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PREFACE 

At the OSA Annual Meeting held at Albuqurque, NM, September 1992, Dr. Y. 

R. Shen was awarded the Schawlow Prize. His award winning paper was on Reflection 

on Nonlinear Reflection. He had reviewed the status of surface and interface studies 

by optical second harmonic and sum-frequency generations. There were also many 

other presentations in that conference on nonlinear optics, especially on second 

harmonic and sum or difference frequency generations. 

The basis of most of the recent advances in the field of lasers and optics is a 

thorough knowledge of nonlinear optics. Nonlinear optics has got a very bright future 

especially in the research arena. An attempt has been made to review the theories of 

linear and nonlinear optics, with a focus on parametric conversions. A few nonlinear 

materials have been cited in this work. An experiment to improve the efficiency of 

sum-frequency generation for broadband inputs performed in this laboratory has been 

discussed at length. 

I would like to express my sincere gratitude to my major advisor, Dr. Jerzy 

Krasinski, whose inspiration, guidance, and constant encouragement kept me motivated 

during this research project. I appreciate his endless amount of time and effort in this 

work. I am also thankful to Dr. Hans Bilger for assisting me throughout my courses in 

the field of optics, and Dr. James Baker for serving on my committee. 
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Dr. C. Radzewicz, a visiting professor from Poland, helped me throughout his 

stay at Stillwater. I deeply appreciate the efforts that he has put in to improve my 

theoretical as well as the practical knowledge. Special thanks go to Gary Pearson who 

guided me throughout my studies and helped to overcome the difficulties. 

I extend my sincere thanks to all my friends in Stillwater and outside for their 

everlasting support. 

Finally, I owe a deep sense of gratitude to my parents, Jyoti and Bharat Doshi, 

my sister Binita, and my wife Shefali for patiently providing unending support and 

encouragement throughout my graduate studies at Oklahoma State University. 
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NOMENCLATURE 

Velocity of light in free space (vacuum) 

Thickness of the material 

Charge of an electron 

Applied electric field 

Complex amplitude of the electric field 

Propagation constant or Wave vector 

Mass of an electron 

Absolute refractive index of the material 

Number of atoms 

Displacement of the electron from its equilibrium position 

Poynting vector 

Unit vector normal to the wavefront 

Stored energy density 

Damping constant 

Linewidth 

Dielectric permittivity 

Dielectric permittivity of vacuum 

Magnetic Permeability 
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J.lo Magnetic Permeability of vacuum 

; Anhannonicity 

't Time, phase decay time 

X S uscepti hi I i ty 

ro Angular frequency 

roo Natural angular frequency of the electron 

, Frequency 

ER Real amplitude of the electric field 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

"Physics would be dull and life most unfulfilling if all physical phenomena 

around us were linear. Fortunately, we are living in a nonlinear world. While 

linearization beautifies physics, nonlinearity provides excitement in physics." [21] 

With the advent of lasers, which provide a source of high-intensity coherent 

light, much progress has been made in the field of nonlinear optics. The strong 

oscillating electric field of the laser beam creates a polarization response that is 

nonlinear in character and that can act as a source of new optical fields with altered 

properties. The most important of all these nonlinear optical processes is the second

harmonic frequency generation. This frequency doubling process has wide applications. 

It converts the light from near-infrared region to deep blue. Since the size of the 

focussed spot of light is inversely proportional to its wavelength, second-harmonic 

generation can increase the capacity of stored information on optical disks immensely. 

Parametric conversion processes like sum and difference-frequency generation can be 

applied to build devices such as frequency mixers or up or down converters, that can 

act as new light sources or as amplification schemes. 

1 
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1.2 Objectives 

The literature on nonlinear optical phenomena has been expanding rapidly. 

A C£plplete survey of the work to date is beyond the scope of this thesis. Recognizing 

this, an attempt has been made to present an outline of the theoretical treatment so as 

to catalog the various effects, and to review the experimental work done in our 

laboratory. 

Theories involved in linear and nonlinear optics differ mainly due to 

introduction of terms involving nonlinearities of polarization. Chapter II describes the 

linear optical effects. It discusses the physical origin of the linear refractive index and 

the propagation of light in isotropic and anisotropic media. The theory of nonlinear 

optical interactions is introduced in chapter Ill It gives an introduction of second 

harmonic and sum-difference frequency generation concepts. The higher efficiency of 

conversion are very essential, and that could be achieved by proper phase matching. 

This is discussed in chapter IV which includes the various phase-matching techniques. 

Second-order nonlinear optical processes are a major part of this thesis, and they have 

been explained in detail in chapter V. The concept of multimode laser for generation 

of parametric frequencies is also discussed. An experiment to increase the efficiency of 

sum-frequency generation for broadband input fields, which was performed in our lab, 

is described in this thesis. The efficiency was improved by introducing a time delay 

between two or more nonlinear mixing crystals. Chapter VI summarizes the overall 

work and concludes the present day advantages and future prospects of research in the 

field of nonlinear optics. At the end, the nonlinear optical properties of classical and 



recent uniaxial as well as biaxial crystals are given in the appendix. The c.g.s. system 

is used throughout this thesis for derivations and other purposes to avoid any 

confusions. 
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CHAPTER II 

AN OVERVIEW OF LINEAR OPTICS 

2.1 Lorentz Model 

Let us consider a classical Lorentz model which consists of a single atom with 

one electron and a nucleus [26]. Whenever an electric field is applied to it, the 

distance between the electron and the nucleus changes which induces polarization. An 

alternating electric field will induce an alternating polarization of the same frequency. 

The oscillating dipole thus formed radiates an electromagnetic wave, with a phase 

dependent on the restoring force between the electron and the nucleus. 

Let us consider a string of N such atoms in row, such that the resultant wave 

coming out of each atom is different in phase than the incident wave. This wave is 

made incident on the next atom to give a final electromagnetic wave with a different 

phase which is dependent on the number of atoms and their properties due to these 

types of interactions. If 'd' is the thickness of the material which in turn is proportional 

to the number of atoms N, then the ratio of velocity of the incident wave not passing 

through the material and the velocity of the same wave when made to pass through the 

material gives the absolute refractive index of the material. 

The radiation pattern of the oscillating dipole has a sine term in it, depending 

4 
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on the type of radiation. Since the radiations in any direction other than the forward 

direction result in a destructive interference, it gives rise to a refractive index. But 

there is a tendency of incoherent scattering in impure materials. Also, the vibrations of 

the atoms with each other heat up the material, and a part of the energy is absorbed. 

To analyze this mathematically, we write 

(2.1) 

as the equation of motion for an electron oscillating around its equilibrium position, 

where r is the displacement of the electron from its equilibrium position, e is the 

charge of the electron, m is its mass, ro0 is its natural frequency, y is the damping 

constant and E is the applied electric field. 

Let the electric field be given as 

In the complex notation this can be written as 

where 

and 



On substituting this in equation 2.1 gives the solution for a linear equation. 

e e-i<.>t 
r = --E(w) + complex conjugate 

m w0
2 -2iyw-w 2 

Polarization density is P = -Ner 

:.P= Ne
2 1 E(w) e-i<.>t + complex conjugate (2.2) 

m w0
2 -2iyw-w 2 

Let 

(2.3) 

Hence 

P = x (w) E(w) e-i<.>t + complex conjugate (2.4) 

Thus we find that the induced polarization is proportional to the amplitude of 

the applied alternating field and has the same frequency. 

By putting the polarization as a source term in Maxwell's equations we get [ 4, 26) 

where 

Hence 

VxH=:! an+ 41t j 
cat c 

1 a VxE=--- (J.LH) 
cat 

D=E+41tP 

(2.5) 

(2.6) 
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where <J is the conductivity and e = (I + 41tX ) 

For a nonconducting and a nonmagnetic material <J = 0 and J.L = I 

Taking curl on both sides of the equation 2.6 

But 

For one dimensional situation 

1 a VxVxE=Vx (---~H) 
cat 

VV·E-V'-E=Vx ( -1:. _E_H) 
cat 

V·E=O 

1 a :.-V'-E=--- (VxH) 
cat 

:. V2 E= ]:_ _£_ ( ]:_ aeE) 
cat c at 

Let the solution for the above equation be 

E(z, t) = ERei(wt-kzl + complex conjugate 

7 

(2.7) 

(2.8) 
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Hence 

Here k is the propagation constant of the material. k is a function of the wave 

as well as its velocity in the material. But the velocity is determined by the refractive 

index of that material. 

Hence k = nw/c 

and 

(2.9) 

On substituting equation 2.3 in 2.9 we get 

(2.10) 

When y = 0 i.e. no damping, n is a real quantity and is dependent on 

frequency, while for y ~ 0, n is complex. The imaginary part is the measure of 

absorption and is very large in the vicinity of w0
2

. In most of the materials there is 

more than one natural frequency w0 and therefore more than one absorption bands 

exist. The absorption caused by the electron transitions give higher natural frequency 

lying in the ultraviolet and visible region of the spectrum. But if the frequency is the 

natural resonance of vibration of the atoms with respect to each other, then the 

frequency is low and lies in the infra-red band. Usually there are several different 

groups of atoms in the crystal, hence the absorption spectrum can give the direct 

information about those groups of atoms. Otherwise if the composition of a material is 
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known, the region in which it will be absorbing can be predicted. 

2.2 Anisotropy 

The natural frequency COo and the refractive index of a material are dependent 

on the interaction between the atoms. But this interaction does not remain the same in 

all the directions. Thus such a medium is called anisotropic. Such a phenomenon 

mostly occurs in crystals. In such crystals the dielectric constant is a tensor. This 

second rank tensor relates the dielectric displacement in one direction to the field in 

each of the three directions. 

D.=r, .. E. 
~ ~1 1 

(2.11) 

Let us carry the following assumptions from the isotropic case. 

The energy flux is given by the Poynting vector where the electric field and the 

magnetic field contains each half of the energy [26]. 

