
A GENERAL MUTUAL EXCLUSION PRIMITIVE

BY

RA VEENDRA REDDY AVUTU

Bachelor of Engineering

University of Allahabad

Allahabad, India

1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State university
in partial fulfillment of

the requirement for
the Degree of

MASTER OF SCIENCE
December 1993

oK£AH~MA STATE UNIVERSITY

A GENERAL MUTUAL EXCLUSION PRIMITIVE

Thesis Approved:

11

ACKNOWLEDGEMENTS

I would like to express my appreciation to and thank my graduate advisor Dr.

Mansur H. Sarnadzadeh for his advisement, guidance, dedication, encouragement, and

instruction throughout my thesis research work. I got inspiration and motivation due to

his constant guidance. Without his support, motivation, and patience it would not have

been possible to complete this work as it is now.

My sincere thanks to Drs. B.E. Mayfield and D.P. Benjamin for serving on my

graduate committee.

Finally, I also wish to thank my wife and brother-in-law. Without their support

and encouragement, it would not have been possible for me to complete my graduate

studies.

111

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

II. LITERATURE REVIEW . 3

2.1 Control Problems in Parallel Processing . 3
2.1.1 Criterion of Mutual Awareness . 4
2.1.2 Criterion of Mutual Influence . 5
2.1.3 Competition Among n Processes for One Resource 6
2.1.4 Competition Among n Processes for m Resources 7

2.2 Mutual Exclusion: Software Solutions . 7
2.2.1 Dekker's Algorithm . 8
2.2.2 Dijkstra' s Algorithm . 8
2.2.3 Knuth's Algorithm . 9
2.2.4 De Bruijn's Algorithm . 10
2.2.5 Eisenberg and MacGuire's Algorithm 11
2.2.6 Peterson's Algorithm . 12

2.3 Mutual Exclusion: Hardware Solutions . 12
2.4 Recent Developments in the Field of Synchronization 16

2.4.1 Data Synchronization Instructions . 16
2.4.2 Distributed Synchronizers . 18

III. IMPLEMENTATION ISSUES . 21

3.1 Specification of the Approach . 21
3.2 Implementation . 25
3.3 Comparison with Other Primitives . 26

IV. EVALUATION .. 33

4.1 The Execution Environment and Its Validation 33
4.2 A Semaphore Implementation of the New Primitive 38
4.3 Study of the Data Collected . 40
4.4 Observations . 41

lV

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK 43

5.1 Summary . 43
5.2 Conclusions . 43
5.3 Future Work . 44

REFERENCES . 46

APPENDICES . 49

APPENDIX A- Glossary and Trademark Inforn1ation 50

APPENDIX B- Program Listings . 52

v

LIST OF FIGURES

Figure Page

1. Various Queue Sizes Resulting from a Sample Run 27

2. Cumulative Average Queue Sizes . 28

Vl

LIST OF TABLES

Table Page

1. Comparison of n-Process Mutual Exclusion Algorithms 31

2. Results Obtained when Two Processes Updated a Shared Variable 35

3. Results Obtained when Sixty Processes Updated a Shared Variable 36

Vll

CHAPTER I

INTRODUCTION

Processes are concurrent if they exist at the same time. Concurrent processes can

function completely independently of one another, or they may require occasional

synchronization and cooperation.

As computer hardware continues to decrease 111 size and cost, there is a trend

towards multiprocessing and parallelism. If certain operations can logically be performed

in parallel, computers should be able to physically perfom1 them in parallel in terms of

concurrent activities.

An essential characteristic of the processes that make up a reasonably complex

application is that they can be executed in parallel, i.e., simultaneously. For reasons

concerned with the hardware on which the application is executed and/or the application

itself, it may be necessary to control the execution of each of the processes with respect

to the others. The set of rules and mechanisms that enable such control is generally called

synchronization. The need for this control is due to two different considerations regarding

processes: competition and coordination.

More specifically, depending upon the degree of awareness that the processes have

of each other, the relationships among them can be classified as competition, cooperation

by sharing, or cooperation by communication. In competition, processes are totally

1

2

unaware of the existence of other processes. If processes know that there are other

processes when interacting with one another (without being explicitly aware of them), the

relationship is known as cooperation by sharing. In cooperation by communication, every

process has an environment that contains the names of other processes with which it may

explicitly exchange data.

A new synchronization and mutual exclusion primitive is proposed, which is

general enough to be applied to both parallel as well as distributed systems. This new

primitive is implemented on the Sequent Symmetry S/81 machine. This primitive is

compared with other available mutual exclusion primitives and a pilot validation for the

proposed primitive is perlom1ed.

Chapter II of this thesis gives a literature survey with a brief discussion about

control problems in parallel processing and the different relationships that may exist

among processes. It also deals whh some of the solutions to the mutual exclusion problem

that have been implemented either in software or in hardware. Chapter II also discusses

some of the recent developments in the area of synchronization. The detailed

specifications together with the implementation issues of the new synchronization and

mutual exclusion primitive are discussed at length in Chapter III. Evaluation of the new

primitive is included in Chapter IV. Chapter V contains the summary and some possible

areas of future work.

CHAPTER II

LITERATURE REVIEW

This chapter briefly describes some of the control problems that exist in parallel

processing and the proposed software and hardware solutions to the mutual exclusion

problem. It also discusses the recent developments in the area of synchronization.

Definitions of the frequently used terms are given in Glossary A. Some of the more

frequently used terms are:

Accesses: A heterogenous set of processes which are trying to access shared data and

which require synchronization.

Synchronizing Agent: A virtual processor that enforces mutual exclusion and

synchronization among accesses.

Synchronization System: A system consisting of queues and synchronizing agents.

2.1 Control Problems in Parallel Processing

Interactions among concurrent processes is in general studied based on two criteria

[Raynal86]: the degree of awareness that the processes have of each other, and the

influence of the behavior of one process on the behavior of others when they interact

competitively or cooperatively. According to Raynal, "these criteria [awareness and

influence] are independent of the number of processes n (n > 2) and of the level at which

3

4

these processes are viewed (applications, systems)" [Raynal86]. The two criteria are

described in the following subsections. The last two subsections of this section discuss

competition among processes for access to resources.

2.1.1 Criterion of Mutual Awareness

This criterion is concerned with the extent to which a process is aware of the

environment (made up of the other processes) with which it interacts. Processes can be

classified into two classes based on the degree of awareness that they have of each other:

the processes that are unaware of each other, and the processes that are aware of each

other [Raynal86]. The second class is broken down into further subclasses: processes

indirectly aware of each other (e.g., because they use a shared object), and processes

explicitly aware of each other (e.g., because they use communication primitives). These

different degrees of awareness among processes have led to the different relationships of

competition, cooperation by sharing, and cooperation by communication, which are further

explained below.

Competition: In this relationship, processes are completely unaware of the existence of

other processes. They come into conflict with other processes for the use of objects,

which they should leave in the same state as they found them. This is because, as each

of these processes is unaware of the existence of the others, the object (for which the

processes come into conflict) must be the same for all of them. The objects involved in

such conflicts make up generally what are known as system resources. Raynal states that

[Raynal86], "synchronization rules aimed at resolving the problems associated with

5

physical constraints must be defined so that competition among processes can take place

without leading to difficulties''.

Cooperation by Sharing: In this relationship, processes know that there are other

processes when interacting with each other, without being explicitly aware of them. This

is the case with the shared variables among different processes in a system or database.

Processes use and update a database (shared data) without referencing other processes, but

they are aware that other processes might be using or updating the same data. This

relationship deals with the shared data that the processes may transfom1, rather the

resources that have to be allocated. The processes must cooperate in ensuring that the

database they share is properly managed [Raynal86].

Cooperation by Communication: In this relationship, every process has an environment

that contains the names of other processes with which it may explicitly exchange data.

Each process no longer has its own particular aim, rather it participates in a common goal

which links the entire set of processes. Here we are dealing with message systems, or

systems of communicating processes, which "are characterized by the presence of message

transmission and reception primitives" [Raynal86].

2.1.2 Criterion of Mutual Influence

This criterion deals with the influence of the behavior of one process on the

behavior of the other processes when they interact competitively or cooperatively. In the

case of competition, no exchange of information takes place among processes. Each

process has its own code, and consequently the results of one process cannot be affected

6

by the actions of other processes.

On the other hand, the behavior of one process may be affected by the other

processes. If there is competition for a single resource between two processes, one will

have to wait for the other to finish before using that resource. Thus, one process has been

slowed by another process. It is possible for a process to be denied access to a resource

indefinitely, in which case it would never terminate and would never give a result. With

cooperative interactions, a process may directly influence the result of another process by

means of an exchange of information [Raynal86].

2.1.3 Competition Among n Processes for One Resource

Consider the case of n processes in conflict for accessing a single non-sharable

resource. Since the resource can only be used by a single process at a time, it is caned

a critical resource (which will be used only in a critical section of each process). The

scheme is made up of two parts (for acquiring and releasing the resource), which ensure

that the resource is used only by one process at a time.

Dijkstra proposed the minimum number of properties that make the algorithms

implementing a mutual exclusion scheme operational [Dijkstra65a]. Any new mutual

exclusion scheme must allow for these properties. Dijkstra lists these properties as:

a) At any time, no more than one process can be in its critical section.

b) The critical section must be reachable, i.e., when several processes are waiting to enter

the critical section and there is no process in the critical section, one of the processes

must enter it within a finite amount of time.

7

c) The behavior of a process outside its critical section must have no influence on the

mutual exclusion scheme.

d) There are no privileged processes; the problem is solved in the same way for all of

them.

2.1.4 Competition Among n Processes for m Resources

One of the problems that is encountered in a model, where n processes are in

competition for the use of m resources, is that of deadlock. The conditions for deadlock

can be summarized as follows [Maekawa87].

a) Each process has exclusive use of each resource once the resource has been allocated

to the process (this is called mutual exclusion).

b) A process may hold one resource while it requests another one.

c) A situation can arise in which process p1 requests and acquires resource R1 and then

it requests resource R2, while process p2 requests and acquires resource R2 and then

requests resource R1 (circular wait).

d) Resources can only be released by the explicit action of the processes, that is,

resources cannot be preempted.

2.2 Mutual Exclusion: Software Solutions

In the subsections that follow, different software solutions for the mutual exclusion

problem are presented. The following six subsections broadly describes the evolution of

software solutions to the problem of mutual exclusion using only two processes in most

8

cases.

2.2.1 Dekker's Algorithm

In 1965, the famous Dutch mathematician T. Dekker proposed the first correct

software solution for the mutual exclusion problem. The solution given by him follows

[Dijkstra65a].

The two processes P0 and P1 share the following variables:

var flag: array[O .. 1] of boolean;
turn: 0 .. 1;

The variable flag is initialized to false and turn has the value of 0 or 1. Each process

Pi has an integer variable j. The scheme for Pi, i = 0 and 1, is:

flag[i] f-true;
while flag[i] do if turn j then

begin
flag[i] f-false;
while turn = j do nothing enddo;
flag[i] f- true;

end;
endif;

enddo;
<critical section>
turn f- j;
flag[i] f-false;

Dekker's algorithm resolves the conflicts within a finite time, both from the point of view

of the critical section and from the point of view of the processes.

2.2.2 Dijkstra's Algorithm

Dijkstra generalized Dekker's solution to the case of n processes [Dijkstra65b].

The variables shared among the n processes P0, P1, •.. , P0 • 1 are:

9

var flag: array[O .. n-1) of (passive, requesting, in_cs);
turn: 0 . . n -1 ;

The elements of flag are initialized to passive and turn takes some arbitrary value

between 0 and n-1. Each process Pi has an integer variable j.

repeat
flag[i] ~requesting;

while turn !~ i do if flag[turn] ~ passive
then turn f- i

enddo;
flag[i] ~in cs;
j f- 0;
while (j < n) A (j

do j f- j + 1
enddo;

until j ~ n;
<critical section>
flag[i] f- passive;

endif;

i V flag[j] != in cs)

This solution guarantees mutual exclusion and avoids deadlock. However, it does not

avoid the risk of starvation. If a number of processes are constantly trying to access the

critical section, there is nothing to stop one of these processes from always being the last

to modify turn when competing for the modification of this variable.

2.2.3 Knuth's Algorithm

Dijkstra's solution guarantees mutual exclusion and the reachability of the critical

section. However, it does not avoid the risk of starvation and does not guarantee fairness.

Knuth proposed the first fair solution [Knuth66]. In his solution, the processes share the

following variables.

var flag: array [0 .. n-1] of(passive,requesting,in_cs);
turn: 0 .. n-1;

The variable f 1 ag is initialized to passive and turn is initialized to 0. Each process

10

has a local variable j in the range 0, 1, ... , n-1. The scheme for process P;, 0 ~ i ~ n-1,

is given below.

repeat
flag[i] r requesting;
j r turn;
while j != i do

if flag[j]

endif;
enddo;
flag[i] r in_cs;

until testd(i) ;
turn r i;
<critical section>;
turn r (i-1) mod n;
flag[iJ rpassive;

,_ passive then j r turn
else j r (j-1) mod n

The function testd (i) is implemented iteratively and it is defined as follows.

testd(i) =true ('v'j != i such that flag[j] !=in cs)
A flag[i] in cs;

This solution guarantees mutual exclusion and is also fair.

