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CHAPTER I 

INlRODUCTION 

The magnitude of salmonellosis as a worldwide human health problem has initiated 

great interest in the pathogenesis of the disease. Salnwnella typhimurium has a wide range 

of susceptible hosts and is important economically and zoonotically. It causes clinical 

gastroenteritis and bacteremia, and may also be maintained subclinically in carrier animals. 

In poultry, espe~ially broiler flocks, infection caused by S. typhimurium is frequently 

diagnosed. It is usually clinically inapparent in adult birds and is of significance largely 

from the standpoint of contamination of carcasses for human consumption. However, it 

can cause severe losses in young birds. The disease is known as paratyphoid and 

manifests itself as enteritis, diarrhea, and septicemia. It can also cause arthritis in ducks 

and swelling of the wing joints and even death in pigeon squabs. Most infections are 

derived from contamination of feed, although the organism may rarely localize in the ovary 

and be transmitted in the egg. 

Salmonella species· are considered by most investigators to be facultative 

intracellular pathogens, able to survive and multiply in phagocytic cells. Despite 

contradictory evidence to dispute that macrophages are the major site for multiplication in 

vivo (Lin et al, 1987; Hsu, 1989), the most popular view is that after ingestion and 

penetration of intestinal epithelial cells, S. typhimurium organisms localize and replicate in 

submucosal macrophages (Finlay & Falkow, 1989), in which they are transported to 

extraintestinal sites (Dunlap et al, 1992). The invasiveness and translocation of S. 

typhimurium are thought to contribute to the development of systemic disease and possibly 

establishment of the carrier state (Barrow et al, 1987; Wells et al, 1988). 

Numerous experiments using· epithelial cells have shown that interferons (IFNs) 

inhibit cellular invasion and intracellular replication by facultative intracellular bacteria In 
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macrophages, IFN-a and IFN-P stimulate phagocytic activity, in contrast to IFN-y which 

appears to depress phagocytosis (Degre et al, 1981). However, IFN-y does enhance 

oxygen-dependent killing mechanisms in macrophages (Nathan et al, 1983). Thus, IFNs, 

and especially IFN-y, could play a role in decreasing survival rate of S. typhimurium in 

phagocytic cells and this would, in turn, reduce invasiveness of the disease and 

development of subclinical carriers. Therefore, the purpose of the present study was to 

examine the effect of various dilutions of virus-induced chicken interferon on the uptake of 

Salmonella typhimurium by chicken macrophages in vitro. 
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CHAPTER II 

LITERATURE REVIEW 

Salmonella species Interaction with Epithelial Cells 

All diseases caused by Salmonella species share a common route of infection, viz., 

ingestion followed by penetration of the intestinal epithelium. The ability of Salmonella 

organisms to invade, survive, and replicate in eukaryotic cells is essential for successful 

infection. Using transmission electron microscopy, Finlay et al (1992) have shown that 

invasive Salmonella species adhere to the apical surface of microvilli within 30 minutes of 

infection. By one hour after exposure, these bacteria have passed into the intestinal 

epithelium and are found in membrane-bound vesicles which begin to coalesce. After a 4-

hour lag period, virulent Salmonella organisms begin to multiply within this large vacuole, 

and by 24 hours the vacuole is filled with bacteria, and the host cell lyses. The organisms 

may enter the lamina propria and cells of the mononuclear phagocyte system (Takeuchi, 

1967) and from here may be disseminated to other parts of the body. 

Before adherence of Salmonella species to host cell surfaces, the bacteria must 

collide with cells. Uhlman & Jones (1982) showed that the frequency of collision and 

hence attachment, was increased if Salmonella organisms were attracted by diffusible taxins 

released when cells were damaged. These taxins are thought to be amino acids, sugars 

and/or tricarboxylic acid intermediates. One has been tentatively identified as glycine. It 

was suggested that factors increasing cell permeability and the presence of dead and dying 

epithelial cells at the villus tips where invasion takes place, would attractS. typhimurium to 

host cells in vivo. 

Only viable and metabolically active Salmonella species can adhere to host cell 

surfaces, in contrast to other invasive bacteria such as Yersinia species. Adherence is 
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followed very rapidly by invasion, as is seen with S. typhimurium infection of HeLa cell 

monolayers where most organisms are internalized within 20 minutes (Finlay et al, 1992). 

Adherence and invasion appear to be inseparable properties (noninvasive Salmonella 

mutants are also nonadherent). Active invasion requires both bacterial RNA and de novo 

protein synthesis with at least six different genetic loci, including a hyperinvading locus in 

S. typhimurium (Lee et al, 1992) being involved. Recently, Altmeyer et a1 (1993) 

identified a highly conserved gene that is necessary for efficient adherence and entry into 

cultured epithelial cells. The function of the proteins is still being characterized. However, 

protein synthesis appears to be regulated by the microenvironment, the growth phase, and 

the epithelial cell surlace. 

Internalization of Salmonella organisms is associated with disruption of the brush 

border and an increase in permeability of the tight junctions to small molecules. Irivading 

Salmonella species have been shown by · confocal and light immunofluorescence 

microscopy to induce rearrangements of host actin filaments and other cytoskeletal 

proteins. Upon binding, Salmonella organisms transduce an "uptake signal" (tyrosine 

protein kinases appear to be involved) to the host cell which causes recruitment of the 

cytoskeletal elements. These accumulate around the bacterium and then dissociate shortly 

after internalization. The bacterial factors involved have yet to be defined (Finlay et al, 

1992), although it has recently been established that stimulation of the epidermal growth 

factor receptor is involved inS. typhimurium invasion (Galan et al, 1992). The host cell's 

responses used for bacterial uptake appear to be analogous to receptor-mediated 

endocytosis. Transmission electron microscopy has shown clathrin-coated membrane 

domains associated with penetrating Shigella species (Clerc et al, 1988). The protein, 

clathrin, is the major component of coated pits and vesicles in receptor-mediated 

endocytosis. Other studies done on invasive Shigella species show that they do not 

perforate the plasma membrane, but are observed within membrane-bound vacuoles shortly 

after entry (as is S. typhimurium), and that energy is required by the host cell for the 
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process. These would imply phagocytosis, yet this had only been described in cells such 

as macrophages. Hence, there has been considerable debate as to whether receptor

mediated endocytosis or a phagocytic-like process is involved in bacterial uptake. The 

process is now often referred to as parasite-mediated endocytosis. 

