to the field of 2D polymer templating via 

particle lithography using inorganic or polymer colloids. 

 As shown in Figure 1.17, well-ordered PAni honeycombs and truncated 

eggshell nanostructures have been prepared by Briseno et al.207,208 via 

electropolymerization of aniline monomer infiltrated within the interstices of a 

close-packed monolayer of polystyrene latex spheres precoated with 

poly(dialyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate) 
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(PDADMAC/PSS) polyelectrolyte thin shells, followed by PS core removal in 

toluene. Consistent with well-known principles of kinetics of conducting polymer 

growth, polyelectrolyte (PE) layers were found to improve the homogeneity of the 

synthesized PAni layer by introducing a greater number of negative charges on 

the surface of the PS spheres, while preserving their hydrophobic nature.209-211 

The presence of PE layers also resulted in less pore shrinkage due to more rigid 

PE/PAni honeycomb walls. In addition, by varying the number of PE layers and 

the electropolymerization parameters, the loading fraction of PAni within the PE 

shells could be tuned, thus allowing systematic control over the honeycomb pore 

size, wall width and height. The main drawback of having the PE layers is the risk 

of causing a negative effect on the conductivity and ion mobility of the PAni 

nanostructures. In addition, this technique is limited to conducting monomers and 

substrates choices.  
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Figure 1.17. AFM images of PEn-PAni arrays produced via 
electropolymerization of aniline infiltrated inside the truncated eggshell structures 
produced by core extraction of a colloidal monolayer of PS latex coated with: a) 
2, and b) 6 polyelectrolyte (PE) layers. Samples c) and d) are the SEM images of 
a and b, respectively. Reprinted with permission from Ref.218 Copyright 
@American Chemical Society. 
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 An alternative procedure, not involving electropolymerization or the use 

of PE layers, has been suggested by Zhou and collaborators for the fabrication of 

silanized polymer nanoring/nanoshell arrays and the subsequent attachment of 

DNA-capped gold nanoparticles.212 In this procedure a 1 wt% 3-

aminopropyltriethoxysilane (APTS) solution is infiltrated within the interstitial 

sites of a close-packed monolayer of PS spheres drop-cast on a silicon substrate. 

The resulting siloxane film is very robust and adheres strongly to the substrate 

through the silanol moieties on the SiO2 wafer. Upon sonication in toluene for 15 

s, only the PS cores were removed, leaving behind a mesoporous network of 

hexagonally ordered truncated aminosilane/polystyrene nanorings/nanoshells. The 

formation of polymer nanorings and nanodots as the result of partial detachment 

of PS spheres from glass substrates has also been reported by Boneberg and co-

workers.213 Moreover, Zhou et al. demonstrated the applicability of the 

synthesized nanostructures as high surface substrates for sensing applications, by 

further implanting the positively charged amino groups on the nanorings with 

negatively charged gold and DNA-capped gold nanoparticles via electrostatic 

interactions. XPS measurements confirmed the presence of anchored gold 

nanoparticles; however, the phosphorous peak associated with the DNA-capped 

gold particles could not be detected, possibly due to a small surface coverage of 

oligonucleotides capping the Au nanoparticles. The main limitation of this 

procedure is the need for silanol bearing substrates. 
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 Xu and Goedel214 have prepared free standing polyisoprene membranes 

via cross-linking of a monolayer of hydrophobized silica spheres (treated with 

polyisobutylene amphiphiles) embedded in a custom-prepared polyisoprene 

matrix bearing sulfonate and anthracene functional groups. The procedure starts 

by spreading the hybrid colloid-polyisoprene monolayer on a chloroform-water 

surface in a Langmuir trough. Upon compression of the monolayer, the polymer 

matrix is crosslinked via UV illumination, and the colloids are removed with 

hydrofluoric acid. The resulting 40 nm thick membranes consist of small, non-

connected islands with uniform 55 nm-wide pores. Using a similar procedure, Xu 

and Goedel215 have also prepared large area (in the order of hundreds of microns) 

polymer honeycombs by spreading a mixture of 

methacryloxypropiltrimethoxysilane-modified silica colloids and a nonvolatile 

photopolymerizable organic liquid (trimethylolpropane trimethacrylate-

TMPTMA) on a water surface. Moreover, they demonstrated that these polymer 

honeycombs can be further utilized as templates in the sol-gel synthesis of 

morphologically tunable TiO2, and ZnO nanostructures.216 Figure 1.18 shows the 

SEM images of the hybrid silica-polymer monolayer, before and after removal of 

the colloidal template (Figures 1.18a-b); as well as the result after infiltration of 

the Ti(OEt)4 precursor solution, before and after removal of the polymer 

honeycomb template  (Figures 1.18c-d).   As seen in Figures 1.18d-i, the 

morphology of the TiO2 nanostructures can be controlled by adjusting the 
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precursor concentration. In general, hemispheres and cup-like nanostructures form 

at higher precursor concentrations (i.e. 10-20 wt%), whereas nanorings and web-

like structures form at lower concentrations (i.e. 2 wt%).  
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Figure 1.18. SEM images of: a) silane-modified silica colloids monolayer 
embedded in cross-linked organic polymer (TMPTMA). b) TMPTMA membrane 
after spheres removal. c) membrane supported on mica. d) TiO2 nanorings on 
mica after removing the TMPTMA template. e) and f) SFM images and cross-
section view of d). Effect of Ti(OEt)4 concentration: g) 20 wt%, h) 10 wt%, and i) 
2 wt%. Reprinted with permission from Ref.215 Copyright @Wiley-VCH Verlag 
GmbH & Co KGaA. 
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 Polymer microlens arrays with a plano-convex shape have been prepared 

by Nam and collaborators217 via a double templating process in which 

poly(dimethylsiloxane) (PDMS) molds are cast on a monolayer of close-packed 

PS latex spheres, and subsequently used as templates for the UV 

photopolymerization of an urethane-based polyene mercaptoester prepolymer. A 

schematic of the process, as well as the SEM images of the PDMS mold and the 

polymer microlens array are shown in Figure 1.19.  Other polymer nanostructures 

with controllable morphology have also been synthesized by Yi and Kim218 from 

a technique that combines sintering rheology and partial dissolution of 

polystyrene-co-polydivinyl benzene (PS-co-PDVB) latex particles assembled into 

a hexagonal array on a flat surface. Trigonal isolated polymer nanoparticles and 

honeycomb-type structure are accessible depending on the sintering conditions. 

When colloid sintering is carried out at the glass transition temperature (Tg ~ 

123oC), the colloids simply adhere more strongly to the substrate; however, when 

sintering is performed at T > Tg (~140oC), a necking effect is observed as the 

result of increased mobility in the uncrosslinked polymer fraction of the colloids. 

Then, as the PS soluble fraction of the colloids is selectively dissolved in 

cyclohexane, the insoluble PDVB fractions remain trapped either in the interstitial 

spaces, forming non-connected trigonal polymer nanostructures; or they adhere to 

the neck-area forming honeycomb-type structures. The key technological aspect 
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of this method is the fact that the colloidal particles serve not only as the template 

but also as the deposition material. The effect of the colloids crosslinked PDVB 

fraction, and the dissolution time on the morphology of the nanostructures is yet 

to be determined.   

a b 

c 

 
 
 

Figure 1.19. Fabrication of polymer microlens arrays via a double templating 
process in which poly(dimethylsiloxane) (PDMS) molds are cast on a monolayer 
of close-packed PS latex spheres, and subsequently used as templates for the UV 
photopolymerization of an urethane-based polyene mercaptoester prepolymer. a) 
schematic of the process, b) SEM images of the PDMS mold, and c) resulting 
polymer microlens array. Reprinted with permission from Ref.217 Copyright 
@American Chemical Society. 
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 Ordered arrays of hollow and truncated polymer spheres have been 

prepared by Li et al.219 using a Fe2O3 honeycomb template prepared via particle 

lithography and the sol-gel technique.146 In this relatively simple procedure, the 

holes of the honeycomb are infiltrated with a polymer solution (polyvinyl alcohol, 

polyvinyl pyrrolidone, or polymethyl phenylsilane), which evaporates and 

solidifies, adhering to the honeycomb walls. After the ceramic template is 

removed by selective dissolution in 1 M oxalic acid solution, an array of either 

hollow or truncated spheres (solid or hollow) result depending of the 

concentration of the polymer solution, the size of the holes in the ceramic 

honeycomb template, and the number of infiltration cycles.  These nanostructures 

are expected to find applications as microreactor devices, and in controlled drug 

release. 

 Recently, Marquez et.al.169 proposed a novel method for the formation of 

nanometer-scale polymer structures via template assisted admicellar 

polymerization (TAAP), a process that involves the use of surfactant surface 

aggregates to concentrate monomer at the surface prior to polymerization. More 

details on this process and the nanostructures formed can be found in chapters 3 

and 4. 
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V. Emerging Technologies and Future Trends in Particle 

Lithography  

 Since its origins in the early 1980’s, many fruitful achievements have been 

made in the field of particle lithography. A number of methods have been 

developed to organize polymeric, metallic, ceramic and composite colloidal 

particles into highly-ordered, close-packed and non close-packed hexagonal 

arrays, as well as other arrangements with more complex shapes. These 

achievements have been possible in part by a better understanding of the 

mechanism driving the self-assembly of colloidal particles at liquid interfaces, as 

well as the factors controlling the quality of novel particle arrays. An interesting 

review on this subject has been recently published by Velikov and Velev.220  

Another review by Sun and Yang221 highlights current advances in the fabrication 

of non-conventional colloidal arrays, including the use of non-planar and pre-

patterned substrates, non-spherical colloids, heterogeneous (i.e. different size and 

chemistry) colloids, and non close-packed,  highly ordered arrays with different 

lattice symmetries, etc.  

 Advances in the fabrication of custom-tailored, well-ordered colloidal 

arrays with ease of production and high reproducibility have contributed 

tremendously to the advancement of particle lithography as an inexpensive, high 

 91



throughput, materials general nanofabrication technique. A recent review by Van 

Duyne and collaborators222 revisits many of the advances in particle lithography, 

with particular emphasis to important contributions to the field by his group, such 

as the development of angle-resolved NSL as an alternative for the fabrication of 

nanoparticles with more complex morphologies, the use of reactive ion etching in 

combination with NSL for the production of ordered nanopores with more 

complex geometries, the electrochemical fine tuning of silver nanoparticles and 

their localized surface plasmon resonance properties, as well as the growth of 

ultra thin protective dielectric layers on Ag nanoparticles via atomic layer 

deposition, and their application in devices with nanosensing capabilities. Other 

groups have demonstrated the formation of patterned nanostructures via 

controlled sintering and partial dissolution of polymer colloids,218 the formation 

of non close-packed colloids/polymer nanocomposites and nanoporous metallic 

arrays,90,92 as well as the patterning of biological materials such as proteins and 

cells.166,167,169

 Recognizing the tremendous advances in particle lithography in the past 

few years, the future ahead seems very promising, especially as many devices are 

currently being built and tested for commercial applications. Nonetheless, in order 

to further exploit the potential of particle lithography, many challenges still need 

to be overcome. For instance, new methods or even modifications of existing ones 
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must be evaluated in order to make possible the formation of defect-free, large 

colloidal monolayers with cm2-sized monocrystalline domains. In this respect, 

particle size, particle size distribution and surface non-homogeneities have been 

recognized by the scientific community as some of the major limitations in 

advancing particle lithography. Hence, new synthetic routes for the reliable 

fabrication of monodisperse colloidal particles with homogeneous surface 

chemistries and charge distributions are much needed. It is also desirable to 

synthesize colloidal particles with a broad spectrum of surface chemistry choices, 

thus increasing their ability to interact with other substances and to carry out 

reactions in the interior and exterior surfaces of the particles. It addition, 

homogenous and atomically flat substrates facilitate the formation of more 

uniform, defect-free colloidal monolayers. The gradual fulfillment of the 

aforementioned requirements will not only contribute to move forward the field of 

particle lithography through the development of innovative contributions, but will 

significantly help the advancement of nanotechnology.   
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VI. Glossary 

Admicellar polymerization: a technique that utilizes surfactant aggregates 

adsorbed on a surface to concentrate monomer at the surface prior to 

polymerization. 

Angle-Resolved Nanosphere Lithography (AR NSL): A variation of 

nanosphere lithography in which the angle between the surface normal of the 

sample and the direction of material deposition is changed so as to allow for 

multiple geometries and nanostructure sizes. 

Bottom-up assembly: a group of techniques that rely on molecular or particle 

interactions to drive self-assembly at the nanometer scale.  

Chemical vapor deposition (CVD): a chemical process used to produce high-

purity, thin film solid materials in which the substrate is exposed to a volatile 

precursor, and as the result of specific chemical reactions, the desired product is 

deposited on the substrate, while the undesired byproducts (usually in gaseous 

form) are removed by gas flow through the reaction chamber. 

Dynamic Thin Laminar Flow (DTLF) device: an apparatus designed for the 

assembly of colloidal particles and protein monolayers. It consists of a rotating 

glass cylinder and a PTFE hemicylindrical trough equipped with six channels that 

 94



control the subphase volume input, the pH, and the thin liquid film carrying the 

suspended colloidal particles on the surface of the cylinder.  

Electrophoresis: the ability to move particles via an electric field. 

Embossing: a nanofabrication technique based on the imprinting of a 

topographically patterned mold into a flat polymer film. 

Langmuir-Blodgett (LB) technique: A deposition technique that involves the 

formation of a monolayer at an interface and subsequent transfer onto a substrate.  

Molding: a nanofabrication technique involving the curing of a precursor material 

(usually a monomer or prepolymer) against a topographically patterned master.  

Nanosphere Lithography (NSL): a more operationally descriptive term that 

extended the capabilities of natural lithography, making possible the fabrication 

of periodic particle array (PPA) surfaces having nanometer scale features from 

single and double layer colloidal masks. 

Natural Lithography: a form of microfabrication based on the use of spherical 

colloidal particles as etching or deposition masks.  
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Particle lithography: a nanofabrication technique based on the use of ordered 

arrays of colloidal particles on a substrate as a lithographic mask for surface 

patterning.    

Photolithography: a technique that relies on the exposure of an appropriate 

material (resist) to electromagnetic radiation (e.g. UV or X-ray) to introduce a 

latent image, which is subsequently developed into relief structures through 

etching. 

Photoresist: a light-sensitive material that exhibits significant changes in 

solubility when subjected to electromagnetic radiation, making it suitable for 

pattern transfer applications.  

Scanning probe lithography (SPL): a nanofabrication technique that 13, 

14resembles the stylus writing process in which a sharp edge (the tip of a 

cantilever) is used to draw patterns, to impart chemical functionality, and even to 

manipulate molecules and atoms with great precision. 

Self assembled monolayers (SAMs): An ordered array of single molecules on a 

surface. 
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Sol-gel method: a technique based on the hydrolysis of alcohol functional groups 

in a liquid precursor, and subsequent condensation of the resulting hydroxyl 

groups to form a continuous solid network. 

Surfactants: surface-active agents that contain a hydrophilic head group and a 

hydrophobic tail. 

