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Abstract 

Two MD protocols were recently developed that allow a polypeptide to search the 

PE surface in search of the global PE minimum, which should correspond to the 

experimental structure.  α-helical secondary structures have previously been tested.  We 

tested an additional α helix (C-peptide of ribonuclease A), and we extended the tests with 

two β-hairpin secondary structures (tryptophan zipper 2 and the B1 domain(41–56) of 

protein G).  For the C-peptide of ribonuclease A, the α helix was the dominate secondary 

structure, but a β hairpin was found, which to our knowledge had not previously been 

reported.  For the tryptophan zipper 2 and the B1 domain(41–56) of protein G, the β 

hairpin was reproduced but alternative conformations were also found.  After these test 

cases, we simulated a small protein (ββα5) that contained both secondary structural 

motifs and an overall tertiary structure.  The secondary structures were reproduced, but 

the tertiary structure was not maintained.  Finally, we attempted to predict possible 

conformations for a 64-residue protein, Ure2p, which is implicated in amyloid diseases of 

yeast.  We found that Ure2p(1–64) was dominated by helical conformations.  The DIVE 

and DIP protocols will need to be tested further with different polypeptides and proteins 

and using more recent force fields.  Ure2p(1–64) should be simulated from additional 

secondary structures such as a β sheet or a combination of α helices and β hairpins. 
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1. Introduction and background:  molecular dynamics simulations and more 

specialized techniques for locating global energy minima 

1.1. Introduction 

Molecular dynamics (MD) simulations have been used for several years now to 

characterize and monitor the motions of biomolecules such as proteins, DNA, and 

carbohydrates (1-3).  As the years have progressed, both computer power and speed have 

increased considerably.  This has allowed simulations to run longer, as evidenced by a 

number of long simulations such as the monumental 1-μs simulation of the villin 

headpiece (4).  The passage of time has also given rise to various methods for sampling a 

huge variety of conformations, including, but not limited to, locally-enhanced sampling 

(5), ensembles extracted from atomic coordinate transformations (EXACT 

approximation) (6-8), simulated annealing (9), and replica exchange (10-13). 

The various methods mentioned all came about because of the need to locate the 

global potential or free energy minimum.  MD was found to have an inherent problem — 

the inability to overcome energy barriers within a limited simulation time.  Ideally, a 

protein would sample all conformations during a simulation, but the simulation would 

require almost an infinite amount of time compared to the actual time that it requires to 

locate the native conformation (14, 15).  MD simulations can become trapped within a 

particular local PE well, or minimum, which limits the number of conformations sampled 

during the simulation.  According to Anfinsen (16), the native structure represents the 

conformation within the global free energy minimum.  The specialized methods listed 

previously were developed to allow the protein to overcome energy barriers and sample 
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more conformations within the limited simulation time in search of the native 

conformation. 

Most recently, replica exchange molecular dynamics (10-13) (REMD) has 

become a popular choice for simulations because of its versatility.  REMD allows a 

system to sample multiple conformations within a limited amount of simulation time and 

offers the possibility of mapping the free energy surface (FE surface) of the system.  

REMD begins with an initial conformation and creates multiple copies, or replicas.  Each 

replica begins at a different initial temperature, and as the coordinate histories progress, 

replica temperatures are swapped on the basis of the Boltzmann criterion.  This, in turn, 

allows the system to travel along the energy surface and become equilibrated before 

kinetic energy is inserted to encourage the system to overcome energy barriers.  When 

the simulation ends, several conformations have been located, and upon analysis, the 

conformation with the lowest relative free energy can be determined. 

Despite its benefits, REMD has its limitations in sampling an optimal number of 

conformations within the limited simulation time.  Moreover, REMD primarily assists 

movement over energy barriers instead of circumventing the barriers.  REMD, like most 

MD techniques, may be limited in its capabilities and therefore, has not been used much 

for protein structure prediction.  Recently, two molecular dynamics protocols were 

developed within our research group (17, 18), which assist both energy barrier crossing 

and energy barrier circumvention.  The first MD protocol, disrupted velocity (DIVE) 

search protocol, perturbs both the energy and the atomic velocity direction at a constant 

energy.  The perturbations allow the system to traverse the potential energy surface (PE 

surface) in search of the global potential energy minimum near 0 K.  The second 
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protocol, divergent path (DIP) search protocol, permits the system to travel along the PE 

surface at a constant temperature, e.g., physiological temperatures.  The system begins 

with an initial conformation traveling in several different directions simultaneously yet 

independently, which permits the overall system to search the PE surface for the global 

minimum with less chance of becoming trapped within a single local minimum. 

When the two MD protocols are used together, a broader picture of the PE surface 

can be painted.  The system is given an opportunity to sample multiple conformations 

seeking the global potential energy minimum near 0 K.  The multiple conformations can 

then be run using DIP at a desired constant temperature.  The system, in turn, is allowed 

to locate the local energy minima at the desired temperature.  Ideally, one or more 

conformations should converge upon the experimental structure and should have the 

lowest relative energy, according to Anfinsen (16).  Our group has been rigorously 

testing the two protocols (17, 18). 

Our efforts to test the new MD protocols are presented in chapters 1–5.  In chapter 

1, we begin with a well-known α-helical polypeptide, C-peptide (residues 1–13) of 

bovine pancreatic ribonuclease A as a continuation of testing the DIVE and DIP 

protocols with an α-helical conformation.  We then simulate two different β hairpins, 

which are more difficult to reproduce than α helices, in chapters 3 and 4.  We then 

attempt to reproduce the secondary and tertiary structures of a de novo designed protein 

whose tertiary structure containing a β hairpin and an α helix, a ββα motif, in chapter 5.  

Finally, we offer possible conformations for the N-domain (residues 1–64) of a yeast 

prion protein in chapter 6. 
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General reasons for simulating biomolecules with MD techniques are presented in 

section 1.2.  A description of the PE surface is offered in section 1.3.  As a general 

background, MD, various MD techniques in use, and finally the DIVE and DIP protocols 

are described in more detail in section 1.4. 

1.2. Simulation of biomolecules  with molecular dynamics 

Proteins are an essential part of organisms; they aid in cellular structure and 

function.  Proteins are folded into secondary and tertiary structures depending upon the  

function of the protein.  The folding of a protein within a cell is rather complex and 

mimicking the folding process experimentally is not simple (19).  If a protein “misfolds” 

or folds into a conformation that is non-native, functionality is lost, and in some cases, 

aggregation and fibril formation can occur (19-23). 

MD simulations complement experimental techniques.  Because proteins fold at a 

rapid rate, some experimental techniques are unable to observe the rapid transition from 

an unfolded state into the native state, but MD offers a way to examine the folding 

process (1, 24-27).  MD simulations allow for observation of the protein-solvent 

interactions that cannot be easily seen by experimental techniques, and through the 

concept of microreversibility, the unfolding and limited folding events of a protein can be 

witnessed. 

1.3. Potential energy (PE) surface 

Potential energy (PE, for example eq. (1.1)) V is function of relative atomic 

positions.  In eq. (1.1), q1 and q2 are the charges of the two atoms, ε0 is the dielectric 

constant of the medium between the two atoms (ε0 = 1.0 for gas, ε0 =78.5 for water), and 

r is the distance between the two atoms.  With the addition of PE and kinetic energy Ek, 
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the energy of motion, the internal energy U can be calculated (eq. (1.2)).  When 

temperature T and entropy S are also considered, the free energy A of a system can be 

determined (eq. (1.3)).  In this case, A corresponds to Helmholtz free energy because the 

system will be at a constant volume; if Gibbs free energy G is used (eq. (1.5)), the system 

will be under constant pressure (eq. (1.4)). 

MD simulations account for movement along the PE surface.  Typically, free 

energy is considered when observing the conformations found within a simulation 

because the structure representing the global free energy minimum should correspond to 

the experimental structure.  PE, however, is easier to calculate, and the global free energy 

minimum corresponds either to a low PE minima or to the global PE minimum (28). 

Wales, et al. (29-35) have studied the PE surface for various systems and then 

related their findings to the free energy (FE) surface.  They have noted that the FE 

surface may correspond to a smooth funnel compared to the rough PE surface.  In 

essence, as the PE decreases over its rough surface, the FE surface generally descends 

into its global minimum.  The Wales group has also categorized typical PE surfaces on 

the basis minima and barriers (33-35).  This is evident in their depiction of 

disconnectivity graphs (Figure 1.1). 

 
r

qqV
0

21

4πε
=  (1.1)

 kEVU +=  (1.2)

 TSUA −=  (1.3)
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The ‘palm tree’ graph is represented by a potential energy landscape with 

relatively low potential energy barriers and a well-defined global minimum  As the 

system moves along the PE surface from a relatively high energy state, several transition 

states may be encountered before the global potential energy minimum is found.  

According to the Wales group, proteins tend to fold along this particular pathway.  The 

‘weeping willow’ graph is indicative of a potential energy landscape still with a well-

defined global minimum but with higher energy barriers between minima.  A system can 

become trapped within a local energy minimum and lack the kinetic energy to overcome 

the high energy barriers.  Unlike its counterparts, the ‘banyan tree’ graph is found when 

several minima with comparable energies exist but no distinct global energy minimum 

exists.  Several energy barriers of varying heights are present within the ‘banyan tree’ 

model  

Kinetic energy traps are another concern encountered during simulations (28, 31-

33, 35).  Kinetic energy traps occur when the system locates a PE well which is unable to 

leave during the simulation time.  The minimum may, in essence, be a local PE 

minimum; if the temperature is increased, the system is frequently able to cross the PE 

barrier in search of the global PE minimum. 

Figure 1.1 Three pairs of PE landscapes (left) and their corresponding disconnectivity 
graphs (right).  The graphs are drawn as PE (vertical axis, arbitrary units) relative to 
some unspecified coordinates.  The endpoints of the disconnectivity graphs represent 
PE minima, and the points where the branches are joined correspond to a common PE 
“superbasin”.  For the PE landscape, the wells represent the minima of a system 
surrounded by PE barriers.  Reprinted by permission from  (33).  Copyright 2006 
American Chemical Society 



 

 7

1.4. MD simulations of polypeptides 

1.4.1. Components of a MD simulation 

Molecular dynamics (MD) is a computational method allowing one to observe the 

motions of molecules based upon Newtonian motion (36).  Unlike its quantum 

mechanical counterpart, classical mechanics allows large systems such as biomolecules 

to be simulated within short time periods.  This allows for the observation of protein 

folding in solution.  MD is an iterative, multi-step process, which involves the calculation 

of coordinates, atomic velocities, and acceleration from the classical equations of motion 

(Figure 1.2).  Several components are required for a MD simulation to function properly, 

and a few of the components are described in the following paragraphs. 

One of the first components to consider is the description of atomic interactions, 

which equates to the potential energy of the system — the force field.  The atomic 

interactions are typically described as the generic force field defined by eq. (1.6) (37).  

Bond stretching, angle bending, and angle twisting are defined by the first three terms in 

the equation.  These terms describe interactions between atoms separated by one, two, 

and three covalent bonds, respectively. For interactions between atoms separated by more 

than three bonds, Lennard-Jones and electrostatic (or Coulombic), interactions between 

two atoms are described by the fourth term.  The attraction (r6) and repulsion (r12) of two 

atoms by van der Waals interactions are modeled by Lennard-Jones interactions.  The 

electrostatic forces between two atoms via atom-centered partial charges are represented 

by Coulombic interactions. 

Within eq. (1.6), the bond lengths and bond angles are represented by a single 

harmonic oscillator.  b0 represents the bond length at equilibrium, and the equilibrated 
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bond angle is symbolized by Θ0.  b and Θ are the bond length and bond angle at any 

given time during the simulation.  Kb and KΘ are the harmonic oscillator constants for 

bond stretching and angle bending, respectively.  The angle twisting term is denoted by a 

truncated Fourier series where Kφ, n, φ, and δ stand for magnitude, periodicity, 

instantaneous dihedral angle, and phase of the torsion, respectively.  For the non-bonded 

term, r is the distance between two atoms; A and C are constants related to the Lennard-

Jones well depth and radii of the two atoms, respectively.  The first term relates to the 

repulsion potential between the two atoms, whereas the second term defines the attraction 

potential between the two atoms.  q1 and q2 are the atomic partial charges and ε is the 

environmental dielectric constant (ε = 1.0 in gas and ε = 78.5 in implicit water solvent). 
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Atomic positions either are arbitrarily assigned on the basis of distances between 

covalent bonds or are obtained by preassigned coordinates (e.g., a Protein Data Bank 

file).  Typically, velocity vectors are randomly assigned through a Gaussian distribution 

(39), and the magnitudes are scaled to a constant temperature.  As Figure 1.2 illustrates, 

the force upon the system and the acceleration can then be calculated.  The force upon the 

system is determined by the potential energy from the force field and the positions of all 

atoms included in the system (eq. (1.9)). 

 ( ) ( ) ( ) ( )( )
( )t

tttVt
i

n
i r

rrrf
δ

δ ,,, 21 L
−=  (1.7) 
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fi is the net force on atom i from all atoms at positions r1, r2,··· ri,. From this, atomic 

acceleration can be evaluated via F = ma where a is defined as 

 
( ) ( ) ( )

i

ii
i m

t
dt

tdt fra == 2

2

 (1.8)

ai is the acceleration of atom i, which has mass im  and force fi.  Eqs. (1.7) and (1.8) are 

then iterated during the simulation until the predetermined number of steps is completed. 

The Amber force fields are utilized within our simulations and define specific 

values of the constants in eq. (1.6).  Four different Amber force field definitions are in 

popular use today:  Amber94 (37), Amber96 (40), Amber99 (41), and Amber03 (42).  

The first three differ only by torsion angle definitions.  Subtle nuances have arisen, which 

affect the folding of proteins.  Amber03 (42) has both different definitions of the torsion 

angles and different partial charges.  Extended/β-hairpin conformations are favored by 

Amber96 (40), whereas Amber94 (37) and Amber99 (41) are biased towards helical 

conformations (43-49).  To counter these biases, variations of Amber99 (41) have been 

Get initial positions
and velocities (r0, v0)

Use initial position (r0) to 
calculate initial force with force 
field equation; calculate initial 

acceleration (a0)

Calculate new position 
(r1) with update position 

equation

Use new position (r1) to calculate new force with 
force field equation; calculate new acceleration, a1

Use initial velocity (v0), initial acceleration (a0) and 
new acceleration (a1) to calculate new velocity (v1) with 

update velocity equation

(r1, v1)

1

2 3

4

5

repeat process

Figure 1.2 Molecular dynamics cycle (courtesy of Jermont Chen) (38) 
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developed to achieve a better balance between α helices and β sheets and thus allow 

proteins to fold to conformations resembling experimental data (45, 46, 50-52). 

Simulations can be run in either a gas phase or within a solvent.  Biomolecules are 

typically simulated in water.  Two types of water solvent models are typically used — 

explicit and implicit.  As the name implies, explicit water solvent has individual water 

molecules surrounding the solute molecule(s).  Explicit solvent has been represented in 

several forms including, but not limited to, TIP3P (53), TIP4P (54), TIP5P (55), and 

SPC/E (56).  AMBER (57-59) typically uses one of these models.  Explicit solvent allows 

for a more accurate representation of molecular motion within water.  However, explicit 

water requires more computational time because of the increased number of interatomic 

distances calculated during each step of an MD simulation compared with gas phase. 

Implicit solvent (60-64), also called continuum models of solvent, offers a 

solution to the computational strain by removing the necessity of tracking actual atomic 

waters.  Solvent is represented by a mathematical equation (eq. (1.9)) modeling a 

dielectric continuum.  The system is simulated in a medium similar to gas phase with a 

dielectric constant added to represent a homogenous solvent.  Therefore, the system is 

provided an approximation of solvation effects, is allowed to move freely in space, and is 

able to search for different conformations without the limitation of explicit solvent 

intervening between different parts of a solute such as a protein. 

In eq. (1.9), Gpol defines the solvation free energy of the solute-solvent 

electrostatic polarization term, and εp is the dielectric value inside of the protein, and εw is 

the solvent dielectric constant.  rij determines the separation distance of particles i and j,  

qi and qj represent the atomic charges, and αi and αj correspond to the effective Born radii 
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(65).  fgb symbolizes a complex function of rij, αi and αj.  The effective Born radius 

determines the charge distance between the solute and the continuum dielectric boundary.  

Typically, a simulation defines the following parameters:  εw = 78.5, εp  = 1.0, a surface 

tension of 0.005 kcal/mol-Å2, and rij = 0.9 Å. 

 

2
1

2
2

4
r

expr

11
2
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∑

ji

ij
jiijgb

ij gb

ji

wp
pol

f

f
qq

G

αα
αα

εε

 

(1.9)

Implicit solvent does have its disadvantages.  Implicit solvent tends to 

overstabilize salt bridges and does not always mimic the free energy surface of explicit 

solvent (66).  One reason for the overstabilization of salt bridges stems from the exposure 

of side chains, which allows for electrostatic interactions between amino acid side chains 

that may otherwise be hidden within a solvation shell (67).  According to Geney and 

coworkers (68), another reason for non-native salt bridge formation is that the intrinsic 

radius of hydrogen bonded to charged nitrogen is larger than necessary.  Bias towards 

helices probably stems from the adjustment in hydrogen bonds present (69). Mortenson 

and Wales (28) have found that different implicit solvents can affect the PE surface; the 

surface can either exhibit the “banyan tree” model or the “palm tree” model depending 

upon the definition of the dielectric constant. 

As Figure 1.2 depicts, the atomic velocities for the system must be calculated 

based upon eqs. (1.6), (1.7), and (1.8).  The method selected for our simulations is known 

as the velocity-Verlet method (70).  This method allows the force, atomic velocity, and 

atomic acceleration to be calculated at the same time step, Δt, as defined by the two 

equations. 
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2
1  (1.11)

The accuracy of the forces, atomic velocity, and atomic acceleration depend upon 

Δt, which is called the time step.  The time step must be approximately an order of 

magnitude smaller than the fastest bond stretching vibration.  If the time step is too large, 

accuracy is lost and the energy of the system can increase rapidly.  Within biomolecules, 

the fastest vibrations occur between atoms covalently bonded to hydrogen.  Bond length 

constraints (SHAKE (71, 72)) are used to limit the motion of these vibrations allowing 

for a larger time step to be used. 

 022 =− ijij dr&  (1.12)

Eq. (1.12) defines the ideal way in which SHAKE should respond.  As two atoms move 

during the simulation, the bond constraint counters the vibrational movement to prevent 

overstretching.  This, however, is ideal; in reality, a tolerance level, ε,  is set giving the 

stretching an upper limit (eq. (1.13)). 

 ( ) ε<−= ijijijij ddrs 22&  (1.13)

Up to this point, our description of MD simulations has assumed that a molecule 

will be simulated in an ensemble with a constant number of atoms, constant volume, and 

constant total energy (constant N, V, E).  For some simulations, a microcanonical 

simulation is acceptable, but to mimic reality, temperature must remain constant, in a 

constant (N, V, T) simulation.  The constant N,V,T simulation can be achieved by 

coupling the system of interest to a larger system, or thermal bath.  The bath allows heat 

to be transferred into and out of the system. 
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Several methods exist to keep the temperature constant during a simulation.  The 

oldest, and perhaps simplest, method rescales the atomic velocities to maintain the 

desired temperature (73).  This method, invented by Berendsen (74) provides a weak-

coupling algorithm by utilizing an atomic velocity-rescaling constant for all atoms, but 

the method does not give the correct ensemble properties..  Imaginary random collisions 

offers another way to randomize atomic velocities (75, 76); however, the collisions create 

discontinuous changes in atomic velocities, which means that a PE surface cannot be 

easily mapped. 

A more common algorithm for temperature control is the Nosé-Hoover chain 

method (75-77).  This method creates a chain of thermostats attached to the system.  In 

other words, the system is coupled to a thermal bath A, and thermal bath A is coupled to 

thermal bath B, etc.  The chained thermostats control the fluctuations of the kinetic 

energy for the entire system, thermostats included.  The Nosé-Hoover chain method (75-

77) has been shown to represent a constant temperature simulation well compared to the 

previous methods (78). 

1.4.2. Types of MD simulations 

A conventional MD simulation traverses the potential energy (PE) surface in 

search of the global free energy minimum.  The global free energy minimum is assumed 

to correspond to the native state of the simulated system.  One drawback to conventional 

MD simulations is the entrapment of the simulation into PE minima.  Any minimum may 

or may not be the global PE minimum, and if the minimum is not the global PE 

minimum, the system has encountered a local PE minimum.  When a PE minimum is 

located, the simulation generally does not continue long enough to leave the minimum 
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energy geometry.  Ideally, a simulation that runs for an infinite amount of time will cover 

the entire PE surface, entering and leaving local PE minima throughout the course of the 

simulation, and eventually locating the global PE minimum. 

To overcome  entrapment in local minima, several techniques have been 

developed.  Most of these techniques utilize creative measures to overcome PE barriers.  

By “jumping over” barriers, a simulation can move to the next PE minimum in search of 

the global PE minimum.  Four techniques are described in this section:  simulated 

annealing (9) and mean-field methods, including locally-enhanced sampling (5), 

extracted atomic coordinate transformation (EXACT) approximation (6-8), and replica 

exchange (10-13).  Each technique has its value but also its drawbacks. 

Simulated annealing (9) allows a system to overcome PE barriers by perturbing 

the temperature, i.e., the kinetic energy of the system.  The temperature is increased via 

input of kinetic energy to a designated temperature (e.g., 1000 K), and the system is 

allowed to “walk” across the PE surface.  The temperature is slowly cooled via kinetic 

energy removal to permit the system to enter gradually into a PE minimum. 

A single heating and cooling cycle may lead to entrapment of the system in a 

local PE minimum (79).  The heating and cooling cycle must be repeated multiple times 

to ensure the discovery of the global PE minimum.  Ideally, the global PE minimum 

should be located with its corresponding conformation after several cycles have been 

completed.  The global PE minimum has the highest probably of being found by using 

multiple simulated annealing cycles.  However, simulated annealing does not guarantee 

that the global PE minimum will be found because of limitations in simulation time. 
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Locally-enhanced sampling (5) (LES) offers another alternative to conventional 

MD simulations.  LES takes a system and separates it into two parts: a subsystem of 

primary interest and a bath containing the less interesting part of the system. Several 

copies of the more interesting subsystem, such as an amino acid side chain, are simulated.  

The individual copies travel along the PE surface independent of the other copies, and 

each copy interacts with the bath.  The bath, on the other hand, feels the average 

interaction of all copies.  This allows for a favorable movement of the subsystem of 

interest to cover a broader area of the PE surface than in a conventional MD simulation 

while decreasing PE barriers.  The reduction in PE barriers via LES was shown to 

enhance with conformational changes of proteins and peptides (80). 

However, LES has some drawbacks (39, 81-83).  One major drawback to LES is 

the appearance of pseudo-minima (39).  LES alters the PE surface by decreasing PE 

barriers, but it also creates local PE minima which do not correspond to real local PE 

minima.  A system, therefore, may find artifacts of the PE surface that have no physical 

meaning.  The global PE minimum is, however, retained in the LES simulation and the 

global minimum found by using LES is still physically relevant. 

Hixson et al. (6-8) derived a rigorous method, the ensembles extracted from 

atomic coordinate transformation (EXACT) approximation, that can remove for the 

pseudo-minima by adding an additional mathematical term absent from LES.  By 

accounting for the additional mathematical term, the problems prevalent in LES (39, 80-

83) are rigorously addressed by this method.  The additional term can also be adjusted 

such that the EXACT approximation will mimic either LES or conventional MD.  The 
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method has been shown to give the correct conformation  and increase sampling on small 

atomic systems (6, 8) and on melatonin (7). 

The replica exchange method (10-13, 84-87) (REM) is another recent MD 

method.  A simulation is begun with multiple copies (replicas) of a system at different 

initial temperatures (e.g., 1000 K, 600 K, 300 K, 100 K, etc.).  Each replica is simulated 

independently from the other replicas; yet, all simulations are run simultaneously.  As the 

simulation progresses, replicas adjacent in temperature (1000 K and 600 K, for example) 

are exchanged at a preset time based upon the Boltzmann criterion.  This exchange 

between replicas occurs multiple times throughout the simulation period, which allows 

for an increased number of minima to be located on the PE surface. 

REM locates multiple conformations and can be used to calculate thermodynamic 

properties such as free energy.  However, REM, like other methods, has its limitations.  

The major limitation that REM encounters is the PE surface area which it traverses.  

