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CHAPTER I
INTRODUCTION
Visualization of Large Quantities of Data

As scientific data grows in both complexity and sheer
volume, visualization plays an increasingly important role
in understanding a system as a whole. Vast amounts of data
can be displayed as surfaces, solids or vector fields, often
revealing underlying structures which offer insights to
their behavior.

For example, studies of fluid flow traditionally have
been performed by photographing smoke or oil patterns to
produce high-resolution two-dimensional images. Not only
does the amount of data captured in this fashion increase
rapidly for time-dependent systems, but recent numerical
simulations have involved higher dimensions, resulting in an
exponential growth of data.

This explosion of data is the driving force behind the
increasing reliance upon visualization. A simple three
dimensional data set of 100 X 100 X 100 would produce 1.0°
points. If it varied over 100 time steps then data for a

total of 1.08 points results.



Presenting Large Quantities of Data

The only way to make use of this amount of data is to
organize it into a form that clearly presents the order and
structure inherent in the object being studied or simulated.
Since the purpose of this project is to view the behavior of
recurrent neural nets (networks where one layer’s outputs
are the inputs for a prgvious layer), a way of coherently
presenting the information acquired must be found. It is
important to point out that even if it were possible to
display all data computed for a vector field describing a
neural net’s behavior, the resulting image would be
completely unintelligible. Instead, the computer must
analyze the raw data and draw from it the elements that best
reveal the behavior of the system as a whole.

To begin such an analysis, a basic approach to the
problem must first be decided upon. Since a network can be
thought of as performing a mapping from a multidimensional
vector space into itself, its behavior can be described by a
vector field which is analogous to smooth fluid flow in many
dimensions. For this reason a logical approach is to study
recurrent neural network behavior in terms of topological
dynamics. In this framework, the sources of this smooth
flow are called repelling points, while the sinks are called

attractors.



Even a well thought out display cannot give all of the
information desired. To this end the display of the
network, as well as computer visualization in general, has
three parts: analysis, display, and interaction. Each will

be discussed briefly.

The Three Parts of Computer

Visualization

Analysis

In order to extract useful information, it is necessary
for the computer to perform some sort of analysis of the raw
data. This project displays a vector field, which has
properties analogous to the slope of the network response
functions as projected into two dimensions.

The vector field itself is produced by using arrows to
indicate the direction of variations of the vector
components for several positions, These variations are
described to first order by the jacobian matrix of the first

partial derivative of the vector components.
Display

To increase the amount of understandable information on
the display, colors are used to denote magnitude while an
arrow shows the direction of the change in the vector field.
Eigenvalues and eigenvectors are also displayed to give a
better understanding of the neighborhood around that point.

It should be pointed out that what is being graphed is just



one slice of the vector field projected to a two dimensional
display. The slice displayed depends on the two nodes
chosen to be graphed on the x and y axis of the display.

For the sake of illustration, figure 1 on page 5 shows a

typical image.

Interaction

No display format can show all of the available
information at one time. For this reason if some specific
piece of information is required, it must sometimes be
requested through user interaction. 1In this project,
interactive information is usually displayed at the bottom
of the image in two boxes that show eigenvector and
eigenvalue information in numerical and graphical form for a
given location. In the image that follows, the lower left
box gives this information for the éurrent location of the
cursor, while the right box gives the information for the
location reached when the state of the network is either

pushed or allowed to relax to some location.
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Vector Field, Five-node Network, Iteration =
X Axis is Node 1, Y Axis is Node 2

Overview of Thesis

The purpose of this project is to graphically
demonstrate the dynamics of some simple recurrent networks,
and to view the network’s behavior when it is either driven
or allowed to relax from any given state to a final
attractor or attractors.

The basic operation of the program involves providing
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one or more input files that either specify the fixed points

that the network is to have, or give the weights that

describe an already existing recurrent network.