The stored electric density is 

Hence, 

W =.1:._ (E·D) 
e 81t 

- 1 W -- (E.e. 'tf'k) 
e 81t 1 1~ 

a 1 aEj aEk 
- (W) =- (Ekek·-+E1e1k~) at e 81t J at ut 

(2.12) 

(2.13) 

(2.14) 



From the Poynting Vector Theorem, 

S=_£ (ExH) 
41t 

The net power flow out of a unit volume is 

V·S=_£ V· (ExH) 
41t 

On substituting from equations 2.5 and 2.6 

Using equation 2.11 

10 

(2.15) 

(2.16) 

(2.17) 

On equating the electric energy density terms of equations 2.14 and 2.13 we get 

1 aEk 1 aEj aEk 
- (E.e .k-) =- (Ekek.-+E.e 'k-) 
41t 1 1 at S1t 1 at 1 1 at 

which gives ejk = ekj 

Thus the tensor is symmetrical. 

Rewriting equation 2.12 we get 

(2.18) 
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To eliminate the last three terms, we rotate the coordinate axes by a suitable angle, 

givtng 

(2.19) 

where x,y ,z are the new or principle dielectric axes. 

Thus, the dielectric constant can now be given by 

(2.20) 

Also the propagation constant for a crystal is a vector, more commonly known as the 

wave vector or the k vector. 

k = wns 
c 

where s is the unit vector normal to the wavefront. Let us try to examine the 

transmission of a monochromatic plane wave through an anisotropic crystal. Let v be 

replaced by (iron/c)s and o/ot by iro in equation 2.5 and 2.6 for a nonconducting and a 

nonmagnetic crystal. 

Hxs=l:..n 
n 

Ex s = -(.!)H 
n 

(2.21) 

(2.22) 

From the above equations we find that D is perpendicular to H and s, and H is 

perpendicular to E and s. Hence D and H constitute a transverse pair. Also (E X H) 
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the Poynting vector is not normal to E. This means that the direction of energy flow 

and the wave normal are not parallel. 

Let us solve the above equations 2.21 and 2.22 to eliminate H 

(Exs)xs = -(...!..)D 
n2 

sx (Exs) 

E ( s·s) -s ( s·E) 

D = n 2 (E-s (s·E)) 

In terms of components of D we get 

D 
D = n 2 ( 2-s ( s·E) ) 

X £X X 

(2.23) 

Since we know that D and S are perpendicular, taking a scalar product of D, S we get 

s 2 
X + 

This is the Fresnel•s equation [ 4, 26]. 

s 2 
y + 

It is quadratic in n, having solutions as ± n', ± n· . 

s 2 
z = 0 (2.24) 
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Thus the two corresponding values are n· and Dw which can be proved to be 

orthogonal. Thus, we can conclude that an anisotropic media can transmit waves 

polarized only in two mutually orthogonal directions with different refractive indices 

seen in those two directions. 

If the incident light is not polarized in either of the allowed directions, then this 

light will be decomposed into two linearly polarized components in each allowable 

direction. Both the components see different refractive indices resulting in an output 

which is not linearly polarized after transmission through the crystal. 

2.3 The Index Ellipsoid 

To find the allowed directions and the refractive indices for any arbitrary 

direction of propagation we follow the given procedure. 

On rearranging equation 2.19 we get 

Let 

=x 

and so on gives 
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But 

n =I£ 

Hence 

(2.25) 

The above equation represents an ellipsoid with the major axis in the x, y, and 

z directions. It is known as the index ellipsoid or the optical indicatrix. It is used to 

find the two allowed directions of polarization and the refractive indices in those 

directions. If the wave normal is considered as the direction of propagation then 

through the center of the ellipsoid a plane is drawn perpendicular to it. Now this 

intersection will give us a two directional ellipse. The two axes of this ellipse will give 

the two allowable polarization and the corresponding refractive indices are equal to 

half the length of the axis. 

There are basically two types of optically anisotropic crystals. If all the three 

axes of the indicatrix are unequal then the crystal is called Biaxial. It has two different 

optical axes. If two of the three axes of the indicatrix are equal, then the crystal is 

defined to be Uniaxial. It has only one optical axis which is perpendicular to the plane 

of the two equal axes. Now we can define the optic axis as that direction of the wave 

normal in which the refractive index is independent of the direction of polarization. 

For a biaxial crystal with nz > ny > nx , the angle 6 between the optic axis 

(either of the two) and the z axis is given by 
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sine= ~zJcn;-n;)/Cn!-n1) 
y 

(2.26) 

In most of the cases, the crystal is isotropic or anisotropic is determined by the 

crystal symmetry. 

For an anisotropic material Snell's law for refraction is still valid, but with a 

minor modification. 

For o·ray : sin i = n sin r 

For e·ray: sin i = n(r) sin r 

Also if 6 is the angle between the wave normal and the optic axis and p is the 

angle between the ray direction and the optic axis, then we have 

tanp 
n 2 

= < --.£) tane 
ne 

(2.27) 

2.4 Birefringence 

In the case of uniaxial crystals, the indicatrix is an ellipsoid of revolution. 

There are two basic allowable directions of polarization. viz. ordinary direction and the 

extraordinary direction. For the ordinary direction, the refractive index can be plotted 

by a circle, since it is independent of the direction of propagation. While for the 

extraordinary direction the plot for the refractive index would look like an ellipse. It 

has a range of n0 and ne. It has the value of the ordinary index n0 when it is parallel to 

the optic axis and varies elliptically to nc, the value for extraordinary index when it is 

perpendicular to the optic axis. The beams of light thus produced are known as o·ray 
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and e-ray respectively. When the wave normal is at an angle 6 to the optic axis, its 

extraordinary index is given by 

n (6) = (2.28) 

When ne is larger than n0 , the birefringence and hence the corresponding crystal 

is called positive, and if ne is smaller than no then the birefringence as well as the 

crystal are called negative uniaxial. 

An important application of birefringence is to make two waves with different 

frequencies to travel with the same velocity inside the crystal by making one of them 

as an o-ray and the other as e-ray. This phenomenon is used to compensate the color 

dispersion of a material by birefringence. Another major application is for components 

that change the state of polarization of a light beam. It is used to create half-wave 

plates to rotate the polarization direction of a plane-polarized beam over any desired 

angle, or a quarter wave plate to produce circularly or elliptically polarized light. The 

quarter-wave plate can also work as an isolator for the incident beam linearly polarized 

at 45° to its axis, with certain component isolation. 

2.5 Optical Activity 

In most of the substances, the light travelling parallel to the optic axis would 

propagate without change in polarization. But there are always exceptions. The 

phenomenon in which the polarization of the light is rotated inside a crystal is known 

as optical activity. The amount of rotation of light depends on the wavelength. Quartz 
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is a good example of this kind. The crystals that show natural optical activity indicate 

that direction of polarization rotation is independent of the direction of light 

propagation through the crystal. 

2.6 Electrooptic Effect 

Anisotropy can be induced in an isotropic material by an outside influence such 

as strain or an electric field. The outside influence has to be large enough to make the 

atoms of the medium see different electric field in different directions to have this 

phenomenon of induced anisotropy to occur. This phenomenon produces a differential 

change of the refractive indices for two orthogonally polarized beams. This effect 

could be used to switch the polarization of a light beam using electric field, or to 

modulate a beam of light. 

Let us consider the first-order electrooptic effect in anisotropic crystals. The 

dielectric constant is a second-rank tensor. The electrooptic coefficient gives the 

change in the dielectric constant as a result of the applied field. The electrooptic 

coefficient rij is a tensor of third rank, which when multiplied by a vector gives a 

tensor of second rank. The second rank tensor on which this third rank tensor operates 

is symmetrical, hence there are at the most only 18 independent elements. Most of 

these 18 elements are zero for cases in which the crystal transforms into itself. In the 

case of centrosymmetric crystals, all the components are zero, giving no first-order 

electrooptic effect. 

Let b .. = 1 I n--2 and further more b. = i I n-2 
IJ IJ I 1 
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then the change of bi as a result of an applied field can be written as 

flb. = I .. ER 
~ ~J 1 

where i runs from 1 to 6 and j from 1 to 3. Thus the electrooptic tensor can be 

represented by a matrix with 6 rows and 3 columns. 

The electrooptic effect produces a change in the index, hence the changed 

indices if to be presented by an indicatrix, would have a few off-diagonal terms which 

were not present in the original indicatrix. This phenomenon is used to design 

electrooptic shutters or modulators. 



CHAPTER III 

NONLINEAR OPTICS 

3 .I Introduction 

We know from different areas of physics that the linear dependence of one 

physical quantity on another is almost always an approximation, with a validity in a 

limited range only. The refractive index of a material results from the polarization of 

that material by the electric field of the transmitted radiation. But this polarization 

would be linear for a limited range of electric field strengths only. 

The second harmonic generation experiment of Franken et. al. marked the birth 

of the field of nonlinear optics [18, 26]. They propagated a ruby laser beam at 6942° A 

through a quartz crystal and observed ultraviolet radiation from the crystal at 3471 o A. 

Second- harmonic generation is the first nonlinear optical effect ever observed in 

which a coherent input generates a coherent output. Nonlinear optics deals in general 

with nonlinear interaction of light with matter and includes such problems as light

induced changes of the optical properties of a medium. Optical pumping was also 

well known phenomenon in the early days. The resonant excitation of optical pumping 

includes a redistribution of populations and changes the properties of the medium. 

Because of resonant enhancement, even a weak light is sufficient to perturb the 

19 



material system strongly to make the effect easily detectable. Each nonlinear optical 

process may consist of two parts. The intense light first induces a nonlinear response 

20 

in a medium and then the medium in reacting modifies the optical fields in a nonlinear 

way. 

Consider an alternating field instead of a temporally uniform field to analyse 

the nonlinear effect. The refractive index if modulated by such an alternating field of 

frequency w2 then the field w1 passing through this crystal will be phase modulated. As 

a result the sidebands would be generated giving the sum and the difference 

frequencies. These phenomena introduce the concept of parametric frequency 

conversion. This alternating field of frequency w2 also modulates the refractive index 

giving rise to a harmonic overtone at w2 and one at 2w1, for frequency W1• But this 

sideband at 2w 1 is observable only if the beam at w1 is very intense. But in the case of 

sum frequency ( w1 + w2) or a difference frequency ( w2 - w1) it does not matter if W2 is 

very intense. The detection of a weak signal, at a wavelength for which sensitive 

detectors dose not exist, is done using this concept. 