Top-down assembly: a group of lithographic methods designed to pattern micron 

and nanometer sized structures over large areas. 
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Chapter 2. Using Surface Tension to Predict the 

Formation of Colloidal Monolayers via the Langmuir-

Blodgett (LB) Technique 

 I. Introduction 

 In the past few years, the development of highly ordered nanoscale and 

microscopic structures has drawn much attention, and a great deal of work has 

been done on the development of different alternatives for organizing materials 

with high degree of accuracy, reproducibility and efficiency. Chapter 1 reviews 

some of these techniques, focusing on the advantages and disadvantages of each 

method. Chapter 2, on the other hand, focuses on the formation of well-ordered, 

hexagonal arrays of latex spheres via the Langmuir-Blodgett technique, a method 

that exploits the well-known phenomenon of particle self-assembly at air-liquid 

interfaces, with subsequent transferring of the floating structure to a solid support 

through a simple dip-coating process.1-8  

 Despite the many advantages of the LB technique as a very simple, yet 

effective method to manipulate and control both particle and molecular 

organization, only a few studies have been conducted on the factors affecting the 

formation of highly ordered structures from this technique. In particular, the role 
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of the spreading agent in forming well-ordered, stable monolayers at the air-liquid 

interface has not been adequately explored. As a matter of fact, inconsistent 

results are usually obtained by different research groups due to a poor knowledge 

of the factors controlling particle aggregation and deposition at interfaces. In 

order to fully exploit the many potential applications of ordered particle arrays via 

the LB technique, a more thorough study needs to be conducted on the factors 

affecting the process. This chapter studies the interaction between submicron 

polystyrene latex spheres and the spreading agent (i.e. anionic SDS, nonionic 

polyoxyethylene nonylphenyl ether (EO = 9), and low molecular weight (Mw ~ 

10000) water soluble polyacrylamide), as well as other factors such as humidity, 

and the effect of pulling vs. compression speed. The chapter also discusses the 

advantages of using the LB method not only because the process is relatively easy 

and inexpensive in comparison to some of the high-cost techniques reviewed in 

chapter 1, but also because it can be automated and scaled up to produce highly 

ordered 2D crystalline arrays in a continuous fashion. In particular, this work 

demonstrates that surface tension measurements can be used to identify the best 

set of conditions to form well-ordered colloidal monolayers via the LB technique, 

as long as the spreading agent/sphere/substrate interaction is favorable. The 

importance of the surface tension method here proposed is that it provides an 

effective tool to predict whether or not ordered arrays will form for a given 

colloid/substrate system from a very simple measurement that is easily automated.  
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II. Experimental 

Materials. All reagents and materials were used as received. Dispersions of 

polystyrene latex microspheres (0.5 µm, and 2 µm in diameter), 2.5 wt % in 

water, stabilized with a slight anionic charge from surface sulfate groups 

remaining from the synthesis procedure, were purchased from Alfa Aesar. 

Sodium n-dodecyl sulfate (SDS) 98%, octylphenoxy poly(ethyleneoxy)ethanol 

(EO = 9, Igepal® CO 630), and polyacrylamide (PA), 50 wt % solution in water 

(Mw~10,000) were obtained from Aldrich Chemical Company. Highly ordered 

pyrolytic graphite (HOPG), monochromator ZYB grade (5 mm x 5 mm sheets) 

was purchased from Structure Probe Inc.  

Film formation on HOPG via the LB technique.  In order to form colloidal 

arrays of latex spheres on HOPG two different approaches were evaluated: The 

first approach is a slight variation of the conventional LB trough in which a glass 

cylinder with no floating barriers was used to contain the sphere dispersion. In 

this case, 5 mL of a dispersion containing PS microspheres and the spreading 

agent (SDS, octylphenoxy poly(ethyleneoxy) ethanol (EO = 9), or PA) was 

prepared by fixing the concentration of latex particles (1 wt %) and varying the 

concentration of the spreading agent in the range of 3.5 mM to 104 mM for SDS; 

1.6 x 10-3 mM to 16.2 mM for Igepal® CO 630, and 5 x 10-4 wt % to 2 wt % for 
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PA. 18 MΩ nanopure water was used throughout the experiments.  Based on the 

latex concentration (1 wt %), and the surface area of 0.5 µm and 2 µm spheres 

(i.e. 1.1 x 105 m2/g and 2.8 x104 m2/g respectively), the saturation concentration 

of the surfactant on the latex surface was estimated to be low enough so as not to 

affect the concentration of surfactant in solution, which indeed was found to be 

the case as determined by high pressure liquid chromatography.  All dispersions 

were sonicated for 10 minutes prior to contact with the substrate.  HOPG was 

cleaved and immediately dipped into 5 mL of the aforementioned sonicated 

dispersion; then, by means of a stepper motor, vertically withdrawn from solution 

at a rate of 5 µm/s.  Roughly 15 min were required to coat the surface of a 25 

mm2 HOPG block at this rate.   

 The second approach resembles the first in the sense that a surfactant was 

also used to drive the formation of solid-like regions of spheres at the air-liquid 

interface, but the experimental set up is slightly different. It involves a rectangular 

chamber equipped with a pair of Teflon floating barriers which can travel along 

the surface of the liquid at a constant rate. The advantage here is that the 

concentration of latex spheres at the air-liquid interface can be increased by 

compressing the monolayer in the horizontal direction at a constant rate. In this 

study the pulling rate was fixed to 5 µm/s and the compression rate was varied 

from 0 to 20 µm/s. A schematic of the process is shown in Figure 2.1. All 
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experiments were carried out at room temperature (22 ± 1oC), and 45-50% 

relative humidity.  

Stepper Motor

Freshly cleaved 
substrate

Latex spheres+SDS
(1.2:0.8 aqueous dispersion)

VCompression

Floating Barriers

VWithdraw

 

Figure 2.1. Schematic of the Langmuir-Blodgett deposition method. Not drawn to 
scale. 

  

Instrumentation. Atomic Force Microscopy (AFM) imaging of the samples was 

performed with a Digital Instruments NanoScope III in tapping mode. High-

resolution Scanning Electron Microscopy (SEM) images of hexagonal arrays of 

latex spheres on HOPG were obtained using a field emission scanning electron 

microscope (SEM, JEOL-6300F, Peabody, MA). The SEM was operated with an 

accelerating voltage of 15kV. Samples prepared for SEM were previously 

sputtered with thin films of gold (25-30 nm thick). A Nikon Eclipse E-800 optical 
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microscope was used to follow the arrangement of the latex spheres at the air-

liquid interface as a function of surfactant concentration in solution. All images 

were recorded with a Universal Imaging Corp. software (MetaMorph 6.2r0).  

Surface Tension Measurements. Surface tension as a function of 

surfactant/polymer equilibrium concentration was determined for solutions of 

SDS-only, PS/SDS, nonionic polyethoxylated (EO = 9) surfactant-only, PS/ 

nonionic polyethoxylated (EO = 9), PA-only and PS/PA using the Wilhelmy Plate 

method in a Kruss digital tensiometer, model 10 K-T. Two different readings 

were taken to estimate the surface tension of the solution:  a first reading 2h after 

the plate had come in contact with the solution and a second reading upon film 

breakage during plate withdrawal from solution. Surface tension varied less than 

0.5 mN/m after 2h. The reproducibility, including equilibration time and/or 

contamination effects, was 0.5 mN/m. Surface tensions measured on latex-free 

solutions of surfactants agreed with literature values. 

 

III. Results  

3.1. Atomic Force Microscopy and Scanning Electron Microscopy. The effect 

of SDS concentration on the ordering of latex spheres (i.e. 0.5 µm in diameter) on 

HOPG is shown in Figure 2.2 through the AFM imaging of films prepared from 
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1wt % PS spheres and varying concentrations of SDS in the range of 3.5 mM to 

104 mM. 

 

Figure 2.2. AFM micrograph of 500 nm latex spheres on HOPG prepared from 
LB technique with 1% spheres and a) 3.47 mM SDS, b) 8.68 mM SDS, c) 34.7 
mM SDS, d) 69.4 mM SDS, and e) 104 mM SDS. 

 

 As represented by Figure 2.2a, surfactant concentrations below the CMC 

(i.e. 8.3mM) result in almost no spheres on the surface of HOPG. As the 

surfactant concentration is increased from 3.5 mM to 8.7 mM, spheres form small 

domains of hexagonally packed microspheres alternating with regions of loosely 

packed spheres and bare graphite.   Indeed, Figure 2.2b shows what might be the 

onset of close packing of spheres in isolated regions.  A further increase of the 
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surfactant concentration up to 34.7 mM SDS results in large domains of 

hexagonal arrays exhibiting only a few dislocations induced by surface 

irregularities as shown in Figure 2.2c. High resolution scanning electron 

micrographs of such highly ordered monolayers are shown in Figure 2.3  

 Increasing the SDS concentration from 3.5 mM to 34.7 mM renders a 

more stable, highly packed monolayer of latex spheres on graphite. However, as 

observed in Figure 2.2d, when the SDS concentration is further increased to 69.4 

mM, the order of the monolayer is significantly disrupted, hexagonal arrays are 

quickly lost, and the spheres become appreciably deformed. At higher surfactant 

concentrations (SDS concentrations ≥ 104 mM), a transition from monolayer 

coverage of the surface to multiple layers of highly disordered latex spheres is 

observed.  

 

Figure 2.3. SEM micrographs of hexagonal arrays of 500 nm latex spheres on 
HOPG prepared from LB technique with 34.7 mM SDS as spreading agent and 1 
wt% latex spheres. 
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 The effect of SDS concentration on the ordering of larger latex spheres 

(i.e. 2 µm in diameter) on HOPG is shown in Figure 2.4 through the SEM 

imaging of films prepared from 1 wt % PS spheres and varying concentrations of 

SDS in the range of 3.5 mM to 104 mM. The same trend observed for the 0.5 µm 

spheres in Figure 2.2 is also observed for the 2 µm spheres in Figure 2.4, i.e. as 

the SDS concentration increases, the system transitions from an incomplete 

coverage of the surface (Figures 2.4a-b) to monolayer coverage (Figure 2.4c), and 

multiple layer coverage of the surface at SDS concentrations well above the CMC 

(Figure 2.4d). 

 

Figure 2.4. SEM micrographs of 2 µm latex spheres on HOPG prepared from LB 
technique with 1% spheres and a) 3.47 mM SDS, b) 8.68 mM SDS, c) 34.7 mM 
SDS, and d) 104 mM SDS.  
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 Figure 2.5 shows the effect of polyacrylamide concentration on the 

ordering of 0.5 µm latex spheres on HOPG for polymer concentrations in the 

range of 0.001 wt % PA to 1 wt % PA. The images confirm the transition from 

incomplete coverage of the surface at very low polymer concentrations (Figure 

2.5a) to a monolayer coverage (Figure 2.5b); eventually reaching a multilayer 

coverage of the surface at 0.01 wt % PA (Figure 2.5c).  Instead of disordered 

multiple layers, at very high PA concentrations (i.e. 1 wt % PA) a few spheres are 

embedded in a polymer film adsorbed on the surface of HOPG (Figure 2.5d). 

 

Figure 2.5. SEM micrographs of 500 nm latex spheres on HOPG prepared from 
LB technique with 1% spheres and a) 0.001 wt % PA, b) 0.005 wt % PA, c) 0.01 
wt % PA, d) 1 wt % PA.  
 

 Figure 2.6 shows the effect of substrate choice on the wetting of 1:1 

PS/SDS mixtures on different substrates: SiO2, mica, glass, and HOPG.  
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Figure 2.6. SEM micrographs of (1:1) PS/SDS mixtures on different substrates: 
a) SiO2, b) mica, c) glass, and d) HOPG.  

 

3.2. Surface Tension Measurements. Figures 2.7 to 2.9 show the results of 

surface tension measurements performed on solutions of SDS-only, PS/SDS, 

Igepal® CO 630-only, PS/Igepal® CO 630, PA-only, and PS/PA with the aim to 

detect any relationship between changes in the surface tension of the 

latex/surfactant or latex/polymer mixture at a given spreading agent 

concentration; and the formation of ordered arrays.   In all cases, the 

measurements were made on systems containing 0.5 µm spheres. 

 In Figure 2.7, a relative minimum in the curve of surface tension as a 

function of surfactant concentration in the SDS-only solution (black symbols) is 

observed at 8.1 mM SDS, followed by a slight increase of the surface tension with 

increasing concentrations of SDS finally reaching a plateau around 43.5 mM. 

With pure surfactant, the curve should not show a relative minimum; rather the 

slope should be discontinuous at the CMC, and the surface tension should be 

constant above this concentration.  This behavior shown in Figure 2.7 is very 
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common for SDS, because of the presence of dodecanol from hydrolysis. Our 

observations are in quantitative agreement with experimental results found in the 

literature9 for SDS in aqueous solution at room temperature.  The relative 

minimum at 8.1 mM SDS corresponds to the critical micelle concentration of 

SDS in water.  For the PS/SDS solution, the CMC is slightly shifted to higher 

SDS concentrations (i.e. 8.3 mM), which is within the experimental error of the 

measurement.  

 

Figure 2.7. Surface tension curves for solutions of SDS-only (black) and PS/SDS 
(white) after 2h (circles), and upon film breakage (triangles). PS concentration in 
PS/SDS solutions is 1 wt %. The dotted oval encloses the range of surfactant 
concentrations at which ordered arrays of PS spheres are observed on the surface 
of HOPG.  
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 The most striking and unexpected observation from Figure 2.7 is the sharp 

increase in surface tension in the PS/SDS solution at SDS concentrations between 

17.4 mM and 34.7 mM.  Although the presence of impurities, i.e. dodecanol in 

SDS, will cause a rise in surface tension above the CMC; the size of the increase 

in surface tension eliminates this possibility.  The relatively flat plateau region 

(dotted circle) corresponds to the range of surfactant concentrations at which 

ordered monolayers of latex spheres form on the surface of HOPG.  Above 69.4 

mM, the surface tension drops, eventually returning to the surface tension of the 

SDS-only solution (i.e. 44.7 mN/m).  Moreover, these solutions of 1 wt % PS and 

high SDS concentrations showed phase separation over short periods of time: 5 

min after the solution was prepared in the case of the 69.4 mM SDS, and almost 

immediately after the 104 mM SDS solution was prepared.  The cluster formation 

on the surface of HOPG is probably a reflection of phase separation.  Phase 

separation of the 1 wt % PS and 34.7 mM SDS solution was not observed until 

after 12 hours.  

 Surface tension curves for the nonionic polyethoxylated (EO = 9) 

surfactant-only and PS/ nonionic polyethoxylated (EO = 9) surfactant are shown 

in Figure 2.8. As expected for a nonionic surfactant, the surface tension drops 

much more rapidly with added surfactant than for the anionic surfactant. The 

CMC for the nonionic polyethoxylated (EO = 9) surfactant-only solution is 
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observed at 0.081 mM (the CMC of SDS is around 8.1 mM), after which the 

surface tension reaches a plateau at about 32 mN/m. In the case of the nonionic 

polyethoxylated (EO = 9) surfactant/PS solution, the presence of solvated sulfate 

groups on the surface of the latex spheres increases the ionic strength of the 

solution, which results in a shift of the CMC toward higher surfactant 

concentrations (0.32 mM), and higher surface tension values relative to the 

nonionic polyethoxylated (EO = 9) surfactant-only solution.   However, no 

evidence of any plateau maximum in the surface tension curve is found, and 

consistent with this observation no ordered structures were observed on HOPG 

when using the nonionic polyethoxylated (EO = 9) surfactant. 
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Figure 2.8. Surface tension curves for solutions of nonionic polyethoxylated (EO 
= 9) surfactant-only (black) and PS/ nonionic polyethoxylated (EO = 9) surfactant 
(white) after 2h (circles), and upon film breakage (triangles). PS concentration in 
PS/ nonionic polyethoxylated (EO = 9) surfactant (Igepal® CO 630) solutions is 1 
wt %. No ordered structures were  observed for this system.  

 Experimental results from surface tension measurements on the PA system 

are shown in Figure 2.9. As expected from the low surface activity of 

polyacrylamide, the PA-only solution (black symbols), shows only a slight 

reduction of the surface tension with increasing PA concentrations from 5 x 10-4 

wt % to 0.02 wt %; beyond this point, the surface tension increases again. The 

existence of a minimum in the surface tension curve reflects the interaction forces 

between polyacrylamide and the water molecules at the air-liquid interface. At 
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concentrations higher than 0.02 wt % PA, attractive forces between 

polyacrylamide molecules become predominant and, consequently, PA migrates 

away from the air-liquid interface and the surface tension increases.  

 

Figure 2.9. Surface tension curves for solutions of PA-only (black) and PS/PA 
(white) after 2h (circles), and upon film breakage (triangles). PS concentration in 
PS/PA solutions is 1 wt %. The dotted oval encloses the range of polymer 
concentrations at which ordered arrays of PS spheres are observed on the surface 
of HOPG. 
 

 On the other hand, the PS/PA system (white symbols) in Figure 2.9 shows 

a steep increase of the surface tension within a narrow range of PA concentrations 
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(i.e. 0.01 wt % to 0.1 wt % PA). This range of PA concentrations corresponds to 

the formation of ordered monolayers of latex spheres on HOPG. Beyond this 

range, either incomplete or multilayer coverage of the surface is observed. Again, 

the unique feature in the surface tension curve of the PS/PA system clearly points 

out the concentration range at which one should operate in order to obtain well-

ordered hexagonal arrays of latex spheres. Further increase of the PA 

concentration in the PS/PA system does not seem to lower the surface tension to 

the value at very low PA contents (i.e. 70 mN/m), which is suggestive that 

spheres are at the air-liquid interface and hence should be on the surface of the 

solid after deposition.  However, according to SEM of the films on the solid, only 

a few spheres are found and these are imbedded in a relatively thick polymer film.  