The reason for these two different types of input files has
to do with the evolution of the program. Initially, the
input files specified the desired fixed points to give a
better idea of what kind of behavior was to be found and
from this to decide how to best display and interact with
the network. Several features were added at this point to
try to get a better view of the dynamics of the network.
After the program had been tested with some basic networks
in this fashion, attention was turned to the recurrent
networks described in the paper "Experimental Analysis of
the Real-time Recurrent Learning Algorithm" (Williams &
Zipser, 1989). This paper gave the weights and
configuration for three recurrent networks with three, four,
and five nodes. Each implemented the exclusive or function
(XOR) but with different amounts of delay from the time of
input to the corresponding output. The numbers of delay
cycles for the three, four and five node networks were two,
three and four cycles respectively. Each of these networks
was studied to verify that the project did indeed display
real behavior. This is discussed in detail in the section

on Program Verification.



A flow chart is provided to give a better overall
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CALCULATE AND DISPLAY EIGENPAIR

Figure 2 Flow Chart for the Program



CHAPTER II
LITERATURE REVIEW

Comparatively little work is being done with recurrent
neural nets because they are more difficult to understand
than feed forward networks.

Most papers on recurrent networks are designed to try
to see what can be done with them and to try to understand
what occurs. When a topic is new, such as neural nets are,
visualization is an effective way to try to get an overview
of the data. Unfortunately, while neural nets are being
widely investigated only rarely does the graphical display
receive any attention. A few exceptions are the Hinton
diagrams in ‘The Geometry of Backpropagation Training:
Visualization, Heuristics, and Theory’ (Arnaldo & Miller,
1990) and ‘Visualizing Processes in Neural Networks’
(Tesauro & Wejchert 1991) which uses several visualization
methods to investigate learning in neural networks which use
the back-propagation algorithm.

Hinton’s diagrams represent synaptic strength (weight)
data by drawing squares where their size is proportional to
the magnitude of the weight, while the color indicates the

sign.



Because a Hinton diagram does not necessarily reveal a
network’s topology, Wejchert and Tesauro (1991) took this a
step further by displaying the strength of weights in terms
of arrows pointing to a node, the longer the arrow, the
stronger the weight magnitude, and once again the color
indicates sign.

To provide additional information, they used other
visual aids such as displaying the network’s error and
output as it is trained as well as showing trajectories as
projected down onto a plane.

Visualization tools such as these are useful to show
the dynamics of a network as it is trained, and from this to
make new heuristics, as found by Arnaldo and Miller (1990).

For recurrent networks, a logical visualization scheme
would be to picture the vector field and the attractor
points, as they change during the learning process and in
the final configuration. This will permit a better
understanding of how the possible solutions (attractors)
evolve as a network is trained. Since little or no
attention has been paid to this topic, it is fitting that it

be addressed.



CHAPTER III
MATHEMATICAL BACKGROUND
Derivation of Equation for Weight Calculation

The following shows how the weights are calculated for
networks where the fixed points are defined in the input
file. The networks to be modeled are ones where there are n
levels with at most m nodes per level and the output from
every node in level i goes to each node in the next level,
and all nodes in level n go to level 1. For such a network,
the output of node i is expressed by
Oy =1/ (1L + exp( —(Wyqi * O + Woi * O + ... + Wpi * Op)))
Where O0j is the output of node i. This can be rewritten as
In(0i) = 1In(1 - O3) = Wqqy * O7 + Wyoi * Op + ... + Wpi * Op

as a result of the following derivation.

1= 1 + exp(-(Wpi*0q + wéiioz P Wi *Og) )
1 /0f=1+exp( -(Wy3 * 01 + ... + Wi * Op))
1 /03 -1=exp( =(Wy{ * 01 + ... + Wpi * Op))
In((1 - 03) / ©Oj) = =(Wyi * 07 + ... + Wpi * Op)
In(1l - 0j)-1In(04) = =(Wqq1 * O1 + ... + Wi * Op)
In(O0j)-1In(1l - Oj) = Wy * O3 + ... + Wpi * Op

10
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It is important to notice that Wi *¥ O + Wyy * O +...
is just the dot product of inputs to node i and the

appropriate weights. Thus the problem can be represented as
Ax = b where the solution vector b is In(0;) - 1In(1 - 05),
vector x is the weights to be calculated from each node to
node i, and A is the output from each node for each fixed
point.