Nonlinear effects are quite common in microwaves too. The only significant 

difference between the microwave effect and the nonlinear optics is that the interaction 

takes place in the bulk in the later part. 

3.2 The Anharmonic Oscillator Model 

In this model, a medium is composed of a set of N classical anharmonic 

oscillators per unit volume. The oscillator describes physically an electron bound to a 
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core of an infrared-active molecular vibration. Its equation of motion in the presence 

of a driving force is 

(3.1} 

Here the anharmonic term is introduced in the Lorentz model, because of which 

this equation becomes complex. Let us assume that this anharmonic term is very small 

compared to the harmonic one, giving the correspondingly smaller effects. Let the 

sol uti on be in terms of a power series 

(3.2) 

where 

On substituting equation 3.2 in 3 .I and collecting the terms of the same order in E, we 

get 

(3.3) 

(3.4} 

Thus we find that the term er2 in equation 3.1 causes displacement that is 

nonlinear in E and this nonlinearity is r2 = ~ E2 in the above example. By successive 

iterations, higher order solutions can also be obtained. In the second order solution, 

new frequency components of the polarization at w1 ± w2 , 2w 1 , 2w2 and 0 appear 
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through quadratic interaction of the field with the oscillator via the anharmonic term. 

The oscillating polarization components will radiate and generate new electro-magnetic 

waves at WI ± W2 , 2wi and 2w2• This readily explains the sum and the difference 

frequency generation and the second harmonic generation. A zero frequency 

polarization term known as optical rectification appears. In general, the frequency 

components at w = ni WI ± n2 W2 , with n1 and n2 being the integers, are expected in the 

higher order terms. The anharmonicity ~ determines the strength of the nonlinear 

interaction in the anharmonic oscillator model. 

3.3 The Nonlinear Polarization 

It seems an easier and more convenient approach to consider the interaction as 

a result of the nonlinearity of polarization, rather than a modulation of the refractive 

index. The polarization with nonlinear terms is given by 

where " is the linear probability and a1 , ~, ~, ••••• are the nonlinearities of the 

increasing order. For the center of symmetry a1 = ~ = ... have to be equal to zero. 

For the first nonlinearity, 

(3.5) 

where P is the nonlinear polarization due to the first nonlinearity. Consider the 

following two waves for interaction within a crystal, neglecting their phases, 
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On substituting the superimposition of the above waves in equation 3.5 we get 

P= 2 d ( E R ( z I t) + ER ( z I t) ) 2 
1 2 

Thus, we get 

Thus, the above polarization consists of a number of components with different 

frequencies, and a steady term. They are: 
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and 

pdirect=d(ER
1

2 +ER
2 

2
) (3.6) 

The nonlinear polarization contains a steady term, a sum and a difference 

frequency and the first overtone of both the input frequencies, more commonly known 

as the second harmonics. These different components generate electromagnetic waves 

of frequencies different than that of the incident radiation. Due to this effect, a fraction 

of the incident energy used to create the nonlinear polarization can be reemitted at one 

or more number of different frequencies. The frequencies that would eventually 

dominate at the output of the crystal would depend on the relative phases of the two 

different waves of different frequencies at any point in the nonlinear medium. And the 

electromagnetic wave radiated by the dipole at this point will have a propagation 

velocity that is dependent on the frequency of this resultant wave and the 

corresponding refractive index of the material for this frequency. Now, this 

propagation velocity of the resultant wave emitted by this sample is completely 

different from the propagation velocity of the polarization wave, thus resulting in a 

destructive interface. Thus, the entire system of the radiating dipoles does not 

necessarily form a correctly phased array of antennas as it did in the linear case, hence 

arises a need for the phase matching. This technique is very critical in the case of 
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nonlinear phenomena and requires a precise control of the indices at the three 

frequencies involved in the mixing process to match the different propagation 

velocities. 

To examine the interaction of different fields having different frequencies we 

define the electric field as follows: 

E • ( ) -ic.>nt •.....•.• + Wn e (3.7) 

Thus, we get 

E = :E E(wn) e-ic.>nt (3.8) 
n 

where n is an integer. 

Let us try to derive the nonlinear polarization using the equations obtained from the 

anharmonic oscillator model. 

dr1 = 
dt 

n 

- ial :E E ( W n) e -ic.>nt.W n 
n 
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On substituting in equation 3.3 we get 

alL E(wn) e-ic.>nt.wn2-2aliyL E(wn) e-ic.>nt.(A)n + alwo2L E(wn) e-ic.>llt 
n n n 

on equating the terms with the same frequencies on both sides, 

al L E( wn) e -ic.>nt 
n 

The above equation is used to find terms of next higher order. 

Using equations 3.4 and 3.10 we get 

where 

E(wn)E(wm) e-i(c.>nc.>.)t 

F(w 0 , Wn, Wm, ~) 

Similarly, for the polarization density, we write a power series, 

(3.9) 

(3.1 0) 

(3 .11) 
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where 

Thus, the linear polarization is given by 

P - ~ ( 1) ( ) E ( ) - iw .at 
linear - L-t X wn wn e 

where 

Ne 2 1 

m w 0
2 -2iywn-wn2 

and for the second order polarization 

psecond:::: E E X( 2 ) (wn, wm) E(wn) E(wm) e-i(CtJ.a+CtJII) 

n m 
(3.12) 

where 

X(2 l (w w ) =-_E!L (X(ll (w ) ) (X(ll (w ) ) (X(ll (w +w ) ) 
n' m N 2 e 3 n m n m 

(3.13) 

The second order polarization obtained above is due to the nonlinear term ~r2 

in equation 3.1. If a third or higher order terms would have been included in that 

equation, then the third or the higher order polarization would have been obtained. 

Another important thing observed over here is that the higher order 

susceptibilities always depend on the lower order susceptibilities. The number of 
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independent components in equation 3.13 can be further reduced if this idea is applied 

to a three dimensional concept The modified equation 3.12 in a three dimensional 

form can be written as 

(3 .14) 

where i, j, k each take values x, y and z. 

Let us consider only the nonlinear terms involved in the sum-frequency 

generation for the interaction of E( wn+m) with E( wn) and E( wm). These terms are 

Pi(wl) = Xijk(w1,-wz,W3) Ej(-wz)Ek(-w3)e-i(w3-w.z)t 

+ Xijk(wl, w3, -wz) Ej(w3) Ek(-wz) e-i(w3-w.z)t 

and three more terms for the negative frequencies. Now, since the first order 

susceptibility is real, we get 

Thus, the frequencies can be easily permuted, reducing the number of 

independent components to 27. 

(3 .15) 

(3 .16) 

It is not physically possible to decide during the interaction of two waves 

which one arrived first. Hence a column vector F is usually introduced as a 

mathematical convenience to make sure that the sequence of the two interacting fields 
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would not be important. This further reduces the number of independent components 

to 18, since dijk = dikr 

In the case of optical rectification, where a wave interacts with itself, the end 

result is only a phase change in the transmitted wave. This apparently changes the 

refractive index of the crystal, giving the electrooptic effect. Thus it could be 

concluded that the coefficients of the optical refraction are same as those for the 

electrooptic effect, with a proper interchange of the indices. 

3.4 Miller's Rule 

Miller defined a coefficient [26] 

( 3.17) 

The above coefficient which matches the relation obtained in the equation 3.13 

when generalized to three dimensions, is known as the Miller's coefficient, and the 

relation is famous as the Miller's Rule. He found empirically that ~~jk has only weak 

dispersion and is almost a constant for a wide range of crystals. This rule is widely 

used for the search of new materials. It suggests that high refractory materials should 

have large nonlinear susceptibilities. The weak dispersion of .6ijk can be seen from 

either the bond-charge or the charge-transfer model. This Miller's coefficient is 

independent of frequencies. The values of ~ijk for most nonlinear crystals are around 

few times I o·6esu [26]. 

To avoid any confusion about the relationship between the nonlinear 
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susceptibility A and the more practically used nonlinear coefficient d, the following 

relation is used for this thesis. 

Assuming all frequencies to lie within the optical transmission region of the 

crystal, we can set the susceptibilities equal, thus getting a generalization in three 

dimensions as 

1 
= 2 Xijk 

3. 5 Crystal Symmetry 

The crystals that have a center of symmetry cannot exhibit a second-order 

polarization. The crystals are divided into 32 different classes, out of which there is 

only one class viz. class 1 in triclinic system, which does not have centro-symmetry. 

For all the other classes, performing the symmetry operations which transform the 

crystal into itself on the susceptibility matrix, no change is found in the matrix. 

3.6 The Coupled Amplitude Equations 

To derive the equations for the electromagnetic radiation generated by the 

nonlinear polarization let us consider three interacting waves and than seek three 

coupled amplitude equations, each giving the rate of growth, or decay of the field at 

one frequency as a function of the fields at the two other frequencies. 
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The nonlinear polarization is introduced in Maxwell's equations as a source 

term as follows: 

VxH = 1 aD 
cat 

VxE = -1: _E._ (~H) 
c ac 

D = eE + 41tP 

(3 .18) 

(3.19) 

Again the linear polarization is included in e and P is only the nonlinear polarization, 

as done previously. 

The material is assumed to be nonconducting and nonmagnetic. Taking curl on both 

the sides of equation 3.19 and putting V·E = 0 , we get 

41t ()2p (3.20) 

For a single dimension restricted problem f1/f1y = 0 and f1/FJx = 0 

Let the three interacting traveling waves be defined as: 

(3.21) 

In the nonlinear case, the complex amplitude changes as a result of interaction 

with waves at different frequencies. The z dependence of the phase ~ is shown as 



32 

We rewrite the nonlinear polarization components of equation 3.15 as 

(3.22) 

Thus, the z dependence is clearly indicated in the above equations. 

