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CHAPTER I 

INTRODUCTION 

Robotics manipulators used in industry to do repetitive jobs are important course in 

engineering area to mass-produce high-quality properties. High performance is required, 

that is, high speed, high precision, convenience and durability are expected from modem 

industrial robots. 

Sliding mode control is one of the robust control design techniques. Especially when 

modeling inaccuracies occur in the system, sliding mode control shows its merits in 

maintaining stability and consistent performance in both linear and nonlinear systems. 

The sliding mode control is basically an adaptive control method where the response 

is forced to track or 'slide' along a predefined trajectory. Sliding mode control is composed 

of a nominal part, similar to a feedback linearization, and of an additional part which deal 

with system uncertainties. It has been successfully used in robot manipulators, 

transmissions and engines of automobiles, electronic motors etc.. 

The flexibility and low cost of digital computers motivated the use of digital control 

in a variety of products. However, the sliding mode control algorithms is mostly discussed 

by engineers in analogous domain. Some engineers obtained good results by implementing 

the analog algorithms to digital computers. Most designers usually depend on their 

individual expertise and experiences in the choice of sampling time. None of them had ever 

1 
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talked about the determination of a sampling period and its effect in the stability of the 

sliding mode control. 

The sampling period plays an important role in the discrete time control. When a 

well-developed continuous time domain theory is used in a digital computer, we normally 

choose the sampling time as small as possible in order to let the controller behave like a 

continuous one. It is known that a sampling time that is not small enough will make a 

theoretically stable control system unstable. 

When the sliding mode controller is sampled at each sampling time, the system 

behaves as a sliding mode control. Between sampling interval, the control input remains at 

the same value until the next sampling. During the sampling interval, inevitably, a nonideal 

sliding regime will appear. This quasi-sliding regime is inherently different from the quasi

sliding regime which may appear in the continuous time system due to nonideal behavior of 

analog component [9] and may make the system unstable. 

This research is dedicated to the design of the discrete time sliding mode control for a 

n-th order canonical form of a single input time variant nonlinear system with the derivation 

of control law and stability analysis. This paper implements the discrete time sliding mode 

control to a SCARA robot and discusses the stability affected by different parameters. 

People usually use a fast sampling time on controllers in order to make the system stable. 

In the mean time, the cost of the product will be higher correspondingly and sometimes it 

just wastes money to build up such a controller with a high sampling rate • Also, during the 

sampling period the dynamics of the system have not been discussed yet. Therefore, this 

research provides an easier and cheaper way to construct a discrete time sliding mode 

control in the use of digital computer. 

The next chapter, chapter 2, investigates the sliding mode control used in industry. 

There are people successfully using it in many systems in both continuous and discrete time 

domain. 
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Chapter 3 introduces the square method that deals with the discrete time sliding mode 

control used in a single input time variant nonlinear system in n-th order canonical form. A 

stability analysis discussion is also presented. Moreover, we introduce the SCARA robot's 

dynamic equation which is a 2nd-order nonlinear differential equation. 

Chapter 4 shows the implementation of discrete time sliding mode control to the 

SCARA robot with numerical values applied to it. This chapter also presents a crucial result 

of an investigation of the effect of the sampling time on the stability. The simulations of the 

control algorithm are also demonstrated in this chapter. Chapter 5 presents the conclusions 

of this paper and recommendations about future works. 



CHAPrER n 

PREVIEW INVESTIGATION 

Introduction 

New industrial robotics need quick controller design and less tracking errors in 

order to reach desired fast motion. Researchers use various methods to build up controller 

in dealing with linear and nonlinear systems. Sliding mode control provides an adequate 

way to maintain stability and consistent performance in the face of modeling imprecision 

[24 ]. Sliding mode control, also known as variable structure control system, has been 

developed over twenty-five years in the world Although the sliding mode control theory is 

well developed, there are some obstacles in practical application. Especially in the use of 

digital computer the discrete time sliding mode control is not yet discussed. This chapter 

reviews previous researches regarding sliding mode control and its implementation. 

Continuous Sliding Mode Controller 

4 
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Sliding mode control is a control algorithm which initially defines a sliding surface 

by using tracking errors and then regulates the system to the desired poinL Basically, 

sliding mode control is an adaptive control method where the response is forced to slide 

along a predefined surface, sliding surface. In order to increase the robustness of the close 

loop system, sliding mode controller implements switching action in the feedback loop. In 

the ideal case, sliding mode control is insensitive to the plant parameter uncertainties and 

external disturbances [33]. The sliding mode control is actually one of the algorithms that 

can guarantee (at least theoretically) whole system robustness for various plants and 

disturbance [1 ], and many people prefer to use iL 

Previous researches examine sliding mode control. In the works of Klein and 

Maney [15], Erschler and co-workers [9], variable structure control, which is another form 

of sliding control, has been proven to be, from the viewpoint of robustness, a useful tool in 

plants even though the parameter's uncertainties occur. Emilyanov [8] used it in 1967 as 

application and Utkin [30] discusses in detail the changing structures according to the 

switching logic. 