2.2.4 De Bruijn 's Algorithm

De Bruijn proposed an improvement to Knuth's algorithm, in which the delay

function is polynomial rather than exponential [De BnJijn67]. Raynal states that, "in De

Bruijn' s suggestion, the variable turn is modified only once as P; leaves its critical

section, provided that its value is the number of the process leaving the critical section,

or that of the process whose turn is not affected by the mutual exclusion" [Raynal86]. The

scheme for process P;. 0 s; i ~ n-1, follows.

repeat
flag[i] r requesting;
j r turn;
while j != i do

if flag[j] !=passive then j r turn

endif;
enddo;
flag [i] ~in cs;

until testd(i);
<critical section>;

else j ~ (j-1) mod n

if flag[turn] ~ passive A turn l

then turn~ (turn-1) mod n
endif;
flag[i] ~passive;

2.2.5 Eisenberg and MacGuire's Algorithm

11

Eisenberg and MacGuire proposed a new solution in which the delay is linear,

instead of exponential (as in the case of Knuth's solution) or quadratic (as in the case of

De Bruijn's solution) [Eisenberg72]. This solution differs essentially in the postlude,

which assigns a value to turn that allows a process's delay to be reduced. However, the

linear waiting is not FIFO. A process may overtake another one no more than once from

the moment its request to enter the critical section has been expressed. The scheme for

process Pi, 0 $; i $; n-1, follows.

repeat
flag[i] ~requesting;
j ~ turn;
while j != i do

if flag[j]

endif;
enddo;
flag[i) ~in cs;
j ~ 0;

1= passive then j ~turn
else j t- (j+l) mod n

while(j < n) A (j = i or flag[j] 1 = in_cs)
do j ~ (j+l)

enddo;
until (j $; n) A (turn = i V flag [turn] = passive);
turn ~ i;
<critical section>
j f-- (turn+ 1) mod n;
while (j !=turn) A (flag[j] passive) do :f-(j+l)mod n
enddo;
turn~j;

12

flag[i] ~passive;

2.2.6 Peterson's Algorithm

Peterson gave an elegant and simple solution to the mutual exclusion problem

[Peterson81]. Variables shared among the processes are the following.

var flag: array[O .. 1] of boolean;
turn: 0 .. 1;

The variable f 1 ag [i] , which is initialized to false, indicates the position of Pi with

respect to the mutual exclusion, and turn resolves simultaneity conflicts. The scheme

for process Pi is as follows (i = 0, 1 and j = (i+ 1) mod 2)

flag[i] ~true;
turn ~ i;
wait flag(j] = false V turn j;
<critical section>;
flag [i] f- false;

In this solution, wait stalls the flow of control (the execution of the next instruction) until

its arguments become true.

2.3 Mutual Exclusion: Hardware Solutions

This section briefly describes the solutions to the mutual exclusion problem that

have been implemented in hardware. These solutions are specialized instructions that are

implemented on many machines. According to Raynal [Raynal86], "the common factor

linking all these instructions, and distinguishing them from all others, is the fact that they

carry out two actions atomically; e.g., reading and writing, or reading and testing, of a

single memory location within one instruction fetch cycle".

Test-and-Set Instruction: The testset(m) instmction executes a series of atomic actions.

13

It tests the value of variable m. If it is zero, it replaces it by one and returns the result as

true; otherwise, it makes no change to the value of m and returns false as a result

[Rayna186]. The mutual exclusion scheme implemented using this instruction requires a

shared variable bolt initialized to 0. The scheme for process Pi, 0 $ i $ n-1, follows.

var bolt;
repeat nothing

until testset(bolt);
<critical section>
bolt f-- 0;

The only process that can enter its critical section is the one that finds bolt set to 0.

Once a process Pi is in its critical section, all other processes trying to enter the critical

section are delayed in their corresponding entry code. Once P; executes its exit code, only

one of the waiting processes will be able to enter its critical section.

Lock Instruction: The atomic lock and unlock instructions are described below [Shaw74].

lock(m) =begin
repeat nothing while m 1;
mf--1;
end;

unlock(m) = m f-- 0;

The wait loop in this instruction is an integral part of the instruction, whereas the loop

is external in the testset(m) instruction.

Replace-Add Instruction: Instruction repadd(m,v) atomically adds the contents of m to the

value v, stores the sum in m, and returns its result [Gottlieb83]. A mutual exclusion

scheme can be implemented using variable bolt that is initialized to 1 and shared by

all processes. Variable oki is local to process Pi, 0 ~ i ~ n-1.

ok1 f-- false;
repeat if bolt-1 >= 0 then

if(repadd(bolt, -1) >= 0)

then ok 1 f- true
else repadd(bolt, 1);

endif;
endif;

until ok 1 ;

<critical section>
repadd(bolt,l);

14

Semaphore Instruction: Solutions discussed so far have certain disadvantages. First, there

is busy or active wait; a process that is doing nothing nonetheless occupies the processor,

thus limiting the efficiency of the system kernel, and therefore leads to loss of

performance. Secondly, there is the difficulty of generalizing these solutions to more

complex problems. Dijkstra originally defined the semaphore concept [Dijkstra65a]. A

semaphore s is a non-negative integer variable that can be handled only by the following

two primitive operations (in addition to initialization).

P(s) : if s > 0 then s f- s - 1;
else wait on s;

Y(s) : if one or more processes are waiting on s
then let one of these processes proceed;
else s f- s + 1 ;

The mutual exclusion scheme can be coded using a semaphore mutex (initialized to 1)

as follows.

P(mutex);
<critical section>

V(mutex);

There are many extensions to the above basic definition and implementation of the

semaphores, to suit various mutual exclusion and synchronization requirements. A couple

of the more complex extensions of the basic semaphore definition are given below

15

[Presser75]. In the pseudocodes appearing below, E represents an event variable and 1~1

represents the number of entries in its waiting list.

A solution based on arrays of event variables and parametrized test values: Let 1 ~ i ~

k and ~ ~ 0 then:

P(E1, m1; .. • ; E1, 11\; .. . ; Ek, mk)

if for all i we have E1 ~ m1

then for all i we do E1 t- E1 - m1

and the process issuing the P continues its progress
else an entry of the form (name of process issuing P, address of P) is

placed in the waiting list of the first E1 found such that E1 < 11\. and
the process issuing the P enters the blocked state

V(E1, m 1; ... ; E1, Il'lt; ... ; ~. mk)

For all i we do E1 f--- E1 + m1

if there exists a value of i such that ILEil ~ 1
then for each i such that 1~1 1 ~ 1, remove all the entries from the

associated waiting list and change the status of the corresponding
processes to the ready state; the process issuing the V is placed in
the ready state

else the process issuing V continues its progress

Solution for mutual exclusion between processes prioritized by levels: Let 1 ~ i ~ k, ~ ~

0, and 81 ~ 0 then:

P(E,, t1, 8,; ... ; E1, ~. 81; ••• ; Ek, tk, 8k)
if for all i we have E1 ~ t1

then for all i we do E1 f--- E1 - 81

and the process issuing the P continues its progress.
else an entry of the form (name of process issuing P, address of P) is

placed in the waiting list of the first E1 found such that E1 < t;, and
the process issuing the P enters the blocked state

V(E1, 81; ••• ; E1, 81; ... ; ~. 8k)
For all i we do E1 f--- E1 + 81

if there exists a value of i such that ILEil ~ 1
then for each i such that 1Lr,11 ~ 1, remove all the entries from the

associated waiting list and change the status of the corresponding
processes to the ready state; the process issuing V is placed in the
ready state

16

else the process issuing V continues its progress

The solutions presented above can lead to the indefinite postponement of a low priority

process by two higher priority processes. However, the definition of the problem (solution

based on prioritized levels) states that the higher priority process should be given

preference over low priority process, without concern for the waiting time of any lower

priority process. Hence, no assumption about the queueing discipline in the definitions of

the PN primitives was made.

2.4 Recent Developments in the Field of Synchronization

The following two subsections discuss briefly the recent developments in the area

of synchronization of processes.

2.4.1 Data Synchronization Instructions

A program can be decomposed into as many concurrent tasks as possible in order

to attain speed-up in a multiprocessor system. As stated by Tang et. a!, "while tasks are

executed concurrently on the multiple processors, the order of access to each particular

data item in the original program must be preserved to guarantee the correctness of the

execution" [Tang90]. This access order is called "data dependence". Three types of data

dependences have been identified: 1) flow dependence, which indicates a write-after-read

access order, 2) anti-dependence, which indicates a read-after-write access order, and 3)

output dependence, which indicates a write-after-write access order. Data dependence can

be enforced either by using implicit programming structures or by using explicit

17

synchronization instructions [Tang90].

When a program is decomposed into a set of concunent tasks, there is a

precedence relation associated with these tasks. The precedence relation can be expressed

by parallel program constructs such as a doall 'loop or a barrier synchronization

[Tang90]. Doall loops are parallel loops which do not have cross-iteration data

dependencies. A barrier synchronization represents the point in a program where a set of

tasks must all be completed before the next set of tasks can be started. Since the type of

enforcement on data dependencies is implied in the precedence relation of the tasks, this

synchronization is called implicit data synchronization.

Data dependences can be enforced by synchronizing memory accesses directly. All

tasks can be concurrently executed, as long as the order of memory accesses are

preserved. Stated differently, the precedence relation can be relaxed among the tasks if

direct synchronization is utilized to enforce data dependence [Tang90]. This scheme

allows for potentially more tasks ro be executed in parallel and rhus can achieve a

potentially higher speed-up for programs. This type of enforcement is called explicit data

synchronization.

Explicit synchronization instmctions can be divided into two classes. One category

of such instructions is "used to synchronize groups of memory accesses" [Tang90]. These

instructions typically synchronize at the statement level and are referred to as statement­

level synchronization instructions. The second category of explicit synchronization

instructions "synchronize accesses at each individual data element" [Tang90]. These

instructions are typically incorporated in the reading or writing of each individual data

18

element, and hence are referred to as data-level synchronization instructions.

The implementation of data-level synchronization instructions can be outlined as

follows [Tang90]. An integer key is associated with each data element that needs data

synchronization. This key has the access order (ordering information) of the data element

and is initialized to 0. Each data element has .to be read or written according to the order

imposed in the original program. Before access to a data element by a processor can be

granted, the processor "has to check its ordering number against the value of the key to

see if it is its turn to access the data element" [Tang90]. The processor increments the

value of the key associated with the data element after each access, to update the ordering

information, so that the next processor can access that data element.

2.4.2 Distributed Synchronizers

Doddaballapur proposed a new scheme, called a distributed synchronizer, which

is based on the notion of partially shared variables [Doddaballapur88]. This primitive suits

the synchronization requirements of parallel algorithms executing on large, shared­

memory multiprocessors. All synchronization variables are arranged in the form of a n-ary

tree, where n is the number of processing elements, which is called a synchronization tree.

According to Doddaballapur, "an efficient implementation of the distributed synchronizer

scheme requires: a) the embedding of the synchronization tree in the processor-memory

multistage interconnection network, and b) simple hardware enhancements at the

switching elements of the network" [Doddaballapur88].

Rather than forcing all then processing elements (PEs) to access a single variable,

19

a fixed number m of the PEs, 2 <= m << n, could be allowed to access each variable

(assuming n to be a power of m). By using such a scheme, the number of synchronization

variables required increases, but it might reduce memory contention. By this scheme,

synchronization variables could be arranged in the fom1 of a synchronization tree. All the

variables in the tree are initialized to m. A PE proceeds to the next higher level of the

tree after decrementing the variable, only if it finds the value of the variable to be zero

(after decrementing), otherwise the PE waits for the variable to assume a special value

of -1. This scheme is called a walk-in scheme. The last arriving PE decrements the root

to zero and sets it to -1. At this time, walk-in ends. In this process, when a PE is waiting

on a variable whose value is -1, the PE passes this infmmation to the next lower level of

the tree. This procedure is repeated recursively and is called a walk-out scheme. The

completion time would be the time at which the last PE at the lowest level finds its

variable to be -1. At this time the walk-out ends.

The advantage of the walk-in/walk-out scheme is that it requires only a fixed

number m of PEs to access a node of the synchronization tree. Furthem1ore, a node at

level i needs to be shared only by mi PEs (some m PEs out of these mi PEs access the

node). According to Doddaballapur, "this observation suggests that the nodes of the

synchronization tree may be placed in a memory hierarchy according to the degree to

which the nodes are shared" [Doddaballapur88]. A memory hierarchy being a set of

partially-shared memories such that a variable at level i is shared by more PEs than a

variable at level j, j < i. The memory hierarchy can be used to store the variables at

appropriate levels. Doing so will eliminate "expensive global memory trips to access

20

shared variables that need to be only partially shared" [Doddaballapur88]. The distributed

synchronizer scheme utilizes the walk-in/walk-out scheme.

CHAPTER III

IMPLEMENTATION ISSUES

The main focus of this thesis is developing a new synchronization and mutual

exclusion primitive which is general enough to be applied to parallel and distributed

systems, and implementing this primitive on the Sequent Symmetry S/81 machine with

twenty four 80386-20MHz processors each with 64K Cache memory. In its current

configuration, the implementation platfonn has 104 Mega Bytes of RAM and 5 Gega

Bytes of total hard disk storage. It has 16 serial ports, 1 ethernet port, and a 9-track

1600/6250 bpi tape drive.

3.1 Specification of the Approach

The new synchronization primitive services the arriving accesses according to their

priority. The accesses are classified based on their priority. The synchronization agents

are also divided into high and low priority agents which service high and low priority

accesses, respectively. Out of a maximum of n synchronization agents, m agents, m :::; n

are designated as active synchronization agents initially. The remaining agents are initially

inactive. Out of the m active agents, h agents, 1 :::; h :::; m-1, are devoted to servicing the

high priority accesses and the remaining k agents, 1 :::; k :::; n-h, are allocated to the low

priority accesses. A finite sized queue is associated with each agent Also, two overflow

21

22

queues of finite size are provided, one for high priority accesses and the other for low

priority accesses.

When a new access enters the synchronization system, depending upon its priority,

the agents are checked for availability. If any free agent is available in its category, the

access is allocated to that free agent. If none is available, and if the access is of high

priority, then the availability of free low priority agents is checked and one allocated if

available. Otherwise, the access is allocated to an agent whose waiting queue size is

minimum among the agents of its priority class. In case there is no space in the associated

queues and the access is of low priority, an inactive agent, if one is available, is made

active and the access is allocated to this newly activated agent. Otherwise, the access is

made to wait in the overflow queue. The access is allowed to enter into the

synchronization system (i.e., to compete for the mutually excluded resources) if and only

if there is space in the overflow queue of its priority class. Otherwise, the access is made

to wait outside the synchronization system till space becomes available in the appropriate

overflow queue.