The restricted equation 3.20 can be rewritten with the substitution of the following 

results. 

and 



. (J2 E1 ( z I t) = 
.. at 

Hence, 

aE1 ( z I t) 

at 

(J2 E1 ( z I t) 

at 

(J2 E1 ( z I t) 

at 

= ( 'k E ( ) aE1 ( z) ) -i (c.Jlt-klzl 
~ 1 1 z + az e 

()2 E1 ( z) ) e -i (c.J 1 t-k1 z1 

az2 

Since the variation of the complex field amplitude with z is very small, 

and 

CJ2 E1 ( z I t) aE1 ( z) 
< < az X k 

Cf2E1 (z 1 t) 
= at 

(J2 E2 ( z I t) = 
at 

. ()2 E3 ( z I t) 
·· at 

az 2 

Thus, we now write equation 3.20 for each frequency component as 
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d.E1 (z) 

dz 

d.E2 ( z) 

dz 

d.E3 (z) 

dz 
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81tW 2 
= _ i __ 3 dE E ( z) e i (k1 •k2 •k3 l z 

k 2 1 2 3c 
(3.23) 

These three equations are known as the coupled amplitude equations. All the 

three amplitude depend on each other as the name suggests. 

The problem becomes much easier when we assume that the input amplitude 

remains nearly constant. For such a simplified case, we obtain the following set of 

results through basic substitutions. 

where L is the length of the crystal. 

For w = 21tc1'- and k = 21tniA3 

The power per unit area in a material is given by 

S = en E 2 
81t R 

(3.24) 

(3.25) 
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(3.26) 

where n is the index of the material 

and x = fl kL/2 

The Total power W for an area A is given by 

w3 = 5121t 2 L 2 d 2 wl w2 ( s i nx ) 2 

n1n2n3lic x 
(3.27) 

The following deductions can be made from equations 3.26. If .dk = 0, then 

the power generated is proportional to the square of the length of the crystal, otherwise 

it varies as (sin x/x)2
. The most important point to be noted is that the output power 

(in low conversion limits) is proportional to the product of the input power. This is 

used to check whether the observed signal is actually the derived output signal or not. 

If the input signal's power is reduced then the output power has to decrease by double 

the amount, to be the actual signal and not any scattered fraction of the input. Even 

the factor 'd' helps to check the mixed frequency nature of the observed output. 

3.7 The Manley-Rowe Relations 

The Manley-Rowe relations were initially derived for lossless nonlinear 

electronic circuit elements. They were later generalized to include nonlinear continuous 

media. Let us consider the three coupled amplitude equations to obtain this relation. 

We find that for a perfect phase matching or Ilk = 0, the output power of the sum-
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frequency generation in a nonabsorbing bulk medium in low conversion limit is 

proportional to L 2 the square of the length of the medium. When L is increased 

infinitely, then the output power should also become infinite, which cannot be true. 

This happens because at higher value of L, the output power becomes comparable to 

the pump or source power. This violates the basic assumption of negligible pump 

power depletion. To get a complete solution we go through the following procedure. 

The modified equations for ~k = 0 are 

(3.28) 

(3.29) 

(3.30) 

The input fields E 1 and E2 could be interchanged to obtain the first coupled 

equation from the other or vise versa. But this is not true for the third equation. This is 

reflected in the above modified equations. The right-hand sides of equations 3.28 and 

3.29 are equal to the complex conjugate of the right-hand side of the equation 3.30. 

On equating them and then applying the formula for power unit area, we get the ratio, 

change in power at w1 

wl 
change in power at w2 

w2 
change in power at w3 

WJ 

This is the famous Manley-Rowe Relation [18, 25, 26]. We observe that the 
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total power flow is independent of z. This relation is valid for both up and down 

conversions. For sum-frequency generation, W:J = ro1 + ~ according to the above 

relation, the sum-frequency gains the power which is lost by both the input lasers. But 

for difference-frequency generation, ~ - eo::= ro1• We find that the source of frequency 

at ~ losses power not only to the generated frequency but also to the other source at 

~· In terms of the photon density, we see that one photon at ro1 and the other at ro: 

combine to give one photon at ro3 . 

The concept of difference-frequency generation eventuaiiy is used to build a 

parametric osciiiator, implementing the Manley-Rowe relations. In this case the source 

at ro: gains power. Thus, a weak source at 00z is made to complete multiple passes in a 

nonlinear cavity resonant at ~ to build up this weak signal. 

3. 8 S urn-Frequency Generation 

Sum-frequency generation is one of the first three nonlinear optical effects 

discovered in the early days. It has gained the maximum importance in the recent days 

due to its usefulness in extending the tunable laser range to shorter wavelengths. 

The physical interpretation of sum-frequency generation is very simple. The 

two laser beams at ro1 and ~ interact in a nonlinear crystal and generate nonlinear 

polarization P. It acts as a source of radiation at ~= ro1 +ffi:2 , due to the collection of 

osciiiating dipoles. The radiation pattern depends on the phase-related spatial 

distribution of P. By implementing the phase matching conditions, this radiation has to 

be peaked in a certain direction. As discussed earlier, the energy at the frequencies ro, 
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and CO:! is converted as the energy for ~· The conservation of the momentum leads to 

the relationship k3 = k1+k2 between the wave vectors at the three frequencies. This 

point of view also suggests that the number of output photons at ~ cannot exceed the 

input number of photons at ro1• 

3.9 Difference-Frequency Generation 

Difference-frequency generation is of great technical importance since it 

provides a means for generating intense coherent tunable radiation in the infrared. 

Infrared lasers may seem to have all the desired properties as the infrared sources, but 

their output frequencies are usually discrete without any tunability. However, using the 

principles of difference-frequency generation it is possible to achieve this tunability. If 

the pump intensities are approximated as constants, then the difference-frequency 

generation nearly follows the sum-frequency generation. It is given by the relation 

~ - ~= ro1. Here, one of the sources at ~ gains power with the generated output. 

Difference-frequency generation being coherent with high average or peak intensity, 

finds many applications in field of infrared sciences. 

3.10 Second-Harmonic Generation 

The second-harmonic generation experiment performed by Franken, Hill, Peters 

and Weinreich started a new chapter in the field of nonlinear optics [ 18, 26]. A ruby 

laser beam at 6942° A was focussed on the front surface of a crystalline quartz plate. 

The radiation emitted was examined with the spectrometer and it was found that it 

contained a frequency at twice the input frequency .i.e. at A.= 34 71 o A. The conversion 



efficiency was about 1 o-8
. But this was eventually improved by using more efficient 

materials, higher intensity lasers, and index-matching techniques. 
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This is a special case of frequency mixing, where both the input frequencies 

are equal. Using the principles of sum-frequency generation, the resultant output turns 

out to be twice the frequency of the input. This would be derived in detail in chapter 

V. The amplitude coupled equations for this case could not be derived by simply 

substituting ro1 = CO:! in the previously derived amplitude coupled equations, as it would 

give a polarization at 2ro. 

This effect has found wide application as a means to extend coherent light 

sources to shorter wavelengths, or in simple words, this method has set a trend for 

frequency multiplication. 

3.11 Reflections At The Boundary 

In the direction of propagation, all the radiating dipoles interfere constructively, 

while for any other directions there is a destructive interference. This was the case for 

the continuous media. But at the boundary, according to the Fresnel's reflection law, 

the radiating dipoles are different at both the sides. Hence there is a backward 

coherent reflection. For a nonlinear case, where higher harmonics and other mixed 

frequencies are present in the polarization, the backward reflection may contain these 

components. They would not have the angle of reflection same as the angle of 

incidence as it would be true for linear reflected waves only. 



CHAPTER IV 

PHASE MATCHING IN NONLINEAR CRYSTALS 

4.1 Introduction 

For a nonlinear case, the output consists of higher harmonic terms along with 

the mixed frequency components. According to the Lorentz model, there would be a 

constructive interference of the radiating dipoles in the propagation direction for the 

linear terms. But for the other terms there would be a destructive interference. The 

phase would be perfectly matched only for the input frequency. For any other 

frequency, there would be a phase mismatch. This is caused because of the nonlinear 

term introduced in the Lorentz model, and as a result, Ak is introduced in the 

amplitude coupled equations. To eliminate this problem, we try to make Ak = 0. 

Another important point that we need to find is that the angle over which the output 

would be radiated for such a phased array, since the output frequency would be 

completely different from that of the input. Theoretically it is found that the angular 

distribution of the output radiation is determined by the Fraunhofer diffraction pattern 

of an aperture with a radius equal to that of a sample cylinder used for the derivation, 

multiplied by a term that depends on the phase mismatch due to an angle <I> [26]. 

40 
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4.2 Non-Phase-Mismatched Case 

The output signal generated by a nonlinear crystal after an input wave 

propagates through it is alternating in nature. As thickness of the crystal increases, the 

output signal alternatively increases and goes to zero. If .£\k = 0, then the crystal is said 

to be phase-matched and in the low conversion limits the power generated is 

proportional to the square of the length of the crystal. But if .£\k * 0, then it is a non

matched case. Here, the output signal is fluctuating in nature. The crystal length at 

which the signal reaches its first maxima is known as the coherence length. For a 

phase-matched case, the highest expectation for an output signal should not exceed the 

signal from one coherence length. 

As mentioned earlier, for a nonlinear interaction, there are more than one 

frequency components generated, and most of them are not phase matched, with the 

exception of one or two. The power fed into the crystal is not lost, even though there 

is a phase mismatch. This power is coupled from the input wave to the output wave 

frequency with a phase match and vise versa. 

The variation of second-harmonic signal with crystal length plotted by Turhune 

et al. for a quartz crystal is depicted in figure 1 [ 16]. 

4.3 Phase-Matching Conditions 

Under a normal condition, all optical media are weakly nonlinear. But 

noticeable nonlinear effects can be observed only when light propagates through 

comparatively long crystals, with the phase-matching conditions satisfied. 
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Figure 1. Variation of Second-Harmonic Signal with Crystal Length [ 16] 
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i.e. k3 = k2 + k1 or Ak = 0 

The relative location of wave vectors under the phase matching can be either collinear 

or noncollinear. 