However, some non-idealities associated with the implementation will generate 

'chattering' in the switching surface, sliding surface, which will cause an undesirable high

frequency component in the state trajectories. Slotine and Sastry [26] show a methodology 

of approximate continuous control law that makes sliding mode control more robusL 

Especially in the neglecting of high-frequency dynamia, which are unmodeling dynamia 

in the system, the piecewise continuous feedback control law could avoid touching iL 

control. 

We will consider the following system to present the main idea of sliding mode 

x + ai + d(t,x) = u 

where x E R n is the state variable 

u E R m is control input 

d E R n is uncertainty vector 

(1) 
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The uncertainty vector is assumed bounded. 

Define: A set of discontinuity surface, sliding surface, to be Si in state space as 

shown in Figure 1. 
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.--+--- s (x) : 0 

....... ------s1(x)•O 

Figure 1. Sliding Mode in the Intersection of Discontinuity Surface 
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S· = c'Jx . 1 2 3 1 1 I= , , ••••• m 

where Ci E Rm is a constant vector 

The control law must be designed under this constraint in order to keep the 

system's states on the neighborhood of the sliding surface. So the system will show 

sliding mode and become insensitive to parameter uncertainty and input disturbance. The 

system in sliding mode control should behave like Figure 2 

The sliding condition along the sliding surface is 

~ ( ~~(x,t) ) < 0 for i=l,2,3 ..... m 

This is evaluated along the trajectory of sliding surface. 

For the global sliding condition is 

where 11 is switching positive constant 

Essentially, the distance square to the surface, measured by S2, decrease all system 

trajectories. Also, if x(t=O) " Xd(t=O), the surface S(t) will nevertheless be reached in a 

finite time. 

We can integrate the equation and get 

f! s2 ~ f -TJ IS1 

fdiSI ~ f-TJ dt 

S(t) - S(O) = 0 - S(O) $ -TJ( lrcach - 0 ) 

lrcach $ IS(O)II T) 



finit~·tim~ 
r~aching phas~ 

slidinR mod~ 
~xpon~ntial conv~rg~nc~ 

Figure 2 Graphical Interpretation of Sliding Mode Control 
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Cltattering 

The control law is determined by selecting a function of the tracking errors. 

Meanwhile, s2 will pr~ent a Lyapunov-like function of the close loop system d~pite the 

existence of unmodeled dynamics and input disturbance. 

x + ai + d(t,x) = u 

Define 
s = (..d.. + A )n-l i 

dt 

where 

n=2 

= u- ai- d(t,x)- X<t +Ax ~ -k· sgn(s) 

If the disturbance d(t,x) is bounded and all the parameter uncertainties are 

bounded, then we can find a lower bound of value k. 

s = u - ai - X<t + Ax ~ -k sgn(s) 

u ~ ai + ~ - Ax - k sgn(s) 

where 

sgn(s) = 1 s>O 

= -1 s<O 

The sign function will switch the control law according to the sign of s. A very 

famous example that Filippov shows is the construction of the equivalent dynamics in the 

sliding mode shown in Figure 3. 
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The discontinuity control law from the above equation will cause 'chattering' in 

Figure 4 when crossing the sliding surface s(t). 
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s<O 

s=O 

s>O 

Figure 3. Filippov's Construction of the Equivalent Dynamics 
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X 

--------------~--------------------------~---------------..x 

s=O 

Figure 4. Chattering as a Result of Switching Control 
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Chattering is undesirable in the real implementation because it causes high control 

authority, and probably excites the high-frequency dynamics, such as modeling error, time 

delay, etc., which we neglected in the early assumption. 

While this drawback stocks the sliding mode control to be used in the practical 

industry, its merit of good robustness can not be neglected. Some specific people still 

focus on the sliding mode control and revise their theories. Slotine and Sastry [26] defme a 

thin boundary layer in the neighborhood of the switching surface, as shown in Figure 5, to 

smooth out the control discontinuity. 

B(t) = { x I s(t,x) ~ ~ } ~ > 0 

where ~ is the boundary layer thickness 

and, also, boundary width E is defined as 

E = ~/An-1 

This idea turns out to be that when the tracking error is outside boundary layer, the 

control law is still the same control input u, which means attracting to the sliding surface. 

Mter reaching the boundary layer, Slotine uses the piecewise continuous function, 

saturation function as shown in Figure 6, instead of the sign function, in order to smooth 

the chattering and present a decent result in the implementation of robotics arm manipulator. 
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X 

:~. 
s=O 

Figure 5. The Boundary Layer 
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u 

-~ 

Figure 6. Control Behavior in the Boundary Layer 
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Discrete Time Controller 

The digital computer has been widely used in many aspects; and the control of the 

physical system, through the digital control, has become increasingly common. However, 

those control algorithms we previously mentioned are discussed by engineers m~tly in an 

analogous way. There have been some engineers utilizing them with digital computers and 

they have obtained some good results [3] [ 4] [5] [6] [10] [14] [17] [22] [28]. 

