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PREFACE 

Manufacturing industries generate large amounts of 

process data which can yield beneficial insight on the 

process. This insight can include normal operating 

conditions, transient responses, and possible methods for 

optimization. Furthermore, the process data can provide 

insight on improving the control system for the process. 

This paper looks at extending a pattern recognition system 

into process control. This is accomplished by introducing 

gain scheduling to a pattern recognition neural network. 

Based on trained data, the neural network assigns new gains 

to process controllers to improve their control actions. 

A simulation has been conducted using this system and 

has shown encouraging results for a nonlinear process that 

was difficult to control with fixed-gain single-input, 

single-output controllers. This study also looked at 

changing a variety of parameters that influence the pattern 

recognition program and the gain scheduling implementation. 

Pattern-based gain scheduling shows a great deal of promise 

in advancing pattern-recognition systems in to process 

control but also ease the use of gain scheduling in a 

plant. 
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CHAPTER I 

INTRODUCTION 

Petroleum refineries, chemical plants, power generating 

stations, and many other types of manufacturing facilities 

generate immense amounts of information in the form of 

sensor data. Competitive pressures dictate the need to find 

new ways to leverage this information to improve the 

monitoring, control and optimization of plant operations. 

To help meet this challenge, a novel approach to the 

application of gain scheduling is described. This approach 

uses process patterns to determine the operating state of 

the process. Based on the operating state of the process, 

the controller gains are adjusted in order to provide better 

control performance for nonlinear systems. 

The Feedback Control Problem 

Feedback control (Figure 1) is the most heavily 

utilized form of control in the process industries. This 

technique uses the error between the desired and actual 

value of a controlled variable to make adjustments to a 

manipulated variable. These adjustments drive the 

controlled variable back to the desired or 'set point' 

value. Ideally, all controlled variables (flow rates, 
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temperatures, levels, physical properties, etc.) never 

deviate from their set point values. Unfortunately, most 

processes are subject to disturbances which tend to push a 

controlled variable away from its desired value. The 

strength of the feedback control approach is the fact that 

it is insensitive to the source of these disturbances. The 

response of a feedback control system is driven completely 

by the difference between the desired and actual value of 

the controlled variable. 

o· t b 1s ur ances 

Set Point for 
Controlled _.....:t;. 
Va.riable 

Error 

~ 
Controller 

.. + 
f---:l-

Manipulated 
~ Variable + 

Actual Variable Value 

Process 

Figure 1: Traditional feedback control loop 

f-~ 

The most common feedback controllers make adjustments 

using either PI (proportional-integral) or PID 

(proportional-integral-derivative) algorithms [Smith and 

Corripio, 1985] . These algorithms generate control signals 
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which are proportional to: 1) the currently measured error 

(P control), 2) the cumulative or integral error of the 

measured error (I control), and 3) the current rate of 

change or derivative of the error (D control, only 

applicable with PID controllers). A controller is equipped 

with adjustable weighting factors which determine the 

contribution of the P, I and D control actions to the final 

control signal. 

The general equation for a PID controller is 

- Kc J de( t) 
rn { t ) = rn + Kce ( t ) + - e ( t ) d t + Kc'tD ---

'tr dt 
( 1) 

where m(t) lS the control signal to the manipulated 

variable, m is the nominal or steady-state control signal 

to the manipulated variable, Kc is the controller gain, and 

e(t) is the error term which is the difference between the 

actual process value and the set point. ~I is the integral 

time constant for the controller and 1'D is the derivative 

time constant. Kc, ~I and ~D are the adjustable weighting 

factors mentioned previously. 

The performance of a feedback controller is strongly 

dependent on the values of the controller parameters 

·represented by the adjustable weighting factors. For 

processes and instruments which are linear and time-

invariant, linear systems theory provides an elegant 

framework to determine suitable feedback control parameter 
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settings. Unfortunately, most processes exhibit nonlinear 

behavior and linear systems theory can be applied as an 

approximation at best. The key result 1s that in most cases 

of industrial importance there is not a single best value 

for a controller parameter. Rather, a range of values are 

possible which depend on actual operating conditions. 

Identification and use of optimal controller settings 

requires adaptive control capability under these conditions. 

The goal of implementing a pattern-recognition system 

is to provide the feedback controller with an adaptive 

control system. This adaptive control system will use gain 

scheduling as a method of changing the controller gain, Kc, 

to provide enhanced control performance based on the current 

operating conditions of the process. 

Thesis Outline 

The thesis is organized as follows. The following 

chapter will look at gain scheduling. It will contain a 

review of literature on gain scheduling, it's theory, 

implementation, advantages, and disadvantages. Next, a 

pattern-recognition system using a neural network will be 

discussed. In addition, the proposed problem-solving 

approach is presented. Chapter 4 discusses the mixing tank 

used as a simulated process for this work. Chapter 5 

discusses implementation of the pattern-based approach and 

development of the gain map for use with the simulation 



system. Demonstration results are presented and discussed 

in Chapter 6. Chapter 7 presents final recommendations and 

discusses issues for future research. 
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CHAPTER II 

BACKGROUND ON GAIN SCHEDULING 

Introduction 

Gain scheduling is an adaptive control method developed 

to overcome limitations of traditional, fixed-gain PID 

controllers. Gain scheduling works by changing Kc on the 

controller. The technique is typically implemented using 

gains listed in a predetermined look-up table. A new gain 

is chosen by a scheduling variable that identifies the 

current operating condition of the process. Finally, the 

controller uses this gain to provide better control for the 

current process conditions. 

Gain scheduling works by assigning gains to the 

controller which take into account changes in the process. 

All processes are characterized by one or more process 

gains, Kp, which changes with the operating conditions. 

This change occurs due to nonlinearities in the process 

equations and interactions of process variables. The goal 

of gain scheduling is to maintain the ratio of the process 

gain and the controller gain to a constant as shown in 

Equation 2. 

Kp(t}Kc(t} = constant ( 2} 

6 
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Problems with implementing gain scheduling originate in 

determining the proper method for scheduling the gains. 

Current applications (when they exist} use a process 

variable to monitor the state of the process, yet this 

method is not applicable for all situations. The approach 

discussed in this thesis looks at using process pattern 

sensor data to determine the current state of the system and 

then assigning Kc to the controllers. 

Limitations of Fixed Gain Controllers 

Gain scheduling overcomes the limitations of 

traditional controllers. A fixed-gain PID controller is 

best at handling linear, time-invariant systems. But, most 

processes are nonlinear which makes these processes more 

difficult to control. A feedback controller is implemented 

and tuned with the adjustable controller parameters for 

typical operating conditions. At these nominal conditions, 

the controller is tuned to handle disturbances and set point 

changes for the expected operating range of the controller. 

Unfortunately, this tuning does not provide optimum 

control. The controller parameters are adjusted in order to 

give the controller flexibility to handle different 

operating conditions. Otherwise, the controller would have 

to be retuned at each operating condition. This would be 

costly and is impractical. Thus, the controller is designed 

to provide good control when the process is running near its 

ideal operating point. Yet, the controller can make 
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adjustments to the manipulated variable~when the system is 

operating away from the normal operating point. The detuned 

controller keeps the process running correctly, but the 

changes may take longer to settle out than they would if the 

controller was tuned for that operating point. 

Motivation for Gain Scheduling 

The motivation to include gain scheduling with a 

knowledge-based system is enhanced control of the process. 

The PID controllers found in most CPI plants are tuned 

loosely so that the controllers will handle a wide range of 

operating conditions. By tuning the controller loosely, the 

controller does not respond quickly enough in the one 

operating condition or it may respond too quickly in another 

situation. 

Gain scheduling provides a quick and convenient method 

to introduce variable controller gains. Self-tuning 

controllers could be used instead, but gain scheduling has 

faster response times {Astrom, 1983). A self-tuning 

controller must wait for the disturbance to occur, evaluate 

the changes in the process characteristics, and implement 

the changes as necessary. Gain scheduling involves 

monitoring key scheduling variables. If changes occur to 

these variables, a new gain is implemented. 

Another common industry practice is to set problem 

control loops in manual mode {Andreiev, 1977). Operators 
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sometimes find that their control over a problem control 

loqp is more effective and reliable than a poorly setup 

controller. Yet, operating a loop in manual is costly. 

During upsets, an operator may need to pay more attention to 

the uncontrolled process loop. This makes him less 

responsive in emergency situations as he copes with a wide 

array of instruments and alarms. In addition, placing the 

control loop in manual forces the operator to supervise it 

more. As other process conditions change, he must adjust 

the controller until the desired output is reached. The 

loop under manual control makes the operator less effective 

and costs the operation money. 

Incentives for Gain Scheduling 

A number of economic factors drive the development of 

gain scheduling. Gain scheduling reduces costs in several 

areas. First, costs for raw materials are reduced. When a 

plant experiences a change in production, the plant enters a 

transition period. During this time, new temperatures are 

set for reactors, distillation columns, etc. A worse case 

situation is start-up. During this transition time, the 

plant usually experiences severe swings in process 

parameters. It takes a long time to get the plant 

stabilized in some cases. With gain scheduling, a batch 

reactor system can have a sequence of controller settings 



available for each operating step in production or a 

sequence of gains necessary to make a product. 

10 

An example of gain scheduling applied to a 

polymerization unit by Standard Oil Co. (Indiana) (Whatley 

and Pott, 1984) yielded significant improvements. The unit 

was described as uncontrollable, but gain scheduling made 

the system controllable and reduced temperature variations 

that had lowered the quality of product. Less raw material 

was wasted as off-spec product because of the improved 

control associated with gain scheduling. 

Another incentive to use gain scheduling is reduced 

settling time and improved response. The scheduled gains 

provide controller settings that drive the process to set 

point in less time than a fixed-gain controller. This point 

is especially true if the fixed-gain setting provides 

sluggish control at the current operating conditions. 

Again, gain scheduling provides benefits because it changes 

the gain to fit a variety of operating conditions. 

Early Work on Adaptive Control 

Early work on adaptive control systems began in the 

early 1950s by building on control theory of the 1940s. In 

the 1940s, the Nyquist, Bode, and Evan plots had wide use in 

the design of linear control systems. But, many systems 

were non-linear and lacked a truly robust method of control 

(Mishkin and Braun, 1961) . The primary work at this time 
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was on developing an auto pilot system for high performance 

aircraft and rockets. The studies found that constant-gain 

feedback control systems would not work for all operating 

conditions (Astrom, 1983). In fact, controller constants 

would only work for one condition, but as aircraft speed and 

dynamic pressure changed, the controller would not 

adequately handle flight control. 

Since the 1950s, better control theory resulted that 

benefited adaptive control. Other improvements included 

developments in system identification and parameter 

estimation. Seborg (Seborg et. al., 1986) defined two 

categories of adaptive contrql problems. The first category 

of problems involves those where the process changes cannot 

be directly measured or anticipated. Most adaptive control 

literature focuses on this area. The second category 

consists of control problems where process changes can be 

anticipated or inferred from process measurements. For this 

type of problem, if the process is well understood, 

controller settings can be changed in a predetermined manner 

as the process changes. 

From the improvements in process identification and 

control design, one of the control strategies to emerge was 

gain scheduling. 
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Gain Scheduling 

Astrom and Wittenmark (1989) define gain scheduling as 

a nonlinear feedback using a linear controller whose 

parameters are changed as a function of operating conditions 

in a preprogrammed way. The basic approach is shown in 

Figure 2. Gain scheduling works by looking at process 

variables which correlate to the process dynamics and 

adjusts the controller parameters based on a table of 

controller gains appropriate to the operating conditions. 

Controller parameters Gain ..,.._ 
Schedule 

1 
Uc u 

Controller ... Process 
i- -

r 

- -
I 
I 

I 
I 

_I 

I 

Aux llary 
asuremants - me 

y 

Figure 2: Gain scheduling block diagram (Astrom, 1983) 

The gain scheduling design operates by linearizing the 

design equations for a process at several operating points. 
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By linearizing the process at a number of operating 

conditions, feedback control settings can be calculated for 

a variety of operating conditions. These settings provide 

better control than possible with a fixed-gain controller. 

Gain Scheduling Control Benefits 

Astrom (1987) lists several advantages to gain 

scheduling. First, the controller parameters can be 

adjusted quickly if the operating conditions change (Rugh, 

1991i Astrom, 1987). If one of the scheduling variables 

warrants changing the gain on the controller, the controller 

is adjusted. This adjustment maintains the proper tuning on 

the controller for the process conditions. The main 

limitation to changing the gain depends on the response time 

of the scheduling variables. If they do not respond quickly 

to the process, the gain scheduling system will not work 

properly. Another advantage of the gain scheduling cited by 

Astrom is that gain scheduling reduces process variations. 

Rugh (1991) raises a number of advantages for gain 

scheduling. First, gain scheduling allows linear design 

methods to be applied to a nonlinear system at each 

linearized operating point. In addition, linear control 

methods are available to design a control system using 

multi-variable nonlinear equations. Using these advanced 

design concepts, a robust design for linear systems can be 



applied to counter any uncertainties in the plant 

parameters. 

14 

In developing an analytical framework, gain scheduling 

creates a nonlinear closed-loop system. The scheduling 

variables cause this. Rugh's objective is to develop an 

approach in order to use modern nonlinear control theory for 

measuring performance and stability. The end benefit is to 

better understand gain scheduling and study ways to 

alleviate problems with gain scheduling. Rugh develops a 

number of equations which are applicable for an idealized 

gain-scheduled controller with state feedback (Rugh, 1991) 

Gain Scheduling Im~lernentation Problems 

Scheduling variable selection represents one of the key 

problems in developing a suitable gain schedule. What 

variables are to be used and monitored remain a problem in 

implementing gain scheduling in the control industry. 

Normally, scheduling variables are chosen based on the 

physics of the system. One rule of thumb for selecting 

scheduling variables has been to use a slow variable as the 

scheduler (Rugh, 1991i Astrom, 1983; Shamma and Athans, 

1991) . Scheduling on slow variables adds to the stability 

of the system as the gain for the controller will not 

constantly change with fluctuations in the process. 

One key variable in a system is production rate and 

this variable is often incorporated as a scheduling variable 
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(Astrom, 1983). The flow rate of a process stream strongly 

influences deadtirne, time constants for the controller, and 

other system responses. These responses are known to be 

inversely proportional to flow rate"; Thus choosing 

production rate as a scheduling variable does have its 

merits. 

Further limitations cited by Seborg (Seborg et. al., 

1986) include the difficulty of relating process changes to 

variables measured from the plant. If the process contains 

a long delay time, gain scheduling may be worse than 

conventional PID control unless some type of delay 

compensation is employed. 

Another serious problem implementing gain scheduling is 

the selection of a scheduling procedure. The scheduling 

procedure defines how the gain is adapted based on changes 

in the scheduling variables. Rugh notes that this issue is 

rarely addressed in literature. Rugh 1 s analysis of the 

current control practice is that gain scheduling is an art 

using simple curve-fitting approaches. In addition, the 

increased interest in using multi-variable, robust, linear 

designs has made control laws more complex. Rugh forecasts 

that scheduling will become more difficult to implement 

using current standards. 

Another drawback listed by Astrom (1983) to gain 

scheduling is the lack of open-loop compensation. There is 

no way to correct for a bad schedule with feedback control. 

Gain scheduling thus can be viewed as a feedback control 
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system where feedback controls are adjusted by feed forward 

compensation. 

Designing a system implementing gain scheduling 

requires a great deal of time because controller parameters 

must be established for a number of operating points. This 

requires extensive simulation to make sure the correct 

schedule is created. Unfortunately, simulating the process 

is not always a viable solution. Finally, gain scheduling 

is local in nature. The overall performance must be 

determined by rigorous simulation. By using linear design 

methods, gain scheduling requires this additional 

simulation. As more complex gain scheduling designs are 

implemented, large simulation burdens are expected (Rugh, 

1991) . 