4.4 Types Of Phase Matching In Uniaxial Crystals 

4.4.1 Quasi-Phase Matching Method 

The quasi-phase-matched condition is obtained when the phase difference 

between the polarization wave and the electro-magnetic wave is made equal to rc/2 for 

every increase of one coherence length of the crystal. But one coherence length will 

give a signal that is only 4ht2 times greater than the non-phase-matched signal. Hence 

it is necessary to put small plates of the crystal having length equal to one coherence 

length and each adjacent plate turned opposite with a perfect optical contact as 

suggested by B loembergen et al [1]. Another method suggested by B loembergen et al 

(26]. and experimentally verified by Ashkin et al [2]. and by Boyd and Patel [5] is as 

follows. It works on the principle of phase change due to total internal reflection 

within the crystal. The angle of reflection is to be chosen such that the accumulated 

phase mismatch in every pass between the two reflecting sides is cancelled by the 

phase change difference between the fundamental and the second-harmonic reflection. 

This method can be used even for isotropic materials. 
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4.4.2 Angle Phase Matching 

Turhune and co-workers found out a method that employs the birefringence of 

a uniaxial crystal for a true phase matching. As we know, the index for an 

extraordinary ray can be varied by changing the angle between the wavenormal and 

the optic axis. For a positive crystal, the refractive index for the extraordinary ray is 

higher than that for an ordinary ray. For a collinear phase matching of a second

harmonic generation, we need equal refractive indices for the second-harmonic and the 

fundamental frequencies. This is obtained by transmitting the wave at an angle 9 to the 

optic axis. For a positive crystal we take the extraordinary rays as fundamentals and 

the ordinary ray as the second-harmonic, while for the negative crystal it is the other 

way round. Even a mixing of two different types of rays could produce an 

extraordinary second harmonic for the negative crystal. This is done for all those 

wavelengths A. in a negative crystal for which the ordinary index is higher than the 

extraordinary index at /J2, and vise versa for a positive crystaL 

If both the fundamental rays have the same polarization, then the sum

frequency radiation would be polarized in the perpendicular direction. In this case a 

type I phase matching is realized. It could be either "ooe" or "eeo" interaction. If the 

mixing waves are of orthogonal polarization, type II phase matching takes place. These 

could be "oee" or "eoe" interactions or "oeo" or "eoo" interactions depending on the 

type of the crystal. 

This method of phase matching has got a few disadvantages. The extraordinary 

beam does not overlap the ordinary beam in the entire interaction length for 
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intermediate values of 9 other than 0 or 90 degrees. Thus for a type I phase matching 

it is found that the output is not proportional to the square, but to a lower power of the 

length. But a more drastic effect results when a type II interaction takes place. Here 

the polarization wave vanishes completely after a certain crystal length, resulting in no 

mixing. Another disadvantage is due to the divergence of the focussed beam. Here, the 

efficient phase matching is achieved for a restricted length of crystal due to linear 

dependence of ilk with 69. 

4.4.3 Temperature-Dependent Phase Matching 

This method was found out to overcome the divergence problem of the 

previous method. Here, the angle for matching of the indices is suggested to be kept 

90 degrees. So that there are no walk-off effects of the first order due to double 

refraction. This is known as noncritical phase matching, and is done by changing the 

temperature of the crystal to get 9 = 90°. This happens as the extraordinary index is 

more sensitive to the temperature change. Another method of changing the exact 

temperature for 90 degrees phase matching is by changing the chemical composition of 

the crystal. 

4.5 Phase Matching In Biaxial Crystals 

For biaxial crystals, the refractive indices correspond to a much more complex 

surface than that for uniaxial crystals. The surface has a bilayer structure with four 

points of interlayer contact through which two optic axes passes. 
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Let us consider only one case over here, i.e. nx < ny < nz . The angle Vz formed 

by one of the optic axes with the z axis is given by 

n n 2-n 2 ..! 
sin v =-2 ( Y x ) 2 

z n n 2_n 2 
Y Z X 

Let us find out the values of n0 and ne for all the three planes viz. XY, YZ and XZ. 

For XY plane : 

and 

For YZ plane : 

and 

1 
n (e) =n ( l+tan(8) 

2 
) 2 

e Y 1 + ( n In ) 2 tan82 
y y 

For XZ plane : 

When e > Vz it acts as a positive uniaxial crystal and for 9 < Vz it acts like a 

negative uniaxial crystaL 

The values of n0 and ne changes accordingly for nx > nY > nz with Vz given by 

n n 2-n 2 ..! 
cos v = __..::. ( y z ) 2 

z n n 2_n 2 
Y X Z 

A detailed table with equations for calculating the phase matching angle upon 
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collinear propagation of interacting waves in the principal planes of a biaxial crystals 

could be referred from the book by V.G. Dmitriev et al [7]. 

4.6 Additional Phase-Matching Methods 

Another prominent method used for phase matching utilizes the concept of total 

internal reflection. There are several other methods employed for phase matching. 

Some of them have matching in optically active media while a few use the Faraday 

rotation for matching, or match them acoustically. Recently optical waveguides have 

been used to reduce the mismatch. 

4. 7 Nonlinear Materials 

As discussed before, the noncentrosymmetricity is a must for any crystal that 

needs to be qualified for its use in any experiment dealing with three wave mixing. 

Another requirement for that crystal is its transparency for all the frequencies in the 

interaction. Quartz satisfied these conditions and was used initially for visible and 

near-infrared regions. Further experiments revealed that the crystals should be 

birefringent, and should allow phase matching. The crystals must have excellent 

optical quality. Hence, the first approach would be to search for best combinations 

among all the available data on the crystalline materials for refractive index, 

transmission and crystal class. The crystal growing process was a very determining 

factor in the successful search of a new nonlinear material. For most of the crystals, 

the refractive index was very sensitive to the chemical composition of the crystal. And 



the crystal growing process may alter the chemical composition of the crystal. Even 

the crystal composition changes along the length, during the growing process. Thus, 
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the quality of the crystal grown varies from process to process. A perfect crystal would 

give a plot of second-harmonic power versus temperature as a (sin x/x)2 function. This 

has become a standard acceptance test. 

4.8 Kurtz Powder Assessment Method 

In 1968 S. K. Kurtz described an important new technique for making a quick 

survey of nonlinear materials [15, 26]. The search for new nonlinear materials became 

easier, after this technique was found. Before this, it was necessary to grow a crystal 

to test its nonlinearity. The crystal growing process is a very slow and difficult task. 

Kurtz found out a technique with which it was possible to find out the nonlinearity of 

a crystal from the measurement on its powder form. It also indicated whether phase 

matching is possible for a crystal or not. Thus, the material most ideal for an 

experiment is first found out by this method, and then it is made to grow into a crystal 

form. Kurtz surveyed a lots of materials using his method and classified them as either 

large coefficients, or small coefficient and phase matchable or non-phase matchable 

and centrosymmetric materials. 



CHAPTER V 

TYPES OF SECOND-ORDER NONLINEAR OPTICAL PROCESSES 

5.1 Introduction 

The demonstrations proving higher efficiency of conversion from fundamental 

to second-harmonic frequencies started the trend of experiments to reach the 

unattainable wavelengths by using the concept of frequency doubling. 

There are two ways of visualizing second-order nonlinear processes. The first 

view explains this effect as modifying the refractive index of the medium because of 

the field associated with the first beam. And this results in the modification of the 

propagation characteristics of the second beam. The first field component could be at 

some frequency ro1 and modulate the refractive index at that frequency. A second field 

passing through the medium at ~ would then be phase modulated and exhibit 

sidebands at the sum and the difference frequencies. If the frequencies ro1 and ~ are 

identical, then a harmonic overtone at 2ro is created. Thus comes the name parametric 

processes for them since they result from the modulation of the parameters of the 

medium. 

According to the second view, the nonlinear optical effects result from 

nonlinearities in the polarization response to incident fields at the various frequencies. 
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This has been discussed at length in the previous chapters. These second-order 

nonlinear processes are categorized according to the frequency, intensity and phases of 

the field components. 

Second-harmonic generation is one of the best known and highly utilized 

effects in nonlinear optics. In this process energy is redistributed between the fields as 

a result of interaction of the waves with the medium and no energy is lost to the 

medium, and this is done mainly by conserving the momentum i.e. by phase matching. 

When the frequencies w1 and w2 are not identical, the processes of sum and 

difference frequency occur. These are schematically shown in figure 2. 

In the case of sum frequency generation under phase-matched condition, U> 1 and 

w2 lose power to the sum frequency U> 3. While for difference frequency, the source at 

w3 loses power both to the difference frequency U> 1 and the source at U> 2. 

5.2 Second-Harmonic Generation 

Let us try to analyze the coupled amplitude equations for phase matched 

conditions. Here, both the input frequencies are equal, and hence the output frequency 

is twice the input frequency. But the amplitude coupled equations cannot be obtained 

simply by substituting w1 = w2 in the equations 3.23, as this would give the 

polarization at 2w which is not true. Second harmonic has only term U> 1 + U> 1 

(or w2+w2) taken once. The amplitude coupled equations are [26] : 



w, 

w, 
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w3 • w2 +w 1 
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DIFFERENCE GENERATION 

DIFFERENCE GENERATION 
w2 = w3 - w1 

Figure 2. Three-Wave Mixing 
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d.E2 ( z) . 16 1t (i) 12 2 ' "k 
---=---=-.1 dE (z) e-~~ z 

dz k 2 
1 

2c 
(5.1) 

The second harmonic power for small signal approximation is given by 

s( 2 w) = 5121t 5 d 2L 2 S 2 (w) ( sinx) 2 

n(2w)n 2 (w)A. 2 c x 
(5.2) 

where A. is the wavelength of the fundamental and x = .dkL/2 

The power flow is given by 

k c 2 k c 2 

W= 1 £/ ( z) + 2 £2 2 ( z) 
81tW 2 l61tW 2 

1 2 

(5.3) 

Sol uti on of these equations was first worked out by Bloem bergen and co-workers (3]. 