One possible explanation is that the high viscosity of the solution prevents some 

of the spheres from adsorbing to the solid substrate.  

3.3. Optical Microscopy.  Experimental results from AFM, SEM and surface 

tension measurements clearly suggest that the interaction between the latex 

spheres and the spreading agent is key to the formation of ordered monolayers on 

graphite. In order to have a better understanding of the mechanism of formation of 

such ordered arrays via the LB application; the air-liquid interface of latex 

dispersions consisting of 1 wt % PS and various surfactant concentrations in the 

range of 3.4 mM to 104 mM were investigated. Figure 2.10 shows optical 
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microscopy images of 2 µm latex spheres at the air-liquid interface as a function 

of SDS concentration. 

 

Figure 2.10. Optical microscopy of 2µm latex spheres at the air-liquid interface 
for dispersions of 1wt%PS in various surfactant concentrations: a) 3.47 mM SDS, 
b) 8.68 mM SDS, c) 34.7 mM SDS, and d) 104 mM SDS. 
 

 Microscopic observation of the air-liquid interface show a few latex 

spheres involved in intensive Brownian motion at low surfactant concentrations 

(Figure 2.10a), as the surfactant concentration is increased, more spheres are 

observed at the air-liquid interface with much slower Brownian motion (Figure 
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2.10b). When the surfactant concentration is 34.7 mM (Figure 2.10c), the spheres 

come closer together forming patches of monolayer coverage at the liquid surface.   

For SDS concentrations ≥ 69.4 mM, particle clustering is observed at the air-

liquid interface (Figure 2.10d). 

 

IV. Discussion 

 AFM and SEM images in Figures 2.2 to 2.5 clearly suggest a strong 

dependence between the formation of ordered monolayers of latex spheres on 

HOPG from the LB technique and the concentration of the spreading agent in 

solution. For the SDS system, there is a range of surfactant concentrations (i.e. 

34.7 mM to 52.1 mM SDS) for which well-ordered arrays of latex spheres are 

observed on the substrate. As shown in Figures 1 and 3 for the 0.5 µm and 2 µm 

spheres respectively, surfactant concentrations beyond this range result in either 

loss of order or incomplete surface coverage. There are four possible roles of the 

surfactant in forming well-ordered arrays of latex spheres 1) The addition of SDS 

increases the ionic strength of the solution, constituting the driving force for the 

migration of the latex spheres from the bulk solution to the air-liquid interface 2) 

Well-known latex/surfactant interactions10,11 are responsible for the formation of 

thermodynamically stable disordered monolayers with some well-ordered regions 
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at the air-liquid interface, by the balancing of steric repulsion interactions and the 

weakening of charge repulsion between solvated sulfate groups on the surface of 

the spheres. 3) Formation of a concave liquid surface upon addition of surfactant 

due to strong hydrophobic interactions between the hydrophobic portion of the 

surfactant and the substrate (HOPG); and, as a result, strong lateral forces 

(osmotic forces) push the latex particles together on the solid substrate; and 4) 

Surfactant molecules at the air-liquid interface slow the evaporation rate of the 

latex/surfactant solution with respect to the latex solution;12 hence, the spheres 

have more time to rearrange and form ordered arrays on the substrate as the liquid 

film evaporates.46

 Latex/surfactant interactions can be followed by observation of the 

experimental surface tension curves for SDS and nonionic polyethoxylated (EO = 

9) surfactant in Figures 2.7 and 2.8, respectively. At low SDS concentrations, 

surfactant molecules at the air-liquid interface are rather far from each other and 

do not interact as in the case of a two-dimensional gas. This observation is in 

agreement with the optical microscopy image of the latex spheres at the air-liquid 

interface when the surfactant concentration is 3.5 mM (Figure 2.10a). Upon 

increasing SDS concentration, both the ionic strength and the surface compression 

of the solution increase, and as a result, latex spheres and surfactant molecules 

begin to interact as in a two-dimensional liquid (Figure 2.10b). As the surfactant 
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concentration is further increased, the lateral force (i.e. the horizontal component 

of the capillary force between spheres) increases proportionally and a patchy, 

two-dimensional solid-state phase forms at the air-liquid interface as shown in 

Figure 2.10c.  In principle, the phase transition from a liquid-like phase to a 

patchy solid-like phase should encompass a sharp increase in surface pressure (i.e. 

a significant drop in surface tension). Instead, a sudden increase of the surface 

tension for the PS latex/SDS system is observed in Figure 2.7 for SDS 

concentrations in the range of 34.7 mM to 69.4 mM. This observation can be 

explained by considering the Gibbs surface tension equation (Equation 2.1): 

∑Γ−=
j

jjdd µγ (Equation 2.1) 

Which relates the change in surface tension (dγ) to the product of the surface 

excess (Γ ) and the change in chemical potential (dµ) of each species, j, present in 

the mixture. For diluted surfactant solutions, the change in chemical potential can 

be approximated by Equation 2.2:  

(Equation 2.2) ss CRTdd ln−=µ

where R is the ideal gas constant, T is the absolute temperature, and Cs is the 

surfactant concentration in solution. Integration and rearrangement of Equations 

2.1 and 2.2 yields:  
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γ

(Equation 2.3) 

According to Equation 2.3, the change in surface tension with surfactant 

concentration is inversely proportional to the concentration of surfactant in 

solution. In other words, an increase in surfactant concentration up to the CMC 

(i.e. the maximum concentration of surfactant monomers in solution) should result 

in a reduction of the surface tension of the solution. This is the case for the 

surfactant-only solution as observed in Figure 2.7, but in the presence of 

negatively charged latex spheres (1 wt%), as the SDS concentration is increased 

from 34.7 to 69.4 mM, the ionic strength of the solution increases and the spheres 

adsorb preferentially at the air-liquid interface due to their large surface energy 

compared to the surfactant molecules. The displacement of surfactant molecules 

from the interface may explain the sudden increase in surface tension observed. 

Another possibility is that the increase in surface tension may be an artifact 

produced by latex spheres adsorbing to the Wilhelmy plate used to determine the 

surface tension as illustrated in the schematic shown in Figure X. As spheres 

adsorb to the roughened surface of the Pt plate, the wetted length is significantly 

increased by the surface area of the spheres, and as a result, the surface tension 

determined according to the Wilhelmy equation (Equation 2.4) is overestimated.   

)cos(θ
σ

L
F

= (Equation 2.4) 
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θ = contact angle 

θ  

 

Figure 2.11. Schematic of Wilhelmy method for surface tension measurements. 

 Whether the surface tension increase observed in Figure 2.7 is a real 

thermodynamic phenomenon caused by the displacement of surfactant molecules 

from the interface by the preferential adsorption of latex spheres; or an artifice 

associated with the method used for the measurements, it provides a very simple, 

yet powerful tool to predict the formation of ordered arrays of latex spheres at the 

air-liquid interface for a given particle/spreading agent system.  

 As previously proposed by Bibette et al.,13-15 the formation of solid-like 

regions of colloidal particles at the air-liquid interface can be explained in terms 

of strong attractive depletion forces resulting from the size asymmetry between 
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the micron-size spheres and the smaller micellar aggregates in solution at 

concentrations higher than the CMC. Moreover, as evidenced in Figure 2.10c, this 

organization process almost certainly occurs in the thin film of solution that is 

attached to the surface, and our surmise is that the well-ordered regions shown in 

Figure 2.10c might act as nucleation sites for the well-ordered monolayers 

observed in Figures 2.2c and 2.3 for the 0.5 µm spheres, and Figure 2.4c for the 2 

µm spheres. However, the surfactant concentration must remain within the range 

for which a plateau in the surface tension is observed, otherwise particle 

coagulation and phase separation will occur as shown in Figure 2.10d for SDS ≥ 

69.4 mM. Figure 2.12 shows the model proposed to explain the role of the 

surfactant in forming well-ordered monolayers on HOPG from the Langmuir-

Blodgett-like technique. 
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Figure 2.12. Schematic representation of the model proposed to explain the role 
of the surfactant in forming highly ordered, transferable monolayers of latex 
spheres at the air-liquid interface in LB technique. 
  

 The formation of highly ordered monolayers of latex spheres on HOPG 

when SDS is used as a spreading agent seems to be a balance between 

thermodynamic and kinetic driving forces.  On the one hand, the surfactant 

concentration has to be above the CMC of the latex-surfactant mixture to form 

solid-like regions at the air-liquid interface; and on the other hand, the time for 

phase separation decreases as the surfactant concentration is increased.  

Experimental results from this work indicate that these effects are balanced for 

surfactant concentrations in the range of 34.7 mM to 52.1 mM when SDS is used 
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as the spreading agent in latexes of 0.5 µm and 2 µm in diameter.  The difference 

between SDS and nonionic polyethoxylated (EO = 9) surfactant in driving spheres 

to the air-liquid interface might be due to the ability of the surfactant to stabilize 

the spheres in bulk; the nonionic surfactant is a much better stabilizing agent as 

evidenced by the absence of precipitation and perhaps this interaction prevents 

migration of spheres to the air-liquid interface.  

 With respect to the polyacrylamide as a spreading agent, Tsuneo16 

discusses the effect of neutral polymers on the ordering of monodisperse 

polystyrene spheres. In this work, the reflection spectrum technique is used to 

study subtle changes in the lattice constant of ordered structures on addition of 

neutral polymers. In the case of PA, the lattice constant was found to decrease as 

the result of strong dipole-dipole interactions between the latex spheres and the 

polymer. Thus, the effect is explained in terms of the changes in the magnitude 

and distribution of charges in the electrical double layer brought about by the 

adsorption of the polymer on the latex spheres. We believe this effect, in 

combination with steric repulsion due to adsorbed polymer, is the driving force 

for the migration of the spheres from the bulk to the interface. At higher 

concentrations, the viscosity of the medium probably becomes an issue for the 

migration of the spheres to the air-liquid interface.  
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 The generality of the surface tension method was confirmed by results 

with PA and the nonionic surfactant.  These results are very encouraging since the 

formation of ordered arrays can be predicted from a very simple measurement that 

is easily automated.  Further, the surface tension method should not be restricted 

to latex spheres as it could be applied to any particle system (e.g. gold particles) 

as long as changes in the particle concentration at the air-liquid interface result in 

significant changes in the measured surface tension.  The only real question is 

whether an interaction between an arbitrary set of particles and the extremely low 

energy surface platinum of the Wilhelmy plate might skew the surface tension 

measurement somehow.  This question remains to be addressed. 

 The surface tension method should be used to determine the optimum 

conditions for forming a film, but is not an absolute predictive method because 

factors unrelated to the morphology at the air-liquid interface affect the 

organization of spheres on a solid substrate. One factor is the substrate itself; i.e. 

the energetic interaction between the surface and the spheres and/or the 

interaction between the surface and the solvent.  In experiments with negatively 

charged mica, long-range ordered arrays were not formed as shown in Figure 2.6b 

except at very slow pulling speeds, which we attributed to the incompatibility 

between the negatively charged spheres/surfactant and the negatively charged 

substrate.  Patchy coverages were also found with silicon wafers and glass slides 
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(Figures 2.6a and 2.6c). The second key variable is the pulling speed; even with 

HOPG, if the pulling speed is too fast, then the ordered morphology will not be 

present on the surface. In this study the pulling speed was fixed to 5 µm/s. The 

effect of varying the compression speed on the deposition of 500 nm PS spheres 

on HOPG in the presence of 34.7 mM SDS is shown in Figure 2.13. 

 
a b 

 

Figure 2.13. SEM micrographs of colloidal monolayers of latex spheres (500 nm 
in diameter) on HOPG showing high surface coverage, and crystalline domains of 
different sizes. The size of the domains can be controlled by adjusting the ratio of 
the compression speed (Vc) to the pulling speed (Vp): a) Vc/Vp = 3, and b) 
Vc/Vp = 1. 

 SEM images in Figure 2.13 confirm that monolayer surface coverage 

greater than 95 % can be achieved with the LB technique. Another variable of 

interest is the size of the crystalline domains. In this respect, large 

monocrystalline domains, with minimum crystalline boundaries and defects are 

usually desired for many commercial applications. This paper shows that the size 

of the crystalline domains can be controlled by tuning the compression and the 

pulling speed during the dip-coating process; however, it is important to note that 
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the largest crystalline domains obtained in this work (in the order of hundreds of 

microns squared) do not reach the sizes required for most industrial applications 

(i.e. of the order of mm2).  

 Another important factor in the formation of ordered nanostructures via 

the LB technique is the choice of solvent. In this respect, the characteristics of the 

film formed on a particular substrate or at a particular pulling speed can be altered 

by changing solvent; replacing water with a 1:1 MeOH:H2O mixture led to almost 

perfect films onto HOPG and reduced the patchiness onto SiO2; however, the 

mixed solvent did not ameliorate the wetting onto mica or glass significantly. The 

importance of the surface tension method proposed here to all of these situations 

is that the method identifies the best set of conditions to perform experiments in 

order to obtain the highly ordered morphologies; and, in the case of the nonionic 

surfactant, also shows that under certain conditions forming the ordered 

morphologies is very difficult, if not impossible.   Nevertheless, the surface 

tension condition is not by itself sufficient for obtaining ordered morphologies, 

and the results represented by Figure 2.6 support this conclusion. 

 

  142



V. Conclusions 

 Highly ordered hexagonal arrays of latex spheres on HOPG have been 

prepared from a variation of the LB technique with an anionic surfactant, SDS, 

and a water soluble polymer, PA as spreading agents; whereas no ordered arrays 

could be obtained when using a nonionic polyethoxylated (EO = 9) surfactant.   

Based on the correlation found between the surface tension in the presence of the 

latex particles and the critical concentration at which hexagonal arrangements of 

latex spheres occurs; a model has been proposed to explain the role of the 

spreading agent in forming stable monolayers at the air/liquid interface, which in 

turn are necessary for the formation of well-ordered monolayers on a solid 

substrate from the LB technique. According to this model, solid-like regions of 

latex spheres form at the liquid-air interface, which are then transferred to the 

substrate.  These ordered regions then act as nuclei for the formation of 2D arrays 

of latex spheres on HOPG upon water evaporation.  A simple, easy to automate, 

yet effective surface tension method has been proposed to predict the optimal 

conditions for the formation of ordered monolayers using a variation of the LB 

deposition method from any monodisperse set of spheres. 
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Chapter 3. Synthesis of Polymer Nanostructures via 

Template Assisted Admicellar Polymerization (TAAP): 

A Comparative Study with Protein Adsorption 

I. Introduction 

In the previous two chapters it has been shown that the Langmuir-Blodgett 

(LB) technique can be use to produce well-ordered monolayers of latex spheres 

on a surface by allowing the particles to self-assemble at the air-liquid interface, 

and then transferring this structure to a substrate through a simple dip-coating 

process. Interstitial sites of adsorbed latex spheres have been used previously as 

templates to produce polymer nanostructures.  Two approaches have been 

demonstrated in the literature.  The first is to adsorb an already premade polymer 

in the interstitial sites as reported by Liu et al.1 This method has the disadvantage 

of requiring adsorption to the underlying substrate for that particular 

polymer/solvent pair, which can pose significant restrictions on the type of 

polymer/substrate used.   Further, there is a limitation on the smallest spheres that 

can be used, which depends on the radius of gyration of the polymer.  The second 

approach is to use an electric field to concentrate monomer at the surface and 

polymerize.2,3 Using an electric field to concentrate monomer has the 
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disadvantage that the monomers and surfaces that can be used are very limited.  

Both processes have the disadvantage that there is little, if any, separation 

distance between the template and the polymer.  The ramification of having a 

substantial separation distance between the template and the polymer is that a 

pillar pattern is possible; no pillar-type patterns of polymers using latex-sphere 

interstitial sites have been reported in the literature (however carbon4 and various 

metals5,6 have been shown to form pillar-type structures with this type of 

lithography).   

