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CHAPTER 1 

INTRODUCTION 

Naturally Occurring Radioactive Materials (NORM) 

The acronym NORM refers to naturally occurring radioactive material (NORM). 

Many radionuclides occur naturally at low levels. These materials are part of the natural 

radiation environment of the earth. For example, the radioactive isotope of potassium, 

K-40 comprises 0.012 percent of all potassium on earth and has a half-life of 1.28 x 109 

years (Das, Faanhof, and Van Der Sloot, 1989). Radionuclides occur in nature either 

because the nuclide has a particularly long half-life (e.g., Rb-87, t112 = 4.8 x 1010 years), or 

because it is produced by a parent nuclide with a long half-life (e.g., Rn-222, t112 = 

3.84 days produced by the decay ofU-238, t112 = 4.5 x 109 years). Table I lists additional 

naturally occurring radioactive elements with long-lived NORM nuclides excluding ura

nium and thorium isotopes and their daughters. 

Under the State of Louisiana regulations issued September 1989, NORM means any 

nuclide which is radioactive in its natural physical state (Louisiana NORM Regulations, 

1989). Under these regulations, materials containing NORM which yield a radiation expo

sure rate greater than or equal to 25~hr at a distance of one centimeter, are subject to the 

handling and disposal provisions of these regulations (LADEQ, June 1992). 
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TABLE I 
Additional Naturally Occurring Radioactive Elements 

Nuclide Decay Mode Half-Life (yrs) 

K-40 13 1.28 x 10~ 

Rb-87 13 4.8 X 1010 

Cd-113 13 9 X 1015 

In-115 13 5.1 X 1014 

La-138 13 1.1 X 1011 

Nd-114 a 2.1 X 1015 

Sm-147 a 1.0 6x 10 11 

Sm-148 a 8 X 1015 

Gd-152 a 1.1 X 1014 

Lu-176 13 3.6 X 1010 

Hf-174 a 2 X 1015 

Re-187 13 4 X 1010 

Pt-190 a 6 x 1011 

Although the definition of NORM includes many isotopes, radionuclides produced 

by the decay of uranium and thorium isotopes are of special interest. Decay chains for 

U -238 and Th-232 are shown in Figure 1 (Anderson, 1990). In particular, radium (Ra) and 

radon (Rn) are the two radioactive elements of concern in the oil and gas industry. 

Although radium has over 25 isotopes, only Ra-226 produced by the decay of U-238 and 

Ra-228 produced by the decay of Th-232 will be considered here. These radioisotopes of 

Ra are of interest because of their relatively long half-lives (Ra-226, t 112 = 1,599 years; 

Ra-228, t112 = 6.7 years). Similarly, Rn has a large number of isotopes, though only one, 

Rn-222, will be discussed here. All other isotopes of Rn have insignificantly short 

half-lives, and therefore cannot become widely dispersed. 

Because both uranium and thorium occur naturally in underground formations and 

their radium decay products are slightly soluble, both Ra and Rn are produced with hydro-

carbons, and hydrocarbon and water handling equipment can become contaminated by 

these nuclides and their decay daughters. Radium contamination can occur in any equip-

ment which is exposed to produced water. Produced water refers to water that is produced 

from a well, along with oil and gas. Such contamination may be present in pipe scales, tank 
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Figure 1. Decay chains for U-238 and Th-232 series. 
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bottom sludges, separator sands, and other precipitates arising from produced water. 

Radon, a noble gas, produces radioactive decay daughters (e.g., Pb-210, t112 = 22.3 years) 

which can contaminate gas handling equipment. Since Rn has a boiling point of -6l.8°C 

( -79.2°F), close to that of light hydrocarbon gases, it can become concentrated in cryogen-

ically separated natural gas liquids (Gray, 1993). 

Significance of NORM 

Decaying atoms emit radiation in the forms of alpha particles (helium nuclei), beta 

particles (electrons), and gamma rays (high energy photons). These emissions are known 

to damage biological tissues are hazardous if a large dose of radiation is absorbed by the 

body (Mann, Rytz, Spernol, 1991). Because of this, strict health-based limits have been 

established for controllable human exposure to ionizing radiation. 

Ingestion of these radionuclides in drinking water is the primary public health con

cern due to the long-term effects of radionuclide retention in the body (Conner et al., 1993). 