Shamma and Athans (1990; 1991; 1992) present several 

papers on gain scheduling. Gain scheduling has been found 

to work in a variety of applications but it lacks a sound 

theoretical analysis. Without a theoretical basis, no 

guarantees can be made on the stability of the system on a 

global (plant-wide) basis. Shamma and Athans clarify this 

problem by stating that even though the local point designs 

may have excellent feedback properties, the global gain 

scheduled design need not have any of these properties, even 

nominal stability. One cannot assess the a priori 

stability, robustness and performance properties of gain 

scheduled designs. These properties are analyzed by 

computer simulation. 
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Implementation of Gain Scheduling 

Implementation of gain scheduling remains an art at 

this time. The issue is rarely addressed in literature 

(Rughr 1991) . The first step in implementing gain 

scheduling is finding the process variables that reflect the 

current operating condition of the process. Instead of one 

scheduling variable, several process variables may be 

selected as key parameters in the operation of a process. 

The problem exists in determining the amount of interaction 

for each variable. A scheduling procedure must be developed 

from these interactions such as a curve-fitting technique. 

Further complications arise when complex, multi-variable 

designs are investigated. 

From literature 1 an important step in setting up a gain 

scheduling system involves lengthy and costly analysis of 

the process in question. This problem usually centers on 

finding the scheduling variables and then determining the 

gains. A simpler method for scheduling exists if process 

patterns are used to determine the state of the operation. 

With this method 1 the proceeding step should require less 

time. 

With a plant model, a designer selects a set of process 

conditions which represent the range of plant dynamics. The 

number of gain settings depends on the dynamic range of the 

controlled variable and the effect of the manipulated 

variable on the process (Cardello and San, 1988) . From 
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these, he designs a linear compensator for each process 

condition (Shamma and Athans, 1991) . Gains are then 

calculated using any of a number of available design 

techniques. The gains are calculated such that for all 

frozen values of the parameters give the closed loop system 

the desirable feedback properties. Since having parameters 

for each operating point is impossible, the gains are 

interpolated between operating points. The plant operating 

parameters are then placed in the gain scheduling table. 

Once the gain scheduling table is computed, the 

stability and performance of the schedule table are 

evaluated by simulation. This requires extensive computer 

simulation time. During the simulations, particular 

emphasis is put on the transition from one operating regime 

to another to insure the process remains stable. If 

performance is not satisfactory, more operating conditions 

are added to the schedule. 

Once the gain table is setup and tested, it can be used 

in actual operation .. Gains are selected based on the 

scheduling variable and the controller is modified. 

Gain Scheduling Theory 

Work on investigating stability, performance, and 

system design for gain scheduling systems has lagged behind 

application. Little work has focused on the theory behind 

gain scheduling (Shamma and Athens, 1992; Rugh, 1991). 
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Scheduling on a Slow Variable 

Sharnma and Athens (1991) look at one class of gain 

scheduled control systems called linear parameter-varying 

plants. This class of plants is important as nonlinear 

plants can be approximated as a linear parameter-varying 

plant. The varying parameter in this case is the scheduling 

variable. Shamrna considers a plant having the state-space 

form of 

x(t) 

y(t) 

A(8 (t))x(t) + B(8 (t))u(t) I 

C(8 (t))x(t). 
( 3) 

where x(t) is then-dimensional state variable, 0(t) is a 

vector of external time-varying parameters such as 

controller settings (i.e. Kcl 1 u(t) is the plant input 

vector, and y(t) is the plant output vector. A, B, and C 

are process constants. These equations represent a 

nonlinear plant whose dynamics depend on a vector of time­

varying exogenous parameters e which belong to the set 9(t) 

E 8. A set of parameter values {ei}, which represent a 

range of plant dynamics, are chosen. The control system 

designer develops a linear, time-invariant controller for 

each of these points. Between the operating points, the 

controller gains are interpolated such that the closed loop 

system has desirable properties such as nominal stability, 

robustness to unmodeled dynamics and robust performance. 
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Once this design has been done, the designer has a 

feedback system which has desirable stability and 

performance properties at each operating point. But, since 

these parameters are time-varying, these properties are not 

guaranteed. Shamma expresses the plant in terms of robust 

control theory to calculate robust stability and performance 

requirements. The transition of Figure 3 to Figure 4 shows 

this transformation. H(8) represents a finite-dimensional 

parameter-varying linear system with the following state-

space form: 

x(t) 

y(t) 

A(8(t))x(t) + B(8(t))e(t), 

C(8(t))x(t). 
( 4) 

where A, B, C, 8(t), x(t) and y(t) are defined for Equation 

3. e(t) is the difference vector of plant inputs to set 

points. The ~ represents a block diagonal stable linear 

system which depends on uncertainties only. The 

input/output relationship ~ is given by 

t 

Y' (t) f ~(t- ~)y(~)d~. (5) 

0 

The feedback equations become 

t 

x(t) A(8(t))x(t) + f B(8(t))L\(t- ~)C(8(~))x(~)m. ( 6) 

0 



where A, B and C have been appropriately redefined. 

equation represents a type of.linear Volterra 

integrodifferential equation (VIDE) . 

parameter 
varying 

compensator 

e exogenous 
parameters 

parameter 
varying 
plant 

unmodeled 
dynamics 
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y 

Figure 3: A linear plant scheduling on exogenous parameters 
(Shamma and Athens, 1991) 
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r H(e) 

il 

Figure 4: General block diagram for robustness/performance 
analysis 

Shamma proves in his paper that a time-varying linear 

plant transformed into a linear VIDE is exponentially stable 

for sufficiently slow time-variations. Thus, robust 

stability and robust performance are maintained provided 

that parameter variations are sufficiently slow. This proof 

qu~ntitatively defines the rule of thumb to 'schedule on a 

slow variable' . 

Scheduling Variables 

Shamma and Athens (1990) also investigated gain 

scheduling using two types of scheduling variables. They 

look at scheduling based on a reference trajectory and 

scheduling based on plant output. For both methods, Shamma 

and Athens provide conditions that guarantee that the 



overall gain scheduled system will retain the feedback 

pr9perties of the local linearized points. 

Scheduling Based on Reference Trajectory Figure 5 

shows the block diagram for scheduling on a reference 

trajectory. The target trajectory r* is generated by 

passing a reference signal (set point) u* through a plant 

model denoted by Pm· The control input u to the actual 

plant P consists of the reference control u* and a small 

perturbation control Su calculated in controller K. This 

represents a perfect case where no modeling errors have 

occurred. Shamma develops additional block diagrams for 

cases where unmodeled dynamics are included (Shamma and 

Athans, 1989) . 

., 
u 

... ... , 
u 

Pm r~ K ~ p y 

A_ 
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Figure 5: Scheduling on a prescribed reference trajectory 
(Shamma and Athans, 1990) 
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Shamma and Athans developed conditions that guarantee 

the robust stability and robust performance of a global gain 

scheduled design. The article proves that Figure 5 and 

derivations containing unmodeled dynamics have guaranteed 

stability if the reference trajectory changes are slow. 

This limitation occurs as the gain scheduled design is based 

on linear time-invariant approximations of the plant. The 

system is actually nonlinear, so internal stability is 

local. As nonlinearities approach zero, internal stability 

approaches global stability. Another restriction on 

feedback system lies with u* and r*. Reference trajectories 

cannot excite unmodeled dynamics. If u* contains 

significant frequencies that disturbs these unmodeled 

dynamics, stability cannot be guaranteed. 

Scheduling on the Plant Output Shamma and Athens 

(1989) consider a plant model given by 

!!_(YJ(t) = f(y(t),z(t)) + Bu(t), 
dt z 

where the plant output is y, z is a vector of external 

parameters, and u is the plant input. Shamma makes two 

( 7) 

assumptions on developing a gain scheduling system based on 

plant output. First, f:~m X mn-m ~ mm is at least twice 

continuously differentiable over all of mm x mn-m and 



satisfies f(O,O) = 0. The second assumption states that 

unique continuously differentiable functions Ueq and zeq 

exist such that 

Ueq:ffim X ffiffi 

mm mn-m Zeq: ~ X .Jl 

and ( 8) 

0 = f(y,zeq(y)) + Bueq(y). 

This assumption states that a family of equilibrium 

conditions exists based on output y. Gain scheduling sees 

these equilibrium conditions as possible operating points. 
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The next step in the design of a gain scheduling system 

using plant output is linearizing the plant about a possible 

operating point y 0 using Equation 9. 

d (y 
dt z 

yo ) == fJf (Yo 1 Zeq ( yo)) ( Y 
Zeq_(yo) Z 

+ B ( U - U eq (yo)) 

yo ) 

Z eq ( yo) 

where fJ is the Dini derivative of f. At each operating 

( 9) 

point, the designer finds a controller that is based on a 

local linear time-invariant approximation of Equation 9. 

This results in a family of linear time-invariant 

condition y 0 . This family is used in the control system 

shown in Figure 6. This set of gain scheduled designs has, 
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for each of the linearized operating conditions, the desired 

st~bility, robustness and performance properties of feedback 

control. Yet, the actual system has a time-varying 

scheduling variable evolving under nonlinear dynamics. 

scheduling 

e - 00 p 
y - K - u -... A -

H 
Ueq 

Figure 6: Scheduling on the plant output 

Shamma continues his development using Figure 6 and 

including unmodeled uncertainties in the proofs. Again, 

slow variations in the scheduling variable are required. 

The scheduling variable should also capture the plant 

nonlinearities. Furthermore, the degree of exponential 



stability must be large enough to overcome nonlinear 

function perturbations. 
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Fast Scheduling Variables Shamma and Athens (1992) 

reformulated their approach on gain scheduling using linear 

parameter-varying equations. The aim of their work was to 

provide guarantees of stability and performance in light of 

rapidly changing operating conditions. The first change 

looks at the method of which operating point gains are 

scheduled. These points ought to be chosen which explicitly 

address the possibility of rapid variations in the process. 

This maintains closed-loop stability and the fixed operating 

point properties remain. Their paper provides an example of 

this. 

It is important to include the possibility of fast 

parameter variations in the design process. Otherwise, the 

guaranteed properties of the overall gain scheduled design 

cannot be established. Shamma emphasizes that theory for 

linear parameter-varying systems needs to be developed. 

Included in this development would be modification of robust 

control design methodologies as well. 

The work of Shamma and Athans has paved the way for 

developing the theoretical basis for gain scheduling. In 

addition, it is opening up new areas of research and 

providing tools to improve gain scheduling design. 
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Extended Linearization 

Rugh (1991) noted that there is a close relation 

between gain scheduling design and the extended­

linearization approach for nonlinear control design. The 

extended-linearization approach may be viewed as gain 

scheduling on the basis of stater inputr or output variables 

in a closed-loop system. Rugh also mentions that state 

variables may be used as substitute gain scheduling 

variables as they vary more slowly than external parameters. 

Rugh summarizes a few key points in making gain 

scheduling designs based on theory. Firstr the use of 

integral-error feedback in the linear control law designs at 

the scheduling points provide useful performance properties 

for gain scheduling. Also, problems exist with choosing 

gains for the feedback loop. A gain-scheduled system can be 

driven by the time-derivative of the scheduling variable and 

complicates the decision to choose gains for stability and 

for rejecting a disturbance in order to preserve performance 

under scheduling-variable variation. 

Finally, Rugh (1991) states that it is not clear from a 

theoretical viewpoint whether interpolating a control law 

from individual linear control laws at isolated operating 

conditions always is superior to interpolating the plant 

data and computing the corresponding, continuously­

parameterized control law as in idealized gain scheduling. 

This statement has important implications in the gain 
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scheduled pattern-recognition approach. It is important in 

the determination of gains for scheduling and application of 

interpolation techniques to schedule the gains. 

Applications of Gain Scheduling 

Applications 

A number of applications of gain scheduling have been 

made. Early development of gain scheduling included 

applications in high performance aircraft. In particular, 

gain scheduling was used as an auto pilot (Seborg et. al., 

1986). It was found that monitoring the Mach number and 

dynamic pressure allowed a suitable schedule to be developed 

(Astrom, 1987) . Gain scheduling has become the predominate 

method to handle parameter variations in flight control 

systems. It is used extensively in the design of auto pilot 

systems for high performance aircraft (Stein, 1980). 

This 11 table look-up 11 method, where controller settings 

are stored for a variety of operating conditions, became 

known as gain scheduling and involves maintaining a constant 

product between the process gain and the controller gain. 

For example, for a stable system, the product of the process 

gain (Kp) , the controller gain (Kc) and other gains in the 

control loop should be equal to or less than 1.0. If it is 

greater than 1.0, the system is unstable as oscillations 

will increase in amplitude instead of damping out (Seborg 

et. al. , 1986) . 



Gain scheduling was initially limited to the aircraft 

industry as analog techniques required expensive function 

generators and multipliers. With the arrival of computer­

controlled systems, gain scheduling ·has become easier to 

implement (Astrom and Wittenmark, 1989). 
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At Standard Oil Co. (Indiana), a polymerization unit 

was considered uncontrollable using classical PID control 

schemes. Whatley and Pott (1984) describe differences 

between the traditional and more modern control systems. 

First, the •modern• control systems can manipulate multiple 

inputs versus just one. In addition, new control systems 

are able to do table look-up. The controller now has the 

ability to changes its strategy as a function of time or as 

conditions of the process change. 

The problem with the polymerization plant centered on 

narrowing temperature variations in a polymer manufacturing 

process. The narrower the temperature range, the higher the 

quality of product produced. The process is also 

characterized by an ability to run out of control easily 

with plant upsets. 

A detailed analysis of the process was performed. This 

study included looking at the control valve characteristics, 

the performance of the heat exchanger system and process 

variable interaction. A suitable control system was 

designed for the plant. Part of the new system included a 

gain-scheduling system with set maximum and minimum gains. 

The scheduling system changed the gains based upon the 



positive temperature difference between inlet and 

circulating oils which are used to maintain temperature. 
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As a result of the new control system, significant 

improvements were obtained. One reactor had improper 

temperature control. The previous control system allowed 

this reactor to have a ±20°F temperature ranger but the new 

control system brought the temperature variation to within 

±~°F. During situations that could have lead to a runaway 

reaction, the new control system handled the upset and the 

plant did not produce any off-spec product (Whatley and 

Pott, 1984). 

Another application of gain scheduling involves a ship 

auto pilot (Kallstrom et. al., 1979). The main goal of this 

system was to reduce drag of the ship which reduces 

operating costs. Factors influencing the research was to 

find an auto pilot that could adjust its parameters due to 

environmental changes. These changes include wind, water 

currents 1 and ship movements such as sway and yaw. A stable 

auto pilot could be developed using high gains but the 

drawbacks to such a system included excessive rudder 

movement and increased drag. Although the heart of the 

Kallstrom auto pilot involves Astrom and Wittenmark 1 s self­

tuning regulator 1 gain scheduling is used in the system. 

In particular, the speed of the ship was scheduled 

based on the rotation rate of the propellers. The gain 

scheduling affected the results of a Kalman filter. This 

filter analyzed ship movement. Kallstrom used velocity 
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scheduling to improve performance of the auto pilot. The 

parameters of the Kalman filter, the self-tuner and the 

turning regulator were changed as a function of ship speed. 

The self-tuner could account for speed changes, but the gain 

scheduling based on velocity yielded quicker responses than 

possible with an adapted system. The resulting system was 

tested on 3 tankers of various sizes and reduced drag in all 

cases (Kallstrom et. al., 1979). 

Another application for gain scheduling has been found 

for pH control (Astrom, 1987) . Astrom (1987) points out 

that meshing adaptive control systems with gain scheduling 

has benefits. The primary benefit is that the adaptive 

control system can be used to create a gain scheduling 

chart. By storing parameters in a chart, the entire 

operating range of a process can be stored and used for 

smooth performance. 

Cardello and San (1988) have looked at gain scheduling 

for a batch bioreactor. They found gain scheduling to be 

the simplest form of adaptive control to implement. They 

used oxygen uptake rate {OUR) as the scheduling variable. A 

look-up table is used to select the gain depending on the 

OUR measurement. In a comparison of a fixed-gain PID 

controller and a feedforward-feedback controller, the 

integral of squared error (ISE) was 20% lower for the gain­

scheduled controller than the best feedback controller. 