When an access releases the synchronizing agent and there are other accesses

waiting in the queue associated with that particular agent, the access at the head of the

queue associated with that particular synchronizing agent is removed and allocated to that

synchronizing agent. If there are other accesses in the corresponding overflow queue, the

access at the head of the overflow queue is removed and inserted into the queue

associated with that synchronizing agent. Once an access is removed from the overflow

queue, if any access is waiting outside the synchronization system to enter, that access

23

is allowed to enter. The number of accesses allowed into the synchronization system at

this time depends on space availability. All these actions, i.e., updating the queues

associated with agents, updating the overflow queues, and allowing the waiting access(es)

into the synchronization system, are done atomically.

If there are no accesses waiting in the queue of an agent, the agent is either put

to sleep or made inactive depending on the past history of the arrival rate of the accesses.

If the arrival rate is less than an initially defined rate (the rate of arrival is fixed based

on system characteristics) and there are more than a minimum number of active agents

in the synchronization system, then that particular agent is made inactive. Otherwise, it

is put to sleep. The detailed pseudocode of the primitive is given below.

DEFINE MAX_QUEUE_SIZE
DEFINE m
MAX SYNCH AGENTS = N;
ACTIVE SYNCH AGENTS = 0; I* initialized to 0 *I
OVERFLOW_QUEUE : queue
SYNCH AGENTS_BUSY : Boolean;

procedure : accessing (t:access) {
if it is high priority access{

if there are accesses in high priority overflow queue
insert(t, high priority overflow queue);

else if high priority synch agent is free
allocate t to the high-priority synch agent;

else if the flag SYNCH AGENTS BUSY is false{
find free synch agent out of m ACTIVE SYNCH AGENTS;
allocate t to the free synch agent; -
increment ACTIVE SYNCH-AGENTS;
if ACTIVE SYNCH AGENTS-== m, then

set the SYNCH AGENTS BUSY to true
call start processTng(t, free synch agent);

}/* end elseif *! -
else if the flag SYNCH AGENTS BUSY is true

wait(t, synch agent[high-priority]);
} I* end if *I - -
else{

if there are accesses in low priority overflow queue
insert(t, low_priority overflow queue);

else{

if the flag SYNCH AGENTS BUSY is false{
find a free synch agent;
allocate t to the-free synch agent;
increment ACTIVE SYNCH-AGENTS;
if ACTIVE SYNCH AGENTS-== m

- -
set SYNCH AGENTS BUSY to true;

call start processing(t, free synch agent);
}/* end if */ - -

24

else if the flag SYNCH AGENTS BUSY is true{
find a synch agent- whose wait queue size is min
if this queue size is equal to MAX QUEUE SIZE {

if ACTIVE SYNCH AGENTS <> n{­
activate one more synch agent;
increment ACTIVE SYNCH AGENT;
allocate t to thTs synch agent;
call start_processing(t,-

}/* end if */
else

new_synch_agent);

insert(t, low_priority overflow

}/* end if */
else

queue);

wait(t, synch_agent[min_queue size]);
}/* end elseif */

}/* end else */
}/* end else */
}/* end accessing() */

procedure : start_processing(t, Pd {
process t;
signal (p 1) ;

atomic procedure : signal(p 1) {

if there are any accesses waiting on p 1 {

start processing(access at the head of queue, p 1);

decrement queue size;
if there are accesses in overflow queue{

delete access from head of overflow queue;
insert that access into queue of p 1 ;

}/* end if */
}/* end if */
else{

if past history suggests fewer arrivals and
active_synch_agents > m

deactivate p 1 from the system;
else

put synch agent p 1 to sleep;
}/* end else */ -

}/*end signal{) */

atomic procedure : wait(t, p 1) {

insert(t, queue[p 1]);

increment queue size;

3.2 Implementation

25

The new primitive was implemented on a Sequent Symmetry S/81. The various

variables used to simulate the primitive such as, the total number of agents

MAX_SYNCH_AGENTS (n), the total number of active agents m, the number of high

priority agents HPAGENTS (h), the number of low priority agents LPAGENTS (k), the

size of the queue associated with each synchronizing agent MAX_QUEUE_SIZE, and the

size of the overflow queue OVERFLOWQUEUESIZE are defined at the beginning of the

program.

A total of six synchronizing agents were simulated. Two agents out of six were

designated as high priority agents and the remaining four agents were designated as low

priority agents. A total of four agents were marked as active synchronizing agents,

initially (both high priority synchronizing agents were designated as active agents).

Queues of size two were associated with each synchronizing agent. The size of the

overflow queue was fixed at five.

A random number generator was used to generate numbers between 0 and 5. If

0 is generated, the access was considered a high priority access, otherwise it was

considered a low priority access. The range of the random values generated or the criteria

used for designating the accesses (i.e., as high priority access or as low priority access)

may reflect on the performance of the proposed primitive, but not significantly. A random

26

number generator was also used for generating the interarrival times and the processing

times. A system clock variable was used to simulate the actual clock, i.e., to implement

the distinct arrival and departure patterns of the accesses. The system clock variable was

incremented by one time unit for every loop iteration. The interarrival times were

generated in such a way that they resemble the actual anival times, i.e., more than one

access can arrive at the same time (temporally concurrent accesses).

The primitive and the simulated environment was run continuously for five days,

without any interruption. Various aspects of the primitive, such as allocating accesses to

their corresponding synchronizing agents, updating various queues correctly, and

activating/putting to sleep a synchronizing agent as necessary were tested. The various

queue sizes were displayed on the tem1inal screen during the course of the run. A sample

display of the queue sizes is shown in Figure 1. The queue size values were multiplied

by 25 and then displayed as a scaling factor for the readability of the figure. A system

utility "gnuplot" was also used to display the cumulative average queue sizes. The

cumulative average queue sizes of all queues were multiplied by a factor 25 (in order to

have a better display) and were written to a file. Then the gnuplot utility takes this

datafile as its argument and plots a graph during the course of the run, as shown in Figure

2.

3.3 Comparison with Other Primitives

There are a number of primitives available for the n process mutual exclusion

problem. The algorithm proposed by Dijkstra [Dijkstra65b] suffers from unbounded

27

waiting time for one or more processes. The Algorithm proposed by Knuth [Knuth66] has

time with an upper bound of 2n turns. De Bruijn introduced his algorithm [De Bruijn67]

with (1/2)*n*(n-1) turns of waiting time in the worst case. Eisenberg and Macguire

[Eisenberg72] reduced the upper bound of waiting rime to (n-1) tums. None of these

algorithms are easy to understand; in fact they are all rather complicated.

CURRENT TIME: 300
(simulated system clock time)

::~:._JIIII IIIII II II 1111 1111 IIIII
HO 2345LH012345LH012345LH012345LH012345LH012345L

Lcontents of low priority overflow queue
----contents of fourth low priority agent's queue

'------contents of third low priority agent's queue
.._ _ ___,.._contents of second low priority agent's queue

'-----__...contents of first low priority agent's queue
'--------.1::-contents of second high priority agent's queue

L-----contents of frrst high priority agent's queue
'----....,..contents of high priority overflow queue

Figure 1. Various Queue Sizes Resulting from a Sample Run

#waiting
accesses
per queue

28

45

40

35

30

25 Average Queue Size

20

15

10

5

0~----~----_.----~~----~----~----~------~----~-----4

0 1 2 3 6 7 B 9

I . I;=LJ
IF contents of low priority overtlow queue
J co!tent~ of fourth low priority agent's queue

contents of third low priority agent's queue
contents of second low priority agent's queue

contents of first low priority agent's queue
contents of second high priority agent's queue

contents of first high priority agent's queue
contents of high priority overflow queue

Figure 2. Cumulative Average Queue Sizes

29

The proposed primitive is logically simple and easy to understand as more

complex constructs such as semaphores are not present. In this approach, all active

synchronizing agents are checked for the completion of processing. This is done from the

first agent (agent[O]) to the last agent (agent(n-1]). All the updates of the queues (the

queues associated with the agents and the overfl.ow queues) are done atomically, i.e., at

the same time (at the same unit increment of the system clock) and without interrupts.

Only after completing the updates of all the queues, is the next operation/execution

performed. Removing the access at the head of the queue associated with an agent and

allocating that access to the agent is done at the same time for accesses in the queues of

an the agents.

The proposed primitive is also fair. It doesn't discriminate against any access. All

the accesses in the same priority class are given the same treatment. No access is

postponed indefinitely. Every access gets its turn in a finite amount of time. This

primitive makes sure that the load is uniform among different active synchronizing agents

by making the access to wait on the synchronizing agent whose waiting queue size is

minimum.

Since the proposed primitive is intended to solve the problem of mutual exclusion

among processes of different priorities, the higher priority processes are given preference.

However, there are no privileged processes in the same priority class. This primitive

implements the FCFS discipline among the same priority accesses. The implementation

using the proposed primitive for n priority classes should be the same as the one

discussed for two priority classes. In the general case, there will be n groups (one group

30

per class of accesses) of synchronizing agents for then priority classes and ~hen overflow

queues (one per class of accesses), instead of two groups (high priority and low priority)

of synchronizing agents and two overflow queues (for two priority class).

It is not difficult to observe that mutual exclusion holds for the n process mutual

exclusion and synchronization problem (for m priority classes). An access cannot be

allocated to an agent if that agent is already processing another access. Only when the

flag of that agent is set to available, can another access be allocated. If ail synchronizing

agents are busy, the access is made to wait either in the queue associated with one of the

agents or in the corresponding overflow queue. Since the checking of the synchronizing

agents for the completion of processing is done atomically, and the checking is done from

agent[O] to agent[n-1], deadlock is prevented.

Allocating an access to a free synchronizing agent depends only on the priority

of the access, arrival time (FCFS basis), and the availability of the synchronizing agent.

It does not depend on any other waiting access. As setting a synchronizing agent's flag

to available does not depend on any waiting accesses, there is no lock step

synchronization among accesses. Also, there is no blocking or indefinite postponement,

as no access or set of accesses can monopolize any synchronizing agent.

Table 1 summarizes a comparison of seven n process mutual exclusion algorithms

[Zand89]. The eighth algorithm is the one presented here and the remaining are chosen

from among the more efficient and understandable algorithms available in the open

literature. All the algorithms are compared with respect to the number of predicates used

in the algorithm (as an indicator of their conceptual complexity [McCabe76]), the upper

31

bound for the waiting time m terms of the number of turns (only the best case is

represented for the new primitive), and the number of variables used in the algorithm. In

Table 1, m is the number of synchronizing agents and n is the number of processes.

TABLE 1

COMPARISON OF n-PROCESS MUTUAL EXCLUSION ALGORITHMS

Algorithm Predicates WaitingTimc Variables

Knuth n+3 2n-l_l n+4

De Bruijn n+6 n*(n-1)/2 n+4

Eisenberg!MacGuire 11 n-1 n+7

Peterson 3 n*(n-l)/2 2*n+3

Lamport 4 n-1 n+2

KSG 3 n-1 n+3

Habermann 5 2*(n-1) n+6

New Primitive 5 (n-1)/m 2*m+5
(best case)

The overhead of the new primitive 1s the queues associated with each

synchronizing agent and the overflow queues, but the simplicity and the structured design

of the primitive justifies this tradeoff. By providing queues (the queues associated with

32

each synchronizing agent and the overflow queues), we are able to achieve a load balance

by having a uniform load among the synchronizing agents in the system.

CHAPTER IV

EVALUATION

This Chapter describes the evaluation of the proposed primitive. The execution

environment, its validation, and a semaphore implementation of the new primitive along

with some observations are discussed in detail in the following sections.

The implementation platform was the Sequent Symmetry S/81 at the Computer

Science Department at Oklahoma State University running DYNIX/ptx operating system

(for more details about the implementation platfonn, see Chapter III).

4.1 The Execution Environment and Its Validation

Sin.ce the new mutual exclusion primitive could not be tested in actual practice,

it was necessary to set up a simulated execution environment with the variability of an

actual heterogeneous environment. The simple problem of simultaneous, unprotected

access to a shared variable was chosen as a typical mutual exclusion problem to tune and

validate the simulated execution environment.

In the problem of unprotected access to a shared variable, a simple increment

operation is performed by each concurrent process accessing the shared variable in a loop.

The shared variable xis initialized to 0. Each process has a local variable i. The operation

is described below.

33

for(i = 0; i < 10; i++}
X = X + 1;

34

A number of processes were forked and were run for a number of times. The final values

of the shared variable after each run of the above loop, was collected and compared. Two

different scenarios were studied.

Scenario 1: In this scenario, two processes were forked and the shared variable was

updated 10 times in the loop by each process for a total of 100 runs. Two different cases

were generated to capture the variability of arbitrary processes accessing a shared

variable. In the first case, process 1 sleeps between the read and write operations

performed on the shared variable, whereas process 2 sleeps before the read operation

(performed on the shared variable) only. In the second case, the ordering is reversed, i.e.,

process 1 sleeps before read only and process 2 sleeps between read and write. Ideally,

the results (the final value of the shared variable) should vary between 2 and 20. Since

it is difficult to generate truly random numbers (to put the process to sleep for a truly

random amount of time), the results differ from the theoretical values. Table 2

summarizes the results obtained. It shows the number of times a particular value was

obtained over the total number of trails. In this scenario, the waiting of the processes was

passive, in the sense that the sleep instruction causes the process executing it to be

swapped out (Appendix B contains the code).

TABLE 2

RESULTS OBTAINED WHEN TWO PROCESSES
UPDATED A SHARED VARIABLE (100 RUNS)

Value
obtained

10
11
12
13
14
15
16
17
18
19
20

Case 1

46%
19%
9%

10%
4%
3%
4%
1%
4%
0%
0%

Frequency

Case 2

17%
25%
24%
12%
9%
7%
1%
3%
1%
0%
1%

35

Scenario 2: In this scenario, 60 processes were forked and the shared variable was

updated 10 times in the loop by each process for a total of 1000 runs. Here also two

different cases were generated to capture the variability of arbitrary processes accessing

a shared variable. In the first case, every process waits between the read and write

operations performed on the shared variable. In the second case, all even numbered

processes wait between the read and write operations and all odd numbered processes

wait before the read operation performed on the shared variable. The waiting for the

processes, in this scenario, is active wait, in the sense that busy loops are used to capture

36

the variability exhibited in an actual heterogeneous setting (Appendix B contains the

code). Ideally, the final values should vary between 2 and 600. The actual values obtained

and their frequencies are shown in Table 3.