Since the value of the fixed point for a node is its
output, matrix A is fairly easy to obtain. By the time A is
obtained, b is also known, and the equation can be solved

for x, which represents the weights to the current node.

Linear Algebra

Once the entire weight matrix has been either read in
from a file or calculated, the next step is to make the
jacobian matrix from which the vector field will be graphed.
The purpose for using the jacobian is somewhat analogous to
trying to find the shape of a simple two-dimensional curve
by taking the first derivative, looking for the critical
points (areas where the derivative is zero), and recreating
the curve from that. For a dynamic system in an
n-dimensional space, one needs to look for the fixed points
to understand the basic topology. If one graphs the
resulting vector field and finds the areas with little
motion, these areas will surround fixed points. Attracting
points are the easiest to find in this way, but sometimes

others can be visually recognized. To classify the fixed
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points precisely requires taking the derivatives of the
camponents of the vector and looking at the fixed points.
Since the jacobian takes the derivatives of the components
of the vector, it represents the behavior of the
neighborhood around any point where it is evaluated.

As an example, the following network will be used.

L— | NoDE |o NODE |0,—
1 |1 5 3
NODE NODE
—| 2 |o, 4 |04—

Figure 3 Sample Network Configuration

Since the program can only display two-dimensional
images only two nodes can be used, and the resulting

jacobian will be a 2X2 matrix in the form:

t+i t+i —
— do, 00,
t : t
do, do,
t+i t+i
602 do,,
— t £ J
. do, do,

T+l
J

of node j at time t+i. The partials may be broken down by

where i is the number of iterations and ©O is the output
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the chain rule so that for the above network, where i equals
2, the Jacobian matrix element
00,52

J
00,°
can be interpreted as the rate of change of the output of
node j at time t+2, with respect to the output of node k at
time t.

The partial 00,*? can be broken down by the chain rule to

80,

aol t-2 aoth 601 te2 aoatoz
become ——M * ——  + *

603 e+l aolc aod tel aolc

where each partial of the form: 480, is O, * (1 - 0;) * W,

.
In addition to displaying the vector field, the

eigenvalues and eigenvectors are also shown since they
represent the degree of change of the neighborhood around a
point as it is mapped from one place to anothexr. This
mapping from point to point can be thought of as what
happens as the network relaxes from one point to another.
The interpretation of these eigenvalues and eigenvectors is
easiest at a fixed point since the neighborhood around such
a point moves very little. The reason for this is that, by
definition, a fixed point maps from itself, to itself.
Since the fixed point does not move, and the vector field is
continuous, the neighborhood around it will move very

little.
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There are three types of fixed points possible in these
displays. One is an attractor which is typically rather
easy to recognize since the network relaxes to it from all
sides. A second type of fixed point is the repulsor, which
is just the opposite of the attractor since it repels on all
sides. The third type of fixed point is the saddle point,
which attracts on one axis and repels on another.
Topologically, this third type of fixed point is analogous
to a saddle, hence its name. Several attractors and saddle
points were found, but no repulsors were discovered in any
of the networks.

The eigenvalues help give an understanding of the fixed
point by indicating the amount of change in the neighborhood
of a network as it relaxes from one point to another.

A quick interpretation of the eigenvalue and its
corresponding eigenvector (also called an eigenpair), is
that the eigenvector is simply mapped into a scaled version
of itself, and the scale factor is the eigenvalue.

Thus real eigenvalues with an absolute value less than
one indicate a squashing of the neighborhood in the axis of
the eigenvalue’s corresponding eigeﬂvector. Similarly, an
absolute eigenvalue greater than one indicates a stretching
effect. For this reason the eigenvalues are much less than
one at attractors (very close to zero), since the
neighborhood tends to change less and less. Saddle points

are quite another matter however, since a saddle point
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attracts in only one direction, its eigenpair values can be
much larger.

In addition to the squeezing and stretching effect
mentioned, there can also be a rotation effect which happens
when the eigenpair values are complex. Under such
conditions the network may spiral into an attractor or out
of a repulsor. Since these rotations are two-dimensional,
and the pairs of eigenvalues are complex conjugates of each
other, there is no analog of a saddle point in this case.