Maximum contaminant levels were set by the U.S. Environmental Protection Agency 

(EPA) in 1976 for Ra-226, Ra-228, and gross alpha and beta radiation levels in drinking 

water. Refer to Table II for maximum contaminant levels set by the 1976 National Interim 

Regulations for drinking water. Controlling NORM waste handling and disposal became a 

necessity to the oil and gas industry when state regulations were promulgated. 

TABLE II 

Maximum Contaminant Levels as Set by the 1976 National Interim Regulations 

Gross alphaa 15 pCi!L 

Radium-226 and -228 5 pCi/L 

Gross beta 50 pCi!L 

Man-made radionuclides 4mrem 

aExclusive of contribution from uranium and radon, for which insufficient 
data were available to set regulations. 
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The EPA estimates that U.S. industry generates tens of billions of metric tons of 

low-activity waste each year, but the disposal options are limited (Geotimes, 1993). The 

EPA also estimates that petroleum operations in the U.S. generate approximately 456 x 

103 tons of NORM wastes per year (413.7 x 109 grams)(EPNSCA, 1991). Most NORM 

is stored, buried, disposed of on-site, or ignored (Gray, 1993). The EPA estimates that up 

to one-third of the oil and gas facilities in Louisiana have NORM contamination (Ruther

ford and Richardson, 1993). The Louisiana Department of Environmental Quality 

(LADEQ) estimates that over 20,000 facilities are NORM contaminated in Louisiana (Per

sonal Communication, 1994). The disposal costs of NORM are high. The LADEQ 

estimates that the cost of storing these low level radioactive wastes could run about $175/cu 

ft (Gray, 1993). According to U.S. Ecology, the average oil field generates approximately 

100 drums of NORM waste per site, and each of those drums cost anywhere from $185 to 

$600, depending on the concentration and type of NORM (Personal Communication, Fre

derick Gardner, 1993). The figures are independent of transportation costs and permitting 

costs. Amoco Production Company estimates onshore disposal cost to be approximately 

$350 per 55-gallon drum, which also includes lab work and packaging (Personal Commu

nication, Angela Curry, 1994). Offshore disposal costs are much higher than onshore due 

to the cost of transportation. Amoco Production Company estimates $700 to $800 per bar

rel to dispose NORM waste for offshore. Cost of permitting is not included in these figures 

(Personal Communication, Bill Scaife, 1994). 

Benefits of Achieving Workable Risk Reduction or Waste Separation Technologies 

At present, there is no satisfactory solution to NORM waste disposal (Gray, 1993). 

The NORM-contaminated waste cannot be disposed of in ordinary landfills for oil and gas 

production wastes. Only a limited number of facilities are licensed to accept NORM waste, 

and the use of such facilities is very costly. Downhole disposal of NORM wastes is an 

option for low volume waste streams (e.g., pipe scale), but such disposal presents some 
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technical and logistic challenge, and is inappropriate for high volume waste streams (e.g., 

contaminated soils). For instance, the volume of a well that is 10,000 ft deep with an annu

lar casing diameter of eight inches is approximately 622 barrels (26,000 gallons), and the 

volume of one acre-ft of land is approximately 7,758 barrels (326,000 gallons). 

Independent of the disposal method, reduction of NORM waste stream volume is 

highly desirable, since only a small fraction of these NORM wastes is radioactive. Reduc

tion of NORM waste volume would necessarily reduce future liability and reduce current 

costs. Further, reduction of NORM waste volume could make downhole disposal more 

attractive. 

Objectives 

The foci of the study were: (1) to perform a detailed characterization of NORM in 

vessel solids by evaluating chemical, physical, mineralogical, and radiochemical analyses 

of NORM, and (2) develop chemical and mechanical volume reduction techniques. Vessel 

solids include separator sands and tank bottoms. After the detailed characterization of the 

vessel solids, chemical and mechanical separation techniques were developed for waste 

volume reduction. The soil shielding experiment was performed to determine the effective

ness of various shielding materials. The radon emanation experiment was performed to 

mitigate radon exposure. 
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CHAPTER2 

BACKGROUND AND REVIEW OF LITERATURE 

Occurrence of Oil Field NORM 

The recognition that natural materials can emit ionizing radiation dates from Bec

querel 's observations of the effects of uranium-rich minerals on covered photographic 

plates (Becquerel, 1896) and the isolation of polonium and radium from pitchblende by the 