TABLE 3

RESULTS OBTAINED WHEN SIXTY PROCESSES
UPDATED A SHARED VARIABLE (1000 RUNS)

Value
obtained

26
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Case 1

0.1%
0.2%
0.4%
1.3%
2.3%
4.3%
6.3%
5.7%
7.9%
8.1%
7.4%
8.7%
8.2%
5.9%
6.2%
4.1%
3.6%
3.1%
3.7%
3.2%
2.2%
1.2%
1.4%
1.3%

Frequency

Case 2

0.0%
0.1%
0.1%
0.4%
0.8%
0.6%
1.7%
2.3%
2.8%
4.8%
3.5%
4.3%
5.6%
5.3%
6.3%
5.5%
6.3%
5.6%
4.8%
5.5%
3.6%
4.0%
3.8%
2.8%

Value
obtained

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
69
70
71
72
76

TABLE 3 (Continued)

Frequency

Case 1

0.5%
0.8%
0.6%
0.4%
0.3%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

37

Case 2

2.8%
1.9%
2.1%
1.9%
2.0%
1.8%
1.1%
1.2%
0.8%
1.0%
0.4%
0.9%
0.1%
0.4%
0.2%
0.1%
0.1%
0.1%
0.1%
0.4%
0.1%

The processes (that are forked) in the above runs are intended to depict the actual

pr?cesses in a real system, i.e., a heterogeneous set of processes, trying to access shared

variables.

38

4.2 A Semaphore Implementation of the New Primitive

For the purpose of comparison and validation of the proposed primitive, another

simulation using semaphores was implemented. In this simulation, one semaphore per

synchronizing agent was used. Before accessing a synchronizing agent, the P operation

on the semaphore associated with that synchronizing agent is performed. Similarly, the

V operation on the semaphore associated with the synchronizing agent is performed once

the processing on the access using that particular synchronizing agent is completed. No

explicit queues are provided for each synchronizing agent as the queues are implicit with

semaphores. There are also no overflow queues.

Most of the variables used to simulate the proposed primitive were also used in

this approach in order to have reasonable similarities between the two simulations. If there

are no variables (such as agent status, lp_agents_busy, hp_agents_busy, lpagents, and

hpagents) available along with semaphores, then in order to check for a free

synchronizing agent or to find out the synchronizing agent whose wctiting queue size is

minimum, all the accesses will be made to wait on one synchronizing agent. This will

lead to uneven allocation of accesses, i.e., even when a free synchronizing agent is

available, access will be made to wait on a busy agent. Since there are no overflow

queues, the accesses, as they enter the system, are either directly allocated to a free

synchronizing agent or made to wait on a synchronizing agent with minimum waiting

queue size by performing a P operation on the semaphore associated with that particular

synchronizing agent. A random number generator is used to generate a number to

designate the arriving access either as a high priority or as a low priority access. In this

39

approach, parallelism is achieved by forking a process for every access that enters the

system. The access is made to wait for a random amount of time after having the

synchronizing agent to simulate the processing time. To make the simulation

generalizable, the variables, number of synchronizing agents (n), number of active

synchronizing agents (m), lpagents, and hpagents were predefined at the beginning of the

simulation.

Six synchronizing agents (two high. priority and four low priority) are used in this

approach as in the case with the proposed primitive. When a new access enters the

system, depending upon its priority, the appropriate synchronizing agents are checked for

availability. If any free agent is available, a P operation on the semaphore associated with

that agent is performed. If none is available and if the access is of high priority, the

availability of a free low priority agent is checked and, if one is available, it is allocated.

Otherwise, the access is made to wait on the high priority agent, whose waiting queue

size is minimum among high priority synchronizing agents, by performing a P operation

on that semaphore. If the access is of low priority and there is no free low priority

synchronizing agent available, the access is made to wait on the synchronizing agent,

whose waiting queue size is minimum among low priority synchronizing agents, by

performing a P operation on the semaphore associated with that agent.

When an access releases the synchronizing agent, a V operation is performed on

the semaphore associated with that particular synchronizing agent. This V operation wakes

up one of the blocked processes on that particular semaphore. The access which was

woken is allocated to the synchronizing agent which is free now. A variable is used to

40

keep track of the number of accesses waiting on the agent. If there are no more accesses

waiting on the agent, the agent is put to sleep indicating the availability of this

synchronizing agent.

Both simulations, one using the proposed primitive and the other usmg

semaphores, were run independently. The simulation using the proposed primitive was run

for five days and the simulation using semaphores was run only for two hours at a time.

The latter simulation could not be run for an unlimited number of accesses as there is a

system defined limit on the number of processes that can be forked in the Sequent

Symmetry S/81 system running the DYNIX/ptx operating system.

4.3 Study of the Data Collected

The two simulations, one with the proposed primitive and the other with

semaphores, were run and tested extensively.

The simulation of the new primitive was tested for various possible cases, such

as more than one access arriving at the same time, new accesses arriving when the agent's

queues are full, new accesses arriving when the overflow queue is full, the arrival rate of

the accesses being less than the predefined rate, etc. The simulation of the new primitive

was initially tested for a few accesses by checking for each access as it enters the system.

When the simulation was run continuously, the various queue sizes are displayed and

monitored for any discrepancies (such as allocating new access to the agent whose queue

size is not minimum, allowing an access to enter the synchronizing system when the

overflow queue is full, not putting the synchronizing agent to sleep when it is appropriate

41

to do so or making the synchronizing agent inactive when necessary, etc.). The simulation

was found to be functioning without any problems/discrepancies.

The simulation using semaphores was also run for 200 accesses. The number of

accesses that was simulated was limited due to a system limitation of the number of

processes that can be forked. However, the simulation was tested for different

combinations of the variables and cases. In the simulation using semaphores too, the

various queue sizes were monitored.

4.4 Observations

The following observations are made after running both simulations, one using the

proposed primitive and the other using semaphores.

Advantages of the proposed primitive:

1) The proposed primitive is straightforward and easy to understand, when

compared to the available primitives.

2) The algorithm is relatively simple, as more complex constructs like semaphores

are not present.

3) The behavior of the simulation using the proposed primitive is more predictable

when compared with the other simulated primitive that uses semaphores. The

criteria for allocating accesses to agents is well defined in the case of the

proposed primitive.

4) Contrary to the case of the new primitive, the queue sizes can become

arbitrarily large in the case of the approach that uses semaphores, because there

42

are no overflow queues and there is no checking to find out whether the queues

are full or not. In the proposed primitive, the queue sizes are fixed.

5) The proposed primitive is general enough to be implemented both on

centralized systems as well as distributed systems.

Disadvantages of the proposed primitive:

1) The number of queues that should be provided (one for each synchronizing

agent and one overflow queue for each p1iority class). This requires additional

space and extra queue manipulation time.

2) System resources will be wasted in checking for availability of space (in the

overflow queues), when an access is made to wait outside the synchronization

system.

CHAPTER V

SUMMARY, CONCLUSIONS, AND FUTURE WORK

5.1 Summary

In Chapter I, the significance of concurrent processes, the need for their control,

and the main objective of this thesis was briefly stated. Chapter II presented the literature

review. The topics covered in this chapter consisted of control problems in parallel

processing, a number of proposed software and hardware solutions to the mutual

exclusion problem, and recent developments in the field of synchronization. Chapter III

discussed the implementation issues of the new synchronization and mutual exclusion

primitive. Section 1 of Chapter III addressed the specification of the new approach along

with the pseudocode of the algorithm. Section 2 described the implementation details and

Section 3 compared the new primitive with other existing primitives. Chapter IV outlined

the pilot evaluation of the primitive.

5.2 Conclusions

The proposed primitive satisfies the requirements of an operational mutual

exclusion scheme as outlined by Dijkstra [Dijkstra65a]. The primitive was successfully

implemented on a centralized system, i.e., a Sequent Symmetry S/81 at the Computer

43

44

Science Department at Oklahoma State University. This primitive is general enough to

be implemented not only on centralized systems, but also on parallel and distributed

systems (the inter-process communication in distributed systems can be achieved by

sending/receiving messages in the implementation of the proposed primitive).

In the worst case, i.e., when all accesses are concurrent and trying to access the

same shared variable/resource, the proposed primitive can degenerate to the simple case

of using a single semaphore (on the critical section) to access that shared

variable/resource.

5.3 Future Work

The new primitive can be implemented using the tasks and queues of the C++

Task Library. The C++ Task Library is a C++ Language System coroutine library with

implicit queues for communication among tasks [Stroustrup90J. In the simulation, the

queues are defined explicitly. Queues of the Task Library can be used along with the

Tasks to simulate virtual parallelism.

The proposed primitive can also be simulated on a distributed system and its

performance can be studied. The proposed primitive can be incorporated in the USE

system [Daily93] [Hassan92] [Hassan93a] [Hassan93b] [Hassan94] [Jhun92] for

synchronization and mutual exclusion purposes.

The implementation of the proposed primitive did not include an interface. In other

words, the new primitive must be defined as an abstract data type with a well-defined

interface in the form of function calls, similar to the case of semaphores and monitors.

45

Without an interface, it is difficult for a user to use the proposed primitive easily.

A particular implementation aspect when different accesses of the same priority

class (after being allocated to different synchronizing agents) are trying to access the same

shared variable was not addressed. This can be implemented using a FIFO discipline.

To gain more confidence in the generality of the proposed primitive, well-known

mutual exclusion problems (such as, the readers/writers problem, the producer/consumer

problem, and the bounded-buffer problem) need to be solved using the new primitive.

REFERENCES

[Daily93] S.R. Daily and Mansur H. Samadzadeh, "Object-Oriented Simulation of
Capability Based Architectures", The Twenty sixth Annual Simulation Symposium,
Sponsored by SCS, IEEE-CS, and ACM, in conjunction with The 1993 Simulation
Multi-Conference, pp. 258-266, Washington D.C., March 29- April 1, 1993.

[De Bruijn67] J.G. De Bruijn, "Additional Comments on a Problem in a Concurrent
Programming Control", Communications of the ACM, Vol. 10, No. 3, pp. 137-138,
1967.

[Dijkstra65a] E.W. Dijkstra, "Cooperating Sequential Processes", In Programming
Languages, F. Genuys (Ed.); Academic Press, New York, NY, pp. 43-112, 1965.

[Dijkstra65b] E.W. Dijkstra, "Solution of a Problem in Concurrent Programming Control",
Communications of the ACM, Vol. 8, No.5, p. 569, 1965.

[Doddaballapur88] Jayasimha N. Doddaballapur, "Distributed Synchronizers", Proc. of
1988 International Conference on Parallel Processing, University Park, PA, pp. 23-
27, August 1988.

[Eisenberg72] M.A. Eisenberg and M.R. MacGuire, "Further Comments on Dijkstra's
Concurrent Programming Control Problem", Communications of the ACM, Vol. 15,
No. 11, p. 999, 1972.

[Gottlieb83) A. Gottlieb, B.D. Lubachevsky, and L. Rudolph, "Basic Techniques for the
Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors",
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 2, pp. 164-
189, 1983.

[Hassan92] Khaled M. Hassan and Mansur H. Samadzadeh, "An Object-Oriented
Environment for Simulation and Evaluation of Architectures", Proceedings of the
IEEE 25th Annual Simulation Symposium in conjunction with The 1992 SCS
Simulation Multiconference, Orlando, FL, pp. 91-97, April 1992.

[Hassan93a] Khaled M. Hassan, Ik-Jeong Jhun, and Mansur H. Samadzadeh, "Using the
C++ Task Library to Solve a Classical Mutual Exclusion Problem", Proceedings of the
Ninth lntenw.tional Conference on Systems Engineering, pp. 255-259, Las Vegas, NV,

46

47

July 1993.

[Hassan93b] Khaled M. Hassan and Mansur H. samadzadeh, "The USE System: An
Evolving Environment for the Simulation of Operating Systems and Architectures",
Submitted in August 1993 to The International Journal of Computer Simulation for
a special issue on Computer Architecture Simulation.

[Hassan94] Khaled M. Hassan and Mansur H. Samadzadeh, "Adding Virtual Memory to
the USE Object-Oriented Simulation Environment", to appear in Proceedings of the
Object-Oriented Simulation Conference, part of the 1994 Western Multi-Conference,
Tempe, AZ, January 1994.

[Jhun92] Ik-Jeong Jhun, Khaled M. Hassan, and Mansur H. Samadzadeh, "Simulation of
a Computing Environment Using Stochastic Processes and the Object-Oriented
Technology", Proceedings of the Twenty Third Annual Pittsburgh Conference on
Modelling and Simulation, VoL 23, part 3, Published and Distributed by Instrument
Society of America, Edited by William G. Vogt and Marlin H. Mickle, Pittsburgh,
PA, pp. 1579-1585, April 30- May 1, 1992.

[Knuth66] D.E. Knuth, "Additional Comments on a Problem in a Concurrent
Programming Control", Communications of the ACM, Vol. 9, No. 5, pp. 321-322,
1966.

[McCabe76] T.J. McCabe, "A Complexity Measure", IEEE Transactions on Software
Engineering, Vol. SE-2, pp. 308-320, December 1976.

[Maekawa87] M. Maekawa, A.E. Oldehoeft, and R.R. Oldehoeft, Operating Systems:
Advanced Concepts, The Benjamin Cummings Publishing Co., Inc., 1987.

[Peterson81] G.L. Peterson, "Myths about the Mutual Exclusion Problem", Information
Processing Letters, Vol. 12, No. 3, pp. 115-116, 1981.

[Presser75] Leon Presser, "Multiprogramming Coordination", ACM Computing Surveys,
Vol. 7, No. 1, pp. 21-44, 1975.

[Raynal86] M. Raynal, Algorithms for Mutual Exclusion, MIT Press, Cambridge, MA,
1986.

[Saeed90] F. Saeed, Mansur H. Samadzadeh, and K.M. George, "A Simulation
Environment for n-Process Mutual Exclusion Algorithms", Proceedings of The
Twenty-First Annual Pittsburgh Conference on Modelling and Simulation, Vol. 21,
Part 1, Pittsburgh, PA, pp. 371-375, May 1990.