Intracellular multiplication of S. typhimurium is an essential component of its 

pathogenicity. Salmonella organisms multiply inside vacuoles of the host cell. This 

behavior contrasts with that of other invasive bacteria, such as Yersinia species which 

survive in vacuoles but do not replicate, and Shigella jlexneri which escapes the vacuole 

and replicates in the host cell cytoplasm. The microenvironment of the vacuole is one of 

low pH, low oxygen levels, and low free Mg2+ and Fe2+ concentrations (Finlay et al, 

1992). Yet, Salmonella organisms survive and multiply in vacuoles, where they seem to 

modify the vacuolar membrane so that it can expand and enhance incorporation of specific 

growth-promoting factors from the cytoplasm (Clerc et al, 1988). Survival within the cell 

appears to involve blockage of phagosome-lysosome fusion. 

Salmonella species Interaction with Phagocytes 

Intracellular pathogens have evolved means to evade killing by professional 

phagocytes, thereby allowing them to survive in phagocytic cells (Suter, 1956). There has 

since been found to be a correlation between the ability of organisms to survive in 

macrophages in vitro and their ability to cause invasive disease (Williams et al, 1991). 

Fields et al (1986), by using an in vitro assay for survival within macrophages, identified 

S. typhimurium mutants with a decreased capacity for intracellular survival that were less 

virulent than the parent strain in vivo, demonstrating that survival within the macrophage is 

essential for virulence. Salmonella typhimurium, a facultative intracellular pathogen 

(Finlay & Falkow, 1989), has been well characterized physiologically and genetically, but 

only limited data are available on the mechanisms employed for survival within the 
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macrophage. In fact, certain researchers state that there has never been indisputable 

experimental evidence of intracellular survival and multiplication of Salmonella species 

within host phagocytes (Hsu, 1989; Lin et al, 1987). However, there is still persistent 

inference to survival and growth in phagocytes, and it has been postulated by Wells et al 

(1988) that motile submucosal macrophages phagocytose intestinal bacteria and fail to carry 

out intracellular killing. The bacteria survive and grow within this "safe-site" intracellular 

location during the first 24 hours after infection, and are then liberated at extraintestinal 

sites, where they may again be phagocytosed by other macrophages (Dunlap et al, 1992). 

This movement to extraintestinal sites is known as bacterial translocation, and occurs most 

readily with those bacteria classified as facultative intracellular bacteria. These are the only 

bacteria known to translocate reliably after oral inoculation into experimental animals. After 

oral inoculation, S. typhimurium has been found in the liver (Helmuth et al, 1985), spleen 

(Dunlap et al, 1992), mesenteric lymph nodes, mesentery (Que & Hentges, 1985), and 

Peyer's patches (Hohmann et al, 1978) of mice, and in the mesenteric lymph nodes, liver, 

and spleen of rats and piglets (Tlaskalova-Hogenova et al, 1983). There has also been the 

repeated observation by light and electron microscopy of bacteria within intestinal epithelial 

cells and mucosal phagocytes. Popiel & Turnbull (1985) photographed macrophages 

containing Salmonella species passing through breaks in the basement membrane and in the 

lamina propria of the intestinal mucosa of newborn chickens. Translocation occurs within 

hours after ingestion and the rate can be altered by agents that affect immune (including 

phagocytic) functions. 

Once S. typhimurium has been phagocytosed, microtubules direct the movement of 

the phagocytic vesicle or phagosome within the macrophage. Carroll et al (1979) report 

that the phagosome then fuses with a lysosome to form a phagolysosome and it is here that 

survival and replication of S. typhimurium takes place. However, other reports suggest 

that survival in the phagosome of the macrophage appears to involve prevention of 

phagosome-lysosome fusion (Finlay et al, 1992). Nevertheless, the capacity for 
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intracellular survival and growth of Salmonella species within phagocytes appears to be 

related both to nutritional, especially folic acid, requirements, and to virulence factors 

(Lindberg, 1980; Falkow & Mekalanos, 1990). 

Lipopolysaccharide (LPS) is the most extensively characterized virulence factor of 

Salmonella species. The oligosaccharide composition of the LPS appears to affect the 

ability of organisms to survive and replicate in rnacrophages, although most of this work 

has been conducted using Haemophilus influenza Type b (Williams et al, 1991). The lipid 

A component of LPS (endotoxin) activates rnacrophages resulting in fever, leukocytosis 

and shock, although it is unclear whether this benefits the organism. Another important 

virulence factor is the surface 0 antigen. It is not certain whether this surface antigen acts 

by preventing phagocytosis (through inhibition of complement-mediated opsonization) or 

by preventing subsequent destruction within macrophages. Recently, Stinavage et al 

(1990) identified an outer membrane protein which protects Salmonella species from 

oxidative killing by polymorphonuclear cells, and Kim et al (1988) identified a specific 

protector protein which inhibits enzyme activation by a thiol/Fe(TII)02 mixed function 

oxidation system, which in turn protects Salmonella species from non-oxidative killing by 

polymorphonuclear cells. A further virulence factor is the flagellum. Flagella are thought 

to contribute either to enhanced resistance to macrophage killing or are necessary for 

intracellular multiplication in macrophages (Weinstein et al, 1984). Mutants that have lost 

flagella show a decreased capacity for survival and growth in macrophages. Most 

Salmonella species contain a large (50-H)() Kb) plasmid that is essential for virulence, but 

the nature of this plasmid-encoded virulence property is unknown. Strains that have lost 

the plasmid enter epithelial cells and macrophages normally but do not survive and 

replicate. Recently, however, Riikonen et al (1992) found that the virulence plasmid does 

not contribute to growth of Salmonella species in cultured murine macrophages. 
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Experimental Methods used to Study Survival and Multiplication of Salmonella species in 

Macro phages 

Various methods have been employed to study survival and proliferation of 

Salmonella species in host phagocytes. Cell culture techniques have so advanced over the 

last 30 years that they provide a valuable means by which direct interactions between 

virulent bacteria and isolated host cells can be studied. Various experiments have been 

conducted that use coverslips, culture tubes or culture plates for cell culture. Different 

staining techniques or viable intracellular bacterial assays have been used for bacterial 

quantitation. Many in vivo experiments have also been conducted. However, Hsu (1989) 

and others claim that the experimental evidence for survival and multiplication of 

Salmonella species in macrophages is disputable because basic criteria in experimental 

design have not been fully met. In addition, Hsu (1989), using electron microscopy, and 

Briles et al (1981) and van Zwet et al (1975) have ·shown destruction of virulent Salmonella 

species in macrophages. 

One of the methods used to determine whether virulent Salmonella species will 

grow in macrophages is the cell culture technique. A disadvantage of this method is that it 

employs an artificial environment, where the host cells are never replenished and the 

medium differs from that of an in vivo inflammatory reaction. Some of the earliest work 

was conducted by Gelzer and Suter (1959), who cultured rabbit peritoneal exudative 

macrophages infected with S. typhim.urium on cover slips. Mitsuhashi et al (1961) and 

Sato et al (1962) also used cover slips to culture various macrophages with S. enteritidis. 