Curies (Curie, Curie and Bemont, 1898). Knowledge of the presence of natural radioactive 

substances in association with hydrocarbon production dates from the early twentieth cen

tury when radon was found in some Canadian natural gases (Satterly and McLennan, 

1918). Since then, numerous workers have observed elevated levels of actinide decay 

series elements in oil, natural gas, pipe scales, and vessel solids (separator sands and tank 

bottoms). Published reports of these occurrences are available for the United States, the 

North -sea, and Russia (Anderson, 1990), but the ubiquity of U and Th in the earth's crust 

suggests that Ra-bearing scales will be common wherever produced water is salty, hot and 

depleted in sulfate. Varied formation and surface chemistries cause variations in radioac

tivity brought to the surface. The primary radioisotopes of interest in these so-called 

NORM (naturally occurring radioactive materials) contaminated materials are Ra-226 and 

Ra-228 in pipe scales and vessel solids, Rn-222 in natural gases, and Pb-210 deposits in 

natural gas handling equipment. 

The widespread occurrence of actinide decay series elements is not surprising. Both 

parental elements, U and Th, are relatively abundant in earth solids. On a whole earth basis, 

U (18 ppb) and Th (65 ppb) are comparable in abundance to materials perceived as reason-
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ably common (i.e., indium, 2.7 ppb; thallium, 4.9 ppb; mercury, 9.9 ppb; iodine, 17 ppb; 

cadmium, 21 ppb; tantalum, 29 ppb; beryllium, 56 ppb; cesium, 59 ppb; rhenium, 76 ng/g; 

silver, 80 ppb; and bromine, 135 ppb) (Ganapathy and Anders, 1974). Both U and Th are 

lithophilic elements, and consequently, both are substantially more abundant in the earth's 

crust than in the earth as a whole (crustal abundance: U = 2.7 ppm; Th = 9.6 ppm) (Taylor, 

1964). Moreover, both U and Th are sometimes greatly concentrated in some sedimentary 

rock types (shales, coals, phosphatic rocks, some limestones and some sandstones) (API, 

1990). Because of their chemistry, however, neither U norTh are typically mobilized from 

hydrocarbon reservoirs and concentrated in scales and sludges. However, their radium 

decay products are slightly soluble (API, 1990). In contrast, their Ra and Rn decay daugh

ters are mobilized from hydrocarbon reservoirs (API, 1990). Gas streams contain Rn, and 

gas handling equipment can become increasingly radioactive from the accumulation of 

Pb-210, a relatively long-lived (t112 = 22 yr) decay daughter ofRn-222 (Gray, 1993). Min

eral scales and sludges, particularly barite (BaS04), precipitated from produced water can 

become quite radioactive due to incorporation ofRa-226 (t112 - 1,600 yr) and Rn-222 

(t112 - 3.8 days); decay daughters, respectively, ofU-238 and Th-232. If produced water is 

discharged into earthen pits, as was sometimes past operating practice, soil in the pits may 

become contaminated with Ra as an exchange cation on clays, as a constituent in BaS04, 

and possibly otherwise. 

The NORM accumulated in production equipment scales typically contains radium 

coprecipitated in barium sulfate. Sludges are dominated by silicates or carbonates, but also 

incorporate trace radium by coprecipitation. Typically, Ra-226 is in equilibrium with its 

decay products, but Ra-228 has subequilibrium decay products. Reduced concentrations 

of Ra-228 daughters result from the occurrence in the Th-232 decay chain of two radium 

nuclides separated by the 1.9-year half-life of Th-228. Thus, radium mobilized from the 

formation initially becomes depleted in Ra-224 (3.6 days) until more is generated by 

Ra-228 decay through the Th-228 intermediate (API, 1990). 
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Chemistry of Radium 

Radium is an alkaline earth metal (Group IIA). The radiological significance of Ra 

is its incorporation in bony tissue. The chemical behavior of Ra is relatively simple. Only 

one oxidation state ( +2) is known. It is a lithophilic element. It does not form minerals of 

its own. The atomic and ionic size of Ra are nearly equivalent to those of Ba. Conse

quently, its geochemical behavior is much like that ofBa. The key chemical characteristics 

of Rain geologic settings of environmental interest (e.g., surface water, groundwater, sea

water, soils and sediments) are its formation of highly insoluble sulfates and carbonates, 

lack of strong association with common natural ion pairing agents, and very strong binding 

by anionic solids. In short, Ra would not be expected to be a particularly mobile element 

in most natural earth surface environments. In the presence of clays or organic matter, Ra 

will be strongly associated with these anionic solids through cation exchange. 