Systems have kinetic energy both input and removed during the simulation period.  This 

exchange of energy allows the system to cross PE barriers but leaves the option of 

circumventing the barriers to random chance.  In other words, several conformations may 

be found, but the PE range in which the conformations are located may be small. 
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1.4.3. Disrupted Velocity (DIVE) and Divergent Path (DIP) search protocols 

Disrupted velocity and divergent path search protocols were developed by Huang 

et al. (17, 18) as alternative MD protocols to search for the global PE minimum by 

mapping the PE surface.  DIVE allows the system to travel across the rugged PE surface 

by crossing and by circumventing PE barriers.  The system is, in the process, allowed to 

cool to temperatures near 0 K, which allows for the location of potential energy minima 

(Figure 1.3).  By having several initial conformations, a broad map of the PE surface can 

be formed and statistically, the global PE minimum and its corresponding conformation 

are more likely located. 

DIP simulations, on the other hand, do not seek to cross PE barriers in the same 

fashion as DIVE simulations.  Systems are simulated at a constant temperature but have 

multiple coordinate histories, or trajectories, simultaneously running.  The individual 

trajectories evolve differently by the assignment of a different direction to identical atoms 

in each trajectory.  Thus, a system can cover more of the PE surface at a constant 

temperature than a single MD simulation can (Figure 1.4).  Where a typical MD 

Figure 1.3 How conformations are selected during DIVE simulations for further simulation 
either with the DIVE or the DIP protocol.  Red represents DIVE simulations while the blue 
indicates a DIP simulation. 
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simulation may become trapped within a local energy minimum, DIP gives the system an 

opportunity to circumvent energy barriers by evolving in different directions. 

Simulations begin with a predefined set of coordinates from, for example, an 

experimental structure or a fully extended structure.  The coordinates are copied n times 

in DIP simulations, atoms of the individual copies are each assigned random atomic 

velocity directions.  (DIVE simulations also randomly assign different atomic velocity 

directions and in addition assign different velocity magnitudes, causing the individual 

copies to begin with different kinetic energies and therefore different temperatures.)  On 

the other hand, DIP simulations maintain a constant temperature.  Thus DIVE simulations 

are run using the microcanonical ensemble (N, V, E); DIP simulations utilize the 

canonical ensemble (N, V, T). 

Figure 1.4 Typical DIP simulation from an initial conformation (green) in the center with 
average conformations (blue) on the left and right.  The average conformation is overlayed 
with the initial conformation.  Average potential energies and backbone atom rmsd along 
with standard deviations are shown relative to NMR model. 
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During DIVE simulations, the different trajectories are allowed to evolve for a 

defined time before the atomic velocities are reassigned according to p' ≡ σ1/2p where p 

and p´ are the momenta of the particles before and after atomic velocity reassignment, 

respectively.  σ is the scaling parameter that determines the magnitude of the simulation 

temperature after atomic velocity reassignment.  The atomic velocity magnitudes are 

therefore rescaled and the directions are changed when the atomic velocities are 

reassigned. 

The scaling parameter, σ, can be set to a value either above or below 1.  σ > 1 

indicates heating, and 0 < σ < 1 denotes cooling.  On the other hand, the scaling 

parameter may be calculated from the scaling temperature T by σ  = |T–ΔT|⁄T.  The 

scaling temperature is defined as the difference between the temperatures before and after 

atomic velocity rescaling (ΔT).   Alternatively, σ can be defined using a target 

temperature Ttarget after atomic velocity rescaling with σ  = Ttarget ⁄T. 

A threshold temperature is defined as well.  During a simulation, kinetic energy is 

added when the temperature falls below the threshold, and kinetic energy is removed 

after a period when the temperature rises above the threshold.  This cycle allows the 

system to cross energy barriers, and because the threshold temperature is typically set 

near 0 K, PE minima can be mapped within approximately 10 kcal/mol.  Heating of the 

system typically happens once to approximately 500–1000 K during one heating and 

cooling cycle, whereas cooling of the system occurs multiple times by smaller 

magnitudes. 

DIP simulations, as mentioned earlier, maintain a constant temperature while the 

individual trajectories are initially assigned different atomic velocity directions based 
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upon a Gaussian distribution.  The trajectories then evolve into unique conformations 

while traversing the PE surface.  One simulation may potentially contain n unique 

conformations because the individual copies locate different potential energy minima.  

Huang et al. (88) found that polyalanine can actually locate a β hairpin, which is higher in 

PE than the expected α helix.  This result indicates that DIP simulations can locate 

conformations that may not typically be found with other MD algorithms; yet, the 

simulations can still locate conformations in good agreement with experimental data. 

Chapters 1–5 present work on various polypeptides used to test the DIVE and DIP 

protocols.  Chapter 1 gives details on a 13-residue α-helical structure, C-peptide of 

ribonuclease A (89).  Chapters 3 and 4 offer two studies using β hairpins:  tryptophan 

zipper (90) and the B1 domain(41-56) of Streptococcal protein G (91).  The final test 

involves a structure containing both common secondary structures of proteins—an α 

helix and a β hairpin.  This polypeptide, ββα (92-94), offers the challenge of folding both 

motifs correctly and reproducing their relative orientation correctly.  Finally, we attempt 

to predict the secondary and tertiary structures of the structurally-undetermined N-

terminus of Ure2p, which is implicated in prion formation of Ure2p into [URE3] (95-

118) 
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2. Finding the most stable conformation for C-peptide of ribonuclease A 

2.1. Introduction 

α helices are some of the most abundant secondary structures available to 

polypeptides and proteins.  They are stable in aqueous solution.  They have also been 

studied extensively using molecular dynamic (MD) simulations.  The majority of studies 

involving α helices come about because of the abundance of this secondary structure, 

their stability in aqueous solution, and the bias of force fields towards helical 

conformations. 

One such α-helical polypeptide is C-peptide of ribonuclease A (RNase A) (1) as 

shown in Figure 2.1.  C-peptide consists of the first thirteen residues of the N-terminus of 

RNase A (KETAAAKFERQHM).  The polypeptide has been studied extensively by 

experimental methods (2-16).  The first two residues, Lys1 and Glu2, are considered a 

part of the flexible region; residues 3–13 form an α-helical conformation.  This particular 

polypeptide’s α-helical structure is stable in aqueous solution because of several factors.  

A salt bridge exists between Glu2 and Arg10 (2, 3) and between Glu9 and His12 (4, 5).  

π-Stacking occurs between Phe8 and His12 (11).  The stability of C-peptide has also been 

confirmed through MD methods:  simulated annealing (17), copy exchange (18, 19), and 

general multicanonical ensembles (20-24). 

 
Figure 2.1 Overlay of 
all 32 NMR models of 
the C-peptide of 
RNase A 
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Conventional MD simulations run into one major problem — sampling on the 

potential energy (PE) surface.  PE is simulated because it tends to dominate the free 

energy surface compared with the entropic contribution and because, unlike free energy, 

the PE is temperature-independent.  The time that a typical polypeptide or protein 

requires to fold is currently inaccessible with today’s technology.  A polypeptide will 

therefore become trapped within a PE well—a particular conformation—for extended 

periods before it has an opportunity to leave its current state.  High temperature 

simulations allow the polypeptide to sample more conformations within a shorter amount 

of time, but the experimental structure may not be located within the limited simulation 

time at higher temperatures.  On the other hand, the experimental conformation, which in 

theory should correspond to the global free energy minimum, may be found as the global 

PE minimum, but the higher temperatures prevent the conformation from stabilizing 

because of increased kinetic energy. 

Several methods have been developed over the years to overcome the 

conventional MD sampling problems.  One of the earliest methods is simulated annealing 

(25) in which the temperature is increased and slowly decreased thus allowing for the 

protein to find the lowest possible PE well.  Elber and Karplus developed locally 

enhanced sampling (LES) (26) to deal with the problem.  LES lowers energy barriers by 

averaging forces.  This, however, introduces pseudo-minima, which may not exist on the 

actual energy surface (27).  More recently, the replica exchange method (28) has been 

used.  In the replica exchange method, multiple copies of a system are run simultaneously 

but independently; and their coordinates are exchanged when the Boltzmann criterion is 

met. 
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Our group recently developed two protocols for geometry optimization (29, 30).  

The disrupted velocity (DIVE) search protocol perturbs both the kinetic energy (via the 

magnitudes of atomic velocity vectors) and velocity directions when predefined criteria 

are met.  The system also experiences several cycles of velocity rescaling to accomplish 

heating and cooling.  The perturbation allows a system to either overcome PE barriers 

(kinetic energy perturbation) or circumvent them (velocity direction perturbation).  In the 

process, a system samples several conformations near 0 K and is able to locate several 

low PE conformations. 

Independently or in conjunction with DIVE, one can use divergent path (DIP) 

search simulations.  Through the DIP method, a system has multiple copies which are run 

simultaneously but independently, starting from the same initial geometry.  They are run 

at a constant temperature, and each copy’s trajectory develops separately because atoms 

in each of the copies are assigned different velocity directions.  Thus, a system can cover 

a broader area of the PE surface in searching for low energy conformations. 

Because of the recent development, we want to test our DIVE and DIP protocols.  

We selected C-peptide of RNase A because of its stability in aqueous solution.  We want 

to determine whether C-peptide will form a stable α helix close to the structure of the 

NMR models and whether the α helix is the lowest PE conformation.  In the process, we 

want to test the ability of DIVE and DIP to sample multiple conformations over a wide 

range of PEs. 
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2.2. Algorithms and simulations 

2.2.1. Algorithms 

Two protocols are implemented for our study.  The disrupted velocity (DIVE) and 

the divergent path (DIP) protocols are discussed in previous literature (29, 30).  As the 

name implies, the DIVE protocol perturbs the atomic velocity of the system permitting 

the conformation either to circumvent or to overcome PE barriers.  The protocol allows a 

simulation to map a peptide’s PE surface near 0 K.  DIP, on the other hand, allows a 

conformation to traverse across the PE surface at a constant kinetic energy in search of 

PE minima.  In the DIP protocol, multiple conventional MD simulations are run 

simultaneously by assigning atomic velocities of identical atoms in different simulations 

different directions, allowing more of the PE surface to be explored. 

Each copy during a DIVE simulation undergoes a microcanonical simulation 

(constant number of atoms, volume, and energy) for a fixed time period before the atomic 

velocities are reassigned according to p' ≡ σ1/2p where p and p´ are the momenta of the 

particles before and after atomic velocity reassignment, respectively.  By convention, 

atomic velocity “reassignment” includes both “rescaling” of the magnitudes and changing 

the directions of atomic velocity vectors.  σ is the scaling parameter that determines the 

magnitude of kinetic energy after atomic velocity reassignment. 

The scaling parameter σ, where σ > 1 is used for adding kinetic energy and 0 < σ 

< 1 is used for removing kinetic energy, may be initially set or it may be calculated 

during the simulation by σ  = |T – ΔT|⁄T.  The scaling temperature (ΔT) is defined as the 

difference between the temperatures before and after atomic velocity rescaling.  
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Alternatively, σ can be defined using a target temperature Ttarget to be achieved after 

atomic velocity rescaling by defining σ = Ttarget ⁄T. 

A threshold temperature is also defined for the DIVE protocol.  Above the 

threshold temperature, kinetic energy is removed by decreasing atomic velocities, and 

below the threshold temperature, kinetic energy is added by increasing atomic velocities.  

The threshold temperature is typically set near 0 K, so that the PE surface can be mapped 

at low temperatures.  During one cycle, heating typically occurs once whereas cooling 

occurs multiple times. 

For the divergent path (DIP) search simulations, the copies are simulated 

simultaneously but independently as in the DIVE simulations.  The copies begin with the 

same initial coordinates and atomic velocity magnitudes, but unlike in DIVE, only the 

directions of the atomic velocity vectors are assigned from a Gaussian distribution (27).  

Each copy is allowed to traverse the PE surface in a canonical simulation (constant 

number of atoms, volume, and temperature) in which the temperatures are within a 

specified but limited range. 

2.2.2. Simulation details 

The first 13 residues from RNase A (PDB codes 2AAS (1) [32 NMR models] and 

1KF5 (12) [x-ray crystal structure]), KETAAAKFERQHM, are used.  Both termini are 

charged, and each acidic or basic amino acid has its side chains deprotonated or 

protonated, respectively in accordance with the NMR models solved at pH 4.0. 

Counterions are not used to counteract any of the charges.  NMR model 1, the x-ray 

crystal structure with added hydrogens, and a fully extended conformation (φ = -180° and 

ψ = +180°) are used for our three initial simulations. 
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The PEs of all conformations are consequently minimized for 100 steps of 

steepest descent in a Generalized Born/surface area (GB/SA) implicit solvent model (31) 

using the Multiscale Modeling Tools for Structural Biology (MMTSB) (32) program.  

Upon the completion of minimization, the systems are then input into the Molecular 

Modeling Toolkit (MMTK) (33) package and are converted into files usable for our suite 

of programs.  Through MMTK (33), the velocities are scaled to a temperature of 300.0 K. 

Several parameters are included in the MD simulations.  Simulations are run 

using a modified version of the Amber99 force field (34).  The SHAKE (35, 36) 

algorithm is used to constrain distances between covalent bonds involving hydrogen, and 

the Nosé-Hoover Chain method (37) is used to maintain constant temperature.  The 

velocity-Verlet method (38) is employed for integration of the equations of motion.  All 

simulations are run in an a Generalized Born/surface area  (GB/SA) implicit water 

solvent (31) as defined by 
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where Gpol is the solvation free energy of the solute-solvent electrostatic polarization 

term, εp is the dielectric value within of the protein, εw is the solvent dielectric constant, 

rij is the separation distance of particles i and j,  qi and qj are the atomic charges, αi and αj 

are the corresponding effective Born radii (39), and fgb is a complex function of rij, αi and 

αj.  The effective Born radius determines the charge distance between the solute and the 

continuum dielectric boundary.  εw = 78.5, εp = 1.0, a surface tension of 0.005 kcal/mol-
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Å2, and rij = 0.9 Å.  Periodic boundaries are not used; instead, electrostatic and Lennard-

Jones cutoffs are set to 999 Å to represent an infinite cutoff. 

In each simulation, six copies are simultaneously run for 4 million steps per copy 

with a 2 fs time step (4 × 106 steps/copy × 2 fs/step × 6 copies/simulation = 48 ns total 

simulation time), and data is output every 250 steps (0.5 ps).  For DIVE simulations, each 

copy is initialized at a different temperature (10 K, 50 K, 100 K, 300 K, 600 K, and 1000 

K), and the simulated conformations include the fully extended conformation, NMR 

model 1, the x-ray crystal structure, and the lowest PE conformations from the first three 

simulations.  Conformations are designated by the derivation from the initial 

conformation.  For instance, the second round of DIVE simulations obtained from the 

fully-extended conformation is assigned the name “ext″”. 

After 20,000 steps, each copy is perturbed by atomic velocity reassignment.  The 

heating parameter is calculated from the target temperature Ttarget and the temperature T 

at the velocity- reassignment step (σ = Ttarget/T).  The scaling parameter for kinetic energy 

removal is set to 0.25, and the heating and cooling threshold temperature is 10 K.  Thus, 

when a system’s temperature rises above the threshold temperature, it is cooled to 0.25 of 

its temperature T.  When a system’s temperature drops below the threshold temperature at 

the time of velocity reassignment, the system is heated to Ttarget = 1000 K.  Although the 

target temperature is 1000 K, the actual temperature achieved is 500 K because of rapid 

energy redistribution. 

Ten conformations are also simulated using DIP.  The simulated conformations 

include the fully extended conformation, NMR model 1, the x-ray crystal structure, the 

lowest PE conformations from each of the six DIVE simulations, and a β hairpin with 
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type IV turn located during a DIVE simulation.  Each simulation is run at 300 ± 20 K.  

Identical atoms within each of the six copies of each simulation are begun at the same 

positions and are assigned the same atomic velocity magnitudes, but atomic velocities are 

assigned different directions, allowing each copy to search for different PE minima.  All 

results reported within this chapter use the conformation corresponding to the lowest PE. 

2.2.3. Analysis 

The analysis module ptraj in the MD package AMBER 8 (40) is used to calculate 

the root mean squared deviations (rmsd’s) relative to experimental NMR models for each 

conformation.  Backbone atom rmsd’s are calculated relative to NMR model 1 and to all 

of the NMR models (32 models total) (1).  The backbone atom rmsd’s are also calculated 

using only Tyr3–Met13, the residues comprising the α helix; they are calculated 

compared with both NMR model 1 and all NMR models. 

Interatomic distances are calculated to compare with the NMR distance 

constraints.  Two other distances (total 163 distance constraints) are also calculated from 

among those found in the NMR distance constraints:  the distances between the positively 

charged nitrogen in Arg10 and the two carboxylic oxygens in the Glu2 side chain.  After 

the distances are calculated, they are then compared with the distances listed in the NMR 

distance constraint file. 

To determine whether salt bridges and π-stacking interactions are deemed 

possible, distances are calculated for each heavy atom pair involved in the putative 

interaction and if more than one pair of heavy atoms is considered, the lowest distance 

per step is used.  Four polar side chain interactions are considered:  Glu2···Arg10, 

Lys1···Glu2, Glu2···Arg10, Glu2···His12, Glu2···His12, Glu2···Lys7, and Lys7···Glu2.  
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Two heavy atoms in Arg, Glu, and His are included for distance calculations whereas a 

single nitrogen atom in Lys is included.  Therefore, four distances are calculated between 

Glu and Arg and between Glu and His but only two distances are calculated between Lys 

and Glu.  The charged polar side chains are considered in proper orientation if the 

distance between any two terminal heavy atoms of the side chains is less than 3.5 Å.  The 

aromatic rings between Phe8 and His12 are implicated in π-stacking interactions; 

distance calculations are performed using the heavy atoms of the phenyl ring of Phe8 and 

the imidiazole ring of His12. The geometric configuration between the two aromatic 

rings is conventionally defined as improper dihedral angles of ±90° between Cδi–Cγi··· 

Cγj–Cδj of each aromatic ring and the overall distance between the heavy atoms of the 

two aromatic rings is below 6 Å (41) (Figure 2.2).  Secondary structures are determined 

by the program STRIDE (42), which classifies secondary structures on the basis of 

backbone dihedral angles and H-bond interactions.   

The 3JHN–Hα and 3Jφ coupling constants are calculated using the Karplus equations 

 
Figure 2.2 Geometric orientation of aromatic 
rings for possible π-stacking.  The left figure 
shows aromatic rings parallel to each other and 
slighly out of phase (coplanar), whereas the 
right figure represents two aromatic rings 
perpindicular to one another for π-stacking (T-
shaped).  Figure from ref.  (41). 

0° ±90°
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(43, 44) (eq. (2.1) and (2.2)) for residues 3–13.   

 3JHN−Hα = 6.7cos2θ −1.3cosθ +1.5  
  (2.1)

 5.0cos2.0cos8.1 233 +−== θθαϕ CCNCJJ   (2.2)

where the angle θ is the dihedral angle for H–N–Cα–Hα or for C–N–Cα–C.  The ranges 

of 3JHN–Hα and 3Jφ coupling constants are calculated from the respective dihedral angles of 

all NMR models.  The J-coupling constants are calculated for all simulations and are 

compared with the minimum and maximum NMR model J-coupling constants (Table 

2.1).  For DIP simulations, an average J-coupling constant and its standard deviation are 

calculated after the conformations have reached equilibrium (4–8 ns). 

For DIVE simulations, the atomic velocity and the kinetic energy perturbations 

occurs every 20,000 steps, and one conformation that has a temperature lower than 10 K 

is selected within a 20,000 step range because the conformation corresponds to the lowest 

PE within that range.  For example, one conformation is selected within the range of 0–

20,000 steps.  A conformation is considered for further simulation and for further 

analysis when the conformation corresponds to the lowest PE from among all 

conformations selected from each segment of 20,000 steps. 

Hydrogen bond (H-bond) calculations and cluster analysis are done for both 

individual conformations found in both DIVE and DIP simulations. H-bonds are 

Table 2.1 Range for coupling constants.  JHN–Hα from experiment and Jφ calculated 
 Jφ 
 Thr3 Ala4 Ala5 Ala6 Lys7 Phe8 Glu9 Arg10 Gln11 His12 Met13

Min 0.49 0.81 0.68 0.69 0.63 0.97 0.91 0.73 0.51 0.78 0.49
Max 0.71 2.1 0.94 0.88 0.91 1.25 1.07 0.99 0.85 1.04 0.59

      
 JHN–Hα 
 Glu2 Thr3 Ala4 Ala5 Ala6 Lys7 Phe8 Glu9 Arg10 Gln11 His12 

Min 5.18 1.75 3.14 3.43 3.35 2.29 2.99 2.91 3.62 9.24 5.65
Max 8.9 4.9 4.6 4.58 4.88 3.26 3.66 4.3 6.35 9.5 7.57
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conventionally defined by a range of 180.0° ± 60.0° for the X–H···X1 angle where X and 

X1 are polar heavy atoms, with a 3.5 Å distance between polar heavy atoms and with an 

appearance of more than 5% in the simulations. H-bonds for DIP simulations are 

calculated for the conformations corresponding to the lowest PE of each simulation. 

Cluster analysis offers an alternative way to classify conformations on the basis of 

similar secondary structures; the analysis technique groups conformations into families 

without consideration of the PE.  The technique also allows qualitative evaluation of the 

entropic contribution from a particular group of conformations.  Cluster analysis is done 

both for the DIP and the DIVE simulations based on their rmsd’s from the NMR structure 

and using the fixed-radius clustering algorithm using MMTSB (32).  The algorithm uses 

an iterative process with an error tolerance of 0.5 and a least-squares fit for alignment of 

the conformations (45).  To be classified within a cluster, a conformation must lie within 

a range of 3.0 Å compared with the cluster centroid, an average conformation within the 

cluster.  The conformations are compared to each other by excluding the first two 

residues, Lys1 and Glu2, which are not within the α-helical region. 

2.3. Simulation results and discussion 

2.3.1. Divergent path (DIP) simulations 

Ten conformations are simulated at 300 ± 20 K to determine whether the 

experimental conformation can be reproduced near physiological temperatures.  The 

experimental conformation has an α helix extending from Tyr3–Met13 with the 1–4 

backbone H-bonds.  Three charged polar side chain pairs are implicated in stabilizing the 

α helix:  E2R10, E2H12, and E9H12 (4, 6, 7, 9, 10, 21, 22, 46-48).  π-stacking between 
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the aromatic rings of Phe8 and His12 are also suspected to stabilize the secondary 

structure (10, 11, 48, 49). 

Four of the simulations have average backbone atom rmsd’s below 2.0 Å relative 

to the experimental conformation:  nmr (Figure 2.3b), nmr′ (Figure 2.3e), nmr″ (Figure 

2.3h), and xray (Figure 2.3c).  Yet, the average PE of each simulation differs; nmr″ and 

nmr differ by 5.4 kcal/mol; the nmr′ and xray simulations experience the least PE 

difference (0.3 kcal/mol).  This is mostly likely because the flexible residues (Lys1 and 

Glu2) and the side chain configurations vary.  The salt bridge between the side chains of 

Glu2 and Lys7 are common in all four simulations.  Two of the interactions (E2R10 and 

E2H12), which are implicated in stabilizing the secondary structure, also fluctuate during 

the simulations; the close proximity between Glu2 and His12 is only found in the nmr′ 

simulation whereas simulations starting from the xray structure do not exhibit 

interactions between Glu2 and Arg10.  Glu9 and Arg10 are also found in close proximity 

for the simulations labeled nmr and xray, but this interaction is not documented in the 

literature.  All four simulations reveal that the aromatic side chains of Phe8 and His12 are 

in a geometric configuration similar to experiment.  The simulations exhibit between 

40% and 60% of the NMR distance constraints in agreement with experimental data.  30–

40% of the 3JHN–Hα coupling constants and 40–50% of the calculated 3Jφ coupling 

constants agree with the experimental data; in other words, 30–40% of the H–N–Cα–Hα 

dihedral angles and 40–50% of the C–N–Cα–C dihedral angles correspond to the 

experimental structure within 13–15% error.  Because the percent of coupling constants 

and distance constraints are unexpectedly low, one cannot solely depend upon these 
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calculations as criteria for how well calculated structures agree with the NMR model 

structures.   