Other procedures described in the literature have been used to yield 

regularly arranged pillar-type patterns of polymers with sub 50 nm-scale 

dimensions.  Most of these procedures used adsorbed block copolymers as the 

template; it is well-known that block copolymers can be adsorbed to form 

regularly arranged morphologies at a solid surface.7 In one paper, the affinity of 

pyrrole for a hydrophobic component of a diblock copolymer was used to 

preferentially grow polypyrrole on top of the hydrophobic component.8 A similar 

diblock copolymer approach was used by a different set of researchers, and the 

affinity of surfactant adsorption to different blocky components was used to 

selectively localize the monomer.9 The disadvantage of both techniques is that the 

polymer does not make direct contact with the underlying surface, although 

through control of the process10 and/or the use of etching techniques,11 it is 

possible to produce patterns that have holes which in turn could be used in the 
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same manner as interstitial sites of latex spheres. Another disadvantage is that a 

block copolymer requires a great deal of time (i.e. a few days in most cases) to 

form well-ordered nanostructures.  

In this chapter, a novel method for the formation of nanometer-scale 

polymer structures via template assisted admicellar polymerization (TAAP) is 

described.  Admicellar polymerization uses surfactant aggregates adsorbed on a 

surface to concentrate monomer at the surface prior to polymerization. This 

phenomenon has been widely investigated for a number of systems including 

various monomer/surfactant combinations, as well as different substrates.12-19 The 

basic steps involved in TAAP are illustrated in Figure 3.1. The first step is to 

mask the surface with a template such that polymer is synthesized only in selected 

areas. In this work a latex-sphere template has been chosen; however the process 

should work with nearly any type of template. The second and third steps, which 

may be carried out simultaneously, involve surfactant adsorption and monomer 

adsolubilization. Indeed, monomer-surfactant interaction is critical for the 

partition of monomer into the surfactant aggregate. This interaction has been 

studied for a number of monomer/surfactant pairs.17,18, -20 23 For the particular case 

of aniline monomer and sodium dodecyl sulfate (SDS) surfactant, the interaction 

is believed to resemble that of phenol at the oil-water interface, with the benzene 

ring of the anilinium cation oriented towards the hydrophobic portion of the SDS 

aggregate, and the NH2+ moiety side by side with negatively charged SDS head 
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groups in the palisade layer of the surfactant aggregate.24-26 The polymerization 

proceeds via free radical propagation upon the addition of an initiator/oxidizer 

species, in this case ammonium peroxydisulfate (APS). In the fourth step, the 

substrate is washed with large amounts of water to remove residual monomer, 

surfactant, and initiator. Finally, the original template is removed and a patterned, 

thin polymer film is left on the surface. As shown in Figure 3.1, either polymer 

pillars or honeycombs can be formed depending on the size of the latex spheres 

and the conditions of admicellar polymerization. 

 An advantage of TAAP relative to other lithographic methods is the 

ability to form nanostructures with dimensions significantly smaller than the 

original template because of sphere-surfactant interactions. In order to illustrate 

this point, this work compares the morphology and dimensions of polyaniline 

(PANI) nanostructures synthesized via admicellar polymerization with structures 

formed via protein adsorption, for three different proteins (Bovine serum albumin, 

fibrinogen, and anti-mouse IgG). The protein patterning procedure here described 

also involves the use of sphere lithography for the masking of the substrate, 

allowing for a direct comparison between TAAP and polymer adsorption.  
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Figure 3.1.  Schematic of Template-Assisted Admicellar Polymerization (TAAP) 
showing the difference in formation of polymer nanopillars and honeycombs. 
Figure not drawn to scale. 
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II. Experimental 

Materials. Polystyrene latex spheres (2.5 wt% aqueous dispersion) stabilized 

with a slight anionic charge from surface sulfate groups, and nominal diameters of 

55, 210, 504, 1016, and 2148 nm, were purchased from Alfa Aesar.  10 wt% 

aqueous dispersions of latex spheres (560 nm, 1011 nm, 1920 nm, and 5010 nm in 

diameter) were from Bang Laboratories Inc.  Aniline (99%, distilled under 

reduced pressure), ammonium persulfate (APS, 98%), and sodium n-dodecyl 

sulfate (SDS) (98%, recrystallized once from ethanol), were obtained from 

Aldrich Chemical Company. Fluorescently tagged bovine serum albumin, 

fibrinogen, and anti-mouse IgG were purchased from Molecular Probes. HBSS-

Ca2+ buffer and vectashield H-1000 were from Invitrogen Corporation, and 

Vector Laboratories, Inc. respectively. Highly-Ordered Pyrolytic Graphite 

(HOPG), monochromator ZYB grade (5 mm x 5 mm sheets) was purchased from 

Advanced Ceramics, and used freshly cleaved. Glass slides (1 x 1 cm2) from 

Fisher Scientific were subsequently cleaned in tetrachloroethylene, acetone, 

methanol and DI water for 2 minutes each cycle, using an ultrasonic cleaner from 

Cole Palmer Instruments. Glass substrates were dried with an air stream prior to 

sphere deposition. 

Substrate Masking. The choice of substrate was based on the mechanism driving 

the formation of the nanostructure.  HOPG was chosen for TAAP because of two 
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reasons: First, the adsorption and formation of surface-induced SDS aggregates 

(i.e. hemicylinders) at the graphite-solution interface is well-understood.27  

Second, the hydrophobic nature of HOPG promotes aniline partition into 

surfactant aggregates on the surface due to hydrophobic interactions with the 

monomer. Partitioning of monomer into surfactant aggregates is a necessary 

condition for TAAP. Protein patterning, on the other hand, requires a strong 

interaction between the protein and the substrate. Glass substrates were chosen for 

the protein patterning experiments due to their excellent optical properties and 

compatibility with fluorescence microscopy techniques which allowed for in situ 

visualization and characterization of the protein patterns formed. In addition, 

several studies have demonstrated that proteins such as albumin, fibrinogen, and 

anti-mouse IgG readily adsorb onto glass and other silanol-containing substrates 

(e.g. silane-treated SiO2).28-31 Finally, since the eventual use of these protein 

structures is to investigate the role of spatial patterning of proteins in cell 

adhesion, we wanted a substrate that could allow simultaneous imaging of the 

fluorescent protein patterns as well as adhering cells in real time. 

 Close-packed monolayers of latex spheres on HOPG were obtained by 

dipping the substrate in a 1:1 dispersion of latex spheres and the spreading agent 

(SDS) as described in chapter 2. Self-assembled monolayers of PS microspheres 

onto glass substrates were achieved by a conventional spin casting procedure 

using a spin coating device from Laurell Technologies Corporation (Model WS-
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400A). The spin coating process was performed in two consecutive steps; first at 

the speed of 3000 rpm for 30 seconds and second at the speed of 1000 rpm for 30 

seconds. No surfactant was used in the spin casting method. 

Admicellar Polymerization. An aqueous solution of 5.4 mM aniline/SDS was 

prepared at pH 2 using HCl. All solutions were prepared with 18.2 MΩ-cm-1 

nanopure water, and stirred for 1h at room temperature. The substrate, HOPG, 

previously coated with a monolayer of hexagonally packed latex spheres was 

contacted with 5 ml of the SDS/aniline solution for 1h at room temperature. After 

addition of 100 ul of 5.4 mM APS, admicellar polymerization was carried out 

with gentle stirring, at room temperature for 24h. Following polymerization, 

excess monomer and surfactant were rinsed thoroughly with pH 2 water (adjusted 

with HCl) and dried at room temperature. PS latex spheres were removed by 

soaking the samples in toluene for 5 days. All samples were kept in a desiccator 

for at least 12h prior to imaging. 

 In addition, two control samples were prepared: the first sample was 

synthesized following the same procedure described above, but no surfactant was 

added to promote the localization of aniline at the solid-liquid interface. The 

second control was prepared by dipping the substrate for 12h into a solution 

containing solution polymerized polyaniline that had been polymerized for 24h. 

HOPG substrates previously masked with a 504 nm latex sphere close-packed 
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monolayer were used for the control samples. PS latex spheres were removed by 

soaking the samples in toluene for 5 days. 

Protein Adsorption. Protein patterns were achieved by adsorption of 100 µl of 

the protein solution (i.e. 20 µg/ml bovine serum albumin, 50 µg/ml fibrinogen, 

and 20 µg/ml anti-mouse IgG) onto glass substrates previously masked with a 

monolayer of PS latex microspheres. After 1h incubation, the substrate was 

washed with HBSS-Ca+2 buffer. PS latex spheres were subsequently removed by 

ultrasound in the HBSS-Ca+2 solution for 2 min. The substrates were then air 

dried for 15 min, and fixated prior to florescence imaging with vectashield H-

1000. 

Instrumentation. A confocal fluorescent microscope (Olympus Fluoview 504) 

was used to image fluorescently tagged honeycomb protein patterns on glass 

substrates. A Digital Instruments NanoScope III AFM was used in tapping mode 

to investigate the formation of polyaniline (PANI) structures on the surface of 

HOPG. MikroMasch Ultrasharp silicon nitride cantilevers were used with a 

backside aluminum coating and typical resonant frequencies of 325 kHz and force 

constants of 40 N/m. All images were captured at 0o with minimal engagement 

forces and relatively high scanning rates. AFM calibration was carried out using 

grids with a pitch of 10 um and depth of 180 nm. High-resolution SEM imaging 

of PANI structures on HOPG was performed using a field emission scanning 
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electron microscope (SEM, JEOL-6300F, Peabody, MA). The SEM was operated 

with an accelerating voltage of 15kV.  No coating of the polyaniline samples was 

necessary. X-ray photoelectron spectroscopy (XPS) data were recorded on a 

Physical Electronics PHI 5800ESCA System with a background pressure of 

approximately 2.0 x 10-9 Torr. An 800 mm spot size and 23 eV pass energy were 

typically used for the analysis. Voigt Amplitude curves using PeakFit® software 

from Systat Software were used for data fitting. Binding energies were corrected 

by reference to the C1s peak at 284.8 eV for hydrocarbon. 

 

III. Results and Discussion 

 Polyaniline nanostructures synthesized on highly oriented pyrolytic 

graphite (HOPG) using the redox initiator ammonium persulfate at pH 2, and the 

surfactant sodium dodecyl sulfate at a concentration of 5.4 mM (2/3 of the critical 

micelle concentration) are shown in Figure 3.2.    

 Figures 3.2c-f show a series of honeycomb patterns, with the holes 

corresponding to the sites where latex spheres were originally present.  If 

monomer were to completely fill the interstitial sites, all the spheres, regardless of 

nominal diameter, would yield honeycomb structures. However, pillars rather 

than honeycombs were formed for spheres with diameters less than 500 nm as 
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shown in Figures 3.2a and 3.2b, thus indicating that surfactant and/or monomer 

were not able to adsorb underneath where the spheres touch.  The fully extended 

surfactant molecule has a length of about 2 nanometers; the fact that spheres of 

210 nm nominal diameter did not yield a honeycomb pattern indicates that the 

sphere can significantly affect the ability of surfactant to adsorb at extremely large 

distances (i.e. on the order of hundreds of nanometers). 

 The dimensions of PANI nanostructures shown in Figure 3.2, including 

the separation distance between the polymer and the surface of the latex sphere, 

are tabulated in Table 3.1.  These distances are calculated from the measured 

height of the structures and their characteristic diameters, as well as geometric 

considerations.  As shown in the schematic accompanying Table 3.1, the distance 

a represents the height of the admicellar polymer directly underneath where the 

spheres touch; b is the shortest distance between the polymer at the center point of 

the interstitial site and the sphere, c is the distance between the polymer and the 

sphere directly underneath where the spheres touch, while d is the height of the 

admicellar polymer at the center point of the interstitial site. 
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1 um 2 um 

500 nm 500 nm 

100 nm 200 nm 

 

Figure 3.2.  SEM and AFM micrographs of admicellar polymer on HOPG after 
removal of latex sphere template.   AFM micrographs:  a) 55 nm, and b) 210 nm 
spheres.  SEM micrographs (60o tilt angle): c) and d) 504 nm. e) 1016 nm, and f) 
2148 nm spheres.  
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Table 3.1. Admicellar Polymer Characteristics. 

  
 

b .
 ac 

d = height 
out of page 

Sphere 

Diameter (nm) 

Nanostructure  

Diameter (nm) 

Nanostructure  

Height (nm) 

Honeycomb Wall 

Thickness (nm) 

Separation 

Distanceb (nm) 

55 20 25 n/a 4 

210 45 60 n/a 24 

504 350 30a, 145d 65 58, 60c

1016 880 350 110 100, -28c

2148 1700 640 240 243, -22c

 

 An interesting observation from Table 3.1 concerning the 504 nm spheres 

is the fact that the separation distance from the sphere to the center point of the 

interstitial site (b) is equivalent to the separation distance measured from the point 

directly underneath where the spheres touch (c). These two distances represent the 

closest approach distance of the polymer to the sphere, and should be equal if 

sphere-surfactant interactions are controlling the separation distance. On the other 

hand, negative values were obtained for the separation distance for the larger 

sphere sizes (1016 nm and 2140 nm in diameter). In principle, such values are not 
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possible if the spheres are serving as a template for the polymerization; however, 

a geometric reason for this apparent inconsistency can be provided by considering 

the morphology of the structures shown in Figures 3.2e and 3.2f. As seen in the 

figures, the wall heights do not have the expected parabolic shape as shown in 

Figure 3.2c; instead the height of the wall top is constant.   

 Similar results have been obtained for honeycomb structures synthesized 

from electropolymerization by Han et al. The honeycomb wall tops are not 

parabolic, and the separation distance calculated using the geometric parameters 

they report is also negative. One possibility for constant wall height is that the 

spheres lift off the substrate during the polymerization. Clearly the adhesion force 

between the spheres and the substrate depends sensitively on the spheres’ surface 

charge and chemistry. This hypothesis is supported by the fact that both flat wall 

tops and parabolic shapes were obtained for 504 nm spheres from different 

batches from the same manufacturer. This observation points out the sensitivity of 

the TAAP method to slight variations (i.e. batch to batch variations) in sphere 

surface charge and chemistry.  

 Another possibility for the negative values in Table 3.1 is incomplete 

removal of polystyrene during the toluene wash. The presence of unremoved latex 

spheres in some images indicates that sphere dissolution is not complete in some 

cases. Unfortunately, using ultrasound to remove the spheres removed the PANI 
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nanostructure as well, indicating that PANI is not well adhered to the substrate.  

In fact, Figure 3.3 shows that sometimes the film can spontaneously lift off the 

surface and form “honeytube”-type structures; the fact that the film rolls up 

indicates residual stress in the structure possibly due to stresses formed during 

drying. The formation of these “honeytube” structures is revisited in Chapter 4.   

1 um 
 

Figure 3.3.   Polyaniline “honeytubes” caused by a spontaneous lifting off of the 
honeycomb film from the graphite surface.  