For a simplified case, we consider a phase matched case for which the initial second-

harmonic power is zero ( i.e. ~k = 0 and e2 (0) = 0) 

where 

The solutions obtained are as follows [26] : 

ER
1 

(L) =ER
1 

( 0) sech 
1
L 
SH 

(5.4) 

(5.5) 
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(5.6) 

It implies from the equation 5.2 that if we had a sufficiently long pathlength, a 

high degree of second-harmonic conversion could be achieved, regardless of how small 

the d coefficient might be. But this is not true for practical cases, due to its limitations. 

If the incident fundamental beam is focussed, the input angle 0 will not be a discrete 

value, but an envelope centered at 0. Therefore the phase matching condition will be 

limited to some finite length in the crystal. 

Another important limitation on the interaction length is due to a phenomenon 

called walkoff. In general, ordinary and extraordinary waves propagate in slightly 

different directions in birefringent media. The reason for this being the different 

polarization of the media along the e(z) principal axis by e(O) wave. Due to this the 

power flow is bent slightly from that associated with the 0-wave. For 0 = 90, the 

walkoff angle is zero. For any other angle, the angle is given by [ 14] 

p • tanp (5.7) 

5.3 Parameters Affecting The Doubling Efficiency 

The efficiency of the conversion of second-harmonic generation is dependent 

on two categories of parameters. The first one consists of the parameters which are 

related to the laser source. The second class has the parameters associated with the 

harmonic generator. 
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The first class has the parameters such as power density, beam divergence, 

spectral linewidth and spectral brightness. The conversion efficiency is proportional to 

the power density of the fundamental beam, where as the harmonic power itself is 

proportional to the product of fundamental power and power density. The conversion 

efficiency also changes due to the beam divergence. When collinear phase matched 

second~harmonic generation is used, the two light waves may have a finite divergence. 

This would introduce a mismatch in the wave vector. If ~em is the deviation from the 

perfect phase matching angle, then the beam divergence ll e at which the conversion 

efficiency drops to one half of its peak value is given by [14] : 

no 
0.44l 1 -]-

ll8=-------------
(n2°-n2 

8
) sin28m 

The deviation in wavelength from the central wavelength A0 at which the 

perfect phase matching occurs also reduces the conversion efficiency. 

(5.8) 

If ~A = ). - ).0 and Ill = 25'-., then the spectral linewidth at which the doubling 

efficiency drops to one half is given by [ 14] 

(5.9) 

Thus, it is evident that for a high conversion efficiency, the laser source should 

have a high power density, small beam divergence and a narrow linewidth. These three 

properties can be merged into a single parameter called spectral brightness. For high 

efficiency second-harmonic generation the laser should exhibit a high spectral 
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brightness, which can be achieved by transverse and longitudinal mode selections. 

The second class consists of parameters such as temperature, phase matching 

angle, absorption, optical homogeneity, nonlinear coefficient and figure of merit of the 

crystal. The temperature changes of the doubling crystal are caused due to the 

variations in the room temperature and due to the absorption losses in the crystal. The 

expression for the temperature sensitivity of the doubling crystal with respect to 

second-harmonic generation is given by [ 14] 

(5.10) 

where .6. T = T-T0 

.6. T is defined as the full width at half-maximum of the temperature range over 

which second-harmonic generation is possible in a particular crystal. The phase-

matching angle is a very important parameter to be considered, since it indicates the 

angular range in which the crystal can be titled to give a sufficient second-harmonic 

generation. The doubling efficiency is also affected by the absorption in the crystal. 

This will introduce thermal gradients and thermally introduced stresses. This further 

affects the refractive index of the crystal which makes the phase-matching task more 

difficult. Optical homogeneity is hence another important aspect since any index 

inhomogeneities would reflect the same problems. Thus we find that damage threshold, 

optical quality, angular and thermal tuning range and acceptance angle are important 

parameters. The equally important parameter is nonlinear coefficient. And there is a 

trade off necessary with the interaction length, to achieve the best second-harmonic 



generation conversion efficiency. Hence, all these above parameters are combined to 

give a figure of merit, which characterizes either the laser source or the crystal or 

both. 

5.4 Intracavity Frequency Doubling 

56 

Usually, the frequency doubling experiments have a nonlinear crystal placed in 

the output beam of a laser system. But this arrangement does not work efficiently for a 

CW-pumped laser system. For a high second-harmonic conversion efficiency, the 

power density of the laser system should be high, which is not true for the above 

mentioned system. To avoid this, the concept of intracavity doubling was introduced. 

The nonlinear crystal when placed inside the laser resonator, the circulating power 

would increase by a factor of Iff higher than the output power. In such a cavity, the 

output mirror with transmission T is replaced by one which is 100% reflective at the 

fundamental and completely transmitting at the second-harmonic. In such a system the 

nonlinear crystal inside the laser couples out power at twice the laser frequency, unlike 

the normal lasers in which the mirror couples out power at the laser frequency. This 

gives a high power density inside the cavity and thus eliminates the CW-pumped laser 

system drawback. 

Apart from this major advantage, the system has a few disadvantages. The 

quality of the nonlinear crystal is very important. A crystal of poor quality would 

drastically degrade the performance of the laser. Any fluctuations of the amplitude 

would be amplified too in the gain medium. For a standing wave cavity the harmonic 
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power is generated in two directions, hence a dichroic mirror is needed to combine 

these two beams. There are other means like using the external doubling with a 

strongly focussed beam, but this requires a very high power density, which can 

damage the crystal. 

5.5 Parametric Process 

Sum and Difference frequency generation are two of the most important 

parametric processes. Especially, second-harmonic generation is a special case of sum 

frequency generation process. 

5.5.1 Sum-Freguency Generation 

According to the Manley-Rowe relations, for sum-frequency generation the 

power is lost by the pumping laser frequencies at w1 and w2 and gained by the sum 

frequency (26]. In this process, two beams similar in power are directed into a 

nonlinear medium with the power generated at the sum frequency. 

(5.11) 

Here, the output power is again proportional to the input powers. The concept 

of phase matching becomes more complicated since it requires the knowledge of 

refractive indices at three different frequencies. 

5.5.1.1 Parametric Up-Conversion. When one of the source frequencies for a 

set up of sum-frequency generation is much more intense than the second frequency 
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WI, the process generated is known as parametric up-conversion. Such an intense 

source is known as the pump. The output power at the beginning for such a case is 

zero. If W2 is the pump, the energy depleted from w:! is very small. Hence in the 

equations 3.29, dE:/dz can be put as zero. Then the following solution is obtained 

[26]: 

(5.12) 

where 

and 

1 = ( 41td 
P cz 

E1 (Z)=E1 (0)cos; 
p 

where E 1 ( 0 ) is incident amplitude of the weak field. 

It is found that the intensity of the weak photon can be shifted to a new 

(5.13) 

(5.14) 

frequency w3 where it might be detected more efficiently. Detectors in the visible 

region are more efficient than in those in the infrared region making this process very 

suitable for spectroscopic applications. 

5.5.1.2 Difference-Frequency Generation. In this type of parametric process, if 

w3 - W2 = W 1 is the equation of interest, then power is lost not only to the generated 

frequency at w1 but also to the source at w2. This could be described as the splitting of 
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a photon at ~ into two photons at ro1 and ~ . We find that if a weak signal at a 

lower frequency is made to interact with the highest frequency signal ( ~), then a 

frequency at ro1 is created and signals at lower frequencies are amplified. Here ~ is 

defined as pump, and the generated signal ro1 is known as idler, while ~ becomes the 

source in this case. 

If ~ is the pump frequency incident on a second-order nonlinear material, then 

the output will have two frequencies ro1 and ~ for which 

(l)l + ~ = ~ 

and k1 + k2 == k3 

Thus, we get many pairs of ro1 and ~ which satisfy the above condition. This 

phenomenon is known as parametric fluorescence. 

5.6 Multimode Spectrum And Intensity Fluctuations Phenomena 

A very small proportion of lasers in use today operate in a true single mode, 

i.e. with a single frequency and a wavefront with a Gaussian intensity profile. Most 

lasers have the Gaussian intensity profile of the TEM00 mode, but their frequency 

spectrum indicates that they produce a series of discrete frequencies spaced by c/2L 

Hz, where c is the velocity of light, and L is the length of the laser resonator. In 

general, for each of these longitudinal modes there are a number of transverse modes 

and the intensity profile of the output is not Gaussian nor does it have a simple phase 

distribution across it. Such complex frequencies and phase distributions of the 

available power have a surprising effect upon the conversion efficiency during the 
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Second-Harmonic generation and other optical mixing processes. 

The time output of a multimode laser looks noiselike, but has a repetitive 

structure that repeats every 2L/c sec and only changes its detailed form over many 

cycles as the relative phases of the modes drift. The incident beam is composed of a 

number of sinusoidal waves whose amplitudes and phases are random variables. They 

are not necessarily statistically independent. The nonlinear processes will couple 

different modes and may establish partial or complete correlation between them. The 

Second-Harmonic Generation process gains more from the peaks of this noiselike 

waveform than it loses from the troughs, and on an average, a gain in conversion is 

obtained. For Sum and Difference-frequency generation, the random nature of the 

amplitude and the phase of both different fields result in a mismatch indicating the 

non-overlap of the peaks, resulting in low conversion efficiency. This is shown in 

Figures 3 and 4. 

Nonlinear processes absorb and attenuate a light beam in a different way from 

that due to a linear process. For a nonlinear process the absorption law is dependent 

on the instantaneous intensity. As a result there is not only a change in the mean 

intensity of the beam but also the spatial profile of the beam, the light fluctuations and 

spectrum of the light modify. These significantly alter the properties of the incoming 

beam. 

The fluctuations are characterized by the intensity correlation function gC2)(0). 