Cardello and San found that gain scheduling was an effective 

method for controlling dissolved oxygen levels in a batch 
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fermentor. These conclusions are important as the fermentor 

had large variations in the process load and gain scheduling 

provided a method for compensating for process dynamics. 

March-Leuba et. al. (1992) have developed a gain 

scheduling controller that uses fuzzy-logic to provide 

adaptive control on a PI controller. The controller 

controls the fluid level inside U-tube steam generators. 

The fuzzy-logic circuit analyzes and decides based on the 

disturbance what action is appropriate for the controller to 

initiate. The gain-scheduling aspect of the system changes 

the controller gain based on the temperature of the feed 

water. The gain is adjusted in a linear function. The 

addition of this fuzzy/gain-scheduling system to a PI 

controller leads to smoother and stabler performance (March­

Leuba et. al., 1992). 

Industrial Controllers 

One application of the gain scheduling has been made in 

a controller. The Taylor Microscan 1300 controller makes up 

for the problems of dealing with a nonlinear process 

(Andreiev, 1977). The need for a controller to have 

adjustable gains was originated by W. I. Caldwell of Taylor. 

He noticed that if the controller gain could change, the 

performance of the system improved markedly. The controller 

has the ability to change control gain if the process moves 

outside of a predetermined operating range. The user sets 
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upper and lower bounds where gain scheduling takes place. 

Scheduling is based on the percent range of the controller 

and gains are calculated based on a linear percentage of the 

base gain (Andreiev, 1977). 

s~acy 

Gain scheduling has benefits we want to exploit. 

First, the system provides a controller with the ability to 

respond quicker in new operating conditions. Gain 

scheduling needs an enhanced method for scheduling, though. 

The use of a pattern recognition approach allows gains to be 

tailored for specific operating conditions. In addition, 

selecting scheduling variables should become easier as more 

than one process variable can in be incorporated into 

process patterns. 

The possibilities are endless with the emergence of new 

computer controlled systems. With the ability to store 

gains, implement them when needed, and even calculate the 

necessary gains, the future looks bright. The problem 

remains, how does the computer know when the gain needs to 

be changed? 



CHAPTER III 

ART2 NEURAL NETWORK 

Pattern-Based Gain Scheduling Approach 

We propose to replace the traditional gain table with a 

more robust, pattern-based gain map in the manner of Figure 

7. As described below, this provides the capability to 

characterize the process more accurately and significantly 

improves gain scheduling during periods of transient 

operation. This work moves the pattern-recognition approach 

to an application for process control. 

Gain tables are typically generated using a single 

process variable to characterize the process. The pattern 

recognition approach offers the advantage of matching the 

gain for a controlle~ to the process conditions. In most 

industrial operations, several process variables interact 

and affect the process. By allowing more than one of these 

variables to determine the gain, gains may be tailored for 

particular operating conditions. Furthermore, since table 

entries are generated under steady-state conditions, only a 

single value of the scheduling variable is used to define 

each operating point. 
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_I ___ I ___ ~ __ I_ 

5:30 6 pm 6:30 7 pm 7:30 8 pm 8:30 

Process Sensor Data 

Gain Map 

Feedback Control Loop 

Figure 7: Use of a pattern-based gain map to perform gain 
scheduling 



We argue that the traditional approacq to gainc~ 

sc~eduling is inappropriate for the process induslries due 

to the large time constants/and time delays which are 

typically encountered. Accurate characterization of a 

process under these conditions requires consideration of 

' 
more than one process variable oyer some finite period of 

time. We propose to substitute multi-"sensor patterns for 

the traditional single val~e scheguling variable. We are 

essentially arguing that more information must be usedi 

consideration of a single point value is inadequate, 

especially under transient conditions when control is most 

critical. 

The implementation of pattern recognition is 
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straightforward (Figure 8). A neural network learns process 

patterns which are placed in clusters by the neural network. 

These clusters represent steady-state operating conditions 

and have a hyperspherical shape. With each cluster, a 

controller gain or set of gains for multiple controllers is 

assigned. This gain is designed to provide enhanced control 

at the operating point. 



----~•~~~- Neural Net\ll/ork Process 

Sensor Data, R" 
---111111..._ Cluster, Rm 

Gain 

Figure 8: Pattern-recognition gain scheduling approach 

The cluster concept has several benefits. It 

simplifies the problem of interpolation during periods of 

near steady-state behavior. This is a major practical 

benefit since many continuous processes operate in such a 

manner much of the time. More importantly, the use of 
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clusters delays gain changes and gives the control system a 

chance to respond when the process moves away from steady-

state. The size of the clusters determines how far the 

process must move before a gain change is implemented. 

We do not propose to fill the entire map space with 

clusters but to interpolate when the process operates 



between clusters. Key implementation issues which were 

investigated include cluster density, cluster size, and 

interpolation rules. 

Implementation Using ART2 Neural Network 
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The gain map in our implementation is constructed using 

a technique developed previously to interpret sensor 

patterns [Whiteley and Davis, 1993a; Whiteley et. al., 

1993b] . This technique employs a modified version of the 

ART2 neural network [Carpenter and Grossberg, 1987]. The 

Adaptive Resonance Theory 2 (ART2) network is an autonomous 

learning model based on Grossberg 1 s adaptive resonance 

theory [1976a; 1976b] 

For our problem, the desirable attributes of the ART2 

network are the integrated feature extraction/clustering 

capabilities. The unique combination offered by ART2 

provides powerful potential to leverage alternative types of 

pattern representations. 

The patterns used as input to the ART2 network 

correspond to windows of sensor data as illustrated in 

Figure 7. The length of the window, data sampling 

frequency, and number of process variables jointly determine 

the dimension of the input pattern vectors and the gain map 

representation space. 

In operation, the gain map is used as follows. A 

sliding window is used to continuously extract the most 



recent pattern of operation from the process (Figure 7) . 

Th~s pattern is input to the ART2 network. If the pattern 

falls within the cluster of one of the gain scheduling 

prototypes, the corresponding value of the controller gain 

is used. If the pattern lies outside any clusters, some 

form of interpolation is applied. 
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The strength of the technique is the ability to handle 

transient conditions. The integrated feature extraction 

capability of the ART2 network is an essential element to 

providing the desired performance. 

ART2 Network for Gain Mapping 

Adaptive Resonance Theory (ART) was developed by 

Grossberg (Grossberg, 1976a; 1976b) as an autonomous 

learning model. ART and specifically ART2 was chosen as it 

addresses the 'stability-plasticity' trade-off. ART has the 

ability to remain 'plastic' by acquiring new knowledge and 

'stable' as ART retains previous knowledge it has learned. 

ART can determine when new knowledge needs to be learned and 

still retain previous knowledge whether it occurred the day 

before or several weeks ago. The clustering ability of ART2 

is more complex than others, but it's ability to handle the 

'stability-plasticity' trade-off offsets this. 

The object of the ART2 network is to 'self-organize 

pattern recognition codes in response to arbitrary sequences 

of input patterns'. Figure 9 shows the basic architecture 
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of the neural network. The ART2 network was originally 

designed to be an autonomous learning system. With 

modifications though, it can serve as a pattern recognition 

system. 

The learning operationcOf the ART2 network begins with 

the presentation of the input pattern to the network. After 

processing by the network, the input pattern is compared 

with each of the existing prototypes in the top layer. The 

1 Winner 1 in the top layer is the prototype most similar to 

the input. If the similarity between the 1 Winner, and the 

most similar prototype exceeds the vigilance parameter p 

then the input pattern lies inside the prototype. The 

network performs learning in order to modify the prototype 

to be slightly more similar to the input pattern. If the 

pattern lies outside the cluster, a new prototype is 

created. 



Pattern 
Prototypes 
(Clusters) 

Input 
Pattern 

(Features) 
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Figure 9: ART2 architecture with two-fully connected layers 

Similarity in an ART2 network is based on the pattern 

direction in the representation space. The clusters 

associated with prototype can be viewed as hypercones 

originating from the origin of Rrn. The ART2 network 

measures the similarity between a normalized input pattern 

Up and a cluster prototype Z as the L2 norm of the input 

pattern vector R using Equation 10. 

lJpi + cl:l. 
Ri=----

IIUpll + licPII 
( 10) 

The relationship between I IRI I and the angle between Up and 

Z is highly nonlinear and is important to understanding how 
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the ART2 vigilance parameter affects cluster size and the 

scale of a gain map. The vigilance parameter p represents 

the clustering criterion used by ART2. It also provides an 

indirect measure of the cluster size. The higher the 

vigilance parameter, the smaller ~pe angle is between the 

cluster prototype and the input pattern. 

Summary 

The application of pattern-based recognition builds 

upon the foundation of Whiteley and Davis's prior work. The 

move from a 'do/don't know' situation to application as a 

process controls method is the first step for this approach. 

Instead of deciding whether a prototype is normal or 

abnormal, each cluster has a numerical value associated with 

it. The value is the gain for the controller in the 

process. We are not limited to just the gains; new integral 

time constants and derivative time constants can be added as 

well. The ART2 network modified for gain scheduling 

presents an advantageous first step for process control 

applications and ease the implementation of gain scheduling. 

The following chapter will look at the development of a 

simulation system to test the pattern recognition system. 



CHAPTER IV 

MIXING TANK SIMULATION 

Mixing Tank 

In order to evaluate the purposed gain scheduling 

approach, an experimental testbed was necessary. The system 

chosen is the classical control problem of a mixing tank 

with three feeds and one exit stream. Figure 10 is a 

schematic of the mixing tank. The three feeds consist of a 

hot water stream, a cold water stream, and a disturbance 

stream used for load testing. The hot stream enters with 

mass flow rate mh (kg/min) and temperature Th (°C), and the 

cold stream has mass flow rate me and temperature Tc. These 

two streams are the primary feeds to the tank. A 

disturbance stream provides the ability to load the system 

and has a mass flow rate md and temperature Td. 

Haggblom (1992) constructed this experiment. His tank 

has a constant cross-sectional area A (cm2) The exit 

stream flow rate is controlled by gravity. The exit mass 

flow rate m with a temperature of T flows through a pipe 

whose outlet is at atmospheric pressure at a level of h 0 

(em) below the bottom of the tank. The hot water and cold 
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water streams are controlled with single-input, single-

output (SISO) controllers via control valve action. 

HotWater Stream Cold Water Stream 

Height \ 

Controller 

I 
I Mixing 

h Temp. 
Tank '----,-----' l ~ntroller 

m T 
'---------'--~ 

Figure 10: Mixing tank 
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Haggblom's (1992) paper investigates the limitations of 

SISO control for this coupled control system. Haggblom 

compares a SISO controller with a "model-based 11 controller 
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designed to take into account nonlinearities and multi-

variable characteristics of the mixing tank. His 

investigation also looked at gain scheduling. Those results 

will be discussed after a more thorough examination of the 

mixing tank. 

Numerical Analysis of Mixing Tank 

The governing equations for the mixing tank are derived 

from simple mass and energy balances. The mass balance for 

the system is 

dh 
pA- + ~(h + ho)112 = ITlh +me::+ ffid, 

dt 

and the mass flow rate leaving the tank is governed by 

m = ~(h + ho)112 

(13) 

(14) 

assuming a turbulent stream and that the flow characteristic 

~ (kg/min/cml/2) and density p (kg/cm3) are constant. 

Similarly, an energy balance using the mixing tank 

contents as the system gives 

8(pV(T-Tret) 
---"'----'-----~ = (Th- Tref )lTlh + (Tc- Tref )me+ at (15) 

(Td- Tref )md- (T- Tref )m 
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where Tref is the reference temperature. Assumptions made 

with these equations are constant and equal specific heat 

capacities. Density variations are considered 

insignificant. If we assume that Tref is ooc and separate 

the volume term into height and area, Equation 15 

transforms into 

a hT 
pA -- = ThiTih + Tcmc + Td!Tld - Tm . at (16) 

Separating the derivative term by parts results in Equation 

17. 

8T 8h 
pAh - + pAT - = Th!rlh + Tcmc + Tciind - Tm ( 17 l at at 

The results of Equations 13 and 14 can be combined into 

Equation 17 to obtain Equation 18. 

dT 
pAh- + (ffih + me + md) T = ffihTh + meTe + mdTd ( 18) 

dt 

Haggblom also assumes that perfect mixing takes place inside 

the tank even though no mechanical agitation is provided. 

Table I lists constants used in the mixing tank experiment. 



TABLE I 

CONSTANTS FOR THE MIXING TANK SYSTEM 

A= 283.5 

cm2 

~ = 1.00 

(kg/min)/cm1/2 

48 

109 em 

Values in Table I show that h 0 is large compared to h. 

Therefore, as Haggblom points out, there is only a weak 

nonlinearity in Equation 13. Equation 13 makes it appear 

that there is no coupling of temperature with height. 

However, since rnh and me are used to control the temperature 

and level, coupling will in fact exist. Equation 18 is 

strongly nonlinear due to the mass flow rates of the streams 

entering the tank. 

Controller Coupling 

As discussed earlier, level and temperature for the 

mixing tank are coupled. When a control system includes a 

coupled or 'paired' input, a decision must be made as to 

which controller will control which manipulated variable. 

Haggblom (1992) notes that mh and me contribute equally to 

the level of the tank. This result is shown in Equation 13. 

Yet, in Equation 18, both streams influence the temperature 

of tank. Haggblom argues that the feed stream that has the 

greatest effect on the temperature ought to control 

temperature and leave the other feed stream to control the 
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height. The decision also depends on the temperature of the 

feed streams to the mixing tank as shown in the definitions 

of kTmh and kTmc in Equation 19. Haggblom ( 19 92) calculated 

these values as shown in Tables II, III, and IV. 

'th= 
2pA(h + ho) 2pAh 

TT=----=- khm= 
2(h + ho) 

m m m 

kTm•= 
Th-T 

krm,= 
Tc-T 

kTmd= 
Td-T 

m m m 
mh 

krr•=-=-
me 

krrc=-=-
md 

krrd=--=-
m m m 

TABLE II 

PROCESS GAINS AND TIME CONSTANTS AT 35°C 
(H = 20 CM AND Mn = 0 KG/MIN) 

'th = 6. 44 min 

krm.= 1.41 oc 
kg/ min 

TT=0.50min 

hm,= -1.58oC 
kg I min 

krr,=0.471 

krun = 22. 7 em 
kg/min 

kTma= -1.41 oC 
kg/min 

(19) 



TABLE III 

PROCESS GAINS AND TIME CONSTANTS AT 45°C 
(H = 20 CM AND MD = 0 KG/MIN) 

tn = 6. 44 min 

krm.= 0.528°C 
kg/ min 

krr.=0.824 

n=0.50min 

krm,= -2.46oC 
kg/ min 

krr.=0.176 

TABLE IV 

22.7cm 

kg I min 

krmd= -2.28oC 
kg/ min 

PROCESS GAINS AND TIME CONSTANTS AT 25°C 
(H = 20 CM AND MD = 0 KG/MIN) 

'th = 6. 44 min 

krmh= 2.29oC 
kg I min 

krrh=0.235 

r=0.50min 

krm.= -0.704°C 
kg I min 

krr,=0.765 

khm= 22.7cm 
kg I min 

krmd= -0.528°C 
kg/ min 

In Table III, the larger absolute value of k~c favors 

using the cold water stream to control the temperature at 

the upper end of the operating range. Yet, Table IV shows 

that the better choice for controlling the temperature is 

hot water stream, mh, when the tank is operated at 25°C. 

