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CHAPTER I 

INTRODUCTION 

In today's competitive horse industry, proper nutrition is imperative 

to gaining the full genetic potential of the horse, regardless of the events 

taken part in, or the production state of the animal. Many recent studies 

dealing with basic nutrition and the physiological impact of nutrion have 

demonstrated that proper nutrition can improve the performance of the 

equine. The issue of the effect of Dietary Cation-Anion Balance (DCAB) on 

performance variables and acid-base status has been studied extensively 

in other domestic species. The DCAB exerts its influence on the 

physiological state of the animal via the dietary elements sodium, 

potassium and chloride, and consequently may have a major impact on 

the acid-base status of the animal, as well as on various production 

variables. At the present time, the NRC (1989) has no specific 

reccomendations on DCAB for any class of horses. It is hoped that by 

quantifying an optimum DCAB for various classes of horses that 

performance may be improved in the areas of exercise performance, 

digestibility efficiency, nutrient utilization and growth. However, this subject 

of interest has not gained much effort from equine researchers until 

recently. 

The purpose of this project was to determine the effects of DCAB on 

mature, sedentary horses. The objectives of this study were: 1) To 
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determine the effect of vaying cation-anion balances on the acid-base 

status of the horse by measuring urine pH, blood pH and blood gases; 2) 

To determine the effect of varying cation-anion balances on mineral 

balances, particularly calcium. 
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CHAPTER II 

LITERATURE REVIEW 

History Of Dietary Cation-Anion Balance 

The electrolytes sodium, potassium and chloride have not received the 

primary attention of animal nutritionists until recently. This may be explained by 

the fact that deficiencies of any one of these minerals is rare in today's common 

animal rations. Sodium and chloride are supplied in the diet in the form of 

common salt (NaCI) which is commonly added to rations. Furthermore, most 

livestock rations today contain an excessive amount of potassium. More 

importantly, though, is the amount of these minerals in relation to the amount of 

the others in ration ingredients and supplements. Recently, it has become 

apparent to researchers, particularly those involved with dairy cattle, poultry and 

swine, that the ratio between these minerals has a major impact on animal 

nutrition. 

One of the earliest researchers to propose an equation which would define 

a balance containing the electrolytes sodium, potassium and chloride was Mangin 

(1980). This equation took into account these monovalent elements as they 

seemed to have the most metabolic impact on acid-base physiology, and they 

appear to be the ones most readily available via absorption from the gut (Austic, 

1988). This equation is defined as follows: meq (Na+ + K+)- Cl-/100g diet dry 

matter. This equation uses the units milliequivalents (meq), as opposed to 
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milligrams, as these elements produce their physiological effects on the body 

according to their valence rather than their weight. 

The phrases dietary cation-anion balance (DCAB), and acid-base balance 

have both been accepted to descibe the relationship of these elements to one 

another, however, since the DCAB exerts its influence on acid-base physiology 

via the diet and the acid-base mechanisms of the body, it has become the most 

popular and accepted term. 

DCAB Effect on Other Species 

Rabbit 

4 

The first report of the cation-anion balance of the diet having an effect on 

physiological factors was Morgen and Berger (1915). These researchers 

demonstrated that sodium carbonate was more effective than sodium chloride in 

attempting to increase the mineral content in rabbit bones. These authors 

suggested that the carbonate salt acted to increase the alkaline reserve. Thacker 

(1959) inferred from this hypothesis that calcium, potassium, sodium and 

magnesium deficiencies could be caused by the manipulation of their level in the 

ration and the cation-anion balance of the ration. Thacker (1959) demonstrated 

that rabbits fed a ration based on timothy hay grown in heavily fertilized soil which 

previously had not supported proper growth, hemoglobin or bone ash levels 

(Keener and Thacker, 1958) was rendered adequate by the addition of a salt of 

sodium, potassium, magnesium or calcium carrying an anion capable of being 

oxidized to C02 and H20 in the animal. It was also suggested that the mineral 

imbalance suffered by the animals in this study induced a calcium and potassium 



deficiency in the animals when the diet contained adequate levels of these 

elements. 
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The influence of DCAB in the rat has been concentrated on the subsequent 

effect on bone physiology. In 1969, Barzel and Jowsey demonstrated that rats 

consuming ammonium chloride for a long period of time had increased bone 

resorption. However, this loss of bone tissue was prevented by the ingestion of 

sodium and potassium carbonate, apparently by the stimulation of bone 

formation. This physiological response of the bone was attributed to changes in 

systemic acid-base balance, and it was therefore suggested that the intracellular 

mechanism controlling calcium deposition and resorption in the bone was 

sensitive to systemic pH. 

Newell and Beauchene (1975) investigated the effects of acid stress and 

age on renal, serum and bone responses in 13 and 25 month old rats fed 

ammonium chloride at 2% of the diet for nine months. The acid stressed animals 

showed significant decreases in urinary pH, and also significant increases in 

urinary calcium and phosphorus excretions, as well as total acid excretion in the 

urine. However, analysis of bone showed no effect on calcium content of the 

bone due to the diet. Petito and Evans (1984) evaluated the effects of acid 

ingestion, phosphates and protein on calcium status in growing rats. Ammonium 

chloride was fed to the treatment group of animals at 1% of the diet. Treated rats 

had decreased blood pH and as well had increased urinary cAMP and calcium 

concentrations. Furthermore, these rats had a two-fold increase in fecal calcium, 

and had lower specific gravity of the femur. Beck and Webster (1976) suggested 

that metabolic acidosis inhibits the tubular reabsorption of calcium in the nephron, 
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and that this inhibition, coupled with the ingestion of ammonium chloride may 

explain how cAMP and calcium could both be excreted in the urine at higher 

levels. Goulding and Campbell (1984) demonstrated that rats given salt 

supplements excreted more calcium in the urine and had less calcium in the bone 

than control rats. 

Poultry 

Poultry nutritionists were the first livestock nutritionists to recognize and 

study the effects of dietary cation-anion balance on production parameters. Early 

research in this area was concentrated on the effects that the elements sodium, 

potassium and chloride had on growth and food consumption through their roles 

in the maintenance of osmotic pressure and acid-base status of the animal. 

Neishiem and coworkers (1964) demonstrated that chicks suffered 

dramatic decreases in growth rate when fed excesses of dietary chloride or 

sulfate supplied as glutamic acid hydrochloride, calcium chloride or calcium 

sulfate. However, this decreased growth rate was alleviated by supplying 

equimolar amounts of potassium or sodium supplied in glutamate or carbonate. 

These researchers also demonstrated that chicks suffered decreased growth rate 

when fed excess sodium supplied as sodium glutamate. This depression in 

growth was alleviated when equivalent amounts of chloride were added. Melliere 

and Forbes (1966) performed a similar study and demonstrated that food 

consumption and growth were maximized when chicks were fed a cation-anion 

ratio of 1.2 to 1.8. A ratio of 0.6 cation to anion ratio almost completely inhibited 

growth. These authors also reported that sodium and potassium chlorides did 

not reduce food consumption or weight gain when added to the diet at levels 

equal to the highest amount of hydrochloride. Feeding excess calcium did not 



alleviate the depression in growth demonstrated by excess chloride, however, 

excess magnesium intake partially alleviated the depression. 
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During the 1960's, a group of researchers began to study the effect of 

acid-base balance on egg shell calcification in the hen (Frank and Beger, 1965; 

Howes, 1967; Anderson, 1967; Mangin, 1968). All of these studies demonstrated 

that the calcification process of the egg shell could be altered by manipulating the 

acid-base status of the laying hen. 

In 1972, Cohen, Hurwitz and Bar studied the effects of dietary sodium and 

chloride on blood pH, pC02, HC03, Cl and Na on laying hens during egg shell 

formation. These authors hypothesized that dietary sodium and chloride were the 

alkalogenic and acidogenic agents, respectively, and that the acid-base response 

would depend on the ratio between these two components. It was demonstrated 

that excess dietary sodium fed with a constant level of dietary chloride produced 

an alkalosis, and excess dietary chloride fed with a constant level of sodium 

produced an acidosis. When sodium and chloride were added to the total diet in 

equal amounts, no differences in the acid-base balance of the animal were 

detected. Therefore, these researchers determined that the acid-base balance of 

the body, as measured by blood pH, pC02 and HC03, was a function of the ratio 

of sodium to chloride, and not by the absolute amount of each. These 

researchers also stated that the actual pH of the diet was irrelevant in producing a 

metabolic alkalosis or acidosis. Feeding calcium chloride with a pH near neutral 

caused an acidosis, whereas feeding an acid salt such as sodium 

monophosphate caused an alkalosis. 

In 1974, Cohen and Hurwitz studied the response of blood parameters to 

dietary sodium, potassium and chloride in laying hens. These authors 

demonstrated that supplemental sodium or potassium in the diet resulted in an 

increase in blood pH and HC03, while the supplementation of chloride resulted in 



a decrease in these same parameters. These findings suggested that sodium 

and potassium are additive in their response to offset the metabolic acidosis 

caused by excess dietary chloride. These findings agree with that of Neshiem et 

al. (1964) who demonstrated that growth retardation caused by excess dietary 

chloride could be alleviated with the addition of sodium and potassium salts void 

of chloride to the diet. 
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In 1980, Mangin was the first to suggest a cation-anion balance equation 

using the elements sodium, potassium and chloride. This equation reads as 

follows; meq (Na + K)- Cl/100g diet dry matter. This equation could be used to 

quantify the acid-base balance of the ration. The author's defense of this 

equation was based on the results of two experiments. The first was performed 

by Mangin and Saveur (1973) who demonstrated that animals fed diets with a 

range of -20 to +40 meq/100g had plasma bicarbonate levels linearly related to 

that sum. The second experiment was performed by Hurwitz et al. (1973) who 

demonstrated that animals fed diets containing equivalent amounts of sodium and 

potassium had a blood pH markedly dependent on dietary chloride. 

Also in 1980, Hamilton and Thompson demonstrated a decrease in blood 

pH, bicarbonate level and eggshell strength in hens when the chloride level in the 

diet was increased from .11 to 2.13%. These findings agreed with those of Hall 

and Helbacka (1959), Hunt and Aitken (1962) and Saveur and Mangin (1971) who 

reported that eggshell calcification was depressed in hens fed excessive levels of 

acid chlorides. Furthermore, it has been demonstrated that egg shell strength 

was increased when hens were fed a diet that increased the alkaline reserve 

(Frank and Burger, 1965; Howes, 1967; Mangin, 1968). In 1984, Austic also 

reported a decrease in eggshell strength and thickness in hens consuming diets 

with excess dietary chloride. 
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The effect of cation-anion balance has also been associated with bone 

abnormalities in fowl, particularly tibial dyschondroplasia (TO). In 1965, Leach 

and Neshium described this disorder in young chicks, and later discovered that 

this condition could be affected by the cation-anion balance of the diet (Leach and 

Neshium, 1972). In 1978, Saveur and Mangin reported an increase in the 

incidence of TD resulting from metabolic acidosis caused by excessive dietary 

chloride. Halley et at. (1987) studied the effect of dietary mineral balance on 

growth, leg abnormalities and blood base excess in chicks. It was demonstrated 

that base excess was negatively correlated with the incidence of TO and with 3-

week body weights. These findings agree with later work that demonstrated the 

relationship between the anionic content of the diet and a subsequent alteration in 

acid base status and a higher incidence of TO (Edwards, 1984; Hamilton and 

Thompson, 1980; Hurwitz et al., 1973; Mangin, 1981). 