 
 To determine whether the synthesized nanostructures were effectively 

polyaniline, X-ray photoelectron spectroscopy (XPS) was carried out. PANI can 

be present in one of three oxidation states; leucoemeradine, emeraldine, and 

pernigraniline referring to reduced, reduced/oxidized, and oxidized states 
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respectively.  Thus, the particular form of PANI can be characterized from XPS 

by means of three different nitrogen environments with specific N1s binding 

energies: <399, 399-400, and >400 eV representing –N=, −NH−, and –N+•− 

respectively.32  As deduced from the two positively charged (>400 eV) N1s peaks 

observed in the XPS spectra of both PANI nanopillars and honeycomb structures 

(Figure 3.4), two different PANI species may be present: polaron and bipolaron 

states, with correspondingly increasing binding energies.33 Moreover, evaluation 

of the relative area under these positively charged peaks with respect to the total 

nitrogen content (i.e. N+/N) shows doping degrees of ca. 42 % and 61 % for 

pillars, and honeycomb nanostructures, respectively. Although the contribution to 

the area of positively charged nitrogen by intercalated ammonium ions in 

oxidized HOPG substrates cannot be ruled out, XPS results suggest that in both 

cases (i.e. pillar and honeycombs) the polymer is in the emeraldine salt 

(conductive) form. This observation is supported by AC impedance measurements 

discussed in chapter 4. 
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Figure 3.4. X-ray photoelectron spectroscopy data for: a) PANI honeycomb, and 
b) PANI nanopillars shown in Figures 3.2c, and 3.2a, respectively. Three nitrogen 
environments can be observed by deconvolution of the N1s peak. 
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 In order to assess the role of the surfactant in driving the partition of the 

monomer to the solid-liquid interface, and to confirm that the polymerization was 

occurring preferentially at the surface of the graphite, two control experiments 

were performed. For the first control sample (Figure 3.5a), the conditions for the 

admicellar polymerization of aniline were duplicated with the exception that no 

surfactant was added.  The randomly deposited material observed in Figure 3.4a is 

consistent with polymerization in solution followed by deposition on the surface, 

or a combination of precipitated and surface-grown polyaniline.  No evidence of 

sphere removal is found in Figure 3.5a indicating that the polymer grows over the 

spheres and is not removed when the spheres are removed.  Solution 

polymerization occurs according to visual observation with and without added 

surfactant.  Hence, the pattern in Figure 3.5a is not surprising; rather intriguing is 

the fact that this pattern is not seen when surfactant is adsorbed.  With admicellar 

polymer at the surface, solution-polymerized material is apparently not able to 

stick to the graphite, and is probably removed in the water wash.  When graphite 

containing adsorbed 504 nm spheres is dipped in a solution of already-formed 

polyaniline, a featureless, thick polymer films is observed as shown in Figure 

3.5b. The absence of pattern replication in Figures 3.5a and 3.5b thus confirms the 

role of the surfactant in localizing the monomer to the solid-liquid interface, and 

the fact that the polymerization occurs preferentially at the graphite surface in 

TAAP.  
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a b 

2 um 2 um 

 
Figure 3.5. Control samples: a) Oxidative polymerization of aniline (no surfactant 
added) on HOPG previously masked with a close-packed monolayer of 504 nm 
latex spheres. b) The result of dipping the same substrate into a solution 
containing solution polymerized polyaniline after 24h.  

 
 Figure 3.6 shows the result of using a latex sphere pattern, but instead of 

admicellar polymerization, a protein is adsorbed to a glass substrate. Fluorescence 

micrographs in Figure 3.6 appear very similar to AFM images published by 

Garno et al., who performed similar experiments with protein and adsorbed latex 

spheres. Garno et al., however, added polymer and latex spheres at the same time 

and formed films by an evaporative process simultaneously, and in some cases it 

appears as if polymer adsorbed to the surface underneath the spheres.  In our case, 

the spheres were adsorbed first followed by the addition of protein, and the 

protein does not appear to go underneath the spheres.    

 Protein pattern characteristics are shown in Table 3.2.  In the case of 

protein adsorption, there are two restrictions concerning the size of the 

honeycomb.  First, there is a critical sphere size that will allow polymer diffusion 

 
 
 
 164



 

through the interstitial site, roughly given by 0.155*sphere diameter.34  The 

second restriction is defined by a limit given by the interaction of the sphere with 

the adsorbed protein, as well as the repulsion associated with the disruption of the 

protein chain from its normal adsorbed configuration if it comes too close to the 

sphere.     

Figure 3.6.   Optical micrographs of fluorescently tagged protein (light in 
photograph) adsorbed on glass after removal of latex sphere template: a) 560 nm, 
b) 1010 nm, c) 1920 nm, and d) 5430 nm spheres.   The dark holes correspond to 
washed-away latex spheres. IgG (20 ug/ml) was used for figures a) and b).   
Fibrinogen (50 ug/ml) was used in figures c) and d).  
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 Table 3.2. Protein Pattern Characteristics. 

 

 *after sphere removal. 

  

 
 
 
 
  

 
 
 
 

 

Fibrinogen  

(Rg= 14.2 nm) 36

Bovine Serum Albumin 

(Rg= 7.2 nm)36 

IgG 

(Rg=3.0 nm) 37

Sphere 

diameter (nm) 

Hole diameter* 

(nm) 

Separation 

distance  (nm) 

Hole diameter* 

(nm) 

Separation 

distance (nm) 

Hole diameter* 

(nm) 

Separation 

distance (nm) 

560  210 14.4 200 12.6 160 6.4 

1010  350 24.7 310 18.5 300 17 

1920  510 28.4 380 13.2 350 10.9 

5430  1820 143 2130 196 2250 219 

166 
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 The closest approach distances in Table 3.2 assume that the protein has a 5 

nm height; studies elsewhere have shown that adsorbed protein height is on the 

order of a few nm.1,35 Honeycomb walls are clearly much thicker in the adsorption 

case as evidenced by comparison of Figures 3.2 and 3.6.  For the nominal 500 nm 

spheres, wall thickness for the admicellar polymer and the adsorbed protein are 65 

nm and 350 nm respectively. Wall thicknesses similar to the latter value were 

found by Garno et al., for the protein adsorbed concurrently with the spheres 

instead of sequentially.1   The wall thickness for the electropolymerized material 

is intermediate between these two values: 150 nm (with a height of ~100 nm) for 

600 nm spheres.2  Moreover, for a given sphere nominal size, the separation 

distance between the polymer and the sphere is much larger in TAAP compared 

to adsorption.  In addition, it is important to note the increase in apparent 

separation distance with sphere size in the adsorbed protein case, which is 

probably due to an increase in the contact area between the sphere and the surface 

as the sphere size increases due to deformation of the latex particles; this type of 

deformation has been observed before. The other interesting observation with 

respect to Table 3.2 is the dependence of the hole diameter on the radius of 

gyration.  If sphere/protein interactions were totally unimportant, then the 

diameter of the hole should scale with the radius of gyration (Rg).   The scaling 

relationship holds qualitatively except for the largest spheres; the latter result 
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suggests that sphere-polymer interactions can be important in the polymer 

adsorption case as well.36,37   A more complete description of the characteristics of 

these adsorbed protein structures, along with other adsorbed protein structures 

will appear in a later publication.38   

There are significant advantages of TAAP vs. other lithographic 

techniques.  First, TAAP will work on any surface, rough or smooth, of any 

surface chemistry, if a surfactant (cationic, anionic, or nonionic) can be found to 

form aggregates on the substrate of interest.  Second, nearly any monomer can be 

used in admicellar polymerization;12-19 if hydrophilic monomers were desired 

organic solvents could be used.  Third, the size of the polymer is much smaller 

than the size of the template, which gives the opportunity for very small polymer 

nanostructures.  In fact, as shown in Figure 3.7, it is possible to control this 

distance by changing the surfactant chain length. Using an alkyl surfactant with 

eight hydrophobic units instead of twelve allows for the polymer to fit underneath 

the spheres and form the honeycomb pattern with the expected parabolic wall 

height vs. position, instead of the pillars shown in Figure 3.2a and 3.2b. The high 

sensitivity of TAAP with surfactant chain length is attributed to the existence of a 

critical number of hydrophobic units in the surfactant molecule, which controls 

the surface-induced self-assembly of the surfactant at the solid-aqueous interface 

as proposed by a number of groups who have studied similar systems.39-43  



Moreover, for this particular system the critical number of hydrophobic units is 

expected to be highly dependent on the surface charge of the spheres.  

 

 

500 nm 
 

  

Figure 3.7.  Honeycomb pattern produced by synthesis of polyaniline on graphite 
using 50 nm spheres as template and sodium octyl sulfate as surfactant.  
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IV. Conclusions 

 A simple method for fabricating polymeric nanostructures on solid 

surfaces has been reported. The method employs the interstitial sites of a 2-D self-

assembled crystal of latex spheres. The size and shape (honeycomb vs. pillars) of 

the nanostructures formed was dependent upon the size of the spheres utilized and 

the method of polymer deposition. The fact that this method could be utilized to 

form nanoscale structures of both protein and conducting polymers suggests that 

this is a generic patterning technique which could be extended to a number of 

substrates and polymers.  
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Chapter 4. Factors Affecting the Synthesis of Polymeric 

Nanostructures from Template Assisted Admicellar 

Polymerization 

I. Introduction 

The ability to engineer surfaces, and more precisely, to create chemical 

patterns at the nanometer scale with high accuracy and reproducibility has 

inspired a great research effort in the past few years because of the number of 

potential applications in the fields of chemistry,1-3 catalysis, 4,5 biotechnology,6-  11  

medical diagnosis,12,13 and microelectronics.14-17 As discussed in chapter 1, a 

number of methods are capable of forming sub-micron and nanometer size 

polymeric structures on a surface. The most industrial important of these is 

photolithography, and its related analogues, x-ray or e-beam lithography.18-20  

Other methods include micro-contact printing,21 step-and-flash imprint 

lithography,22 molecular self-assembly,23-27 dip-pen28 and scanning probe 

nanolithography (SPL)29. One benefit of these techniques is the ability to create 

very small feature sizes in complex shapes and arrays, with high-fidelity of 

reproduction. However, major drawbacks are the high cost of the equipment and 

the need for highly skilled personnel, as well as the long processing times 

(sometimes tens to thousands of hours depending on the process and application).   
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As demonstrated in chapter 3, template assisted admicellar polymerization 

(TAAP), a technique that relies on the use of surfactant aggregates adsorbed on a 

surface to concentrate monomer at the surface prior to polymerization, not only is 

facile and inexpensive, but also has the advantage that patterns with dimensions 

significantly smaller than the original template can be transferred over large areas 

(i.e. in the order of cm2) of the substrate with relatively few defects. In particular, 

chapter 3 discusses template assisted admicellar polymerization of nanometer-

scale polyaniline (PANI) pillars and honeycombs on highly ordered pyrolytic 

graphite (HOPG), and compares the resulting nanostructures with similar patterns 

formed via polymer adsorption. The separation distance between the 

nanostructure and the sphere template is explained in terms of the role of sphere-

surfactant interactions in forming nanostructures significantly smaller than the 

original template.  This current chapter is aimed at providing a better 

understanding of the factors affecting the synthesis of polymeric nanostructures 

from TAAP for three different monomers: aniline, pyrrole and methyl 

methacrylate, and three different surfaces: highly ordered pyrolytic graphite 

(HOPG), gold, and SiO2. Among the parameters discussed are the effect of 

monomer and surfactant concentration, surfactant chain length, polymerization 

time and temperature, and solution ionic strength.   

Previous publications such as the work by Chang and Wu on chemically 

synthesized PANI  films on indium tin oxide substrates,30 and Zhang et al.31 on 
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the synthesis of polypyrrole nanostructures in solution (not surface-bounded) 

have discussed some of these effects. Lekpittaya et al. have also addressed the 

effects of polymerization media on the preparation of conductive polymer-coated 

fabrics via admicellar polymerization for three different monomers: aniline, 

pyrrole and thiophene.32  However, none of these publications dealt with the 

formation of highly ordered nanostructures on templated substrates. This chapter 

demonstrates that control of the TAAP process allows the synthesis of different 

nanostructures, including polymer nanopillars, nanorings, “honeytubes” and 

honeycomb-type structures on various substrates.  

 

II. Experimental 

Materials. A 2.5 wt% aqueous dispersion of monodispersed polystyrene latex 

spheres, 504 nm in diameter, stabilized with a slight anionic charge from surface 

sulfate groups was purchased from Alfa Aesar.  Pyrrole (Aldrich, 98%) was 

purified by passing through an activated alumina column at least 2 times before 

use. Aniline (Aldrich, 99%) was distilled under reduced pressure. The inhibitor 

was removed from methyl methacrylate (Aldrich, 99%) by passing the monomer 

several times through a column packed with hydroquinone monoethyl ether 

(MEHO)/ hydroquinone (HQ) inhibitor remover (Aldrich). All monomers were 
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kept cool in the dark before use. Hydrochloric acid, tri-n-octylphosphine oxide 

(TOPO, 98%), aniline hydrochloride (AnHCl, and sodium chloride were 

purchased from Merk. Ammonium peroxydisulfate (APS, 98%), sodium octyl 

sulfate (C8-sulfate, 98%), sodium decyl sulfate (C10-sulfate, 98%), and sodium 

dodecyl sulfate (SDS, 98%) were from Aldrich. Alkyl sulfate surfactants were 

recrystallized from ethanol prior to use. Sodium octanesulfonate (C8-sulfonate, 

99%), sodium decanesulfonate (C10-sulfonate, 99%), and sodium 

dodecanesulfonate (SDSn, 99%) were from Avocado Research Chemicals Ltd. 

Highly-Ordered Pyrolytic Graphite (HOPG), monochromator ZYB grade (5 mm x 

5 mm sheets) was purchased from Advanced Ceramics, and used freshly cleaved. 

Thermally oxidized silicon (SiO2) wafers were kindly supplied by the Center for 

Nanophase Material Science at Oak Ridge National Laboratory, and used as 

received. Gold substrates were prepared in a two-step process: First, thin glass 

slides (13 mm in diameter) were thoroughly cleaned with soap, chromic acid, and 

methanol, and subsequently rinsed with double deionized (DI) water following 

each washing step. Clean glass slides were dried and stored separately in a dry 

container. In the second step, the glass slides were sputter-coated with a 30 nm 

chromium layer followed by a 100 nm gold layer. 

 

Substrate Masking. Nanosphere lithography has been chosen because it provides 

a simple, relatively inexpensive, yet effective method for templating small 

structures, with the advantage that feature size can be easily changed by changing 
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the sphere size. In this work, a slight variation of the Langmuir-Blodgett (LB) 

technique has been used to produce well-ordered monolayers of latex spheres 

(500 nm in diameter) on a surface by allowing the particles to self-assemble at the 

air-liquid interface in the presence of a spreading agent (in this case SDS 

surfactant), and then transferring the monolayer to the substrate of interest 

through a simple dip-coating process. More details on this process can be found in 

chapter 2. 

  In the case of thermally oxidized SiO2 wafers, enhanced sphere monolayer 

coverage was achieved by precoating the substrate with a monolayer of the 

hydrophobic agent tri-n-octylphosphine oxide (TOPO).  Gold-coated glass slides 

were precoated with a monolayer of SDS to improve sphere wetting in order to 

render more uniform colloidal latex monolayers.  In order to avoid premature lift-

off of the spheres during the admicellar polymerization step, a stronger adhesion 

between the latex spheres and the substrate was achieved through a heat treatment 

at 100oC (the Tg of PS latex colloids is ca. 90oC) for 5 min. The heat-treated, 

templated substrates were cooled prior to the surfactant adsorption and 

polymerization. It is important to point out that surface preconditioning is not 

expected to interfere with surfactant adsorption during the admicellar 

polymerization step. 

Admicellar Polymerization.  The general sample preparation procedure is 

relatively simple; in a typical experiment the templated substrate is contacted with 
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5 mL of the monomer/surfactant solution for 6h (adsolubilization period). Upon 

addition of 100 uL of the initiator solution (5.4 mM APS), the sample is allowed 

to polymerize for 12h (except for those experiments in which the effect of 

polymerization time is evaluated for time periods ranging from 6h to 48h). At the 

end of the polymerization, excess monomer and surfactant are rinsed off with DI 

water, and the template is removed by dissolution in toluene for 7 days. All 

samples are kept in a desiccator until further characterization. The details of 

individual experimental subsets are described below. 

 To study the effect of monomer concentration on the morphology of 

polypyrrole nanostructures synthesized on HOPG, aqueous solutions of 

pyrrole/C12-sulfonate with a fixed surfactant concentration of 5.4 mM 

(equivalent to 45 % of the CMC with no monomer present), and varying 

monomer concentrations corresponding to a 1:1 and 1:2 monomer:surfactant ratio 

were prepared. Another set of experiments was designed in which the pyrrole 

concentration was fixed at 2.7 mM and the effect of surfactant chain length was 

evaluated for a series of sodium alkyl sulfonate surfactants. In the first case, the 

surfactant concentration was fixed to 5.4 mM, which corresponds to 4 %, 13 %, 

and 45 % of the CMC of the C8, C10, and C12-sulfonate surfactants, respectively. 

For the second case, the surfactant concentration was increased to 45 % of the 

CMC for each surfactant system. The third case evaluated the effect of increasing 
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the solution ionic strength by adding 1 mM NaCl to each sulfonate system, while 

keeping the surfactant concentration at 45 % of the CMC.  