The normalized intensity correlation function is given by [24] 



1.0 

0.10 

f • 0.60 -r 
J 0.~ 

0.20 

0.020 

f 0.015 
1 -
I 1 0.010 

0.0050 

o 1.0 act' 4.0 ao-' 6.0 acr' LO 10"' 1.0 ao-' 1.2 ur• 1.4 acr• 
~~- (I) 

o 2.0 1o·• 4.0 •o·• 6.0 10"' a.o ao·• a.o ur• 1.2 ur• 1.4 ao·• 
ti• (I) 

Figure 3. Second-Harmonic Generation for Multimode Laser (19] 

61 



62 

1.0 J,«l 
··. 

0.10 
j ': 

t 
; 0.60 

f\ 
- . . 

0.20 

o 2.0 act• 4.0 acr' 6.0 acr' 1.0 1cr' a.o acr' 1.2 acr' 1.4 ur• 
d• (I) 

Df'G ............. 

0.0010 

., 
i O.OCMO 
• 

0.0020 

o 2.0 1o-' 4.0 ao·• 6.0 act• a.o ur• a.o act• 1.2 ao·• a.• ur• 
ti_, (I) 

Figure 4. Difference-Frequency Generation for Multimode Laser (19] 



63 

g ( 0 l ( "t) = <I ( t) I ( t +-c) > I <I> 2 (5.15) 

where < I > is the average intensity. 

This function is a measure of how strong the relative fluctuation of a signal is. 

According to the Weiner-Khintchine theorem [24], the unnormalized auto-correlation 

function GC2)(-c) is the Fourier transform of I I(O)I 2
, where I(O) denotes the Fourier 

spectrum of the intensity I(t). 

For a multimode laser with independently oscillating modes or for the light 

from a thermal source transmitted through a narrow band optical filter, gC2)(0) = 2. For 

a mode locked laser g<2)(0) takes a value of the order of magnitude of the number of 

the coupled modes, while for a beam of constant intensity like a coherent beam or a 

frequency modulated beam of constant intensity, g'2)( -c) = 1 for all -c. 

Figure (5) shows the fluctuations of a beam for different amounts of Two 

Photon Absorption. The instantaneous intensity of a beam with modes oscillating 

simultaneously, but independently of each other is shown in part (a). < 10 > indicates 

the mean incident laser intensity, p is the nonlinear absorption coefficient, while z is 

the path length. 0 is the beat frequency of adjacent modes and < I > is the mean 

intensity of the transmitted beam. The plots were taken for 30 equidistant modes of 

equal intensity and random relative phases. 

For -c = 0, equation 5.15 becomes 

(5.16) 

Here < I2 > gives the relative strength of the second-harmonic generation. 
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The plot indicates that the fluctuations reduce as the beam propagates through 

the media. But this modifies the light spectrum and light is created outside the range 

of the original spectrum. As seen in part (c), the changes around the intensity minima 

are much faster compared to those of part (a). This is possible due to an increase in 

the linewidth. The repetition rate of the deep minima is found to be the same, 

corresponding to the original bandwidth. The intensity peaks are very much reduced 

compared to the mean intensity. These two point indicate that the output of a nonlinear 

process is very comparable to an FM signal, with random frequency modulation. 

This means that if a beam is transmitted through a suitable dispersive medium 

large random fluctuations with repetition corresponding to the bandwidth of the new 

spectrum will reappear. Thus, the spectrum of light is modified. 

The multimode structure also has a great effect on the generation of beat 

frequencies. Consider first the influence of temporal coherence in two beams with N 1 

and N2 frequency components respectively centered around co1 and ~- Each component 

of the first beam will beat with each component of the second beam to give a 

difference near ~ - co1• The bandwidth of the detection system at the frequency ~ - C01 

will determine how many of these N 1 N2 beats will contribute to the signal. If the 

bandwidth of the detector is smaller than the equal spacing between the individual N 

components in each light beam, the resultant signal at ~ - co1 will be reduced by a 

factor equal to the larger number N 1 or N2, compared to the signal produced by two 

purely monochromatic light beams of the same intensity. The spatial coherence effect 

is also similar. 
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The temporal dependence of the multi mode input field is given by [ 19] 

n 
Ei (0, t) = L jEijexp (i (wijt+6ij)) 

-n 
n 

= exp (i (wit)) L jEijexp (i (jait+6ij)) 
-n 

for i = 1, 2 

where coij = coi + j~ is the central frequency of the ith field, ~ is the mode frequency 

spacing of cavity i, and 9ij are randomly chosen phases for different modes. 

The reduction factor does not apply for d.c. rectification of light. In that case 

each mode can beat with itself to give a d. c. voltage proportional to the integrated 

fundamental frequency, regardless of the mode distribution. 

5. 7 Sum-Frequency Generation With Improved Efficiency 

An experiment to increase the efficiency of sum-frequency generation for 

broadband input fields performed in our laboratory by Dr. C. Radzewicz, Dr. J. S. 

Krasinski and Dr. Y. B. Band is described in details in this section [19]. This 

innovative method uses two or more nonlinear crystals, with a variable time delay 

between them to temporally shift the fundamental fields one relative to another by a 

time longer than their coherence time. This method succeeded in increasing the 

efficiency of sum-frequency generation considerably, but not the difference-frequency 

efficiency. 

The most important requirement for higher efficiency is proper spatial and 

temporal overlap. For broadband fields, it becomes very difficult to have the intensity 



67 

of both the beams high at the same instant. The conversion efficiency for second

harmonic generation is always greater than that for sum-frequency generation, since for 

second-harmonic generation both the waves are identical by definition and generated 

from the same source. Hence they have high intensity at the same time giving very 

high conversion efficiencies. 

For sum-frequency generation two different and noncorrelated lasers are used 

as light sources. The uncorrelated fluctuations result in substantial decrease of 

efficiency. 

As it was discussed before, the intensity auto-correlation function for a 

multimode laser is g2(0)=2. For two uncorrelated multimode lasers the cross-correlated 

function is g2(0)=0.5. This shows that in low conversion limit efficiency of sum

frequency generation is four times less than that of second harmonic generation. For 

higher conversion the situation is even worse since very few overlapping fluctuations 

of intensity are quickly depleted and in result two auto-correlated beams are formed at 

the input frequencies. In such beams there is very little phase overlap and conversion 

efficiency approaches zero. 

The experiment described below tries to eliminate this overlap problem for a 

sum-frequency generation. The spatial overlap is achieved for TEM00 fields by aligning 

the centers of the two input beams and using beams with the same beam diameter and 

divergence. The temporal overlap is automatic for single longitudinal mode beams, and 

can be achieved for pulsed beams by overlapping the peaks of the pulses with identical 

profiles. 
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The experimental set up is shown in fig.(6). The two input beams for sum

frequency generation were generated in excimer laser pumped dye lasers. The gas 

mixture used for the excimer was XeCl [Xenon Chloride]. This is a poisonous gas, and 

proper ventilation was provided for safety reasons. The Lambda- Physik excimer was 

cooled by using purified and cooled running water. The laser output from the excimer 

at a wavelength of 308 nm was focussed on the two Molectron DL200 dye lasers, 

using a beam-splitter. Each of these dye lasers consisted of an oscillator and an 

amplifier. The dye solutions used were Coumarin 480 and Rhodamine 6G generating 

light at 480 and 5 75 nm respectively. The output beams from the oscillators were 

spatially filtered and amplified using prism cells of Bethune design to achieve high 

quality optical beams. The maximum output energy from the amplifiers was about 2mJ 

and had a pulse duration of 10 ns. The bandwidth of the lasers were approximately 7 

GHz and mode spacing was 3 75 MHz. The oscillator and the amplifiers were never 

allowed to saturate during the experiment. The lasers were nearly free of nonlinear 

mode coupling and had several independent modes with random phases. 

These two horizontally polarized ro1 and ffi.2 beams were combined by a Fellin

Broca Prism Pl and focussed by a 1m focal length lens L1 into the type I BBO 

nonlinear crystal of 6mm length. The output from this crystal consists of frequency 

components at ro1 , ~ and (ro1 + ffi.2). This output is recollimated by lens L2 and 

separated into spectral components by a prism P2. The sum frequency intensity at 

262 ns was measured by detector D 1. A range of different conversion efficiencies was 

measured using different intensities of ro1 beam. The maximum conversion efficiency 
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Figure 6. Experimental Set Up [ 19] 
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for the first crystal was found to be 15%. Now the concept of time delay was 

introduced between the beams co1 and ~· There was a variable time delay arrangement 

set up in the path of the beam at ~- A d.c. motor was used for the smooth motion of 

the prism and the length to be adjusted was controlled by a software written in 

GWBASIC on a computer. The interface was done using a GPIB card. The modified 

~ and unaltered co1 were again combined by a prism P3 and were focussed by a lens 

L3 into a second identical nonlinear crystal, and the output was again recollimated by 

lens L4 and separated into spectral components by means of a prism P4. The sum

frequency (co1+ ~) was this time measured by detector D2. The walk-off of Ol:l from 

co1 and ~ beams in BBO I and BB02 was substantial which partially avoided the 

reconversation of Ol:l photons back to the fundamental beams. 

The plot of the sum-frequency generation efficiency of the second nonlinear 

crystal versus the time delay 't between the co1 and ~ beams is shown in figure (7). 

The data are normalized to unity for time delay 't = 0. The four different curves depict 

the corresponding conversion efficiencies of the first crystal 11 1• It is found that 112 

increases with hi . The width of the curves is comparable to the coherence time of the 

laser beams. For a time delay much higher than the coherence time the efficiency 112 

reaches a constant value for a particular value of 11 1• Conversion increment of as high 

as 70% was observed over that of one at 't = 0 for 11 1 = 15%. For very high time 

delays 11 1 • 112 can be achieved. 

Thus, as explained in the beginning of this section, the efficiency of Sum

Frequency Generation in the first crystal at any moment of time, increases with the 
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product of instantaneous intensities of the c.o1 and ~ beams. Both the lasers have their 

intensities fluctuating randomly, and the first nonlinear crystal practically eliminates 

these mutually correlated intensity fluctuations converting them into sum frequencies. 