When the mixing tank is operated at 35°C, neither feed 
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stream is better suited to control either process variable. 
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A Relative Gain Analysis (RGA) (Bristol, 1966) supports 

these conclusions as well. The relative gain for pairing 

temperature with the cold water stream flow is defined by 

T Tc 
ATmc ::::: ==----== ( 2 0) 

Th- Tc 

Haggblom•s analysis of the relative gain shows that when A 

Tmc is greater than 0.5, the temperature should be 

controlled with the cold water feed stream. This confirms 

Haggblom•s conclusion that the temperature should be 

controlled with whichever stream is farthest from the 

nominal operating temperature. Finally, the relative gain 

analysis shows that there is no good variable pairing for 

multiloop SISO control when the nominal operating 

temperature is near the average of the two feed stream 

temperatures. 

Simulation Development 

The mixing tank was simulated using a package called 

Simulink by MathWorks. Simulink is an extension of Matlab. 

The program is suited for simulating dynamic systems. 

Simulink allows the creation of dynamic simulations using 

blocks which contain numerical definitions of the 

simulation. There are two steps to simulating a process 

with Simulink. First the model must be described. After 

the model is defined, Simulink analyses it. A detailed 



construction is described in a separate technical report 

(Anderson and Whiteley, 1993). 
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The resulting simulation is a combination of analog and 

digital systems. The actual process is a continuous 

process. Digital controllers were constructed to sample 

height and temperature at 0.1 minute intervals. The mixing 

tank simulation running under Matlab used adaptive Runge­

Kutta Fourth Order integration to solve the ordinary 

differential equations associated with the simulation. The 

minimum step size was set to 0.0001 minutes. The maximum 

step size was 0.1 minutes. The truncation error used for 

adaptive step size control was set at 0.0001. The resulting 

Simulink block diagram is shown in Figure 11. Note, that 

this does not contain the interface for the neural network 

used to perform gain scheduling. 
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Demonstration of Simulated Mixing Tank 

With the mixing tank simulation created, the next step 

involved verifying the simulation against results documented 

by Haggblom. Haggblom used an actual apparatus for his 

mixing tank system. He determined 'best' SISO tuning gains 

in his study which are used as benchmarks to compare our 

simulation to his. By comparing his process height, 

temperature, and flowrate results, a successful duplication 

was made. A 0.3 minute delay was added to the temperature 

stream in order to account for delay time caused by 

incomplete mixing in the tank. 

Standard Controller Performance Test 

Haggblom tested this mixing tank using an experiment 

that consisted of several setpoint changes and disturbances 

to measure the performance of the controllers. The 

simulation which will be described later uses his 

experimental method as well. Haggblom operated his mixing 

tank at several operating points. The range for the height 

was between 10 and 30 em. Temperature changes ranged from 

25 to 45°C. The disturbance stream operated at either 0 or 

1.25 kg/min. The main operating points are defined as a 

level of 20 em, a temperature of 35°C, and no flow from the 

disturbance stream. The hot water feed stream has a 

temperature of 51°C while the cold water stream is at l7°C. 
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The experiment begins at the nominal operating point 

and continues for 5 minutes. At 5 minutes, the temperature 

setpoint is changed from 35°C to 45°C. Ten minutes into the 

simulation, the temperature setpoint is returned to the 

nominal operating value. When the mixing tank experiment 

has ran 15 minutes, the temperature setpoint is lowered to 

25°C for 5 minutes. At this point, the temperature setpoint 

returns to 35°C. Figure 12 shows the setpoint changes 

implemented in this study. 

The next phase of Haggblom's experiment measures the 

reactions of the height controller to level setpoint 

changes. Twenty-five minutes into the experiment, the level 

setpoint is changed from 20 em to 30 em. Five minutes 

later, the setpoint returns to 20 em. After the experiment 

has elapsed for 35 minutes, the level setpoint is lowered to 

10 em. Finally, at 40 minutes since the start of the run, 

the setpoint is returned to 20 em. 

Haggblom's standard experiment ends with testing of the 

temperature and height controllers' ability to handle 

disturbances. At 45 minutes into the run, the disturbance 

stream valve is opened and flows at 1.25 kg/min. This 

stream has a temperature of l9°C. The stream influences the 

system for 5 minutes. Afterwards, the experiment runs for 

10 minutes at the nominal operating setpoints. Total time 

for this experiment is 60 minutes. 
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Figure 12: Setpoint changes used at 35°C 

Two other experiments are of interest. While the 

experimental procedure described above is followed, the 

nominal operating points are changed. In one experiment, 
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the nominal operating temperature is 40°C. Instead of l0°C 

setpoint changes, the temperature setpoints are changed to 

45°C for the higher temperature and 3S°C for the lower 

temperature setpoint. The second experiment uses an nominal 

operating temperature of 30°C. Like the 40°C experiment, 

the setpoint is only changed by S°C. The highest 

temperature setpoint is 3S°C and the lowest setpoint is 

25°C. Level setpoint changes are the same in both of these 



57 

experiments, and the nominal height remains at 20 em. 

Finally, the experiments include the load change outlined 

earlier. These final two experiments explore controller 

coupling and the related performance. 

Performance Measure 

In order to quantify the performance of Haggblom's 

control system and the pattern-based gain scheduling 

approach, the Integral of Absolute Error (IAE) was used. 

IAE is defined as 

OJ 

IAE J je(t)~dt ( 21) 

0 

where e(t) is the difference between the actual process 

variable and the setpoint. IAE scores were calculated for 

both the height and temperature controllers. Lower IAE 

scores indicate better control system performance. 

Baseline Results with Haggblom's Constants 

Haggblom's experiment was duplicated using Haggblom's 

PI values at nominal temperature of 30°C, 35°C, and 40°C. 

The gain and integral values used in the simulation are 

found in Table V. These results serve as a guide as to the 

improvement brought about by the use of the pattern-based 

gain scheduling system. The goal is for gain scheduling to 

lower the IAE values of Haggblom's simulation. 



TABLE V 

CONTROLLER PARAMETERS FOR MULTILOOP SISO CONTROL 
(HAGGBLOM, 1992) 

Nominal kv:rm -rh, i 'th, d kvcT TT f i 
Temperature (VI em) {min) (min) (VI ° C) (min) 

( 0 c) 

30 0.30 2.50 0.00 -0.35 1.00 
35 0.25 2.50 0.00 -0.30 1.00 
40 0.20 2.50 0.00 -0.35 1. 00 
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'CT,d 
(min) 

0.00 
0.00 
0.00 

The results of the simulations using the values above 

are shown in Table VI. Figures 13, 14 and 15 show the 

results for nominal operating temperatures of 30°C, 35°C and 

40°C. Table VII contains the IAE scores for these cases. 

As stated before, the goal of this study is to have lower 

IAE scores than these. 

TABLE VI 

IAE RESULTS FOR FIXED GAIN SISO CONTROL 

Nominal Fixed Gain 
Operating IAE for IAE for 

Temperature Height Temperature 
oc Controller Controller 
30 114.76 101.99 
35 95.28 66.96 
40 52.25 32.74 
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In Figure 13, the simulation operates where the 

controllers are not properly paired. The height controller 

should manipulate the cold water stream while the 

temperature controller should handle the hot water stream. 

Since this is not true, the control system has trouble 

controlling the system. With setpoint changes and load 

disturbances, the system undergoes oscillation. Although 

the oscillation is dampened, the control system is 

ineffective for this nominal temperature and controller 

pairing. It appears that a lower gain on the controllers is 

necessary. 

Figure 14 represents control system responses at 35°C. 

The relative gain analysis at this point concludes that 

either pairing of manipulated/controlled variables would 

result in effective control. In this case, the height 

controller controls the hot water stream and the temperature 

controller manipulates the cold water flow rate. The other 

controller pairing is possible, but this study uses the 

pairing Haggblom chose. The results for setpoint changes 

are better than those in Figure 13. The mass flow rates do 

oscillate, but the system quickly returns to setpoint after 

each change. Load disturbances are also handled better. 

Height control action is slow for temperature setpoint 

changes, though. The controller fails to return the level 

back to setpoint. 

Finally, at 40°C, the controller pairing is correct. 

The results shown in Figure 15 indicate a well-controlled 
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system. The mass flow rates are smooth and the control 

systems quickly return the system back to setpoint after 

changes. 

The Integral of the Absolute Error (IAE) scores in 

Table VI further exemplify the problems of a fixed-gain 

system. The IAE errors for both the temperature and height 

controllers emphasize that fixed gain controllers cannot 

control the system over a range of operating conditions 

without some degradation. As the nominal operating 

temperature rises, the controllers have more favorable 

pairings. Thus, at 40°C, the IAE scores are relatively low. 

One note, the IAE scores for 35°C are higher as the 

temperature setpoints change by 10°C instead of soc for 30°C 

and 40°C. 

Haggblom•s Gain Scheduling 

Haggblom suggested a method to implement gain 

scheduling using the coupled SISO controllers. Haggblom 

explained gain scheduling as a method of keeping the 

controller gains inversely proportional to the process 

gains. Haggblom (1991; 1992) adjusted the controller gains 

according to Equations 22 and 23. 

kvHh 

ho )1/2 [ VH )(1/yh)-1 
ho VH 

(22} 
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-
kvcT J

-1/2 ( - J(J./yc)-1 
ho Vc 

ho Vc 
(23) 

The controller gains kv~ and kv~ are the controller gains 

at the nominal operating point, Vh and Vc are the nominal or 

steady-state input voltages to the control valves, and vh 

and vc are the actual input voltages to the control valves. 

Haggblom's experiment involved using PID controllers 

operating at a nominal operating point of 35°C and 20 ern. 

He noted that the performance was worse than an experiment 

utilizing a fixed-gain PID controller. Haggblorn stated that 

better performance was possible using different equations, 

yet he showed no clear method of implementing this. 

Finally, Haggblorn added that Equations 22 and 23 need to be 

multiplied by (T - Tc) / (T - Tc). This modification is 

necessary if controller gains are assumed to be inversely 

proportional to the process gains when the other control 

variable is perfectly controlled. His experiment indicated 

that this would further degrade the performance. 

Our study was unable to duplicate Haggblorn's gain 

scheduling results. The calculated scheduling gains caused 

the simulation to go unstable and our results did not match 

his. However, since Haggblom reported his efforts were 

unsatisfactory anyway, we did not pursue this further. 
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Optimized Gain Scheduling 

In order to gain a better idea of what controller gains 

provide the best control performance, setpoint changes and 

load disturbances were introduced to the mixing tank. These 

tests determined the controller gains that provided the 

optimum control performance. These gains provide insight 

into the gains needed for gain scheduling. For example, at 

a nominal operating point of 30°C and 20 em., Haggblom's 

experiment has 6 possible process changes from the nominal 

operating point. First, the temperature setpoint can be 

increased or decreased, the height setpoint can be raised or 

lowered, or a disturbance stream can be introduced or taken 

away. Each of these setpoint changes has gains associated 

with them that improve control performance. These gains 

allow the controllers to reach the new operating conditions 

with the smallest IAE error. 

Testing Procedure 

The simulation was modified to run for a 10 minute 

interval. During this time, a setpoint or disturbance 

change was introduced to the system 1 minute from the start 

of the simulation. For each run, new controller gains were 

used. At the end of the run, the IAE results for both 

controllers were recorded. Table VII shows the results of a 

test using different gains for a specific setpoint change. 
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The gains were changed in order to find the lowest IAE 

scores for both the height and temperature controllers 

(IAE H and IAE_T, respectively). As shown in Table VII, the 

chosen controller gains are 0.40 for KCl (the height 

controller gain) and -0.225 for KC2 (the temperature 

controller gain) for the level setpoint change from 20 em to 

30 em at a temperature of 40°C. 

-0.15 
IIAE_H 

IIAt:_l 

-0.20 
IIAE_H 
IIAE_T 

-0.225 
IIAt::._H 

KC2 
IIAE_T 

-0.25 
IIAt::._H 
IIAt::._l 

-0.275 
IIAE_H 

IIAt:_l 

-0.35 
IIAE_H 
IIAE_T 

TABLE VII 

IAE RESULTS FOR SETPOINT CHANGE 
FROM 20 CM TO 30 CM 

AT 40°C 

KC1 
0.20 0.25 0.35 0.40 O.:JO 0.60 

5.24 4.89 
2.(( :<!.llf 

5.19 4.89 

2.58 2.74 
4.1':1{ 4.1l!:l 

.,2.65 2.67 

5.1o 4.!:1U 4.87 4.89 5.00 

2.44 2.50 2.b!:l :<!.04 2.05 

4.86 4.88 

2.0!:1 Z.b3 

5.53 4.96 

2.17 2.97 

0.75 1.00 
5.05 

2.1lf 

5.05 5.13 

2.75 5.74 

5.05 4.13 
:<!.bb :<!.bb 

5.12 
2.95 

Although the IAE_T error is not minimized in this case, 

these gains are selected as a compromise between control 

response and minimum IAE error_ Since the mixing tank is a 

coupled system, reducing the height IAE error may lead to 



increasing the temperature IAE error. The goal of this 

ph~se of the research was finding the controller gain 

settings that minimized both IAE scores. When either IAE 

score could not be minimized, gains were chosen that 

generated good response curves to setpoint changes. 
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Other criteria used in selecting acceptable gains 

included discarding gains that produced excessive 

oscillatory responses. Often these gains produced 

situations where the control valves experienced ringing. 

Ringing refers to the rapid opening and closing of a control 

valve. Figure 16 contains an example of ringing during a 

simulation run. The hot water mass flow rate is repeatedly 

opened and closed quickly as the height controller tries to 

maintain the level. Excessive ringing leads to valve wear. 

Finally, if either controller IAE scores were not 

minimized for a process change, gains were chosen that 

reduced tailing. Tailing occurs when the integral (I) 

response in the PI controller is too sluggish. The integral 

time is the amount of time an integral controller takes to 

reproduce the effect of a proportional controller constant. 

Thus, an integral time of 6 minutes indicates that the 

integral action of the controller takes 6 minutes to make 

the same control action of a proportional controller. If 

the integral constant is large, the controller is slow to 

remove the error that remains after proportional control. 

Tailing was a problem particularly for the height 
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Figure 16: Valve ringing due to high gains 

controller. Figure 17 shows an example of tailing. The 

level controller has trouble returning to setpoint after the 

temperature setpoint is changed. As a result, the height 

deviates from setpoint for over 3 minutes. The gains chosen 
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for each setpoint run tried to keep the effect of tailing to 

a minimum. 
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Results of Gain Determination 

Simulations were performed for setpoint and disturbance 

changes at nominal temperatures of 30°C, 35°C, and 40°C. 

Tables VIII, IX and X lists the optimized gains found in 

this study. 

TABLE VIII 

OPTIMIZED GAINS FOR SETPOINT 
AND DISTURBANCE CHANGES FOR 

THE MIXING TANK AT 30°C 
(LOW RELATIVE GAIN) 

Height Temperature Disturbance Height Temp. 
Setpoint Setpoint Setpoint Gain Gain 

em oc kg/min v;oc V/°C 
20 30 -> 35 0 1.250 -0.175 
20 35 -> 30 0 1.500 -0.1 75 
20 30- > 25 0 2.000 -0.137 
20 25 -> 30 0 1.750 -0.150 

20 -> 30 30 0 0.650 -0.100 
30 -> 20 30 0 0.650 -0.150 
20 -> 10 30 0 0.250 -0.200 
10 -> 20 30 0 0.250 -0.125 

20 30 0- > 1.25 0.100 -0.550 
20 30 1.25 -> 0 0.100 -0.500 

Tables VIII, IX and X show a number of trends in the 

search for optimum gain. First, for temperature setpoint 

changes, a high gain was used. These values are common for 

all three nominal operating points. The values of these 
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gains decreased as the controllers became better paired as 

the relative gain for the temperature controller increased. 

The increased operating temperature of the mixing tank at 

40°C raises the relative gain for the temperature controller 

to best control the flow rate of the cold water stream. In 

addition, the temperature controller gain increased in value 

as the controllers pairing improved. The tuning for the 

controller could be set more aggressively as the system 

approaches an operating region where each controller 

manipulates the correct variable. 