 The effect of polymerization time on the morphology of PANI structures 

on HOPG was evaluated by preparing a series of 5.4 mM aniline/SDS solutions 

(pH = 2), and polymerizing at room temperature for different periods of time in 

the range of 6h to 48h. Another experiment was designed to evaluate the effect of 

temperature on TAAP. In this respect, PANI nanostructures with different 

morphologies (nanorings and nanopillars) were synthesized on three different 

substrates (HOPG, gold-coated glass, and thermally oxidized SiO2 wafers) via low 

temperature (i.e. 16oC) TAAP of a 5.4 mM AnHCl/SDS solution for 12h. In this 

case, the choice of AnHCl instead of aniline was to ensure equimolar 

concentrations of anilium and chlorine ions in solution. Note also that the Kraft 

temperature of the surfactant (16oC for SDS), is in principle the lowest 

temperature at which the admicellar polymerization could be carried out without 

surfactant precipitation; however, this point is arguable since it is well known that 

in the presence of organic impurities (in this case aniline monomer), the Kraft 

point may be shifted toward lower temperatures.  In any case, none of the samples 

polymerized at 16oC showed evidence of precipitate formation, thus confirming 

the fact that all the surfactant was either in solution or adsorbed at the solid-liquid 

interface.  
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 Polyaniline and polypyrrole honeycomb-type structures were also 

synthesized on gold-coated glass and silicon wafers via room temperature TAAP 

of 5.4mM AnHCl/SDS, and 2.7 mM pyrrole/5.4 mM C12-sulfonate solutions, 

respectively. Three different samples were prepared for each monomer/surfactant 

system: SiO2 wafer with and without surface pretreatment, and SDS-precoated 

gold-coated glass. The adsolubilization and polymerization periods were 6h and 

12 h, respectively.  

 Non-conducting PMMA nanostructures were prepared via room 

temperature TAAP of a 5.4 mM MMA/SDS solution on various substrates 

including HOPG (both thermally treated and untreated), as well as gold-coated 

glass and SiO2 wafers precoated with a monolayer of SDS and TOPO, 

respectively. All samples, except the untreated HOPG substrate, were subjected to 

a thermal treatment for 5 min at 100oC to improved adhesion of latex spheres to 

the substrate prior to the polymerization.  

 Finally, multiple TAAP’s were carried out on different substrates. A total 

of four different samples were prepared: The first sample consisted of a PANI 

honeycomb prepared via TAAP of a 5.4 mM AnHCl/SDS solution on a gold-

coated glass slide precoated with a monolayer of SDS as described previously. 

The sample was let to dry for 1 day, and then it was subjected to a second 

admicellar polymerization, for which a solution of 2.7 mM pyrrole/C12-sulfonate 

was used instead. The second sample was prepared according to the procedure 
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described above, but HOPG (no surface pretreatment) was used as the substrate 

instead of gold-coated glass. The third sample resembles the first sample in the 

sense that gold-coated glass was chosen as the substrate, but the order in which 

the monomer were polymerized changed: first a Ppy honeycomb was formed on 

the substrate, and then the admicellar polymerization of aniline was carried out in 

the final step. For the last sample, a nonconducting PMMA honeycomb was 

formed on HOPG via TAAP of a 5.4 mM MMA/SDS solution. Then, PANI and 

Ppy layers were subsequently admicellar polymerized on top on the substrate 

containing the PMMA honeycomb (first PANI and then Ppy). All samples were 

subjected to a 6h adsolubilization period, followed by polymerization for 12h at 

room temperature.   Where the polymer formed, e.g. in the holes of the 

honeycomb or on top of the honeycomb depends on where surfactant adsorbs and 

will be discussed in the Results and Discussion section.  

 

Instrumentation. Scanning electron microscopy (SEM) imaging of polymeric 

nanostructures on various substrates (i.e. HOPG, gold, and SiO2 wafers) was 

performed using a field emission scanning electron microscope (SEM, JEOL-

6300F, Peabody, MA). The SEM was operated with an accelerating voltage of 

15kV. Despite the benefits of sample coating in getting sharper SEM images, no 

coating was applied to the PANI or poly(pyrrole) samples in order to preserve 

them for the AC impedance measurements.  
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 Raman spectroscopy was performed using a Jovin Yvon-Horiba 

Laboratory Raman apparatus equipped with a CCD detector and with three 

different laser excitation sources having wavelengths of 633 nm (He-Ne laser), 

514 nm, and 488 nm (Ar laser). The instrument was operated using Jovin Yvon-

Horiba software. All spectra were recorded at 80 scans/min. 

AC impedance spectroscopy experiments were performed using a current-

sensing AFM (Digital Instruments, Nanoscope IIIa), equipped with a Solartron 

1260 gain/phase analyzer and a 1296 electrochemical interface.  The procedure 

involves an AFM cantilever tip (100 nm in diameter, from WiTech), subjected to 

laser ablation in order to increase its contact area with the substrate, and 

subsequently coated with gold for enhanced electrical conduction. The final tip 

diameter after laser ablation is ca. 1 um. The electrically conducting, blunted 

surface of the AFM tip serves as a contact electrode for measuring the AC 

impedance response of discrete regions on the sample surface, while keeping the 

load force between the tip and the surface constant. This method thus provides a 

convenient way to determine the electrical conductivity through the synthesized 

polymer nanostructures, in the direction perpendicular to the underlying substrate. 

AC impedance data collected over a range of 1 Hz to 1 MHz was used to generate 

the corresponding Nyquist plots (Figure 4.1), in which the imaginary and real 

values of impedance are plotted as a function of frequency. Conductivity values 

for each sample were then calculated from Equation 4.1:  
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eAz
havg

'
=σ (Equation 4.1) 

  

 Where σ [S/cm] is the conductivity, havg [cm] is the average film 

thickness, z' [ohms] is the value of real impedance obtained from the extrapolated 

intercept with the real axis of the Nyquist plot at high frequencies, and Ae [cm2] is 

the effective area of conduction, calculated as the fraction of polymer (F) in 

contact with the cross sectional area (Atip) of the blunted AFM tip (Equation 4.2).  

The fraction of polymer was estimated as the fraction of area covered by polymer 

as determined via SEM images.  

 

(Equation 4.2) FAA tipe =
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Figure 4.1. Nyquist plot for PANI honeycomb on HOPG. 

 

III. Results and Discussion 

 Admicelle formation is well known to depend strongly on solution 

conditions (e.g. ionic strength, pH), surfactant concentration and chain length, 

presence of solute, and surfactant/substrate interactions, among other factors.32 

For this reason, admicellar polymerization, a process that involves the formation 

of surfactant surface aggregates to localize monomer to the surface prior to the 

polymerization, is also expected to be affected by the parameters that influence 

admicelle formation. Experimental results in this study demonstrate that the 

morphology and electrical properties of Ppy nanostructures synthesized via 
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TAAP on HOPG are strongly dependent on the monomer and surfactant 

concentration, the ionic strength of the solution, and the surfactant chain length.  

 The effect of monomer concentration was studied for aqueous solutions of 

pyrrole/C12-sulfonate with a fixed surfactant concentration of 5.4 mM (45% of 

the CMC), and varying monomer:surfactant ratios of 0.5:1 (Figure 4.2a), 1:1 

(Figure 4.2b), and 2:1 (not shown). Comparison of Figures 4.2a and 4.2b indicates 

that when the surfactant concentration is fixed at 45% of the CMC, doubling the 

monomer concentration results in excess polymer formed in solution and 

subsequently precipitated onto the surface.  A further increase of the monomer to 

a 2:1 monomer:surfactant ratio results in higher amounts of precipitated material. 

This observation seems reasonable when considering the adsolubilization 

capability of surface-bound surfactant aggregates, also defined as the excess 

concentration of a species at an interface due to the presence of admicellar 

aggregates.33 Although monomer adsolubilization increases with surfactant 

concentration (up to the CMC)34 and added electrolyte,35 the monomer 

adsolubilization constant Kads, defined as the moles of adsolubilized monomer per 

mole of adsorbed surfactant relative to the molar concentration of monomer in 

solution,  is nearly independent of monomer concentration in the aqueous phase.36 

This means that for a given surfactant concentration above the critical aggregation 

concentration (CAC), a finite number of surfactant aggregates form on the surface 

of the substrate, which in turn sets a limit for the maximum amount of monomer 
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molecules that can potentially be adsolubilized in the core and/or the palisade 

regions of the surfactant aggregates.  Further, even if the amount of adsolubilized 

monomer increased with increasing concentration in solution, the effect on the 

bulk monomer concentration would not be significant, since the surface area of 

the substrates is so small.    

 As demonstrated in chapter 3, spheres/surfactant interaction in TAAP 

strongly affects the morphology of nanostructures synthesized from TAAP, to the 

extent that either polymer pillars or honeycombs can be formed depending on the 

sphere/surfactant-monomer/substrate interaction.  In this work, we pursued a 

better understanding of the role of the surfactant in driving the formation of 

polymer nanostructures via TAAP by studying the effect of surfactant chain 

length on the morphology of Ppy nanostructures synthesized on HOPG at a fixed 

pyrrole concentration (i.e. 2.7 mM), utilizing different sodium alkyl sulfonate 

surfactants with 8, 10, and 12 carbon atoms. Three sets of samples were 

evaluated: one in which the surfactant concentration was fixed to 5.4 mM, which 

corresponds to 45% (Figure 4.2a), 13% (Figure 4.2d), and 4% (Figure 4.2g) of the 

CMC respectively. For the second set of experiments, the admicellar 

polymerization was carried out at a fixed fraction of the CMC (i.e. 45%), for 

which the surfactant concentration in Figures 4.2d and 3g had to be increased to 

19.4 mM (Figure 4.2e), and 63 mM (Figure 4.2h) for the C10 and C8-sulfonate 

surfactants, respectively. The last set of samples (Figures 4.2c, 4.2f, and 4.2i) was 
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designed to evaluate the effect of adding 1 mM NaCl, while keeping the 

surfactant concentration at 45% of the CMC measured without salt present.    

 The overall effect of surfactant chain length on the morphology of Ppy 

nanostructures formed on HOPG can be best appreciated by comparing the SEM 

images in rows 1, 2, and 3 of Figure 4.2, which correspond to various conditions 

of admicellar polymerization in the presence of C12, C10, and C8-sulfonate 

surfactants, respectively. Not surprisingly, the C12-sulfonate surfactant is more 

effective in driving the formation of honeycomb-type nanostructures compared to 

the C10 and C8-sulfonates. This observation may be explained in terms of the 

adsorption efficiencies (determined as the negative log of the equilibrium 

concentration of the surfactant in the liquid phase at the point of zero charge of 

the substrate), and CMC values for the series of alkyl sulfonate surfactants 

reported in Table 4.1. At a given concentration, the C12-sulfonate surfactant (i.e. 

the surfactant with the longest tail, the lowest CMC, and the higher adsorption 

efficiency), will have significantly more surfactant adsorbed, resulting in 

increased monomer adsolubilization capability, and honeycomb structures with 

less defects as confirmed by comparison of Figures 4.2a, 4.2d, and 4.2g (left 

column in Figure 4.2). Note the significant amount of irregularly-shaped Ppy on 

the surface of HOPG (Figure 4.2g), most likely precipitated from solution due to 

the high tendency of the C8-sulfonate to remain in the bulk, and the smaller size 
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of the palisade region in C8-sulfonate admicelles, which further limits monomer 

adsolubilization relative to the C10 and C12-sulfonate surfactants.37

 If the above discussion regarding the effect of adsorbed surfactant and 

monomer adsolubilization capability is true, then improvements in the quality of 

the synthesized nanostructures should be observed when the admicellar 

polymerization is carried out at a fixed fraction of the CMC for each surfactant 

system. Indeed, vast improvements are shown when the surfactant concentration 

in Figures 4.2d and 3g is increased to 19.4 mM (Figure 4.2e), and 63 mM (Figure 

4.2h) for the C10 and C8-sulfonate surfactants, respectively. In particular, when 

the concentration of C10-sulfonate was 13% of the CMC, both honeycomb 

patches and uncovered regions as shown in Figure 4.2d were observed throughout 

the surface of sample. When the concentration was raised to 45% of the CMC 

(Figure 4.e), a well-developed honeycomb sheet partially covered with solution 

precipitated polymer was observed. From these results it seems that increasing the 

C10-sulfonate concentration not only boosts admicelle formation as hypothesized, 

but also favors the competing polymerization in solution reaction. As shown later, 

salt can be added to favor admicellar polymerization over polymerization in 

solution. As expected, the effect of increasing the C8-sulfonate concentration 

from 4% to 45% of the CMC was far more drastic compared to the C10-sulfonate. 

As discussed earlier, at 4% of the CMC (Figure 4.2g) mostly irregularly-shaped 

Ppy is observed on the surface of HOPG, but at 45% of the CMC (Figure 4.2h) 
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honeycomb patches form, indicating the partition of more pyrrole monomer from 

the bulk to the HOPG surface, almost certainly due to an increase in the number 

of surfactant surface aggregates. Furthermore, the effect of added salt can be 

appreciated in Figures 4.2c, 4.2f, and 4.2i, which correspond to admicellar 

polymerizations carried out in the presence of 1 mM NaCl for C12, C10, and C8-

sulfonate concentrations equivalent to 45% of their CMC’s. In particular, there is 

a significant reduction in the amount of precipitated material observed in Figures 

4.2f and 4.2i, relative to Figures 4.2e and 4.2h.  Although it is true that that more 

monomer is incorporated into admicellar aggregates as a result of an increase in 

the monomer adsolubilization constant with added electrolytes as demonstrated 

by Funkhouser et al,  in the percent reduction of monomer in solution is expected 

to be negligible due to the fact that the amount of monomer on the surface is very 

small. This effect is likely due to the interference of NaCl with the pyrrole 

polymerization mechanism in solution.   
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Figure 4.2. TAAP of pyrrole on HOPG substrates previously templated with a 
monolayer of close-packed latex spheres (500 nm in diameter), under various 
conditions of polymerization: (a) 2.7 mM pyrrole/5.4 mM C12-sulfonate. The 
inset in (a) shows a magnified image of the honeycomb structure; (b) 5.4 mM 
pyrrole/5.4 mM C12-sulfonate (45 % CMC); (c) 2.7 mM pyrrole/5.4 mM C12-
sulfonate/1mM NaCl;  (d) 2.7 mM pyrrole/5.4 mM C10-sulfonate (13 % CMC); 
(e) 2.7 mM pyrrole/19.4 mM C10-sulfonate (45 % CMC); (f) 2.7 mM 
pyrrole/19.4 mM C10-sulfonate/1mM NaCl; (g) 2.7 mM pyrrole/5.4 mM C8-
sulfonate (4 % CMC); (h) 2.7 mM pyrrole/63 mM C8-sulfonate (45 % CMC); (i) 
2.7 mM pyrrole/63 mM C8-sulfonate/1 mM NaCl. All samples were subjected to 
a monomer/surfactant adsolubilization period of 6h, followed by 12h admicellar 
polymerization at room temperature, and template removal. 
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Table 4.1. Adsorption efficiencies and critical micelle concentrations (CMC) of 
sodium alkyl surfactants used in this study. Surfactant concentration as a 
percentage of the CMC for a fixed surfactant concentration of 5.4 mM is also 
included for comparative purposes. 
 