[Saeed92] F. Saeed, K. M. George, and Mansur H. Samadzadeh, "An Implementation of

48

Classical Mutual Exclusion Algorithms in Ada", ACM Ada Letters, Vol. 12, No. 1,
pp. 73-84, January-February 1992.

[Shaw74] A.C. Shaw, The Logical Design of Operating Systems, Prentice-Hall, New
Jersey, 1974.

[Stroustrup90] B. Stroustrup and J.E.Shopiro, A Set of C++ Classes for Coroutine Style
Programming, AT&T C++ Language System Release 2.1 Library Manual, 1990.

[Tang90] Peiyi Tang, Pen-Chang Yew, and Chuan-Q. Zhu, "Compiler Techniques for
Data Synchronization in Nested Parallel Loops", 1990 ACM International Conference
on Supercomputing, Amsterdam, The Netherlands, pp. 177-186, June 1990.

[Zand89] M.K. Zand, Mansur H. Samadzadeh, and K.M. George, "A Control Driver for
the n-Process Concurrent Programming Problem", Proceedings of the ACM South
Central Regional Conference, Tulsa, OK, p. 51, November 1989.

APPENDICES

49

Accesses:

Asynchronous Processes:

Critical Section:

Deadlock:

Data Dependence:

Explicit Data Synchronization:

Implicit Data Synchronization:

Light Weight Process:

Memory Hierarchy:

APPENDIX A

GLOSSARY

A heterogenous set of processes which are trying to
access a shared variable and require synchronization.

Processes that require occasional synchronization and
cooperation.

When a process is accessing shared data, the process
is said to be in its critical section.

A process in a multiprogramming system is said to
be in a state of deadlock (or deadlocked) if it is
waiting for a particular event that will not occur.

While tasks are executed concurrently on multiple
processors, the order of access to each particular data
in the original program must be preserved to
guarantee the correctness of the execution. This
access order is called data dependence.

The precedence relation on tasks can be relaxed if
all data dependencies can be enforced by direct
synchronization, which is called explicit data
synchronization.

If the type of enforcement on data dependencies is
implied in the precedence relation, it is called implicit
data synchronization.

A process that has less state (the amount of resources
associated with process) and requires minimum
context switching time.

The arrangement of a set of partially-shared memories

50

Mutual Exclusion:

Process:

PE:

Semaphore:

Synchronizing Agent:

Synchronization System:

Tasks:

Walk-in:

Walk-out:

51

to suit a particular system's memory requirements.

Each process accessing the shared data excludes all
others from doing so simultaneously. This is called
mutual exclusion.

A program in execution.

Processing Element.

A semaphore is a non-negative integer variable that
can be handled only by the P and V operations.

A virtual processor that enforces mutual exclusion
and synchronization among accesses.

A system consisting of queues and synchronizing
agents.

Light weight processes that share address spaces.

If a processing element, after decrementing the
variable at a particular level, finds the resulting value
to be zero, it proceeds to the next higher level.
Otherwise, it waits for the variable to assume a
special value. This scheme is called walk-in.

When a processing element finds that the variable,
on which it is waiting, has assumed a special value,
it communicates this infom1ation to the next lower
level. This scheme is called walk-out.

TRADEMARK INFORMATION

DYNIX/ptx: A registered trademark of Sequent Computer System, Inc.

Sequent S/81: A registered trademark of Sequent Computer System, Inc.

UNIX: A registered trademark of AT&T.

X window System: A registered trademark of the Massachusetts Institute of
Technology.

APPENDIX B

PROGRAM LISTINGS

/***
The program sim.c is the implementation of the proposed primitive in

Con Sequent Symmetry S/81. Program sim sem.c is the implementation of the
semaphores. The small X Window interface to display the various queue
sizes is provided for the program using the proposed primitive. Programs
envl.c, env2.c, env3.c, and env4.c are for the purpose of showing the
necessity of synchronization among processes trying to access shared
variables.
***/

/* Program sim.c starts here */

#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include "windows.h"
#define MAX QUEUE SIZE 2
#define OVERFLOWQUEUESIZE 5
#define m 4
#define MAX SYNCH AGENTS 6
#define HPAGENTS 2
#define LPAGENTS 4
#define BUSY 1
#define SLEEP 0
#define ACTIVE 1
#define INACTIVE 0
#define TRUE 1
#define FALSE 0

/*structure definitions */

struct queue{
int access_id, start_time, service_time, arrival_time;

) ;

typedef struct synch agents{
int status; -
int status1;
int queue size;

char priority[3];
struct _queue queue[MAX_QUEUE_SIZE], active access;

}synch;

double seed

float random();

52

53

void initialize synch agents(synch []);
void start_processing(synch [], int , struct queue [], int *,

struct queue [], int *, int *, int *, int *, int *, FILE*, int []);
void adjust queues(synch *, struct queue [], int *);
int find free agent(synch [], int, char (]);
int find=inactive_agent(synch []);
int find min queue agent(synch [), int, char []);
void print stat(synch [], int, int, int, int);
void copy values(int [], int, synch [], int, int);
void write_output(synch [], int, int , int, int [));

/***
MAIN FUNCTION STARTS HERE

***/

main(argc,argv)
int argc;
char **argv;
I

synch synch agents[MAX SYNCH AGENTS];
int active s:Ynch agents~O, synch agents busy=FALSE, hpsynchbusy=FALSE;
int hpagents = 0~ lpagents = 0, -ACCESSALLOWED =TRUE, hist array[20];
struct queue lp overflow queue[S], hp overflow queue[S];-
int lp count = 0~ hp count= 0, jobsinthesystem ~ FALSE, stat val [8];
int no-of accesses =-0, inter arrival time = 0, current time-= 0;
int previous time= 0, new agent, priority, flag, i, queue val[48];
FILE *ofp; - - -

/* initializing the variables, and the window for display */

initialize synch agents(synch agents);
initialize=window(argc, argv)i

ofp = fopen("Output", "w");

fprintf(ofp,"Access
fprintf(ofp," ID

Arrival
time

Allocated
time

Finished\n");
time\n\n\n");

/* continues till there are accesses in the system */

while ((no_of_accesses < 200) I I (jobsinthesystem)) {

if(no_of_accesses < 200) {

jobsinthesystem TRUE;

/* if more than one access arrives at the same time, they are loaded
at the same time without incrementing the clock */

while((current_time >= (previous time+ inter arrival time)) &&
(no_of_accesses <-200)) {

/* access is allowed only if overflow queue is not full */

if(ACCESSALLOWED ==TRUE)
priority = (int) (4 * random() + 0);

/* if the access arrived into the system is of high priority */

if(priority == 0) {

54

I* if there are less than 5 accesses in the hp overflow queue *I

if(hp_count < 5) {

I* if the over flow queue is non empty, then insert it *I

if(hp_count != 0) {

hp overflow queue[hp count] .access id =no of accesses;
hp-overflow-queue[hp-count) .service time =-

- - - (int) (S*random() +10};
hp overflow queue[hp count] .arrival time current_time;
hp =count += -1; - -

I* if the high priority synch_agent is free, allocate *I

else if(hpsynchbusy ==FALSE) {

new agent= find free agent(synch agents, m, "HP");
synch agents[new-agent] .active access.access id =

- - no of accesses; -
synch agents[new agent] .active access.service time

- - (int)(5 * random() + 10);
synch_agents[new_agent] .active_access.start_time =

current time;
synch_agents[new_agent] .active_access.arrival_time

current time;
synch agents[new agent] .status= BUSY;
hpagents += 1; -
if(hpagents == HPAGENTS)

hpsynchbusy = TRUE;

I* else check if any of the lp agents is available *I

else{

I* if there is one of them free, then allocate to it *I

if(synch_agents_busy ==FALSE) {

new agent= find free agent(synch agents, m, "LP");
synch agents[new-agent] .active access.access id =

- - no of accesses; -
synch agents[new agent] .active access.service time=

- - (int) (5 * random() +-10);
synch_agents [new __ agent] . active access. start time =

current time;
synch_agents[new_agent] .active access.arrival time

current time;
synch agents[new agent] .status~ BUSY;
lpagents += 1; -
if(lpagents >= (m- HPAGENTS))

synch_agents_busy = TRUE;

/* if none is free, find the queue size, and if it is
maximum, insert it into overflow, otherwise wait on
the hp synch_agent */

else(

55

new agent= find min queue agent (synch agents, hpagents,
- - - - 'tHP II) ;

/* if all the queues are full, then insert the access
into the hp overflow queue */

if(synch agents(new agent] .queue size
- - MAX_QUEUE_SIZE) I

hp overflow queue(hp count] .access id =
- no of accesses;

hp overflow queue[hp count]~arrival time
- - - current time;-

hp overflow queue[hp count] .service time
- - - (int) (5 * random() + 10);

hp_count += 1;

/* if there is space then insert the access into that
queue */

else{

synch agents [new agent] .queue [synch agents [new agent].
queue size] ~access id = no of accesses; -

synch agents[new agent]~queue(synchagents(new agent].
queue size]~arrival time = current time;-

synch agents[new agent] .queue[synch agents[new agent].
queue size]~service time=(intnS*random() + 10);

synch_agents[new_agent]~queue_size += 1;

I* update the clock, and inter arrival time */

previous_time = current time;
inter arrival time= (int) (5 * random() + 0);
no of-accesses += 1;
ACCESSALLOWED = TRUE;

/* if the hp overflow queue is full, then the access is not
allowed into the system */

else
ACCESS ALLOWED FALSE;

/* when a low priority access enters the system */

else{

/* if there are accesses already in the lp overflow queue,
then insert the new access directly into the overflow
queue, if there is space. Otherwise the access is made to
wait. */

if(lp_count < 5) {

56

I* if there are already accesses in the lp overflow queue and
there is space, directly insert the access into the lp
over-flow queue *I

if((lp_count != 0) && (lp_count < 5)) {

lp overflow queue(lp count] .access id = no of accesses;
lp-overflow-queue[lp-count] .arrival time =-current time;
lp-overflow-queue[lp-count] .service-time = -

- - - (int) (5 *-random() + 10);
lp_count += 1;

I* if there are no accesses in the lp overflow queue *I

else if(lp_count == 0) {

I* if there is a free synchronizing agent available, then
allocate this new access directly to the free agent */

if(synch_agents_busy FALSE) {

new agent= find free agent(synch agents, m, "LP"l;
synch_agents[new=agent] .active access.access id =

no_of_accesses;
synch_agents[new_agent) .active access.service time

{int) (5 * random() + lO);
synch_agents[new_agent] .active access.arrival time

current time,·
synch_agents[new_agent) .active access.start time

current time;
synch agents[new agent] .status~ BUSY;
lpagents += 1; -
if(lpagents >= (m- HPAGENTS))

synch_agents_busy = TRUE;

I* if all the agents are busy */

else{

I* find the agent whose waiting queue is minimum *I

new agent = find min queue agent (synch agents, (lpagents
- - - +-HPAGENTS) I 1 'LP") i

I* if all the waiting queues are full */

if(synch agents[new agent] .queue size
- - MAX_QUEUE_SIZE) {

I* if the queue is equal to the MAX QUEUE SIZE, then
find an inactive agent available~ allocate this
access to it 1 otherwise insert it into lp overflow
queue */

if(lpagents < LPAGENTS) [

new agent find inactive agent(synch agents);
synch_agents[new=agent) .active_access~access_id

no of accesses;
synch_agents[new_agent).active_access.service_time

57

= (int) (5 * random() + 10);
synch_agents[new_agent] .active_access.arrival_time

= current time;
synch agents[new agent] .active access.start time

- - current time; -
synch agents[new agent] .statusl =ACTIVE;
synch-agents[new-agent] .status= BUSY;
lpagents += 1; -

I* if there are no more inactive agents available,
then insert this access into lp overflow queue *I

else{

lp_overflow_queue[lp_count] .access_id =
no of accesses;

lp_overflow_queue[lp=count) .arrival_time
current time;

lp overflow queue[lp count] .service time
- - (int) (5 * random() + 10);

lp_count += 1;

/* if there is space in the minimum queue, then insert
the access into the queue of that agent *I

else{

I* if the wait queue size is less, then insert this
access into the wait queue of the agent */

synch agents[new agent] .queue[synch agents
- [new agent] .queue size] .access id

- -no of accesses;
synch agents[new agent] .queue[synch agents

- [new agent] .queue size] .service time
- -(int) (5 *random()+ 10);

synch agents[new agent] .queue[synch agents
- [new_agent] . queue_size] . arrival_time

current time;
synch_agents[new_agent] .queue_size-+= 1;

/* update clock, interarrival time */

previous time = current time;
inter arrival time = (int) (5 * random() + 0) i
if{no-of accesses == 7)

inter-arrival time = 50;
no of accesses += 1;
ACCESSALLOWED = TRUE;

I* if the overflow queue is full, then the access is not
allowed to enter. *I

else

58

ACCESSALLOWED FALSE;

hist_array[current_time % 20] = 1;

if(ACCESSALLOWED ==FALSE) break;

start_processing(synch_agents, current_time, lp_overflow_queue,
&lp_count, hp_overf1ow_queue, &hp_count, &lpagents,
&synch_agents_busy, &hpsynchbusy, &hpagents, ofp, hist_array);

/* print and display the queue sizes */

if(current time % 10 == 0) {
print stat (synch agents, lp count, hp count, current time,

- - - no of accesses);
draw window(queue val, current time);- -
sleep(2); - -

copy_values(queue_val, current time, synch agents, lp_count,
- hp_countl;

/* display average queue sizes */

if((current time% 15 == 0) && (current_time != 0))
system ("gnuplot test") ;

current_time += 1;

write_output(synch_agents, lp count, hp count, current_time,
- stat_val);

hist_array[current_time % 20] = 0;

flag = TRUE;

for(i = 0; i <MAX SYNCH AGENTS; i++) {
if(synch agents[iJ .status== BUSY) {

flag ~ FALSE; break;

if (flag
}
fclose(ofp);

TRUE) jobsinthesystem FALSE;

print_stat(synch_agents, lp_count, hp_count, current_time,
no_of_accesses);

draw window(queue val, current time);
system("gnuplot test"); -
sleep(4);
close_window ();

/***
FUNCTION FOR RANDOM NUMBER GENERATOR

**

59

This function is used to generate a random number between 0 and 1. This
generator is used for generating access priority, inter-arrival time and
service time. */

float random ()
{

long a
long M
long q

16807.0;
2147483647.0;
127773.0, r 2836.0, lo, hi, test;

hi = (int) (seed/q);
lo = seed - q*hi;
test = a*lo-r*hi;
if (test> 0.0)

seed test;
else

seed test + M;
return (seed/M);

/***
FUNCTION TO FIND FREE AGENT

**
This function finds and returns the free synchronizing agent depending
upon the priority. */

find free agent(syn agent, count, priority)
synch syn-agent[];-
int count7
char priority[];
{

int i 0;

for(i 0; i <MAX SYNCH AGENTS; i++) {
if((strcmp(syn agent[i].priority 1 priority) == 0) &&

- (syn_agent [i]. statusl == ACTIVE))
if(syn_agent[i] .status== SLEEP) break;

I
return(i);

/***
FUNCTION TO FIND INACTIVE AGENT

**

This function finds and returns the first inactive low priority
synchronizing agent */

find inactive agent(syn agent)
synch syn agent[]; -
{ -

int i 0;

for(i 1; i <MAX SYNCH AGENTS; i++)
if(syn agent[i]~statusl == INACTIVE) break;

return(i)7

60

I***
FUNCTION TO FIND AGENT WHOSE QUEUE IS MIN.