In 1983, Riley and Austic studied the effects of dietary electrolytes on 

digestive tract pH and acid-base status of chicks. The cation-anion balance of the 

diet was altered by the addition of potassium bicarbonate or calcium chloride. It 

was reported that chicks consuming a diet with excess chloride had decreased 

plasma bicarbonate, base excess of the blood and pC02. The pH of the crop 

was also depressed by dietary chloride, however, the pH of the proventriculus, 

duodenum, or middle and distal portions of the small intestine were not affected. 

Swine 

In the early 1980's, swine researchers took note of the effect of cation­

anion balance in the diet. In 1981, Yen and others studied the effect of calcium 

chloride as a regulator of feed intake and weight gain in pigs. It was 

demonstrated that crossbred barrows fed a basal diet with 4% CaCI had lower 
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daily feed intake, weight gain and gain/feed ratios as compared to those fed a 

basal diet. Those pigs fed the CaCI also had lower blood pH, HC03, tC02 and 

base excess. These parameters were restored to normal levels in pigs fed a diet 

containing calcium chloride and sodium bicarbonate. These authors also made 

note of the fact that even though pigs fed the CaCI and NaHC03 diet had 

persistently high Cllevels in the plasma, the chloride to bicarbonate ratio was 

restored to that observed in pigs fed a basal diet. 

Patience et al. (1987) fed 8- 12 week old pigs five rations with electrolyte 

balances (defined in this study as meq (Na + K)- Cl/kg) ranging from -85 to 

+ 341. It was demonstrated that growth and feed intake were maximized in those 

pigs fed diets with a balance between 0 and 341, while these parameters were 

decreased in those pigs consuming the -85 diet. Furthermore, as the electrolyte 

balance in the diet dropped below a base level of + 175 meqjkg, blood pH and 

bicarbonate levels dropped indicative of a metabolic acidosis. Golz and 

Crenshaw (1984) studied the importance of sodium, potassium and chloride on 

growth in young swine. These authors suggested that dietary potassium and 

chloride levels have an interactive effect on gain when the sodium level is held 

constant. Optimum growth occurred with a K to Cl ratio of approximately 2:1 

(.57% K and .27% Cl) when the sodium level in the diet was held between .03 and 

.60%. 

In 1990, Haydon and West examined the effects of electrolyte balance on 

nutrient digestibility in growing pigs. Apparent nutrient digestibilities were 

determined by frtting the animals with ileal T -cannulas. Experimental diets 

consisted of a corn-soybean meal base, and electrolyte balance was altered by 

substituting CaCI2 for CaC03, or NaHC03 for corn and soybean meal, resulting 

in four experimental diets with cation-anion balances of -50, + 100, + 250 and 

+ 400 meqjkg diet dry matter. Apparent ileal digestibility was increased linearly 
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for N, energy, dry matter and all amino acids, except alanine and methionine, as 

the electrolyte balance of the diet was increased. Furthermore, blood pH, tC02, 

HC03 and base excess concentrations increased with increasing dietary 

electrolyte balance. 

Dairy Cattle 

Coppock (1986) reviewed the current literature on the effect of DCAB on 

production parameters in livestock. At that time, there was very little interest in 

this area by dairy cattle researchers. Coppock evaluated and calculated the 

DCAB in various beef and dairy experiments that had been conducted. It was 

suggested that the ruminant could more easily withstand a higher DCAB than 

could poultry. In 1984, Escobosa and coworkers demonstrated that cows 

consuming a diet with a negative cation-anion balance suffered a decreased feed 

intake. Since then, an enormous amount of progress has been made in studying 

the effects of DCAB on production traits by dairy researchers. 

In 1984, Block studied the effects of DCAB on reducing the incidence of 

milk fever in dairy cows. Previous research had indicated a relationship between 

dietary anions and an increased calcium availability (Dishington, 1975; Ender et 

al., 1971; Lomba et al., 1978). Block (1984) demonstrated that cows fed a highly 

anionic diet ( -128 meqjkg) during the dry period had decreased incidence of 

parturient pariesis during subsequent lactation. Tucker et al. (1988) studied the 

effects of DCAB on milk, blood, urine and rumen fluid in lactating dairy cattle. It 

was demonstrated that increasing the DCAB from -1 00 to + 200 meqjkg resulted 

in a linear increase in blood pH and bicarbonate, while actual milk yield was 

increased 8.6%. These researchers also noted that the responses observed, 

except for blood bicarbonate, could be attributed to the DCAB itself, and not the 
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effects of a single ion. Because maintaining the blood pH at a constant level is 

critical for normal body function, severaJ mechanisms in the body exist to maintain 

the concentration of blood bicarbonate to pC02 at a constant ratio. According to 

Tucker et al. (1988}, this control is accomplished by a respiratory response by 

adjusting the respiration rate to control the blood levels of pC02, and a renal 

response by adjusting the excretion of bicarbonate to control blood bicarbonate 

concentrations. It has been proven that altering· the DCAB has a marked effect on 

blood acid-base balance (Tucker et al., 1988}. 

In 1990, Beighle and others reported that dairy calves fed diets with a low 

cation-anion ratio had higher concentrations of phosphorus in the blood and 

feces versus those calves fed diets with a higher cation-anion balance. Those 

calves fed the low DCAB also showed lower concentrations of phosphorus in the 

bone. These researchers noted that when a low phosphorus diet was fed along 

with the low DCAB, these effects were amplified, indicating an interaction between 

DCAB and dietary phosphorus on the changes seen in blood, bone and fecal 

phosphorus concentrations. 

In 1991, Tucker and others studied the influence of dietary sodium 

bicarbonate on potassium metabolism in young calves. According to this study, 

feed intake was not affected by supplemental potassium chloride or sodium 

bicarbonate, however, average daily gain increased with increased potassium 

and decreased with increased sodium bicarbonate. Urinary calcium excretion 

also declined with increased sodium bicarbonate while urine pH showed an 

increase. Tucker and others (1991) also studied the influence of calcium chloride 

on systemic acid-base balance and calcium metabolism in dairy heifers. These 

researchers demonstrated that urinary calcium excretion and blood tree proton 

concentration (H +) increased with increasing dietary CaCI2, while blood 

bicarbonate and urine pH decreased. These authors suggest that the increased 



Ca excretion in the urine was due to either an increased bone mobilization or 

increased intestinal absorption of calcium. It was also noted that increasing the 

dietary level of chloride caused a subsequent increase in both plasma chloride 

and urinary chloride excretion. 
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In 1991, Goff and others studied the effects of the addition of chloride to a 

prepartal diet fed to dairy cows which was also high in cations. These 

researchers demonstrated that in cows fed highly anionic diets, parathyroid 

hormone (PTH) had a more dramatic effect on renal production of 1 ,25 

dihydroxyvitamin D, thus increasing intestinal absorption of calcium. 

Furthermore, the response of the bone to parathyroid hormone, which is 

osteoclastic bone resorption, was more responsive to PTH as plasma 

hydroxyproline concentration was higher in those cows fed the highly anionic diet. 

These researchers stated that the addition of anions to the diet is thought to 

induce a metabolic acidosis in the cow, which facilitates bone calcium resorption 

(Block, 1984). This is in agreement with Beck and Webster (1970) who indicated 

that bone, and perhaps renal tissue, in rats is refractory to the effects of PTH in 

the alkaline state and the stimulatory effects of PTH are enhanced during 

metabolic acidosis. It has been shown in dairy cattle and poultry (Tucker, 1988; 

Austic, 1984) that this increased PTH activity is a possible cause for increased 

levels of ionized or free calcium in the blood and, subsequently, increased levels 

of calcium in the urine. 

Equine 

Mineral Requirements 



14 

Sodium. The National Research Council (NRC), (1989) states that in many 

cases, the sodium concentration of natural feedstuffs for horses is lower than 

0.1 %. Sodium is therefore commonly added to the total diet in the form of sodium 

chloride, or common salt, between a range of 0.5 to 1.0%, or as trace mineralized 

salt. Sodium is often described as the major extracellular cation for its role in acid­

base status and the osmotic regulation of body fluids. The optimal sodium 

concentration of the diet has been reported to be between 1.6 and 1.8gjkg diet 

dry matter for growth, maintenance and late gestation and 3.6 gjkg diet dry 

matter for moderate to heavy work (Jarrige and Martin-Rosset, 1981 ). Since there 

is limited data on specific requirements for sodium and the effect of physical 

activity and environment on the animals requirements, the NRC (1989) does not 

make specific recommendations, however it is stated that the sodium 

concentration in the maintenance diet be no lower than 0.1 %. 

Potassium. Potassium is the major intracellular ion involved with acid-base 

balance and the osmotic regulation of body fluid. The NRC (1989) lists the 

potassium concentration of forages and oilseed meals as 1 to 2°/o dry matter, and 

that of common cereal grains (corn, wheat and oats) to be 0.3 to 0.4%. Hintz and 

Schryver (1976) estimated that mature horses required .06 gjkg of body 

weight/day, or approximately 0.4% of the diet. Therefore, if forage constitutes a 

significant portion of the diet, than potassium requirements should easliy be met. 

Drepper and others ( 1982) estimated the potassium requirements for a 600 kg 

horse to be 22 gjday for maintenance. Based on this research, the NRC (1989) 

estimates the potassium requirement for maintenance to be 0.05 gjkg of body 

weight or 1.52 gjMcal of DE. 
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Chloride. Chloride is an important extracellular anion involved in acid-base 

balance, osmotic regulation, as a minor component of bile, and in the formation of 

hydrochloric acid which is an important component of gastric secretions 

necessary for proper digestion. However, chloride requirements of horses have 

not been established, and requirements are thought to be met when sodium 

requirements are met with salt (NaCI). 

Magnesium. Magnesium is important as an activator of many enzymes, 

and the magnesium concentration of common feedstuffs has been listed at 0.1 to 

0.3% (NRC, 1989). Researchers have estimated that the true absorption of 

magnesium from feeds is between 40 and 60% (Hintz and Schryver, 1972;, 

Meyer, 1979) and between 42 and 45% (McKenzie, 1981). In 1982, Drepper and 

others proposed a daily magnesium requirement of 12 g for maintenance in a 600 

kg horse. Using the conservative value of 40% absorption efficiency, the NRC 

(1989) suggests a magnesium requirement of approximately 15 mgjkg body 

weight/day, or .46 gjMcal DE. 