Radium is a polyisotopic element. Twenty-five Ra isotopes with mass numbers 

between 206 and 230 are known, but only four occur naturally (Weigel, 1977; Brown, Dair

iki and Doebler, 1978). These naturally occurring isotopes, Ra-226, Ra-228, Ra-224 and 

Ra-223, are all intermediate members of the three natural actinide element decay series 

(Figure 1). They occur in nature only because they are continually produced by long-lived 

parents. Even the longest lived isotope, Ra-226, has a geologically brief half-life 

(1 ,599 yr). The half-lives of the other natural Ra isotopes are far shorter. As a consequence 

of its long half-life and the abundance of its long-lived parent, U-238, the most important 

Ra isotope in nature is Ra-226. Except for Ra-228, all of these isotopes decay via modestly 

energetic (-5 MeV) a. emissions to yield an Rn isotope. In this process, relatively low 

energy ')'photons (0.1 to 0.4 MeV) are also emitted. The exception, Ra-228, decays via a 

~emission to Ac-228, then via~ emission to Th-228, and finally via a. emission to Ra-224. 

Since Ra is formed by the decay of U and Th isotopes, its distribution in earth mate

rials is, to a first approximation, dependent on the distribution of U- and Th-bearing 
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minerals. Even so, observed ratios of Ra-226/U-238 (and ratios of Ra-224, 

Ra-228/Th-232) show deviations from secular equilibrium. A limiting case of radioactive 

equilibrium in which A.1 << A-2, and the parent activity does not decrease measurably during 

many daughter half-lives is known as secular equilibrium (A. is the charactistic decay con

stant for the species). This indicates that, as would be expected, Ra has distinctly different 

geochemical behavior from its long-lived parents, and thus travels through the environment 

via distinctly different pathways. 

Because U and Th are widely distributed in the earth's crust, Ra is also widely dis

tributed. As can be readily observed, Ra-226 is more abundant in silica-rich igneous rocks 

than in silica-poor rocks. Among igneous rocks, Ra-226 is more abundant in acidic rocks 

than in basic or ultrabasic rocks. Clay-rich, organic-rich, and phosphate-rich sedimentary 

rocks have far greater levels of Ra-226 than carbonate rocks which, in turn, are richer in 

Ra-226 than typical sandstones. 

In normal uncontaminated soils, the abundance of Ra-226 appears to be controlled 

by the abundance of U and Th, and reported Ra-226 activities in these soils show a broad 

range (0.1 to 3/4pCi/g) (Frissel and Koster, 1990; Iyengar, 1990). Soils associated with 

Th-rich monazite occurrences can contain 1,000 pCi/g Ra-226 (Khademi, Alemi and Nas

seri, 1980), and under other special circumstances (a soil derived from highly weathered 

limestone associated with volcanic ash), levels of Ra-226 in excess of 300 pCi/ g have been 

observed in uncontaminated soils (Marsden, 1963). 

Typically, surface waters on continents have very low levels ofRa-226 activity. The 

estimated mean global value for rivers is approximately 0.07 pCi/L, but some drainage 

basins in North America, Europe, Asia and Africa have levels much greater than this (up to 

7.9 pCi/L in a Czechoslovakian river) (Iyengar, 1990). The reasons for such elevations in 

Ra-226 activity reflect either local geology or anthropogenic inputs. Groundwater typically 

contains more Ra-226 than surface water, and Ra-226 activities measured in groundwater 
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are highly variable. Geothermal settings or association with U, Thor phosphate mineral

ization can yield very high levels of Ra-226. In Finland, for example, well water from aU

and Th-rich granite has been measured at just over 255 pCi/L Ra-226 activity (Asikainen 

and Kahlos, 1979). 