At intervals the slides were removed, fixed and stained. The authors concluded that the 

virulent strain multiplied intracellularly while the avirulent s~rain did not. However, this 

method of microscopic counting of stained bacteria did not distinguish live from dead 

organisms, and therefore may not have reflected multiplication but merely an accumulation 

of bacteria. Better staining techniques have more recently been developed. Goldner et a1 
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(1983) used a fluorescent acridine orange stain technique with extracellular quenching on 

gram-positive bacteria, and Miliotis (1991) perfonned a similar expefi:ment using gram

negative bacteria. This technique not only differentiated between intra- and extracellular 

bacteria in cultured cells, but also between viable (green-fluorescing) and nonviable (red) 

intracellular bacteria (West, 1969). 

Methods to assay viable intracellular bacteria have also been developed. Furness 

(1958) and Morello & Baker (1965), using individual culture tubes of infected mouse 

peritoneal macrophages, recovered viable intracellular S. typhimurium by lysing the 

macrophages with distilled water. Numbers of colony-forming units (CFU) were then 

counted on bacteriological media. Niesel et al ·(1985) quantitated bacteria in an infected cell 

monolayer by overlaying the cells with a distilled water-agarose-agar mixture. 

Microscopically, it has been shown that distilled water does not disrupt cells to release 

individual bacteria. Therefore, using these methods, bacterial counts may not represent the 

viable bacterial population but rather the infected cell population. Chemical detergents, 

such as sodium deoxycholate, are more effective than water in disintegrating mammalian 

cells, but are inadequate for recovery of S. typhimurium as the organism is sensitive to 

most of them (Hsu & Mayo, 1973). Amongst the physical methods of lysing host cells, 

sonication has been found to recover more Salmonella organisms than either water or 

chemicals (Baron & Proctor, 1984; Hsu & Radcliffe, 1968). 

A controversial issue in cell culture experiments is the use of antibiotics in the 

culture medium. Antibiotics are usually used to control the extracellular bacterial 

population, both to prevent a continuation of phagocytosis after a certain time and to ensure 

an accurate CFU count of only those bacteria that are intracellular. It has been suspected, 

although never proved, that some antibiotics may penetrate the host cells and interfere with 

the host-parasite interaction. Patterson & Youmans (1970) attributed the suppressed 

multiplication of Mycobacterium tuberculosis within cultured immune macrophages to an 

increased penetration of streptomycin. Prolonged exposure of cultured cells to antibiotics 
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inhibited the multiplication of and later eradicated S. typhosa (Hopps et al, 1961). Both 

penicillin (Eagle, 1954) and streptomycin (Bonventre & Imhoff, 1970) have been shown to 

bind to cultured mammalian cells, but their activity against intracellular bacteria has not 

been established. Lobo & Mandell (1973) and Mandell (1973) claim that intracellular 

bacteria are protected from the bactericidal actions of non-lipid-soluble antibiotics, e.g. 

gentamicin. However, Kihlstrom (1977) found that the fraction of surviving bacteria 

decreased with increasing gentamicin concentration. This could have been due to the 

inability of the lower drug concentrations to gain access to all extracellular membrane

attached bacteria, or to the effect of higher drug concentrations on intracellular bacteria 

In vivo experiments to show that bacteria survive and multiply in macrophages have 

also been conducted. Numbers of viable intracellular bacteria were estimated by 

homogenizing liver or spleen of infected mice at various intervals after inoculation and then 

culturing the homogenates on bacteriological media (Collins, 1974). This method does not 

disrupt all infected cells nor effectively disperse intracellular bacteria for quantitation. As 

the liver and spleen are part of the mononuclear phagocyte system, it is often assumed that 

bacteria only multiply in resident macrophages. However, they just as readily replicate in 

the sinusoids and intercellular spaces (Lin et al, 1987; Wang et al, 1988). Therefore, an 

increase in bacterial population in the liver and spleen would not necessarily represent 

intracellular multiplication. 

Effect of Interferon on Salmonella species Infection 

Interferon was first described by Issacs & Lindenrnann in 1957. They observed 

that virus-infected cell cultures produced a protein that acted on cells so that they became 

resistant to infection by many viruses (Baronet al, 1991). We now know that interferons 

are one of the body's natural defense mechanisms. They not only have antiviral action, but 
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also play a role in com bating other microorganisms and tumors, and in regulating 

immunity. 

Types of Interferon 

Currently, three types of interferon are recognized; interferon alpha (IFN-a), 

interferon beta (IFN-~). and interferon gamma (IFN-y). All IFNs are relatively small 

proteins with molecular weights ranging from 20-25 kD. Interferon production is 

genetically controlled and can be induced in most body cells by various stimuli. 

There are at least 17 different human IFN-a genes. When production of IFN-a is 

induced in B-lymphocytes and other leukocytes (null lymphocytes and macrophages), a 

number of these genes are expressed resulting in different IFN-a subtypes. There is some 

speculation as to whether different leukocytes and/or the stage of leukocyte differentiation 

and/or the type of inducer used are relevant with regard to the subtype of IFN-a produced 

(Kirchner, 1986). IFN-as are induced by virus-infected cells, viral envelopes, bacterial 

cells and their products, tumor cells, and activated natural killer (NK) cells, as well as 

synthetic polynucleotides. 

In contrast to IFN-a, there appears to be only one human IFN-~ gene, although 

data suggesting that there are two genes have been presented (Merigan, 1983). There are 

thought to be two genes in cattle. The gene coding for IFN-~ displays 30-35% homology 

with those coding for the IFN-a family (Taniguchi et al, 1980). They are located on the 

same chromosome, and in the mouse, are usually expressed simultaneously, although 

Brehm et al (1986) showed that an 1FN inducer, CMA (10-carboxymethyl-9-acridanone), 

induces only IFN-~ in the mouse macrophage. These IFN-a and IFN-~ families are 

referred to as Type I IFNs. Interferon-~ is formed by virus- or synthetic polynucleotide

stimulated fibroblasts, epithelial cells, and macrophages. 
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Interferon-)', or immune IFN, is produced by foreign antigen- or mitogen-activated 

T-lymphocytes and by activated NK cells. Taylor et al (1984) have shown that a B

lymphoblastoid cell line produced IFN-y upon "heat shock", but this has yet to be 

confirmed. As IFN-y is produced exclusively by lymphocytes, it is also a lymphokine. 

The gene coding for IFN-y shows no homology with the genes for IFN-a and -(3 and 

contains introns that are absent in the other IFN genes (Gray & Goedde!, 1982). Hence, it 

is referred to as a Type II IFN and is less stable than Type I IFNs in an acid environment. 