The ext′ (Figure 2.3d), ext″ (Figure 2.3g), xray′ (Figure 2.3f), and xray″ (Figure 

2.3i) simulations varied more considerably in their conformation than the previous 

simulations.  For the ext′ simulation, the average α helix extends from Thr3 to Gln11 

whereas the ext″ and xray″ simulations are composed of α helices ranging from Glu2 to 

Arg10 and ranging from Glu2 to Gln11, respectively.  The average α helix for the xray′ 

simulation is similar to that found in the ext″ simulation, but backbone atom rmsd’s for 
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Figure 2.3 Representations of average equilibrated conformations (yellow) relative to NMR 
model 1 (magenta).  Conformations are fitted to the NMR model about residues 3–13.  PEs 
and backbone atom rmsd’s (residues 3–13 relative to all NMR models) are listed with 
standard deviation in parentheses. 
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xray′ and ext″ relative to the experimental conformation vary because Gln11–Met13 vary 

in their orientation.  The PE of ext′, interestingly, is higher than that of the other three 

conformations (≈ 8 kcal/mol between ext′ and xray′) although its average backbone atom 

rmsd is lower relative to the NMR model.  The side chains of Glu9 and Arg10 are 

consistently within proximity to form a salt bridge during the four simulations, but side 

chains of Lys1 and Glu9 appear similarly close to each other during 22% of the ext′ 

simulation.  The aromatic side chains of Phe8 and His12 achieve geometric configuration 

for π-stacking only for the xray′ simulation, but the distance and the angle between the 

aromatic rings fluctuate considerably.  Distances calculated for the four simulations are 

found to agree with 45–50% of the experimental distance constraints whereas the 3JHN–Hα 

coupling constants and the calculated 3Jφ coupling constants are respectively within 25–

30% and 25–35% of the experimental values with 12–13% error.  The percent agreement 

for the distance constraints and for the coupling constants appear lower for the 

conformations whose rmsd’s from the NMR structure are lower.  A slight shift in the 

dihedral angles can affect the calculations of the coupling constants, and if the atomic 

distances are not within the desired range although close, the distance is excluded from 

consideration.  In other words, the distance constraints and coupling constants may be 

close to the expected values but are discounted because they are not within the acceptable 

range. 

Two other conformations, which are not similar to the experimental conformation, 

are simulated.  The ext simulation (Figure 2.3c) produces an average conformation 

composed of an α helix from Thr3 to Phe8 with Glu9–Met13 as a flexible region.  We 

unexpectedly find a β hairpin (Figure 2.3j) in the DIVE simulation, and the secondary 
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structure, after equilibration, retains β strands extending from Glu2 to Ala4 and from 

Arg10 to His12 separated by a type I β turn.  The ext conformation is 7 kcal/mol higher 

in energy than the α-helical ext′ conformation but is 4 kcal/mol lower than the β hairpin.  

For the ext simulation, the side chains of Glu9 and Arg10 and of Glu2 and His12 are less 

than 3.5 Å apart, but because Glu9–Met13 is flexible, the aromatic side chains do not 

align properly.  The β hairpin structure experiences possible interaction between the 

charged polar side chains of Glu2 and His12, but the aromatic side chains are not able to 

align because of backbone conformation.  The distance constraints and the coupling 

constants are close those of calculated conformations described previously, but not 

surprisingly, the percent agreement between calculated coupling constants of the β 

hairpin and coupling constants measured the experimental structure is only 45 ± 2%.  

With only 163 distance constraints, the decent agreement is not too surprising. 

Structural determination based solely upon PE and conformational analysis of 

individual structures may not give the full picture.  Another way of analyzing 

conformations is through the use of cluster analysis.  Cluster analysis permits the 

conformations to be grouped according to conformational similarities by rmsd 

comparisons and offers qualitative insight into the entropic component of free energy.  

The groups, or “clusters”, are classified on the basis of similar secondary structures by 

rmsd comparisons, and the average conformation of the cluster is called the centroid. 

When the ten simulations are analyzed by cluster analysis, two clusters are 

composed of conformations with backbone atom rmsd’s (for residues 3–13) relative to 

NMR model 1 that are less than 2.0 Å   The conformation that best represents the two 

centroids consists of α helices from Ala4 to Gln11.   The representative conformation of 
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the largest cluster has a backbone atom rmsd (residues 3–13) of 2.5 Å relative to NMR 

model 1.  Finally, the fourth largest cluster has a representative conformation consisting 

of an α helix from Thr3 to Lys7 with a backbone atom rmsd (residues 3–13) of 4.4 Å 

relative to NMR model 1.  From cluster analysis, we surmise that the experimental 

conformation can be reproduced and maintained near physiological temperatures.  

Because clusters whose conformations are similar to the experimental conformation 

contain the most representatives, we can qualitatively ascertain that they should make a 

high entropic contribution to the free energy, and we can also qualitatively conclude that 

the non-native conformations, although appearing to have favorable entropy contributions 

to the free energy, are not as favored as the experimental conformation. 

The DIP protocol, when used in conjunction with the DIVE protocol, allows the 

simulated conformations to sample the PE surface near physiological temperatures.  

Some of the noncovalent interactions observed experimentally are present during the DIP 

simulations although others are not.  The increase in kinetic energy from the initial 

conformations contributes to the alteration of some noncovalent interactions.  The β 

hairpin might be expected to undergo a conformational change and collapse into the 

native α helix, but the β hairpin is stable despite the increase in kinetic energy. 

Although the global PE minimum located from the DIP simulations displays an α 

helix extending from Glu2 to Gln11, one major feature stands out—all of the average 

equilibrated PEs of the equilibrated structures are within a relatively small range of 23 ± 

7 kcal/mol (Figure 2.5).  This may indicate that the helical conformations are located 

within a single PE minimum containing numerous substates.  The minimum, in fact, may 

contain substantial energy barriers separating the various substates and preventing their 
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interconversion.  The height of the barriers has not been determined, but this hypothesis 

certainly seems feasible on the basis of the data presented. 

In other words, the simulations are experiencing a kinetic energy trap (50-54), 

which occurs when a non-native conformation that is unable to cross the PE barrier.  The 

DIP protocol finds several local minima on the PE surface, which are close in PE but do 

not converge into a single low-energy conformation.  The lack of conformational 

convergence suggests that the minima are surrounded by high PE barriers.  Based upon 

the three possible disconnectivity graphs (Figure 2.4), the ‘weeping willow’ model 

probably represents our present findings best.  If the ‘palm tree’ model was relevant, the 

conformations should converge over time into a single conformation with similar PE, or 

if the ‘banyan tree’ model was valid, all conformations should have similar PE but not 

converge to a single conformation.  Standard deviations of the simulations suggest that 

the average PEs should overlap, but the standard errors of the mean (≈ 0.1 kcal/mol) of 

the simulations, which quantifies the accuracy of the average PE, suggest that the PEs are 

fairly accurate. 

The “weeping willow” model can be explained from a biological standpoint.  

Helices and hairpins differ within their overall makeup (e.g., H-bond formation and 

Figure 2.4 Three pairs of PE landscapes (left) and their corresponding disconnectivity 
graphs (right).  The graphs are drawn as PE (vertical axis) relative to arbitrary 
coordinates (horizontal axis).  The endpoints of the disconnectivity graphs represent PE 
minima, and the points where the branches are joined correspond to a common PE 
“superbasin”.  For the PE landscape, the wells represent the minima of a system 
surrounded by PE barriers.  Reprinted with permission from ref.  (54).  Copyright 2006 
American Chemical Society 
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backbone dihedral angles).  To transition from one conformation to another (e.g., β 

hairpin → α helix) requires noncovalent bond breaking (salt bridges and H-bonds) and 

noncovalent bond re-formation.  The difference between two PE minima may seem 

small, but the amount of energy required to break and re-form bonds translates into high 

PE barriers and prevents transitions between conformations.  Alternatively, the 

experimental conformation may lie within a wide-basin local minimum, whereas the 

global PE minimum resides in a deep, narrow well. 

2.3.2. Disrupted velocity (DIVE) simulations 

Several conformations are sampled in the six simulations using the disrupted 

velocity protocol.  Any conformation found below 10 K and corresponding to the lowest 

Figure 2.5 Average potential energies with standard deviation bars. 
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PE within a 20,000-step range was considered for further simulation and for further 

analysis.  For the DIVE simulations of C-peptide, 531 conformations meet this criteria 

and the PE for the conformations vary by 385 kcal/mol.  A conformation from each of the 

six simulations is selected because the conformation meets the aforementioned criteria 

and corresponds to the lowest PE within the simulation. 

In the following simulations, five charged polar side chain pairs (E2R10, E9R10, 

E2K7, E2H12, and E9H12) are capable of forming salt bridges.  Two of the side chain 

pairs (E2R10 and E9H12) are suspected to stabilize the α helix (2-5).  The aromatic rings 

of Phe8 and His12 are documented to be in a geometric configuration that supports π-

stacking (11), but none of the calculated conformations below exhibit this configuration 

primarily because the angle between the aromatic rings is more than ±90° (neither 

coplanar nor T-shaped).  Most of the conformations have 45–60% calculated distances 

within 2–5% of the experimentally-calculated distance constraints.  Relative to the 

experimental data, 35–55% of the 3JHN–Hα coupling constants and 35–60% of the 3Jφ 
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Figure 2.6 Overlays of low PE conformations (yellow) relative to NMR 
model 1 (magenta) of C-peptide and fit to residues 3–13.  Conformations 
are listed by the simulation in which they are derived and by a unique 
identifier, in parenthesis. 
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coupling constants are maintained within 10–15% of experimental values. 

Of the structures calculated using the DIVE protocol, nmr′ (Figure 2.6b) and nmr″ 

(Figure 2.6f) are most similar to the experimental conformation. They both are composed 

of an α helix extending from Ala4 to Gln11 whereas Ala3–Met13 comprise the 

experimentally observed α helix.  Between the nmr′ and nmr″, the backbone atom rmsd’s 

of the α helical region differs by 0.1 Å, but the nmr′ conformation is 2 kcal/mol higher in 

PE than the nmr″ conformation.  Both conformations similarly exhibit two charged polar 

side chain pairs (E2R10 and E2K7). 

The ext′ (Figure 2.6a), ext″ (Figure 2.6e) xray′ (Figure 2.6c), and xray″ (Figure 

2.6g) conformations have α-helical secondary structures that are shorter than that 

observed in the experimental conformation.  An α helix extending from Glu2 to Arg10 

comprise both the ext″ and xray′ conformations whereas the ext′ and xray″ conformation 

have an α helix extending from Glu2 to Gln11.  The xray″ conformation has the lowest 

calculated PE of the six conformations.  The ext′ conformation is 7 kcal/mol higher than 

the xray″ conformation, and the ext″ and the xray′ conformations differ by 5 kcal/mol.  

Unlike the other conformations found with the DIVE protocol, 3Jφ coupling constants for 

ext″ agree with only 9% of the experimental 3Jφ coupling constants, which suggests that 

the conformation is not similar to the experimental conformation. However, xray′ has a 

similar secondary structure and maintains 46% of the 3Jφ coupling constants.  The C–N–

Cα–C dihedral angles differ slightly between the two conformations (0.3 Å), which may 

account for the variation in calculated coupling constant. 

An unusual conformation, a β hairpin with a type IV turn (Figure 2.6d), is found 

among the conformations calculated by using the DIVE protocol. The β hairpin originates 
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in the simulation from the x-ray crystal structure.  Residues 2–6 and 9–13 comprise the β 

strands whereas residues 7 and 8 form the type IV β turn.  The charged polar side chains 

of both Glu2 and Glu9 are in close proximity to His12.  The two glutamines are 

positioned close to different imidiazole nitrogens.  Furthermore, the N- and C-termini of 

the peptide are less than 3.5 Å apart.  The β hairpin retains a similar percentage of the 

distance constraints and of the 3Jφ coupling constant compared to the other calculated 

structures.  The non-native conformation should have a lower percentage of the distance 

constraints and the coupling constants that agree with experiment, but the similarities to 

other calculated conformations suggest that relying solely upon the percentage of 

coupling constants or distance constraints may give a misleading picture.  

For the DIVE simulations, 456 conformations are classified into conformational 

families by cluster analysis.  The largest cluster (103 conformations) has a representative 

conformation consisting of an α helix extending from Ala4 to Gln11. The second largest 

cluster (56 conformations) has a representative conformation composed of an α helix 

from Thr3 to Gln11.  Three families of conformations contain 21 conformations, so the 

three conformations may share a qualitatively similar entropic contribution.  Two of the 

clusters contain α helices of different lengths whereas one cluster has no detectable 

secondary structure. 

Overall, the DIVE protocol is able to reproduce the experimental conformation 

and samples several additional conformations.  Six clusters show some helical 

conformation.  Some of the conformations apparently have a more flexible C-terminus 

than the ordered structure of the experimental conformation.  Surprisingly, a β hairpin is 

observed in several simulated structures.  The secondary structure is quite unusual for this 
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polypeptide but not improbable.  To our knowledge, a β hairpin as not been reported for 

this peptide, but it is not an improbable structure. 

The DIVE simulations offer the opportunity to map the PE surface.  We find that 

the xray″ conformation resides in the lowest PE minimum.  Near 0 K, the entropy does 

not contribute much compared with the PE and therefore, we suggest that the xray″ 

conformation resides in the global free energy minimum at low temperatures.  We 

suspect that the other conformations may eventually converge to this conformation, but at 

low temperatures, the PE barriers may be relatively high and prevent the transition 

between conformations. 

2.4. Conclusions 

We have tested both the DIVE and DIP protocols for their abilities to reproduce 

the observed α-helical structure of the C-peptide of RNase A near 0 K (DIVE 

simulations) and near 300 K (DIP simulations). Our simulations show that the 

experimental conformation can be reproduced within 1.0 Å backbone atom rmsd of the 

NMR model by using DIVE simulations of an initial α helix structure and within 0.9 Å 

rmsd of the NMR model by using DIP simulations, starting from an α helix structure.  

Cluster analysis of the DIP simulations shows that the two most populous clusters each 

have an rmsd less than 2.0 Å from the NMR structure and together contain 40% of the 

structures analyzed. Similarly, cluster analysis of the DIVE simulations shows that the 

two largest clusters display α-helical conformations and contain 35% of the structures 

analyzed. Thus, even though the structure representing the global potential energy (PE) 

minimum found by using each of the two methods is an α helix extending from Glu2 to 

Gln11rather than an α helix extending from Thr3 to Met13, the experimental α-helical 



 

 51

conformation is only 14–18 kcal/mol higher in energy than the global minimum and α-

helical conformations appear most frequently among the PE minima located. 

We also find a β hairpin conformation that is a local PE minimum only 22 

kcal/mol above the global PE minimum.  We propose that C-peptide of RNase A can fold 

into a β hairpin but is more likely to fold into the experimental conformation under the 

conditions of the experiment.  On the basis of the cluster analysis, we further propose that 

the experimental conformation lies within a wide-basin local PE minimum surrounded by 

high PE barriers, which prevent simulated structures from refolding into the conformation 

residing in the global PE minimum.  We have shown that the DIVE protocol is able to 

locate many different conformations within PE minima near 0 K using different starting 

structures.  DIVE allows a simulation to map the PE surface of a system near 0 K, 

whereas DIP used in conjunction with DIVE, can determine whether the low PE 

conformations are truly the conformations maintained at higher temperatures. 

Finally, our simulations have shown that the experimental conformation can be 

reproduced well.  We also report that a β hairpin conformation has been found.  The non-

native β hairpin appears stable during our simulations.  We suspect that C-peptide of 

RNase A can fold into a β hairpin but the native α-helical conformation is more stable.  

We propose that the experimental conformation lies within a wide-basin local PE 

minimum surrounded by high PE barriers, which prevent it from refolding into the 

conformation residing in the nearby global PE minimum. 
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3. Exploring low-potential energy structures of a tryptophan zipper 

3.1. Introduction 

β hairpins are a common tertiary structural motif of proteins.  Compared to α 

helices though, they tend to have more hydrophobic side chains exposed to the solution.  

In aqueous solutions, this can be detrimental to conformational stability; exposed 

hydrophobic cores can lead to aggregation as in amyloid diseases (1).  Several force 

fields tend to favor helical conformations over the native β hairpin (2-4).  With the advent 

of modern force fields, β hairpins have been simulated successfully (1, 4-24). 

One family of polypeptides, tryptophan zippers (25) (trpzips), are stabilized by π-

stacking of four alternating tryptophans.  Structures of six different trpzips with different 

residues and different lengths were determined by NMR spectroscopy; three are 12-mers 

and three are modeled after the B1 domain(41-56) of Streptococcal protein G.  Trpzip2 

(Figure 3.1) is a 12-residue polypeptide that is the most stable of the 12-residue trpzips.  

Residues 6 and 7 form a type I’ β turn, and Trp2, Trp4, Trp9, and Trp11 are implicated in 

π-stacking characteristic of tryptophan zippers.  Trpzip2 has been simulated by canonical 

simulations, replica exchange, and generalized ensembles (2, 6, 15, 18, 26-39). 

Tryptophan zippers have been studied extensively both experimentally (25, 26, 

40-42) and computationally (6, 15, 18, 27-36, 38, 42)  and results suggest that the 

 
Figure 3.1 Trpzip2 NMR model 1 in cartoon 
with tryptophan side chains displayed. 
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tryptophan zipper family is composed of β hairpins.  Reportedly, the major reason for the 

stability of tryptophan zippers is, as the name implies, the alternating tryptophans and 

their putative π-stacking interaction.  The turn region and hydrogen bonds also play an 

important role in the stabilization of the conformation (15, 26, 36, 41, 42).  Meanwhile, 

the termini are more flexible. 

Our group recently developed two molecular dynamics (MD) protocols:  the 

disrupted velocity (DIVE) search protocol and the divergent path (DIP) search 

simulations (39, 43).  Both simulation protocols allow the system to traverse the potential 

energy (PE) surface more quickly than conventional MD simulations.  The DIVE 

protocol perturbs both the magnitudes (kinetic energy) and directions of atomic velocities 

allowing the system both to overcome and to circumvent PE barriers.  This, in turn, 

allows the system to locate conformations in PE minima near 0 K.  The DIP protocol 

allows a system to traverse the PE surface in multiple directions simultaneously at a 

constant kinetic energy.  Therefore, a system can locate PE minima by circumventing PE 

barriers.  When the two protocols are used in conjunction with each other, several 

conformations may be found giving the system an opportunity to locate the lowest PE 

conformation near physiological temperatures. 

The protocols have been tested on a 13-residue model of alanine (39, 43), Trp-

cage (39), the 18-residue peptide F (39), and C-peptide of ribonuclease A (chapter 1).  

Each of these previous simulations involved an α helix, but we wanted to expand our 

protocol validation to β hairpins.  We decided upon a simple case study by simulating 

tryptophan zipper 2 (trpzip2) (25).  The goal is to determine whether the new protocols 
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can locate the lowest potential energy conformations of trpzip2 and whether the lowest 

potential energy conformation corresponds to the native conformations. 

3.2. Algorithms and simulations 

3.2.1. Theory 

Proteins fold into a native conformation by locating the global free energy 

minimum.  The free energy surface, however, is not easy to represent using molecular 

dynamics (MD) because of the temperature dependence and because of the challenge of 

calculating entropic contributions.  MD instead simulates systems like protein folding on 

the temperature-independent potential energy surface.  Potential energy is typically the 

major contributor to the free energy and can therefore give a close approximation to the 

free energy, especially at temperatures near 0 K.  Our protocols focus on mapping the PE 

surface because of the aforementioned reasons. 

Simulations using both the DIVE and the DIP protocols begin with an initial 

conformation simulated simultaneously with multiple, independent copies.  Each copy is 

randomly assigned an initial velocity.  The disrupted velocity (DIVE) search protocol is a 

microcanonical simulation (constant number of atoms, volume, and energy), but the 

divergent path (DIP) search protocol is a canonical ensemble simulation (constant 

number of atoms, volume, and temperature). 

The atoms within each copy are assigned different initial atomic velocity 

magnitudes in the DIVE protocol.  The different magnitudes allow the simulations to 

begin with several different initial kinetic energies, thus different initial temperatures.  

The simulations evolve for an assigned period before the atomic velocities are reassigned 

according to p' ≡ σ1/2p where p and p' are the momenta of the particles before and after 
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atomic velocity reassignment, respectively.  σ is a scaling parameter that determines the 

magnitude of the simulation’s kinetic energy after atomic velocity reassignment.  When σ 

> 1, kinetic energy is added by increasing atomic velocities, but when 0 < σ < 1, kinetic 

energy is removed by decreasing atomic velocities.  When the atomic velocities are 

reassigned, both the magnitudes of the velocity vectors are rescaled and their directions 

are changed. 

The scaling parameter σ may be chosen before starting the simulation or it may be 

calculated during the simulation using one of two different algorithms.  σ may be 

calculated during the simulation by σ  = |T – ΔT|⁄T, where ΔT is defined as the difference 

in temperature before and after atomic velocity rescaling.  The parameter may 

alternatively be defined by using a target temperature Ttarget to be achieved after atomic 

velocity rescaling with σ  = Ttarget ⁄T. 

The DIVE protocol also uses a predefined threshold temperature.  When 

simulation temperatures fall below the threshold temperature, kinetic energy is added to 

increase the temperature.  If the simulation temperatures rise above the threshold 

temperature, especially after velocity rescaling, kinetic energy is removed thus lowering 

the simulation temperature.  During one typical cycle of a DIVE simulation, heating 

occurs once whereas cooling occurs multiple times.  Heating is used to surmount energy 

barriers, whereas cooling allows the system to sample potential energy minima near 0 K. 

For DIP simulations, the atoms are assigned initial atomic velocities randomly 

according to a Gaussian distribution (44).  Within different copies, the magnitude of an 

atom’s velocity is the same but the directions are different, which allows the simulations 
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to maintain a constant temperature, while each copy samples different energies on the PE 

surface (39). 

3.2.2. Data collection 

For the simulations, the sequence of trpzip2 (pdb code: 1LE1, sequence: 

SWTWENGKWTWK-NH2) is selected.  Three starting conformations are used for the 

simulations:  fully-extended, β-hairpin, and α-helical conformations.  As represented by 

the NMR models, Glu5 is deprotonated and Lys8 and Lys12 are protonated.  For the β 

hairpin, model 1 from the 20 NMR models is selected because it best represents the 

conformation according to the PDB file header.  To create the fully extended and the α-

helical conformations, we used AMBER 8’s (45) xleap feature. The appropriate φ and ψ 

dihedral angles are selected to form the fully extended conformation (φ = -180° and ψ = 

+180°) and the α-helical conformation (φ = -60° and ψ = -40°).  From these three initial 

simulations, the lowest potential energy conformations are located using both the DIVE 

and DIP protocols.  The lowest potential energy conformations from the second round of 

DIVE simulations are further simulated using the DIP protocol.  In total, six DIVE 

simulations and nine DIP simulations are run.  Conformations are designated by their 

derivation from the initial conformation.  For instance, the second round of DIVE 

simulations obtained from the fully-extended conformation is assigned the name “ext″”. 

The PEs of all conformations are minimized for 100 steps using steepest descent.  

Minimization is done in implicit solvent (46) using the Multiscale Modeling Tools for 

Structural Biology (MMTSB) (47) program.  After minimization, the Molecular 

Modeling Toolkit (MMTK) (48) is used to convert the coordinate files into files suitable 
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for our suite of programs.  The atomic velocities are scaled to an initial temperature of 

300 K (used in DIP simulations only). 

Other parameters are included during the simulations.  Covalent bond distances to 

hydrogen are constrained with the SHAKE (49, 50) algorithm.  Temperature is 

maintained by the Nosé-Hoover Chain method (51), and the equations of motion are 

integrated by the velocity-Verlet method (52).  All simulations are run with a Generalized 

Born/surface area  (GB/SA) implicit water solvent (46) with an external dielectric 

constant of 78.5, an internal dielectric constant of 1.0, surface tension at 0.005 kcal/mol-

Å2, and an offset of 0.9 Å.  Lennard-Jones and electrostatic cutoffs are set to 999 Å to 

represent an infinite cutoff.  A modified version of Amber99 (2) is used for minimization 

and data collection.  Six copies are simultaneously simulated using the DIVE and DIP 

protocols, and simulations are run for 4 million steps/copy with a 2 fs time step (4 × 106 

steps/copy × 2 fs/step × 6 copies/simulation = 48 ns total simulation time).  Data is output 

every 250 steps (0.5 ps). 

For DIVE simulations, each copy is initialized with atomic velocities scaled to  a 

different temperature (10 K, 50 K, 100 K, 300 K, 600 K, and 1000 K).  Velocity 

reassignment for each copy occurs after 20,000 steps.  The scaling parameter for heating 

is calculated from TT ett arg=δ , and the scaling parameter for removal of kinetic energy 

is set to 0.25.  The threshold temperature is 10 K.  So simulations are heated to a Ttarget = 

1000 K when the system temperature drops below the threshold temperature, but when 

the system temperature rises above the threshold temperature at the time of velocity 

reassignment, it is cooled to 0.25 of its temperature T. 
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For DIP simulations, all simulations are run at a temperature of 300 ± 20 K.  As 

mentioned above, identical atoms within each of the six copies of each simulation are 

assigned the same atomic velocity magnitudes to maintain the desired temperature, but 

atomic velocities are assigned different directions.  Thus, each copy is allowed to search 

for different PE minima. 