Sulfur. The requirements of sulfur by the equine has received very little 

attention by researchers. Feeding adequate, high quality dietary protein will 

usually provide a minimum of 0.15% organic sulfur. According to Jarrige and 

Martin-Rosset (1981) and the NRC (1978), this is adequate to meet the horses 

needs. 

Calcium. The 1989 NRC estimates the true absorptive efficiency of calcium 

is approximately 70% in young horses and approximately 50% in mature horses. 

For the purpose of estimating calcium requirements for all classes of horses, 

however, the NRC (1989) suggests a value of 50% absorptive efficiency be used, 



due to the possibility of calcium being bound to phytates in feed, rendering it 

unavailable to the animal. Using this value, the calcium requirement for 

maintenance is stated to be .04 gjkg of body weight/day or 1.22 gjMcal of 

DE/day. 
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Phosphorus. The efficiency of true phosphorus absorption in the horse is 

variable due to the age of the horse and the source and concentration of 

phosphorus in the diet. The NRC (1989) estimates that the efficiency of true 

phosphorus absorption ranges between 30 and 55%. However, the NRC (1989) 

uses the more conservative figure of 35% for horses at maintenance, gestating 

mares and horses at work as they all consume mainly plant sources of 

phosphorus. Using the above values, the NRC (1989) lists the phosphorus 

requirements for maintenance at 28.6 mgjkg of body weight/ day or 0.87 gjMcal 

of DE/day. 

Equine Studies 

In 1970 Schryver and others studied the effect of calcium intake on skeletal 

metabolism and the calcium homeostatic mechanisms of young, growing horses. 

Three dietary levels of calcium were fed ranging from below, equal to, and above 

that which the NRC (1966) recommended. These diets contained 0.15%, .80% 

and 1.5% of the recommended amount of calcium, which was supplied in the 

form of calcium carbonate at the expense of hay and corn in the diet. These 

researchers also used a kinetic analysis with a radioactive isotope of calcium so 

that more accurate determinations of the rate of exchange of calcium between 

body fluids and bone, and the rate of deposition and removal of calcium from the 

bone could be measured. These researchers demonstrated a large variation 
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between intake groups in excretion and retention of calcium in order to maintain 

calcium homeostasis but there was no difference in the concentration of calcium 

in the plasma or on the size of the exchangeable pool. Ponies fed the lower 

calcium diet had increased fractional absorption of calcium and had a decreased 

renal excretion rate. Furthermore, bone resorption was increased above the 

deposition rate resulting in a net transfer of calcium from the bone into the 

exchangeable pool. Despite these homeostatic mechanisms, these ponies 

experienced a net negative calcium balance. These researchers also observed 

opposite responses in ponies fed the high calcium diet. Unlike the rate of 

removal, however, the deposition rate of calcium was insensitive to the dietary 

level of calcium. 

In a later study, Schryver and coworkers (1971 a) studied the effect of high 

dietary phosphorus levels on calcium utilization and skeletal metabolism in 

growing Shetland ponies fed .4% calcium and either .2% or 1.2% phosphorus in 

the diet. Ponies fed the high phosphorus diet were observed to have increased 

phosphorus retention and plasma levels. However, absorption of calcium, renal 

excretion and retention of calcium were all decreased while total and endogenous 

fecal calcium excretion were increased. Furthermore, Schryver et al. (1971 b) 

showed that renal phosphorus excretion, total phosphorus absorption from the 

gut and phosphorus retention were all dependent on phosphorus intake. The 

efficiency of phosphorus absorption averaged 45% across all diets, however. 

In 1987, Schryver and others studied the effects of voluntary salt intake in 

mature, sedentary horses and its effect on mineral metabolism. Diets containing 

1, 3 and 5% NaCI were fed, with a mean daily salt consumption ranging from 19 to 

143 g and a mean of 53 g. These researchers demonstrated that fecal excretion 

of calcium was higher in those horses consuming the 1% NaCI diet, and 

determined that calcium absorption and retention were greater at the higher levels 



of consumption. Furthermore they noted that phosphorus absorption and 

retention were greater at both the 3 and 5% levels of intake. These researchers 

also determined that urinary sodium excretion was directly related to intake and 

that urinary excretion was the primary excretory path for sodium, as fecal 

excretion, intestinal absorption and retention of sodium were not affected by 

intake. 
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In 1989, Young and others evaluated the extent of mineral losses in feces, 

urine and sweat in miniature horses at rest and during exercise. During the 

exercise period, daily sodium intake increased and there was trend for daily fecal 

excretion of sodium to increase. Also, urinary excretion of sodium decreased, 

possibly due to large amounts of sodium being lost in the sweat. In this same 

trial, both daily chloride intake and fecal concentration of chloride increased, 

contradictory to Schryver et al. (1987). During the exercise period, daily intake of 

potassium and excretion of potassium in the feces both increased, while daily 

intake of calcium increased as did daily fecal excretion of calcium, resulting in an 

increase in daily calcium retention. Furthermore, both the daily intake and the 

daily fecal excretion of phosphorus were increased, resulting in an increase in 

daily retention. 

In 197 4, Milne studied the effects of exercise on blood parameters, acid­

base balance and electrolyte levels. He proposed a linear relationship between 

the changes in arterial and venous blood pH, pC02 and HC03 in response to 

exercise, and suggested that arterial blood parameters could be predicted from 

venous blood values, with the exception of p02. 

DCAB Studies 

In 1989, Topliff and coworkers studied the effect of a low ( + 6.5 meqjkg) 

vs. a high ( + 150 meqjkg) DCAB on calcium and chloride metabolism in 
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exercising mares. No change in serum calcium or chloride concentrations were 

observed. Horses consuming the low cation-anion balance excreted more 

calcium in the urine (84.7 mgjdl) than those consuming the high cation-anion diet 

(9.2 mgjdl). Those horses consuming the low DCAB also excreted more total 

calcium per day, as total urine output was not different. Furthermore, those 

horses consuming the low DCAB had higher amounts of chloride in the urine 

(176.1 meq/1) as opposed to those consuming the high DCAB (124.8 meq/1). 

This response of urinary excretion of calcium and chloride was attributed to the 

acid producing power of the diet. 

In 1992, Stutz and coworkers studied the effects of DCAB on blood 

variables in exercising horses. Four diets were fed with DCABs of + 5 (L), + 107 

(ML), + 201 (MH) and + 327 (H) meqjkg dry matter. Treatments were formed by 

the addition of calcium chloride and ammonium chloride to diet L, calcium 

chloride to diet ML and sodium bicarbonate and potassium citrate to diet H. 

While at rest, those horses consuming diet L had lower venous blood pH, pC02 

and HC03 concentrations as compared to those consuming the MH and H diets. 

However, no differences were observed in blood pH or acid-base parameters 

between treatments after anaerobic exercise. 

During the same trial, Wall et al. (1992) evaluated the effects of DCAB on 

urine pH and urinary mineral excretion in exercising horses. The diets fed were 

the same as in the trial performed by Stutz et al. (1992). These researchers 

observed a significant decrease in urine pH as the DCAB was decreased. 

Furthermore, they observed that horses consuming the low diet excreted more 

calcium and chloride in the urine than those consuming the medium high and 

high diets. Also, horses excreted more sodium in the urine when consuming diet 

H versus those consuming the other diets. These researchers stated that, 
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depending on the calcium intake, exercising horses consuming a low DCAB could 

have a negative calcium balance. 

It is evident from experiments in swine, poultry, dairy cattle and other 

species that the cation-anion balance of the diet can have a significant effect on 

the acid-base status in the animal, as well as on various production parameters in 

these species. It is also evident from mineral studies in other species and from 

limited studies in the horse that the DCAB can have a major effect not only on the 

acid-base status in the animal but also an effect on mineral metabolism. It was 

therefore the purpose of this trial to study the effects of feeding varying levels of 

DCAB and the subsequent effects on acid-base status and mineral balance in the 

sedentary horse. 



CHAPTER Ill 

MATERIALS AND METHODS 

Experimental Design 

Four mature stock type geldings, two Quarter Horses, one Appaloosa and 

one 1 /2 Arabian 1 /2 Quarter Horse were used in a 4x4 Latin square design 

experiment to study the effects of varing Dietary Cation-Anion Balances on acid­

base status and mineral metabolism in the non-exercised horse. The 16 week 

trial consisted of a 3 week dietary adjustment period followed by a 72 hour sample 

collection period. 

Horses were individually stalled and were exercised for 30 minutes daily on 

a mechanical walker. Horses were fed at 10 AM and 10 PM daily. All horses were 

immunized and dewormed prior to, and received routine health care throughout 

the trial. 

Experimental Treatments 

Diets consisted of a pelleted base concentrate of com, soybean meal and 

cottonseed hulls, and was produced at the Oklahoma State University Feedmill. 

The concentrate was fed in a 60:40 ratio with native prairiegrass hay grown by the 

Oklahoma State University Purebred Beef Research Center. The complete diet 

was fed in amounts to maintain a constant body weight throughout the 

21 
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experimental trial. The four diets were formed by the addition of .50% calcium 

chloride and .50% ammonium chloride to the low diet (L) (Table 1). The medium 

low diet (ML) was supplemented with .50% calcium chloride. The high diet (H) 

was formed by the addition of .40% sodium bicarbonate and 1.0% potassium 

citrate. The medium high diet (MH) served as the control diet and received no 

additional supplementation. Diets were calculated to contain 2.5 Meal/kg OM and 

9.6% crude protein across all treatments (Table II). Diets were analyzed and 

determined to contain approximately equivalent amounts of calcium, phosphorus, 

magnesium and sulphur. This analysis also determined that after 

supplementation, the high diet contained 1.25% potassium and .40% sodium, 

while the medium low diet contained . 73% chloride and the low diet contained 

1.04% chloride. The varying concentration of these minerals gave treatment 

dietary cation-anion balances of +21, + 125, +231 and +350, respectively. 

Blood Collection 

Arterial and venous blood samples were taken on the first day of each 

collection period. Approximately 4 weeks prior to the start of the trial, all horses 

had the carotid artery surgically raised to the subcutaneous level to allow 

catheterization and the subsequent collection of arterial blood. Arterial blood 

samples were drawn, using an 18 gauge catheter, for 12 hours beginning at 

feeding, and hourly thereafter. Venous blood samples were drawn using a 14 

gauge catheter, and were drawn at the same time as arterial samples. All blood 

samples were analyzed immediately for pH, pC02, tC02, HC03, standard 

bicarbonate, base excess and base excess extracellular fluid, using a blood gas 

analyzer (lnsrumentation Laboratory Model1304, Lexington, Ma.). 
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Table I. 