Milosavljevic [17] first proves the existence of the quasi-sliding mode on the 

switching hyperplane in the discrete time sliding mode control. With certain necessary 

conditions the trajectory can reach the sliding surface. However, he does not mention the 

behavior of the trajectory after the trajectory hits the discontinuous hyperplane. Drakunov 

and Utkin [6] have studied the definition of the discrete-time sliding mode control, and 

have discovered that the design of the discrete time sliding mode control algorithm has 

properties similar to those in continuous time systems with sliding mode control 

algorithms. It also shows the quasi-sliding in the discrete time sliding mode control that 

would be the behavior of the trajectory to reach the desired point as show in Figure 7. The 

behavior of the trajectory fluctuates and converges on the sliding surface, going to the 

desired point; it doesn't like the continuous sliding mode. 

The practical application of the sliding mode control is widely used in different motor 

drive systems because of its robust properties. Some of the implementations are used in 

microprocessor based drives. Dote, Takebe and Ito [5] use an analog IC to implement the 

sliding mode control into a DC motor drive speed regulation. In addition to this, an 

algorithm obtained by rotating the sliding cmve adaptively is extensively applied in order to 

achieve the sub-time optimal control. Dote and Hoft [ 4] use the sliding mode control 

algorithm in a microprocessor for DC motor drives. They use their own experimental value 

of the sampling time on simulations and on the microprocessor. 
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X2(k) 
subspace G• 

subspace G-

SWitChing ltne 

Figure 7. The Approaching Behavior of Discrete Sliding Mode 
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In another paper, Espana, Ortega and Espino [10] propose a method to allow the 

designer to simultaneously satisfy the conflicting requirements of the reaching time to the 

sliding plane and the transient behavior degradation due to the effect of the chattering. The 

proposed strategy considers the vicinity of the sliding surface like a boundary layer, in 

which the feedback gain is adjusted to obtain a state velocity vector almost parallel to it. 

Sarpturk, Istefanopulos and Kaynak [22] propose an upper bound and a lower 

bound of control that can guarantee the stability of discrete-time sliding mode control. 

Spurgeon [28] investigated the paper of Sarpturk, Istefanopulos and Kaynak [22] which 

provided an upper bound and lower bound of the control input that can stabilize the 

systems. Spurgeon also verified that the discrete time sliding mode control strategy [22] 

can reduce the effect of external disturbances, but he did not guarantee attainment of the 

sliding mode. An alternative approach to a linear system he used was the linear feedback 

control structure. However, he has not proven that it is necessary to incorporate a 

discontinuous/ nonlinear feedback component in the application of the discrete VTOL ( 

Generic Vertical Take-Off and Landing ) aircraft system. 

Bose [3] was the first one to simulate the induction motor drive system on a digital 

computer using SIMNON language; this was then experimentally verified in a laboratory 

both for sliding line and sliding trajectory control. The idea of sliding line control is shown 

in Figure 8. The initial point is located at point A and crosses the sliding line to point B. At 

point B the system is switched back to positive feedback mode and the trajectory will 

follow some specific curve to cross the line at point C. The sliding line control system will 

converge in this way. On the other hand, the model of the sliding trajectory control is 

shown in Figure 9. The sliding trajectory control is better than the sliding line controL The 

sliding line control has a disadvantage in the reaching phase and may drift due to the 

parameters variation and load disturbance effects. He divides the sliding trajectory control 

into three modes: acceleration region, constant speed region and the deceleration region. 
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This division into three region allows the sliding trajectory control to overcome the 

parameters variation and load disturbance.. 



-• 

(AIYMnott) 

Figure 8. Model of the Sliding Line Control 
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Figure 9. Model of the Sliding Trajectory Control 
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The work of Habibi and Richards (12] presents the combination of discrete time 

sliding mode control, computed torque technique, and use of this combination algorithm on 

an electrically powered industrial robot. Furthermore, the computed torque has been 

rectified by an additional input to improve the ability to tolerate parameter uncertainties. 

Karunadasa and Renfrew [14] present a consideration of a practical sampling period 

used in a microprocessor based sliding mode controller for a brushless DC servomotor 

drive. They experimentally investigate the effects of the sampling time on the system 

performance and found the fine tune of each controller's parameter. But none of the 

previous studies had ever theoretically discussed about the determination of sampling time 

and the effective of the sampling time to the stability. 

Slotine discusses the sliding mode control in the analog domain in (25], but he does 

not refer to the discrete time case. As engineers apply Slotine's technique to digital control, 

the determination of the sampling time becomes difficult. 

This study is concerned with the discrete time sliding mode control algorithm 

designed for a nth-order time variant nonlinear system given in a canonical form. This 

research introduces square method in dealing with discrete time sliding mode control. In the 

mean time, for the system stability, this research check the effects of the sampling time. 

This paper will also show a technique to determine the sampling time based upon stability 

theory. 

The sampling time plays an important role in the discrete time control, especially in 

the use of digital computer. It will make a stable control system unstable if the sampling 

time is not small enough. This paper illustrates an example on a 2nd-order nonlinear time 

variant system using discrete time sliding mode controL 

This research also found that some other design parameters will affect the system's 

stability, as in the reaching rate and boundary layer thickness. To design a discrete time 

sliding mode controller, designer will have more restrictions than to design a continuous 

one. 
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In order to analyze robustness this study use a two-link: robotics arm manipulator as 

a model, whose parameters are not only time-varying but also nonlinear. The robot model, 

discrete controller design, and robustness analysis will be discussed in the next chapter. 