3.2.3. Data analysis 

The suite of MD programs, AMBER 8 (45), is used to calculate backbone atom 

root-mean-square deviations (rmsd’s), all-atom rmsd’s, tryptophan-only (indole ring) 

rmsd’s, distances and angles involving atoms in hydrogen bonds (N–H···O), two charged 

polar side chain distances (Glu5···Lys8 and Glu5···Lys12), distances and improper 

dihedral angles between the indole rings, H–N–Cα–Hα and φ dihedral angles (for 3JHN–Cα 

and 3Jφ coupling constants calculations).  Secondary structures are determined by the 

program STRIDE (53), which classifies secondary structures on the basis of backbone 

dihedral angles and H-bond interactions.  The backbone atom rmsd’s are calculated 

relative to NMR model 1 and all other NMR models.  The 3JHN–Cα and 3Jφ coupling 

constants are calculated using the Karplus equation (54, 55) (eqs. (3.1) and (3.2)).  The 

range of 3JHN–Hα coupling constants are found from experimental values, but the range of 

3Jφ coupling constants are calculated from the C–N–Cα–C dihedral angles of all 20 NMR 

models. 

 3JHN−Hα = 6.7cos2θ −1.3cosθ +1.5 (3.1)

 5.0cos2.0cos8.1 233 +−== θθαφ CCNCJJ (3.2)

where the angle θ is the dihedral angle for H–N–Cα–Hα or for C–N–Cα–C.  The ranges 

of 3JHN–Hα and 3Jφ coupling constants are calculated from the respective dihedral angles of 
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all NMR models.  According to convention, hydrogen bonds (H-bonds) are defined by 

N–H···O angles in a range of 180.0° ± 60.0°, N···O distances less than 3.5 Å, and an 

appearance during more than 5% of the simulation.  Each low energy conformation is 

analyzed to locate H-bonds.  The aromatic ring distances are determined between the 

heavy atoms of the indole rings of the tryptophan side chains, and the improper dihedral 

angles are calculated for CδTrpi–CεTrpi···CεTrpj–CδTrpj between tryptophans i and j (56).  By 

convention, the proper geometric configuration for π-stacking between the Trp-pairs 

occurs when the distances between heavy atoms are below 6 Å with a dihedral angle 

within a range of 0° ± 90°. 

Cluster analysis is convenient way to analyze a large number of conformations by 

grouping or “clustering” those with similar conformational features.  Each cluster is 

defined by the comparison of rmsd’s between conformations, to categorize the 

conformations within a group.  The average conformation of the cluster is called the 

centroid.  The clustering procedure using MMTSB (47) consists of an iterative process 

with an error tolerance of 0.5 and a least-square fit rmsd comparison of the conformations 

(57) .  Clusters are defined as having a radius of 3.0 Å. The analysis is done for 

simulations carried out using both the DIVE and DIP protocols.  Cluster analysis for the 

DIVE protocol utilized 477 conformations.  For the DIP protocol, conformations are 

obtained from all ten simulations.  The conformations used are obtained after the 

equilibration of the polypeptide (as many as 8000 conformations per simulation).  Every 

fourth conformation is extracted for the actual cluster analysis of DIP simulations.  
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3.3. Simulation results and discussion 

By using the disrupted velocity (DIVE) and divergent path (DIP) protocols, the 

native conformation of trpzip2 is located.  Other low-PE, non-native conformations are 

also encountered.  The non-native conformations are lower in potential energy (PE) than 

the native conformation when simulated near 0 K; yet, the native conformations has a 

lower average PE near physiological temperatures.  More detailed analysis of the 

simulations allows some insight into the stability of the non-native conformations near 

physiological temperatures as well as at lower temperatures. 

The remainder of this section describes the various conformations encountered 

during the simulations.  The two conformations closely resembling the native β hairpin 

shall be described first.  These two conformations are equilibrated with the DIP protocol.  

Alternative conformations that are equilibrated by the DIP protocol shall then be 

mentioned.  Following the aforementioned descriptions, the conformations from the 

DIVE protocol shall be described.  The conformational descriptions shall follow the same 

order of the corresponding equilibrated conformations.  Finally, a discussion of the 

significance of the simulations and cluster analysis results shall be provided. 

3.3.1. Divergent path (DIP) simulations 

Two β hairpins are simulated using the DIP protocol. NMR model 1 and a β 

hairpin from the DIVE simulations are equilibrated to determine whether the secondary 

structure will undergo a conformational change.  Both β hairpin simulations (β, Figure 

3.2b and β*, Figure 3.2j) maintain their secondary structure with backbone atom rmsd’s 

below 1.0 Å relative to the experimental NMR model 1.  Unlike the native conformation 

(β strands: Trp2–Glu5 and Lys8–Trp11), the average equilibrated conformation of β 
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consists of β strands ranging from Trp2 to Trp4 and from Trp9 to Trp11 with a type IV β 

turn in between.  β*, on the other hand, is composed of β strands similar to the native 

conformation, but the β turn sifts from a type I’ (backbone dihedral angles of 60°/30° and 

90°/0° with a 20° range for residues i+1 and i+2, respectively) to a type IV turn.  The all 

heavy-atom and indole ring rmsd’s are below 2.0 Å relative to the native conformation.  

The two charged polar side chain pairs (Glu5···Lys8 and Glu5···Lys12) maintain proper 

distance during more than 30% of the simulation (with  ∠O···H–N < 120°).  The Trp2–

Trp11 and Trp4–Trp9 indole rings are in close proximity for proper π-stacking (ring 

distance < 6 Å, ring angle < ±90°), but similar to the native conformation, the indole 

rings between Trp4 and Trp11 are not aligned.  On average, more than 70% of the 3JHN–Hα 

coupling constants and more than 60% of the 3Jφ coupling constants agree with 

experimental data.   

Near 300 K, the stability of the β hairpin is attributed to interactions between 

charged side chain pairs and aromatic ring pairs.  Both β hairpins have the Glu5···Lys8 

and Glu5···Lys12 side chains in close proximity implying potential salt bridge formation.  

These structural features were not reported in other published simulation studies using 

explicit solvent and may be due to over-stabilization of salt bridges by the implicit 

solvent model (58, 59).  Nonetheless, the tryptophans are aligned within 2.0 Å for both β-

hairpin conformations as observed by Cochran, et al. (25) 
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The other conformations that are presented do not fold into a β hairpin.  Instead, 

we offer alternative conformations composed primarily of α helices.  The α helix is 

predominant, but the conformation fluctuates between this and the 310 or π helix.  The 

distance between the Glu5 and Lys12 charged polar side chains is less than 3.5 Å during 

the β′ simulation, whereas the Glu5 and Lys8 side chains are within close proximity 

during four simulations (α, β′, ext′, and ext″).  The native tryptophan pairs do not appear 
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α helix 
<V> = -370(9) kcal/mol 

β hairpin 
<V> = -382(5) kcal/mol 

<rmsd> = 0.7(0.1) Ẳ 

fully extended 
<V> = -361(8) kcal/mol 
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α″ 
<V> = -369(8) kcal/mol  

β″ 
<V> = -379(6) kcal/mol 

ext″ 
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 β* 

<V> = -382(5) kcal/mol  
<rmsd> = 0.6(0.1) Ẳ 

 

Figure 3.2 Average conformation from DIP simulations (yellow) overlaid with NMR model 
1 (magenta).  Conformations listed by the initialized conformation.  Backbone atom rmsd’s 
relative to all NMR models. 
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during any of the following simulations; however, the indole rings of Trp4 and Trp11 are 

properly aligned during three simulations (α′, α″, and β″).  Unlike the β hairpin 

simulations, the following simulations exhibit 10–30% of the H–N–Cα–Hα dihedral 

angles and 45–55% of the C–N–Cα–C dihedral angles relative to the coupling constants 

for the experimental data. 

Eight simulations yield average conformations with an helical secondary structure 

of varying lengths.  Simulations begun in both the α-helical (α, Figure 3.2a) and the fully-

extended (ext, Figure 3.2c) conformations give low-energy conformations exhibiting 

similar α-helical conformations.  The α helix simulation has the helix extending from 

Trp2 to Trp11, whereas the conformation labeled ext has the helix from Trp2 to Trp9.  

The ext′ (Figure 3.2f) simulation on average is composed of an α helix from Trp2 to 

Trp11.  When ext″ (Figure 3.2i) is simulated at 300 K, an α helix from Trp2 to Trp11 

comprises the average conformation.  α′ (Figure 3.2d) and α″ (Figure 3.2g) are similar in 

secondary structure (0.2 Å backbone atom rmsd):  an α helix from Trp2 to Asn6 and a 310 

helix from Lys8 to Thr10.  β′ (Figure 3.2e) is composed of an α helix from Trp2 to Lys8, 

whereas an α helix from Trp2 to Asn6 comprises β″, (Figure 3.2h). 

Because the potential energies for the various conformations are within such close 

proximity, we chose to use cluster analysis to judge the similarity of the conformations 

produced by each simulation.  Cluster analysis allows the conformations to be grouped on 

the basis of conformation similarities and allows for a qualitative analysis of the entropic 

component of free energy.  For the DIP protocol, 20,010 conformations are analyzed.  

Five clusters comprise more than 1000 conformations, and among these five clusters, the 
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β-hairpin motif is located in only one cluster, representing 4,004 conformations.  The 

other five clusters are composed of helical conformations. 

The β-hairpin cluster is the second largest cluster and allows for a plausible 

conformation.  Basing our results on simulation data indicates that the β hairpin is a 

possible secondary structure, and cluster analysis implies that the β hairpin is a dominant 

conformation.  The large number of conformations within the β-hairpin cluster 

qualitatively suggests that the entropy component of the free energy may favor β hairpins 

less than α helices solely on the basis of cluster analysis.  One would expect the native 

conformation to be highly favored compared with α helices, but cluster analysis suggests 

differently.  The stability of helical conformations indicates either that the 

experimentally-determined conformation is not, in fact, in the global free energy 

minimum, or that α helices may be favored entropically but the β hairpin may be 

energetically favored.  However, when both cluster analysis and the simulations are taken 

into account, β hairpins may indeed be the global free energy minimum at 300 K. 

One final point to note is the overlapping PE minima found during the DIP 

simulations (Figure 3.3).  Yang, et al. (18) mentioned that the trpzip2 free energy surface 

is rough which agrees with our simulations near physiological temperatures.  However, 

the overlapping potential energy minima also imply another interesting point.  The 

modified Amber99 force field (2) does not seem to be as biased towards α helices as 

Amber94 or Amber99 (2, 3, 19, 60-66). 
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In the previous chapter, we noted that the potential energy landscape can be 

described by disconnectivity graphs.  We suggest that a distinctive global PE exists for 

trpzip2, with PE minima separated by high-PE barriers.  High PE barriers are inferred 

simply because the conformations fail to converge into a single conformation.  According 

to Wales, et al. (67-69), this type of PE surface corresponds to the ‘weeping willow’ 

model (Figure 3.4) because the conformations fail to converge into a single conformation.  

The conformational energies appear to overlap on the basis of standard deviations, but 

according to the standard error (data not shown), the PEs are fairly accurate (±0.1 

kcal/mol).  Within the accuracy of the simulations, each conformation appears to reside 

in a local PE minimum, and the β hairpins have converged into a single PE minimum—

Figure 3.3 Average potential energies with standard deviation error bars for the ten
simulations. 
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the global PE minimum.  If the PE surface supported the ‘palm tree’ model, our 

conformations should have converged to a single PE minimum and its corresponding 

secondary structure. 

According to our simulations, trpzip2 adopts the β hairpin structure as the global 

PE minimum near physiological temperature, but cluster analysis implies that α helices, 

supported by cluster analysis, may be equally valid conformations.  Since α helices are 

reportedly not encountered during the actual folding process (6, 15, 18, 26-28, 30-35, 38, 

41), the local PE minima for α helices may form a narrow basin compared with the native 

β hairpin, which may reside in a wide basin. 

3.3.2. Disrupted velocity (DIVE) simulations 

DIVE simulations located 486 potential energy minima, spanning a range of 43 

kcal/mol (V = -499 kcal/mol to V = -456 kcal/mol).  One conformation that corresponds 

to the experimental conformation is described below.  The conformation closely 

resembling the experimental conformation is designated β* because it originated from a 

simulation starting from the native β hairpin. Six other conformations corresponding to 

the lowest PE conformations are also described below.   

Figure 3.4 Three pairs of PE landscapes (left) and their corresponding disconnectivity 
graphs (right).  The graphs are drawn as PE (vertical axis) relative to arbitrary 
coordinates (horizontal axis).  The endpoints of the disconnectivity graphs represent PE 
minima, and the points where the branches are joined  correspond to a common PE 
“superbasin”.  For the PE landscape, the wells represent the minima of a system 
surrounded by PE barriers.  Reprinted by permission from ref.  (68).  Copyright 2006 
American Chemical Society 
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Thirteen β-hairpins-like conformations are located during the DIVE simulations.  

The β hairpin (β*, Figure 3.5d) corresponds to the lowest PE among the thirteen, but is 

located among the higher PE conformations compared with the other conformations 

listed.  The β* conformation compares well with the experimental structure, as both 

structures display β strands between Trp2–Glu5 and Lys8–Trp11 with a type IV turn 

between Glu5–Lys8.  The backbone atom rmsd’s are less than 1.0 Å between β* and the 

experimental conformations, and the all heavy-atom rmsd is 1.9 Å compared with all 

NMR models.  When the heavy atoms of the indole rings are compared with all NMR 

models, they are within 2.1 Å of the native conformation.  Both experimentally-observed 

charged polar side chains (Glu5···Lys8 and Glu5···Lys12) are less than 3.5 Å apart.  The 

aromatic side chains for Trp2 and Trp11 and for Trp4 and Trp9 are oriented for proper π-

stacking (ring distance < 6.0 Å and ring angle < ±90°).  The Trp11 and Trp4 indole rings 

do not align because they are in a Y-formation as expressed within the native 
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α (α′) 
V = -498kcal/mol 

β (β′) 
V = -494 kcal/mol

ext (ext′) 
V = -497 kcal/mol

β (β*) 
V = -489 kcal/mol 
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α′ (α″) 
V = -498 kcal/mol 

β′ (β″) 
V = -497 kcal/mol

ext′ (ext″) 
V = -499 kcal/mol

 

 Figure 3.5 Conformations corresponding to the lowest PE (yellow) from 
DIVE simulations overlayed with NMR model 1 (magenta).  The 
conformations are listed by the initialialized conformation and with a 
unique identifier.  The rmsd is backbone atom rmsd relative to all NMR 
models. 
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conformation.  80.0% of 3JHN-Hα coupling constants and 72.7% of 3Jphi coupling constants 

agree with experimental data..   

The alternative conformations are primarily composed of varying lengths of α 

helices.  Ext″ (Figure 3.5c) corresponds to the lowest PE of the seven conformations and 

comprises an  α helix spanning the amino acids Ser1–Thr10.  The conformation ext′ 

(Figure 3.5g) is similar in conformation to ext″ (backbone atom rmsd 0.1 Å).  α′ (Figure 

3.5a) and α″ (Figure 3.5e) are similar to each other in secondary structure (backbone 

atom rmsd 0.1 Å).  Their overall conformation comprises an α helix (Trp2–Asn6) and a 

310 helix (Lys8–Thr10).  β′ (Figure 3.5b) and β″ (Figure 3.5f) both consist of α helices 

from Trp2 to Lys8 and from Trp2 to Asn6, respectively. 

The β hairpin is found in a higher PE minimum than the following alternative 

conformations that show enhanced stability near 0 K, compared to 300 K.  Yet, a native 

conformation is located; however, we now present alternative conformations that may 

exist near 0 K.  The side chains of Glu5 and Lys8 are at a distance of less than 3.5 Å for 

two conformations (ext′ and ext″).  None of the alternative conformations exhibit the side 

chains of Glu5 and Lys12 in close proximity.  β″ is the only conformation that appears to 

have any tryptophan side chains properly oriented, but the orientation is between a non-

native pair:  Trp4 and Trp11.  10–20% of the coupling constants for the H–N–Cα–Hα 

dihedral angles, and 35–55% of the coupling constants for the C–N–Cα–C dihedral 

angles agree with experimental data. 

477 conformations are analyzed by cluster analysis.  Nine clusters contained more 

than 10 conformations (40.9% of the 477 conformations).  Cluster analysis finds that 

DIVE locates conformations resembling the native β hairpin but the clusters include few 
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conformations, so the native conformation appears qualitatively not to be entropically 

favored near 0 K.  One cluster contained a representative conformation with a type IV β 

turn between Gln5 and Lys8 as exhibited by the equilibrated β hairpins but lacked the 

actual β strands.  The two largest clusters contained more than 40 conformations and 

consist of an α helix and 310 helix combined with an α helix.  One cluster contained 26 

conformations representing α helices from Trp2 to Lys8.  In fact, the majority of the 

clusters contained helices, so cluster analysis qualitatively suggests that α helices are 

entropically favored over β hairpins near 0 K. 

We are viewing snapshots of conformations and not the dynamic motion of the 

conformations.  At low temperatures, the conformations are deep within their PE minima 

and are surrounded by high PE barriers.  We sample several conformations near 0 K 

including β hairpins.  Our conventional MD simulations do not sample multiple 

conformations near 0 K, but the DIVE protocol gives trpzip2 the opportunity to fold into 

alternative conformations. 

According to Yang, et al. (18), the free energy surface of trpzip2 is rough with 

several local minima.  Our DIVE simulations show that the PE surface has a similar 

shape, and near 0 K trpzip2 is stable in a helical conformation.  Figure 3.5 presents the 

conformations corresponding to the lowest PE from among the six simulations, in 

addition to a β-hairpin conformation, which appears higher in PE compared with several 

helical conformations.  One plausible explanation for the stability of α helices at low 

temperatures is the ease of hydrogen bonds formation compared with a hydrophobic 

collapse.  According to Muñoz et al. (70), β-hairpin formation is not as favorable as α-

helix formation because α helices compensate entropy loss by H-bond formation.  In 
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contract, H-bond formation occurs after fixation of φ and ψ for β hairpins followed by 

hydrophobic side chain interactions for stabilization.  The energy needed to overcome the 

van der Waals forces is not present, and therefore, more helical conformations are 

observed than β hairpins.  The presumed entropy contribution and the low temperature 

prevent the helices from transitioning into β hairpins. 

We suggest that the helical conformations near 0 K are metastable (18, 31, 38).  

As the kinetic energy increases, the β hairpin may reside within the global PE minimum.  

Other groups also find non-native conformations but at higher energies compared with 

the native state, which is considered to correspond to the global free energy minimum 

(18, 31, 38). 

We have shown that, with the DIVE and DIP protocols, trpzip2 has the ability to 

sample unique conformations both near 0 K and at 300 K.  With the DIVE protocol, we 

find that trpzip2 can fold into helical conformations, but when the conformations are 

subjected to higher kinetic energies, the β hairpin becomes lower in PE than the non-

native conformations.  

3.4. Conclusions 

We have tested the ability of both the DIVE and the DIP protocols to reproduce 

the native β-hairpin structure of tryptophan zipper 2 near 0 K and around 300 K.  Our 

simulations show that we can reproduce the native conformation within 0.7 Å backbone 

atom rmsd relative to the NMR models using the DIVE simulations and within 0.5 Å 

backbone atom rmsd relative to the NMR models using the DIP simulations.  The β-

hairpin structure represents the global potential energy (PE) minimum found by using the 

DIP method.  The β-hairpin-like conformations are 0.2 kcal/mol lower than an α-helical 
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conformation.  The β-hairpin conformations from both the DIVE and the DIP simulations 

were started from a native β-hairpin-like conformation.  Cluster analysis of the 

simulations reveals that the β-hairpin conformations have a backbone atom rmsd less than 

2.0 Å from the NMR structure and contains 16% of the structures analyzed from the DIP 

simulations and 2% for the DIVE simulations. 

We also find several α-helical conformations that range from 0.2 kcal/mol to 25.5 

kcal/mol above the global PE minimum.  We propose that tryptophan zipper 2 can fold 

into an α helix but is more likely to fold into the experimentally observed β hairpin under 

the conditions of the experiment.  On the basis of cluster analysis, we further propose that 

the native conformation lies within a narrow-basin global PE minimum surrounded by 

high PE barriers, which prevent simulated structures from refolding into the conformation 

residing in the global PE minimum. 

We have shown that the disrupted velocity (DIVE) and the divergent path (DIP) 

protocols allow for a broad sampling of different conformations.  The DIVE protocol 

permits trpzip2 to traverse the PE surface, map PE minima, and detect different PE 

minima lying within a small energy range.  By using the DIP protocol together with 

DIVE, we are further able to search the PE surface near 300 K in search of the global PE 

minimum. 

β hairpins present a challenge in molecular dynamics simulations because of the 

current force fields available, but we find that the two protocols can locate β hairpins 

from a primary sequence.  For the DIVE protocol, the global PE minimum comprises a 

helical conformation, but the helical conformations are higher in average PE relative to 

the native conformation near 300 K.  We therefore propose that the β hairpin corresponds 
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to the global PE minimum but that the helical conformations are viable alternative 

structures in local PE minima surrounded by high energy barriers.  
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4. Structure of the B1 domain(41–56) of protein G as a β hairpin 

4.1. Introduction 

Predicting a secondary or tertiary structure from the primary amino acid sequence 

of a protein is a goal of biochemists.  α helices have been studied for several years now, 

but β-sheets have been harder to simulate.  Both encounter entropic loss when folded, but 

α helices compensate by more extensive hydrogen bond formation (1).  One reason that 

β-sheets have not been studied so extensively is because of force fields, which tend to 

favor helical conformations (2-9).  However, recent developments in force fields allow 

for the determination of β-sheets and β hairpin structures with less bias towards helices 

(10, 11). 

Residues 41–56 (GEWTYDDATKTFTVTE) of the B1 domain of Streptococcal 

protein G (peptide G) form a naturally-occurring β hairpin (Figure 4.1), which has 

undergone extensive study (1, 4, 12-46).  The actual B1 domain of protein G is a 56-

residue protein with a ββαββ motif where the helix forms a crossover between the two 

hairpins (20).  The protein is presumed stable because the hydrophobic areas of the 

Figure 4.1 Full B1 domain of 
Streptococcal protein G 
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hairpins are buried near the helix, exposing the hydrophilic residues to the solution.  

Blanco et al. discovered that residues 41–56 (peptide G) retain a hairpin motif in water 

(30–40% hairpin motif) (1, 13, 24, 44).. 

The β3 (42–47) and β4 (50–56) segments of protein G in water were found to be 

stable as β hairpins by both experimental (1, 13, 14, 22, 24, 30) and computational (12, 

15, 19, 25, 27, 29, 31, 32, 34, 39, 40, 47, 48) studies.  Residues 42–47 and 50–56 are 

antiparallel strands connected by a 6-residue turn (residues 46–51).  Several factors have 

been deemed responsible for the stability of the β hairpin including the turn region, main-

chain hydrogen bonds, salt bridges, and the hydrophobic core.  The turn region has been 

shown to be the initiating factor for hairpin formation (1, 24, 29, 40).  The turn region is 

stabilized by the close contact between the backbone carbonyl of Asp46 and the 

backbone amino group of Ala48 as well as by the hydrogen bonding between Thr49 and 

Thr51.  Upon formation of the turn region, the hairpin is born out of interactions between 

the three aromatic rings of Trp3, Tyr5, and Phe12 with Val54.  A “zipper” effect follows 

in which the main-chain hydrogen bonds form beginning from the turn region.  Salt 

bridges further stabilize the hairpin.  In addition, the β3 and β4 interaction is believed 

stabilized by a hydrophobic core including interactions between Trp43···Val54 and 

Tyr45···Phe52 pairs.  Huyghues-Despointes noted that the terminal charges of the hairpin 

also enhance its stability (45). 

β hairpins tend to be harder to simulate than α helices.    One major reason is the 

bias of several force fields favoring helical conformations, including the popular 

Amber94 and Amber99 force fields (2, 6, 10, 11, 42, 49-53).  Muñoz (1) states that helix 

formation is easier than hairpin formation because of energy compensation.  Formation of 
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both an α helix and a β hairpin costs entropy, but helices compensate more for this loss 

by hydrogen bond formation.  β hairpins, on the other hand, must compensate by turn 

formation, side chain interactions, and main chain hydrogen bond stabilization.  Krivov 

and Karplus (26) note that the α helical conformation of peptide G is lower in free energy 

(FE) than the native β hairpin and that the non-native conformation is stabilized by its 

higher entropy.  However, non-native conformations lie within local free energy minima 

surrounded by high free energy barriers.  Garcia (19), Zagrovic (37), Zhou (4), and 

Gallicchio (18) notice some helical content within peptide G on the basis of different 

simulation conditions.  Khavrutskii (46) even states that the native β hairpin of peptide G 

may not be the lowest energy conformation but, in fact, that several conformations, 

including the β hairpin and α helices, may coexist because they have similar energies.  