COMPOSITION OF DIETS, AS FED BASIS 

Ingredient(%) L ML MH H 

Ground Corn 36.80 37.30 37.30 35.90 

Soybean Meal 6.00 6.00 6.00 6.00 

Cottonseed Hulls 15.00 15.00 15.00 15.00 

Dical .50 .50 .50 .50 

Trace Mineral Salt .50 .50 .50 .50 

Limestone .50 .50 

Chromic Oxide .20 .20 .20 .20 

Calcium Chloride .50 .50 

Ammonium Chloride .50 

Sodium Bicarbonate .40 

Potassium Citrate 1.00 

Prairie Grass Hay 40.00 40.00 40.00 40.00 

Total 100 100 100 100 

DCAB +21 +125 +231 +350 
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TABLE II. 

DIET ANALYSIS (DRY MATIER BASIS) 

Treatment 

L ML MH H 

DE, Meal/kg 2.34 2.56 2.56 2.50 

Crude Protein 9.60 9.70 9.70 9.50 

Calcium,% .52 .54 .50 .58 

Phosphorus, % .29 .34 .28 .33 

Magnesium, % .15 .16 .15 .15 

Potassium, % .86 .86 .86 1.25 

Sodium,% .22 .28 .32 .40 

Sulfur,% .13 .13 .11 .14 

Chloride,% 1.04 .73 .40 .38 
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Urine Collection 

Total urine production was collected, beginning on the first day of each 

collection period, via urine harnesses, every 4 hours for 72 hours. The volume of 

urine produced was recorded for every four hour period. A representative sample 

of 10% of total volume was com posited over time for each horse and time period. 

An additional sample of 100 ml was analyzed for pH using a Fischer Accumet 

Model 950 pHc meter with a standard glass body combination electrode which 

accounts for sample temperature. This pH meter was standardized prior to each 

four hour collection. After analysis of pH, these samples were then acidified with 

concentrated HCI at 3% of total volume. A separate 20 ml sample was taken at 

each interval, non-acidified, and frozen for later analysis of chloride. 

Fecal Collection 

Fecal samples were obtained 6 times randomly over 72 hours of each 

collection period so that every 2 hours post feeding was represented. Chromium 

oxide was added at 2% of the total diet as an indigestible marker for the 

determination of fecal volume. Each sample was identified by horse number, 

treatment number and time and all samples were immediately frozen in freezer 

bags for later mineral analysis. 

Laboratory Analyses 

Urinary Mineral 



Calcium, Sodium, Potassium and 

Magnesium Analysis 
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For analysis of calcium content of the urine, the composite samples were 

diluted with a .5% La + .1% K solution for a dilution rate of 1 :937.10 and analyzed 

on a Perkins-Elmer Model 4000 Atomic Absorption Spectrophotometer using a 4 

ppm standard, and read at 422.7 nm. For analysis of sodium, composite samples 

were diluted with distilled, deionized water for a final dilution rate of 1:6503.64. 

Samples were analyzed using an Atomic Absorption Spectrophotometer using a 1 

ppm standard and read at 589.0 nm. For the analysis of potassium, composite 

samples were diluted with a .1% La solution for a final dilution rate of 1:7431.63. 

Samples were analyzed using an Atomic Absorption Spectrophotometer using a 2 

ppm standard and read at 766.5 nm. For the analysis of magnesium, composite 

samples were diluted with a . 1% La + .1% K solution for a final dilution rate of 

1 :6503.64. Magnesium concentration was determined using an Atomic 

Absorption Spectrophotometer, using a .40 ppm standard and samples were 

read at 285.2 nm. 

Phosphorus 

For the analysis of phosphorus, composite samples were analyzed using 

the procedure by Sigma chemical #360-UV using a Gilford Spectrophotometer 

and read at 340 nm. 

Chloride 

Urine chloride concentration was determined via potentiometric titration 

using an HBI Digital Chloridometer (Haake Buchler Instruments, Inc.). 
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Fecal and Feed Analysis 

For the analysis of fecal and Feed Na, Ca, K, Mg and P 1 gram of 

composited dried sample was dried at 55 degrees C for 24 hours, weighed, and 

dried again for two hours until a final dry weight was confirmed. Samples were 

then ashed at 500 degrees C for four hours. Two ml of 1 : 1 HCI was then added 

and samples were then boiled on a hot plate at a temperature between 150 and 

200 degrees F until evaporated to dryness. Twenty five ml of a blank solution 

containing 1.5 n HN03 and 0.5 n HCL was added and samples were then 

analyzed using Inductively Coupled Plasma Spectroscopy (ModeiiCAP61 Therno 

Jarrell-Ash). 

Chloride Analysis 

For the analysis of fecal and feed chloride, 1 g of dried composited sample 

was ashed for 4 hours at 500 degrees C. Before ashing, 20 ml of sodium 

carbonate was added to the dried sample to prevent the loss of chloride during 

ashing. After cooling, 20 ml of 20% nitric acid was added to the sample. Samples 

were then boiled on a hot plate on a setting of Low for 30 minutes. Samples were 

then transferred to 50 ml volumetric flasks, and the flasks were filled to volume 

with distilled, deionized water. Chloride concentrations were then determined via 

potentiometric titration using an HBI Digital Chloridometer (Haake Buchler 

Instruments, Inc.). 
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Chromium Analysis 

Approximately .4 g of fecal and .5 g of feed sample was placed in oven­

dried 100 ml beakers, and the air dried sample weight was recorded. Samples 

were then placed in drying ovens for 24 hours at 60 degrees C. After cooling in 

dessicators, the beaker and sample were reweighed to determine oven dried 

sample weight. Samples were then ashed at 500 degrees C for 4 hours. Six ml of 

an acid mixture (1000 ml DOH, 500 ml H2S04 and 500 ml H3P04) was then 

added to the ashed sample. Samples were then placed on a hot plate and 

brought to a boil at a setting of 6. Three ml of KBr03 was added, and the sample 

was boiled for .5 to 1 minute after S03 fumes appeared. The beakers were then 

allowed to cool to room temperature for 10 minutes. Twenty ml of dilute Bromate 

was then added and the mixture was brought to a boil at a setting of 4. When the 

sample changed from clear to milky, the beaker was removed from the hot plate 

and allowed to cool. The sample was then transferred to 100 ml volumetric flasks 

and filled to volume with DOH. The flasks were then capped and inverted 3 times. 

Five ml was transferred to centrifuge tubes and 7.5 ml of 5% NaOH was added. 

After 15 minutes, the tubes were vortexed and allowed to settle for 15 minutes. 

The sample tubes were then centrifuged at 2000 rpm for 15 minutes. Samples 

and standards were then analyzed for chromium concentration on a 

spectrophotometer (Gilford Response Series UV-VIS Spectrophotometer, Ciba 

Corning Diagnostics Corporation.), and read at 400 nm. 
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Statistical Analysis 

Data for urine pH and blood gasses were analyzed using a repeated 

measures model, with horse, period and treatment as the main effects and time 

as the repeated variable. Least squared means over time were then calculated 

and tested for significance using the pdiff procedure. Significance was declared 

at p < .05 {SAS, 1985). Data for urine minerals was analyzed using the general 

linear models procedure with horse, period and treatment as the main effects. 

Least squared means were then calculated and significance was declared at p < 

.05 using the pdiff procedure (SAS, 1985). Data for fecal mineral concentrations, 

fecal chromium concentrations, dry matter digestibilities and mineral balances 

were analyzed using the general linear models procedure with horse, period and 

treatment as the main effects. Least squared means were then calculated and 

significance declared at p < .05 using the pdiff procedure (SAS, 1985). Mineral 

balances for the Low treatment do not equal intakes less excretions due to the 

removal of one horse from the Low treatment. Standard errors for urine and fecal 

excretions and mineral balances were then averaged over all treatments. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Urine pH 

The effect of treatment over time on urine pH is shown graphically in Table 

Ill and Figure 1. Least square mean urine pH levels tended to decrease linearly 

as the cation-anion balance of the diet decreased. Mean urine pH values 

increased significantly (p < .05) between diets L, ML and MH at all measured 

intervals, and between diets MH and Hat 6 and 10pm and again at Sam. Least 

squares means ranged from 5.40 to 5.86 on diet L, 6.79 to 7.30 on diet ML, 7.35 

to 7.63 for diet MH and 7.52 to 8.14 on diet H. This agrees with Wallet al. (1992) 

who reported that exercising horses consuming a lower DCAB had lower urine pH 

values than those consuming the higher diets. This decrease in urinary pH may 

be attributed to the increase in urinary chloride excretion, which, when 

accompanied by a hydrogen ion, will cause a decrease in pH. When excess 

chloride is excreted in the urine, it is accompanied by either a hydrogen, sodium 

or potassium ion. When it combines with a hydrogen ion, urinary pH will 

decrease, as one of the routes of excretion for excess hydrogen is to combine 

with chloride. As this HCI would be extremely damaging to the tubule lumen, it 

subsequently combines with ammonia and is excreted as NH4CI. Another route 

by which hydrogen ions may be excreted to maintain the proper pH is in the form 
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Table Ill. 

EFFECT OF DCAB ON URINE pH POST FEEDING 

Treatment 

Time L ML MH H S.E. 

10AMa 5.sob 6.82C 7.63d 7.72d .125 

2PM 5.4ob 7.05C 7.35d 7.52d .091 

6PM 5.5sb 7.30C 7.62d 8.01e .095 

10 PMa 5.67b 6.90C ?.sad 8.14e .142 

2AM 5.46b 6.96C 7.43d 7.63d .081 

6AM s.8sb 6.79C 7.51d 7.9oe .129 

a Indicates Feeding Time 

b,c,d,e Values in rows with different superscripts differ (p < .05) 
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of disodium phosphate. Poultry researchers (Nesheim et al., 1984) have stated 

that since the pH of the urine is rarely below 4 and the pH of HCI is extremely low, 

excess Cl is also excreted in the form of a salt of sodium chloride or potassium 

chloride. 

Blood Acid-Base Status 

Blood pH 

The effect of DCAB on arterial blood pH is shown graphically in Table IV 

and Figure 2. The effect of DCAB on venous blood pH is shown graphically in 

Table V and Figure 3. Arterial and venous blood pH values were significantly 

lower in those horses consuming diet L as compared to values in those 

consuming diets MH and Hat all measured intervals, except at feeding and at 3 

hours post feeding. There was a trend for both arterial and venous blood values 

to decrease across treatments at 3 hours post feeding. This decrease in horses 

consuming the M L and L diets may be attributed to a time of peak chloride 

absorption, while this response in those horses consuming the MH and H diets 

may be explained by the exchange of potassium for hydrogen into the intracellular 

fluid at the cellular level. In the plasma, there is a balance of ions known as the 

anion gap, which is defined as ([Na] + [K])- ([CI] + [HC03]). The body will 

attempt to maintain this ratio of ions within a specified range. As sodium and 

potassium concentrations in the plasma are controlled by antidiuretic hormone 

and aldosterone, respectively, the concentrations of chloride and bicarbonate are 

controlled mainly by the kidney. As the amount of chloride in the plasma 

increases, the body will reduce the amount of bicarbonate to maintain the anion 



Hour L 

0 7.3sa 

1 7.36a 

2 7.34a 

3 7.33a 

4 7.34a 

5 7.32a 

6 7.33a 

7 7.34a 

8 7.37a 

9 7.3sa 

10 7.3sa 

11 7.36a 

TABLE IV. 