Sodium Alkyl 
Surfactant Adsorption Efficiencyc CMCa/103 M % of CMCb

C8-sulfonate 2.6 140 4 

C10-sulfonate 3.8 43 13 

C12-sulfonate 4.5 12 45 

C8-sulfate 2.3 120 5 

C10-sulfate 3.4 33 16 

C12-sulfate 4.3 8.2 66 
a in water at 25oC 
b for a 5.4 mM surfactant solution 
c On silver iodide at 20 ± 2oC, pH = 3, and total ionic strength = 1mM.38

 

 Based on previous results for the synthesis of PANI nanostructures on 

HOPG (chapter 3), and the information reported in Table 4.1 for a series of alkyl 

sulfate surfactants, which correlates well with the trend observed for the 

adsorption efficiency and CMC values of alkyl sulfonate surfactants employed for 

the synthesis of Ppy nanostructures on HOPG; a experiment was designed to 

evaluate the effect of varying the polymerization time from 6h to 48h on the 

morphology of PANI nanostructures synthesized via TAAP of a 5.4 mM 

aniline/SDS solution (pH = 2) on HOPG substrates. As seen in Figure 4.3a, after 
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6h of polymerization the substrate is mainly covered by incipient honeycomb 

structures, thus indicating that the polymerization time was not long enough to 

allow sufficient monomer partition from solution to the unmasked sites on the 

substrate surface. This observation is further confirmed by the relatively shallow 

heights (ca. 45-60 nm) measured from the 45o tilt view shown in the inset in 

Figure 4.3a. On the other hand, fully developed honeycomb structures (80 nm in 

height), with few defects are characteristically observed for samples polymerized 

for 12 h (Figure 4.3b). When the polymerization is let to proceed for 24 h, patches 

of fibrillar PANI form on top of a honeycomb layer as seen in Figure 4.3c. As the 

polymerization is allowed to proceed for even longer times (i.e. 48h), fibrillar 

PANI takes over the surface, completely burying the underlying honeycomb 

structure (Figure 4.3d). From these results, it seems that 12 h is the optimum time 

to completely fill the uncovered sites of the masked HOPG substrate without over 

saturating the surface with excess polymer. An additional comment can be made 

regarding the fibrillar morphology of the excess PANI in Figures 4.3c and 4.3d, 

which is likely the result of solution conditions significantly changing over time, 

thus affecting the morphology of the polymer formed in solution. In this respect, 

it is important to point out that the oxidative polymerization of aniline at surfaces 

has been found to precede the precipitation polymerization in the bulk volume of 

the aqueous phase due to the heterogeneous catalysis of the PANI-chain initiation 

afforded by a surface.39,40 This explains why significant changes in the 
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morphology of PANI formed in solution are observed particularly at longer 

polymerization times. 

c d 

a b 

 

Figure 4.3. Effect of polymerization time on the morphology of PANI structures 
on HOPG prepared via TAAP of 5.4 mM aniline/SDS (pH = 2), at room 
temperature for: (a) 6h, (b) 12h, and (c) 24h, and (d) 48h. The inset in (a) shows 
the tilt view (45o) of the incipient honeycomb structured formed after 6h of 
polymerization. All samples were subjected to a monomer/surfactant 
adsolubilization period of 6h. Images shown are after template removal in 
toluene. 
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 In order to evaluate the effect of temperature on the morphology of PANI 

nanostructures synthesized from TAAP, the polymerization time was fixed at 12 h 

(i.e. the optimum time for the formation of PANI honeycombs with fewest defects 

on HOPG) and the polymerization was carried out at 16oC (i.e. the Krafft 

temperature of SDS). The rationale for conducting the TAAP at the Krafft 

temperature of the surfactant was two-fold: to slightly increase SDS adsorption to 

the uncovered areas of HOPG,41 and to regulate monomer partition from the bulk 

to the HOPG surface, thus providing an additional avenue to control the 

morphology of nanostructures prepared via TAAP.  As shown in Figure 4.4, 

PANI nanostructures with different morphologies (nanopillars, nanorings) can be 

formed on various substrates (HOPG, gold-coated glass, and thermally oxidized 

SiO2 wafers) via TAAP of  a 5.4 mM AnHCl/SDS solution at 16oC (Figures 4.4a-

c). In order to explain these results it is necessary to take into consideration the 

water solubility and diffusion rate of aniline hydrochloride (AnHCl) as a function 

of temperature. As with most salts, the solubility of AnHCl increases with 

temperature (88.36 g and 107.35 g AnHCl/100 g H2O at 15oC and 25oC, 

respectively),42 hence monomer adsolubilization (a measure of monomer partition 

into admicellar aggregates) is expected to increase as the solubility of AnHCl in 

water is decreased at lower temperatures. Therefore at 16oC, monomer molecules 

are more readily availability initially at the surface to form honeycomb structures. 
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However, both monomer diffusion and the rate of polymerization can be 

significantly slowed down at low temperatures. As a matter of fact, the diffusion 

rate of aniline,43 and the rate of PANI growth via electrochemical 

polymerization44  have been found to decrease 1.5% and 10% per °C reduction, 

respectively.  As a result, interstitial PANI nanopillars as those observed on SiO2 

substrates (Figure 4.4c) are more likely to be formed at low temperatures because 

of a higher probability for the anilinium cation to partition to the center of 

interstitial sites, the loci with the lowest restriction to monomer flow. On the other 

hand, PANI nanorings observed on HOPG (Figure 4.4a), and gold-coated glass 

(Figure 4.4b), may be the result of a stronger interaction with the substrate, which 

can potentially drive the monomer from the interstices to the area where the 

sphere contacts the substrate via capillary forces.45 As a final remark to 

emphasize the variations in morphology, the formation of PANI “honeytubes” 

occurs via rapid quenching of a sample that had been polymerized at room 

temperature which causes the PANI honeycomb sheet to roll up. Similar polymer 

“honeytubes” were previously reported in chapter 3.  
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Figure 4.4. Temperature-controlled PANI morphologies (nanorings, nanopillars 
and “honeytubes”) synthesized via TAAP of a 5.4 mM aniline/SDS solution (pH 
= 2), at 16oC on various substrates: (a) PANI nanorings on HOPG. The inset in 
(a) shows a magnified image of the nanorings. (b) PANI nanorings on gold-coated 
glass. (c) PANI nanopillars on SiO2, and (d) PANI “honeytubes” on SiO2 obtained 
by rapidly quenching a sample that had been polymerized at room temperature. 
The adsolubilization and polymerization periods were 6h and 12 h, respectively. 
Images shown are after template removal in toluene. 
 
 As seen in Figure 4.5, PANI and Ppy honeycomb structures can also be 

synthesized on gold-coated glass and silicon wafers via room temperature TAAP 

of 5.4mM AnHCl/SDS, and 2.7 mM pyrrole/5.4 mM C12-sulfonate solutions, 
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respectively. In order to evaluate the effect of the hydrophobic/hydrophilic nature 

of the substrate, three different samples were prepared for each 

monomer/surfactant system: the first sample was a templated SiO2 wafer without 

surface pretreatment (Figures 4.5a and 4.5d), the second was also a SiO2 wafer 

coated with a monolayer of TOPO prior to the deposition of the PS latex spheres, 

and subsequently subjected to a heat treatment for 5 min at 100oC to improve the 

adhesion of the latex spheres to the substrate, thus avoiding premature sphere lift-

off during admicellar polymerization (Figures 4.5b and 4.5e). The third sample 

was a gold-coated glass slide precoated with a monolayer of SDS surfactant prior 

to sphere deposition, and subsequently subjected to the same heat treatment 

described above (Figures 4.5c and 4.5f). As observed in Figures 4.5a and 4.5d, 

neither PANI nor Ppy high a strong affinity with the untreated SiO2 substrates. As 

a matter of fact, PANI seems to have a slightly higher tendency to form 

honeycomb-type structures on untreated SiO2 compared to Ppy, possibly due to 

the fact that the admicellar polymerization of aniline, unlike that of pyrrole, is 

carried out under strong acidic conditions (pH = 2). Since the pzc of silicon oxide 

is between pH 2.5 and 3.0,46 at the conditions of polymerization of aniline the 

SiO2 is positively charged, which in turn may explain why the latex spheres 

(bearing sulfate groups on the surface) seem to be less susceptible to desorption 

during the polymerization step. The effect of precoating and thermally treating the 

substrates can be appreciated by comparison of Figures 4.5a and 4.5b (PANI), and 
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4.5d and 4.5e (Ppy). From these results it is evident that premature sphere lift off 

during the admicellar polymerization step has been significantly reduced by: 1) 

rendering the substrate’s surface more hydrophobic through the precoating step, 

2) minimizing sphere surface charge nonhomogeneity by annealing,47 and 3) 

increasing the mechanical adhesion between the spheres surface and the substrate 

by partially softening a fraction of the outer layer of the spheres, thus creating a 

“sticky” effect as in adhesive tapes.  

 Despite the obvious improvements attained from surface preconditioning 

of both gold-coated glass and SiO2 wafers, HOPG seems to be, in general, the 

best choice of substrate for TAAP. Similar results have been found by Carswell 

on the synthesis of electrically conducting polymers via the use of adsorbed 

surfactant aggregates.48 A possible explanation as to why TAAP seems to work 

best on HOPG substrates may be provided by considering the mechanism of 

admicelle formation at the graphite-water interface. As in the case of micellar 

aggregates in solution, the formation of surface-bounded surfactant aggregates is 

known to be driven by hydrophobic interactions. In particular, the formation of 

half-cylindrical surfactant aggregates at the graphite-aqueous solution interface 

has been shown to be templated by an ordered monolayer in which the surfactant 

molecules are disposed parallel to the graphite basal plane. Beyond a critical alkyl 

chain length, the ordered monolayer is so stable that surfactant adsorption 

becomes effectively irreversible.49 This would explain not only why 
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nanostructures of better quality are obtained on HOPG compared to other 

substrates such as glass-coated glass and SiO2, but also why the C12-sulfonate 

performed better than the C10 and C8-sulfonates in the study of the effect of 

varying the surfactant alkyl chain length on the morphology of Ppy 

nanostructures synthesized via TAAP on HOPG. 

a b c 

f e d
b

 

Figure 4.5. TAAP of aniline and pyrrole monomers on different substrates:  (a) 
Low surface coverage PANI honeycombs on SiO2 without surface pretreatment. 
(b) PANI honeycomb on SiO2 precoated with a monolayer of TOPO. (c) PANI 
honeycomb on gold-coated glass precoated with a monolayer of SDS surfactant. 
(d) Ppy honeycombs on SiO2 without surface pretreatment. (e) Ppy honeycomb 
on SiO2 precoated with a monolayer of TOPO.  (f) Ppy honeycomb on gold-
coated glass precoated with a monolayer of SDS surfactant. PANI and Ppy 
samples were prepared from 5.4mM AnHCl/SDS, and 2.7 mM pyrrole/5.4 mM 
C12-sulfonate solutions respectively. All samples were subjected to a 6h 
adsolubilization period, followed by polymerization for 12h at room temperature, 
and template removal by dissolution in toluene. 
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 In addition to PANI and Ppy nanostructures, non-conducting PMMA 

nanostructures were prepared via room temperature TAAP of a 5.4 mM 

MMA/SDS solution on various substrates including HOPG (both thermally 

treated and untreated), gold-coated glass, and SiO2 wafers precoated with a 

monolayer of SDS and TOPO, respectively (Figure 4.6). All samples, except the 

untreated HOPG substrate, were subjected to a thermal treatment for 5 min at 

100oC to improved adhesion of latex spheres to the substrate prior to the 

polymerization, thus preventing premature sphere lift-off during the admicellar 

polymerization step. The effect of surface preconditioning can be appreciated by 

comparison of Figures 4.6a and 4.6b, which correspond to PMMA nanostructures 

formed on untreated and preconditioned (SDS precoated and thermally treated) 

HOPG substrates. The PMMA porous structure with variable pore sizes observed 

in Figure 4.6a could be an indication that the latex spheres are being pushed off 

the substrate by the strong affinity between the growing PMMA and the HOPG 

surface, resulting in template loss and disordered nanostructures. In comparison, 

the hexagonally ordered, fully-developed PMMA honeycomb shown in Figure 

4.6b confirms the effectiveness of the surface pretreatment in keeping the spheres 

on the substrate until the end of the polymerization step. In this respect, it is 

important to point out that HOPG preconditioning was never required to preserve 

the sphere template during the polymerization of less hydrophobic monomers 

such as pyrrole or aniline. It seems that the growing PMMA nanostructure 
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reaches out to the contact area between the spheres and the substrate, competing 

with the latex spheres for adsorption sites on the substrate’s surface. As a matter 

of fact, the thicker walls (ca. 250 nm) observed for PMMA honeycombs on 

HOPG and gold-coated glass (Figures 4.6b and 4.6c) compared to PANI or Ppy 

honeycomb walls (ca. 65 nm) confirm the ability of the growing PMMA to 

penetrate further underneath where the spheres touch, presumably because of a 

stronger interaction between the MMA monomer and the substrate.  

 An additional observation can be made regarding the thinner walls (ca. 

100 nm) observed for PMMA honeycombs on SiO2 (Figure 4.6d), compared to 

those formed on HOPG and gold-coated glass substrates (ca. 250 nm), which may 

be the result of a weaker interaction between MMA and the TOPO-coated SiO2 

wafer due to the high polarity of the phosphine oxide molecules. Furthermore, 

this weak interaction may also be the reason for the polymer flow evidenced in 

the inset in Figure 4.6d. Normally, PMMA would not be expected to flow at room 

temperature.  However, there has been considerable experimental evidence for 

large reductions in the glass transition temperature (Tg) of PMMA thin films with 

decreasing film thickness50 depending on the polymer-substrate interaction.51,52 

Hence, it is possible that at room temperature the thin PMMA honeycomb on 

SiO2 may be able to flow, or the high energy SEM electron beam (15 kV) heated 

the sample enough to enable it to flow; neither could be true for either PANI or 

PPy. Another possibility is that either unreacted MMA monomer or dissolved PS 
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from template removal via dissolution in toluene may be the cause for the flow 

apparent in Figure 4.6d.  To test the latter, Raman spectroscopy was conducted on 

all the PMMA honeycomb samples in Figure 4.6. Unfortunately, only the sample 

corresponding to the PMMA honeycomb on preconditioned HOPG (the sample 

with the thicker honeycomb walls-Figure 4.6b) had sufficient signal strength to 

allow the corresponding spectrum to be recorded (Figure 4.7). 

 Although the Raman signal recorded for the PMMA honeycomb (ca. 40 

nm thick) shown in Figure 4.6b is very weak relative to the strong sp2 carbon 

peak observed at 1583 cm-1 for HOPG, some characteristic peaks can be 

identified in the Raman spectrum shown in Figure 4.7. In particular, the peak 

observed at 1729 cm-1 corresponds to the C=O stretching of the C-COO group, 

while that at 1452 cm-1 is attributed to the C-H vibration of the α-CH3 group. The 

absence of a band at 1639 cm-1, which is typically assigned to the C-C stretching 

mode of residual MMA monomer, discards the possibility of flow due to either 

residual MMA or oligomeric PMMA.53 On the other hand, the assignment of the 

series of weak bands between 950 cm-1 and 1050 cm-1 is not trivial, as both 

PMMA and polystyrene (PS) show characteristic peaks in this region. 

Nonetheless, the presence of residual PS from the dissolution of latex spheres can 

also be ruled out due to the absence of a peak around 1600 cm-1, which is 

characteristically observed in the Raman spectrum of PS samples. 
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Figure 4.6. Non-conducting PMMA nanostructures prepared via room 
temperature TAAP of a 5.4 mM MMA/SDS solution on various substrates: (a) 
HOPG-no heat treatment, (b) HOPG, (c) gold, and (d) SiO2 thermally treated for 
5 min at 100oC to improved adhesion of latex spheres to the substrate prior to the 
polymerization. The insets in Figures (c) and (d) are zoom images of the 
corresponding samples. The adsolubilization and polymerization periods were 6h 
and 12 h, respectively. All images shown are after template removal via 
dissolution in toluene. 
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 Figure 4.7. Raman spectra of HOPG substrates before (gray line) and after 
(black line) room temperature TAAP of a 5.4 mM MMA/SDS solution for 12h.  

 
Although the images in Figure 4.8 are the result of preliminary studies, 

and more work needs to be done in order to find the optimum conditions for 

multiple TAAP sequences, the micrographs can be used to obtain information 

concerning the interaction of a given monomer/surfactant pair with the underlying 

substrate/templated polymer.  For instance, the effect of substrate choice on the 

morphology of the resulting nanostructure can be appreciated by comparison of 

Figures 4.8a and 4.8b. When HOPG is used as the substrate (Figure 4.8b), the 

PANI honeycomb will template the growth of the Ppy honeycomb on top, which 

replicates almost exactly the shape of the underlying PANI honeycomb.  If 
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instead gold-coated glass is used as the substrate, a thin-wall PANI honeycomb 

forms, and the pattern transfer capability is significantly reduced as evidenced by 

the top broken Ppy honeycomb patches observed in Figure 4.8a.  At this point, we 

cannot be sure whether this effect is simply a size effect, e.g. the amount of 

surfactant adsorbed per unit area is inherently less on thinner walls, or a shape 

effect, i.e. the curvature of thinner walls is greater which in turn reduces 

surfactant adsorption.  A schematic representation of the templating effect of thin 

vs. wall honeycombs in shown in Figures 4.9a and 4.9b, respectively. 