CHAPTER ill 

METHODOLOGY AND MODEL DESCRIPTION 

Introduction 

This chapter outlines the analysis of the discrete time sliding mode control by the 

way of Lyapunov equation. It illustrates a two link robot manipulator as an implementation. 

Divided into two sections, this chapter contains: 

* Continuous-time controller design 

* Discrete-time controller design 

* Discrete-time sliding mode control 

* Stability analysis 

Continuous Time Controller lk8ign 

A n-th order continuous nonlinear system in canonical form could be expressed as 

Xl =X2 

X2 = X3 

25 



where 

where 

Define the sliding hyperplane s 

C = ( Ct, C2, · · ·, Cn ] Cj ;Ill! 0, i = 1,2, .... , n 

,.., 
X=X-Xct 

We differentiate the s with respect to time and get 

s =ex 
= Ct it + C2 i2 + · · · + Cn X0 - ( Ct itd + C2 i2d + · · · + Co ind) (2) 

Plugging in the system dynamics, the equation (2) will be 

S = Ct it + C2 iz + · · · + Cn f ( Xt, Xz, · • · , X0 ) + Cn g ( Xt, X2, · • • , X0 ) U 

k is the upper bound of the value of s 

sat ( s) = ( 
w = sgn ( s ) for ~ ~ Cl> ) 

L for~< Cl> 
cz, 

Cl> is the boundary layer thickness 

We can get the control law as 

- C ~ < - k sat ( s ) 

- ( Ct it + Cz iz + · · · + Cn f ( Xt, xz, · · ·, x0 ) .. C i<J + k sat ( s)) 
U=~~~~~~----~~~~~~~--~----~~ 

g ( Xt, X2, • · ·, X0 ) 

Stability Analysis 
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Plugging the control law into the system dynamics we get 

Xn = - ( C1 i1 + C2 i2 + · · · + Cn-1Xn-1 ) + ( 1 - Cn ) f ( Xtt X2t · · · , Xn ) 

+ C ics - k sat ( s ) ) 

Normally, we choose Cn = 1 

Therefore, 

c1 i1 + c2 i2 + · · · + Cn-1Xn-1 + CnXn - C Xes = - k sat ( s ) ) 

s =- k sat ( s) 

whens>~ 

s=-k 

whenlsl<~ 

s=-ks 
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Which means that the s value converge like a first order filter when the trajectory 

goes into the boundary layer. 

The continuous sliding mode control was fully developed by many researchers and 

has been used in different ways in the industry field. We are going to discuss the properties 

of the sliding mode control in discrete time domain. 

Discrete Time Controller I>t-8ign 

We consider a n-th order continuous nonlinear system in a canonical form and use 

the finite difference approximation to derive a discrete time system which contains 

modeling error on each approximation. The system dynamics equation could be in the form 

of 

Xt{k+l) = Xt{k) +At x2(k) +At ht{k) 



X2{k+l) = x2(k) +At X3{k) +At h~) 

where 

H(k) = [ h1 (k) , h~) , · · · , h0 (k) ]T 

H(k) is the k-th modeling error vector 

Define the sliding plane in the time k 

s(k) = Ci(k) 

where 

C = [ Ct, C2,- • ·Cn] 

i(k) = x(k)- XcJ(k) 

Cj ,. 0, i = 1,2, .... , n 

(a) x(k) is the k-th measured trajectory 

(b) XcJ(k) is the k-th desired trajectory 

Define 

As(k) = s(k+l)- s(k) 

= Ci(k+l)- Ci(k) 

Square method [24] 
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Since our intention here is to get x(k) = Xd{k), we try to reduce the value of s(k) in 

order to let the system reach the sliding surface and then slide down to the desired poinL 

That is, 

s2(k+l) < s2(k) 

We already know that 

As(k) = s(k+l)- s(k) 



Rearrange and square both sides 

s2(k+l) = s2(k) + 2s(k)As(k) + As2(k) 
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We want s2(k+l) < s2(k) outside the sliding surface, and therefore the two terms of 

the right hand side should be negative 

2s(k)As(k) + As2(k) < 0 

Since s(k) is outside the sliding surface then s(k) ;~~ 0. 

2 s(k) + 1 < 0 
As(k) 

s(k) < .1 
As(k) 2 

As(k) > -2 
s(k) 

H 

s(k) > 0, then 0 > As(k) > - 2s(k) 

s(k) < 0, then 0 < As(k) < - 2s(k) 

Discrete time slidini mode control law 

We know that 

As(k) = C x{k+l)- C x(k)- C ( Xd(k+l)- Xd(k)) = 

(3) 

(4) 



- ( C! XI(k) + · · · + Cn Xn(k))- C ( Xd(k+l)- Xd(k)) 

Ifs(k) > 0 

0> 

- ( C1 X1(k) + · · · + Cn Xn{k))- C ( Xd(k+l)- Xd(k)) >- 2 s(k) 

which is 

0 > At ( C!X2{k) + ... + Cn-lXn{k) ) + At c H(k) + enAt f(Xt, X2t•. ·Xn) 