**
This function finds and returns the agent number whose queue length is
minimum out of the group of synchronizing agents whose priority matches
with the argument priority *I

find min queue agent(syn agent, count, priority)
synch syn_agent[J; -
int count;
char priority [];
{

int i = 0, j = HPAGENTS;

I* for low priority agents *I

if ((strcmp (priority, "LP")) == 0) {
for(j = HPAGENTS; j < VlAX SYNCH AGENTS; j++)

if(syn agent[j) .status-== BUSY) break;
for(i = HPAGENTS; i <MAX SYNCH AGENTS; i++)

if((syn agent[i) .status== BUSY) &&
(syn_agent [j] .queue_size > syn_agent (i]. queue_size))

j = i;

I* for high priority agents *I

else{
j = 0;
for(i = 0; i <count; i++){

if((syn agent[i] .status== BUSY) &&
(syn_agent[j] .queue_size > syn_agent[i] .queue size))

j = i;

}
return(j);

I***
FUNCTION FOR INITIALIZATION

**
This function initializes all the synchronizing agents. First m number of
agents are designated as active synchronizing agents and the remaining
agents are initialized as inactive synchronizing agents. Also first
HPAGENTS number of agents are designated as high priority agents and the
remaining are as low priority agents *I

void initialize synch agents(syn agent)
synch syn agent[]; - -
{

int i 0;

for(i 0; i < m; i++){

I

syn agent(i] .status= SLEEP;
syn-agent[i] .statusl =ACTIVE;
syn=agent(i] .queue_size = 0;

for(i = m; i <MAX SYNCH AGENTS; i++) {

I

syn agent[i) .status= SLEEP;
syn-agent[i) .statusl =INACTIVE;
syn=agent[i) .queue_size = 0;

for(i = 0; i < HPAGENTS; i++)
strcpy(syn agent(i] .priority, "HP");

for(i = HPAGENTS; i <MAX SYNCH AGENTS; i++)
strcpy(syn_agent[i] .priority, 71LP");

61

/***
FUNCTION TO REMOVE ACCESS FROM THE AGENT

**
This function is used to check whether the service time of the particular
accesshas expired or not. If so, the access is removed from the agent and
the accessfrom the head of the queue associated with that particular agent
is allocated toit. If there are no accesses waiting on that agent,
depending on the history ofthe rate of arrival of the accesses, the agent
is put to sleep or made inactive.The flags and the counts of agents are
accordingly updated. */

void start_processing(syn_agents, currenttime, lp_queue, lpcount,
hp queue, hpcount, active synch agents, synch agents busy,
hpsynch busy, HPagents, fp, histarray) - -

synch syn agents[);
int currenttime, *lpcount, *hpcount, *active synch agents;
int *synch agents busy, *hpsynch busy, *HPagents, histarray[];
struct queue lp queue[], hp queue(];
FILE *fp; - -
(

int i = 0, sum;

sum 0;
for(i 0; i < 20; i++)

sum+= histarray[i];

for(i = 0; i <MAX SYNCH AGENTS; i++)
if(syn_agents[i]~status == BUSY) 1

/* if the service time of the access is expired, it is removed from
the agent. */

if(currenttime >= (syn agents[i] .active access.start time +
syn agents[i] .active access.servTce time)) {

fprintf(fp,"%5d %7d TlOd %10d\n", - -
syn agents[i) .active access.access id,
syn=agents[i] .active=access.arrivai_time,
syn_agents[i) .active_access.start_time, currenttime);

/* if there are accesses waiting on this agent, the access from the
head of the queue is removed and allocated to it. */

if(syn_agents[i).queue_size != 0) {
syn_agents[i] .active_access.access_id =

syn agents[i].queue[O] .access id;
syn_agents[i] .active_access.service_time = -

syn agents[i).queue[O] .service time;
syn agents[i] .active access.arrival time= -

- - syn_agents[i)~queue[O] .arrival_time;

syn agents[i] .active access.start time= currenttime;
if(strcmp(syn agents[i].priority,-"HP") == 0)

adjust queues(&syn agents[i], hp queue, hpcount);
if (strcmp (syn agents (IJ .priority, "LP") "-= 0)

adjust_queues{&syn_agents[i], lp_queue, lpcount);

62

I* if no access is waiting on the agent, it is put to SLEEP.
Depending on the arrival rate history, the agent is made inactive.
*I

else{
syn agents[i] .status= SLEEP;
if(strcmp(syn agents[i] .priority, "HP") 0) (

*hpsynch-busy = FALSE;
*HPagents == 1;

I
else{

I
}

if((sum == 0) && (*active synch agents> (m- HPAGENTS)))
syn_agents[i] .status1 =INACTIVE;

else
*synch agents busy = FALSE;

*active_synch_agents 1;

I***
FUNCTION TO UPDATE THE QUEUES

**
This function is used to update the various queues. When an access leaves
the synchronizing agent, the access from the head of its queue is
allocated to that agent. This function rearranges the accesses in the
queue associated with that particular agent and the overflow queue. *I

void adjust queues(synch agent, Queue, count)
synch *synch agent; -
struct queue Queue[];
int *count;
{

int i 0;

for(i 0; i < (synch agent->queue size - 1); i++) I
synch agent->queue[i] .access id-~ synch agen~->queue[i + 1] .access id;
synch-agent->queue[i] .service time = -

- synch agent->queue[i+l] .service_time;
synch agent->queue[i] .arrival time =

- synch agent->queue[i+l] .arrival_time;
}
synch agent->queue size -= 1;
if(*count != 0) { -

synch agent->queue[synch_agent->queue_size] .access_id =
- Queue[O] .access id;

synch agent->queue[synch_agent->queue_size] .servTce_time
- Queue[O] .service time;

synch_agent->queue[synch_agent->queue_size] .arrival time

Queue[O) .arrival_time;
synch agent->queue size += 1;
for(i-= 0; i < ((*count) - 1); i++) (

Queue[i) .access id = Queue[i + 1] .access id;
Queue[i] .service time Queue[i + 1] .service time;
Queue[i) .arrival=time = Queue[i + 1] .arrival=time;

*count -= 1;

63

/***
FUNCTION TO PRINT THE OUTPUT

**
This function is used to display on the screen the sizes of various queues
used at a particular instant of time. */

void print stat(syn agents, lpcount, hpcount, time, accesses)
synch syn agents[);-
int lpcount, hpcount, time, accesses;
{

int i = 0, j = 0;

system("tput clear");
printf(" TIME IS: %d

%d)\n\n",time,accesses);
printf("HP OVERFLOWQUEUE : ");
for{i = 0; i < hpcount; i++)

printf("*");
print f (" \ n ") ;
for(j = 0; j < MAX SYNCH AGENTS; j++) {

printf{"SYNCHRONIZING AGENT # %d: ", j);
for(i = 0; i < syn agents[j] .queue size; i++)

printf("*"); -
if(syn agents[j) .status!== INACTIVE)

printf(" INACTIVE");
else if{syn agents[j) .status== SLEEP)

printf (" - SLEEP");
printf("\n");

}
printf ("LP OVERFLOWQUEUE ") ;
for(i = 0; i < lpcount; i++)

print£("*");
printf ("\n");

(ACCESSES:

/***
FUNCTION TO DISPLAY THE QUEUE SIZES

**
This function is used to display in the newly created window, the various
queue sizes at a particular instant of time. A filled rectangle is
displayed corresponding to the particular queue size */

draw window(queue, currenttime)
int queue[], currenttime;
{

inti, j, k;

I* string to differentiate the various queues is defined *I

char name[20];
char namel[lO];
char stringl [] "Hn;
char string2[] non;
char string3[) lll";
char string4 [) n2n;

char stringS[] n3n;
char string6 [] "4";
char string? [] nsn;
char stringS (] "L.,;

strcpy(name, "CURRENT TIME: ");
sprintf(namel, "%d", currenttime);
strcat(name, namel);

64

I* clears the window before displaying the rectangles corresponding to
the size of queue */

XClearWindow (mydisplay, mywindow);

XDrawimageString (mydisplay,mywindow, mygc,100,50, name,
strlen(name));

I* the string is diplayed in the window */
j = 0;
for(i = 0; i < 48; i++) (

if (i % 8 == 0)
XDrawimageString (mydisplay,mywindow, mygc,j,350, stringl,

strlen(string1));
if(i% 8 == 1)
XDrawimageString (mydisp1ay,mywindow, mygc,j,350, string2,

strlen (string2));
if(i% 8 == 2)
XDrawimageString (mydisplay,mywindow, mygc,j,350, string3,

strlen(string3));
if (i % 8 == 3)
XDrawimageString (mydisplay,mywindow, mygc, j,350, string4,

strlen(string4));
if (i % 8 == 4)

XDrawimageString (mydisplay,mywindow, rnygc,j,350, stringS,
strlen(string5));

if(i% 8 == 5)
XDrawlmageString (mydisplay,mywindow, mygc, j,350, string6,

strlen(string6));
if (i % 8 == 6)
XDrawlmageString (mydisplay,mywindmv, mygc, j,350, string?,

strlen(string7));
if(i% 8 == 7)
XDrawimageString (mydisplay,mywindow, mygc, j,350, stringS,

strlen(string8));
I* filled rectangles are displayed according to the size of the

queue *I

XFillRectangle (mydisplay, mywindow, mygc, j, (330 - (queue [i] * 25)),
10, (queue [i] * 2 5)) ;

j += 12;

XFlush(mydisplay) ;

65

I***
FUNCTION TO INITIALIZE THE WINDOW

**
This function is used to initialize the window with the name and
resources, and then realizing the window. *I

initialize window(argc, argv)
int argc; -
char **argv;
{

I* the variable name is used to display a name to the window *I

char name[] = "QUEUE SIZES DISPLAY";
mydisplay = XOpenDisplay("");

I* setting resource parameters *I

myscreen = DefaultScreen (mydisplay);
mybackground = WhitePixel (mydisplay, myscreen);
myforeground =BlackPixel (mydisplay, myscreen);
myhints.x = 350; myhints.y = 375;
myhints.width 580; myhints.height = 400;
myhints.flags = PPosition I PSize;

/* creating the window and assigning the above declared resources to
the window *I

mywindow = XCreateSimpleWindow (mydisplay,DefaultRootWindow
(mydisplay), myhints.x,myhints.y,myhints.width,
myhints.height,S,myforeground, mybackground);

XSetStandardProperties (mydisplay, mywindow, name,name,None, argv,
argc, &myhints);

mygc = XCreateGC (mydisplay, mywindow, 0,0);
XSetBackground (mydisplay, mygc, mybackground);
XSetForeground (mydisplay, mygc, myforeground);
XSelectinput (mydisplay, mywindow,

ExposureMaskl ButtonPressMaskiKeyPressMask);

I* window is realized *I

XMapRaised (mydisplay, mywindow);

I***
FUNCTION TO DESTROY THE X WINDOW

**
This function is used to destroy and close the window. All the resources
associated with the window are freed *I

close window ()
I -

XFreeGC (mydisplay, mygc);
XDestroyWindow (mydisplay, mywindow);
XCloseDisplay (mydisplay);

I***
FUNCTION TO GENERATE VALUES FOR DISPLAY

**
This function is used to copy the values of different queue sizes into an

array, which will be used for display. */

void copy_values(queue, count, syn_agents, lpagents, hpagents)
int queue[], count, lpagents, hpagents;
synch syn agents[];
(-

int i, j;

j = 0;

switch(count) (
case 0

case 1

case 2

case 3

case 4

case 5

default:

queue[O] = hpagents;
for(i = 1; i < 7; i++)

queue[i] = syn agents[j++] .queue size;
queue[i] lpagents; -
break;
queue[B] = hpagents;
for(i = 9; i < 14; i ++)

queue[i] = syn agents[j++] .queue size;
queue[i] = lpagents; -
break;
queue[16] = hpagents;
for(i = 17; i < 23; i ++)

queue[i] = syn agents[j++] .queue size;
queue[i] = lpagents; -
break;
queue[24] = hpagents;
for(i = 25; i < 31; i ++)

queue[i] = syn agents[j++) .queue size;
queue[i] = lpagents; -
break;
queue[32] = hpagents;
for(i = 33; i < 39; i ++)

queue[i] = syn agents[j++] .queue size;
queue[i] = lpagents; -
break;
queue[40] = hpagents;
for(i = 41; i < 47; i ++)

queue[i] = syn agents[j++] .queue size;
queue[i] = lpagents; -
break;
for(i = 0; i < 40; i++)

queue(i] = queue[i + 8);
queue[40] = hpagents;
for(i = 41; i < 47; i ++)

queue[i) = syn agents[j++] .queue size;
queue[i) = lpagents; -
break;