The gene of the lymphokine, interleukin-2 (IL-2), has been reported to share a certain 

degree of homology with the IFN-y gene. 

The classification of IFNs into types a, fl, and y, is generally applied to mammals, 

but Dijkmans et al (1990), have found that this classification may not necessarily be 

applicable in birds. Human, baboon, and mouse spleen cells have been shown to be good 

producers of IFN-r upon stimulation with mitogens, but similarly stimulated cultured 

chicken splenocytes produced a protein which was indistinguishable from IFN-a/~, and 

which was completely neutralized by anti-IFN-a/fl antiserum. Similar results were 

obtained by Kohase et al (1986), who found that only one type of IFN (a or !3) was 

produced in chick cells when induced with viruses or synthetic polynucleotides. Thus, the 

ability of chicken cells to produce IFN-y has not been confirmed. 

Mechanisms of Action 

Many mechanisms of action of IFN have been identified. This research is focused 

on the defense against bacteria, but other mechanisms, namely antiviral and antitumor 

activity, and interaction with intercellular signaling substances (cytokines), are important 

and worthy of mention. All three types of IFN activate their target cells by binding to 

specific receptors on the cell surface. These receptors are of high affinity and selectivity. 

One class of high affinity sites appears to bind the various IFN-a subtypes and IFN-~. 
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while another recognizes IFN-y only (Kirchner, 1986). This binding results in 

transmembrane signaling and induces synthesis of intracellular proteins which mediate the 

different actions of IFNs. 

Over twenty IFN-induced proteins have been identified, including eiF-2a protein 

kinase, 2',5'-oligo-A synthetase and Mx protein, which are important in antiviral 

pathways. Antiviral action of IFN can occur at different stages of viral replication. The 

protein kinase system, activated by double-stranded RNA, reduces the translation of viral 

proteins by phosphorylating an initiating factor and decreasing the efficiency of protein 

synthesis initiation. The 2',5'-oligo-A synthetase system, which is also activated by 

double-stranded RNA, enzymatically degrades viral RNA so that it is no longer available 

for translation into viral proteins (Pestka et al, 1987). The Mx protein confers resistance 

against influenza virus and is thought to inhibit transcription (Arnheiter & Meier, 1990). 

Imrnunoregulatory actions of IFNs, such as macrophage activation, NK and cytotoxic T 

cell regulation, cytokine induction, and expression of major histocompatability (MHC) 

antigens may also affect viral replication. 

Interferons exhibit antiproliferative effects on tumor cells, primarily by increasing 

the length of the cell multiplication cycle, repressing certain oncogenes, depleting essential 

metabolites, and by cytotoxic action. They also have indirect effects via enhanced 

expression of MHC antigens and tumor necrosis factor (TNF) receptors leading to better 

recognition and killing of tumor cells, increased induction of antibodies to tumors, and 

enhancement of tumor cytotoxicity by macrophages, NK cells and T lymphocytes. 

The interaction of IFNs with cytokines is not yet completely understood, but IFN 

actions appear to be extensively modulated by cytokines. For example, IFN-y activates 

macrophages by inducing them to produce TNF (Philip & Epstein, 1986), and IL-2 

produced in T lymphocyes induces IFN-y, which in part, increases NK cell activity (Baron 

et al, 1987). 
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During experimental infection with pathogenic protozoa and bacteria, IFN 

production has been observed. Numerous studies have shown that bacteria and/or bacterial 

products induce IFN production in certain leukocyte populations and, more recently, in 

fibroblasts, which produce IFN-a and IFN-~ in response to intracellular bacteria (Hess et 

al, 1989). 

The role of IFNs in modulating host defense responses is further illustrated by the 

observation that host resistance to various pathogens can be enhanced by treating infected 

animals with IFN. Furthermore, treatment with IFN-specific antibodies decreases host 

resistance (Baron et al, 1991). Defense mechanisms induced against bacterial pathogens 

involve both direct effects on nonphagocytic cells to inhibit invasion and replication, and 

indirect imrnunoregulatory effects, mainly through activation and increased phagocytic 

activity of macrophages. 

Effect of Interferon on Uptake of Salmonella species 

Numerous experiments have shown that pretreatment of epithelial cells with IFN 

inhibits cellular invasion and intracellular replication of facultative intracellular bacteria. It 

has been reported that pretreatment with homologous IFNs reduced the invasiveness of 

Salmonella typhimurium and Salmonella paratyphi-B in HEp-2 cells, and Shigella flexneri 

in cell culture models not susceptible to shiga toxin (Bukholrn & Degre, 1983, 1985; Degre 

& Bukholrn, 1988; Degre et al, 1989; Niesel et al, 1986). Furthermore, similar 

pretreatment reduced in vivo invasiveness of S. typhimurium in a mouse model (Bukholm 

et al, 1984). This response appeared to involve a reduced ability of the bacteria to enter 

IFN-treated cells, although the mechanism is not completely understood. 

In macrophages, phagocytic activity is stimulated by IFN-a. and IFN-~, but it 

appears to be depressed by IFN-y (Degre et al, 1981). Interferons (more recently found to 

be mainly IFN-y) also enhance the bacteriostatic and bactericidal activity of macrophages in 
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vitro (Patterson & Youmans, 1970; Fowles et al, 1973) and in vivo (Donahoe & Huang, 

1976). Both an increase in phagocytic activity and intracellular killing appear to be major 

mechanisms of host defense, and aid in inhibiting the spread of pathogens in the host. As 

previously described, facultative intracellular bacteria are believed to survive and grow in 

macrophages where antibodies cannot confer protection against them. During the course of 

an infection, the cell-mediated immune response is stimulated and T lymphocytes release 

IFN which induces macrophage activation. This involves an increase in size, an increase in 

mobility (enhanced spreading, pinocytosis and phagocytosis) and an increase in metabolic 

activity (secretion of lysosomal enzymes and IL- l, membrane ruffling, oxidative 

metabolism, microbicidal activity, and tumoricidal activity). Mechanisms are not 

completely understood, but Kagaya et al (1989), using recombinant IFN-y to activate 

peritoneal macrophages, suggested that enhanced Salmonella-killing activity was due to 

increased phagosome-lysosome fusion followed by oxygen-independent killing. Oxygen

independent killing mechanisms include stimulation of the enzymatic degradation of 

extracellular tryptophan (Byrne et al, 1986), limiting the availability of iron (Byrd & 

Horwitz, 1987), and production of microbicidal proteins belonging to the histone family 

(Hiemstra et al, 1993). These microbicidal proteins killS. typhimurium as well as other 

bacteria. However, other authors have found that oxygen- (respiratory burst-) dependent 

mechanisms resulting in release of toxic oxygen intermediates, such as superoxide anion, 

hydrogen peroxide, and hydroxyl radical, play a primary role (Murray & Cohn, 1979, 

1980; Edwards et al, 1992; Nathan et al, 1985). Both oxygen-independent and oxygen

dependent mechanisms are largely IFN-y induced and can be stimulated by recombinant 

IFN-y alone (Murray, 1988). 