The Pak group (47) confirms this by finding semi-α-helical conformations that are 11 

kcal/mol lower in FE than the experimental conformation.  Gallicchio et al. (18), on the 

other hand, suggests that α helices may be metastable conformations en route to the 

thermodynamically-favored β hairpin.  Helical conformations are possible even when 

they are substantially higher energy than the experimental conformation because, as for 

the β hairpin, local contacts between backbone atoms stabilize the helix and the side 

chain interactions do not strongly disfavor a helix (18).  Multiple free energy minima 

between helices and β hairpins are also energetically competitive because main-chain 

interactions offer similar stabilization.  The side-chain interactions, therefore, determine 

which of the two motifs is favored thermodynamically. 

Recently, two protocols for geometry optimization were developed within our 

group (54, 55).  The two protocols, disrupted velocity (DIVE) and divergent path (DIP) 
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search protocols allow a polypeptide to traverse the potential energy (PE) surface in 

search of its global PE minimum.  The PE surface is searched compared with the free 

energy surface for two reasons:  (1) the potential energy surface is temperature-

independent and therefore easier to determine, and (2) the potential energy frequently 

represents the largest contribution to the free energy.  DIVE searches the PE surface by 

disrupting the kinetic energy and therefore the atomic velocities of the simulation.  DIP 

simply allows multiple copies of a polypeptide, all at the same temperature to travel in 

multiple directions simultaneously.  We have shown that when the two protocols are used 

together in succession, the experimental conformation can be reproduced along with a 

number of low-energy, non-native conformations (54, 55). 

We consider peptide G an excellent case study for our continuing tests of the 

protocols because of the delicate energetic balance between an α helix and a β hairpin.  

Therefore, we use the two protocols in conjunction with each other to determine whether 

the β hairpin is truly at the lowest PE near physiological temperature.  This chapter 

contains three major sections.  We first describe the protocols used for simulation and for 

analysis.  We follow this by listing and discussing the results of our simulations.  We then 

present closing remarks. 

4.2. Simulation protocol 

4.2.1. Protocol description and simulation setup 

Two protocols are implemented for our study.  Disrupted velocity (DIVE) and 

divergent path (DIP) (54, 55) are discussed in previous literature.  The DIVE protocol, as 

the name implies, perturbs the atomic velocities (including the directions and 

magnitudes) of the system allowing the conformation either to overcome or to circumvent 
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PE barriers.  Essentially, the protocol allows a conformation to locate PE minima near 0 

K.  DIP, on the other hand, allows a conformation to traverse across the PE surface at a 

constant temperature in search of PE minima.  Multiple conventional MD simulations are 

run simultaneously by assigning atomic velocities of identical atoms in different 

simulations to different directions, allowing more of the PE surface to be explored. 

Residues 41–56 of the B1 domain of protein G (peptide G, 

GEWTYDDATKTFTVTE) form a β hairpin with a type I turn.  Both termini are charged, 

and each acidic or basic amino acid has its side chains deprotonated or protonated, 

respectively.  Three initial conformations are simulated using the two protocols:  fully-

extended, β hairpin, and α-helical conformations.  The β hairpin is taken from the NMR 

model (PDB 2GB1) (20).  The φ and ψ angles are selected as -180° and +180° for the 

fully-extended conformation and -60° and -40° for the α-helical conformation using the 

leap feature in AMBER 8 (56).  Upon completion of the DIVE simulations, the 

conformation found at the lowest PE is then simulated on the basis of our analysis using 

both protocols.  For the DIVE protocol, six conformations are simulated whereas ten 

conformations are simulated using the DIP protocol.  Conformations are designated by 

the derivation from the initial conformation.  For instance, the second round of DIVE 

simulations obtained from the fully-extended conformation is assigned the name “ext″”. 

Before simulations begin, the PEs of each conformation are minimized for 100 steps 

using steepest descent.  Minimization is done using the Multiscale Modeling Tools for 

Structural Biology program (MMTSB) (57) in a Generalized Born/surface area (GB/SA) 

implicit solvent model (58).  After minimization, the Molecular Modeling Toolkit 

(MMTK) (59) is then used to convert the coordinate files into files suitable for our suite 
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of programs.  The atomic velocities are scaled for DIP simulations to give an initial 

temperature of 300 K. 

Other parameters are incorporated into the simulations.  A modified version of 

Amber99 (10) is used during minimization and data collection. Constant temperature is 

maintained by the Nosé-Hoover Chain method (60), and the equations of motion are 

integrated by using the velocity-Verlet method (61).  Distances between covalent bonds 

involving hydrogen are constrained by the SHAKE (62) algorithm.  All simulations are 

run in a Generalized Born/surface area (GB/SA) implicit solvent model (58), which is 

defined by 

 

where Gpol is the solvation free energy of the solute-solvent electrostatic polarization 

term, εp is the dielectric value within of the protein, εw is the solvent dielectric constant, 

rij is the separation distance between atoms i and j,  qi and qj are the partial atomic 

charges, αi and αj are the corresponding effective Born radii, and fgb is a complex function 

of rij, αi and αj (63).  The effective Born radius determines the charge distance between 

the solute and the continuum dielectric boundary.  All implicit solvent simulations have 

an external dielectric constant of 78.5 for water, an internal dielectric constant of 1.0 for 

proteins or peptides, surface tension at 0.005 kcal/mol-Å2, and an offset of 0.9 Å.  

Electrostatic and Lennard-Jones cutoffs are set to 999 Å to represent an infinite cutoff. 
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The initial atomic velocities for each trajectory are assigned different atomic 

velocity magnitudes in the DIVE protocol.  The different magnitudes correspond with 

different initial kinetic energies, thus different initial temperatures.  The trajectories 

evolve for an assigned period before the atomic velocities are reassigned according to p' 

≡ σ1/2p where p and p' are the momenta of the particles before and after atomic velocity 

reassignment, respectively.  σ is a scaling parameter for the magnitude of the simulation’s 

kinetic energy after atomic velocity reassignment.  When the atomic velocities are 

reassigned, both the magnitude is rescaled and the direction is changed. 

When σ > 1, the scaling parameter increases kinetic energy, but when 0 < σ < 1, 

the parameter lowers kinetic energy.  The scaling parameter σ may be chosen prior to 

starting the simulation or the scaling parameter σ may be calculated on-the-fly by σ  = |T 

– ΔT|⁄T, where ΔT is defined as the difference in temperature before and after atomic 

velocity rescaling.  The parameter may alternatively be calculated from a target 

temperature Ttarget by σ  = Ttarget ⁄T. 

A threshold temperature is also defined for the DIVE protocol.  When simulation 

temperatures fall below the threshold temperature, kinetic energy is added to increase the 

temperature.  If the simulation temperatures rise above the threshold temperature, 

especially after velocity rescaling, kinetic energy is removed thus lowering the simulation 

temperature.  Typically during a DIVE simulation, heating occurs once whereas cooling 

occurs multiple times.  By having these heating and cooling cycles, the trajectories are 

able to sample multiple potential energy minima near 0 K. 

Each simulation is run for 4 million steps per trajectory with a 2 fs time step (4 × 

106 steps/copy × 2 fs/step × 6 copies/simulation = 48 ns total simulation time).  
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Trajectory, energy, and checkpoint files are output every 250 steps (0.5 ps). Each 

trajectory in the DIVE protocol is assigned an initial temperature (10 K, 50 K, 100 K, 300 

K, 600 K, and 1000 K).  Atomic velocity reassignment for each trajectory occurs after 

20,000 steps.  The scaling parameter for heating is calculated from a target temperature, 

and the scaling parameter for cooling is set at 0.25 K/step.  The threshold temperature is 

10 K.  Simulations are heated to a target temperature of 1000 K when they fell below the 

threshold temperature. 

All simulations using the DIP protocol are run at a constant temperature of 300 ± 

20 K.  All initial conformations are assigned atomic velocities with the same magnitude 

but with six different directions.  A different path over the PE surface is followed by each 

trajectory. 

4.2.2. Data analysis 

Backbone rmsd’s, hydrogen bonds (H-bonds), distances for possible salt bridge 

formation, and aromatic ring geometries are analyzed using AMBER 8’s analysis module 

ptraj (56), and the secondary structures are determined by the program STRIDE (64), 

which assigns the secondary structure on the basis of backbone dihedral angles and 

backbone-backbone H-bonding interactions.  The backbone atom rmsd’s are calculated in 

comparison to the NMR model.  H-bonds are defined conventionally by a range of 180.0° 

± 60.0° for the X–H···X1 angle where X and X1 are heavy atoms, with a 3.5 Å distance 

between heavy atoms and with an appearance of more than 5% in the simulations.  α 

helices are defined by H-bonds between residues i and i+4 whereas 310 and π helices have 

H-bonds between residues i and i+3 and between residues i and i+5, respectively.  For 

DIVE simulations, each conformation of minimum potential energy was analyzed for the 
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presence of H-bonding.  H-bonds are determined for each low PE conformation within 

the DIP simulations. 

Distances are calculated for the following five possible side chain-side chain 

interactions: Asp46···Lys50, Asp47···Lys50, Glu56···Lys50, and Gly41···Glu56 terminal 

salt bridge.  The pairs of oppositely charged side chains within 3.5 Å between the 

terminal heavy atoms of the side chains are considered to be in close proximity and are 

considered to indicate the possible formation of salt bridges.  When a distance between 

aromatic rings (Tyr45···Phe52, Trp49···Phe52, and Tyr45···Trp49) is less than 6 Å with a 

dihedral angle between ±90° (Figure 2.2), π-stacking is deemed possible (65).  The heavy 

atoms within the aromatic ring determine the ring distances, and the improper dihedral 

angle is based on Cδi–Cεi···Cεj–Cδj for each aromatic side chain. 

3JHN-Hα is determined from the H-N-Cα-Hα dihedral angle, and 3Jφ is determined 

from the φ (Cn-1-N-Cα-C) dihedral angle.  The coupling constants are calculated by using 

the Karplus equations (66, 67) (eqs (4.1) and (4.2)). 

 
Figure 4.2 Geometric orientation of aromatic 
rings for possible π-stacking.  The left figure 
shows aromatic rings parallel to each other and 
slighly out of phase (coplanar), whereas the 
right figure represents two aromatic rings 
perpindicular to one another for π-stacking (T-
shaped).  Figure from ref.  (65). 
 

0° ±90°
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 3JHN−Hα = 6.7cos2θ −1.3cosθ +1.5 (4.1)

 5.0cos2.0cos8.1 23 +−= θθφJ  (4.2)

where the angle θ is the dihedral angle for H–N–Cα–Hα or for C–N–Cα–C.  The ranges 

of 3JHN–Hα and 3Jφ coupling constants are calculated from the respective dihedral angles of 

all NMR models.  The maximum and minimum coupling constants reported in the tables 

(Table 4.1) are found from the 24 NMR models of peptide G, and the percentage of 3JHN-

Hα and 3Jφ coupling constants are determined from the fifteen coupling constants using 

totalx JJJ ∑=3% , where Jx is assigned either 1 or 0 depending upon whether the 

calculated coupling constant is within range (1 = ‘in range’, 0 = ‘not in range’) and Jtotal is 

the total number of available coupling constants.  For both 3JHN-Hα and 3Jφ coupling 

constants, Jtotal = 16. 

Cluster analysis groups conformations together in families, or clusters on the basis 

of rmsd comparisons between conformations.  Cluster analysis for both DIVE and DIP 

Table 4.1 Experimental range of coupling constants for both 3JHN-

Hα and 3Jφ 
 3JHN-Hα 
 GLU TRP THR TYR ASP ASP ALA THR 

Min 1.45 7.33 3.03 4.03 1.44 2.59 8.40 1.50 
Max 6.88 7.92 6.90 4.29 2.07 9.50 9.47 3.39 

    
 LYS THR PHE THR VAL THR GLU  

Min 7.82 1.68 8.99 3.62 5.65 2.00 3.01  
Max 9.50 9.45 9.37 6.26 6.17 5.58 9.49  

    
 3Jφ 
 GLU TRP THR TYR ASP ASP ALA THR 

Min 1.08 1.22 1.46 1.12 0.5 0.96 0.56 1.5 
Max 1.77 1.42 2.16 1.2 1.07 1.34 0.93 1.8 

    
 LYS THR PHE THR VAL THR GLU  

Min 1.22 0.78 1.99 1.19 1.67 0.79 0.5  
Max 1.78 0.92 2.09 1.6 1.8 1.08 2.03  
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simulations is done using the MMTSB software (57).  Conformations are classified for 

residues ranging from Glu2 to Thr15.  An iterative process with an error tolerance of 0.5, 

a least-squares fit based on rmsd comparisons between conformations and a centroid 

method are used in the cluster analysis (68).  A centroid is defined as a central, average 

conformation that lies at the center of each cluster.  Each cluster encompasses structures 

within a 3.0 Å variation from the centroid.  The number of conformations in each cluster, 

information about each cluster, and a representative conformation of each cluster are 

determined during the analysis. 

4.3. Simulation results and discussion 

By using the disrupted velocity (DIVE) protocol in conjunction with the divergent 

path (DIP) protocol, a β hairpin similar to the experimental conformation was 

reproduced.  Other low-PE, non-native conformations are also found by using the two 

protocols.  Analysis of the conformations determine whether the non-native 

conformations are prevalent compared with the β-hairpin conformation near 0 K and near 

physiological temperatures at 300 K. 

4.3.1. Divergent path (DIP) results and discussion 

The native β hairpin (Figure 4.3b) was equilibrated near physiological 

temperatures (300 K) to determine whether it will retain its experimental conformation.  

The calculated conformation is a β hairpin with strands from Trp43 to Asp46 and from 

Thr51 to Val54, whereas the experimental conformation has β strands from Glu42 to 

Asp47 and from Lys50 to Glu56.  A type I turn proceeded from Asp47 to Lys50, which is 

similar to the experimental conformation.  The H-bond backbone-backbone interactions 

and the backbone atom rmsd confirm the stability of the hairpin.  The side chains, 
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however, tend to be more flexible as evidenced by the heavy-atom rmsd.  Distances 

appropriate for one non-native and one native salt bridge are achieved during the 

simulation:  Glu47-···Lys50 (26.3% occurrence) and Gly41···Glu56 (12.4% occurrence).  

The geometry of the aromatic side chains to form π-stacking arises between both 

Trp43···Phe52 and Tyr45···Phe52; the native peptide G, however has only Tyr45 and 

Phe52 within the appropriate distance for possible π-stacking.  Unexpectedly though, the 

percentage of 3J coupling constants are less than 30% compared with the NMR models.  

The lower-than-expected percentage of coupling constants stem partially from slight 

differences in the dihedral angles; because the Karplus equations use transcendental 

functions, a slight shift in the dihedral angle can have a larger effect on the calculation. 

The conformation labeled β* (Figure 4.3j) represents the lowest PE β hairpin and 

is simulated near physiological temperatures to confirm its stability.  The average 

conformation is slightly altered from its starting conformation.  Compared with the 

experimental conformation, the β strands shorten by two residues, but the type I turn 

remains.  The shift is further evidenced by the increase in the backbone atom rmsd, and 

because of the dynamic nature of the simulation, the side chains fluctuate in position as 

shown by the increase in heavy-atom rmsd.  The side chains of residues Glu47 and Lys50 

remain in close proximity for possible formation of a non-native salt bridge during 31.0% 

of the equilibrated simulation although the position of the terminal residues is less 

frequently within appropriate distance (7.5% throughout the simulation).  π-Stacking 

interactions may occur because Trp43···Phe52 and Tyr45···Phe52 are within close 

proximity and oriented correctly for π-stacking.  The percentage of coupling constants, 

which fall within the calculated range, is still relatively low, but as stated before, slight 
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variations within the dihedral angles can alter the percentage of coupling constants 

significantly. 

The two β hairpin structures are both similar to the experimental conformation but 

also differ from each other.  β* has lower PE than the equilibrated experimental 

conformation by 5.8 kcal/mol.  The two β hairpins are both stable near physiological 

temperatures at 300 K. 

 
a 

 
b 

 
c 

α helix 
<V> =  -646(7) kcal/mol

β hairpin 
<V> =  -638(6) kcal/mol 

<rmsd> = 1.6(0.4) Ẳ 

fully extended 
<V> = -613(9) kcal/mol

 
d 

 
e 
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α′ 
<V> =  -646(6) kcal/mol

β′ 
<V> =  -651(6) kcal/mol

ext′ 
<V> = -641(7) kcal/mol

 
g 

 
h 

 
i 

α″ 
<V> =  -650(6) kcal/mol

β″ 
<V> = -644(8) kcal/mol 

ext″ 
<V> = -634(7) kcal/mol

 

 
j 

 

 β* 
<V> = -644(6) kcal/mol 

<rmsd> = 1.6(0.2) Ẳ 

 

Figure 4.3 Conformation (yellow) with the lowest PE from each DIP 
simulation (yellow) compared to the NMR model (magenta).  β* 
represents a β hairpin found within the simulations.  Standard 
deviations of the average PEs and rmsd’s are in parentheses. 
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The remaining conformations determined by using the DIP protocol are non-

native α-helical conformations.  The α helices are prevalent compared with the 310 

helices, which are observed during less than 30% of the simulations.  All of the non-

native conformations have charged polar side chains within distance for possible salt 

bridge formation.  The majority of helical conformations have Glu46 and Lys50 within 

range; one conformation, however, displays possible salt bridge interactions between 

Glu47 and Lys50.  None of the aromatic side chains are aligned to imply π-stacking.  25–

40% of calculated 3JHN–Hα coupling constants agree with experimental coupling constants, 

and the percentage of 3Jφ values within the range of experimental values is 20–25%. 

The fully-extended conformation, ext, collapses into an average conformation of 

an α helix extending from Glu42 to Thr49 (Figure 4.3c), whereas an initial α helix 

equilibrates into an α helix extending from Glu42 to Val54 (Figure 4.3a).  Ext″ consists 

of an α helix from Glu42 to Thr51 (Figure 4.3i).  α′ (Figure 4.3d) and α″ (Figure 4.3g) are 

similar in conformation with an α helix extending from Glu42 to Val54.  An α helix 

(Thr44–Thr53) comprises the average conformation of β′ (Figure 4.3e), whereas β″ 

(Figure 4.3h) is 4.6 kcal/mol higher PE than β′ and has an average conformation 

composed of an α helix from Glu42 to Thr53. 

The use of cluster analysis allows the conformations found within our simulations 

to be classified according to their conformations, independent of their PE.  The number of 

structures within each cluster also offers a qualitative view of a cluster’s entropic 

contribution to free energy of the cluster’s conformation.  Cluster analysis is performed 

on the trajectories from the DIP simulations.  One cluster with 3428 conformations 

resembles the native β hairpin.  The β hairpin extends from Thr44 to Thr53 with a type I 
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turn between Asp47 and Lys50, whereas the experimentally-determined β hairpin 

includes Glu42–Glu56 with a type I turn from Asp47 to Lys50. 

Four other clusters contain more than 1000 non-native conformations.  α helices 

of varying residue lengths comprise these clusters.  The largest family of conformations 

consisted of 4956 conformations with a representative α helix extending from Glu42 to 

Val54.  The next family of conformations includes 4211 conformations with an α helical 

conformation similar to the most highly populated cluster (Glu42–Thr53).  Another 

cluster, which contains 1483 conformations, is similar in secondary structure to the other 

two clusters of helical structures:  an α helix extending from Thr44 to Thr53.  The fourth 

cluster of helical conformations surrounds 1777 conformations and contains an α helix 

extending from Glu42 to Thr51.  Two clusters exhibit more non-native conformations 

than the β hairpin-like cluster.  Clusters with several non-native conformations implies 

that the native β hairpin may not be entropically favored, which qualitatively agrees with 

work done by the Eaton group (1). 

Simulations just described indicate that peptide G is stable as a β hairpin near 

physiological temperatures by performing simulations (near 300 K).  The stabilization 

can be inferred to result from three main factors.  With the distance between NGly41+ and 

OGlu16- (the terminal salt bridge) less than 3.5 Å, the β hairpin is possibly prevented from 

completely unfolding and refolding into another conformation.  A side chain distance 

appropriate for salt bridge formation between Asp47 and Lys50 is observed in our 

simulations, but a salt bridge is instead present between Asp46 and Lys50, according to 

NMR data (13, 14, 20).  π-Stacking within the hydrophobic core is also believed to 

contribute to β hairpin stability.  The aromatic side chains in Tyr45 and Phe52 are within 
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the appropriate geometrical configuration for π-stacking; yet the flexibility of the side 

chains allow the aromatic rings to fluctuate between parallel and T-shaped 

configurations.  In our simulations, the hydrophobic interaction between Trp43 and 

Val54 does not play the significant role proposed by Kobayashi (24). 

Hydrogen bonds, although weaker than salt bridges, are a major factor in the 

stabilization of the β hairpin.  With the backbone aligned in an antiparallel motif, the β-

hairpin structure is similar to the original NMR model.  β and β* exhibit more than ten 

main-chain hydrogen bonds, which agree with those of Gronenborn, et al. (20) in that a 

hydrogen bond between Thr49 and Thr51 is present.  However, Oasp46+···NHAla48 is not 

present within our simulations of the β-hairpin structure.  OThr44···NHThr53, on the other 

hand, has more than 98% occurrence during both β and β* DIP simulations.  The 

simulations agree with Ma, et al. (29) in that we observe the stabilization effects by 

Thr44, Asp46, Thr53, and Thr55 with other residues. 
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We further note that the average PEs for the conformations described, excluding 

the equilibrated fully-extended simulation, are within 20 kcal/mol of each other (Figure 

4.4).  As stated within our work on C-peptide of RNase A (chapter 1) and tryptophan 

zipper 2 (chapter 3), this shows that the PE surface is rough with some PE barriers 

preventing various conformational transitions.  The small range in PEs also indicates that 

the modified Amber99 force field (10) lacks the ability to distinguish between α helices 

and β hairpins, but brings the two secondary structural elements closer in energy than the 

original Amber99 force field (10).  We note, however, that an energy surface devoid of a 

discriminatory feature is still imperfect.  On the basis of the work by Krivov and Karplus 

(26), Garcia and Sanbonmatsu (19), Pande et al. (37), Zhou and Berne (4), Levy et al. 

Figure 4.4 Average PE with standard deviation bars for the equilibrated conformations 
from the divergent path (DIP) simulations. 
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(18) and our own cluster analysis, we anticipate that the β hairpin, although the 

experimental conformation, may not necessarily correspond to structure of the lowest PE. 

If, on the other hand, we consider work done by the Wales group (17, 48, 69-73), 

another plausible explanation for our simulation results arises.  Above, we assume that 

the PE surface is funnel-shaped in which case the β hairpin is higher in average PE than 

the helical conformations.  We also note that the standard deviation between energy 

minima overlaps, which should allow for rapid transitions between conformations.  The 

rapid transition does not occur as expected. 

We therefore suggest that the minima found during our simulations at 300 K are 

probably within a ‘weeping willow’ PE landscape (Figure 4.5) (69, 71).  The ‘weeping 

willow’ model suggests that a distinct global energy minimum exists along with several 

local minima but the energy minima are separated by high-energy barriers.  This 

hypothesis seems to explain why the conformations are not rapidly transitioning into 

other conformations or converging into a single conformation.  The differences between 

PE minima may be small, but the amount of kinetic energy necessary to overcome the PE 

barrier prevents the transition.  Therefore, the β′ conformation resides in the global PE 

Figure 4.5 Three pairs of PE landscapes (left) and their corresponding disconnectivity 
graphs (right).  The graphs are drawn as PE (vertical axis) relative to arbitrary 
coordinates (horizontal axis).  The endpoints of the disconnectivity graphs represent PE 
minima, and the points where the branches are joined  correspond to a common PE 
“superbasin”.  For the PE landscape, the wells represent the minima of a system 
surrounded by PE barriers.  Reprinted by permission from ref.  (71).  Copyright 2006 
American Chemical Society 



 

 100

minimum 7.29 kcal/mol lower than a native-like conformation. 

Another plausible explanation for the “weeping willow” PE surface model may 

stem from the distance-dependent dielectric constant used by the generalized Born 

implicit solvent model (74).  The distance-dependent dielectric constant seems to alter the 

PE surface by flattening an expected “funnel-shaped” surface.  Mortenson and Wales 

found that a distant-dependent dielectric constant gave the preferred ”funnel-shaped” 

surface described by the “palm tree” disconnectivity graph.  They, however, use Cornell 

et al.’s Amber94 (75) force field to study on an α helix-forming conformation.  Amber94 

has been shown to bias simulations toward α helices (2, 4, 8-11). 

4.3.2. Disrupted velocity (DIVE) results and discussion 

When the disrupted velocity (DIVE) protocol is used in conjunction with the 

divergent path (DIP) protocol, the experimental conformation is reproduced along with 

other conformations.  A β-hairpin-like conformation shall be described first followed by 

alternative conformations that are found using the DIVE protocol. 