TABLE IX 

OPTIMIZED GAINS FOR SETPOINT 
AND DISTURBANCE CHANGES FOR 

THE MIXING TANK AT 35°C 
(RELATIVE GAIN = 0.50} 

Height Temperature Disturbance Height Temp. 
Setpoint Setpoint Setpoint Gain Gain 

em oc kg/min V/°C V/°C 
20 35 -> 45 0 1.000 -0.350 
20 45 -> 35 0 1.000 -0.240 
20 35 -> 25 0 1.500 -0.125 
20 25 -> 35 0 1.350 -0.185 

20 ·> 30 35 0 0.650 -0.175 
30 -> 20 35 0 0.850 -0.175 
20- > 10 35 0 0.400 -0.150 
10 -> 20 35 0 0.250 -0.175 

20 35 0-> 1.25 0.150 -0.400 
20 35 1.25 - > 0 0.150 -0.400 



TABLE X 

OPTIMIZED GAINS FOR SETPOINT 
AND DISTURBANCE CHANGES FOR 

THE MIXING TANK AT 40°C 
(HIGH RELATIVE GAIN) 

Height Temperature Disturbance Height 
Setpoint Setpoint Setpoint Gain 

em oc kg/min V/°C 
20 40 ·> 45 0 1.000 
20 45 ·> 40 0 1.000 
20 40- > 35 0 1.250 
20 35 -> 40 0 1.100 

20 -> 30 40 0 0.400 
30 -> 20 40 0 0.870 
20 -> 10 40 0 0.250 
10 -> 20 40 0 0.250 

20 40 0 -> 1.25 0.150 
20 40 1.25-> 0 0.150 

Temp. 
Gain 
V/°C 

-0.425 
-0.300 
-0.200 
-0.250 
-0.250 
-0.225 
-0.250 
-0.250 
-0.650 
-0.500 

Other trends can be observed for the height setpoint 

tests. The height setpoint changes are split into two 

regions. For operating changes from 20 em to 30 em, the 
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mass of fluid inside the mixing tank is sufficient to dampen 

changes in temperature. Higher gains are possible on the 

height controller. 

For changes that increased the operating level of the 

tank, Tables VIII, IX and X show higher height controller 

gains than those where the operating height is 10 em. At 10 

em, the tank is nearly empty. With little mass inside the 

tank, temperature changes occur rapidly. Couple this 

situation with a nominal temperature of 30°C (i.e. the 

controllers are not properly paired} and the stability of 
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the system becomes a concern. Thus, lower gains for both 

the height and temperature controller are required. As 

shown before, the gain settings do increase as the relative 

gain favors the proper controller pairing. 

Finally, the tables show that controller settings for 

disturbances are particularly low for the height controller. 

These values indicate that the temperature controller 

handles changes in load the best. The temperature gains are 

higher than the gains found for the setpoint tests. 

It is evident that the coupling of the controller 

influences the gain setting for the controllers. Tables 

VIII, IX and X show that as the nominal operating 

temperature increases and the controllers are properly 

paired, the height gain decreases. The temperature gain 

increases with increasing temperature. For height setpoint 

changes, the effect of temperature is less on the height 

controller gains. Yet, temperature increases deem increases 

in the temperature controller gain. Disturbances are 

handled best by making the height controller passive to load 

changes. A higher gain for the temperature controller is 

indicated. 

Comparison of Fixed-Gain and Optimum Gain 

A comparison of a fixed-gain system and a system using 

optimized gains allows a benchmark to be established for 

future work with the pattern-based gain scheduling system. 
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The process results using optimized gains for every setpoint 

change set a lower limit for the IAE scores while Haggblom 1 s 

gains set an upper limit for performance. 

Table XI contains the results of Haggblom 1 S system and 

the optimized gain system. The most dramatic improvement in 

IAE scores occurs when the system runs at a nominal 

temperature of 30°C. Significant improvements are made in 

reducing the IAE scores for both controllers. Using the 

optimized gains allow the control system to better handle 

operating conditions where the controllers are not paired 

correctly. For the other operating temperatures, the 

benefits of gain scheduling include reducing the height IAE 

score. Gain-scheduled controllers reduced temperature 

errors for 35°C and 40°C, but the differences in the IAE 

scores are less dramatic than the improvement in IAE scores 

for the height controllers. 

TABLE XI 

COMPARISON OF FIXED-GAIN AND 
OPTIMIZED GAIN-SCHEDULING 

IAE RESULTS 

Nominal 
Temp. 

30"C 



Figures 18, 19 and 20 show the results of Haggblom's 

experiment using the optimum gain scheduling values at 

nominal temperatures of 30°C, 35°C and 40°C, respectively. 

If compared with Figures 13, 14 and 15, optimal gain 

scheduling significantly reduced the oscillations of the 

manipulated variables. 
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Significant improvement occurred for 30°C. Haggblom's 

fixed-gain system oscillated with each setpoint change. The 

mixing tank does not reach steady-state with changes in 

setpoint. Gain scheduling at 30°C allows the system to 

reach the new setpoints before a new change is introduced. 

At 35°C (Figure 19) little deviation in the height 

takes place when a temperature setpoint change occurs. In 

Figure 14, Haggblom's fixed-gain controllers do not return 

the height to its setpoint quickly. Gain scheduling reduced 

the oscillations that occurred when the setpoint was 

changed. The results at 40°C (Figure 20) are similar. The 

height deviations are reduced, while the temperature 

responses are similar between the fixed-gain and gain­

scheduled systems. 

The optimized gain-scheduling IAE scores represent the 

approximate lowest possible scores. The expected pattern­

recognition gain scheduling results should be between the 

fixed-gain and gain-scheduled results in Table XI. 
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Figure 18: Performance of optimum-gain scheduling at 30°C 
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SUIIllil.a ry 

This chapter details the mixing tank system and the 

equations governing it. From these equations, a simulation 

was developed and a control system was created. The 

simulation was compared with th.e results of Haggblom and 

tweaked to reproduce his valu~s as accurately as possible. 

Once the simulation was verified/ simulations were run using 

his values and the errors were recorded. In addition/ a set 

of runs were made using optimum gains. These optimum gains 

set the lower limit on the performance scores. These errors 

serve as a guide for the pattern-recognition work that 

follows. The next chapter looks at pattern-based gain 

scheduling and the improvement possible with it. 



CHAPTER V 

PATTERN-BASED GAIN SCHEDULING 

FOR THE MIXING TANK 

Introduction 

This chapter looks at the development of the pattern­

recognition gain scheduling system. The first issue 

addressed is determination of the number of operating points 

to schedule the system for. Second, a general purpose 

method is developed to establish the gains to implement with 

the pattern-recognition system. The chapter will conclude 

with discussion of the pattern recognition to Simulink 

interface. This interface allows the pattern recognition 

system to see process data and transfer the controller gains 

back to the simulation. 

Gain Clusters 

As discussed earlier, the gain map contains the pattern 

prototypes the neural network learns. Each of these 

prototypes are associated with controller gains designed to 

improve control system performance when the system near 

these points. 
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One method of envisioning fixed-gain control is to 

consider a gain map consisting of one gain cluster of 

infinite size. The gain associated with this cluster is 

assigned to the controller no matter what operating 

conditions exist in the process. On the other extreme, a 

gain map could consist of an infinite number of clusters 

representing each possible operating point. Gains would be 

assigned to each individual point, yet, many regions of the 

gain map would have the same gain. It is not the goal of 

this study to completely cover the gain map with clusters. 

Interpolation techniques will be used to schedule the gain 

if the process is operating between the learned prototypes. 

The number of clusters used to form the gain map is 

important. First, if the plant is slightly nonlinear, fewer 

scheduling points or clusters should be required. If the 

plant is highly nonlinear, though, a higher number of 

clusters are needed in order to provide the proper gains to 

the controllers. 

Thus, gain clusters are chosen to represent normal 

steady-state operating conditions. These operating points 

are at the center of each cluster. Since the cluster has a 

radius, a buffer will exist to account for slight variations 

in operations. Once the process conditions move out of a 

cluster, interpolation will be used until it moves into 

another cluster. 
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Gains Calculations for Scheduling 

Since the ART2 neural network .learns with steady-state 

process data and gains are associated with each of the 

learned pattern prototypes, a method must be found to 

calculate the gains for each cluster. The study to find 

optimum gains looked at the range of gains that provided 

stable control. It is desired to find an analytical method 

to determine controller gains. 

One of the problems in finding the best gains to 

associate with each pattern prototype is calculating the 

gains to handle a variety of setpoint changes. With 

Haggblom's experiment, 6 possible changes are possible from 

the nominal operating point. Figures 18, 19 and 20 indicate 

that different gains work best for specific operations such 

as a temperature setpoint change, height setpoint change, or 

load disturbance. Thus, gains must be found which handle 

possible system changes from the normal steady-state 

operating points. 

While the values found in the optimized gain study 

could be used to develop gains for the neural network 

clusters, our goal is to use a standard industry technique 

to compute the gains. One reason for this selection is that 

it provides a beneficial and easy method of setting the 

gains based on process characteristics. Since the neural 

network works with knowledge acquired by learning past 

process data, the process characteristics can be determined 
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by examining that data. In addition, methods of controller 

design for processes with first-order responses with 

deadtime are widely known (Smith and Corripio, 1975; Miller 

et. al., 1967; Murrill and Smith, 1966). The most widely 

used methods for designing PI/PID feedback control loops 

include the Integral of Absolute Error (IAE), the Integral 

of Error Squared (ISE) and Integral of the Absolute Error 

multiplied by Time (ITAE} tuning relations (Seborg et. al., 

1989) . 

The IAE, ISE and ITAE tuning relations are based on the 

work of Ziegler and Nichols (1942). Their work looked at 

developing tuning constants based on the open-loop response 

of a process to a step change in the manipulated variable 

(Miller et. al., 1967}. Many processes can be approximated 

by a first order lag described by Equation 24. 

P{s) 
M(s) 

Ke-es 

"CS + 1 
(24) 

where P(s) is the process output, M(s) is the manipulated 

variable input into the process, K is the process gain, 8 is 

the deadtime and~ is the time constant (Seborg et. al., 

1989). Miller (Miller et. al., 1967) shows methods to 

calculate e, ~I and K from process data. With these values, 

tuning constants are found by using equations for IAE, ISE 
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and ITAE and specific constants for each method. These 

de~ign relations only work when deadtime is present in the 

process which is the case for the temperature control loop. 

The final type of design relation examined in this 

study is the Direct Synthesis approach (Seborg, et. al., 

1989). Equations have been developed to calculate the 

controller gain, integral time, and derivative time based on 

a desired trajectory for the controlled variable. Direct 

synthesis can be used with processes with dead time, but the 

gains calculated must be reduced (Seborg, et. al., 1989). 

Use of Controller Design Relations for Gain Scheduling 

The necessary process characteristics were found for 

the mixing tank using Equations 13, 18 and 19. Appendix A 

shows the calculation of the height and temperature 

controller parameters. A comparison was developed which 

looked at the range of controller values possible for each 

of the nominal operating points. These values are shown in 

Table XII and XIII. Table XII shows the calculations for 

height controller gain based on the direct synthesis method. 

Temperature controller gains are shown in Table XIII using 

the IAE method and ITAE method for both setpoint changes and 

disturbance rejection. 



TABLE XII 

RANGE OF HEIGHT GAINS FOUND IN OPTIMUM GAIN STUDIES 
AND CALCULATED BY THE DIRECT SYNTHESIS METHOD 
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Optimum Height Gain - Ranges Direct Synthesis 
Height Temperature Height Temperature Method 

em oc Changes Changes Disturbances Gain 
30 0.250 0.51 

10 35 0.250 0.41 
40 0.250 0.35 
25 1.350- 0.69 

1.750 
30 0.250- 1.250- 0.100 0.50 

0.650 2.000 
20 35 0.400- 1 .000- 0.150 0.40 

0.650 1.500 
40 0.250- 1.000 - 0.150 0.34 

0.400 1.250 
45 1.000 0.30 
30 0.650 0.48 

30 35 0.850 0.39 
40 0.870 0.33 



TABLE XIII 

RANGE OF TEMPERATURE GAINS FOUND IN OPTIMUM GAIN STUDIES 
AND CALCULATED BY THE IAE AND ITAE METHODS 

Optimum Temp Gain- Ranges Calculated Methods 

Height Temp. Height Temp. IAE Method ITAE Method 
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em oc Changes Changes Disturbances Setpoint Disturbance Set point Disturbance 

30 -0.1 25 -0.22 -0.29 -0.17 -0.25 

10 35 -0.175 -0.20 -0.25 -0.15 -0.22 

40 -0.250 -0.21 -0.26 -0.1 6 -0.23 

25 -0.150 -0.55 -0.77 -0.44 -0.67 

30 -0.200 - -0.175 - -0.550 - -0.40 -0.55 -0.32 -0.40 
-0.1 00 -0.137 -0.500 

20 35 -0.175 - -0.350 - -0.400 -0.35 -0.49 -0.28 -0.42 
-0.150 -0.125 

40 -0.250 -0.425 - -0.650 - -0.35 -0.49 -0.29 -0.42 
-0.200 -0.500 

45 -0.300 - -0.51 -0.70 -0.40 -0.61 
-0.240 

30 -0.150 -0.55 -0.80 -0.45 -0.69 

30 35 -0.175 -0.49 -0.71 -0.40 -0.61 

40 -0.225 -0.51 -0.74 -0.41 -0.64 
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Height controller gain is calculated with the direct 

synthesis method. This method was chosen as the height 

response exhibits little or no deadtime. Temperature 

controller gain is determined using the ITAE setpoint method 

as this process loop has 0.3 minutes of deadtime. 

Stability is a concern with any gains selected for the 

gain map. Gains used by the neural network must be able to 

deliver stable setpoint changes and disturbance control for 

each steady-state operating point. From the optimum galn 

studies, acceptable values for gains are known. For 

conservative gains, the lower values of the optimum gain 

experiments were used for comparison with values calculated 

by the tuning methods. 

Gains calculated for the height controller by the 

direct synthesis method generally fall within the range of 

the conservative values found in the optimum gain studies 

with the exception of the 10 em level. The direct synthesis 

method also calculated height controller gains higher than 

range of gains found· for the disturbance tests. Having a 

higher gain for disturbance rejection will degrade control 

performance, but a compromise must be made. Furthermore, 

less accurate control will occur with temperature setpoint 

changes. The optimum gain studies found that the best gains 

for the height controller during temperature setpoint 

changes are in excess of 1. With the compromise of using 

the more conservative gains, the height controller will not 

be as aggressive as it can be. 
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Gains calculated by the IAE and ITAE methods for the 

temperature controller do not fall into the ranges found by 

the optimum gain study. 

approximately 100% high. 

Instead, the calculated gains are 

It was decided that the method for 

calculating the gains would require derating the calculated 

gain by multiplying it by a constant factor of 0.5. The 

derated values of the ITAE method matched the range of 

values found in the optimum gains better. The comparison of 

the derated ITAE gains and the optimum gain study is shown 

in Table XIV. Furthermore, the mixing tank is a coupled­

system. Derating provides a degree of insurance for 

stability for the system. 

Simulink/ART2 Interface 

Additional work was needed to modify Whiteley's 

implementation of the ART2 Network (Whiteley, 1991). The 

following section discusses the additional modifications to 

Whiteley's program and development of an interface to 

transfer process data from Simulink/Matlab to the neural 

network. Figure 21 is the Simulink block diagram for a 

nominal temperature of 35°C and includes the block for the 

neural network. 



Height 
em 

10 

20 

30 

TABLE XIV 

TEMPERATURE CONTROLLER GAINS CALCULATED 
WITH DERATED ITAE METHOD 

Optimum Temp Gain - Ranges ITAE 
Temp. Height Temperature Setpoint 

oc Changes Changes Disturbances Method 
30 -0.125 -0.09 
35 -0.175 -0.08 
40 -0.250 -0.08 
25 -0.1 50 -0.22 
30 -0.200 - -0.175 - -0.550 - -0.16 

-0.100 -0.137 -0.500 
35 -0.175 - -0.350 - -0.400 -0.14 

-0.150 -0.125 
40 -0.250 -0.425 - -0.650 - -0.15 

-0.200 -0.500 
45 -0.300 - -0.20 

-0.240 
30 -0.150 -0.23 
35 -0.175 -0.20 
40 -0.225 -0.21 
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Td 

Figure 21: Simulink simulation with ART2 interface 

Simulink/ART2 Interface 

An interface was needed to transfer the process data to 

the neural network. Several methods were investigated. 