EFFECT OF DCAB ON ARTERIAL 
BLOOD pH POST FEEDING. 

Treatment 

ML MH H 

7.31a 7.37a 7.37a 

7.37ab 7.4ob 7.4ob 

7.3sb 7.4ob 7.4ob 

7.3sa 7.34a 7.37a 

7.3sb 7.40C 7.41C 

7.39b 7.4ob 7.4ob 

7.39bc 7.4ocd 7.42d 

7.4ob 7.4ob 7.41b 

7.39ab 7.4ob 7.41b 

7.4ob 7.42b 7.41b 

7.41b 7.41b 7.4ob 

7.41b 7.42b 7.42b 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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S.E. 

.022 

.009 

.007 

.015 

.006 

.005 

.007 

.004 

.010 

.006 

.006 

.007 



Hour L 

0 7.31a 

1 7.31a 

2 7.33a 

3 7.32a 

4 7.32a 

5 7.32a 

6 7.32a 

7 7.32a 

8 7.33a 

9 7.338 

10 7.348 

11 7.34a 

TABLEV. 

EFFECT OF DCAB ON VENOUS 
BLOOD pH POST FEEDING. 

Treatment 

ML MH H 

7.34a 7.33a 7.35a 

7.32ab 7.3sbc 7.36C 

7.3sb 7.37bC 7.38C 

7.33a 7.34a 7.3sa 

7.37bc 7.38C 7.41d 

7.37b 7.3abc 7.40C 

7.36b 7.39C 7.41C 

7.3abc 7.38C 7.4od 

7.37b 7.37b 7.39b 

7.3ab 7.3ab 7.4ob 

7.39b 7.39b 7.39b 

7.39b 7.39b 7.39b 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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S.E. 

.022 

.009 

.007 

.015 

.006 

.005 

.007 

.004 

.010 

.006 

.006 

.007 
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gap. This decrease in HC03, and consequently NaHC03, results in a decrease 

in blood pH, and a metabolic acidosis. Another possible cause of the decrease in 

blood pH is a direct exchange for Cl and HC03 at the luminal epithelium in the 

small intestine. Many researchers believe that, as Na and Clare absorbed 

together, there are actually two simultaneous exchanges occurring; one in which 

the absorption of Na is in exchange for a H ion, and absorption of Cl in exchange 

for a HC03 ion. Although it is not known which mechanism is responsible for the 

decrease in blood pH when excess Cl is consumed, it is known that both blood 

and urine pH decrease. 

Blood pCOg 

The effect of DCAB on arterial blood pC02 is shown graphically in Table VI 

and Figure 4. The effect of DCAB on venous blood pC02 is shown graphically in 

Table VII and Figure 5. Horses tended (p < .10) to have lower mean arterial 

pC02 levels when fed diet L than when fed diet MH at 6 of the 12 intervals 

measured. When fed diet L, horses also tended (p < .1 0) to have lower mean 

venous pC02 levels than when fed diet MH at 10 of the 12 intervals measured. 

This decrease in arterial and venous blood pC02 is due to the decrease in 

NaHC03 in the plasma, which causes an acidemia. The body responds to this 

acidosis by increasing ventilation which results in reducing the amount of C02 in 

the blood, as alveolar ventilation is inversely related to pC02 concentrations. 

Blood HCO~ 

The effect of treatment on arterial blood HC03 is shown graphically in 

Table VIII and Figure 6. The effect of DCAB on venous blood HC03 is shown 
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TABLE VI. 

EFFECT OF DCAB ON ARTERIAL BLOOD 
pC02 (mmHg) POST FEEDING. 

Treatment 

L ML MH H 

43.22a 50.97b 48.17ab 48.37ab 

38.92a 44.57a 44.17a 43.75a 

42.77a 43.62a 44.37a 44.25a 

43.13a 45.70a 48.95a 46.62a 

41.57a 44.25a 44.95a 43.97a 

42.63a 42.52a 45.25a 44.5oa 

41.28a 45.12b 45.sob 44.25ab 

41.86a 44.42a 45.45a 44.52a 

39.11 a 43.85b 45.sob 44.02b 

41.57a 43.55a 44.25a 44.42a 

42.58a 43.57a 45.4oa 44.85a 

41.76a 43.o5a 43.8oa 43.72a 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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S.E. 

2.06 

1.86 

1.06 

2.59 

4.40 

.96 

1.05 

1.27 

1.33 

1.28 

1.08 

.95 



Hour L 

0 49.89a 

1 49.993 

2 47.21 a 

3 47.663 

4 46.873 

5 45.36a 

6 46.o8a 

7 46.933 

8 47.253 

9 47.873 

10 47.183 

11 47.033 

TABLE VII. 

EFFECT OF DCAB ON VENOUS BLOOD 
pC02 (mmHg) POST FEEDING. 

Treatment 

ML MH H 

53.87a 55.52a 53.37a 

55.753 55.85a 53.703 

50.67b 50.57ab 49.42ab 

52.073 53.303 52.203 

48.703 50.47a 46.45a 

47.55a 50.97a 48.ooa 

49.47b 49.32ab 48.12ab 

49.32a 50.053 49.12a 

49.87ab 52.17ab 49.27ab 

49.ooa 51.35a 48.87a 

49.023 50.503 49.5oa 

49.1oab 50.57a 47.8oa 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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2.06 

1.86 

1.06 

2.59 

4.40 

.96 

1.05 

1.27 

1.33 

1.28 

1.08 

.95 
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TABLE VIII. 

EFFECT OF DCAB ON ARTERIAL BLOOD 
HC03 (mmol/1) POST FEEDING. 

Treatment 

L ML MH H 

24.74a 26.42ab 28.45b 28.57b 

22.54a 26.8ob 28.02b 27.6ob 

23.56a 26.87b 27.87bC 28.17C 

23.54a 25.7oab 27.32b 27.32b 

22.88a 26.95b 28.77b 28.52b 

22.6oa 26.6sb 28.90C 28.40bC 

22.53a 21.sob 29.12b 29.22b 

23.24a 28.17b 28.8sb 29.02b 

23.01a 27.62b 29.35b 28.87b 

23.55a 28.Q2b 29.4Qb 29.3Qb 

24.26a 28.17b 29.75b 28.72b 

24.02a 28.27b 28.97b 28.87b 

a,b,c,d Means in rows with different superscripts differ (p < .05) 

38 

S.E. 

1.03 

.57 

.41 

.69 

.77 

.66 

.65 

.77 

.79 

.78 

.86 

.69 



Hour L 

0 25.97a 

1 26.07a 

2 25.53a 

3 25.34a 

4 24.92a 

5 23.93a 

6 24.30a 

7 25.1oa 

8 25.51a 

9 25.89a 

10 26.16a 

11 26.osa 

TABLE IX. 

EFFECT OF DCAB ON VENOUS BLOOD 
HC03 (mmol/1) POST FEEDING. 

Treatment 

ML MH H 

29.75b 30.o5b 30.52b 

29.75b 31.35b 31.2ob 

29.o?b 30.25C 3o.osbc 

27.82b 29.5ob 29.45b 

28.9ob 30.?ob 29.97b 

28.32b 31.00C 30.22C 

29.2ob 30.8sbc 31.20C 

29.97b 30.6ob 31.22b 

29.62b 31.40b 30.97b 

30.1ob 31.32b 30.75b 

30.40b 31.65b 30.70b 

30.45b 31.45b 30.10b 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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S.E. 

1.03 

.57 

.41 

.69 

.77 

.66 

.65 

.77 

.79 

.78 

.86 

.69 
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graphically in Table IX and Figure 7. Horses consuming diet L had significantly 

lower (p < .05) mean arterial blood HC03 levels as compared to those horses 

consuming diets ML, MH and Hat all measured intervals, except at feeding and 3 

hours post feeding. Furthermore, horses consuming diet L had significantly lower 

mean venous HC03 levels as compared to those fed diets ML, MH and H at all 

measured intervals. This decrease in blood HC03 is again due to the decrease in 

NaHC03 in the plasma, which is the cause of a metabolic acidosis. 

When excess chloride is absorbed from the gastrointestinal tract, the body 

responds by decreasing the amount of HC03 ions in the plasma to maintain the 

anion gap. Thus a decrease in the amount of HC03 occurs in the blood along 

with a decrease in blood pH. 

Blood tCOg 

The effect of DCAB on arterial blood tC02 is shown graphically in Table X. 

The effect of DCAB on venous blood tC02 is shown graphically in Table XI. Total 

carbon dioxide, tC02, is the total concentration (both free and bound) of C02 in 

the blood, and is expressed in mmol/1. Arterial blood tC02 concentrations were 

lower (p < .05) in those horses consuming diet L as compared to those horses 

consuming all other diets at all measured intervals, except at feeding and three 

hours post feeding. Venous blood tC02 concentrations were lower (p < .05) in 

those horses consuming diet L as compared to those horses consuming all other 

diets at all measured intervals. This decrease in the total concentration of carbon 

dioxide in those horses consuming diet L is an indicator of an acidotic state, 

which is mostly due, as in pC02, to an increase in alveolar ventilation in response 

to an acidemia and the increased amounts of C02 in the blood. 



Base Excess (BEB). Base Excess. Extracellular Fluid 

(BEecf). and Standard Bicarbonate (SBC) 
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The effect of DCAB on base excess of the arterial blood, (BEB), is shown 

graphically in Table XII. The effect of DCAB on base excess in the venous blood 

is shown graphically in Table XIII. Base excess is an indicator of the overall 

buffering capacity of the blood, most commonly HC03. Those horses consuming 

diet L had lower (p < .05) arterial BEB concentrations as compared to those 

consuming diets ML, MH and Hat all measured intervals, except at the time of 

feeding. Those horses consuming diet L had lower (p < .05) venous BEB 

concentrations as compared to those consuming diets M L, M H and H at all 

measured intervals. This decrease in base excess indicates that the buffering 

capacity of the blood has been decreased, and is due to the decrease in both 

arterial and venous HC03. 

Base excess, extracellular fluid, (BEecf), is also an indicator of the buffering 

capacity of the blood. The effect of DCAB on arterial blood BEecf is shown 

graphically in Table XIV. The effect of DCAB on venous blood BEecf is shown in 

Table XV. Those horses consuming diet L had lower (p < .05) arterial BEecf 

concentrations as compared to those consuming all other diets at all measured 

intervals, except at feeding. Those horses consuming diet L also had lower (p < 

.05) venous BEecf concentrations as compared to those consuming all other 

diets at all measured intervals. This decreased Beecf in those horses consuming 

the Low diet is further indication of a metabolic acidosis. 