Let 

+ enAt g(xt, x2,. · ·Xn) u(k)- C ( Xd(k+l)- Xd(k)) >- 2 s(k) 

p - _1_ C H(k) > u(k) > p - 2 s(k) - _L C H(k) 
Cn g Atcn g Cn g 

u = p - q sat ( s(k) ) 
<I> 

where 

+ 1 c ( Xct(k+l)- Xct(k)) 
Atcng 
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c!-g C H(k) < q < 2 s(k) + _L C H(k) 
Ateu g Cn g 

;~~ = sgn ( s(k:)) for js(kj :2: ell 

sat ( s(k)) = 
s(k) for js(kj < <I> 

Assume that the modeling error is bounded in some certain value. we get 

let 

q= 

c! g C H(k) E [ - y , y ] 

a 1 ~(kj + y when ~(kj ><I> 
Atcng 

a 1 <I>+ y when ~(kj <<I> 
AtCng 

The u(k) is the discrete time sliding mode control law. 

Stability analysis 

Plugging in the control law to the dynamics equation, we get 

Xn{k+l) = Xn(k) +At f(XJ,• ··Xu)+ At hu(k) 

31 



- ( a s(k) + y ) sat ( s(k) ) ) 
Atcng 

Reachini phase 
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When the trajectory is outside the boundary, s(k) > <1>, we call it reaching phase. 

The Square Method can guarantee the sliding surface is attractive because of the Lyapunov 

equation. The distance between the trajectory and sliding surface is decayed with respect to 

time outside the boundary layer. 

Inside the boundazy layer 

-gAt y s(k)+ At h0{k) + ..1.. C ( Xd(k+l)- "d(k)) 
<1> Cn 

x0 (k+l) =- t; ( C x(k+l)- C x(k)- At C H(k)) + x0 (k+l)-~ C x(k) 

_gAt y C x(k) +gAt y C Xcs(k) + j_ C ( Xcs(k+l)- Xcs(k)) 
<1> <1> Cn 

Therefore 
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( 1- a-gAt y ) 

- _.1_ C x(k+1) + <I> C x(k) 
Co Co 

+ ct- At C H(k) +gAt y C XcJ(k) + _l_ C ( Xd(k+1)- Xd(k)) = 0 
-n <I> Co 

( 1- a-gAt y ) 

C: s(k+1)- Co <I> s(k) = F1(k) 

where 

(a+ gAt y ) 

Ft(k) =- t; At C H(k) + Co <I> C Xd(k) 

Using Z-transform we get 

_.1_ ( z- ( 1 -a-gAt y )) s(z) = Ft(z) 
Co <I> 

The limitation of stability is 

Similarly, when the s(k) < - <I> we get the same result. 

With all the derivations presented above in a canonical form, This study will 

examine the effects of those theorem to a SCARA robot model. 

Model Description 
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Introduction 

We are analyzing the relationship between the actuator torque and joint angular 

acceleration for a device with two degrees of freedom, such as arm on a lathe machine. 

The method presents here utilizes the Euler-Lagrange equation. We use this method to 

provide a clear understanding of the effect of varying inertia, joint interaction, and coriolis 

force. It also forms the basis of simulation of such a system and, most importantly, design 

of control system. 

Two-link Robot Model 

A two-degree-of-freedom robot arm manipulator is equipped at each joint with an 

actuator DC motor to provide input torque, an encoder for measuring joint position , and a 

tachometer for measuring joint velocity. Fig 10 shows the outlook of the system. 

The dynamic equation of the SCARA robot, derived in Appendix A, is a second 

nonlinear differential equation in the form of 
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Figure 10. The Model of SCARA Robot 



where 

r J r 1 actuator-r 1 friction ] 

1 r 2 actuator-r 2 friction 

36 

To check the equation derived above, we simply give the robot arm some initial 

conditions and add a constant friction in both joints to check whether the total energy 

decreases all the way down. The ideal friction force r friction between each joint in matrix 

form is 
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The results are shown in figure 11 . The total energy goes down all the way to the 

equilibrium point The 1st and 2nd link: go to the zero point after a period of time. 

The implementation of discrete time sliding mode control to SCARA robot will be 

discussed in the next chapter. 
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Figure 11. Model Checking Simulation 



CHAPTERN 

SIMUlATIONS AND RESULTS 

Application to a SCARA Robot 

From the appendix A, the SCARA robot dynamics could be in the form of 

.Tx+Ci =f 
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The numerical value we give to the system are 

J1 = 10, J2 = 5, M1 = 1, M2 = 0.5, L1 =1, h =0.5, l2 =0.3 

Implementation of Discrete Sliding Mode Control 

Let us define a sliding surface in discrete time domain as 

s(k) = x(k) + I. i(k) 

The desired trajectories are 

Xld(k) = -cos ( k T) k = 1,2,3, ..... . 

X2d{k) = 2 -cos ( k T) k = 1,2,3, ..... . 

Where T is the sampling period. 

Uncertain System 
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During the modeling process there are approximations and uncertainties which could, in 

some cases, cause the system to be unstable. We will consider the perturbation of the 

control system in the modeling prCK:eSS. 