Matlab allows the incorporation of C and FORTRAN code inside 

functions. The solution to implementing an interface uses a 

MatLab function call to send the current temperature, 

height, and time to an intermediate program that maintains a 

data file containing the process pattern. The intermediate 

program keeps the past data based on the window length used 

by the neural network. In addition to storing this data, 

the program transfers the process data to the ART2 network. 



A separate report (Anderson and Whiteley, 1993) contains the 

program Quest which is the Simulink/Matlab interface. The 

Quest program sends the process data to the neural network 

program. Quest receives the output of the neural network 

program. This output is the gains for the height and 

temperature controllers in the Simulink simulation. 

ART2 Neural Network Modifications 

Whiteley 1 s neural network program was modified as well. 

The modified program reads in a preprocessed weight file 

that contains the top-down (TD) and bottom-up (BU) weights 

for the ART2 neural network. The TD and BU weights define 

the prototype vectors which locates the clusters. Data from 

the Quest program is the input to the neural network. The 

gain file generated by the learning program is read into the 

neural network and compared with the most similar and the 

next most similar clusters found by the neural network. 

At this point, the gains may be interpolated or the 

gains of the most similar cluster are assigned and returned 

to the Quest program. If the pattern falls within one of 

the learned pattern clusters, the gains for that cluster are 

returned to the controllers. The determination of whether 

interpolation takes place depends on the ART2 vigilance 

parameter p. Once the gains are passed to the MATLAB 

function, the gains are sent to the controllers. 



92 

Interpolation Methods 

Once the neural network has determined which clusters 

are similar to the process pattern it is classifying, the 

program has the option of assigning the gains based on the 

most similar cluster gains or by interpolation. Gain 

scheduling uses interpolation to smooth gain changes between 

the normalized operating points (Rugh, 1991; Shamma and 

Athans, 1992). That is our goal here as well. This study 

looked at two types of interpolation, linear and quadratic. 

The basis for interpolation is using the similarity 

between the current process pattern and the learned pattern 

prototypes most similar to the process pattern. Whiteley 

(1991) discusses the similarity measure and cluster 

similarity between a normalized input pattern and the 

prototype pattern the neural network program learns. 

Linear Interpolation The first method for 

interpolation is a linear function. Linear interpolation 

simply implements the lever rule for determining the gain 

between two points. Figure 22 is a diagram of the 

similarity as distances between cluster centers. d1 and d2 

represent the difference between the similarity of the 

process pattern and the nearest pattern prototype less the 

cluster criterion p. The interpolated gain is calculated 

with Equation 25. 
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Kc == { 2 5) 

where Kc is the interpolated gain, Kc 1 is the gain assigned 

to the closest cluster, Kc2 is the gain assigned to the next 

closest cluster, d1 is the similarity of the closest pattern 

minus the cluster radius p and d2 is the similarity of the 

second closest pattern minus the cluster radius p. 

C':::\ with cluster~ 0_20 

Gain associated 8 v v 
Pattern associated 

Nearest ~ with current state 
Neighbor 

Next Nearest 
Neighbor 

Gain Map 

Figure 22: Interpolation between clusters 

A disadvantage of this technique is that there is no 

weighting to favor the gain at the destination operating 

conditions. A weighting which favored the expected 
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operating state would potentially allow improved controller 

performance. As the process moves into the new operating 

state, weighting provides a method of giving the controller 

a gain more suitable to the new operating point. The chief 

advantage of linear interpolation is the ease of 

implementation. 

Quadratic Interpolation The second method for 

interpolation employs quadratic interpolation. Similarity 

between the process pattern and the cluster is actually a 

quadratic function of the angle between the process sensor 

pattern and the cluster (Whiteley et. al., 1993]. The 

function used to find the quadratic distance between the 

process pattern and the learned pattern is 

.j1. 00000 - p + .Jp - Si ( 2 6) 

where di is the distance from the pattern to the cluster, p 

is the radius of the pattern cluster and Si is the 

similarity of the cluster to the pattern. di is calculated 

and used in Equation 24 to determine the process gain. 

The motivation for the quadratic method is to add 

additional weight to the gain found in the cluster the 

process is moving toward. The distance di initially favors 

the second nearest neighbor when interpolation begins. 

Thus, the gain of the expected new operating cluster has 

additional weight in the gain calculations. One drawback to 



this approach is the gain of the previous nearest neighbor 

is favored as the process arrives at its new operating 

state. 

Summary 
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This chapter has looked at the development of the 

pattern-recognition gain scheduling approach for the mixing 

tank. Gain cluster selection was discussed as well as the 

method by which gains were calculated. Finally, the actual 

implementation was addressed. The following chapter will 

look at the results of the interpolation methods as well as 

the effects of changing several ART2 parameters on process 

control. 



CHAPTER VI 

RESULTS AND DISCUSSIONS 

Pattern-Based Gain Scheduling Results 

A variety of conditions were tested to examine the 

performance of the mixing tank using the pattern-based gain 

scheduling system. Among the issues investigated included 

using different numbers of clusters, varying cluster size, 

interpolation of the gains, and window length. 

Number of Clusters 

The number of clusters learned by the network and in 

scheduling the process system is important. The number of 

clusters used for scheduling depends on the nonlinearity of 

the process. In addition, the number of scheduling clusters 

also influences the interpolation of gains. Fewer clusters 

obviously require more interpolation for better control 

system performance. 

If controller gain is assigned based on the gain of the 

nearest neighbor, the controller gain may not be the optimum 

gain for the current operating point when few clusters exist 

in the gain map. Assigning gains using the gain associated 

96 



97 

with the most similar cluster to the current process pattern 

is called the winner technique. The effect of cluster 

number on the winner technique is important to control 

system operation. If the process is nonlinear, a situation 

may exist where improper or at least nonoptimum gains used 

by the controllers. The more clusters learned, the more 

likely the control system will have better gains to use. 

Interpolation provides some benefits over the winner 

method when few gain clusters are used. Gain scheduling is 

normally implemented with some type of interpolation between 

the linearized points. This is done as the process will not 

necessarily operate precisely at the linearized points and 

linearizing the gains between these points will provide the 

appropriate gain at that situation. Interpolation allows 

the gain to change when the process is not inside a learned 

cluster. Thus, the gain will change to reflect current 

conditions. If the system is operating at the midpoint 

between two clusters, the gains are interpolated between 

those gains rather than assigned the gain of the nearest 

neighbor. 

With the ART2 network, we don't have the luxury of 

linearizing the gain based on current operating values such 

as temperature or level. Instead, current process 

conditions are compared with a set of learned patterns. 

Information available at this point is the similarity of the 

process pattern and the learned patterns. The similarity 



measure is a quadratic function of the angle between the 

pr9cess pattern and the learned prototypes. 
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Figures 23 and 24 show the results and gain change 

profiles for systems using linear and quadratic 

interpolation, respectively. These gain changes alter the 

process responses slightly to reflect the current operating 

conditions. This is beneficial if the system operates 

between the learned operating conditions. Sudden changes in 

the gains occur when the ART2 network has determined that 

the second nearest neighbor has changed. Thus, new values 

are introduced into the calculations which alters the gains 

used in the calculation. The effects of the similarity 

should be negligible at this point as the prototypes chosen 

as the second nearest neighbors have fairly similar 

similarity values. 

The similarity is based on the vigilance p set by the 

user. When the winner method is used, vigilance has no 

influence on the gain selected. The gain selected is the 

gain associated with the nearest neighbor. When 

interpolation is desired, though, a measure of the 

similarity between the process pattern and all the learned 

prototypes is available. Vigilance enters when trying to 

decide the appropriate point that interpolation is needed. 

If the process pattern meets or exceeds the vigilance set, 

it is assumed that the learned cluster and the process 

conditions are nearly identical and that associated gain is 

appropriate for the conditions. 
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To investigate the influence of the number of clusters 

on the ART2 and gain scheduling, test runs were ran using 

gain maps containing 5, 9, 13 and 25 steady-state 

prototypes. Clusters were spaced at 5°C and 5 em. intervals 

for the 9, 13 and 25 cluster runs. The vigilance parameter 

which determines the size of the clusters ranged in value 

from 0.99 to 0.999999. The 0.999999 value produced 

situations where interpolation was always required. Again, 

the cluster size had no influence for winner results. 

An additional test was developed to examine the 

performance of the pattern-based gain scheduling system in 

response to load disturbances. This test differs from 

Haggblom's test (Figure 12) by subjecting the system to a 

variety of loads. The disturbance test looks at the ability 

of the system to handle changes in the disturbance feed rate 

and temperature. Figure 25 shows the disturbance test 

sequence. The disturbance feed rate is increased to 1.5 

kg/hr initially. A second disturbance change increases the 

feed rate to 3.0 kg/hr. During this increased feed rate, 

the temperature of the disturbance stream is changed by ± 

5° C. 
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Evaluation Results 

30°C Runs Tables XV and XVI show the results for the 

mixing tank at a nominal operating temperature of 30°C using 

different numbers of clusters. Figures 26 and 27 show the 

results for pattern-based gain scheduling using 25 clusters 

and the winner method. The '5+' represents the 5 clusters 

and gains selected in a cross centered on the operating 

point of 35°C and 20 em. The other points used for the '5+' 

runs are shown in Table XVII. Tables XVIII, XVIX, XX and 

XXI contain the gains and steady-state operating points used 

to create the gain map with differing number of clusters. 

TABLE XVI 

RESULTS FOR OPERATIONS AT 30°C AND WINNER METHOD 

Number Setpoint Test Disturbance Test 
of Clusters IAE H IAE T IAE H IAE T 

5 + 43.35 53.34 12.68 28.52 
5X 45.63 56.71 13.08 31.45 
9 43.32 53.66 12.68 28.52 
13 43.05 56.64 12.68 28.52 

25 42.59 56.35 12.68 28.52 
Haggblom 114.76 101.99 28.30 26.43 
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TABLE XVII 

RESULTS FOR OPERATIONS AT 30°C AND LINEAR INTERPOLATION 
METHOD, p = 0.99992 

Number Setpoint Test Disturbance Test 
of Clusters IAE H IAE T IAE H IAE T 

5 + 44.10 53.05 12.77 28.79 
5X 43.82 53.51 12.96 30.31 

9 43.47 53.56 12.74 28.63 
13 42.88 55.43 12.66 28.55 

25 43.14 56.28 12.66 28.55 

TABLE XVII 

GAINS USED FOR THE 1 5+ 1 CLUSTER RUN 

Steady-State Height Temperature 
Operating Point Gain Gain 

35 °C - 15 em 0.41 -0.11 

30 °C - 20 em 0.50 -0.16 

35 °C - 20 em 0.40 -0.14 

40 °C - 20 em 0.34 -0.29 

35 °C - 25 em 0.40 -0.17 

TABLE XVII 

GAINS USED FOR THE •sx• CLUSTER RUN 

Steady-State Height Temperature 
Operating Point Gain Gain 

30 °C - 15 em 0.50 -0.12 

40 °C - 15 em 0.35 -0.23 

35 °C - 20 em 0.40 -0.14 

30 °C - 25 em 0.49 -0.19 

40 °C - 25 em 0.34 -0.35 
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TABLE XIX 

GAINS USED FOR THE 9 CLUSTER RUN 

Steady-State Height Temperature 
Operating Point Gain Gain 
30 °C - 15 em 0.50 -0.12 
35 oc - 15 em 0.41 -0.11 
40 oc - 15 em 0.35 -0.23 
30 oc - 20 em 0.50 -0.16 
35 °C - 20 em 0.40 -0.14 
40 °C - 20 em 0.35 -0.29 
30 °C - 25 em 0.49 -0.19 
35 °C - 25 em 0.40 -0.17 
40 °C - 25 em 0.34 -0.35 

TABLE XX 

GAINS USED FOR THE 13 CLUSTER RUN 

Steady-State Height Temperature 
Operating Point Gain Gain 
35 oc - 10 em 0.41 -0.08 
30 °C - 15 em 0.50 -0.12 
35 °C - 15 em 0.41 -0.11 
40 °C - 15 em 0.35 -0.23 
25 oc - 20 em 0.69 -0.22 
30 °C - 20 em 0.50 -0.16 
35 °C - 20 em 0.40 -0.14 
40 °C - 20 em 0.35 -0.29 
45 °C - 20 em 0.30 -0.40 

30 °C - 25 em 0.49 -0.19 
35 °C - 25 em 0.40 -0.17 
40 °C - 25 em 0.34 -0.35 
35 °C - 30 em 0.39 -0.20 
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TABLE XXI 

GAINS USED FOR THE 25 CLUSTER RUN 

Steady-State Height Temperature 
Operating Point Gain Gain 
25 °C - 10 em 0.70 -0.12 
30 °C - 10 em 0.51 -0.09 
35 °C - 10 em 0.41 -0.08 
40 °C - 10 em 0.35 -0.16 
45 °C - 10 em 0.31 -0.22 
25 °C - 15 em 0.70 -0.17 
30 °C - 15 em 0.50 -0.12 
35 °C - 15 em 0.41 -0.11 
40 °C - 15 em 0.35 -0.23 
45 °C - 15 em 0.30 -0.31 
25 °C - 20 em 0.69 -0.22 
30 °C - 20 em 0.50 -0.16 
35 oc - 20 em 0.40 -0.14 
40 °C - 20 em 0.35 -0.29 
45 °C - 20 em 0.30 -0.40 
25 °C - 25 em 0.68 -0.27 
30 oc - 25 em 0.49 -0.19 
35 °C - 25 em 0.40 -0.17 
40 °C - 25 em 0.34 -0.35 
45 °C - 25 em 0.30 -0.49 
25 °C - 30 em 0.67 -0.31 
30 °C - 30 em 0.48 -0.22 
35 oc - 30 em 0.39 -0.20 
40 °C - 30 em 0.33 -0.41 

45 °C - 30 em 0.29 -0.57 
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TABLE XXII 

RESULTS FOR OPERATIONS AT 30°C AND QUADRATIC INTERPOLATION 
METHOD, p = 0.99992 

Number Setpoint Test Disturbance Test 
of Clusters IAE H IAE T IAE H IAE T 

5 + 44.38 52.82 12.87 29.01 
5X 43.80 53.31 12.95 30.26 
9 43.51 53.55 12.74 28.63 

13 42.87 55.23 12.66 28.61 
25 43.27 56.40 12.66 28.61 

As Tables XV and XVI show, the IAE scores for the 

height and temperature controllers do not change 

significantly with the number of clusters. For the setpoint 

change (Haggblom•s) test, the height IAE score varies by 

3.4% with the lowest score occuring when 25 clusters are 

used. These 25 clusters (Figures 26 and 27) effectively 

cover every possible operating point for the system. The 

height IAE scores generally decrease as the number of 

clusters used for pattern recognition increases. Yet, the 

temperature IAE scores are generally lowest when the number 

of clusters is kept to a minimum. This trend is supported 

whether the winner method or interpolation (Tables XXII and 

XXIII) is used. 

The 1 5+ 1 and •5x• represent a special case where 

clusters are choosen to determine the effect of different 

maps using the same number of clusters. The 1 5+ 1 set 

contains points that match steady-state operating points 
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used in the setpoint tracking test. The '5X' set requires 

the neural network to decide which cluster to use that best 

represents the current operating point. Thus, the control 

system does not have the gains matching typical operating 

conditions. Performance should degrade and this is evident 

in the results for the winner method. Yet, interpolation 

reduced the IAE scores when it was employed with the 'SX' 

set. This shows that interpolation is indeed beneficial. 

Figure 26 shows the results of the mixing tank running 

at 30°C with 25 clusters. This control system works far 

better than the results shown in Figure 13 using Haggblom's 

fixed-gain controllers. 