The effect of DCAB on arterial and venous standard bicarbonate,(SBC), an 

additional indicator of the amount of bicarbonate in the blood, is shown 

graphically in Tables XVI and XVII, respectively. Those horses consuming diet L 

had lower (p < .05) arterial SBC concentrations as compared to those horses 
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consuming diets ML, MH and H at all measured intervals, except at feeding and 

four hours post feeding. Those horses consuming diet L had lower (p < .05) 

venous SBC concentrations as compared to those horses consuming diets ML, 

MH and H at all measured intervals, except at feeding. Once again, this decrease 

in the buffering capacity of the blood in those horses consuming the Low diet is 

an indication of a metabolic acidosis. 

Partial Pressure of Oxygen (pOg) and Percent Oxygen 

Saturation (sOgQ 

The effect of DCAB on arterial and venous blood s02C is shown 

graphically in Tables XVIII and XIX, respectively. No differences in arterial heme 

saturation were detected between any treatments at any of the measured 

intervals. Furthermore, no differences in venous blood s02C concentration were 

detected at any of the measured intervals, except at four and five hours post 

feeding. Treatment least squared means for arterial blood s02C ranged from a 

low of 94.37 mmoljl to 100.66 mmoljl, both values coming from those horses 

consuming the Low diet. The effect of DCAB on arterial and venous p02 is 

shown graphically in Tables XX and XXI. No differences in arterial blood p02 

concentrations were detected between any treatments at any interval measured, 

except at five and eight hours post feeding. No differences in venous blood p02 

concentrations were detected between any treatments at any interval. Although 

p02 and s02C measurements are not usually considered in the discussion of 

acid-base balance, these data confirm that the acid-base status of sedentary 

horses has little effect on the measured variables of oxygen in the arterial or 

venous blood. 
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TABLE X. 

EFFECT OF DCAB ON ARTERIAL BLOOD 
tC02 (mmHg) POST FEEDING. 

Treatment 

L ML MH H 

26.06a 28.02ab 29.95b 30.02b 

23.72a 28.15b 29.37b 28.95b 

24.87a 28.17b 29.25bc 29.52C 

24.85a 21.12ab 28.8ob 28.77b 

24.17a 28.30b 30.17b 30.o2b 

23.92a 27.97b 30.30C 29.75bc 

23.76a 28.92b 30.52b 30.55b 

24.30a 29.50b 30.22b 31.65b 

24.2oa 28.97b 30.75b 30.25b 

24.86a 29.35b 30.77b 30.67b 

25.57a 29.5ob 31.2ob 30.12b 

25.32a 29.65b 30.35b 30.22b 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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S.E. 

1.02 

.625 

.428 

.747 

.783 

.673 

.676 

1.06 

.827 

.819 

.897 

.722 



Hour L 

0 27.53a 

1 27.5sa 

2 27.01a 

3 26.79a 

4 26.37a 

5 25.28a 

6 25.69a 

7 26.13a 

8 26.97a 

9 27.36a 

10 27.soa 

11 27.49a 

TABLE XI. 

EFFECT OF DCAB ON VENOUS BLOOD 
tC02 (mmHg) POST FEEDING. 

Treatment 

ML MH H 

31.35b 31.75b 32.15b 

31.45b 33.Q7b 32.82b 

30.62b 31.8ob 31.ssb 

29.45b 31.12b 31.Q2b 

30.37b 32.25b 31.4Qb 

29.sob 32.52C 31.67bc 

30.7Gb 32.3sbc 32.67C 

31.52b 32.15b 32.7Qb 

31.15b 33.oob 32.47b 

31.65b 32.87b 32.22b 

31.9ob 33.2Qb 32.22b 

31.97b 33.oob 31.ssb 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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1.02 

.625 

.428 

.747 

.783 

.673 

.676 

1.06 

.827 

.819 

.897 

.722 
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TABLE XII. 

EFFECT OF DCAB ON ARTERIAL BLOOD BASE 
EXCESS (mmolfl) POST FEEDING. 

Treatment 

L ML MH H 

-o.1aaa o.2ooa 3.075a 3.125a 

-1.soaa 1.aoob 3.350C 3.000C 

-1.575a 2.1oob 3.175C 3.550C 

-1.745a o.4oob 1.6oobc 2.150C 

-2.104a 2.1oob 4.100C 3.975bc 

-2.679a 2.2oob 4.100C 3.7oobc 

-2.458a 2.55ob 4.300C 4.750C 

-1.77oa 3.475b 4.05ob 4.425b 

-1.317a 2.95ob 4.525b 4.425b 

-1.229a 3.475b 4.925b 4.775b 

-0.683a 3.6oob 5.075b 4.025b 

-0.767a 3.925b 4.55ob 4.425b 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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1.220 

.367 

.377 

.509 

.685 

.586 

.609 

.647 

.762 

.690 

.795 

.653 
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TABLE XIII. 

EFFECT OF DCAB ON VENOUS BLOOD BASE 
EXCESS (mmoljl) POST FEEDING. 

Treatment 

L ML MH H 

-0.154a 3.325ab 3.425ab 4.32Sb 

-0.108a 3.025b 4.825C s.osoc 

-0.175a 3.2oob 4.525C 4.550C 

-0.513a 1.625b 3.250C 3.350C 

-0.804a 3.375b 5.075b 5.1oob 

-1.679a 3.025b 5.300C 5.050C 

-1.392a 3.575b 5.425C 6.100C 

-0.638a 4.5oob 5.025b s.9oob 

-0.183a 3.975b 5.525b s.6oob 

0.138a 4.7oob 5.6oob 5.45ob 

0.55oa 5.025b 6.15ob 5.275b 

0.467a 5.075b 5.875b 4.9oob 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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1.220 

.367 

.377 

.509 

.685 

.586 

.609 

.647 

.762 

.690 

.795 

.653 
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TABLE XIV. 

EFFECT OF DCAB ON ARTERIAL BLOOD BASE 
EXCESS EXTRACELLULAR FLUID 

(mmol/1) POST FEEDING. 

Treatment 

L ML MH H 

-0.829a o.2ooa 3.15oa 3.175a 

-2.971 a 1.525b 3.125C 2.675bc 

-2.288a 1.75ob 2.95obc 3.325C 

-2.4388 0.025b 1.575bc 2.000C 

-2.9588 1.8oob 4.ooob 3.775b 

-3.5508 1.725b 4.050C 3.55obc 

-3.3968 2.35ob 4.25obc 4.650C 

-2.613a 3.275b 4.ooob 4.375b 

-2.404a 2.7oob 4.55ob 4.275b 

-2.0928 3.2oob 4.825b 4.7oob 

-1.3718 3.4oob 5.125b 3.925b 

-1.5258 3.65ob 4.425b 4.25ob 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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1.300 

.493 

.438 

.634 

.819 

.692 

.710 

.795 

.872 

.833 

.936 

.761 



Hour 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE XV. 

EFFECT OF DCAB ON VENOUS BLOOD BASE 
EXCESS EXTRACELLULAR FLUID 

(mmol/1) POST FEEDING. 

Treatment 

L ML MH H 

-0.2968 3.85ob 4.025b 4.875b 

-0.2048 3.625b 5.600C 5.675C 

-0.4548 3.5oob 4.925C 4.875C 

-0.8048 1.8oob 3.675C 3.800C 

-1.1588 3.5oob 5.525b 5.25ob 

-2.1838 3.025b 5.775b 5.275b 

-1.8638 3.8oob 5.875C 6.450C 

-1.013a 4.8oob 5.425b 6.35ob 

-0.471 a 4.25ob 6.150b 6.ooob 

-0.058a 5.025b 6.175b 5.825b 

0.3298 5.325b 6.675b 5.675b 

0.242a 5.425b 6.425b 5.125b 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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1.300 

.493 

.438 

.634 

.819 

.692 

.710 

.795 

.872 

.833 

.936 

.761 
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TABLE XVI. 

EFFECT OF DCAB ON ARTERIAL BLOOD 
STANDARD BICARBONATE 

(mmol/1) POST FEEDING. 

Treatment 

L ML MH H 

24.758 25.108 27.358 27.378 

23.558 26.35b 27.57C 27.25C 

23.568 26.60b 27.42bc 27.67C 

23.528 25.27b 26.17bc 26.62C 

24.928 26.578b 28.12b 28.osb 

22.768 26.65b 28.12C 27.85bc 

22.978 26.92b 28.30bC 28.62C 

23.498 27.62b 28.o5b 28.40b 

23.918 27.27b 28.47b 28.37b 

23.928 27.65b 28.77b 28.67b 

24.368 27.sob 28.92b 28.10b 

24.308 28.02b 28.50b 28.42b 

8,b,c,d Means in rows with different superscripts differ (p < .05) 
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.985 

.272 

.353 

.390 

.711 

.459 

.498 

.540 

.622 

.543 

.615 

.529 



Hour L 

0 24.158 

1 23.78a 

2 23.968 

3 23.858 

4 23.528 

5 22.968 

6 23.148 

7 23.898 

8 23.988 

9 24.328 

10 24.698 

11 24.578 

TABLE XVII. 

EFFECT OF DCAB ON VENOUS BLOOD 
STANDARD BICARBONATE 

(mmol/1) POST FEEDING. 

Treatment 

ML MH H 

26.758b 27.35a 27.52b 

26.o?b 27.57C 27.80C 

26.6Gb 27.42bc 27.80C 

24.45b 26.17bC 26.75C 

26.90b 28.12b 28.45b 

26.67b 28.12C 28.20C 

26.97b 28.3Gbc 28.95C 

27.72b 28.osb 28.9Gb 

27.35b 28.47b 28.6Gb 

27.95b 28.77b 28.55b 

28.G?b 28.92b 28.35b 

28.22b 28.sob 28.15b 

8,b,c,d Means in rows with different superscripts differ (p < .05) 
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.985 

.272 

.353 

.390 

.711 

.459 

.498 

.540 

.622 

.543 

.615 

.529 
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TABLE XVIII. 

EFFECT OF DCAB ON ARTERIAL BLOOD PERCENT 
SATURATED OXYGEN POST FEEDING. 

Treatment 

L ML MH H 

96.32a 97.87a 98.7oa 98.35a 

100.66a 98.25a 98.1sa 97.88a 

94.37a 97.9oa 98.5oa 98.ooa 

97.15a 98.47a 98.15a 98.17a 

96.28a 98.07a 98.47a 98.17a 

96.09a 98.37a 97.97a 98.17a 

96.5oa 98.o5a 98.3oa 98.37a 

97.02a 98.20a 98.15a 98.32a 

97.67a 98.22a 97.92a 98.25a 

97.35a 98.52a 98.628 98.62a 

96.66a 98.32a 98.208 98.45a 

97.148 98.soa 98.2oa 98.6oa 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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2.59 

5.36 

5.34 

2.69 

2.75 

2.18 

2.14 

2.95 

1.94 

2.07 

2.01 

2.15 
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TABLE XIX. 

EFFECT OF DCAB ON VENOUS BLOOD PERCENT 
SATURATED OXYGEN POST FEEDING. 