The β hairpin (β*, Figure 4.6d) consists of two β strands from Glu42 to Asp46 

and from Thr51 to Thr55 with a type I turn from Asp47 to Lys50.  In contrast, the 

experimental conformation has longer β strands from Glu42 to Asp47 and from Lys50 to 

Glu56, with a type I turn.  The backbone atom rmsd of β* is 0.9 Å relative to the 

experimental conformation, but the side chains are not fully aligned as noted by the 

heavy-atom rmsd of 1.8 Å.  The only distances indicative of salt bridges are between the 

terminal amino acids Gly41 and Glu56, similar to those of the native β hairpin. The two 

aromatic residues Tyr45 and Phe52 are in the geometric configuration to fit the π-

stacking definition (65).  Less than 30% of the NMR coupling constants agree with those 
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calculated from the experimental conformation.  Once again, this is not surprising 

because a slight change in the dihedral angles can greatly change the coupling constants. 

The following conformations are lower in PE than β*, but non-native secondary 

structures (α helices) comprise these conformations.  Only one conformation has charged 

side chains that are less than 3.5 Å apart allowing for possible side chain interactions, but 

the inferred salt bridges are non-native.  The aromatic side chains are not in a geometric 

configuration indicating that π-stacking may be unavailable for any of the following 

conformations.  The percentage of 3JHN–Hα coupling constants within the range of 

constants calculated from the NMR model ranges from 30–50%, and the percentage of 

3Jφ coupling constants range from 20% to 33%. 

Ext′ (Figure 4.6c) and ext″ (Figure 4.6g) are composed of α helices between 

Trp43 and Thr53.  The α helices are evidenced by backbone conformational angles and 

the backbone-backbone H- bonding interactions between amino acids indexed i and i+4.  

 
a 

 
b 

 
c 

 
d 

α (α′) 
V = -784 kcal/mol 

β (β′) 
V = -775 kcal/mol

ext (ext′) 
V = -784 kcal/mol

β* 
V = -771 kcal/mol 

rmsd 0.9 Ẳ 

 
e 

 
f 

 
g 

 

α′ (α″) 
V = -786 kcal/mol 

β′ (β″) 
V = -782 kcal/mol

ext′ (ext″) 
V = -786 kcal/mol

 

Figure 4.6 Conformation (yellow) with the lowest PE from each DIVE 
simulation (yellow) compared to the NMR model (magenta).  β* represents 
a β hairpin found within the simulations.  Both the initial simulation name 
and conformation name (in parenthesis) are listed with the PE and the 
backbone atom rmsd’s below each name.  
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β′ (Figure 4.6b) and β″ (Figure 4.6f) consist of α helices extending from Tyr45 to Thr53 

and between Thr44 and Thr53, respectively.  α′ (Figure 4.6a) and α″ (Figure 4.6e) have 

conformations consisting of α helices from Glu42 to Asp47 and π helices from Ala48 to 

Phe52, respectively. 

For the DIVE simulations, all conformations representing PE minima found at 

temperatures below 10 K  489 conformations are analyzed, and eight clusters contained 

ten or more conformations.  One cluster has a β hairpin as its representative conformation 

(10 conformations) whereas the majority of the clusters have α helices in some form as 

the representative conformation.  The representative β hairpin extends from Glu42 to 

Thr55 with a type I β turn proceeding from Asp47 to Lys50, whereas the experimentally-

determined conformation exhibits a β hairpin from Glu42 to Glu56 with a type I β turn 

between Asp47 and Lys50.  Not all conformations within the cluster are derived from the 

experimental conformation, which implies that DIVE can locate β hairpins from different 

starting conformations.  Because the β-hairpin structure is found in simulations initialized 

with both an α-helix and fully-extended structures, we surmise that DIVE can sample a 

broad range of PEs and find the desired secondary structure.  The other clusters consist of 

varying lengths of an α helix which gives further credence to the idea that the free energy 

of the experimental conformation near 0 K has a less favorable entropic contribution than 

non-native conformations. 

The PE for β* is higher than the PE for helical conformations.  One might expect 

the opposite to be true because other simulations have shown that the β hairpin lies within 

the global free energy minimum (15, 19, 25, 27, 29, 31, 32, 34, 39, 40).  With the 

continual perturbation of kinetic energy and atomic velocity direction in the DIVE 
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method, one should expect more conformations to be located in a simple molecular 

dynamics simulation.  The DIP protocol then searches the PE surface near physiological 

temperatures (around 300 K) seeking PE minima.  Using multiple initial conformations 

further increases the number of the PE minima found.  In fact, Huang et al. (54, 55) have 

shown that the DIVE and DIP protocols allow a wide range of conformations to be 

observed.  Thus, it is plausible that the peptide G may represent a local PE minimum 

separated from other basins by high-PE barriers.  This would suggest that the 

experimental conformation is not necessarily the global PE minimum for the force field 

used in this study. 

We cannot discount the fact that the simulations are completed in an implicit 

water solvent.  Garcia (19) used an explicit solvent model, which allows for interactions 

with explicit water molecules, whereas both Zagrovic (37) and Zhou (4) performed their 

simulations in implicit water solvent but with different force fields.  Zagrovic (37) stated 

that semi-helical intermediates are possible as traps beyond the typical folding pathway 

whereas Zhou (4) focused more on the differences in force fields.  We tend to agree with 

both of them in their observations because a large population of helical conformations is 

found by using both the DIVE and DIP protocols.  The implicit solvent may overweight 

the existence of non-native states and in fact, exhibit a different free energy surface 

compared with explicit solvent (38). 

The DIVE protocol can sample several conformations for peptide G including the 

β-hairpin-like conformations within 1.0 Å of experiment.  The DIVE protocol located β 

hairpins from different starting conformations, which indicates that peptide G can fold 

into a β hairpin from other conformations.  Near 0 K, the β hairpin, however, is 15.3 
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kcal/mol higher in PE than the α-helical ext″ conformation, which corresponds to the 

global PE minimum.  On the basis of the conformations found near 0 K, we assert that 

the global PE minimum consists of an α helix extending from Trp3 to Thr13.  Around 

300 K, the difference in PEs between α helices and β hairpins decreases, but a non-native 

conformation is still lower in PE than the native-like conformation. 

4.4. Conclusions 

We have tested both the DIVE and DIP protocols for their abilities to reproduce 

the observed β-hairpin structure of the B1 domain spanning residues 41 to 56 of 

Streptococcal protein G near 0 K (DIVE simulations) and near 300 K (DIP simulations).  

Our simulations show that the experimental conformation can be reproduced within 0.9 Å 

backbone atom rmsd of the NMR model by using DIVE simulations of an initial β-

hairpin structure and within 1.4 Å backbone atom rmsd of the NMR model by using DIP 

simulations, starting from a β-hairpin structure.  Cluster analysis of the DIP simulations 

shows that the two most populous clusters each have an rmsd less than 2.0 Å from the 

NMR structure and together contain 14% of the structures analyzed.  Similarly, cluster 

analysis of the DIVE simulations shows that the two largest clusters display α-helical 

conformations and contain 2% of the structures analyzed.  Although the structure 

representing the global potential energy (PE) minimum found by using each of the two 

methods is an α helix rather than a β hairpin, the experimental β-hairpin conformation is 

only 7–14 kcal/mol higher in energy than the global minimum, and the β-hairpin 

conformation folds from non-native conformations using the DIVE protocol.  We further 

propose, on the basis of the cluster analysis that the experimental conformation lies 

within a wide-basin local PE minimum surrounded by high PE barriers, which prevent 



 

 105

simulated structures from refolding into the conformation residing in the global PE 

minimum. 

We have shown that the disrupted velocity (DIVE) protocol can sample a large 

region of the potential energy (PE) surface in search of a global PE minimum.  We also 

find that DIVE can locate native β-hairpin conformations starting from an α helix or an 

extended conformation.  When DIVE is used along with DIP, we demonstrate that a β 

hairpin can be located on the PE surface at temperatures near 300 K.  Because the β 

hairpin does not undergo conformational change, the modified Amber99 force field (10) 

indeed offers a reasonable potential energy function that is less biased towards α helices 

than previous Amber-type force fields (2, 5, 8, 11, 42, 52, 76). 

Standard deviations of the PE’s for minima of both the hairpin and the helical 

conformations overlap, but we propose that the conformations are separated by high PE 

barriers, which prevent the refolding of conformations.  The hairpin, as noted, does not 

correspond to the lowest PE in our simulations.  Instead, a helical conformation appears 

to have a lower PE.  The conformation found within the global PE minimum may not 

necessarily correspond to the experimental conformation, but DIVE allows a system to 

sample more of the PE surface near 0 K than conventional MD simulations while 

overcoming PE barriers by reassigning atomic velocity direction and increasing kinetic 

energy.  In turn, the DIP simulations allow the polypeptide an opportunity to search for 

the PE minima at a constant, higher temperature.  We therefore propose that the β hairpin 

located using the modified Amber99 force field (10) corresponds to a local PE minimum 

surrounded by high PE barriers. 
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5. Exploration of the potential energy surface of ββα5 

5.1. Introduction 

Recently, our group developed two molecular dynamics protocols that aid in 

geometry optimization (1, 2).  The disrupted velocity (DIVE) protocol allows a 

polypeptide to locate multiple conformations on the potential energy (PE) surface by 

perturbing both the atomic velocity directions and magnitudes (kinetic energy).  The 

perturbations permit the system to circumvent or to overcome PE barriers.  With the 

divergent path (DIP) protocol, multiple, independent copies of a system search for 

multiple PE minima by generating multiple, independent copies simultaneously. Copies 

of the system travel across the PE surface in different directions at a constant kinetic 

energy and temperature. 

Prior to this study, the DIVE and DIP protocols were validated on α helices (1, 2) 

(chapter 1) and β hairpins (chapters 3 and 4).  The α helices folds to within 1.0 Å 

backbone atom rmsd of experiment and are close to the PE minimum at 300 K.  Results 

varied for the β hairpins, on the other hand.  The tryptophan zipper (trpzip) folds 

correctly with the hairpin conformation corresponding to the lowest PE minimum.  For 

the B1 domain(41–56) of Streptococcal protein G, the global PE minimum contains 

helical conformations whereas the native β hairpin is higher in PE.  According to Klimov 

and Karplus (3), helical conformations could be the global free energy minimum based 

upon entropic contributions. 
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In this chapter, we present our work to model the structure of a 23-residue ββα 

motif (ββα5, Figure 5.1) (4).  The ββα motif has, as its name implies, two β strands in a 

hairpin formation (residues 1–8) with a type II’ turn at the N-terminus followed by a loop 

region (9–12) and ends with an α helix (13–20) at the C-terminus.  The ββα5 protein 

contains only one non-natural amino acid, a D-proline, at residue 4, which helps to 

maintain the type II’ β turn.  This is contrasted with the original ββα motif (ββα1), which 

has both the D-proline at residue 4 and a 3-(1,10-phenanthrol-2-yl)-L-alanine at residue 6 

to stabilize the hydrophobic core between the hairpin and the helix (5).  In ββα5, Tyr6, 

Phe8, Leu14, and Leu17 make a hydrophobic core for the hairpin and helix packing, and 

the polar side chains of Arg2+ and Asp7- are within close enough distance for possible 

salt bridge formation.  Other simulations of the ββα motif have identified the 

experimental conformation as the global PE minimum conformation (6-12), but Dill et. al 

(13) find the experimental conformation to be higher in free energy than a non-native 

conformation.  The Pak group (14) finds that, around 430 K and 450 K, the experimental 

conformation is 0.3 kcal/mol higher than a helical conformation.  Using a different 

modified Amber force field from the one used here, Jang states that ββα5 has a single 

Figure 5.1 NMR model 
structure for ββα5 with the 
non-natural amino acid 
labeled 
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free energy well (6) in agreement with other simulations (7, 8, 11, 12, 14).  ββα5 presents 

a challenge for our protocols because it is the first test of the ability of DIVE and DIP to 

reproduce the tertiary structure of peptides.  The next section documents the protocols 

and the analysis techniques.  Simulation results and our thoughts on the results are then 

offered.  Finally, closing remarks are presented. 

5.2. Simulation details 

We implement two protocols for our study.  The disrupted velocity (DIVE) and 

divergent path (DIP)  protocols are discussed in previous literature (1, 2).  The DIVE 

protocol, as the name implies, perturbs the atomic velocity of the system allowing the 

conformation either to overcome or to circumvent PE barriers.  Essentially, the protocol 

allows a conformation to locate PE minima near 0 K using a microcanonical simulation 

(constant number of atoms, volume, and total energy).  DIP, on the other hand, allows a 

conformation to traverse the PE surface at a constant temperature by allowing an initial 

conformation to follow multiple, independent paths.  Multiple conventional MD 

simulations are run simultaneously by assigning atomic velocities of identical atoms in 

different simulations to different directions, allowing more of the PE surface to be 

explored. 

For the DIVE protocol, the initial atomic velocities for each copy are assigned 

different atomic velocity magnitudes.  The different magnitudes correspond with 

different initial kinetic energies (i.e., different initial temperatures).  The conformations 

evolve for an assigned time period before the atomic velocities are reassigned according 

to p' ≡ σ1/2p where p and p' are the momenta of the particles before and after atomic 
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velocity reassignment, respectively.  When the atomic velocities are reassigned, both the 

magnitude is rescaled and the direction is changed. 

σ is a scaling parameter for the magnitude of the simulation’s kinetic energy after 

atomic velocity reassignment.  When σ > 1, kinetic energy is increased, but when 0 < σ < 

1, kinetic energy is removed.  The scaling parameter σ may be chosen before starting the 

simulation or it calculated on-the-fly by σ  = |T – ΔT|⁄T, where ΔT is defined as the 

temperature difference before and after atomic velocity rescaling.  The parameter may 

alternatively be calculated from a target temperature Ttarget by σ  = Ttarget ⁄T. 

We also define a threshold temperature for the DIVE protocol.  When simulation 

temperatures fall below the threshold temperature, kinetic energy is added to increase the 

temperature.  If the simulation temperatures rise above the threshold temperature, 

especially after velocity rescaling, kinetic energy is removed thus decreasing the 

simulation temperature.  Typically during a DIVE simulation, heating occurs once 

whereas cooling occurs multiple times during each heating/cooling cycle.  By using 

multiple heating and cooling cycles, the simulations are able to sample multiple potential 

energy minima near 0 K. 

We selected ββα5 (pdb code: 1T8J, sequence: Ace-YRVD-PSYDFSRSDELAKL-

 
nmr 

 
nmr → extended 

 
nmr → α helix 

 
β hairpin → α helix

 
β hairpin → extended

 
α helix → extended 

Figure 5.2 Six initial conformations with descriptions of φ/ψ 
adjustments 
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LRQHAG-NH2) to test the ability of DIVE and DIP to reproduce peptide tertiary 

structure.  Residues Tyr1–Phe8 represent a β-hairpin motif with a type II’ β-turn (D-Pro4 

and Ser5).  Glu13–Gln20 conform to an α helix whereas Ser9–Phe12 represent a flexible 

loop region.  Each acidic or basic amino acid has its side chains deprotonated or 

protonated, respectively.  To avoid bias, six initial conformations are selected for 

simulation (Figure 5.2).  The five non-native conformations are made by adjusting the φ 

and ψ angles of the experimental conformation.  α helices have φ and ψ angles of -60° 

and -40°, respectively, and the fully extended conformation is assigned φ  = -180° and ψ 

= 180°. 

For all simulations, the PEs of the conformation are minimized for 100 steps with 

steepest descent in implicit solvent (15) by using the Multiscale Modeling Tools for 

Structural Biology (MMTSB) (16) program.  The Molecular Modeling Toolkit (MMTK) 

(17) is used to convert the coordinates into files used by our programs.  For DIP 

simulations, atomic velocities are scaled to give an initial temperature of 300 K. 

Other parameters are incorporated into the MD simulations.  A modified version 

of the Amber99 (18) force field is used during minimization and simulations used for 

data collection.  Distances to covalent bonds involving hydrogen are constrained by using 

the SHAKE (19) algorithm.  The equations of motion are integrated with the velocity-

Verlet method (20).  Constant temperature is maintained using the Nosé-Hoover Chain 

method (21).  The simulations are run with the Generalized Born/surface area (GB/SA) 

implicit solvent model (15), which is defined by 
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where Gpol is the solvation free energy of the solute-solvent electrostatic polarization 

term, and εp is the dielectric value within of the protein.  εw is the solvent dielectric 

constant and rij is the separation distance of particles i and j.   qi and qj are the atomic 

charges, αi and αj are the corresponding effective Born radii (22), and fgb is a complex 

function of rij, αi and αj.  The charge distance between the solute and the continuum 

dielectric boundary is determined by the effective Born radius.  All implicit solvent 

simulations have an external dielectric constant of 78.5, an internal dielectric constant of 

1.0, surface tension at 0.005 kcal/mol-Å2, and an offset of 0.9 Å.  Periodic boundaries are 

not used; instead, electrostatic and Lennard-Jones cutoffs are set to 999 Å to represent an 

infinite cutoff.  A modified version of Amber99 (18) is used during minimization and 

data collection. 

Each simulation is run for 4 million steps per simulation with a 2 fs time step and 

with six copies per simulation (4 × 106 steps/copy × 2 fs/step × 6 copies/simulation = 48 

ns total simulation time).  Data is output every 250 steps (0.5 ps). Each copy involved in 

the DIVE protocol is assigned an initial temperature (10 K, 50 K, 100 K, 300 K, 600 K, 

and 1000 K).  Atomic velocity reassignment for each simulation occurs after 20,000 

steps.  The scaling parameter for heating is calculated from a target temperature and the 

scaling parameter for cooling is set at 0.25 K/step.  The threshold temperature is 10 K.  

Simulations are heated to a target temperature of 1000 K when they fell below the 
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threshold temperature.  Although the target temperature is assigned at 1000 K, 500 K is 

the maximum temperature achieved because of rapid energy redistribution. 

For the DIP protocol, all simulations are run at a constant temperature of 300 ± 20 

K.  All initial conformations are assigned atomic velocities with the same magnitude but 

identical atoms in each of the six different copies were assigned with six different atomic 

velocity directions.  Each copy follows a different path over the PE surface. 

Figure 5.3 depicts how conformations are selected.  One of the six initial 

conformations (e.g., nmr) is simulated with the DIVE protocol.  Conformations are 

designated by the derivation from the initial conformation.  For instance, the second 

round of DIVE simulations obtained from the fully-extended conformation is assigned 

the name “ext″”.  The conformation corresponding to the lowest PE (e.g., nmr′) is 

simulated in a second round by using the DIVE protocol.  The corresponding 

conformation (e.g., nmr″) is then equilibrated utilizing the DIP protocol.  The other two 

conformations (nmr and nmr′) are also simulated with the DIP protocol. 

Backbone rmsd’s, hydrogen bonds (H-bonds), distances between ionic side 

Figure 5.3 How conformations are selected during DIVE simulations for further simulation 
either with the DIVE or the DIP protocol.  Red represents DIVE simulations whereas the 
blue indicates a DIP simulation. 
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chains, distances and angles between aromatic side chains, and hydrophobic distances are 

calculated using AMBER 8’s analysis module ptraj (23).  The backbone rmsd’s are 

calculated relative to the experimental conformation.  Backbone rmsd’s are determined 

for the entire tertiary structure, the β hairpin, the α helix, and the tertiary structure 

excluding the loop region.  H-bonds are conventionally defined by a range of 180.0° ± 

60.0° for the X–H···X1 angle where X and X1 are polar heavy atoms, with a 3.5 Å 

distance between polar heavy atoms and with an appearance in more than 5% in the 

simulations.  α helices are defined by H-bonds between residues i and i+4 whereas 310 

and π helices have H-bonds between residues i and i+3 and between residues i and i+5, 

respectively. 

Sixteen distances are calculated between pairs of oppositely charged side chains:  

R2D7, R2D12, R2E13, R2H21, D7R10, R10D12, R10E13, R10H21, D7K16, D12K16, 

E13K16, K16H21, D7R19, D12R19, E13R19, and R19H21.  When the terminal heavy 

atoms of oppositely charged side chains are less than 3.5 Å apart, the formation of salt 

bridges is likely possible.  In the native tertiary structure, Tyr6, Phe8, Leu14, and Leu17 

(4) are in close proximity.  We calculate the distances between the following side chain 

combinations:  Tyr6 and Phe8, Phe8 and Leu14, and Leu14···Leu17.  If the terminal 

heavy atoms of the side chain pairs are less than 6 Å apart, the two residues are 

considered within range. When the geometric configuration between all the heavy atoms 

of the  aromatic side chains of Tyr6 and Phe8 are less than 6 Å with a dihedral angle 

(Cδi–Cεi···Cεj–Cδj) between ±90°, π-stacking is deemed possible (24). 

An alternative approach to describing conformations is via cluster analysis.  

Cluster analysis is independent of the PE surface and allows conformations to be 
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classified on the basis of rmsd’s between Cartesian coordinates of the conformations 

analyzed.  Cluster analysis also permits a qualitative analysis of the entropic contribution 

to free energy; if a cluster contains a high number of conformations, the entropy may 

contribute more to the folding of the particular conformation.  A single representative 

conformation of each cluster is listed because other details will vary with the individual 

conformations within the cluster. 

Cluster analysis allows conformations to be classified on the basis of structural 

similarities independent of PE.  Conformations are grouped into families, or clusters, 

with similar secondary and tertiary structures by rmsd comparisons of the conformations.  

Cluster analysis for both DIVE and DIP simulations is determined using the MMTSB 

software (16).  Conformations are classified by comparison of the β hairpin and loop 

regions (Tyr1–Asp12) because the α helical region (Glu13–Gln20) is typically within 1.0 

Å of experiment.  The analysis consists of an iterative process with an error tolerance of 

0.5, a least-squares fit, and a centroid method in which a centroid is defined as the 

average conformation representing the cluster (25).  Clusters are defined as having a 

radius of 3.0 Å from the defined average conformation.  The number of conformations in 

each cluster, information about each cluster, and a representative conformation of each 

cluster are determined during the analysis. 

5.3. Simulation results and discussion 

5.3.1. Divergent path (DIP) simulations 

As in the previous chapters, DIVE is used in conjunction with DIP to determine 

possible conformations of the primary sequence.  The primary sequence folds into a 

conformation similar to the experimental conformation, but alternative non-native 
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conformations are present as well.  This section presents the equilibrated data near 300 K 

first, followed by the conformations that are found at low temperatures. 

The simulated experimental conformation (Figure 5.4a) has an α helix from 

Arg10 to Ala22 and a β hairpin from Arg2 to Asp7 and a β hairpin from Tyr1 to Asp7 

with a type II’ turn.  The individual secondary structures agree within 2.0 Å of 

experiment (α helix 0.7 ± 0.2 Å, β hairpin 1.7 ± 0.8 Å).  The equilibrated conformation 

has six possible noncovalent interactions between the polar side chains (R2D7, R2D12, 

R2E13, D7R10, R10E13, and D12K16).  In the NMR model structures, Arg2 and Asp7 

are the only two polar side chains in close proximity to each other, which are 

experimentally expressed (4), and they appear within the proper distance range during 

32% of the simulation.  A 310 helix occurs during the simulation but is found in only 10% 
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Figure 5.4 Average conformations from the various DIP simulations 
(yellow) aligned with the NMR model (magenta).  PE’s for each 
conformation are given, with standard deviations in parentheses. 
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of structures analyzed, compared to a 95% occurrence of a-helical structures. Thus, 

secondary structural elements of ββα5, and the β hairpin, are retained during DIP 

simulations started from the results of DIVE simulations initiated from the native 

structure. 

Although the DIVE protocol retains secondary structural elements of ββα5, some 

of the protein’s tertiary structure is lost. In fact, amino acids located within different 

secondary structural elements that are close to each other in the native structure are more 

remote after the simulations. Leu14 and Leu17, both located in the α helix, are in the 

proper geometric configuration (6 Å between heavy atoms of the side chains) for possible 

formation of the hydrophobic core whereas the side chains of Tyr6 and Phe8 of the β 

hairpin are nowhere near Leu14 and Leu17.  Experimentally, the side chains of Tyr6 and 

Phe8 are supposed to be in close proximity to the side chains of Leu14 and Leu17 

allowing the α helix and the β hairpin to stay together.  In our simulations, the loop region 

is flexible and moves the β hairpin away from the α helix.  Tyr1 and Tyr6 are within an 

acceptable geometric configuration (distance between the heavy atoms of the aromatic 

rings < 6.0 Å, angle between the aromatic rings < ±120°) for possible noncovalent 

interactions.  However, the possible polar side chain interactions (R2D12 and R2E13) 

reveal that the α helix and the β hairpin do, in fact, come within proximity occasionally 

during the simulation, but the majority of the simulation is spent with the α helix and the 

β hairpin apart. 
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When nmr* (Figure 5.4g) is simulated at 300 ± 20 K, the individual secondary 

structures remain within 2.0 Å of the experimental secondary structural elements.  Two β 

strands are found in the equilibrated nmr* structure (Arg2–Val3 and Tyr6–Asp7) with a 

type II’ turn between Val3 and Tyr6, and the α helix extends from Ser11 to Ala22.  