66

/***
FUNCTION TO WRITE AVERAGE QUEUE SIZES TO A FILE

**

This function is used to write the average queue sizes to a file
"out.dat". This file is used to plot these average values by using GNUPLOT
*I

void write output(syn agents, lpqueue, hpqueue, time, stat_val)
synch syn agents[]; -
int lpqueue, hpqueue, time, stat_val[];
{

FILE *ofp;
int i;

ofp = fopen("out.dat", "w");

stat val[O] += hpqueue;
for(T = 1; i < 7; i++)

stat val[i] += syn agents[i-1] .queue
stat val[i] += lpqueue;

size;

fprintf(ofp,"O.OO\n");
fprintf (ofp, "%f\n", ((float) ((float)stat val{O] /(float)time)) *

25.0) ;
for(i = 1; i < 7; i++)

fprintf(ofp,"%f\n", ((float) ((float)stat val[i] /(float)time)) *
25. 0) ;

67

fprintf(ofp, "%f\n", ((float) ((float)stat_val[7] /(float)time)) * 25.0);
fprintf(ofp,"O.OO\n");
fclose (ofp) ;

68

I* Program sim_sem.c starts here *I

I* This program is the simulation using semaphores. One semaphore per
synchronizing agent is used. This simulation is compared with the
simulation using proposed primitive. All semaphore operations are defined
in a header file named sem.h and this header file is included. *I

#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<parallel/parallel.h>
#include"sem.h"
#define TRUE 1
#define FALSE 0
#define BUSY 1
#define SLEEP 0
#define MAX AGENTS 6
#define m 2
#define LPAGENTS 4
#define HPAGENTS 2
#define SEMKEY 0
#define SEMKEY-1
#define SEMKEY-2
#define SEMKEY-3
#define SEMKEY-4
#define SEMKEY-5

6666
1111
2222
3333
4444
5555

struct agents{

} ;

int start time, service_time, status, status1, queue_size,access_id;
char priority[3);

struct _agent{
struct _agents AGENT[MAX_AGENTS];

} ;

int AG[MAX AGENTS];
double seed= 1.0;
float random{);
struct _agent *initialize();

main{)
(

struct agent *agent;
int *lp-agents busy, *no of accesses, *current time, prev_time = 0;
int *hp-agents-busy, *lpagents, *hpagents; -
int *no -agents;- inter time=O, pid, jobsinthesyst.em FALSE, status;
int *new_agent, s_time, i, x, j, time;

I* shared memory allocation for the shared variables *I

agent = (struct _agent *)shmalloc(sizeof(struct _agent));
lp agents busy= (int *lshmalloc(sizeof(int));
hp-agents-busy = (int *)shmalloc(sizeof(int));
no-agents-= (int *)shmalloc(sizeof(int));
new agent= (int *)shmalloc(sizeof(int));
hpagents = (int *)shrnalloc(sizeof(int));
lpagents = {int *)shrnalloc(sizeof(int));
current time= (int *)shmalloc(sizeof(int));
no of accesses= (int *)shmalloc(sizeof(int));

*lp agents busy
*hp-agents-busy
*no-agents-= l;
*lpagents = o:
*hpagents = 0;
*current time =
*no of accesses

0;

FALSE;
FALSE;

= 0;

/* semaphores initialization */

AG[O] = seminit((key t)SEMKEY 0, 1);
if(AG[O] == -1) { - -

)

printf("Semaphore initialization failed\n");
exit(O);

AG[1] = seminit((key t)SEMKEY l, l);
if(AG[1] == -1) { -

)

printf("Semaphore initialization failed\n");
exit(O);

AG[2] = seminit((key t)SEMKEY 2, 1);
if(AG[2] == -1) { -

)

printf("Semaphore initialization failed\n");
exit(O);

AG[3] = seminit((key t)SEMKEY 3, 1);
if (AG[3] == -1) { -

}

printf("Semaphore initialization failed\n");
exit (0) ;

AG[4] = seminit((key t)SEMKEY 4, 1);
if (AG [4] == -1) { -

}

printf("Semaphore initialization failecl\n");
exit(O);

AG[S] = seminit((key t)SEMKEY 5, 1);
if(AG[S) == -1) (-

printf("Semaphore initialization failed\n");
exit(O);

initialize(agent);

/* execution continued till 200 accesses are processed */

while ((*no of accesses < 200) I I (j obsinthesystem)) {
while ((*no_of_accesses < 200) && (*current_time >= (prev time +

inter_time))) 1
jobsinthesystem = TRUE;

/* if the access trying to enter is high priority access */

if(((int) (7 * random() + 0)) == 0) {

69

/*if the high priority agent is free, allocate the agent by
executing the P operation corresponding to that semaphore */

if(*hp_agents_busy ==FALSE) I

*hpagents += 1;
if(*hpagents == HPAGENTS)

70

*hp_agents_busy = TRUE;

/* fork a child process. The child process does the required
semaphore operations , the parent process continues further
execution */

if((pid =fork()) == -1) {
printf("Fork failed\n");
exit (0) ;

/* child process starts execution. Free agent is found and
P operation on the corresponding semaphore is executed */

if(pid == 0) {
for(i = 0; i < 2; i++)

if(agent->AGENT[i) .status== SLEEP) break;
P (AG [i]) ;
agent->AGENT[i] .access id = *no of accesses;
agent->AGENT[i] .start time= *current time;
agent->AGENT[i] .status= BUSY; -
agent->AGENT[i] .service time= (int) (S*random() + 2);
sleep(agent->AGENT[i] .service time);
V(AG[i]); -
if(agent->AGENT(i] .queue size > 0)

agent->AGENT(i] .queue=size -= 1;
else{

agent->AGENT[i] .status = SLEEP;
*hpagents -= 1;
*hp_agents_busy = FALSE;

}
exit(l);

/* if a free lp agent is availabel, then this HP access is
allocated to it, after executing the P oparation on the
corresponding semaphore */

else if(*lp_agents_busy FALSE) {

*lpagents += 1;
if(*lpagents == LPAGENTS)

*lp_agents_busy = TRUE;

/* fork a child process. The child process does the required
semaphore operations , the parent process continues further
execution */

if((pid =fork())== -1)[
printf("Fork failed\n");
exit(O);

}

if(pid == 0) {
for(i = 2; i < 6; i++)

if(agent->AGENT[i] .status== SLEEP) break;
P (AG [i]) ;
agent->AGENT[i] .access id = *no of accesses;
agent->AGENT[iJ .start time= *current time;
agent->AGENT[i] .status= BUSY; -
agent->AGENT[i] .service time = (int) (S*random() + 2);
sleep(agent->AGENT[i] .service_time);

V (AG [i]) ;
if(agent->AGENT[i] .queue size > 0)

agent->AGENT[i) .queue-size -= 1;
else{ -

}

agent->AGENT[i] .status = SLEEP;
* lpagent s -= 1;
*lp_agents_busy = FALSE;

exit (1);

71

I* else, the hp access is made to wait on a hp agent whose wait
queue is minimum *I

else{

/* fork a child process. The child process does the required
semaphore operations , the parent process continues further
execut.ion *I

if((pid =fork()) == -1) {
printf("Fork failed\n");
exit (0) ;

}
if (pid == 0) {

j = 0;
for(i = 0; i < 2; i++) I

if(agent->AGENT[j] .queue size > agent->AGENT[i].
queue_size)

j = i;
)
agent->AGENT[j] .queue size += 1;
P(AG[j]); -
agent->AGENT[j] .access id = *no of accesses;
agent->AGENT[j] .start time= *current time;
agent->AGENT[j] .status= BUSY;
agent->AGENT[j].service time= (int) (S*random() + 2);
sleep(agent->AGENT[j] .s~rvice time);
V(AG[j]); -
if(agent->AGENT[j] .queue size > 0)

agent->AGENT[j] .queue-size -= 1;
else (-

agent->AGENT(j] .status = SLEEP;
*hpagents -= 1;
*hp_agents_busy = FALSE;

)
exit(l);

I* if the new access is of low priority access *I

else{
if(*lp_agents_busy == FALSE) {

I* find the free low priority agent, and if it available
allow the access to execute the corresponding semaphore
*I

*lpagents += 1;

if(*lpagents == LPAGENTS)
*lp_agents_busy = TRUE;

72

/*fork a child process. The child process does the required
semaphore operations , the parent process continues
further execution */

if((pid =fork()) == -1) {
printf("Fork failed\n");
exit (0);

I
if (pid == 0) {

for(i = 2; i < 6; i++)
if(agent->AGENT[i] .status="' SLEEP) break;

P (AG [i]) ;
agent->AGENT[i] .access id = *no of accesses;
agent->AGENT[il .start time= *current time;
agent->AGENT[i] .status= BUSY; -
agent->AGENT [i]. service time = (int) (5*random() + 2);
sleep(agent->AGENT[i] .service time);
V(AG[i]); -
if(agent->AGENT[i] .queue size > 0)

agent->AGENT[i] .queue size -= 1;
else{ -

agent->AGENT[i] .status =SLEEP;
*lpagents -= 1;
*lp_agents_busy = FALSE;

}

exit(l);

/* the access is put in the wait queue of an agent whose queue
size is minimum. */

else{

I* fork a child process. The child process does the required
semaphore operations , the parent process continues further
execution */

if({pid =fork())== -1){
printf("Fork failed\n");
exit(O);

I
if (pid == 0) {

j = 2;
for(i = 2; i < 6; i++){

}

if(agent->AGENT[j] .queue_size > agent->AGENT[i].
queue_size)

j = i;

agent->AGENT[j] .queue size += 1;
P (AG [j]) ; -
agent->AGENT[j] .access id = *no of accesses;
agent->AGENT[j] .start time= *current time;
agent->AGENT[j] .status= BUSY; -
agent->AGENT[j].service time= (int) (S*random() + 2);
sleep(agent->AGENT[j] .service time);
V(AG[j]); -
if(agent->AGENT[j] .queue size > 0)

agent->AGENT[j] .queue=size -= 1;

else{
agent->AGENT(j] .status SLEEP;
*lpagents -= 1;
*lp_agents_busy = FALSE;

}
exit(l);

*no of accesses += 1;
prev time = *current time;
inter time = (int) (5-* random() + 0);

*current time += 1;

if((agent->AGENT(O] .status == FALSE)
FALSE) && (agent->AGENT[2] .status
(agent->AGENT[3] .status == FALSE) &&
FALSE) && (agent->AGENT[5] .status

jobsinthesystem = FALSE;

if(*current time % 10 == 0) {

&& (agent->AGENT[1] .status
FALSE) &&
{agent->AGENT[4] .status
FALSE))

printstat(agent, *current_time, *no of accesses);
sleep(3);

I* parent process waits till all the child processes exit */
for(i = 0; i < 100; i++) wait(&status);

I* kill all the semaphores which were initialized in the begining */

semkill(AG(O)); semkill(AG[1]); semkill(AG[2]J; semkill(AG[3]);
semkill(AG[4]); semkill(AG[SJ);

I* free the shared memory allocated */

shfree(agent); shfree(no agents); shfree(lp agents busy);
shfree(hp agents busy); shfree(lpagents); shfree(hpagents);
shfree(current time);
) -

73

/***
FUNCTION TO GENERATE RANDOM NUMBER

**
This function is used to generate a randum number between 0 and 1. */

float random ()
{

long a
long M
long q

16807.0;
2147483647.0;
127773.0, r 2836.0, 1o, hi, test;

hi = (int) (seed/q);
lo = seed - q*hi;
test = a*lo-r*hi;
if (test > 0. 0)

seed = test;
else

seed = test + M;
ret urn { seed/M) ;

74

/***
FUNCTION TO INITIALIZE VARIABLES

**

This function is used to initialize variables used in the program. */

struct _agent *initialize(agents}
struct _agent *agents;
{
int i =0;
for(i = 0; i <MAX AGENTS; i++) {

agents->AGENT(i].status = SLEEP;
agents->AGENT[i] .start time= 0;
agents->AGENT[i] .service time = 0;
agents->AGENT[i] .queue size = 0;
agents->AGENT[i] .access id =NULL;

l
for(i = 0; i < HPAGENTS; i++)

strcpy(agents->AGENT[i] .priority, "HP");
for(i = HPAGENTS; i <MAX AGENTS; i++)

strcpy(agents->AGENT[i].priority, "LP");
return(agents);
)

/***
FUNCTION TO PRINT THE QUEUE SIZES

**
This function is used to display on monitor screen, the sizes cf the
various queues at a particular time. */

print stat(agents, time, accesses)
struct agent *agents;
int time, accesses;
(

int i, j;

system("tput clear");
printf(" TIME IS %d (ACCESSES %d) \n\n\n", time,

accesses);
for(i = 0; i <MAX AGENTS; i++) {

printf("SYNCHRONIZING AGENT #%d :", i);
for(j = 0; j < agents->AGENT[i] .queue size; j++)

printf ("*");
if(agents->AGENT[i] .status== SLEEP)

printf(" SLEEP");
printf("\n");
}

75

/* sem.h header file */

/* This header file is a collection of routines for using semaphores in C:
1. seminit -to initialize a semaphore.
2. P -to perform P(S) operation.
3. V- to perform V(S) operation.
4. semkill -to remove a semaphore.

These routines call UNIX System V system routines:
1. semget - to get a semaphore
2. semctl - semaphore control operations.
3. semop- semaphore operations.