Treatment 

L ML MH H 

76.058 71.658 69.708 71.528 

61.138 55.078 57.958 61.208 

68.378 69.208 72.028 74.528 

75.028 72.808 72.908 69.178 

69.588 74.978b 70.978 82.57b 

76.ogab 76.428 70.15b 75.4oab 

74.708 71.328 75.778 73.228 

79.658 73.358 77.158 75.708 

69.418 75.278 72.658 73.608 

73.158 74.778 74.458 76.258 

73.698 72.108 74.028 73.428 

73.348 74.808 73.958 77.058 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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2.59 

5.36 

5.34 

2.69 

2.75 

2.18 

2.14 
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1.94 

2.07 

2.01 
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TABLE XX. 

EFFECT OF DCAB ON ARTERIAL BLOOD 
p02 (mmHg) POST FEEDING. 

Treatment 

L ML MH H 

116.668 114.008 148.758 144.008 

115.458 113.ooa 108.758 104.758 

108.91 a 104.508 12o.5oa 105.508 

108.258 121.5oa 116.ooa 112.758 

118.708 108.258 11s.ooa 108.008 

119.878 114.258 104.oob 109.2sab 

118.958 108.258 111.008 110.758 

11s.ooa 109.258 108.508 109.758 

118.258 111.ooab 104.oob 109.5oab 

114.088 120.758 117.758 121.ooa 

115.458 111.ooa 107.5oa 119.508 

114.008 117.258 108.508 12o.soa 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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S.E. 

14.34 

4.39 

7.19 

5.23 

4.21 

3.37 

3.50 

5.76 

4.00 

6.39 

5.44 

6.03 



Hour L 

0 37.ooa 

1 38.12a 

2 39.25a 

3 42.91a 

4 39.37a 

5 44.20a 

6 43.62a 

7 44.ooa 

8 37.91a 

9 43.oaa 

10 42.45a 

11 38.33a 

TABLE XXI. 

EFFECT OF DCAB ON VENOUS BLOOD 
p02 (mmHg) POST FEEDING. 

Treatment 

ML MH H 

40.75a 40.ooa 38.ooa 

33.25a 32.75a 33.75a 

40.25a 41.soa 51.75a 

42.ooa 42.soa 38.25a 

42.ooa 38.75a 50.75a 

42.75a 38.5oa 41.5oa 

39.25a 42.25a 39.25a 

40.ooa 43.ooa 41.5oa 

42.soa 39.75a 39.75a 

40.75a 41.25a 42.ooa 

39.ooa 40.75a 40.ooa 

41.25a 40.25a 53.25a 

a,b,c,d Means in rows with different superscripts differ (p < .05) 
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S.E. 

14.34 

4.39 

7.19 

5.23 

4.21 

3.37 

3.50 

5.76 

4.00 

6.39 

5.44 

6.03 
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Dry Matter Digestibility 

The effect of DCAB on dry matter digestibility is shown graphically in Table 

XXII. Dry matter digestibility was calculated by dividing the grams of OM fecal 

output by the grams of OM intake per day. Dry matter digestibility percentages 

ranged from a low of 57.91% tor treatment L to a high of 62.09% for treatment 

MH. No significant differences were observed for dry matter digestibility among 

treatments. This disagrees with Nelson and coworkers (1981) who reported a 

decrease in dry matter digestibility in chicks fed a higher cation-anion ratio. 

However, these researchers manipulated the cation-anion ratio with the addition 

of calcium and phosphorus. These data also disagree with that of Yen et al. 

(1981) who showed a decreased feed intake, feed efficiency and weight gain in 

barrows ted a diet with 4% cacium chloride added, and also with Haydon and 

West (1990) who reported a linear relationship between DCAB and apparent ileal 

digestibility of energy, dry matter, N, and amino acids (with the exception of 

alanine and methionine) in diets with DCAB's of -50 to 400 meqjkg of diet dry 

matter. However, these researchers noted that nutrient and amino acid 

digestibilities were similar when measured over the entire tract. 

Sodium Balance 

After supplementation of the High diet with potassium citrate and sodium 

bicarbonate, diet H was determined to contain 1.25% potassium and 0.40% 

sodium, increasing sodium intake to 33.13 gjd for the High diet as compared to 

19.21, 22.94 and 26.93 gjd tor the L, ML and MH diets, respectively. The effect of 

DCAB on sodium balance is shown in Table XXIII and Figure 8. Horses 

consuming diets L and H excreted more sodium in the urine than those horses 



TABLE XXII 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON DRY 
MATTER DIGESTIBILITY IN SEDENTARY HORSES 

Treatment 

L ML MH H S.E. 

OM Digestibility % 57.91 a 58.42a 62.09a 59.95a 1.99 

a,b Means in rows with different superscripts differ (p < .05) 
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consuming diets ML and MH (p < .05), with least square means of 13.51 and 

11.53 g/d for the Land H diets, respectively, and 6.20 and 5.32 g/d for the ML 

and MH diets, respectively. In addition, those horses consuming diet L excreted 

less sodium in the feces (p < .05) than those consuming diets ML, MH and H, 

with those horses consuming the Low diet excreting 5.66 g/d in the feces versus 

13.03, 13.71 and 16.56 g/d for treatments ML, MH and H. The increased daily 

intake of sodium in those horses consuming the High diet resulted in an 

increased urinary excretion of sodium as compared to those horses consuming 

the MH and ML diets, but was not statistically different than the urinary excretion 

of sodium in those horses consuming the Low diet. One explanation for the 

increased urinary sodium excretion in those horses consuming the highly anionic 

diet (diet L} is that those horses consuming the Low diet also excreted a 

significantly higher amount of chloride ions in the urine, (Table 15, Figure 10). 

These chloride ions must combine with another ion to be excreted, and since 

combining with hydrogen ions results in an acidity that would be very destructive 

to the tubule lumen, these chloride ions most often are excreted in the form of Na 

or K salts (Nesheim et al., 1984). 

These findings are in partial agreement with that of Schryver and 

coworkers (1987) who demonstrated that urinary excretion was the primary 

pathway for sodium loss in sedentary horses consuming 1 , 3 and 5% sodium 

chloride. The author noted that sodium intake was directly related to urinary 

sodium excretion but had no effect on fecal excretion, intestinal absorption or 

retention of sodium. Sodium balance of those horses consuming diets ML (3. 71 

g/d), MH (7.90 gfd) and H {5.04 g/d) were not statistically different, however 

those horses consuming the Low diet had a balance of -0.76 gfd, and this was 

significantly lower {p < .05) than the balance for those horses consuming diet MH 

(7.90 g/d). 



Intake, g/d 

Urine, g/d 

Fecal, g/d 

TABLE XXIII 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
SODIUM BALANCE IN SEDENTARY HORSES 

Treatment 

L ML MH H S.E. 

19.21 22.94 26.93 33.13 

13.51b 6.2oa 5.32a 11.53b .91 

s.66a 13.Q3b 13.71b 16.s6b 1.33 

Balance, g/d -0.76a 3.71ab ?.sob s.o4ab 1.96 

a,b Means in rows with different superscripts differ (p < .05) 
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These findings are in partial agreement with Wall et al. (1992) who 

observed a higher urinary sodium excretion in exercising horses consuming the 

highest DCAB as compared to the other treatments. However, those researchers 

did not observe higher sodium excretions in those horses consuming the lowest 

DCAB diet. These findings suggest that horses consuming a highly anionic diet 

may be in a negative sodium balance due to the increased amount of sodium lost 

in the urine. 

Potassium Balance 

Potassium was one of the cations used to manipulate the DCAB, and was 

supplemented in the form of potassium citrate at 1.00% of the diet along with 

.40% sodium bicarbonate (Table 1). This supplementation resulted in a total 

dietary concentration of potassium in the High diet of 1.25%, as compared to a 

concentration of 0.86% in the Low, Medium Low and Medium High diets. 

Therefore, daily potassium intake for those horses consuming the High diet was 

increased to 104.14 g/d as compared to 73.38, 71.17 and 71.17 gfd for diets L, 

ML and MH, respectively. The effect of DCAB on potassium balance is shown in 

Table XXIV and Figure 9. Those horses consuming the High diet had higher (p < 

.05) concentrations of potassium in the urine (68.4 7 gf d) as compared to all other 

treatments {L = 34.85, ML = 46.55 and MH = 41.52 gjd). Furthermore, those 

horses consuming diet L had higher (p < .05) concentrations of potassium in the 

feces {24.05 g/d) as compared to all other diets {ML = 18.19, MH = 16.98 and H 

= 15.28 gjd). Potassium balances were similar among treatments L {12.27 gfd), 

ML (6.42 gfd) and MH {12.66 gjd). However, those horses consuming diet H 

had a higher (p < .05) potassium balance (20.47 g/d) than those horses 

consuming the ML diet {6.42 g/d). The NRC (1989) lists the potassium 

requirement for horses at maintenance at 1.52 g/Mcal of DE, therefore a 500 kg 



Intake, g/d 

Urine, g/d 

Fecal, g/d 

TABLE XXIV 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
POTASSIUM BALANCE IN SEDENTARY HORSES 

Treatment 

L ML MH H S.E. 

73.38 71.17 71.17 104.14 

34.85a 46.55a 41.52a 68.48b 3.18 

24.osb 18.19a 16.98a 15.28a .948 

Balance, gfd 12.27ab 6.42a 12.ssab 20.47b 2.36 

a,b Means in rows with different superscripts differ (p < .05) 
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{11 00 lb) horse would need 25 g/ d of dietary potassium. The horses in this trial 

received dietary potassium well above the minimum requirements, which is 

common in most rations fed today. 
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These findings are in agreement with Wall and coworkers (1992) who 

reported that exercising horses consuming the highest DCAB had higher urinary 

excretion of potassium than those horses consuming the other diets. 

Chloride Balance 

Chloride was the only anion used in this experiment to manipulate the 

DCAB. The ML diet was supplemented with .50% calcium chloride, while the Low 

diet was supplemented with .50% calcium chloride and .50% ammonium chloride 

(Table 1). This supplementation resulted in a daily intake of 89.37 and 60.76 g/d 

for diet Land ML, respectively, as compared to 33.29 and 31.80 gjd for diets MH 

and H. The effect of DCAB on chloride balance is shown in Table XXV and Figure 

10. No differences in fecal excretion of chloride were observed across 

treatments. Decreasing the DCAB resulted in higher (p < .05) urinary excretions 

of chloride in both diet L (70.59 gjd) and diet ML (57.54 gjd) as compared to 

both diet MH (31.34 g/d) and H (31.44 g/d). Apparently, the increase in urinary 

chloride excretion in those horses consuming diets ML and L was enough to 

offset the increased intake of chloride, as daily chloride balance was similar 

across all treatments. However, in this trial only those horses consuming diet L 

had a positive daily chloride balance (13.16 gjd). 

These results agree with other data demonsrating an increased daily 

urinary excretion of chloride in horses consuming a lower DCAB (Topliff et at., 

1989; Wallet al., 1992). However, these results disagree with those of Schryver 

and others (1987) who reported that dietary chloride was completely absorbed in 



TABLE XXV 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
CHLORIDE BALANCE IN SEDENTARY HORSES 

Treatment 

L ML MH H S.E. 