It is well documented that IFN-'Y has differences in biological activities to IFN-o: 

and IFN-I), i.e. structure, cellular sources, stimuli that induce secretion, physicochemical 

properties, cell surface receptors, antiviral efficacy, and antiproliferative activity. 

However, with the recent availability of pure recombinant IFN preparations, other 
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differences, most notably the ability to stimulate bactericidal activity of macrophages, have 

been shown. Interferon~y is known to be the predominant lymphokine that activates 

macrophages for enhanced secretion of hydrogen peroxide (Nathan et al, 1983; Sharp & 

Banetjee, 1986). It appears to be far more efficient in this regard than IFN-a or-~ (Pace et 

al, 1983), which have been found to be poor activators, or possibly even deactivators, of 

intracellular killing by macrophages (Nathan et al, 1985; Yoshida et al, 1988). 

Furthermore, experimental evidence by von Bulow et al (1984) suggested that virus

induced interferons (IFN-aJ~) were 20-30 times less effective as macrophage intracellular 

killing activators than stimulators of antiviral activity. Speert & Thorson (1991) also found 

that monocyte-derived macrophages cultured in · the presence of recombinant IFN-y 

exhibited enhanced capacity to produce superoxide anion. Yet, despite this, and the fact 

that greater number. of bacteria (Pseudomonas aeruginosa) were bound via the Fe receptors, 

receptor-mediated phagocytosis was inhibited, and therefore, killing capacity was 

compromised. This reaffirms that phagocytic activity appears to be depressed by IFN-y 

(Degre et al, 1981), and may be important with intracellular bacteria which must gain 

access to the intracellular environment to survive. Bacteria which are already ingested 

would be killed more efficiently and those which are uningested would be denied the 

environment they need for survival and replication. These results differed from other 

investigators conducting similar experiments (Edwards et al, 1988; Kemmerich et al, 

1987), who demonstrated an increased capacity of IFN-y-treated neutrophils, monocytes or 

alveolar macrophages to kill P. aeruginosa, S. aureus, or L. monocytogenes. This may 

have been due to inherent differences in the types of phagocytic cells used. 

The quiescent macrophage usually requires 24-72 hours of continuous in vitro 

exposure to IFN-y before optimal activation is achieved (Nathan et al, 1983). Pulse 

exposure was far less effective (von Bulow et al, 1984). The activated state decreased in 2-

3 days after removal of IFN-y, in contrast to monocytes which, after brief exposure at 

relatively low concentrations, showed persistent activation for up to 7 days (Murray et al, 
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1987). The events at the plasma membrane and intracellular molecular level that lead to 

IFN-y-induced macrophage activation are poorly understood. Surface receptors are 

important (Celada et al, 1986), and calcium levels and protein kinase C activity may also 

play a role (Celada & Schreiber, 1986). 
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CHAPTER III 

EXPERIMENTAL OBJECTIVES 

The overall objective of this experiment was to examine the effect of virus-induced 

chicken interferon on the uptake of Salnwnella typhimurium by chicken macrophages. In 

addressing this goal, a method for cultivation of chicken macrophage (HDll) cells in tissue 

culture plates had to be developed and the activity of the interferon preparation needed to be 

conflnned. Thus, the study was conducted in three phases, as described by the following 

specific objectives: 

Phase 1: To develop a tissue culture method for the cultivation of HDll macrophages. 

Phase II: To conflnn the activity of chicken embryo cell interferon (CEC-IFN) in HDll 

cells by performing a yield reduction assay using vesicular stomatitis virus. 

Phase ill: To detennine the effect of various CEC-IFN dilutions on the uptake of 

Salmonella typhimurium by HDll cells, using a modification of an assay for 

viable intracellular bacteria described in Bukholm & Degre (1985) and Bukholm 

et al (1990). 
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CHAPTER IV 

MATERIALS AND METHODS 

Phase I: Tissue Culture Methodology 

The HDll cell line was provided by Dr. K. Klasing (Department of Avian 

Sciences, UC-Davis, Davis, CA). This chicken macrophage cell line was developed by 

transformation of chicken bo~Je marrow cells using a replication-defective retrovirus, MC29 

(Beug et al, 1979) . .These cells possess normal macrophage functions and markers, 

including phagocytosis of bacteria, macrophage surface antigens, Fe receptors, esterase 

and ATPase activity, and production of monokines when stimulated by heat-inactivated 

Staphylococcus aureus (Klasing and Peng, 1987, 1990). 

The HD11 cells were provided in a 25cm3 flask filled with Roswell Park Memorial 

Institute 1640 medium (RPMI 1640) and 5% fetal bovine serum (PBS). The cells were 

rounded and covered 80% of the flask surface. A small percentage of cells were free

floating. The medium was removed and replaced with 6 ml fresh RPMI 1640 (Curtin 

Matheson Sci., Carrollton, TX.), L-glutamine (200mM, 29.2 mg/ml) (JRH Biosciences, 

Lenexa, KS) at 10 mlJL, penicillin/streptomycin solution (JRH Biosciences, Lenexa, KS) 

at 10 ml/L, and 5% FBS (Endlo) (JRH Biosciences, Lenexa, KS). The flask was 

incubated overnight at 39.5 C under 5% C02. The medium was then removed, and the 

flask was scraped using a cell-scraper (Costar, Charlotte, NC). The cells were split 1:4 

and transferred to a 75 cm3 Costar canted-neck flask. Fresh medium and 10% FBS were 

added, and the flask was reincubated. Within 5 days, cells covered approximately 80% of 

the flask surface. The medium was removed, the cells scraped, split 1:6, and placed in 

new 75 cm3 flasks with fresh medium containing 5% FBS, and reincubated. The fluid was 

renewed every third day, and the cells split 1:6 once a week (doubling time is 
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approximately 18 hours) throughout the following experiments. At no time did the cells 

cover >80% of the flask surface and the attached cells were never confluent. At 

approximately 80% coverage, the cells began detaching in large numbers. 

For cultivation of HD 11 monolayers in 24-well tissue culture plates (Phases II and 

III), a flask with approximately 80% attached cells was split 1:3. One third was diluted to 

24 ml with RPMI 1640 and 5% PBS. One ml of this dilution was slowly pipetted into each 

of the 24 wells and incubated at 39.5 C under 5% C02 for 72 hours. Again, not more than 

80% of the well surface was covered with attached cells. 