We know that acceleration is the rate of velocity change, and that modeling compels 

errors. We could express as 

x (k) = i(k+1) - i(k) + h2(k) 
At 
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We don't know what exactly h2(k) is but we know that it is bounded. Combining with 

system equation we have 

i(k+l)- i(k) = 4tJ·1 (-ex +f)+ M 

where M = At h2(k) + 1p + d 

1p is parameters uncertainties 

d is disturbances 

Assume we know the upper bound of M , which means 

ME [ -y, y] 

From the square method that we previously mentioned, the changing rate of s(k) should be 

in the relationship like 

If 

s(k) > 0, then 0 > As(k) > - 2s(k) 

s(k) < 0, then 0 < As(k) < - 2s(k) 

In another word, when s(k) > 0 

Which means 

f < ex + _l_JAvd(k) -_LA J Ai(k) 
At At 

f > Ci + ...l.. J Avd(k) - ...l.. A J Ai(k) - ..2.. J s(k) - ...l.. J Af 
At At At At 

When S(k) < 0 



0 < - At J-1 C x + At J-1 f- At J-1 Avd(k) + A At J-1 Ai(k) - At h2(t) < - 2 s(t) 

Which means 

f > ex + _l_JAv d(k) - _l_ A J Ai(k) 
At At 

f < ex+ _l_ J Avd(k)- _l_ A J AX(k) - ..2..J s(k)- _l_ J Af 
At At At At 

let 

f= P- Q sat( s(k)) 

where 

let 

P = C x + _l_ J Avd(k) • ...l.. A J AX(k) 
At At 

when ~(k~ > ~~ 

when ~(k~ < ~ 

From (5) we know that the s(k) should have limitations as 

( ~y + 2..J..s(k)) > Q 
At At 

( -~y +2..J.s(k)) > Q 
At At 

Therefore , the worst case to guarantee s(k) > 0 is 

0<a<2 
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(5) 



s(k) > M[!-< ..J..y + Q) 
L\t 

We can define the boundary layer Cl> : 

Cl> > &. J•l ( ..J.. y + Q ) 
2 L\t 

Plugging in Q we know that 

Cl> > y + ~s(k), for s(k) > 0 
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The constraint of the boundary layer is q, > y which results in the same conclusion as 

Pieper and Surgenor [23] 1992 

Stability Analysis 

Reachin" Phase 

Substituting the control input into the system dynamics when outside the boundary 

layer, we call a reaching phase. The square Method can guarantee the attractiveness of the 

trajectory to the sliding surface. 

Inside the boundmy layer 
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Substituting the control input into the system dynamics when inside the boundary layer, 

v(k+ 1) - v(k) = ~(k) - A AX(k) - a s(k) .l s(k) + At h2(k) 
~ 

s(k+1)- s(k) =- ( a+ l) s(k) +At h2(k) 
~ 

s(z) = -At h2(z) 

(z-(1- a-l)) 
~ 

The stability condition should be 

0< a+l<2 
~ 

From the state space point of view to consider the system stability 

v(k+1)- v(k) = ~(k)- A AX(k)- (a + l) s(k) +At h2(k) 
~ 

v(k+1) = ( 1 - fl) v(k)- ( 1 + fl) A x(k) +A x(k-1) + u(k) 

where 
y 

fl = a+-
~ 

(-(1 +fl)Az+A) 
( z- ( 1 - p )) v(z) = z x(z) + u(z) 

( z - 1 ) x(z) =At v(z) + At h1(k) 
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At ( - ( 1 + ~ ) A. z + A. ) A 
( z - 1 ) x(z) = x(z) + 1 u(z) + At h1(z) 

z ( z - ( 1 - ~ )) ( z- ( 1 - ~ )) 

x(z) = z ( z - ( 1 - ~ ) ) u1 ( z) 

z3 - ( 2 - ~ ) z2 + ( 1 - ~ + A.At + Mt ~ ) z - Mt 

where 

Ut{z) = At u(z) +At ht(z) 
( z- ( 1 - ~ )) 

The stability ability is related with the choice of ~ and A.Al The ~ dominates the 

precision of the steady state error. Significantly the Mt will effect the system's stability 

because of the location of poles. It is interesting that we need some trade off between A. and 

Al However, if we want a larger A., we have to choose a smaller sampling time or vice 

versa. 

We pick ~ = 1 and plot the root locus of the system under the change of A.At as shown in 

figure 12 
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Figure 12: The root locus of discrete time sliding mode control for SCARA robot 

with f:l = 1 
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Simulation Discussions 

We use the numerical value of y = 0.01 and choose the boundary layer thickness ct> 

= 0.02. Therefore, a equals 0.5 which is satisfied by the stability restrictions of the 

reaching phase and inside the boundary layer. 

Also, according to the pole's location in Figure [12], we use the reaching rate A. = 5 

and use different sampling rates ( 0.01, 0.05 and 0.2) to simulate the system that gets the 

results shown in Figures [13]-[34]. Figures [13]-[18] show the simulations of the 

sampling time At = 0.01 where A.At = 0.05 locates the poles within the unit circle as shown 

in figure 12. The results in these figures show a stable system from the simulation. 