Intake, gjd 89.37 60.76 33.29 31.79 

Urine, g/d 70.60b 57.54b 31.34a 31.44a 5.79 

Fecal, gjd 4.6oa 5.58a 5.78a 3.52a .686 

Balance, gjd 13.16a -2.35a -3.82a -3.16a 4.70 

a,b Means in rows with different superscripts differ (p < .05) 
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sedentary horses consuming diets with 1, 3 and 5% sodium chloride, and that 

urinary excretion was the sole pathway for elimination of chloride from the body. 

The NRC (1989) states that chloride requirements are presumed to be met 

when the sodium requirements are met with sodium chloride. In 1989, Young and 

others fed approximately 1.5 times more chloride than sodium to exercised 

miniature horses and still experienced a chloride deficiency. In the present study, 

those horses consuming diets ML, MH and Hall had a negative daily chloride 

balance (-2.35, -3.82 and -3.16 gjd, respectively). From the data in this study, we 

may suggest that diets with a low DCAB manipulated with the addition of chloride 

results in an increased daily chloride balance. Furthermore, this increased 

amount of chloride retained in the body has a significant effect on blood and urine 

pH, along with a possible deleterious role in calcium, phosphorus and sodium 

balance in sedentary horses. 

Magnesium Balance 

Magnesium has been previously implicated as having a possible role in the 

DCAB equation in dairy cattle. Therefore, in the present study dietary magnesium 

intakes were held constant (13.03, 13.14, 12.14 and 12.64 g/d for diets L, ML, MH 

and H, respectively) across treatments. The effect of DCAB on magnesium 

balance is shown in Table XXVI and Figure 11. No differences in daily urinary 

magnesium excretions were observed, with excretions ranging from 6.02 to 6.74 

gfd. Daily fecal magnesium excretion increased as the DCAB decreased. Those 

horses consuming diet L excreted more (p < .05) magnesium in the feces [1.95 

g/d) than those consuming diets MH (6.76 g/d) and H (6.68 gfd), while those 

consuming diet ML (7.42 gfd) excreted more (p < .05) magnesium in the feces 

than those consuming diet H (6.68 g/d). However, these urinary and fecal 



Intake, gjd 

Urine, gjd 

Fecal, gjd 

TABLE XXVI 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
MAGNESIUM BALANCE IN SEDENTARY HORSES 

Treatment 

L ML MH H S.E. 

13.03 13.14 12.14 12.64 

6.02a 6.74a 6.47a 6.44a .926 

7.95C 7.42bc 6.76ab 6.6aa .212 

Balance, gjd -1.31a -1.01a -1.oaa -0.48a 0.78 

a,b Means in rows with different superscripts differ (p < .05) 
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excretions resulted in no differences in daily magnesium balance across 

treatments, although magnesium balance was slightly negative for all treatments. 

These data are in agreement with Wall and others (1992) who reported no 

differences in urinary magnesium excretion in exercising horses consuming diets 

varying in DCAB. The NRC (1989) suggests a magnesium intake of .46 g/Mcal 

DE to meet the horse's requirement. Therefore, the horses in this trial would 

require approximately 10 g/d (due to varying intakes between horses). All diets 

used in the present trial should have been sufficient in meeting the magnesium 

requirement, however, these data suggest that this value may be inadequate 

independent of DCAB. Further research is needed to accurately quantify the 

magnesium requirements of sedentary horses. 

Phosphorus Balance 

It was attempted by these researchers to hold the intake of phosphorus 

constant across all treatments. However, due to possible variation concentration 

of phosphorus in the feedstuffs used, or due to sampling error, the actual 

phosphorus intakes in gjd were 25.22 for diet L, 27.96 for diet ML, 22.97 for diet 

MH and 27.46 for diet H. The effect of DCAB on phosphorus balance is shown in 

Table XXVII and Figure 12. No differences were observed in daily urinary 

excretion of phosphorus, with urinary excretions ranging from 0.128 g/d for diet 

ML to 0.156 g/d for diet H. Daily fecal excretion of phosphorus was similar 

among treatments L (19.05 gjd), ML (19.10 gjd) and MH (18.97 gjd), however 

those horses consuming diet H had lower (p < .05) daily fecal excretion of 

phosphorus as compared to horses consuming the L, ML and MH diets. The low 

renal excretion values may be due to the possibility that even in the frozen state, 

phosphorus may be changed from the organic to the inorganic form. 



TABLE XXVII 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
PHOSPHORUS BALANCE IN SEDENTARY HORSES 

Treatment 

L ML MH H S.E. 

Intake, gjd 25.22 27.96 22.97 27.46 

Urine, gjd 0.148a 0.12sa 0.135a 0.156a .016 

Fecal, gjd 19.osb 19.10b 18.97b 17.32a .281 

Balance, gjd 5.31b 8.73C 3.a6a s.sad .270 

a,b Means in rows with different superscripts differ (p < .05) 
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Although there was a significant difference in phosphorus balance between 

all treatments (p < .05), phosphorus balance tended to reflect phosphorus intake 

across all treatments. These data agree with that of Wall and others (1992) who 

observed no differences in daily urinary phosphorus excretions in horses 

consuming a varying DCAB. Furthermore, the urinary excretions observed in the 

present study were similar to those observed by Wall and others (1992). The 

NRC (1989) suggests a phosphorus requirement of .87 gjMcal DE. Therefore, 

the horses in this study required approximately 18.5 gjd. Each of the diets used 

in this study appear to have supplied adequate phosphorus, as all daily balances 

across treatments were positive. 

Calcium Balance 

The effect of DCAB on calcium balance is shown in Table XXVIII and Rgure 

13. Diets were formulated to have equivalent amounts of calcium in each 

treatment. However, due to possible variation in feedstuffs or possible sampling 

error, calcium intake in grams/day was 44.24 for diet L, 44.91 for diet ML, 41.42 

for diet MH and 48.41 for diet H. Some differences were observed regarding 

calcium absorption and excretion as compared to the other minerals studied. 

Daily fecal excretion of calcium was similar in those horses consuming diets L, ML 

and H (15.35, 15.76 and 15.92 g/d, respectively), however, those horses 

consuming diet MH excreted more (p < .05) calcium in the feces (19.11 g/d) as 

compared to all other diets. Daily urinary excretion of calcium increased 

significantly (p < .05) between all treatments as the DCAB was decreased. Daily 

urinary calcium excretions ranged from 3.99 gjd for diet H to 39.81 g/d for diet L 

These urinary and fecal excretions of calcium resulted in a marked difference 

between daily calcium balances between treatments. Daily calcium balance 



TABLE XXVIII 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
CALCIUM BALANCE IN SEDENTARY HORSES 

Treatment 

L ML MH H S.E. 

Intake, gjd 44.24 44.91 41.42 48.41 

Urine, gjd 39.82d 31.80C 13.99b 3.99a 1.27 

Fecal, gjd 15.35a 15.76a 19.11 b 15.92a .503 

Balance, g/d -12.2oa -2.65b 8.31C 28.51d 1.02 

a,b Means in rows with different superscripts differ (p < .05) 
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decreased significantly (p < .05) between all treatments as the DCAB was 

decreased, with balances of -12.20, -2.65, 8.31 and 28.51 gjd for diets L, ML, MH 

and H, respectively. 

These data on urinary excretion of calcium agree with other data in horses 

(Wallet al., 1992; Topliff et al., 1989), rats (Barzel and Jowsey, 1989; Newell and 

Beauchene, 1975; Petito and Evans, 1984; Goulding and Campbell, 1984), rabbits 

(Thacker, 1959), and dairy cattle (Tucker et al., 1988) that consume diets with a 

lower DCAB. 

In 1991, Goff and others demonstrated that parathyroid hormone has a 

more dramatic effect on renal production of 1 ,25 dihydroxyvitamin D3 in dairy 

cows fed highly anionic diets, resulting in increased intestinal calcium absorption. 

Furthermore, osteoclastic bone resorption was more responsive to parathyroid 

hormone as plasma hydroxyproline concentration was higher in those cows fed 

the low DCAB diet. It has also been suggested that renal tubular reabsorption of 

calcium may be inhibited by the acidotic state and low pH induced by the lower 

DCAB diets (Beck and Webster, 1976). 

The NRC (1989) suggests that the calcium requirement is 1.22 gjMcal 

DE/d. The horses in the present trial would therefore have required 

approximately 26 gjd of dietary calcium. The calcium intake in this trial was 

purposely exceeded so that these horses would not be predisposed to a daily 

negative calcium balance. However, these data demonstrate that as the DCAB is 

lowered, daily calcium balance decreases, and horses consuming the ML and L 

diets are in a negative calcium balance. If this condition were prolonged, these 

animals could be predisposed to an osteoporotic weakening of the skeletal 

system that has been demonstrated in poultry (Leach and Neshium, 1965, 1972; 

Hamilton and Thompson, 1980; Mangin, 1981; Halley et al., 1987; Sauveur and 



Mangin, 1978; Hurwitz et al., 1973), rabbits (Thacker, 1959), and dairy cattle 

(Tucker et al., 1988) that consume diets with a lower DCAB. 
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CHAPTERV 

SUMMARY AND CONCLUSIONS 

In summary, these results indicate a direct correlation between 

dietary cation-anion balance and acid-base status in horses, as evidenced by the 

decrease in arterial and venous blood pH and bicarbonate concentrations, as well 

as the urine pH as the cation-anion balance of the diet decreases. Furthermore, 

these results provide critical information regarding the relationship between DCAB 

and mineral balance in sedentary horses. These results suggest that the NRC 

(1989) recommendations for magnesium may be marginal. We may conclude 

that the horses consuming diets with a lower (less than 230 meqjkg diet DM) 

DCAB were in a net negative calcium balance, as well as a lowered sodium 

balance. 

It is clear that both the absolute amounts as well as the ratios of minerals in 

the diets of horses should be under strict control. It is commonplace in the horse 

industry today, however, to see completely balanced rations supplemented with 

feed additives and vitamin and mineral mixtures that may alter these critical ratios 

of the diet. The feeding of diets with a lowered DCAB may have far reaching 

effects on many classes of horses as well as on different production stages. 

It may be possible to increase milk yield by feeding a higher DCAB to lactating 

mares, as has been shown in dairy cattle. It may also be possible to decrease the 

incidence of many developmental orthopedic disease in the growing horse by 

improving the calcium status and balance of these young horses. Furthermore, 

71 



72 

the feeding of higher cation-anion balances to heavily exercised horses, such as 

those on the track, could result in a decrease in the amount of injuries and 

breakdowns which are possibly due to lowered calcium retention and decreased 

bone mineralization. 

Further research is needed to determine the effects of DCAB in the young 

growing horse, as they would be particularly susceptible to these alterations in 

mineral balance, particularly a decreased calcium balance, which may affect 

proper bone and skeletal formation. 
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