As a 100% confluent monolayer was never achieved, a preliminary study was 

conducted to indicate whether any large differences existed between the number of 

cells/well or the pH of each well of a plate incubated for 72 hours. The number of viable 

cells/well (ml) was obtained by scraping the cells from each of 12 randomly chosen well 

surfaces. The cells were diluted with a 1:10 dilution of 0.25% trypan blue solution and 

counted in a Neubauer hemocytometer. 

Throughout Phases ll and ill, avian cells were cultured at 39.5 C under 5% C02 

and mammalian cells at 37 C under 5% C02. 

Phase 2: Assay ofCEC-IFN Activity in HDll Cells 

Previous observations had determined that HD 11 cells began to detach when 

approximately 80% of the flask surface was covered with attached cells which were not 

confluent. As a result of this phenomenon, direct titration for viral plaques on HD11 cells 

was not possible. Therefore, a yield reduction assay to titrate for viral plaques was used. 

Preparation of HD 11 Cell Monolayer: Monolayers of HD 11 cells in tissue culture plates 

were prepared as described in Phase I. 
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Preparation of Madin Darby Bovine Kidney Cell Monolayer: One 75 cm3 flask of Madin 

Darby Bovine Kidney (MDBK) cells was split 1:10. One tenth was diluted to 24 ml with 

Minimum Essential Media (MEM) and 5% FBS . . This step was repeated twice more and 1 

rnl added to each of 24 wells of 3 tissue culture plates. The plates were incubated for 3 

days. At this time, the cells were approximately 90% confluent. 

Interferon: A stock solution of Chicken Embryo Cell Interferon (CEC-IFN) (Batch #: 

RBI7-1, 7-27-88) of 16000 Units/ml (U/ml) was obtained from Dr. Phillip Marcus, 

Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT. 

The CEC-IFN was derived from primary chicken embryo cells that were exposed to UV

inactivated avian reovirus (Sekellick and Marcus, 1986). Six fourfold dilutions of CEC

IFN stock were made (1:100 through 1:102400). 

~: A vesicular stomatitis virus (VSV SP5, 9-6-83) stock solution (Fulton et al, 1986) 

was diluted so as to obtain 103 plaque-forming units (PFU)/ml to be used as a challenge 

virus in HD11 cultures. 

Yield Reduction Assay: A plaque-reduction assay was conducted to detect the effect of 

various dilutions ofCEC-IFN on VSV-SP5. After the medium had been aspirated from the 

wells containing HDll cells, 1 ml of each of the six CEC-IFN dilutions, plus 1 ml of 

control medium, were placed in duplicate wells and incubated for 24 hours. The CEC-IFN 

and medium were aspirated from all the wells and 0.1 ml of 103 PFU/ml VSV -SP5 was 

added to each well and incubated for 40 minutes. One milliliter of each of the appropriate 

CEC-IFN dilutions (and control medium) was replaced on each well and reincubated for 24 

hours. The plate was frozen at -70 C and thawed when ready for use. Two samples of 

each dilution and 2 control samples were pooled and again frozen in tubes at -70 C until 

. titration. 
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Pooled virus samples were thawed and ten-fold dilutions were made. One hundred 

microliters of each dilution oo-3 through 10-6) of each sample were placed on duplicate 

MDBK wells from which medium had been aspirated. These plates were incubated for 40 

minutes, and after adsorption, overlayed with 1 ml MEM methyl cellulose and reincubated 

for 48 hours. 

An acetic acid : acetone : fonnalin fixative was placed in each well and left for at 

least 1 hour, and then each well was stained for 10 minutes with crystal violet. Plaques 

were scored, and the CEC-IFN titer determined by the probit method and expressed as the 

reciprocal of the highest CEC-IFN dilution producing 50% reduction in the number of 

plaques as compared to virus controls. The experiment was repeated once. 

Phase 3: Effect ofCEC-IFN on Uptake of Salmonella typhimurium by HDll 

Macro phages 

Cultivation of HDll Cell Monolayers: Tissue culture plates were prepared as described in 

Phase I. 

Preparation of Bacterial Inocula: Salmonella typhimurium (ATCC 14028, obtained from 

Dr. J.K. Skeeles, University of Arkansas, Fayetteville, AK) was streaked for isolated 

colonies on one blood agar plate and incubated at 37 C for 24 hours, after which the culture 

was visually checked for purity. From this culture, a new blood agar plate was streaked 

for confluent growth and incubated at 37 C for 24 hours. The confluent growth of S. 

typhimurium was then harvested with 5 ml phosphate buffered saline (PBS) (O.lOM, pH 

7.28). An absorbance of the harvest was determined photometrically at 650nm, and the 

number of colony-forming units/ml (CFU/ml) was estimated using a standard curve 

previously constructed (Figure 1). The harvest was then diluted with sterile PBS to an 

approximate concentration of2.5 x 107 CFU/ml (inoculum). 
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Preparation of Chicken Interferon Dilutions: Four dilutions of CEC-IFN (0 U/ml, 10 

U/ml, 100 U/ml and 1000 U/ml) were made using RPMI 1640 with 2% FBS and no 

antibiotics. They were stored at -4 C until used. After the HD 11 cell tissue culture plate 

had incubated for 72 hours, the medium was aspirated from each well, and 1 ml of each of 

the four CEC-IFN dilutions was added to each of six wells on the plate and incubated for 

24 hours. Thus each treatment was replicated six times on each plate. Five plates were 

used. 

Challenge of HDll cells with S. zyphimurium: After incubation for 24 hours with CEC

IFN, the medium was removed from the wells using an aspirator, and the wells were 

washed once with 1 ml sterile PBS/well. One milliliter of fresh medium without antibiotics 

was added to each well and incubated for 1 hour. Thereafter, 200 ul of S. typhimurium 

inoculum was added to each well and incubated for 3 hours before estimation of 

intracellular bacterial numbers. 

Intracellular Bacterial Count: Wells were washed once with 1 ml sterile PBS/well to 

remove most extracellular, unattached bacteria. One milliliter of medium with gentamicin 

(Gentamycin Solution, 50 mg/ml) (JRH Biosciences, Lenexa, KS) was then added at 50 

ug/ml to each well to kill the remaining unattached and adherent extracellular bacteria, and 

the plate was incubated for 1 hour. The wells were washed twice with 1 ml sterile 

PBS/well, and then 1 ml sterile double-distilled water/well was added to lyse the 

macrophage cells. The plate was incubated at 37 C for 45 minutes. Two tenfold dilutions 

of supernatant were made, and blood agar plates were spotted with 6 x 0.1 ml for each of 

the dilutions (10°, w-1, w-2) from each of the 24 wells. The blood agar plates were 

incubated at 37 C for 18 hours and the colony-forming units (CFU) were then counted. 