The laser beams after this are anti-correlated in the time domain. This would reduce 

the conversion efficiency in the second crystal. But when a delay t is introduced 

which is longer than the coherence time, the anti-correlation is destroyed and the 

efficiency in the second crystal builds up. This is observed in figure (7) where the 

efficiency is low at t = 0, because of this anti-correlation which in tum reduces the 

conversion efficiency. 

This method demonstrates the solution for increasing the efficiency of the sum

frequency generation. It shows that the conversion efficiency can be made as high as 

the conversion efficiency of the first crystal. This experiment has shown only two 

stages of nonlinear crystals, but this could be further extended by cascading more 

stages. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The field of nonlinear optics is very vast. There are many branches of nonlinear 

optics which are still to be explored. Here an attempt was made to cover one such 

field of generating efficiently the second harmonic and sum frequencies. The basics of 

linear optics was discussed to lay a basis for nonlinear optics. The important concepts 

of nonlinear optics were discussed and derived where necessary. These theoretical 

concepts help to lay a foundation for higher level research. 

An experiment to increase the efficiency of sum-frequency generation using 

broadband inputs was described and analyzed. An understanding of multimode 

spectrum of lasers and its effects on frequency conversion efficiencies was given. The 

experiment demonstrated that the efficiency of second harmonic generation is always 

higher than that of sum or difference generation process. But this experiment 

successfully indicated that the sum-frequency efficiency can be increased significantly 

using an arrangement with two or more nonlinear mixing crystals. The experiment 

utilized time delay line situated between the crystals, for one of the fundamental fields 

relative to the other. The delay line helped to temporally shift the fundamental fields 

one relative to another by a time longer than their coherence time. The conversion 

efficiency of the second crystal was increased almost to that of the first crystal by 
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eliminating the anti-correlation caused by the sum-frequency generation in the first 

crystal. 
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Thus it could be concluded that if it was possible to generate higher conversion 

efficiencies by the method described here. Since there is lots of indepth research still 

needed in this area of nonlinear optics, it would always prove to be an exciting and 

rewarding experience for all enthusiastic students and capable researchers. 
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APPENDIX 

NONLINEAR OPTICAL PROPERTIES OF CRYSTAL 

The nonlinear optical properties of classical and recent uniaxial as well as 

biaxial crystals are given in this appendix [6, 7, 9, 14, 26]. 

Uniaxial Crystals 

1. KH2P04 , Potassium Dihydrogen Phosphate (KDP) 

This crystal was initially used for ultrasonic transducers and as an electrooptic 

material. This crystal is stable and can be heated and cooled. It is resistant to laser 

damage due to high or continuous powers. These crystals are easy to grow. But they 

have a poor infrared transmission and have fairly low refractive indices giving low 

nonlinear coefficients. 

Specifications : 

Negative uniaxial crystal : no> nc 

Point group : 42m 

Transparency range : 0.1765 - 1. 7 J.L 

Dispersion relations ( T = 24.8°C , l in J.Lm ) 
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n 2=2. 2 59276 + 0. 01008956 + 13. 00522'-.2 
0 

'-. 2-0.012942625 A2-400 

n 2=2 . 132668 + 0. 008637494 + 3. 2279924'-.2 
9 

'-.
2-0, 012281043 '-. 2 -400 

2. KD2P04 , Deuterated Potassium Dihydrogen Phosphate (DKDP) 

This is an isomorph of KDP normally known as KD*P. The reason for using 

isomorph being the temperature dependence of their refractive indices allowing 90° 

phase matching. 

Specifications : 

Negative uniaxial crystal : no> nc 

Point group : 42m 

Transparency range : 0.2 - 2.0 J.l 

Dispersion relations ( T = 300°K , A. in J.Lm ) 

n 2=1 . 661145 + 0. 586015l2 + 0. 691194l2 
0 

'-. 2-0. 016 017 l 2-30 

n 2=1 . 687499 + 0.44751l2 + 0.596212'-.2 

e A. 2 -0. 017 039 l 2-30 

3. NH4H2P04 , Ammonium Dihydrogen Phosphate (ADP): 

Similar to KDP,this crystal was also initially used as an electrooptic material. 

But unlike KDP, this material decomposes when heated up to a temperature of 125°C. 
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It tends to crack when cooled. But it too is resistant to laser damage of both types. Its 

major disadvantages include poor infrared transmission and low nonlinear coefficients 

due to small refractive indices. 

Specifications : 

Negative uniaxial crystal : no> ne 

Point group : 42m 

Transparency range : 0.184 • l.5J..Lm 

Dispersion relations ( t=24.8°C,A. in J..Lm ) 

n 2=2 I 302842 + 0 I 011125165 + 15 ~102464A 2 

0 A 2 -0~013253659 A2 -400 

n 2=2 . 163510 + 0. 009616676 + 5. 919896A2 

e A 2 -0~01298912 A2 -400 

4. ND4D2P04 , Deuterated Ammonium Dihydrogen Phosphate (DADP) : 

This is an isomorph of ADP, more commonly known as AD•P. 

Specifications : 

Negative uniaxial crystal : no> ne 

Point group : 42m 

Transparency range : 0.22 - 1. 7 J..Lm 

Dispersion relations : ( A. in J..Lm ) 

n 2=2 I 279481 + 1~ 215879A 2 + 0. 010761 
0 A 2 -57~975554333 A 2 -0~013262977 
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n 2=2 . 151161 + 1.199009A2 + 0.009652 
e A2-126.6005279 A2-0.009712103 

5. Lil03, Lithium Iodate : 

This is a mechanically more stable material over a wide range of temperature 

from 20 - 256 °C. Its another advantage being freedom from degradation in a normal 

room environment. It does not have the refractive index damage problem that exists in 

Lithium Niobate and hence is more popular. 

Specifications : 

Negative uniaxial crystal : no> nc 

Point group : 6 

Transparency range : 0.3 - 0.6 J.!m 

Dispersion relations ( A. in J.!m ) 

n 2=3.415716+ 0 · 047031 -0.008801A 2 
0 A2 -0.035306 

n 2 =2 .918692+ 0 · 035145 -0. 003641A 2 

e A2 -0.028224 

6. LiNb03, Lithium Niobate : 

This is also known as Lithium meta-niobate. It offers several attractive features 

over ADP and KDP. It is nonhygroscopic and hard. Its mechanical stability is 

tolerable. It has a large nonlinear coefficient. Its temperature sensitivity is very useful 



81 

for phase matching procedures. But its major disadvantage was the damage effect. It 

shows this damage effect when illuminated by a continuous-wave gas laser. This was 

due to a slightly altered refractive index in the crystal, following the path of the laser 

beam. Due to this the crystal was not used for precise phase matching experiments. 

Specifications : 

Negative uniaxial crystal : no> ne 

Point group : 3m 

Transparency range : 0.33 - 5.5 J.tm 

Dispersion relations : ( A in J.tm , T in K ) 

7. ~ - BaB20 4, Beta - Barium Borate (BBO) : 

Specifications : 

Negative uniaxial crystal : n0 > nc 

Point group : 3m 

Transparency range at 0.5 level : 0.198 - 2.6 J.tm 

Dispersion relations : ( A in J.lm ) 

n 2 =2.7405+ 0 · 0184 -0.0155A.2 
0 

). 2 -0. 0179 
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n 2 =2.3730+ 0 · 0128 -0.0044l2 

e A2 -0.0156 

It has an exceptionally wide transmission band and the crystal is birefringent. It 

has comparatively high refractive index and hence shows large nonlinearity. The 

refractive index of Proustite is constant with respect to temperature. But one of the 

disadvantages of Proustite is that it is instable to high-power laser beams. 

Specifications : 

Negative uniaxial crystal : no > ne 

Point group : 3 m 

Transparency range : 0.6 - 13 J..Lm 

Dispersion relations ( A. in J..Lm ) 

n 2 =9 . 220 + 0.4454 _ 1733 
0 l 2 -0.1264 1000-l2 

n 2 =7 . 0 07 + 0 . 3 2 3 0 _ 6 6 0 
e l 2 -0.1192 1000-A2 

9. a - Si02, Quartz : 

This material was readily available in large, perfect, single crystals and is 

noncentrosymmetric and transparent for the interacting frequencies. This was the 

reason due to which Franken and his co-workers used quartz when they performed the 



first experiment on Second-Harmonic Generation. Although quartz has very small 

nonlinear coefficient, it is often used as a reference material for measuring the 

parameters of other materials for which phase matching is not essentiaL 

Specifications : 

Negative uniaxial crystal : nc > no 

Point group : 32 

Transparency range : 0.15 - 4.5 J.Lm 

Quartz exhibits optical activity. 

If p is the polarization plane rotation angle in degree for the light propagating along 

the optic axis in a crystal with length L =1 mm, then 

p=-2.1+8.14 
).2 

Biaxial Crystals 

1. KB 50 8 • 4H20, Potassium Pentaborate Tetrahydrate ( KB5 ) 

Specifications : 

Positive Biaxial crystal : 2Vz = 126° 20' ( A in J.Lm ) 

Point group : mm2 

Transparency range : 0.165 - 1.4 J.Lm 

Dispersion relations ( .l. in J.Lm ) 
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n2=1+ .)..2 
y 0.972682l2 -0.0087757 

2. KB50 8 . 4D20,Deuterated Potassium Pentaborate Tetrahydrate ( DKB5 ) : 

Specifications : 

Positive Biaxial crystal 

Point group : mm2 

Transparency range : 0.1625 - 1.9 J.Lm 

Dispersion relations ( l in Jlffi ) 

n 2=1+ _A2 
X Q.84857l2 -Q,QQ75428 

3. LiB 30 5 , Lithium Triborate (LBO) : 

Specifications : 

Negative Biaxial crystal 
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Point group : mm2 

Transparency range: 0.16- 2.6 J.Lm 

Dispersion relations ( A. in J.Lm ) 

n 2 =2~4542+ 0101125 -0~01388.l.. 2 
X A 2 -0~01135 

n 2 =2 15390 + 0 
I 

01277 -0 I 01848A 2 

y .).. 2 -0~01189 

n 2 =2~5865+ 0 ~ 01310 -0~01861.l.. 2 
z .).. 2 -0~01223 
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