The interpretation of the eigenpairs is easiest at a
fixed point since the behavior of the neighborhood is known
from the start. However, when considering the eigenpair at
any point that is not a fixed point, it can be more
difficult to understand. In general, the eigenpairs
represent the change of the whole neighborhood near a given
point as it jumps to another neighborhood. The eigenpairs
measure the net change that occurs when the bulk movement is
cancelled out. This is why the behavior of the eigenpairs
is different from the arrows. It cancels out the bulk
movement of the arrows and just looks at the change of the
neighborhoods as they ride along together.

In the case of complex eigenvectors the vectors in the
neighborhood of a point are mapped onto scaled and rotated

versions of themselves.
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To show just what a fixed point looks like in a vector
field, the images below show idealized examples of critical

points.

ATTHﬁiTOH HE:.LEH
- 4—*“"
zADDLE PO"‘;&‘
A

Figure 4 Idealized Critical
Point Examples



CHAPTER IV
PROGRAM VALIDATION

To verify the program's operation it was tested on the
three recurrent networks described in the paper
'Experimental Analysis of the Real-time Recurrent Learning
Algorithm' (Williams and Zipser 1989). 1In each network a
single unit was taught on every cycle to output the XOR of
the inputs occurring two or more cycles previously.

As a first step in verification, a separate program was
written to calculate the outputs of each node for these

networks for the training input values given in table I.

TABLE I

TRAINING VALUES FOR RECURRENT
XOR NETWORKS

oo
<
1
R o
oo
>
|
R
o o
[eNe]

To verify the test programs' accuracy it output was compared

to hand calculations. Finally, these results were compared

17



18

to the thesis results by using the features 'M’, ‘m’, and
'o’. Use of each of these features is mentioned
individually in the appendix.

The basic outline is to do the following:
1) The ‘M’ feature can be used to ‘move’ the x and y
locations to any coordinate.
2) The ’‘m’ option works in conjunction with the ’M’ feature
by allowing the system to relax one time step from the
location that was set by ’‘M’.
3) Use the ’'o’ option to view each node’s output. Compare
them to the outputs calculated by the other program.

The verification performed here is two-fold.
The output of the nodes of the network are compared to the
values calculated by the test program to check for errors.
The outputs of the network must also solve the exclusive or
problem at the appropriate time step in order to verify that
the network was properly trained in the first place.
The outputs for the three, four and five node XOR networks
are displayed in table2 II, III and IV on pages 19, 20 and

21 respectively.



TABLE IT

OUTPUTS FOR THE THREE NODE XOR NETWORK

INPUT| Time |Node 0 Node 1 Node 2

X =0 1 0.062973 0.057342 0.026597
Y =0 2 0.063553 0.057483 0.064788
X =0 1 0.000303 0.952574 0.024127
Y = 1 2 0.000364 0.851920 0.976459
X =1 1 0.9168 0.000136 0.024127
Y =0 2 0.923046 0.000177 0.969084
X =1 1 0.047426 0.043107 0.021881
Y =1 2 0.047734 0.043153 0.043091

Node number 2 was trained to give the
desired signal after a delay of two cycles.



TABLE IIT

OUTPUTS FOR THE FOUR NODE XOR NETWORK

X =0, Y=0

Time Node 0 Node 1 Node 2 Node 3

1 0.924 0.0009 0.9644 0.01799

2 0.997 0.0003 0.1646 0.9972

3 0.853 0.0003 0.0357 0.0444
X =0, ¥Y=20

Time Node 0 Node 1 Node 2 Node 3

1 0.021881 0.10910 0.9526 0.013387

2 0.012235 0.114632 0.984029 0.99112

3 0.010956 0.126574 0.965877 0.974335
X =1, Y =0

Time Node © Nede 1 Node 2 Node 3

1 0.02188 0.11%92 0.94268 0.013387

2 0.012185 0.122880 0.978655 0.990405

3 0.010906 0.136103 0.955725 0.973381
X =1, ¥ =1

Time Node 0O Node 1 Node 2 Node 3

1 0.000041 0.947846 0.924142 0.009952

2 0.000011 0.813369 0.083521 0.995071

3 0.000019 0.826423 0.015528 0.016665

Node number three was trained to give the

signal after a delay of three cycles.