24 

Statistical Analysis: Bacterial counts were log transfonned to ensure equality of variances. 

Data were initially analyzed using an analysis of variance with assays (plates) as blocks and 

pairwise comparisons of least squares treatment means were conducted using Scheffe's 

Test. Thereafter, data were reanalyzed using a nested design to test for significant 

interactions between interferon treatments and assays, and each assay was then analyzed 

independently. Interferon treatment means within each independent assay were separated 

by the LSD method. Differences were considered significant at the P<0.05 level. 
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CHAPTERV 

RESULTS 

Phase I: Tissue Culture Methodology 

Growth and attachment of HD 11 cells was adequate for the purposes of this study. 

The doubling time for the macrophages in RPMI 1640 and 5% FBS at 39.5 C, 5% C02 

was 18-24 hours. Therefore, splitting the cells 1:6 at weekly intervals was sufficient to 

maintain the cell culture. Most of the cells remained adherent until they covered 

approximately 80% of the flask surface. Thereafter, the cells began to detach rapidly. 

The preliminary study conducted to indicate whether any differences existed 

between the number of cells/well or the pH of each well of a plate incubated for 72 hours 

showed no marked differences between wells at the edges and comers of the plates 

compared to those in the center. For 12 randomly chosen wells, the pH range was 7.00-

7 .05, and the average number of cells/well (ml) was 8.35 x 105 cellslml (range of 7.125 x 

105- 1.020 x 106 cells/ml). 

Phase 2: Assay ofCEC-IFN Activity in HDll Cells 

Two plaque reduction assays conducted to detect the effect of various dilutions of 

CEC-IFN in HDll cultures challenged with VSV-SP5 indicated that CEC-IFN was indeed 

active. Increasing CEC-IFN concentrations caused a reduction in the number of viral 

plaques scored on MDBK cultures, as compared to CEC-IFN-free controls (Table I). The 

CEC-IFN titer producing 50% reduction in viral plaques as compared to CEC-IFN-free 

controls in both assays (calculated using the probit method) was 2839 U/ml and 549 U/ml, 

respectively. 
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Initial analysis using an analysis of variance with assays as blocks indicated that 

exposure of HDll cells to CEC-IFN significantly increased the recovery of S. 

typhimurium at concentrations of 10 U/ml and 1000 U/ml CEC-IFN (Tables II-& III). 

Lower concentrations of CEC-IFN had more effect than higher concentrations, as 

illustrated by the probabilities of making a Type 1 error on the conservative Scheffe's Test 

(Table IV). However, when the interaction between assays and interferon treatments was 

tested, a significant result suggested that responses of HDll cells to interferon treatments 

was not consistent in all assays. Thus, assays were analyzed independently using one

factor analyses of variance, which revealed significant differences between treatments in 

only two of the five assays. In both assays showing significant differences, control 

(interferon-free) means were lower than interferon treatment means. 
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CHAPTER VI 

DISCUSSION 

It has long been recognized that S. typhimurium, which is regarded by most 

investigators to be a facultative intracellular parasite, has the ability to survive within 

rnacrophages. This phenomenon is thought to contribute to the invasiveness of enteric 

disease in chickens. In the present experiment, addition of chicken IFN enhanced recovery 

of S. typhimurium from chicken HDll macrophages after 3 hours of incubation, although 

this effect was clearly evident in only 2 of the 5 assays conducted. Whether the 

intracellular organisms still survived and replicated after 3 hours was not addressed in this 

experiment. 

Close examination of the relative magnitudes of treatment means calculated from 

pooled data (fable ill & IV) suggested that although the highest concentration of CEC-IFN 

tested also caused an increase in the number of bacteria recovered from macrophages, this 

response was less marked than that caused by the lower concentration of CEC-IFN. 

Similar rankings in treatment means were found in 4 of the 5 assays conducted (Table ill). 

This observation could be explained by a possible increase in intracellular killing at the 

higher concentration, which obscured the increased phagocytosis evident at lower 

concentrations. Chicken IFN concentrations higher than 1000 U/ml would be needed to 

determine whether the number of viable bacteria continued to decrease until the rate of 

phagocytosis was equalled or surpassed by the rate of intracellular killing. 

The chicken IFN used in this experiment was induced from "aged" monolayers of 

primary chick embryo cells by UV -irradiated avian reovirus. Residual IFN-inducing 

particles were removed from the samples by using 6% FBS as a carrier to precipitate 

inducer virus and non-IFN macromolecules in the presence of perchloric acid (Sekellick & 

Marcus, 1986). This acidification process would leave only acid-stable IFN which is 
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presumed to be IFN-a./~. Using a yield reduction assay, this CEC-IFN did stimulate 

antiviral activity in the HD 11 cell line. An IFN-a/~-1ike protein with antiviral effects was 

first described in chickens by Issacs & Lindenmann (1957) and later by Kohase et al 

(1986), but its primary sequence has yet to be elucidated and hence positively identified as 

a homologue of mammalian IFN-a. or IFN-~. It is known that phagocytic activity of 

macrophages is stimulated by mammalian IFN-a. and IFN-~. In the present experiment, 

results suggest that lower concentrations of CEC-IFN similarly stimulated phagocytic 

activity of the HD 11 macrophage cell line, as indicated by increases in the number of viable 

bacteria present intracellularly after 3 hours of incubation, an interval previously shown to 

be sufficient time for adherance and uptake of bacteria, but not long enough for 

multiplication of surviving organisms (Finlay et al, 1992). However, mammalian IFN-a 

and IFN-~ are poor activators of hydrogen peroxide-mediated bactericidal activity of 

macrophages (Nathan et al, 1985; Yoshida et al, 1988). Therefore, possible increases in 

intracellular killing ability of chicken macrophages at higher concentrations of CEC-IFN 

cannot be explained by 1FN-a/~ activity, assuming that CEC-IFN is functionally similar to 

mammalian IFN-a/~. 

As yet, no molecular homologue with a similar range of actions to mammalian IFN

yhas been isolated from birds. Dijkrnans et al (1990) found that mitogen-stimulated avian 

splenocytes contained a protein with antiviral activity as well as protein(s) with 

macrophage-activating activity as demonstrated by H202 production. The latter had 

physicochemical properties, e.g., acid resistance, different from mammalian IFN-y but 

similar to 1FN-a/~ and could be neutralized by antiserum against chicken embryo cell IFN. 