Effect of samplin&: Time 

With the sampling time At = 0.05, the product of A.At = 0.25 locates the poles within 

unit circle too, but it goes with a slower convergent rate than At = 0.01 because of the 

roots• location as shown in Figures [19]-[24]. However, when the sampling time is larger 

than the boundary layer thickness, s(k) will cause chattering in the neighborhood of the 

sliding surface. 

When the sampling time At = 0.2, the product of A.At = 1 locates the system's poles 

outside the unit circle. Whatever the value of a be chosen, the system is still diverge as 

show in Figure [25]-[28]. 

The restrictions of choosing a sampling time to make a stable system in the discrete 

time sliding mode control are dependent on fJ, a, upper bound of disturbances and 
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modeling errors y, boundary layer thickness <I>, and reaching rate A. ~ and a are the 

stability factors of the s(k). They will control the convergent rate of s(k) and should be in 

their own specific range such that they could achieve a stable system. 

Effect of Boundary Layer Thickness 

The definition of boundary layer thickness <I> is important in the discrete time sliding 

mode control. Because the sliding mode control has the ability of robustness it can tolerate 

the modeling errors and disturbances. As long as we know the upper bound of the 

modeling errors and disturbances y, the boundary layer thickness <I> should be chosen 

greater than y in order to achieve the robust systems. 

However, the choice of the sampling time At cannot be greater than the boundary 

layer thickness even if it is satisfied by the location of poles. When the sampling time is 

larger than the boundary layer thickness, the trajectory of s will never come into the 

boundary layer and will not converge to one specific small value. The behavior of trajectory 

across the sliding surface will be like a chattering of teeth and will never go to the desired 

point as shown in Figures [19]-[24]. 

On the other hand if the boundary layer thickness is not smaller than the sampling 

time, there still will be a chance to eliminate the chattering effect and reach the desired 

point As shown in Figure [29]-[34], using A= 10, At= 0.05 and <I>= 0.05 will eliminate 

the chattering and achieve the tracking error s(k) asymptotically convergent to zero. This 

research basically recommends that the sampling time should be better if it is smaller than 

one half of the boundary layer thickness to get a better steady state error convergence. 
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Trade off Between Reachin~ Rate and Samplin~J Time 

Another factor of stability is the trade off between A and At Sometimes, we only 

concentrate on using a sampling time as small as possible. However, sampling time is not a 

sufficient condition for the system's stability. From the poles' equation and the roots 

location figure, one could know the relationship between A and At 

From the simulation results in Figure [35]-[ 40], using A = 50, At = 0.02 and ell = 

0.05, we obtain an unstable system even if we already use a small sampling time. 

Therefore, a small sampling time can not guarantee the system's stability, especially inside 

the boundary layer, when people use sliding mode control in a digital computer. 

This research is dedicated to the design of the discrete time sliding mode control with 

control law derivation and stability analysis. In this paper, the author implements discrete 

time sliding mode control to a SCARA robot and discusses the stability that is affected by 

different parameters. People usually know that the sampling time should be as small as 

possible in order to behave as a continuous controller. Correspondingly, the cost of the 

product will be higher and money may be wasted to build up a controller with a quick 

sampling rate. An additional problem, during the sampling period, is that the behavior of 

the system is not known. Therefore, I address this problem and provide a cost efficient and 

user friendly way to construct a discrete time sliding mode control in the use of the digital 

computer. 
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CHAP1ER v 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

This thesis focuses on the design parameters and design strategies for the system's 

stability of the discrete-time sliding mode control in the presence of modeling error. The 

overall objective was to establish a criterion for determining the sampling time of the sliding 

mode control used in a digital computer because the sampling will affect the stability of the 

system. 

In the continuous domain, the sliding mode control uses a discontinuous switching 

function when the system trajectory crosses the sliding surface. In the discrete time 

domain, on the other hand, this study implements the square method to the sliding mode 

control in an effort to find out the changing rate of the trajectory. Also, we use this result to 

derive the control input and the thickness of the boundary layer, which should be greater 

than the modeling errom and disturbances. 

Inside the boundary layer we use the saturation function in order to smooth the 

trajectory and to avoid invoking the unmodeled high frequency. However, the drawback of 

this smooth process is that it doesn't reach the desired point quict:ly. Some period of time 

is required for the convergence because the tracking error converges as a fust order filter. 
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The sampling time and approaching rate have their limitations because they require 

stability consideration. Actually, the sliding mode control is a process of feedback 

linearization and it places new poles in desired places. The design parameters of the 

approaching rate and sampling time are factors that place the pole8 within the unit circle in 

the discrete time domain. 

The advantage of the sliding mode control is that it is robust to the modeling error 

and noise. This research shows that the sliding mode control has the same ability in the 

discrete time domain. As long as the boundary layer thickness is larger than the upper 

bound of the modeling error and noise, the discrete time sliding mode control can be 

robust In addition, the steady state trajectory error can be bounded in an acceptable value. 

In summary, the research reported here has e8tablished a way to de8ign the discrete

time sliding mode control in the presence of modeling error and noise. This methodology is 

verified in the analysis of stability. The use of this method will enable engineers to 

implement the sliding mode control to digital computers, and to determine a sampling time 

with high reliability. 