Within the β hairpin, the polar side chains of Arg2 and Glu7 are within close proximity 

during the simulation, but unlike the equilibrated experimental conformation, the polar 

side chains appear at a distance of less than 3.5 Å during 83% of the simulation.  Four 

additional polar side chains (Arg10, Asp12, Glu13, and Lys16) within the α helix are at 

distances less than 3.5 Å implying possible salt bridge formation.  Leu14 and Leu17 in 
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addition to Tyr6 and Phe8 are aligned in a proper geometric configuration for proper 

packing of the α helix and β hairpin, but Phe8 and Leu14 are further apart indicating that 

the loop region is quite flexible, allowing the β hairpin and the α helix to drift apart.  Tyr6 

and Phe8 fluctuate in the proper geometric alignment for possible interaction, however 

the proper orientation of the α helix and β hairpin is not maintained. 

Compared with the above simulations, we observe striking conformational and 

structural differences in the remaining simulations   First, the α helical region from Asp12 

to Arg19 has a backbone atom rmsd of less than 1.5 Å compared with the experimental 

conformation for all but two simulations and fluctuates between an α helix and a 310 

helix.  The β hairpin region from Tyr1 to Asp7, however, has a backbone atom rmsd of 

more than 2.0 Å compared with the experimental conformation for all but three 

simulations.  The side chains of Leu14 and Leu17, which are apparently involved in a 

hydrophobic core of the experimental conformation, are aligned more closely than the 

nonpolar side chains of Tyr6 and Phe8, but Phe8 and Leu14 are never within close 

contact.  The two charged polar side chains implicated in stabilizing the β hairpin are in 

close proximity during seven simulations; other polar side chain pairs fluctuate within 3.5 

Å or less during the various simulations.  In six simulations, three aromatic side chain 

pairs are found to be less than 6 Å apart and to have angles less than 120°; the Tyr6 and 

Phe8 aromatic ring pair is the only one that is deemed to form a π-stacking interaction in 

the experimental conformation. 

Ext (Figure 5.4b) lacks any classifiable secondary structures.  Yet, some folding 

and unfolding of helical turns occurs on the basis of H-bond backbone-backbone 

interactions, but the majority of backbone-backbone interactions are between residues i 
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and i+2.  Calculations of the individual secondary structure rmsd’s confirm the lack of 

typical secondary or tertiary structures.  Contacts between three polar side chain pairs 

(R2E13, D12K16, and K16H21) fluctuate throughout the equilibrated simulation.  The 

only π-stacking interaction is between Tyr1 and Tyr6, whose aromatic rings occasionally 

align in the proper geometric configuration. 

Ext″ (Figure 5.4i) has an α helix from Tyr6 to Ala22 and contains flexible termini 

whereas βext″ (Figure 5.5r), consists of flexible termini and an α helix from Ser5 to 

Ala22.  The Tyr1 and Tyr6 aromatic ring pair for the ext″ simulation fluctuate only very 

briefly into between a proper geometric configuration for π-stacking.  Therefore, βext″ 

apparently does not have any aromatic ring pairs in alignment displaying π-stacking. 

The α helix within the equilibrated α conformation (Figure 5.5k) spans the amino 

acid sequence from Ser11 to Leu17 whereas extα″ (Figure 5.4j) is composed of an α helix 

from Ser5 to Leu18.  None of the aromatic side chains are within an acceptable geometric 

configuration for π-stacking during the extα″ simulation, but the Tyr1 and Phe8 pair is 

aligned during the extα″ simulation.  

The β hairpin in βext (Figure 5.5l) refolds into a 310 helix (D-Pro4–Tyr6), and 

Ser9–Asp12 of the fully-extended region folds into an α helix, whereas the βext′ 

conformation (Figure 5.5o) consists of a 310 helix from D-Pro4 to Tyr6 and an α helix 

extending from Ser9 to Ala22.  Surprisingly, the β hairpin region of the βext′ 

conformation agrees within 1.7 ± 0.7 Å with the native β hairpin region, simply 

indicating that the regions can overlay. 

The initial diα helix (Figure 5.5m) and the initial α helix both fold into an α helix 

extending from Ser11 to Ala22 but differ in average PE by 8.1 kcal/mol.  For the 
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equilibrated α conformation, the Tyr1 and Phe8 aromatic side chains align in the proper 

geometry for possible interaction.  The equilibrated diα conformation, on the other hand, 

lacks any pairings of aromatic residues. 

Diα′ (Figure 5.5p) and diα″ (Figure 5.5s) are similar in conformation and differ in 

average PE by 0.2 kcal/mol.  Both are composed of two α helices between Ser5 and Phe8 

and between Glu13 and Ala22, with flexible termini.  The Tyr1 and Phe8 aromatic side 

chain pair is the only aromatic residues to align properly for π-stacking.  The π-stacked 

configuration is more prevalent in diα″ compared with diα′. 

An α helix from Ser9 to Ala22 is evident in both nmr′ (Figure 5.4d), and nmr″ 

(Figure 5.4h), but the two conformations have a 19 kcal/mol PE difference.  Ext′ (Figure 

5.4e) and extα′ (Figure 5.4f) are composed of α helices from Pro4 to Ala22 and from Ser5 

to Arg19, respectively.  α′ (Figure 5.5n) and α″ (Figure 5.5q) both have α helices 

extending from Ser11 to Ala22 while having a 19 kcal/mol difference.  Extα′ is similar to 

extα″ in conformation, but extα″ is 9 kcal/mol lower in PE than extα′.  Extα′, α″, nmr′, 

and nmr″ maintain a conformation similar to their initial DIVE conformations with the 

typical transitions between helical motifs.  Ext′, however, deviates from its initial 

conformation (Figure 5.6) since its α helix straightens from its slightly bent initial 

Figure 5.6 Overlay of initial ext′ 
conformation (yellow) from the 
DIVE simulation with the average, 
equilibrated conformation from DIP 
(magenta) 
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conformation.  The α helix of α′ extended by two residues (from Gln20 to Ala22) 

compared with its initial conformation. 

Cluster analysis is run for the nineteen simulations to group the many structures 

into conformational families.  Several of the conformations are found in seven clusters 

(approximately 53% of the conformations).  One family of conformations (1714 

conformations) consists of a β hairpin (Arg2–Asp7) with a type II’ turn and an α helix 

(Ser11–Ala22) and compares well with the experimental secondary structure (β hairpin: 

Tyr1–Phe8; α helix: Glu13–Gln20).  The β hairpin is within 1.1 Å (backbone atom rmsd) 

of the native hairpin.  In contrast, the most highly-occupied cluster (4004 conformations) 

has a representative conformation with α helices from Ser5 to Phe8 and from Glu13 to 

Ala22.  The second most populous cluster (3960 conformations) exhibits an α helix 

extending from Ser5 to Arg19.  The third largest cluster (3277 conformations) is 

represented by an α helix from D-Pro4 to Asp12, and the fourth cluster (3089 

conformations) has an α helix from Ser5 to Ala22.  The fifth most populous cluster (2514 

conformations) is also characterized by an α helix (Tyr6–Ala22).  Finally, the seventh 

most highly-populated cluster (1682 conformations) is represented by a conformation 

similar to that of the sixth cluster (described at the beginning of this paragraph); however, 

the backbone atom rmsd is slightly higher for the β hairpin (1.2 Å). 

As with our previous work, we find that the two conformations which best 

resemble the experimental conformation are maintained at 300 K.  Because the individual 

secondary structures are retained, during the simulations, the modified Amber force field 

(18) seems to reproduce both secondary structure motifs quite well.  Unfortunately, the 

experimentally determined tertiary structure, packing of the α-helix relative to the β 
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hairpin, was not well reproduced.  Thus, the loop region is rather dynamic, and although 

the two secondary structures may come within close proximity, the inferred hydrophobic 

core seems not to play a prevalent role in forming the tertiary structure during our 

calculations. 

We note, however, that the two conformations containing both α-helical and β-

hairpin secondary structures are higher in PE than other conformations..  Other 

simulations (6-12) suggest that the experimentally observed secondary and tertiary 

structures of the ββα motif represents the global free energy minimum.  However, Dill 

(13) and Jang (14) suggest that the experimental conformation is actually higher in free 

energy than non-native conformations like helix-bundles.  Our results agree more with 

the idea that the experimental conformation, although attainable, does not reside in the 

global PE minimum. 

We started several simulations from conformations that are not in a native-like 

conformation, which offers us a statistical advantage over groups that simply start from 

the experimental conformation or from a fully-extended conformation.  Figure 5.7 

displays several possible PE minima and illustrates the roughness of the PE surface.  

Some of the minima overlap because of fluctuations in the PE throughout a simulation; 

yet, the standard error of the mean for each PE quantifies the accuracy of the average PE 

within ±0.1 kcal/mol (data not shown), which indicates that the PE for each equilibrated 

conformation is fairly accurate.  The two native-like conformations, nmr and nmr*, are 

higher in PE than extα′ (42.6 kcal/mol and 48.9 kcal/mol, respectively). 
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Because the conformations do not rapidly transition to the conformation 

corresponding to the lowest PE, we surmise that the conformations are surrounded by 

high PE barriers.  We suggest that the PE surface is, by the models set forth by the Wales 

group (26), more like a ‘weeping willow’ than a ‘palm tree’ (Figure 5.8).  The ‘palm tree’ 

Figure 5.7 Average potential energies and standard deviation bars for ββα5 simulations 
 

.  
Figure 5.8 Disconnectivity graph (right) representing the PE landscape (left).  The graphs 
are drawn as PE (vertical axis) relative to arbitrary units (horizontal axis).  The endpoints 
of the disconnectivity graphs represent PE minima, and the points where the branches are 
joined  correspond to a common PE “superbasin”.  For the PE landscape, the wells 
represent the minima of a system surrounded by PE barriers.  Reprinted with permission 
from ref.  (26).  Copyright 2006 American Chemical Society 
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PE surface assumes that several local PE minima exist with low PE barriers whereas the 

‘weeping willow’ PE surface is characterized by local PE minima separated by high PE 

barriers.  The conformations in the local PE minima of the ‘weeping willow’ model are 

not as likely to fall into the global PE minimum without the aid of increased kinetic 

energy. 

5.3.2. Disrupted velocity (DIVE) simulations 

Of the twelve simulations, none of conformations corresponding to the lowest PEs 

reproduce the experimental conformation.  A conformation (Figure 5.9g) with a higher 

PE is found in the simulation derived from the NMR model and has a backbone atom 

rmsd less than 2.0 Å with a secondary structure rmsd of 1.2 Å for the β hairpin region 

(Tyr1–Phe8) and with a secondary structure rmsd of 0.6 Å for the α helical region 

(Glu13–Gln20).  The backbone atom rmsd of the tertiary structure excluding the loop 

region is 1.2 Å.  Four pairs of polar side chains are within close proximity: R2D7, 

R10D12, R10E13, and D12K16.  The Arg2 and Glu7 polar side chain pair is the only salt 

bridge inferred from the NMR model.  Of the four amino acid pairs implicated in the 

hydrophobic core, the hydrophobic side chains of Leu14 and Leu17 are the only two side 

chains within close proximity of the four implicated in the hydrophobic core; these 

residues are both in the α helical region.  None of the aromatic side chains align in the 

proper geometric configuration for possible π-stacking (distance between the heavy 

atoms of the aromatic rings < 6.0 Å, angle between the aromatic rings < ±120°). 
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The following conformations do not resemble a native-like conformation.  The β 

hairpin region (Tyr1–Phe8) for most conformations has a backbone atom rmsd relative to 

the NMR model of more than 2.0 Å whereas the α helical region (Glu13–Gln20) for all 

conformations has a backbone atom rmsd of less than 1.0 Å relative to the experimental 
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V = -1299 kcal/mol 

diα′ (diα″) 
V = -1301 kcal/mol 

Figure 5.9 Simulated conformations (yellow) overlaying the NMR model 
(magenta) from the DIVE simulations.  Names are listed by initial conformation 
and the conformation name used in the text. 
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conformation.  Six of the sixteen polar side chain pairs appear in the conformations 

(R2D12, R2D13, D7R10, D7R19, R10E13, D12K16, and E13K16), and eight of the 

twelve conformations have the hydrophobic side chains of Leu14 and Leu17 within a 

distance of less than 6.0 Å.  The aromatic side chains of Tyr1 and Tyr6 are aligned 

properly implying possible π-stacking for two conformations, and the aromatic side 

chains of Tyr1 and Phe8 are also in a proper geometric configuration. 

Of the remaining conformations, extα″ (Figure 5.9f) exhibits the lowest PE and is 

composed of an α helix (Ser5–Arg19) whereas βext′ (Figure 5.9i) consists of an α helix 

extending from Ser5 to Ala22.  Ext″ (Figure 5.9e) and βext″ (Figure 5.9l) are similar in 

their secondary structure because both are composed of α helices from Ser5 either to 

His21 or to Ala22, respectively.  Diα′ (Figure 5.9j), and diα″ (Figure 5.9m) both contain  

α helices from Ser5 to Phe8 and from Glu13 to Ala22. 

Extα′ (Figure 5.9c), ext′ (Figure 5.9b), nmr′ (Figure 5.9a), nmr″ (Figure 5.9d), α′ 

(Figure 5.9h), and α″ (Figure 5.9k) have α helical conformations of varying lengths.  

Nmr′ and nmr″ share nearly identical conformation (< 0.4 Å backbone difference).  An α 

helix extending from Ser5 to Arg19 comprises the dominant feature of the extα′ 

conformation.  The ext′ conformation exhibits an α helical secondary structure from D-

Pro4 to Ala22.  α′ and α″ have α helices extending from Ser11 to Gln20 and from Ser11 

to Ala22, respectively. 

When cluster analysis is performed for the twelve DIVE simulations, 1010 

conformations are classified.  One cluster has 24 conformations which are composed of 

both secondary structures from the NMR model (β hairpin with type II’ turn: Arg2–Asp7; 

α helix: Phe8–Gln20).  Several of the conformations are not identical to that of the NMR 
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model.  The representative β hairpin is short by two residues, Tyr1 and Phe8, and the α 

helix extends beyond the experimental conformation (Glu13–Gln20).  Yet, the analysis 

shows that DIVE samples conformations which exhibit both secondary structures without 

necessarily being derived from the experimental conformation. 

Four other clusters have more than 20 conformations within them.  The cluster 

with the largest number of conformations (42 conformations) has a general conformation 

consisting of an α helix from Ser9 to Leu17 and a π helix from Leu17 -Ala22.  The next 

cluster (35 conformations) has two α helices separated by a γ-turn.  22 conformations are 

found in the fourth-largest cluster and are composed of an α helix (Asp7–Leu17).  The 

final cluster encompasses 22 conformations but exhibits no noticeable secondary or 

tertiary structures. 

In summary, a native-like conformation is reproduced within the DIVE 

simulations at a higher PE than the non-native conformations,.  The tertiary structure of 

the experimentally-determined conformation is not reproduced within 2.0 Å of 

experiment.  Although the experimentally-determined tertiary structure is not found, 

DIVE is able to sample some secondary structures as evidenced by cluster analysis.  

The inability to locate the tertiary structure may be due to using the implicit 

solvent model of Tsui and Case (15), which has been shown to alter the free energy 

surface compared with explicit solvent (27).  In addition, the internal dielectric constant 

represents a gas-phase environment instead of the hydrophobic environment encountered 

in proteins.  The expected hydrophobic interactions are not as stable because of the 

unnatural internal environment. 
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Protein folding typically is expected to occur on a funnel-like energy surface 

where the system collapses into the native state (28-30).  Yet, we have shown in previous 

chapters and in this chapter that the PE surface may be rough, with deep minima 

separated by large PE barriers.  Considering work done by the Wales group (26), we 

suggest that, by usage of disconnectivity graphs, the PE minima are probably 

representative of the ‘weeping willow’ model of disconnectivity graphs (Figure 5.8).  

This model involves a distinct global PE minimum with high PE barriers preventing 

conformations from converging into a single conformation.  This is compared with the 

‘palm tree’ model, which also assumes a global PE minimum with low PE barriers 

allowing convergence of conformations as they move towards the global PE minimum. 

The DIVE simulations present a possible global PE minimum, which should be 

representative of the global free energy minimum if the PEs are considered to contribute 

more to the free energy than entropy.  The described conformations are probably 

surrounded by high PE barriers, and high therefore free energy, barriers.  A number of PE 

minima have been mapped because the DIVE protocol allows conformations either to 

overcome or to circumvent the PE barriers. 

By simulating the conformations found within possible PE minima near 300 K, 

we determine whether the conformations reside within local PE minima and free energy 

minima at a higher temperature.  Near 0 K, the conformation designated as extα″ (see 

Figure 5.4j) resides within the lowest PE minimum, but near 300 K, the conformation 

designated as extα′ (see Figure 5.4f) resides within the lowest PE minimum. 
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5.4.   Conclusions 

The DIVE and DIP protocols have been tested for their abilities to reproduce both 

secondary and tertiary structures of the ββα motif near 0 K and 300 K, respectively.  The 

DIVE simulations can also reproduce the secondary structures of both α helices and β 

hairpins, within 0.6 Å and 1.2 Å backbone atom rmsd’s, respectively, relative to the 

NMR model.  In comparison, the DIP simulations can reproduce both α helices and β 

hairpins within 0.5 Å and 1.5 Å backbone atom rmsd’s relative to the NMR model when 

simulated from a native-like conformation. Cluster analysis of the DIP simulations finds 

one cluster that contains both secondary structures less than 2.0 Å backbone atom rmsd 

compared to the NMR model, and the cluster contains 12% of the conformations 

simulated.  Similarly, cluster analysis of the conformations found in DIVE displays a 

cluster that contains both secondary structures; however, the cluster contains only 2% of 

the conformations.  The structure representing the global PE minimum consist of α 

helices from Ser5 to Phe8 and from Glu13 to Ala22 for the cluster analysis performed 

with the DIP simulations and composed of an α helix from Ser9 to Leu17 and a π helix 

from Leu17 -Ala22 for cluster analysis performed with the DIVE simulations. 

Although the overall ββα tertiary structure is not maintained during our 

simulations, the individual secondary structures are retained.  This suggests that the loop 

region is flexible but that the β hairpin and the α helix are more ordered.  Because the β 

hairpin does not collapse into an α helix while the experimental α helix is retained, the 

modified Amber force field (18) appears capable of modeling both secondary structure 

types.  We also note that the calculated structures containing secondary structural 
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elements displayed by the native structure are not the global PE minimum in our 

simulations. 

We also find several conformations that do not maintain the β-hairpin with PEs 

lower than the native-like conformations, but within 1–2 kcal/mol of the native-like 

conformations.  We propose that the ββα motif can fold into both the β hairpin and the α 

helix without the tertiary structure, but the ββα motif is more likely to fold into secondary 

structures dominated by α helices.  Considering cluster analysis, we further propose that 

the native conformation lies within a narrow-basin local PE minimum surrounded by high 

PE barriers, which prevent simulated structures from refolding into the conformation 

residing in the global PE minimum. 

Because several conformations have PEs close to each other, but they do not 

interconvert, we suspect that the PE surface may be rough with several minima separated 

by high PE barriers.  By using both the DIVE and DIP protocols, the PE surface may be 

mapped more thoroughly than by using conventional MD simulations. DIVE allows a 

simulation to map the PE surface of a system near 0 K.  DIP, on the other hand, finds PE 

minima near physiological temperatures (simulation temperatures near 300 K).  Finally, 

we suggest that the experimental conformation may not necessarily correspond to the 

global PE or free energy minimum for the modified Amber force field (18) used here, but 

merely resides in a local energy minimum. 
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6. Prediction of a protein’s unknown conformation 

6.1. Introduction 

Nitrogen catabolism is regulated in Saccharomyces cerevisiae by Ure2p, a two-

domain protein (1-8).  Residues 1–91 are contained in the N-domain, and residues 92-354 

are included in the C-domain.  The C-domain is enzymatically active during nitrogen 

regulation; no enzymatic functionality is known to occur within the N-domain.  However, 

the N-domain can misfold into a prion form, [URE3]  (9-32). 

The C-domain is crystallized and its structure determined by Umland, et al., and 

its structure was determined  at a resolution of 2.3 Å (8) (Figure 6.1) and by Bousset, et 

al. at a resolution of 2.5 Å (33).  Two domains are within the crystallized dimer.  The N-

terminal domain is represented by Glu112 to Gly197, which has a βαβαββα motif.  A 

linker between the two domains is formed by Asn198 to Asp204.  The C-terminal domain 

(Asp205 to Glu354) has six α helices with a single 310 helix turn.  The cleft between the 

C-domain and the N-domain of Ure2p(97–354) may be used to bind various substrates 

involved in the nitrogen regulation.  Within the dimer, each monomer interacts between 

α5 and β4/α4 on the N-terminal region and α5/α6 on the C-terminal side.  The dimer is 

necessary for regulatory activity. 

Figure 6.1 Dimer of 
Ure2p(97-354), pdb code: 
1HQO (8).  Monomer A is 
yellow and monomer B is 
magenta. 
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When the N-domain misfolds into [URE3], the protein is formed into fibrils and 

enzymatic activity is inhibited (6).  [URE3] is a non-Mendelian mutation that is 

phenotypically similar to a ure2 gene mutation (5, 9, 34).  [URE3] is classified as a prion 

protein on the basis of three factors:  reversible curability by guanidine HCl, dependence 

upon the chromosomal ure2 gene, and induction by overexpression of Ure2p (11). 

[URE3] is either aggregated or formed into fibrils (15, 16, 22-28, 35, 36).  The 

formation of fibrils or aggregates is indicative of the hydrophobicity of the N-domain.  

Because the N-domain is insoluble in aqueous solution, any structural characterization 

has so far been experimentally impossible (14, 15, 21, 23, 26).  The prion region is rich in 

asparagine and glutamine (13).  Through computational studies, we present several 

possible secondary structures of residues 1–64. 

We attempt to predict potential secondary and tertiary structures using two 

protocols developed within our group:  the disrupted velocity (DIVE) and the divergent 

path (DIP) search protocols (37, 38).  We have presented validation studies in the 

previous chapters.  Through our studies, we find that both α helices and β hairpins both 

separately and together can be located on a potential energy (PE) surface using these two 

protocols in conjunction.  We now stretch the two protocols to the limit by predicting 

conformations based solely on the primary sequence. 

6.2. Simulation procedure and analysis 

Because the secondary and tertiary structures of the N-domain of Ure2p have, to 

our knowledge, not been determined, Ure2p(1–64) is simulated using the disrupted 

velocity (DIVE) and divergent path (DIP) protocols (37, 38).  Ure2p(1–64) consists of 

MMNNNGNQVSNLSNALRQVNIGNRNSNYYYDQSNINFDFSYGVNNNNNNNSSS
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NNNNVQNNNSG.  Two initial conformations are selected because the actual 

conformation is unknown.  A fully-extended conformation (φ = -180°, ψ = +180°) and an 

α-helical conformation (φ = -60°, ψ = -40°) are simulated.  After the initial DIVE 

simulations, three conformations are selected for further simulation using both protocols.  

The conformations corresponding to the three lowest PEs are selected for further 

simulation.  In total, eight conformations are simulated.  Conformations are designated by 

the derivation from the initial conformation.  For instance, the second round of DIVE 

simulations obtained from the fully-extended conformation is assigned the name 

“extlow2”. 

For all simulations, the PE for the initial conformations is minimized for 100 steps 

with steepest descent in implicit water solvent (39) by the Multiscale Modeling Tools for 

Structural Biology (MMTSB) (40) program.  The Molecular Modeling Toolkit (MMTK) 

(41) is used to convert the coordinates into files used by our programs.  For DIP 

simulations, velocities are scaled to an initial temperature of 300 K. 

Several parameters are included in the simulations.  Covalent bonds to hydrogen 

are constrained by the SHAKE (42) algorithm.  All simulations are run in a Generalized 

Born/surface area (GB/SA) implicit solvent model (39) with an external dielectric 

constant of 78.5, an internal dielectric constant of 1.0, surface tension at 0.005 kcal/mol-

Å2, and an offset of 0.9 Å.  A modified version of Amber99 (43) is used during 

minimization and data collection.  Instead of periodic boundaries, electrostatic and 

Lennard-Jones cutoffs are set to 999 Å to represent an infinite cutoff.  Constant 

temperature is maintained using the Nosé-Hoover Chain method (44), and the equations 

of motion are integrated with the velocity-Verlet method (45).  Both protocols have six 
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simultaneous, yet independent, copies transpiring within each simulation.  Each copy is 

initialized with the same atomic velocity magnitude to maintain constant temperature but 

different atomic velocity directions. 