This phenomenon could indicate that birds possess only one type of IFN that possibly also 

has macrophage-activating capabilities (von Bulow et al, 1984) or that macrophage

activating activity is induced by a second cytokine. It is also possible that birds have two 

types of IFN, where the IFN-y equivalent is not produced by culture cells used thus far or 

is produced in quantities too low to be identified. In the present experiment, the number of 
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viable bacteria increased when low levels of IFN were added to chicken macrophages. 

However, despite an increase with higher concentrations of IFN, the effect was not as 

marked as that resulting from the low concentration. If, as Dijkmans et al (1990) 

suggested, birds only have one type of IFN which also possesses macrophage-activating 

capabilities or if they possess two types of IFN, of which the homologue of mammalian 

IFN-y is acid resistant, this could account for the decreased intracellular survival when 

higher concentrations of IFN were added. Phagocytosis would be increased but the 

increasing number of viable bacteria would be offset by an increase in intracellular killing. 

Further study to differentiate between the number of bacteria phagocytosed and the number 

of bacteria killed at increasing IFN concentrations would be necessary, and such 

information may in turn aid in further elucidation of the chicken IFN system. 

In summary, CEC-IFN increased recovery of S. typhimurium from HDll 

macrophages, although this was only conclusively evidenced in 2 of the 5 assays 

conducted. This increased recovery was thought to result from enhanced uptake of 

bacteria, probably by phagocytosis. Examination of treatment means calculated from 

pooled data and ranking of treatment means in 4 of the 5 assays conducted, suggested that 

the increase in number of viable bacteria was not as marked at higher concentrations as that 

observed at lower concentrations, which could have been indicative of an increase in 

intracellular killing. Although speculative, this increase in phagocytic intracellular killing, 

together with recent evidence that high IFN concentrations protect chicken intestinal 

epithelial cells against S. typhimurium invasion (Fulton et al, submitted for publication), 

could decrease the spread of Salmonella organisms from the intestine to extraintestinal 

sites. Such decreased spread of organisms would reduce severe losses characteristic of S. 

typhimurium infections in young chickens and presumably could also play a role in 

preventing the establishment of a carrier state in chickens. 
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TABLE I 

VIRAL PLAQUES SCORED ON MADIN DARBY BOVINE KIDNEY CULTURES 
AFTER EXPOSURE TO VESICULAR STOMATITIS VIRUS (VSV) DERIVED FROM 

CEC-IFN-TREATED HDll CULTURES 

VSV dilutions I 
CEC-IFN 10-3 10-4 w-s 10-6 w-7 

Ex~rimentl 1:100 TNTC 107 17 0 -

1:400 TNTC TNTC 85 8 -

1:1600 TNTC TNTC TNTC 30 -

1:6400 TNTC TNTC TNTC 61 -
1:25600 TNTC TNTC TNTC 36 -
1:102400 TNTC TNTC TNTC 21 -

Control TNTC TNTC TNTC 77 8 

Ex~rimentll 1:100 TNTC 139 12 2 -

1:400 TNTC TNTC 63 4 -

1:1600 TNTC TNTC TNTC 18 -

1:6400 TNTC TNTC TNTC 17 -

1:25600 TNTC TNTC TNTC 21 -

1:102400 TNTC TNTC TNTC 20 -

Control TNTC TNTC TNTC 16 4 

TNTC :::: Too numerous to count 
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TABLE IT 

NUMBERS OF COLONY-FORMING UNITS RECOVERED FROM HDll 
MACROPHAGES EXPOSED TO IFN-FREE BUFFER (CON'IROL) OR DIFFERENT 

CONCENTRATIONS OF CEC-IFN (1,000, 100, OR 10 U/ML) AND 1HEN 
INCUBATED WITH SALMONELLA TYPHIMURIUM 

Well replicates 

INF (U/ml) 1 2 3 4 5 6 

Assay 1 
Control 267000 252000 302000 292000 257000 195000 
1000 302000 278000 223000 303000 198000 337000 
100 303000 218000 248000 242000 242000 258000 
1 0 315000 295000 268000 275000 333000 262000 

Assay 2 
Control 152000 168000 258000 200000 272000 210000 
1000 203000 242000 160000 178000 165000 160000 
100 212000 150000 210000 155000 155000 140000 
1 0 287000 160000 173000 305000 147000 267000 

Assay 3 
Control 63300 83300 121000 66700 100000 58300 
1000 187000 102000 138000 118000 95000 117000 
100 109000 88300 105000 108000 113000 
1 0 150000 132000 105000 121000 137000 162000 

Assay 4 
Control 12500 36700 65000 13300 50000 41700 
1000 28100 50000 35800 29800 32300 36000 
100 26800 29900 51600 31900 65000 93300 
1 0 65000 28900 75000 36700 53300 63300 

Assay 5 
Control 40800 36500 39100 55700 45000 35100 
1000 102000 80000 68300 73300 81700 63300 

100 78300 80000 95000 65000 88300 63300 

1 0 63300 63300 71700 60000 51700 66700 
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TABLE ill 

MEAN(± SD) NUMBERS OF SAlMONELLA TYPHIMURIUM COLONY-FORMING 
UNITS CALCULATED FOR EACH IFN TREATMENT IN EACH OF THE ASSAYS 

Interferon treatments 

Control 1000 U/ml 

Assay 1 260833 ±. 273500 ±.. 
37765 52888 

Assay 2 210000 ±. 184667 ±.. 
47699 32469 

Assay 3 82100 ±. 126167 +* 
24463 33307 

Assay 4 36533 ±. 35333 ±. 
20668 7847 

Assay 5 42033 ±. 78100 ±..*t 
7542 13608 

Mean 126300 139553 

SE 102734 93266 

* Significantly different from control value 

t Significantly different from 10 U/ml 

100U/ml 

251833 + 
28315 

170333 ±. 
31979 

104660 +* 
9583 

49750 + 
25969 

78317 + .. t 
12519 

130979 

80961 

10 U/rnl 

291333 + 
28218 

223167 + 
70712 

134500 ±.* 

20305 

53700 ±. 
17764 

62783 +'* 
6723 

153097 

102958 
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TABLE IV 

SCHEFFE'S TEST- PAIR WISE COMP ARJSON PROBABILITIES 

Probabilities 

CEC-IFN Control 1000 U/ml 100 U/ml 10 U/ml 

Control 1.0000 

1000 U/ml 0.0416* 1.0000 

100 U/ml 0.0606 0.9994 1.0000 

10 U/ml 0.0009* 0.6498 0.5800 1.0000 

*Significant 
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Figure 1. Standard Curve of Absorbance at 650 nrn Versus Logarithm of CFU of 

Salmonella typhimurium/ml 
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