20



OUTPUTS FOR THE FIVE NODE XOR NETWORK

TABLE IV

X=0,Y=0
Time |Node 0 Node 1 Node 2 Node 3 Node 4
1 0.858149 0.091123 0.990048 0.099750 0.008852
2 0.884214 0.078558 0.024179 0.099853 0.999801
3 0.934080 0.073634 0.015861 0.054201 0.002225
4 0.940860 0.87861 0.015815 0.095171 0.004232
X =1, Y =0
Time |[Node 0 Node 1 Node 2 Node 3 Node 4
1 0.880797 0.956893 0.991837 0.000500 0.007392
2 0.072144 0.811000 0.11406 0.00012¢% 0.99%9602
3 0.064438 0.813568 0.948972 0.000072 0.002420
4 0.039447 0.827320 |0.960938 |(0.000141 |0.,999723
X=90,Y=1
Time |Node 0 Node 1 Node 2 Node 3 Node 4
1 0.869892 0.000500 0.991837 0.960834 0.007392
2 0.62987 0.000128 0.011411 0.838361 0.999642
3 0.049023 0.000120 0.943651 0.738485 0.002622
4 0.054743 0.000155 0.965972 0.872232 0.999752
X=1, Y =1
Time |Node 0 Node 1 Node 2 Node 3 Node 4
1 0.8%90903 0.099750 0.993307 0.099750 0.005486
2 0.912043 0.085372 0.026426 0.089307 0.999640
3 0.950922 0.080272 0.018154 0.053941 0.001220
4 0.955124 0.095456 0.0199¢92 0.094562 0.002354

Node number 4 is
after a delay of

trained to give the

four cycles.

desired signal
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CHAPTER V

BASIC FINDINGS

To get an idea of how the networks described in the
paper by Williams and Zipser (Reference) solve the XOR
problem, images were not only created for each view of the
network, but also for each time step of those views to see
how the state of the network changes as time goes on.

As was mentioned in their paper, the networks
essentially organize themselves into feedforward networks by
reducing all recurrent weights, and allowing only those
weights that go forward in the network to have large values.

The effect of this format can be seen by viewing the
images of any two nodes as they vary with time. In general,
once the solution has propagated to both of these nodes, the
overall topology remains relatively constant for the
remaining iterations. As an example, the basic structure of

the five node network is shown it table V on page 23.
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TABLE V

BASIC STRUCTURE OF FIVE
NODE XOR NETWORK

From Layer 1 2 3 4

To Node(s) |1,3| O 2 4

To illustrate how the images change very little once
the solution reaches the nodes being examined, the images
for four iterations of the five node network are shown in
figures 5 through 8 on pages 24 and 25. Nodes one and three
are graphed. Notice how they change relatively little,
which is as expected since their primary contribution is
made in the first iteration.

Contrast this to the images formed by graphing nodes
two and three in figures 9 through 12 on pages 26 and 27.
Notice how changes continue until the third iteration when
node two makes its primary contribution.

In addition to the above findings, the results also
indicate that two different ways of solving the XOR problemn
were used. The three and five node networks’ solutions were
similar, but varied greatly from the four node network’s
solution. The weights for these networks are given in

tables VI, VII and VIIT on page 28.
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Figure 5 Vector Field, Five-Node Network,
Iteration 1, X Axis is Node 4,
Y Axis is Node 2
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Figure 6 Vector Field, Five-Node Network,
Iteration 2, X Axis is Node 4,
Y Axis is Node 2
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Figure 7 Vector Field, Five-Node Network,
Iteration 3, X Axis is Node 4,
Y Axis is Node 2
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Figure 8 Vector Field, Five-Node Network,
Iteration 4, X Axis is Node 4,
Y Axis is Node 2
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Figure 9 Vector Field, Four-Node Network,
Iteration 1, X Axis is Node 4,
Y Axis is Node 2
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Figure 10 Vector Field, Four-Node Network,
Iteration 2, X Axis is Node 3,
Y Axis is Node 2
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Figure 11 Vector Field, Four-Node Network,
Iteration 3, X Axis is Node 4,
Y Axis is Node 3
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