Figure 27 brings up an important point. The setpoints 

do not change in this figure. Disturbances are introduced 

to the mixing tank to gauge the response of the control 

system using gains associated with the nominal operating 

point. Unless the change in the system has a long lasting 

effect on the system (i.e. the control system cannot return 

it to setpoint) the pattern recognition system most likely 

will not send new gains to the controllers. Another reason 

that disturbances do not change the gain is that patterns 

used for scheduling do not include disturbance variables. 

35°C Runs Besides operating the mixing tank where the 

control system is not properly paired/ tests where conducted 

where either controller was suitable for controlling the 

height or temperature. At 35°C 1 Tables XXIII, XXIV and XXV 
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show that the 1 5X' set provides poor performance compared to 

other sets. The IAE scores are again higher than those of 

set 1 5+'. Unlike the runs at 30°C, both the height and 

temperature IAE scores decrease as the number of clusters 

increase. 

The differences in scores between the winner method and 

the interpolation schemes are small in Tables XXIII, XXIV, 

and XXV. This trend has been noticed in all runs used to 

compare the three methods for assigning gains. It is 

apparent that the disturbance response is not affected by 

the choice of gain scheduling interpolation. 

TABLE XXIII 

RESULTS FOR OPERATIONS AT 35°C AND WINNER METHOD 

Number Setpoint Test Disturbance Test 

of Clusters IAE H IAE T IAE H IAE T 

5 + 52.24 72.82 13.18 41.28 
5X 51.74 75.24 13.09 41.47 
9 52.24 72.84 13.18 41.28 
13 51.65 70.87 13.18 41.28 
25 51.65 70.87 13.18 41.28 

Haggblom 57.37 45.92 17.31 21.07 



112 

TABLE XXIV 

-RESULTS FOR OPERATIONS AT 35°C AND LINEAR INTERPOLATION 
METHOD, p = 0.99992 

Number Setpoint Test Disturbance Test 
of Clusters IAE H IAE T IAE H IAE T 

5 + 52.55 73.14 13.18 41.12 
5X 51.77 73.73 13.19 41.76 

9 52.20 73.67 13.18 41.12 
13 51.65 70.73 13.18 41.12 
25 51.55 70.76 13.18 41.12 

TABLE XXV 

RESULTS FOR OPERATIONS AT 35°C AND QUADRATIC INTERPOLATION 
METHOD, p = 0.99992 

Number Setpoint Test Disturbance Test 
of Clusters IAE H IAE T IAE H IAE T 

5 + 52.63 73.42 13.20 41.11 
5X 51.91 73.87 13.24 41.89 

9 52.21 73.90 13.20 41.11 
13 51.74 70.97 13.20 41.11 
25 51.59 71.02 13.18 41.11 

Figures 28 and 29 display the results of the setpoint 

and disturbance tests using the winner method and 25 

clusters. The setpoint test had good results in minimizing 

the error between the setpoint and actual operating 

conditions. Height setpoint changes are particularly good. 

However, the temperature setpoint change from 35°C to 45°C 

is sluggish. Since gains must be chosen to provide stable, 
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low oscillatory setpoint changes in this study, the 

temperature controller gain does not provide the right 

dynamics to move the system to its new setpoint rapidly. On 

the other hand, this same gain causes an oscillatory 

response when going from 35°C to 25°C. Since the process 

system is nonlinear, an optimum controller gain does not 

exist at a single operating point. 

In Figure 29, the system suffers a slow return of the 

tank temperature to setpoint after the disturbance stream is 

turned on and turned off. With the disturbance stream 

flowing at 3 kg/min, the ART2 network recognizes a pattern 

change and issues new gains. The effect is temporary 

though. As the system returns to setpoint, ART2 returns the 

system to the previous steady-state gains. The mixing tank 

does not destabilize with this operation. 

The gain scheduling system handles operations where 

either controller is suitable for controlling the height or 

temperature. Despite the low temperature gains, the results 

are favorable. 
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Figure 29: Results of disturbance test with 25 clusters 
at 35°C and the winner method 
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40°C Runs Finally, runs were made to determine the 

effect of operating the system where the controllers and 

manipulated variables are optimally paired. The results of 

the gain scheduling tests are presented in Tables XXVI, 

XXVII and XXVIII. Figures 30 and 31 display the results 

using 25 clusters in the gain map and the winner method for 

gain scheduling. 

Similar to the 30°C runs, the height IAE scores 

decrease as the number of clusters decrease. The IAE scores 

for the temperature controller are better with more 

clusters. The temperature trends are repeated with the 

results for the disturbance tests as well. 

Comparing the results of the pattern-based gain 

scheduling approach and Haggblom's fixed gain system (Table 

XXVI), the pattern-based gain scheduling approach lowers the 

IAE score on the height controller. Yet, the temperature 

performance is not as good. While lower IAE scores are 

possible for one controller, it is possible that the other 

controller scores will rise. 

The differences between the '5+' and '5X' results are 

very pronounced for the winner method. Since the gains for 

the 'SX' set do not correspond to expected operating points 

of the system, performance is a little worse. The 

temperature IAE scores are lower when interpolation is used 

in the setpoint tests. The temperature IAE disturbance test 

results with the 'SX' are significantly higher than the 

other values shown in Tables XXVI, XXVII and XXVIII. 
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It is apparent that the 1 5X 1 configuration is not the 

best for forming the gain map. Clusters should be chosen 

based on those that reflect the normal operating points of 

the system. If clusters are chosen that do not represent 

normal operating conditions, the performance of the system 

suffers. Interpolation will help in these situations, but 

the performance is not optimal. A reason for these results 

is the coupling that exists in the control system. 

TABLE XXVI 

RESULTS FOR OPERATIONS AT 40°C AND WINNER METHOD 

Number Setpoint Test Disturbance Test 
of Clusters IAE H IAE T IAE H IAE T 

5 + 35.86 50.17 15.01 61.40 
5X 35.31 52.94 15.21 67.22 

9 35.94 50.25 15.01 61.40 
13 36.39 48.59 15.00 58.05 
25 36.45 48.60 15.00 58.05 

Haggblom 53.25 32.74 17.88 34.49 

TABLE XXVII 

RESULTS FOR OPERATIONS AT 40°C AND LINEAR INTERPOLATION 
METHOD, p = 0.99992 

Number Setpoint Test Disturbance Test 

of Clusters IAE H IAE T IAE H IAE T 

5 + 35.41 50.32 14.91 61.73 

5X 35.38 51.07 14.86 62.69 

9 35.81 50.48 15.17 62.95 

13 36.33 48.55 14.86 58.44 
25 36.43 48.49 14.89 58.43 
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TABLE XXVIII 

RESULTS FOR OPERATIONS AT 40°C AND QUADRATIC INTERPOLATION 
METHOD, p = 0.99992 

Number Setpoint Test Disturbance Test 
of Clusters IAE H lAE T IAE H IAE T 

5 + 35.19 50.42 14.76 61.98 
5X 35.34 51.07 14.83 62.35 

9 35.81 50.53 15.17 63.18 
13 36.32 48.62 14.82 58.51 
25 36.44 48.54 14.87 58.45 

Figures 30 and 31 show the results for the mixing tank 

at 40°C using the setpoint and disturbance tests, 

respectively. As expected, with proper coupling, the system 

responses are quick and show minimal deviation from 

setpoint. The most significant feature shown in the graphs 

is the slow response of the temperature controller to return 

the system to setpoint. Again, the gains chosen for gain 

scheduling limit the response of the system as the gains 

must be selected to ~andle several setpoint and load 

changes. The temperature controller has a difficult time 

moving the system to new temperature setpoints. But, the 

settings for height setpoint changes lead to quick 

responses. 
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The disturbance tests show that some gain scheduling 

was done. The gain change lasts for a longer time than that 

shown in Figure 29 at 35°C. The major draw back is the slow 

return to the temperature setpoint. Height responses are 

very good and have little deviation. The pattern-based gain 

scheduling approach reduced the height IAE scores by several 

points. The temperature control performance was worse for 

gain scheduling, though. Again, this is attributed to the 

gains selected for the gain map. Higher temperature gains 

would reduce the deviation. 

Conclusions on the number of clusters 

Based on the studies at 30°C, 35°C and 40°C, the more 

clusters used to schedule the control system, the better the 

temperature performance. The results for the height 

controller using different numbers of clusters are mixed. 

The height IAE scores do not vary more than 3.4% as the 

number of clusters is changed. If the temperature is the 

important variable in the process, more gain scheduling 

clusters are recommended. Finally, gain scheduling clusters 

should lie on or near normal or expected operating points. 

As shown with the '5+' and '5X' sets, centering clusters 

outside the normal operating range of the process produced 

slightly poorer performance. 
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Cluster Size 

Tests were run to look at the influence of cluster size 

on the IAE scores for the height and temperature 

controllers. Cluster size is important in determining the 

transition points as the process moves from one state to 

another. Cluster size is changed by altering the ART2 

vigilance parameter p. A large cluster refers to vigilances 

of 0.999 or lower. If the cluster vigilance is above 

0.9999, the cluster has a small radius. 

For the winner method, cluster size holds no meaning. 

The gains chosen for the controllers are based on the 

nearest neighbor of the process pattern. Thus gain changes 

only occur when a new nearest neighbor occurs. 

Cluster size is important when interpolating. p 

determines when the system needs to interpolate the gains 

between the two nearest neighbors of the process pattern. 

With high values of p, interpolation occurs quickly when the 

process pattern differs from the learned prototype. 

Interpolation occurs when the similarity between the process 

pattern and the nearest neighbor is less than p. When p is 

set to 0.99, the cluster radii are huge and all clusters 

overlap. Thus, no interpolation occurs. The result is the 

winner method. 

The cluster size also plays a factor in the 

interpolation methods as a calculation tool. In Equations 

24 and 25, the vigilance determines the distance between the 



process pattern and the nearest neighbor. Thus, p 

influences the gap between the clusters which in turns 

determines the value of the gain sent to the controller. 
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The results for interpolation are shown in Table XXIX 

for the three nominal operating temperatures. By comparing 

this value with the results for different cluster sizes and 

either interpolation method, using the nearest neighbor (p = 

0.99) as the gaining cluster produces comparable results to 

schemes using interpolation. In general, the best 

temperature IAE scores occurred when the cluster size was 

large {i.e. the vigilance was equal to or less than 0.999) 

The height IAE results also decreased w~th larger cluster 

radii. 

Comparing the linear and quadratic interpolation 

results shows that linear interpolation produced smaller IAE 

scores for the temperature controller. The height 

controller also favors the linear interpolation technique in 

most cases. Yet, the results between the two interpolation 

schemes show that the scores differ only slightly. This 

difference is not readily detectable in an operating plant 

environment. In fact, the winner method produces similar 

results as well. Thus, the choice of which interpolation to 

method to use or whether to use one at all cannot be readily 

settled. 



TABLE XXIX 

RESULTS FOR VARYING CLUSTER SIZES USING THE 
SETPOINT TEST AND 9 CLUSTERS 

Nominal Linear Quadratic 
Operating Vigilance Interpolation Interpolation 

Temp. p IAE H IAE T IAE H IAE T 

0.99 35.94 50.25 35.94 50.25 
0.999 35.82 50.44 35.81 50.51 

30°C 0.9999 35.81 50.48 35.81 50.54 
0.99999 35.82 50.47 35.81 50.49 
0.999999 35.82 50.46 35.81 50.49 

0.99 43.32 53.66 43.32 53.66 
0.999 43.42 53.55 43.41 53.52 

35°C 0.9999 43.47 53.56 43.50 53.53 
0.99999 43.49 53.60 43.57 53.71 
0.999999 43.49 53.60 43.59 53.77 

0.99 52.24 72.84 52.24 72.84 
0.999 52.17 73.44 52.15 73.56 

40°C 0.9999 52.19 73.66 52.21 73.88 
0.99999 52.20 73.69 52.08 74.00 
0.999999 52.20 73.70 52.21 74.04 
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Table XXX contains results using the disturbance test 

to determine the effects of changing the cluster size. The 

best results occur when the winner method is assigning gains 

to the system. As the mixing tanks operating temperature 

increases, the effect of the changes in cluster size 

diminish. This may be an indication that our controller 

gain selection becomes more important as the system enters 

an area where the controllers at not paired correctly. 
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TABLE XXX 

RESULTS FOR VARYING CLUSTER SIZES USING THE DISTURBANCE 
TEST, 4 MINUTE WINDOWS AND 9 CLUSTERS 

Nominal Linear Quadratic 
Operating Vigilance Interpolation Interpolation 

Temp. p IAE H IAE T IAE H IAE T 

0.99 15.01 61.40 15.01 61.40 
30°C 0.99992 15.67 62.95 15.17 63.18 

0.999999 15.16 62.97 15.14 63.27 

0.99 12.68 28.52 12.68 28.52 
35°C 0.99992 12.74 28.63 12.75 28.70 

0.999999 12.74 28.66 12.75 28.87 

0.99 13.18 41.28 13.18 41.28 
40°C 0.99992 13.18 41.12 13.20 41.11 

0.999999 13.18 41.14 13.17 41.25 

Window Length 

Another influence on the pattern-based gain scheduling 

system is the window length. Window length influences 

pattern-recognition primarily, yet it also determines how 

quickly the gains change to the controllers. 

Window length is the time period the ART2 network looks 

at when analyzing patterns. In this study, 1, 2, 3, 4 and 6 

minute windows were investigated. Window length influences 

pattern recognition in our case as it determines how quickly 

the system realizes that a new steady-state operating point 

has been reached. In addition, window length also 

determines when d~sturbances have entered the system and how 

to handle the situation. 
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A number of benefits are derived from using shorter 

windows with the mixing tank. First, the pattern­

recognition system determines that a new steady-state 

operating point has been reached in a shorter amount of 

time. Thus, new gains are applied to the controller quickly 

that correspond to the new operating conditions. Second, it 

takes less time for the system to detect that a change in 

the system has occurred. Since a change in the process 

takes longer to affect a neural network taught for long 

periods of time, a change in the process is dampened. 

A drawback to using short windows, though, is the fact 

that a disturbance may cause a change in the process that 

changes the gains. Depending on the gains at this 

situation, system response may become less stable. Yet, the 

possibility exists that better gains may also be substituted 

into the system and drive the system back to setpoint 

faster. Thus, the dynamics of the system are important in 

deciding the length of the pattern window. 