Each simulation is run for 4 million steps with a 2 fs time step (4 × 106 steps/copy 

× 2 fs/step × 6 copies/simulation = 48 ns total simulation time), and data is output every 

250 steps (0.5 ps). Each copy in the DIVE protocol is initially assigned different 

temperatures (10 K, 50 K, 100 K, 300 K, 600 K, and 1000 K).  Atomic velocity 

reassignment for each copy occurs after 20,000 steps.  The scaling parameter for heating 

is calculated from a target temperature (Ttarget = 1000 K), and the scaling parameter for 

cooling is set at 0.25.  The threshold temperature is 10 K.  Above the threshold 

temperature, kinetic energy is removed by decreasing atomic velocities, and below the 

threshold temperature, kinetic energy is added by increasing atomic velocities.  Although 

the target temperature is assigned at 1000 K, 500 K is the maximum temperature 

achieved because of rapid energy redistribution. 

For the DIP protocol, all simulations are run at a constant temperature of 300 ± 20 

K.  All copies are initially assigned the same atomic velocity magnitude but different 

atomic velocity directions.  Each copy is allowed to traverse the PE surface in a canonical 

simulation (constant number of atoms, volume, and temperature) in which the 

temperatures are within a specified but limited range. 

Hydrogen bond (H-bond) distances between charged polar side chains, and 

distances between aromatic side chains are calculated using the analysis module ptraj of 

AMBER 8 (46).  H-bonds are conventionally defined by a range of 180.0° ± 60.0° for the 

X–H···X1 angle where X and X1 are polar heavy atoms, with a distance less than 3.5 Å 
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distance between polar heavy atoms and with an appearance in more than 5% of the 

simulations..  For DIP, H-bonds are determined for each low energy conformation, and 

for DIVE, H-bonds are determined for each initial simulated conformation.  Salt bridges 

are deemed possible if the distances between the terminal atoms of the charged polar side 

chains are less than 3.5 Å.  Five possible ionic, interactions are defined between R24D31, 

R17E38, R24D31, R24E38 and the terminal M1G64.  Conventionally, two aromatic side 

chains are considered in proper alignment when the distances between any heavy atom in 

the aromatic rings is less than 6 Å apart and when the dihedral angle (Cδi1–Cδi2···Cδj2–

Cδj1) between the two aromatic rings is less than ±90°.  In Ure2p(1–64), eleven aromatic 

side chain pairs can possibly align in the proper geometry for π-stacking:  Y28Y29, 

Y29Y30, Y28F37, Y29F37, Y30F37, F37F39, F37Y41, Y28F39, Y29F39, Y30F39, and 

F39Y41.  Distances are calculated between the heavy atoms of the aromatic rings, and the 

torsion angle is calculated for Cδi1–Cδi2···Cδj2–Cδj1.  STRIDE33,  which classifies 

secondary structures on the basis of backbone dihedral angles and H-bond interactions , is 

used to determine the secondary and tertiary structures of conformations used in DIVE 

and DIP simulations. 

An alternative analytical tool is cluster analysis, which groups conformations on 

the basis of secondary and tertiary structures.  Cluster analysis can provide a qualitative 

indication of the entropic contribution to the free energy from a particular family of 

conformations.  Cluster analysis for both DIVE and DIP simulations is determined by 

MMTSB (40).  Cluster analysis consists of an iterative process with an error tolerance of 

0.5 in the rmsd.  The conformations are aligned by a least-squares fit rmsd comparison of 

the conformations and are classified by a centroid method (47), which groups 
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conformations together on the basis of an average conformation.  Centroid clusters are 

defined as having a radius of 3.0 Å.  All residues are used for the classification of 

clusters. 

6.3. Simulation results and discussion 

Because the conformation of the N-domain of Ure2p is unknown at this time, two 

conformations, a fully-extended and an α helix conformations, are initially run using 

DIVE, and the conformations corresponding to the three lowest PEs are further simulated 

(designated α.1′, α.2′, α.3′, ext.1′, ext.2′, and ext.3′) with both DIVE and DIP.  Upon 

completion of the second round of DIVE simulations, the lowest PE conformations are 

equilibrated using DIP and are designated with a ‘b’ following the initial definition (e.g., 

ext.3″). 

6.3.1. Divergent path (DIP) results and discussion 

The divergent path (DIP) simulations reveal several conformations near 

physiological temperatures.  The average conformation from each equilibrated simulation 

is described with information about the secondary and tertiary structures available.  

Afterwards, a description of the results and a PE-independent analysis of the 

conformations are mentioned. 

The fully-extended and the fully α-helical conformations are simulated near 

physiological temperatures.  The initial α helix (Figure 6.4a) refolds into two α helices 

(Met2–Ser53 and Asn57–Asn62).  The two aromatic side chains of Phe37 and Tyr41 are 

aligned properly according to the i, i+4 definition of an α helix.  The fully-extended 

conformation (Figure 6.4b) folds into a unique conformation — two β strands (Arg17–

Asn20 and Asp31–Asn34) and an α helix (Asn47–Ser51). 



 

 144

 
a 

 
b  

α 
<V> = -3548 (15) 

kcal/mol 

ext 
<V> = -3455 (18) 

kcal/mol 

 

 
c 

 
d 

 
e 

α.1′ 
<V> = -3588(13) 

kcal/mol 

α.2′ 
<V> = -3572(12) 

kcal/mol 

α.3′ 
<V> = -3577(16) 

kcal/mol 

 
f 

 
g 

 
h 

α.1″ 
<V> =  -3614(16) 

kcal/mol 

α.2″ 
<V> =  -3585(13) 

kcal/mol 

α.3″ 
<V> =  -3588(16) 

kcal/mol 

 
i 

 
j 

 
k 

ext.1′ 
<V> = -3568(14) 

kcal/mol 

ext.2′ 
<V> = -3614(15) 

kcal/mol 

ext.3′ 
<V> = -3555(16) 

kcal/mol 

 
l 

 
m 

 
n 

ext.1″ 
<V> =  -3629(16) 

kcal/mol 

ext.2″ 
<V> =  -3593(12) 

kcal/mol 

ext.3″ 
<V> =  -3631(13) 

kcal/mol 
Figure 6.2 Average equilibrated conformations of ten 
conformations originating from the DIVE simulations in addition 
to the fully-extended and α helix conformations.  α helices are 
colored red, loops are green, and β-sheets are yellow. 
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The α.1′ (Figure 6.4c) simulation consists of an average of four α helices:  Leu12–

Ile21, Asn27–Glu38, Asn50–Ser51, and Ser53–Val58.   The side chain interactions 

between R17D31, R17E38, and R24E38 and the close proximity of Y29F37 and Y30F37 

appear to stabilize the last three helices.  On the other hand, α.1″ (Figure 6.4f) contains no 

noticeable secondary structure with one possible interaction between Tyr30 and Phe37. 

The average conformation of the α.2′ (Figure 6.4d) simulation is an α helix 

extending from Met2–Ser63, and the aromatic side chains of Tyr37 and Tyr41 are 

positioned in proximity because of α helix (i, i+4).  The α.2″ simulation (Figure 6.4g), on 

the other hand, exhibits four α helices (α1: Asn4–Asn20, α2: Asn27–Ser40, α3: Val43–

Val48, and a4: Ser51–Asn56) and a 310 helix (Val58–Asn60).  The interaction between 

Arg17 and Glu31 appears to maintain the close proximity of α1 and α2, whereas 

interactions between Tyr29 and Phe37 and between Phe37 and Tyr41 seem to maintain 

α2. 

The α.3′ Figure 6.4e) average conformation has three helices (Gln8–Ser13, 

Leu16–Asn20, and Ile35–Ser52.  The tertiary structure is maintained by the side chain 

interactions between Arg17 and Asp31 and between Arg24 and Glu38.  α.3″ (Figure 

6.4h), on the other hand, is composed of no secondary structural elements, but α helices 

may continue to fluctuate between Asn11 and Arg17 and between Tyr41 and Gln59. 

The ext.1′ (Figure 6.4i) simulation exhibits an average conformation consisting of 

five α helices:  Gln8–Arg17, Val19–Gly22, Arg24–Tyr29, Asp31–Asn36, and Asn48–

Ser52.  The close proximity between the Arg17 and Glu38 side chains appears to 

stabilize a loop region containing three of the α helices.  On the other hand, ext.1″ (Figure 

6.4l) is composed of four α helices (Gln8–Asn20, Gln32–Phe37, Val43–Asn47, and 
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Asn50–Asn54).  Three charged polar side chain pairs are within distance for possible 

interaction (R17D31, R24D31, and R24E38) and the interaction between the terminal 

residues Met1 and Gly64 is also present; the .four potential interactions allow for 

maintenance of the overall tertiary structure. 

The average ext.2′ (Figure 6.4j) conformation exhibits five α helices; the first 

helix extends from Asn4 to Val9.  Leu12 to Ile21, Asn23–Tyr30, Phe37–Tyr41, and 

Asn55–Val58 complete the secondary structures present, whereas the average ext.2″ 

(Figure 6.4m) is composed of three α helices (Asn4–Ser10, Leu16–Asn20, Asn25–Tyr30) 

and an additional π helix extending from Glu38 to Gly42 followed by an α helix from 

Val43 to Ser63.  The aromatic side chains of Phe37 and Tyr41 are within a proper 

geometric configuration attributed to the α helical conformation during the ext.2′ 

simulation.  During the ext.2″ simulation, the distance between the Arg24 and Asp31 side 

chains seem to help stabilize the α helix in which they are located, whereas the side chain 

interactions between Arg17 and Glu38 and between Arg24 and Glu38 appear to help 

maintain a tertiary structure between the second and fourth helices and the third and 

fourth helices, respectively. 

During the ext.3′ (Figure 6.4k) simulations, a π helix extends between Asn11 and 

Arg17 followed by a 310 helix from Val19 to Gly22; in addition, α helices between Asn4 

and Ser10 and between Asn56 and Asn60 are present.  Ext.3″ Figure 6.4n) is composed 

of four α helices (Gln8–Leu16, Tyr28–Ile35, Phe39–Val43, and Ser51–Ser63) and a π 

helix (Asn44–Asn48).  The side chain interaction between Arg17 and Asp31 appears to 

help maintain a close proximity of the first two helices. 
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The distances between charged polar side chains as well as between aromatic 

rings play a role in the secondary and tertiary structure of Ure2p(1–64).  Of the five 

possible interactions between charged polar side chains, six simulations displayed the 

pair interaction R17E38, whereas R24D31 is found only during two simulations.  

R17D31 and R24E38 are included in three and four simulations, respectively.  

Interestingly, three simulations (α.1″, α.3″, ext.1″, ext.2″) have the terminal residues in 

close contact.  Fourteen possible aromatic side chain interactions were investigated, and 

Y29Y41, Y30Y41, Y28F37, Y28f39, Y29F39, Y30F39, and F37F39 do not appear 

during any of the simulations.  The alignment for π-stacking between Tyr28 and Tyr29 

occurs during eight of the simulations, and the other aromatic side chain interactions 

appear less often.  When Phe37 and Tyr41 are in close proximity, they are typically 

found in an α helix. 

Cluster analysis is another way to view the sampling ability of the simulations.  

Cluster analysis classifies conformations on the basis of similarities.  This analysis 

technique is independent of PE and offers a qualitative determination of the entropic 

contribution to a conformational family’s free energy.  A large number of conformations 

that comprising a cluster indicates a higher entropic contribution. 
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Nine clusters, or conformation families, are found with significant populations 

(more than 500 conformations per family).  The secondary structures of each 

representative conformation are described in Table 6.1.  The majority of the 

representative conformations are composed of α helices, but the cluster containing the 

most conformations is globular.  The conformations are merely representatives of a larger 

family of conformations, and the representatives offer us a glimpse into the possible 

entropic contributions of the overall family.  Ext.3″ may reside within the lowest average 

PE of our simulations, but according to cluster analysis, ext.3″ may not experience the 

highest entropy contribution to free energy; instead, the representative conformation fits 

the average conformation of α.1″ (data not shown).  We can conclude, however, that the 

Table 6.1 Description of secondary structure for representative 
conformation within the seven highly populated clusters 

Number of 
conformations 

within a 
cluster 

Secondary structures of 
representative 
conformation 

Simulation 
represented by 
conformation 

993 Globular α.1″ 
961 α helices (Gln8–Val19, 

Gln32–Phe37, Val43–Asn46) 
π helices (Asn50–Asn54) 

ext.1″ 

879 α helices (Gln8–Asn36) ext.1′ 
867 α helices (Asn4–Tyr29, 

Phe37–Tyr41, Asn55–Val58) ext.2′ 

713 α helices (Met2–Ser63) α.2′ 
707 α helices (Asn5–Asn11, 

Val19–Gly22, Asn56–Gln59) 
π helices (Leu12–Leu16) 

ext.3′ 

631 α helices (Gln8–Leu16, 
Tyr28–Ile35, Phe39–Val43, 
Ser51–Ser63) 
π helices (Asn44–Asn48) 

ext.3″ 

596 α helices (Asn5–Val9, 
Ala15–Ile21, Asn27–Tyr41, 
Asn44–Asn50, Ser53–Val58) 

α.1′ 

510 α helices (Asn4–Val9, 
Leu12–Leu16, Asn25–Tyr30, 
Ile35–Ser63) 
π helices (Arg17–Ile21) 

ext.2″ 

 



 

 149

cluster analysis alone cannot be the overall determinant of the most-favored 

conformation.  This analytical tool merely groups conformations together on the basis of 

similarities within the secondary and tertiary structures. 

The conformations found within the simulations may match the hypothesis of 

Perrett et al., (14), Boussett et al. (24), or Baxa et al. (23)  Two of the groups indicate that 

the N-domain of Ure2p may not be structured near physiological temperatures (14, 23), 

which we find (Figure 6.2f,h).  On the other hand, Boussett et al. (24) suggest that the N-

domain, when in the prion form [URE3], is predominately α-helical in conformation 

instead of the expected β-sheet conformation.  The majority of our conformations are, in 

fact, α-helical with the exception of the two globular conformations and a conformation 

which contains two antiparallel β strands (Figure 6.2b). 

On the basis of the PE observations (Figure 6.3), one might conclude that none of 

the conformations mentioned is the definitive global PE conformation.  The standard 

deviation, however, conveys the expected fluctuations during the simulation, but the 

standard error of the mean, which measures the accuracy of the average PE, ranges 

between 0.2 kcal/mol and 0.3 kcal/mol suggesting that the PEs are indeed minima.  With 

this in mind, we propose the average conformation designated as ‘ext.3″’ resides in the 

global PE minimum.  The lack of conformational convergence into a single minimum is 

probably represented by the ‘weeping willow’ model as defined by the Wales group (48-

54) because Ure2p(1–64) appears to have a distinctive global PE minimum with several 

local PE minima separated by relatively high barriers. 

Biochemically, the high PE barriers between conformations is reflected in the 

high kinetic energy required to break and to re-form noncovalent interactions.  The PE 
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minima may appear similar but without the necessary kinetic energy, conformational 

changes are not likely.  The DIVE protocol allows the barriers to be crossed, but when 

the various conformations are simulated with the DIP protocol, the kinetic energy is fixed 

disfavoring PE barrier crossing within the limited time for the simulations. 

Yet, one cannot overlook the detail that the majority of the equilibrated 

conformations exhibit some helical conformation.  We suspect that the native 

conformation itself should maintain this particular secondary structure.  However, the 

secondary structure should, by all accounts, fold into a β-hairpin-rich motif in water (12, 

14, 31, 35, 55, 56).  Because a single protein is simulated, the conformation(s) may not be 

representative of a typical aggregate. 

Figure 6.3 Overlapping PEs (PE) of the equilibrated conformations from the divergent path 
(DIP) simulations 
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6.3.2. Disrupted velocity (DIVE) results and discussion 

The disrupted velocity (DIVE) protocol sampled 623 conformations and, of those,  

twelve conformations are listed below.  Following the listed conformations, an analysis 

of all the conformations is performed allowing the conformations to be grouped 

according to similarities on the basis of secondary structure. 

Six conformations are derived from a full-length α helix.  α.1′ (Figure 6.4a) 

contains five α helices (Asn7–Asn20, Asn27–Ser33, Asn36–Tyr41, Asn44–Asn49, and 

Ser53–Val59).  α.1″ (Figure 6.4d) consists of five α helices:  Asn7–Asn20, Asn27–Ser33, 

Asn36–Tyr41, Asn44–Asn49, and Ser53–Val58.  Five α helices and a π helix comprise 

α.2′ (Figure 6.4b):  Asn3–Asn11, Leu12–Ile21 (π helix), Asn23–Asp31, Ser33–Tyr41, 

Asn46–Ser51, and Ser53–Asn63, but α.2″ (Figure 6.4e) consists of an α helix and π helix 

combination (Gly6–Gln18 and Val19–Asn23, Tyr28–Phe37 and Glu38–Gly42, and 

Ser51–Asn56). α.3′ (Figure 6.4c) has the secondary structure consisting of three α helices 

compared with α.3″ (Figure 6.4f), which is composed of five α helices (Asn4–Asn8, 

Asn11–Asn17, Tyr29–Tyr33, Tyr41–Asn50) and a π helix (Ile35–Phe39).     

Similar to the six conformations derived from a full-length α helix, six 

conformations are simulated from a fully-extended conformation.  Ext.1′ (Figure 6.4g) is 

composed of two α helices from Asn7 to Arg17 and from Gln32 to Glu38.  On the other 

hand, ext.1″ (Figure 6.4j) is composed of α helices extending from Gln8 to Asn20 and 

from Gln32 to Phe37 and has a π helix extending from Asn50 to Asn54.  Ext.2′ (Figure 

6.4h) contains three α helices (Asn4–Val9, Leu12–Gly22, and Phe37–Gly42).  According 

to STRIDE’S (57) H-bond classification, however, Asn27–Tyr30 is not included as an α 

helix, but the backbone dihedral angles permit the region to be classified as such.  Ext.2″ 
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(Figure 6.4k) is composed of four α helices (Asn4–Ser10, Leu12–Ile21, Asn25–Tyr30, 

and Phe37–Gln59).  Ext.3′ (Figure 6.4i) contains only three α helices:  Gln8–Leu16, 

Phe39–Val43, and Asn56–Asn60.  On the other hand, ext.3″ (Figure 6.4l) is composed of 

four α-helical segments (Leu12–Arg17, Tyr28–Ile35, Phe39–Val43, and Ser51–Asn62). 

The Ure2p(1–64) exhibits several noncovalent interactions including charged 

polar side chain interactions, which may form salt bridges, and aromatic side chain pairs 

that align for possible π-stacking.  The side chains of Arg17 and Glu38 are within less 

than 3.5 Å in seven of the conformations, and the other three charged polar side chain 

pairs are less common.  The four salt bridges keep secondary structures in close 

proximity.  Only two aromatic side chain pairs (F37Y41 and F37F39) play a significant 

role in the secondary structures of the various conformations. 

Cluster analysis is performed on the conformations found near 0 K.  590 clusters 

are found, and six clusters, or families of conformations, contain more than five 

conformations.  The three largest clusters contain seven conformations with either three 

or four α helices.  The other three clusters contain six conformations and vary between 

either two or three α helices.  We cannot determine much from the cluster analysis 

because the conformations seem to be evenly distributed.  If a smaller region of Ure2p(1–

64) was used for cluster analysis, a different picture might emerge, but we wanted to 

classify the conformations on the basis of the whole protein.. 
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a 
  

 
b 
  

 
c 

α.1′ 
V = -4160 kcal/mol 

α.2′ 
V = -4145 kcal/mol 

α.3′ 
V = -4140 kcal/mol 

 
d 

 
e 

 
f 

α.1″ 
V = -4167 kcal/mol 

α.2″ 
V = -4182 kcal/mol 

α.3″ 
V = -4158 kcal/mol 

 
g 

 
h 

 
i 

ext.1′ 
V = -4123 kcal/mol 

ext.2′ 
V = -4122 kcal/mol 

ext.3′ 
V = -4116 kcal/mol 

 
j 

 
k 

 
l 

ext.1″ 
V = -4160 kcal/mol 

ext.2″ 
V = -4150 kcal/mol 

ext.3″ 
V = -4156 kcal/mol 

Figure 6.4 The twelve conformations corresponding to the lowest PE simulated using DIVE.  
The conformations are designated based upon their derivation from either the fully-
extended or the α-helical conformation.  α helices are colored red, and loops are colored 
green. 
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From the simulations near 0 K, we have sampled several conformations.  On the 

basis of PE only, α.2″ falls into the category of a possible global PE minimum.  α.1″ has a 

PE that is 15 kcal/mol higher than the PE of α.2″.  However, the conformations 

mentioned above do not reveal a complete picture of the PE surface, and therefore, our 

results determining the conformation corresponding to the lowest PE is inconclusive. 

6.4. Conclusions 

Overall, we have shown that both the DIVE and DIP protocols can be used 

individually or together for prediction of conformations.  The information presented is 

limited and further work is needed.  The DIVE protocol allows several conformations to 

be sampled near 0 K, whereas DIP equilibrates the conformations near 300 K.  Both the 

computational and the real time for each simulation are limiting factors.  However, we 

offer the possibility that the two protocols have indeed found several alternative 

conformations, which agree with previous work by other groups. 

Biochemically, the results indicate that several possible conformations exist 

within a narrow PE range.  The inability of the conformations to converge or to transition 

amongst themselves rapidly is due to high PE barriers.  Kinetic energy is required to 

break and re-form the noncovalent bonds; the DIVE protocol inputs enough kinetic 

energy to permit conformational changes, but the DIP protocol maintains constant kinetic 

energy disallowing rapid conformational changes.  We propose that the global PE 

minimum for Ure2p(1–64) has a high degree of α-helical content, similar to the extlow.3b 

average conformation.. 

Until the actual conformation of Ure2p(1–64) is experimentally determined, we 

are uncertain which conformation is correct.  We have presented several possible 
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conformations that may aid in future experimental studies of the protein.  Yet, we must 

conclude that more simulations may be necessary, some perhaps starting from β-hairpin 

conformations,  to offer alternative conformations. 
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7. Conclusions 

7.1. Closing thoughts 

The previous five chapters stepped through the testing process of both the 

disrupted velocity (DIVE) and divergent path (DIP) protocols and culminated with the 

prediction of several conformations for Ure2p(1–64).  The research has shown that both 

protocols are viable for structural predictions.  The initial work on an α-helical 

conformation verifies that the two protocols are capable of locating the α-helical 

secondary structure.  Simulating two β hairpins further extended the testing process.  

Both simulations reproduce the native conformation.  The β hairpin of tryptophan zipper 

is proposed to correspond to the global potential energy (PE) minimum, but the β hairpin 

of the B1 domain(41–56) of protein G does not correspond to the global PE minimum.  

The final test involves a more complex system whose native structure is composed of 

both α-helical and β-hairpin secondary structures and tertiary structure.  Simulations 

maintained the secondary structures but the tertiary structure is lost.  Additionally, the 

global PE minimum does not correspond to any native-like conformation. 

We recognize that the native conformation of a polypeptide or protein should 

correspond to the global free energy minimum and may not necessarily reside in the 

global PE minimum.  We propose that polypeptides and proteins have a PE surface 

corresponding to the ‘weeping willow’ model (1-5) (Figure 7.1).  The PE surface has a 

distinct global minimum with several local minima, but the local minima are surrounded 

by high PE barriers, which prevent conformations from converging to the corresponding 

global PE minimum. 
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Finally, we predict several possible conformations for Ure2p(1–64).  The previous 

work indicates that both helices and hairpins can be found during a simulation and that 

hairpins can certainly be maintained at 300 ± 20 K.  Because the tertiary structure of 

ββα5 was not maintained, we can only offer a possible secondary structural composition 

of Ure2p(1–64).  We propose that Ure2p(1–64) is composed mostly of α helices.  We 

anticipate that one of our structures may, in fact, correlate to the native structure, but until 

the structure of  Ure2p(1–64) is determined experimentally, we will not know. 

Our work highlights three main points.  First, DIVE and DIP remain promising 

protocols for generating low PE secondary structures of peptides, but not tertiary 

structures.  Second, our work implies that the PE of experimental structures may not 

necessarily correspond to the global PE minimum.  Finally, we suggest that sampling is 

no longer a major issue; instead, the force field needs to be rethought since secondary 

structures can be reproduced and maintained but tertiary structure cannot be reproduced 

by the protocols tested here. 

Figure 7.1 Disconnectivity graph (right) representing the PE landscape (left).  The 
graphs are drawn as PE (vertical axis) relative to arbitrary units (horizontal axis).  The 
endpoints of the disconnectivity graphs represent PE minima, and the points where the 
branches are joined  correspond to a common PE “superbasin”.  For the PE landscape, 
the wells represent the minima of a system surrounded by PE barriers.  Reprinted with 
permission from ref.  (5).  Copyright 2006 American Chemical Society 
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