Recommendations 

While the discrete time sliding mode control has successfully simulated in the robot 

manipulators, the sliding mode algorithms can still be applied for use in the real world. 

Also, those control algorithms can be utilized in several different ways. This research 

explored a problem in determining the MIMO sliding surfaces. It offers new knowledge of 

great value regarding the de8ign of the discrete-time controller. In order to promote further 

development of the technology, I suggest the following advanced researches 
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1. Used in an ffiM 486 computer, the discrete sliding mode will demonstrate its 

ability to control a SCARA robot The first thing to do is to identify the SCARA robot's 

parameters by using identification skills. The feedback signals contain noises which will 

prevent the proper parameter identification and endanger the control effort. Adding some 

filters in the feedback sensor, the controller could be run in a smoother manner. 

2 MIMO sliding mode control can deal with high order degree of freedom system. 

However, the distances between the trajectories to sliding surfaces are difficult to figure out 

theoretically. Therefore, it is advisable that future studies focus on linear algebra to deal 

with coupling terms of the distance. 

3. The sliding observer in the continuous domain is a new algorithm developed by 

some engineers. On the other hand, few researchers work on studies in discrete time 

domain. The stability analysis of the discrete sliding observer would be the next issue of 

this research. 

4. Using square method to build up the membership function of Fuzzy Logic 

control, people can probably analyze the stability problem. 
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MODEL DFSCRIPI'ION 

Introduction 

We are analyzing the relationship between the actuator torque and joint angular 

acceleration for a device with two degrees of freedom, such as arm on a lathe machine. 

The method presented here utilizes the Euler-Lagrange equation. We use this method to 

provide a clear understanding of the effect of varying inertia, joint interaction, and coriolis 

force. It also forms the basis of simulation of such a system and, most importantly, design 

of control system. 

Two-link Robot Model 

A two-degree-of-freedom robot arm manipulator with is equipped at each joint with 

an actuator DC motor to provide input torque, an encoder for measuring joint position , and 

a tachometer for measuring joint velocity. Fig 10 shows the outlook of the system. 

Here we assume the concentrate-masses locate at the distance of 11, 12 with respect 

to joint 0 and A, respectively. 

• 11: distance of 1st link center of mass to joint 0 

• 12: distance of 2nd link center of mass to joint A 
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• L1: length of 1st link 

• 12: length of 2nd link 

• m1: concentrate ... mass of 1st link 

• m2: concentrate ... mass of 2nd link 

• j 1: total moment of inertia of 1st link 

• j2: total moment of inertia of 2nd link 

• 81 : angular displacement of 1st link about to vertical line 

• a2 : angular displacement of 2nd link about 1st link 

The angular velocity of 1st and 2nd link is al and a2 respectively. 

Dynamic equation Derivation 

The easiest technique is based on the EuJer ... Lagrange Formula: 

where 

ri: actuators torque apply to the itb joint 

L : mechanical energy 

L=K ... V 

where 

K : kinetic energy of each link 

V : potential energy 

Kinetic energy 
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For link 1 

k = MtV} J1 8f 
1 2 + 2 

= i (Jt +mtlf) 8I 

For link 2 -- ... 
v2 =Va+(8t +82) X 12 

• 2 • • • • • 

=8t Lt2+(8t +82)2l22+ 2Ltl28t (8t +82)cos 82 

[.,1z2 + }12]82 
2 
..{MJI22 + Ltlzeos 02) + JJ 8182 

K=Kl+K2 
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[tM2l22 + th]. 82
2 

+ (Mi:lb~l:zeos 82) + JJ.91.92 

For the temporary requirement, we add the gravity force in the Y direction and treat 

it like a vertical double-pendulum. Then we consider the gravity force. The potential energy 

will be 

Potential energy 

V1 = -M1 g Ieos 81 

V 2 = -M28{L1 cos 81 +l:zeos ( 81 +82)) 

Total potential energy equals the energy summation of each link's potential energy. 

V= V1 + V2 

V = V1 + V2 = -g(M1l2 + M2L1) cos 81- M281:2008 (81 + 82) 

Therefore, the total energy is 

L = K- V = [¥Jl + J2) + tM1l12 + ~<l(L12 + !22 + 2L1l:zCOS eJ) e/ 

Euler-Lagrangian rule 



89 

For link2 



To sum up, those term in matrix form 

J(e)e + c{e,e)e + g(e)=r 
where 

de, e)=[ -2MzL1lz5in e~62 -2MzL1l

0

:zSin e2e2 J 
M2L1l2sin 6261 
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g( 8) = [ g(M1lt + M21t) sin 81 + g{M2l~in { 81 + 82)) ] 

gM2l2sin ( 81 + 82) 

r J r 1 actuator-r 1 fricticm ] 

1 r 2actuator-r 2 fricticm 
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To check the equation derived above, we simply give the robot arm some initial 

conditions and add a constant friction in both joints to check whether the total energy 

decreases all the way down. The ideal friction force r friction between each joint in matrix 

form is 

r . . _ [ a b] [81] fnction - -b O 
02 

The results are shown in figure 11 . The total energy goes down all the way to the 

equilibrium poinL The 1st and 2nd link go to the zero point after a period of time. 
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