Tables XXXI and XXXII contain the results for varying 

window size and cluster size for the linear and quadratic 

methods, respectively, using the setpoint test developed by 

Haggblom. Tables XXXIII and XXXIV are the results using our 

disturbance test for the linear and quadratic interpolation 

methods. 
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TABLE XXXI 

RESULTS USING VARYING WINDOWS LENGTHS, THE SETPOINT TEST AND 
LINEAR INTERPOLATION AND 9 CLUSTERS 

Nom. Vigilance 1 minute 2 minute 3 minute 4 minute 6 minute 
Temp. p IAE H IAE T IAE H IAE T IAE H IAE T IAE H IAE T IAE H IAE T 

0.99 44.49 53.21 43.83 53.60 43.49 53.39 43.32 53.66 43.17 53.73 
0.999 43.79 53.28 43.42 53.55 43.17 53.65 

30°C 0.9999 43.82 53.27 43.47 53.56 43.19 53.79 
0.99999 43.83 53.29 43.49 53.60 43.19 53.82 
0.999999 44.47 53.21 43.83 53.30 42.73 53.62 43.49 53.60 43.19 53.82 

0.99 52.58 74.13 52.42 73.00 52.26 72.78 52.24 72.84 52.80 73.39 
0.999 52.19 73.54 52.17 73.44 52.66 74.00 

35°C 0.9999 52.21 73.71 52.19 73.66 52.66 74.15 
0.99999 52.22 73.73 52.20 73.69 52.66 74.18 
0.999999 52.47 74.27 52.22 73.74 52.22 73.67 52.20 73.70 52.66 74.19 

0.99 35.79 50.04 35.82 50.10 35.91 50.16 35.94 50.25 35.99 50.26 
0.999 35.74 50.37 35.82 50.44 35.94 50.44 

40°C 0.9999 35.73 50.48 35.81 50.48 35.99 50.42 
0.99999 35.73 50.49 35.82 50.47 35.99 50.44 
0.999999 35.58 50.28 35.73 50.50 35.77 50.46 35.82 50.46 36.00 50.44 
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TABLE XXXII 

RESULTS USING VARYING WINDOWS LENGTHS, THE SETPOINT TEST AND 
QUADRATIC INTERPOLATION AND 9 CLUSTERS 

Nom. Vigilance 1 minute 2 minute 3 minute 4 minute 6 minute 
Temp. p IAE H IAE T IAE H IAE T IAE H IAE T IAE H IAE T IAE H IAE T 

0.99 44.49 53.21 43.83 53.60 43.49 53.39 43.32 53.66 43.17 53.73 
0.999 43.78 53.22! 43.41 53.52 43.19 53.64 

30°C 0.9999 43.83 53.25 43.50 53.53 43.23 53.92 
0.99999 43.87 53.36 43.57 53.71 43.25 54.01 
0.999999 44.51 53.49 43.88 53.40 43.82 53.76 43.59 53.77 43.25 54.03 

0.99 52.58 74.13 52.23 73.94 52.26 72.78 52.24 72.84 52.80 73.39 
0.999 52.23 73.91 52.15 73.56 52.64 74.09 

35°C 0.9999 52.22 73.84 52.21 73.88 52.65 74.40 
0.99999 52.42 73.59 52.08 74.00 52.65 74.51 
0.999999 52.43 74.41 52.42 73.00 52.25 73.94 52.21 74.04 52.65 74.55 

0.99 35.79 50.04 35.82 50.10 35.91 50.16 35.94 50.25 35.99 50.26 
0.999 35.73 50.41 35.81 50.51 35.93 50.46 

40°C 0.9999 ' 35.72 50.62 35.81 50.54 36.02 50.50 
0.99999 35.71 50.64 35.81 50.49 36.02 50.58 
0.999999 35.54 50.56 35.71 50.65 35.76 50.53 35.81 50.49 36.02 50.61 

TABLE XXXIII 

RESULTS USING VARYING WINDOWS LENGTHS, THE DISTURBANCE TEST 
AND LINEAR INTERPOLATION AND 9 CLUSTERS 

Nom. Vigilance 2 minute 4 minute 
Temp. p IAE H IAE T IAE H IAE T 

0.99 12.73 28.72 12.68 28.52 
30°C 0.99992 12.74 28.72 12.74 28.63 

0.999999 12.74 28.75 12.74 28.66 

0.99 13.13 40.74 13.18 41.28 
35°C 0.99992 13.11 40.85 13.18 41.12 

0.999999 13.10 40.88 13.18 41.14 

0.99 15.08 61.64 15.01 61.40 
40°C 0.99992 15.29 62.98 15.67 62.95 

0.999999 15.28 62.99 15.16 62.97 
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TABLE XXXIV 

RESULTS USING VARYING WINDOWS LENGTHS, THE DISTURBANCE TEST 
AND QUADRATIC INTERPOLATION AND 9 CLUSTERS 

Nom. Vigilance 2 minute 4 minute 
Temp. p IAE H IAE T IAE H IAE T 

0.99 12.73 28.72 12.68 28.52 
30°C 0.99992 12.73 28.78 12.75 '28.70 

0.999999 12.72 28.94 12.75 28.87 
0.99 13.13 40.74 13.18 41.28 

35°C 0.99992 13.10 40.92 13.20 41.11 
0.999999 13.06 41.07 13.17 41.25 
0.99 15.08 61.64 15.01 61.40 

40°C 0.99992 15.27 63.06 15.17 63.18 
0.999999 15.23 63.09 15.14 63.27 

The results in the tables indicate that shorter pattern 

windows decrease the IAE scores for the controllers. This 

is especially true for operations at 35°C and 40°C. The 

shorter windows cause gain changes to take place quicker and 

thus providing gains best suited for the new operating 

conditions. 

In Tables XXXI ·and XXXII running the tank at 30°C 

produces opposite results. Better performance numbers 

(i.e., lower IAE scores) result for the height controller 

when longer windows are used. Temperature results improve 

when the windows are shorter. A possible answer for this 

occurrence is that the gains for the height controller are 

not the best. The more likely reason for the discrepancy is 

that a trade-off is occurring between the height and 
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temperature controllers. As found in the optimized gain 

studies, the IAE score for one controller can be lowered at 

the expense of the other. The improved control at 30°C 

could be causing this. 

Yet, as the window lengths do decrease, the IAE scores 

in the setpoint tests decrease. The disturbance test 

results present a different conclusion. In a few cases, 

using 2 minute windows generates better IAE scores than 

those of the 4 minute windows. In Table XXXIII at 30°C, the 

4 minute window results are slightly lower than the 2 minute 

window results. Yet, at 35°C, the IAE scores are lowest for 

the 2 minute windows. One thing to note in these charts is 

the slight change in the values. The 2 minute and 4 minute 

results differ only slightly, thus either window size can be 

used. 

Another feature to extract from Tables XXXI, XXXII, 

XXXIII, and XXXIV is the influence of cluster size on 

interpolation using different window lengths. Studying the 

tables shows that larger clusters (i.e., p 0.999 or less) 

produced lower errors. This is consistent with the results 

in the cluster size section. The end result of this 

analysis is that the winner method (p = 0.99) is the best 

implementation method for this study using 9 clusters in the 

gain map. 

While a separate table containing the results for a 

pure winner gain scheduling system is not presented here, 

the results are contained in the tables included in this 
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chapter. Using a cluster size of 0.99 1 the 30°C runs favor 

long windows for the lowest height IAE score. Yet, the 

temperature IAE score is lowest when the 1 minute window is 

used. At 35°C, the best temperature IAE scores occur with a 

window length of 3 minutes. The 4 minute window score is 

comparable. The height results are best at these lengths as 

well. At 40°C, a short window length of 1 or 2 minutes is 

favored. Both controller IAE scores are minimized. 

The results in Table XXXIII and XXXIV provide some more 

information as to what window length to use. At a nominal 

operating temperature of 35°C, the best values IAE scores 

occur with 2 minute windows instead of 4 minute lengths. At 

the other nominal temperatures/ the 4 minute window lengths 

are favored. As stated before, the differences in the 

values are slight. Thus, no definite trend can be surmised. 

The question of window length ought to fall on to the 

process characteristics to determine the length of the 

pattern data window. The characteristic time (~h) for the 

height equation at a nominal height of 20 em is 6.44 minutes 

{Haggblom, 1992) . The temperature time constant (~T) is 

0.50 minutes at nominal conditions of 20 em and 35°C. With 

the short time constant for the temperature, it takes less 

time for the system to respond to changes. With this 

information, a pattern window should be able to monitor the 

process and detect changes in the system quickly. With this 

analogy, a short window length is dictated. 
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At the same time, the window length must be chosen 

which allows the ART2 network to ignore minor disturbances 

to the system. A minor disturbance is one where the system 

does not undergo a change that results in a gain cluster 

change when no setpoint change has occurred. For this 

system, such a disturbance would be short deviations in 

temperature in which the control system returns the process 

back to setpoint before the network decides that another 

pattern better matches the current process conditions. The 

disturbance tests for the mixing tank do not clearly show 

which window length to use. Based on the setpoint test 

results, though, a 2 minute window length would 

satisfactorily handle disturbance rejection and gain 

scheduling with setpoint changes. 



CHAPTER VII 

CONCLUSIONS 

As shown in this paper, the ART2 neural network 

provides a method to implement gain scheduling with a 

feedback control loop. It aides in overcoming the 

disadvantage of nonlinear systems where a PID controller 

must be detuned to handle a wider operating range with worse 

performance. Using gain scheduling allows tighter control 

to be implemented and maintain good performance and maintain 

robustness. Our gain-scheduling system also provides the 

advantage of using more than one scheduling variable by 

analyzing the process patterns and eases the determination 

of which process variables to use as scheduling variables. 

The elements of having previous process data and logs of 

operations make the implementation of gain scheduling a 

promising prospect for implementing advanced pattern­

recognition controls in manufacturing processes. 

Based on the results in Chapter 6, the following 

conclusions have been reached. First 1 the number of 

clusters used depends on the nonlinearity of the system. If 

the process is highly nonlinear, more scheduling prototypes 
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are needed. This provides the system with an adequate 

number of scheduling points. Systems where the gain 

clusters are widely spaced over the operating range/ 

interpolation aides significantly. Our studies have shown 

that clusters should be chosen to reflect normal operating 

conditions. 

For cluster size/ the best results for the 

interpolation techniques occurred when the cluster size is 

large. The cluster size should remain smaller than the 

radius that causes the clusters in the gain map to overlap. 

This cluster size allows interpolation to take place and 

produces the best results in this thesis. 

The third conclusion found that shorter window lengths 

are needed. The length of the system is determined by the 

process dynamics. Based on this study, 2 minute pattern 

windows appear to offer a balance between detecting setpoint 

changes and rejecting disturbances that may cause a gain 

change. 

For the interpolation techniques, linear interpolation 

offers a simpler method of implementing interpolation. Yet, 

the winner method works equally well for systems with 9 

scheduling prototypes. No clear cut decisions can be made 

on the use of interpolation except when the number of 

prototypes is small. 

While using the gain associated with the most similar 

pattern prototypes provides good performance, interpolation 

of the gains is normally used with gain scheduling. Our 
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studies of two types of interpolation techniques showed that 

little improvement occurred over the winner-takes-all method 

for assigning gains. Large clusters also improved control. 

Yet, the large clusters began favoring the winner method. 

If the process has a few learned prototypes for scheduling, 

interpolation provides a beneficial aide. Otherwise, a 

dense packing of steady-state prototypes favors the winner 

method. Finally, shorter window times also provide better 

control of the mixing tank. The system is able to detect 

setpoint changes quickly while still rejecting the effects 

of disturbances. 

An important conclusion to this work lies with the 

nature of gain scheduling. Gain scheduling is designed to 

handle changes in the operating conditions of the process. 

These changes may range from setpoint changes to the 

introduction of disturbances. Yet, like traditional gain 

scheduling, pattern-based gain scheduling relies on 

monitoring process variables, which in turn are used to 

drive a feedback control loop. Feedback control doesn 1 t 

care where the disturbances originate; it is designed to 

correct for them. When gain scheduling with the pattern­

recognition approach, it should be remembered to use the 

gains for steady-state operating points which handle 

setpoint changes. 
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Recommendations 

With the development of the ART2-gain scheduling 

system, a new door has opened up for process control. A few 

studies are still required in order to determine specific 

answers for implementation and theory. 

Recommendations for future work include: 

1) performing a stability analysis of the gain scheduling 

approach using the ITAE setpoint method to find the 

gains. The analysis will build upon the work of Shamrna 

and Athens as well as Rugh. 

2) further work to examine interpolation schemes. Besides 

the linear and quadratic methods for interpolation, 

perhaps new schemes such as a center of mass approach 

would prove beneficial. Further work ought to look at 

adding weight to the expected new operating point. 

3) further work on determining the size of the pattern 

window. This is a factor of process dynamics. The key 

question is finding a suitable length that prevents the 

system from reacting to disturbances and one that 

detects setpoint changes quickly. 

4) tuning the ART2 network to detect specific setpoint 

changes such as temperature or height changes for the 

mixing tank. As demonstrated in Chapter 4, using gains 

tuned specifically for the setpoint change minimize the 



error generated. A general steady-state gain could 

then be used to handle disturbances in the system. 

5) investigation of using gain scheduling with integral 

time and disturbance time scheduling. This system 

presents the opportunity to perform these tasks as 

well. 

6) utilization of wavelet pattern representations to 

recognize steady-state patterns and detect new 

operating conditions. The work of Raghavan and 

Whiteley (1993) promises to improve monitoring of 

sensor patterns. 
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7) utilization of previous process data to determine the 

normal operating points of the process. With the ART2 

network's ability to cluster the patterns, these 

clusters can be associated with gains suitable for that 

operating condition. 

8) testing the ART2 neural network's ability to handle 

process signal noise. In a plant situation, all 

process data has some type of noise, and the ability of 

the pattern recognition system to reject process noise 

is important. 
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This appendix provides an example of how gains were 

calculated for the gain map. 

The first step in calculating process characteristics 

is to find the rate of water leaving the mixing tank. The 

mass flowrate out of the tank is found using Equation 14. 

For an operating height of 20 em, the mass flowrate of the 

the mixing tank is 11.36 kg/min. Assuming a steady-state 

system, the mass flowrates for the hot and cold water 

streams is found by solving Equations 13 and 18 

simultaneously. With the inlet hot water stream at Sl°C and 

the inlet cold water stream at l7°C, no disturbance flow, 

an operating temperature of 35°C and an operating height of 

20 em, the mass flowrate of hot water into the tank is 6.01 

kg/min. The cold water flowrate into the tank is 5.34 

kg/min. 

Once the flowrates into the tank are determined, the 

input voltage to the hot water and cold water control valves 

needs to be calculated. These voltages are important in 

calculating the process characteristics using equations 

developed by Haggblom {1992) . Equations 27 and 28 calculate 

the input voltages for the hot and cold water streams, 

respectively. 

VH ( yH 
UH ffiH - ffiHo) 

Vc ac{mc - mco/c 

Constants for Equations 27 and 28 can be found 1n Table 

XXXV. With operating conditions of 35°C and 20 em, the 

( 27) 

(28) 
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voltage sent to the hot water control valve is 7.34 V. The 

cold water control valve has an input voltage of 7.00 V. 

TABLE XXXV 

CONSTANTS FOR THE MIXING TANK SYSTEM 

ah = 3.965 Yh = 0.3446 ffiHn = 0.0484 kg/min 

ac = 4.212 Yc = 0.3244 mrn = 0.5510 kg/min 

With the input voltages calculated, the process gain 

relating the hot water control voltage to the temperature is 

found using Equation 29. 

K.hvh (2 9) 

where VH is the steady-state input voltage/ h is the 

steady-state height in the tank and m is the steady-state 

outlet flowrate. At 35°C and 20 em, the value of Kh~ is 

53.59 V/crn. 

Another important value for height gain calculation is 

the time constant. That constant is calculated using 

Equation 30 and is 6 .. 44 minutes at 35°C and 20 em. 
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TH 

( 3 0) 

For application of the direct synthesis technique, a 

settling time Tc was specified at 0.3 minutes. This value 

was determined based on a step change to the process. Using 

equations found in Seborg (Seborg et. al., 1989), the 

controller gain Kc is found using Equation 31. 

( 31) 

Kc for 35°C and 20 em was 0.40 V/°C. 

A variety of methods are possible for calculating the 

gain for the temperature controller. An example of 

calculating the gain using the ITAE setpoint method will be 

shown. The deadtime Td for this process loop is 0.3 

minutes. 

First, the process characteristics for the temperature 

system need to be calculated. Using Equation 32, the gain 

relating input voltage of the cold water control valve to 

the mixing tank temperature is -3.34 V/°C. 

Krvc ( 3 2) 
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where Vc is the steady-state voltage to the cold water 

control valve, Tc is the steady-state temperature of the 

cold water inlet stream, T is the steady-state temperature 

of the mixing tank. The temperature time constant is 0.50 

minutes at 35°C and 20 em using Equation 33. 

tT 
phA 

( 3 3) 
m 

With these process values, the ITAE setpoint method 

calculates a controller gain of -0.28 v;ac using Equation 

34. 

KcT = 

L 3 0 5 * ( ~ r959 
( 34) 

Krvc 

When this gain is derated 1 the temperature controller 

gain is multiplied by a constant (0.50). The resulting gain 

is -0.14 V/°C. 

These gains are calculated for a variety of operating 

points and associated with the steady-state process clusters 

in the gain map. 
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