 The effect of changing the TAAP sequence for a given substrate (in this 

case gold-coated glass) can be appreciated in Figures 4.8a and 4.8c. As seen in 

Figure 4.8c, when Ppy is laid down on the surface first and the admicellar 

polymerization of aniline follows, the resulting morphology resembles pillar-like 

structures instead of the wall-templated honeycomb structures observed in Figure 

4.8a. This observation, schematically illustrated in Figures 4.9a and 4.9c, 

indicates that pyrrole/C12-sulfonate adsorb preferentially to the PANI honeycomb 

walls, and aniline/SDS has more affinity towards the gold substrate than Ppy. A 

reasonable explanation for the former can be provided by considering the 

oxidation state of the PANI honeycombs. As demonstrated by XPS measurements 

in chapter 3, approximately 61% of the total nitrogen content in PANI 

honeycombs formed via TAAP corresponds to positively charged nitrogen          

(–N+•−). Conductivity values reported in Table 4.2 also support these findings. 
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Hence, it is reasonable to expect that the C12-sulfonate may be preferentially 

adsorbed to the walls of the positively charged PANI honeycombs through an ion 

pairing or ion exchange mechanism.38,54 The adsorption of monomer/surfactant to 

the honeycomb walls does not rule out the possibility that some 

monomer/surfactant may also be adsorbed (although in less amounts) to the bare 

substrate. 

 Figure 4.8d shows the result of a triple TAAP process in which a thick-

wall PMMA honeycomb has been first laid down on HOPG, and subsequently 

used as a template for two additional admicellar polymerization steps with aniline 

and pyrrole monomers, respectively. Although far from perfect, a layered 

nanostructure consisting of three sections with different chemistry and 

morphology has been synthesized from a relatively simple process. In particular, 

it is important to note the thinning of the honeycomb wall as the honeycomb 

nanostructure growths in the vertical direction. This observation, schematically 

illustrated in Figure 4.9d, is almost certainly the result of less surfactant adsorbed 

to the surface of honeycomb walls of decreasing size (PMMA > PANI > Ppy).  
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Figure 4.8. Layered polymer nanostructures via multiple TAAP on different 
substrates: (a) PANI honeycomb on gold-coated glass (TAAP 1), topped with 
fragments of a Ppy honeycomb (TAAP 2). (b) PANI honeycomb on HOPG 
(TAAP 1), topped with fragments of Ppy honeycombs (TAAP 2). (c) Ppy 
honeycomb on gold-coated glass (TAAP 1), partially covered by irregular 
fragments of PANI grown on top (TAAP 2). (d) PMMA honeycomb on HOPG 
(TAAP 1), with an overgrown PANI honeycomb patch (TAAP 2), topped with 
fragments of Ppy honeycomb (TAAP 3). The inset in (d) shows a magnified 
image of the underlying PMMA honeycomb (TAAP 1), and the overgrown PANI 
honeycomb (TAAP 2).  5.4 mM AnCl/SDS, 2.7 mM pyrrole/5.4 mM C12-
sulfonate, and 5.4 mM MMA/SDS solutions were utilized for the synthesis of 
PANI, Ppy and PMMA nanostructures, respectively. All samples were subjected 
to a 6h adsolubilization period, followed by polymerization for 12h at room 
temperature, and template removal by dissolution in toluene. 
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 The effect of nanostructure morphology, surface coverage and doping 

degree on the conductivity of PANI and Ppy nanostructures synthesized via 

TAAP was determined via AC impedance measurements using a current-sensing 

AFM apparatus. Conductivity results from AC impedance measurements are 

reported in Table 4.2. 

 
 

Figure 4.9. Schematics of layered nanostructures shown in Figure 4.9. Ppy is 
represented in black, whereas PANI and Side view, not drawn to scale. 

 

Gold-coated glass HOPG

(a) (b)

Gold-coated glass HOPG

(c) (d)
 



Sample Description σ (S/cm) 

1 50 nm PANI honeycomb on HOPG/high doping 3.2 x 10-3

2 500 nm PANI honeycomb on HOPG/high doping 7.7 x 10-3

3 500 nm PANI honeycomb on HOPG/low doping 1.1 x 10-3

4 500 nm PANI honeycomb on HOPG/high doping/patchy (ca. 40 % surface coverage) 1.9 x 10-3

5 500 nm PANI honeycomb on HOPG/ low doping/patchy (ca.70 % surface coverage) 7.7 x 10-5

6 500 nm Ppy honeycomb on HOPG/C12-sulfonate (45 % CMC) 1.29 x 10-5

7 501 nm Ppy honeycomb on HOPG/C10-sulfonate (45 % CMC) 4.97 x 10-3

8 500 nm Ppy honeycomb on HOPG/C8-sulfonate (45 % CMC) 1.9 x 10-6

 Table 4.2. Electrical conductivity for PANI and Ppy nanostructures synthesized via TAAP.   
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 The conductivity values reported in Table 4.2 are in agreement with 

literature values of electrical conductivity for PANI and Ppy thin films 

determined from AC impedance measurements.55-58 These conductivity values are 

also consistent with the 61% doping degree and the presence of PANI in its 

emeraldine salt (conductive) as determined from XPS measurements in chapter 3.  

Several observations can be made from the data shown in Table 4.2: 

 With regards to the effect of template size on the measured values of 

electrical conductivity of PANI honeycombs on HOPG, it can be seen that when 

the same conditions of polymerization and doping are preserved but the template 

size is change (i.e. use 50 nm latex spheres instead of 500 nm spheres), the 

conductivity decreases slightly from 7.7 x 10-3 S/cm (sample 2) to 3.2 x 10-3 S/cm 

(sample 1). This is not surprising since the amount of PANI templated by the 50 

nm latex monolayer is less than that templated by the 500 nm spheres.  In 

addition, comparison of PANI samples with different doping degrees (samples 2 

and 3) confirm the well-known fact that the electrical conductivity of PANI can 

be modified by adjusting the doping conditions. The conductivity decreases much 

more drastically (i.e. almost 2 orders of magnitude) in samples with different 

percentages of surface coverage (i.e. 40 and 70%). It is possible that different 

conduction mechanisms may be responsible for charge transport in samples 4 and 

5; however, we do not currently have data to support this observation.  
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 With respect to the conductivity of Ppy honeycombs synthesized on 

HOPG via TAAP using sulfonate surfactants with various alkyl chain lengths 

(samples 6 to 8), it can be seen that the values measured vary significantly 

depending on the surfactant used for the synthesis. As demonstrated earlier in this 

work, the morphology of Ppy nanostructures synthesized on HOPG via TAAP is a 

strong function of the surfactant used for the admicellar polymerization (Figure 

4.2). As a matter of fact, for a fixed surfactant concentration (i.e. 45% CMC) the 

C12-sulfonate surfactant renders a honeycomb structure with few defects (Figure 

4.2b), whereas the C8 and C10-sulfonate surfactant systems produce honeycombs 

with Ppy precipitated from solution (Figure 4.2e), and patchy honeycomb 

structures (Figure 4.2h), respectively. Then, it is reasonable to expect that the 

measured conductivity correlates with the morphologies observed in Figures 4.2b, 

4.2e, and 4.2h. Results in Table 4.2 indicate that this is the case; the lowest 

conductivity measured (i.e. 1.9 x 10-6 S/cm) corresponds to the C8-sulfonate 

system, whereas a difference of almost two orders of magnitude was observed for 

the C10 and C12-sulfonate surfactant systems. This significant difference in the 

measured values of electrical conductivity for the C10 (4.97 x 10-3 S/cm), and 

C12-sulfonate (1.29 x 10-5 S/cm) surfactants may be due to the presence of excess 

Ppy as observed in Figure 4.2e.  In general, caution must be exercised when 

interpreting conductivity data from samples with excess polymer precipitated 

from solution as these samples tend to have very rough surfaces on the scale of 
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the AFM tip (even after laser ablation), and this may cause varying amounts of 

interaction with the surface area of the tip.  In an effort to obtain more accurate 

measurements (even in the presence of solution precipitated polymer), our group 

is currently working on measuring the electrical conductivity along the surface, 

rather than through the polymer film. It is expected that the polymer chains will 

lie parallel to the substrate’s surface.59 Hence, the values of electrical conductivity 

along the film surface are expected to be higher than those reported in Table 4.2.  

   

IV. Conclusions 

 Template assisted admicellar polymerization (TAAP) is a rather simple, 

generic patterning technique which can be extended to a number of substrates and 

polymers. Its efficacy has been particularly demonstrated for the synthesis of both 

conducting (PANI and PPy) and non-conducting (PMMA) nanostructures on 

various substrates including HOPG, gold-coated glass, and SiO2.  The effect of 

various parameters such as monomer and surfactant concentration, surfactant 

chain length, solution ionic strength, polymerization time and temperature, and 

substrate choice on the morphology and electrical conductivity of the synthesized 

nanostructures was addressed. Control over these parameters allowed the 

synthesis of polymer nanopillars, nanorings, honeycomb-type structures and 
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“honeytubes”. Preliminary results on the formation of layered polymer 

nanostructures via multiple TAAP’s were also presented.  
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Chapter 5.  Conclusions and Recommendations 

I. Conclusions 

 This work demonstrated that the Langmuir-Blodgett (LB) technique can 

be used to produce ordered monolayers of latex spheres on a surface by allowing 

the particles to self-assemble at the air-liquid interface, and then transferring the 

structure to a substrate through a simple dip-coating process. In chapter 2, a 

correlation was found between the surface tension in the presence of latex spheres 

and the critical spreading agent concentration at which colloidal hexagonal 

arrangements occur at the air-liquid interface. Based on this observation, a simple, 

easy to automate surface tension method has been proposed to predict the optimal 

conditions for the formation of ordered monolayers of monodisperse spheres on a 

substrate from the LB deposition technique.  

 Surfactant-mediated ordered monolayers of latex spheres on highly 

ordered pyrolytic graphite (HOPG) were found to be the result of balanced 

thermodynamic and kinetic driving forces.  On the one hand, the surfactant 

concentration must be high enough (i.e. slightly above the CMC of the latex-

surfactant mixture) to effectively drive the spheres to the air-liquid interface; and 

on the other hand, the time for phase separation (sphere precipitation) decreases 

as the surfactant concentration is increased for a given sphere size. Other factors 
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such as solvent choice, sphere/substrate chemistry and surface charge 

homogeneity, humidity of the environment, and the rate of pulling vs. 

compression speed were found to significantly affect the assembly process, 

making very difficult (if not impossible) the formation of colloidal monolayers 

with cm2-sized monocrystalline domains. As discussed in chapter 1, this is a 

common limitation to all the patterning methods that rely on particle lithography. 

 In chapter 3, polyaniline nanostructures were fabricated on HOPG via 

template assisted admicellar polymerization (TAAP), a technique that involves 

the use of surfactant surface aggregates to concentrate monomer to the surface 

prior to the polymerization. The resulting nanostructures were compared with 

similar patterns formed via polymer adsorption. The size and shape (honeycomb 

vs. pillars) of the nanostructures formed was dependent upon the size of the 

spheres utilized as the template, and the method of polymer deposition. The 

separation distance between the nanostructure and the sphere template was found 

to be consistently much larger for the TAAP-synthesized polymer compared to 

the adsorption case. These differences were explained in terms of the role of 

sphere-surfactant interactions in forming nanostructures significantly smaller than 

the original template.  

 In an extension to the work shown in chapter 3, an in-depth study of the 

factors affecting TAAP was presented in chapter 4 for three different monomers: 
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aniline, pyrrole, and methyl methacrylate; and three different surfaces: highly 

ordered pyrolytic graphite (HOPG), gold, and SiO2. In general, the morphology 

and electrical conductivity of the synthesized nanostructures was found to depend 

strongly on monomer and surfactant concentration, surfactant chain length, 

solution ionic strength, polymerization time and temperature, substrate choice, 

and substrate preconditioning treatment. Control over these parameters allowed 

the synthesis of polymer nanopillars, nanorings, “honeytubes” and honeycomb-

type structures. In addition, nanostructures consisting of layered polymer sections 

with different chemistry and morphology were synthesized, for the first time, via 

multiple TAAP’s. The results were explained in terms of the amount of surfactant 

adsorbed as a function of the morphology and chemical affinity of the underlying 

substrate/polymer template.  

 

II. Recommendations 

 In order to further exploit the potential of particle lithography, many 

challenges still need to be overcome. For instance, new methods or even 

modifications of existing ones must be evaluated in order to make possible the 

formation of defect-free, large colloidal monolayers with cm2-sized 

monocrystalline domains. In particular, a modified version of Velev’s controlled 
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spreading method discussed in chapter 1 (p. 33), in which surfactants are 

incorporated as spreading agents to aid in the formation of colloidal monolayers 

with large crystalline domains should be evaluated. Another possibility is to make 

further modifications to the custom-made Langmuir trough utilized in this study 

so that the ratio of the pulling speed to the compression speed can be precisely 

adjusted in small increments. It is also desirable that the device be equipped with 

a temperature-controlled stage, and a humidity-controlled chamber to regulate the 

evaporation rate of the sphere dispersion.   

 In general, latex particle size, particle size distribution and surface non-

homogeneities have been recognized by the scientific community as some of the 

major limitations in advancing particle lithography. Hence, new synthetic routes 

for the reliable fabrication of monodispersed colloidal particles with 

homogeneous surface chemistries and charge distributions are much needed. It is 

also desirable to synthesize colloidal particles with a broad spectrum of surface 

chemistry choices, thus increasing their ability to interact with other substances 

and to carry out reactions in the interior and exterior surfaces of the particles. 

Furthermore, the formation of more uniform, defect-free colloidal monolayers 

should be greatly facilitated by the use of homogenous and atomically flat 

substrates.  
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  As demonstrated in chapter 4, surface pretreatment can significantly 

reduce premature sphere lift-off during admicellar polymerization. Hence, a 

systematic study of different coating/heat treatments should be carried out in 

order to find the optimum conditions for enhanced surface coverage (close to 100 

%) and for minimum premature sphere template loss. In addition, cleaner 

alternatives for template removal (e.g. mechanical removal using tape) are needed 

to avoid contamination of the underlying substrate. This is particularly true for the 

case of multiple TAAP’s where the presence of redissolved PS from the latex 

spheres can significantly alter the surface chemistry of the underlying substrate 

and the resulting nanostructure. Alternatively, TAAP could be carried out on 

substrates masked via E-beam lithography. This will eliminate many of the 

limitations associated with using latex spheres as a template.   

 One of the outcomes of this study is a better understanding of the role of 

the surfactant in driving the formation of colloidal monolayers in the LB 

technique, and the formation of polymer nanostructures via TAAP. At this point, 

however, it is not clear how much surfactant adsorbs to the surface, or what is the 

morphology of the surfactant/monomer aggregate prior to polymerization. To 

address these questions adsorption isotherms in the presence of monomer and the 

sphere template should be measured for SDS and the C12-sulfonate surfactant. In 

addition, in-situ AFM studies, and computer simulation should be performed not 
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only to elucidate morphological changes during polymerization, but also as a 

mean to study surfactant confinement effects in templated structures at the 

nanometer scale.    

 Further characterization of structures synthesized via TAAP is needed. In 

particular, X-ray photoelectron spectroscopy (XPS) studies should be carried out 

on layered nanostructures formed via TAAP to confirm the chemical environment 

of each polymer layer. Gel permeation chromatography (GPC) and 

crystallographic studies should also be pursued in order to gain information about 

the molecular weight and crystallinity of the synthesized nanostructures. In 

addition, conductivity measurements across the surface of the film and through 

the film should be carried out to address the effect of the conditions of 

polymerization and spatial confinement on the electrical properties of 

nanostructures formed via TAAP. 

 Finally, given the flexibility of the TAAP process, many potential 

combinations of surfaces, surfactants, and monomers are available for further 

investigations.  In particular, non-conducting honeycombs structures on 

conducting substrates should be tested as membranes for nanobattery applications. 

On the other hand, the building of biological sensors from conducting nanopillars 

and honeycombs is another area of future work.     
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