*I

#include<stdio.h>
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/sem.h>

struct semun{
int val;

}arg;

struct semid ds *buf;
char *array;

static void semkill();
static void P();
static void V();
static void semcall();

/* Initializing semaphore based on "key" parameter to "initval" */

static int seminit(key, initval)
key t key;
int-initval;
{

int sid;
struct semun semun;

/* get the semaphore id based on the key */

if ((sid = semget (key, 1, 0600 I IPC_CREAT)) -1)
perror("semget");

else{
printf("SEMAPHORE ID (sid) = %d\n", sid);

/* initializing semaphore to its initial value */

semun.val = initval;
if (semctl (sid, 0, SETVAL, semun) -1)

perror("semctl");

return (sid);

/* removing semaphore with id (sid) from the system */

static void semkill(sid)
int sid;
{

if(semctl(sid, 0, IPC RMID, 0) == -1)
perror("semctl(kill)");

printf("SEMAPHORE with value of sid = %cl is killed\n", sid);

76

I* Performs the P operation on the semaphore. This should be called upon
entry to the critical section. *I

static void P(sid)
int sid;
{

semcall(sid, -1);

I* Performs the v operation on the semaphore. This should be called upon
exit from the critical section. *I

static void V(~id)
int sid;
{

semcall(sid, 1);

I* Performs the designated "op" operation on the semaphore.
then this implements the P operation; it decrements the
semaphore if it is > 0, or is blocked if = 0. If "op"
operation is implemented; 1 is added to the current
semaphore. *I

static void serncall(sid, op)
int sid, op;
{

struct sernbuf sb;

sb.sem num = 0;
sb.sem-op = op;
sb.sem-flg = 0;
if(semop(sid, &sb, 1) -1)

perror ("sernop") ;

If "op" is -1,
value of the
is 1, then V
value of the

#include <Xll/Xlib.h>
#include <Xll/Xutil.h>

/* windows.h header file */

Display *mydisplay;
Drawable mywindow, mys;
Pixmap pixmap;
GC mygc;
XEvent myevent;
XSizeHints myhints;
int myscreen;
int done = 0, time = 10;
unsigned long myforeground, mybackground;

77

78

I* program env1.c starts here *I

I* In this program, two processes are forked, and the shared variable is
updated (incremented) 10 times in the loop. This loop is run for 100 times
and the final value of the shared variable after each run is printed.
Process one sleeps between read and write of the shared variable and
process 2 sleeps only before read operation of the shared variable. The
processes are put to sleep (passive wait) for a randum amount of time. *I

#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<signal.h>

#define MAX TIMES 10
#define MAX-PROC 2

float random ();
double drand48();
double seed= 2.0;

I* main program starts here *I

main()
I

FILE *ofp;
int i = 0, k, *x , j, pid, status, y;
float rand_num;

ofp = fopen ("OUT1", "w") ;

I* program is run for 100 times *I

for(k = 0; k < 100; k++) (
x = (int *)shmalloc(sizeof(int));
*x = 0;

I* MAX PROC times processes are forked to update the shared
variable *I

for (i = 0 ; i < MAX_ P ROC; i+ +) {

I* if fork fails, it prints an error message and exits
the program *I

if ((pid = fork()) == -1) {
printf("Fork failed\n");
exit(O);

I* child process does all the processing *I

if(pid == 0) (
switch (i)

case 0:
/*process 0 sleeps between read and

write of the shared variable *I
srand48(getpid());
for (j 0; j < MAX_TIMES; j++) {

y = *x;

I
break;

rand num = drand48();
sleep (rand num) ;
*x = y + 1;

case 1:

)
exit(O);

I* process 1 sleeps before read *I
srand48(getpid());
for (j = 0; j < Jvl...AX TIMES; j++) {

rand num = drand48();
sleep(rand num);
y = *x; -
*x = y + 1;

break;

79

I* parent process 1·1aits for the child processes to terminate
*I
for(i = 0; i < 2; i++)

wait(&status);
fflush(stdout);
fprintf(ofp,"The final value is %din loop %d.\n\n", *x, k+l);
shfree (x);

}

fclose(ofp);

80

/*program env2.c starts here */

I* In this program, two processes are forked, and the shared variable is
incremented 10 times in the loop. This loop is run for 100 times and the
final value is printed. Process one sleeps before . reading the shared
variable, whereas process2 sleeps between read and write of the shared
variable. The processes are put to sleep for a randum amount of time. */

#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<signal.h>

#define MAX TIMES 10
#define MAX-PROC 2

float random ();
double drand48();
double seed= 2.0;

I* main program starts here *I

main()
{

FILE *ofp;
int i = 0, k, *x , j, pid, status, y;
float rand_nurn;

ofp = fopen("OUT2", "w");

/* program is run for 100 times *I

for (k 0; k < 100; k++) (

x (int *)shmalloc(sizeof(int));
*x = 0;

/* MAX PROC times processes are forked to update the shared
variables */

for(i = 0; i < MAX_PROC; i++) {

/*if fork fails it prints an error message and exists *I

if ((pid = fork()) == -1) (
printf ("Fork failed\n") ;
exit(O);

I* child process does all the processing */

if (pid == 0) (
switch(i)

case 0:
/* process 0 sleeps before read

operation of the shared variable *I
srand48(getpid());
for(j = 0; j <MAX TIMES; j++)

rand num = d~and48();
sleep (rand_nurn);
y = *x;

81

*x y + 1;
}
break;

case' 1:

)
exit(O);

I* process 1 sleeps between read and
write operations */'

srand48(getpid());
for'(j' = 0; j < MAX_TIMES; j++) {

y = *x;

}
break;

rand num = drand48();
sleep (rand num);
*x = y + fT

/* parent process waits for child processes to terminate */

for(i = 0; i < 2; i++)
wait(&status);

fflush(stdout);
fprintf(ofp,"The final value is %din loop %d.\n\n", *x, k+l);
shfree(x);

}
fclose(ofp);

82

I* program env3.c starts here *I

I* In this program 60 processes are forked, and the shared variable is
updated (incremented) 10 times in a loop. This loop is run for 1000 times
and the final value of the shared variable is printed after every run.
Each process sleeps between read and write of the shared variable, for a
randum amount of time. This is achieved by making the process to execute
a for loop which does nothing for a randum number of times (active wait).
*I

#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<signal.h>

#define MAX TIMES 10
#define MAX-PROC 60

double drand48();
double seed= 2.0;

I* main program starts here *I

main ()
{

FILE *ofp;
inti= 0, k, *x, j, pid, status, y,l, m, rep[8000];
float rand_num;

ofp = fopen("OUTl", "w");
for(i = 0; i < 8000; i++)

rep[i] = 0;

I* program is run for 1000 times *I

for(k = 0; k < 1000; k++) (
x = (int *)shmalloc(sizeof(int));
*x = 0;

I* MAX PROC times processes are forked *I

for(i = 0; i <MAX PROC; i++) {
if ((pid = fork o) == -11 1

)

printf("Fork failed for %d call\n", i);
exit (0) ;

I* child proceess does the processing *I
if(pid == 0) (

srand48(getpid());
for(j = 0; j < MAX_TIMES; j++) {

y = *x;
rand num = drand48();
m = (int) (rand num * 100000);
I* every process does nothing for cetain

randum amount of time *I
for(l=O; l<m; 1++);
*x = y + 1;

}
exit(O);

83

/* parent process waits for all child processes to terminate
*I

for(i = 0; i < MAX PROC; i++)
wait(&status);

rep[*x) += 1;
fflush(ofp);
print£ ("The final value is %d in loop %d and %d times. \n", *x,

k+l, rep[*x]);
shfree (x) ;

/* the number of times each value obtained is printed -k;

printf("\n\nFinal value #times generated\n");
for(i = 0; i < 8000; i++)

if (rep [i] ! = 0) (
print£ ("%-6d %-30d\n", i, rep [i]);

}
fclose (ofp);

84

I* program env4.c starts from here *I

I* In this program 60 processes are forked, and the shared variable is
updated (incremented) 10 times in the loop. This loop is run for 1000
times and the final value of the shared variable is printed after every
run. All even numbered processes sleep between read and write of the
shared variable and all odd numbered processes sleep before reading the
shared variable, for a randum amount of time. This is achieved by making
the processes to execute a for loop which does nothing for a randum number
of times (active wait). *I

#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<signal.h>
#define MAX TIMES 10
#define MAX-PROC 60

double drand48();
double seed= 2.0;

I* main program starts here */

main()
{

int i = 0, k, *x , j, pid, status, y,l, rn, rep[6000];
float rand num;

for(i = 0; i < 6000; i++)
rep [i) 0;

I* program is run for 1000 times */

for (k = 0; k < 1000; k++) {
x = (int *)shmalloc(sizeof(int));
*x = 0 i

I* MAX PROC times processes are forked */

for(i = 0; i <MAX PROC; i++) {
if ((pid = fork <l l == -11 1

}

printf("Fork failed for %d call\n", i);
exit(O);

I* child process does the processing */
if(pid == 0) {

switch(i 'h 2)(
case 0:

/* even numbered processes wait
between read and write operations*/

srand4B(getpid());
for(j = 0; j < MAX_TIMES; j++) {

y = *x;

break;
case 1:

rand num = drand48();
m = (int) (rand num * 100000);
for(l = 0; l <-m; 1++);
*x = y + 1;

/* odd numbered processes wait before
reading the shared variable */

srand4S(getpid());
for (j = 0; j < MAX TU1ES; j++) {

rand num = drand48();

85

m = (int) (rand num * 100000);
for(l = 0; l <-m; 1++);
y = *x;
*x = y + 1;

break;
}
exit (0) ;

/* parent process waits for child processes to terminate */

for(i = 0; i < MAX PROC; i++)
wait(&status);

rep[*x] += 1;
fflush (stdin);
printf ("The final value is %d in loop %d and %d times. \n", *x,

k+l, rep[*x]);
shfree(x);

/* number of times each value obtained is printed */

printf ("\n\nFinal value #times generated\n");
for(i = 0; i < 6000; i++) {

if(rep[i] != 0) (
printf("%6d %30d\n", i, rep[i]);

VITA

Raveendra R. A vutu

Candidate for the Degree of

Master of Science

Thesis: A GENERAL MUTUAL EXCLUSION PRIMITIVE

Major Field: Computer Science

Biographical:

Personal Data: Born in Vallabhapuram, India, July 10, 1962, son of Mr. and Mrs.
A. R. Reddy.

Education: Received Bachelor of Engineering in Mechanical Engineering from
University of Allahabad, Allahabad, India, in July 1984; completed
requirements for the Master of Science Degree at Oklahoma State
University in December 1993.

Professional Experience: Was Graduate Research Assistant in University Computer
center at Oklahoma State University, from January 1992 to August 1993.
Worked as Assistant Manager for Production with Andhra Polymers Ltd.,
Hyderabad, India, from January 1989 to July 1991. From May 1986 to
December 1988, worked as Assistant Engineer for W.I. Enterprises Ltd.,
Pune, India. Was Scientist 'B' in Defence Research and Development,
Department of Defence, India, from September 1984 to April 1986.

	Thesis-1993-A963g_Page_01
	Thesis-1993-A963g_Page_02
	Thesis-1993-A963g_Page_03
	Thesis-1993-A963g_Page_04
	Thesis-1993-A963g_Page_05
	Thesis-1993-A963g_Page_06
	Thesis-1993-A963g_Page_07
	Thesis-1993-A963g_Page_08
	Thesis-1993-A963g_Page_09
	Thesis-1993-A963g_Page_10
	Thesis-1993-A963g_Page_11
	Thesis-1993-A963g_Page_12
	Thesis-1993-A963g_Page_13
	Thesis-1993-A963g_Page_14
	Thesis-1993-A963g_Page_15
	Thesis-1993-A963g_Page_16
	Thesis-1993-A963g_Page_17
	Thesis-1993-A963g_Page_18
	Thesis-1993-A963g_Page_19
	Thesis-1993-A963g_Page_20
	Thesis-1993-A963g_Page_21
	Thesis-1993-A963g_Page_22
	Thesis-1993-A963g_Page_23
	Thesis-1993-A963g_Page_24
	Thesis-1993-A963g_Page_25
	Thesis-1993-A963g_Page_26
	Thesis-1993-A963g_Page_27
	Thesis-1993-A963g_Page_28
	Thesis-1993-A963g_Page_29
	Thesis-1993-A963g_Page_30
	Thesis-1993-A963g_Page_31
	Thesis-1993-A963g_Page_32
	Thesis-1993-A963g_Page_33
	Thesis-1993-A963g_Page_34
	Thesis-1993-A963g_Page_35
	Thesis-1993-A963g_Page_36
	Thesis-1993-A963g_Page_37
	Thesis-1993-A963g_Page_38
	Thesis-1993-A963g_Page_39
	Thesis-1993-A963g_Page_40
	Thesis-1993-A963g_Page_41
	Thesis-1993-A963g_Page_42
	Thesis-1993-A963g_Page_43
	Thesis-1993-A963g_Page_44
	Thesis-1993-A963g_Page_45
	Thesis-1993-A963g_Page_46
	Thesis-1993-A963g_Page_47
	Thesis-1993-A963g_Page_48
	Thesis-1993-A963g_Page_49
	Thesis-1993-A963g_Page_50
	Thesis-1993-A963g_Page_51
	Thesis-1993-A963g_Page_52
	Thesis-1993-A963g_Page_53
	Thesis-1993-A963g_Page_54
	Thesis-1993-A963g_Page_55
	Thesis-1993-A963g_Page_56
	Thesis-1993-A963g_Page_57
	Thesis-1993-A963g_Page_58
	Thesis-1993-A963g_Page_59
	Thesis-1993-A963g_Page_60
	Thesis-1993-A963g_Page_61
	Thesis-1993-A963g_Page_62
	Thesis-1993-A963g_Page_63
	Thesis-1993-A963g_Page_64
	Thesis-1993-A963g_Page_65
	Thesis-1993-A963g_Page_66
	Thesis-1993-A963g_Page_67
	Thesis-1993-A963g_Page_68
	Thesis-1993-A963g_Page_69
	Thesis-1993-A963g_Page_70
	Thesis-1993-A963g_Page_71
	Thesis-1993-A963g_Page_72
	Thesis-1993-A963g_Page_73
	Thesis-1993-A963g_Page_74
	Thesis-1993-A963g_Page_75
	Thesis-1993-A963g_Page_76
	Thesis-1993-A963g_Page_77
	Thesis-1993-A963g_Page_78
	Thesis-1993-A963g_Page_79
	Thesis-1993-A963g_Page_80
	Thesis-1993-A963g_Page_81
	Thesis-1993-A963g_Page_82
	Thesis-1993-A963g_Page_83
	Thesis-1993-A963g_Page_84
	Thesis-1993-A963g_Page_85
	Thesis-1993-A963g_Page_86
	Thesis-1993-A963g_Page_87
	Thesis-1993-A963g_Page_88
	Thesis-1993-A963g_Page_89
	Thesis-1993-A963g_Page_90
	Thesis-1993-A963g_Page_91
	Thesis-1993-A963g_Page_92
	Thesis-1993-A963g_Page_93