Reported Ra-226 activity is low in all of the seawater data reviewed by Iyengar 

(1990). This is as expected due to the high so4-2 content of seawater. The highest value 

reported for seawater was just under 1.5 pCi/L. The general trend observed is for Ra-226 

activity to increase with increasing water depth in the open ocean (increasing from about 

0.03 pCi/L in surface waters to 0.1 pCi/L in deep waters). The apparent removal of Ra 

from surface seawater has been attributed to its association with siliceous organisms which, 

when they die and fall to the bottom, are known to scrub Ba from surface seawater. Coastal 

seawater Ra-226 activities are higher than open ocean surface activities and are comparable 

to those observed for deep oceanic water. 

Observations of normal groundwater, surface water and seawater suggest that Ra is 

less mobile than U. Typically, the Ra/U ratio of these fluids indicates a deficiency of Ra. 

This is not true for high salinity deep subsurface waters produced with hydrocarbons. 

These waters (generally referred to as produced water or formation brine) can be highly 

enriched in Ra with respect to U, and the isotopic composition of the Ra indicates a variety 

of parental (i.e., U and Th) compositions for the Ra sources (Bobin, 1933; Komlev, 1933; 

Nikitin, 1933; Gott and Hill, 1953; Pierce, Mytton and Gott, 1955; Armburst and Kuroda, 

1956; Kraemer and Reid, 1984; Kramer, 1981, 1985, 1986a, 1986b). Ostensibly, the high 

concentrations of Ra observed for produced water is due to the extremely high total salinity 

of these waters, their low so4-2 content, and high chloride content. Such waters may 

enhance the solubilization of Ra by virtue of inhibited ion exchange with clays, the lack of 

a low solubility precipitate, and possibly the formation of an Ra-Cl ion pair (Kraemer and 

Reid, 1984). Some workers have suggested that the abundance of Rain hydrocarbon-as-

11 



sociated waters is the result of enhanced Ra solubilization by unknown and unidentified 

organic-inorganic interactions (Filonov, 1964; Gustalo, 1964, 1967). Gustalo ( 1967) 

showed a fairly convincing correlation between Ra abundance and the quantity of hydro

carbon gas dissolved in subsurface waters in the Dnieper-Donets basin. 

Ra is incorporated by both plants and animals in aquatic; marine and terrestrial envi

ronments. An enormous literature exists concerning Ra uptake by biota. This literature has 

been thoroughly reviewed in recent publications of the International Atomic Energy 

Agency (1990). In overview, the conclusion that can be drawn from this body of informa- . 

tion is that although Ra is taken up by both plants and animals, it has a very poor transfer 

efficiency across trophic levels. Under normal environmental geochemical conditions, Ra 

is not substantially bioconcentrated in soft animal tissues. 

Marine algae, zooplankton, molluscs, crustacea and fish incorporate radium from 

seawater into their tissues and concentrate it to varying degrees (concentration factors vary

ing from -10 to -103 (Bonnoto, 1990; Iyengar and Rao, 1990). In general, lower trophic 

level organisms, such as phytoplankton, concentrate radium from seawater to a higher 

degree than higher trophic levels (e.g., fish). This is poor migration of Ra through the 

marine food chain. In addition, as would be expected, hard, calcified biological materials 

(shell, bone and chitin) are relatively richer in Ra than soft tissues (Iyengar and Rao, 1990). 

In freshwater systems, planktonic and attached algae can accumulate Ra from water, 

and rooted macrophytes appear to be able to extract it from sediments. Observed concen

tration factors for both macrophytes and algae are small: (-1 0) for algae, and for 

macrophytes accumulating Ra from water, <<1 (0.014) (Williams, 1990). Freshwater 

porifera, molluscs (both gastropods and bivalves), arthropods (both crustaceans and 

insects), and fish can take up Ra from their environment (Jeffree, 1990; Justyn and Havlik, 

1990). Uptake ofRa by aquatic animals depends on many factors including age, diet, nutri

tional status, levels of other alkaline earth metals and sex. As with marine animals, Ra 
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varies among tissues, but tends to be concentrated in hard calcium-rich biological materi

als. Concentration factors (with respect to water) for freshwater fish are comparable to 

those of marine fish (-1-5 x 102). 

In general, terrestrial plants actively discriminate against incorporating Ra in their 

tissues. Terrestrial plants typically have bioconcentration factors <<1.0 (Simon and Ibra

him, 1990). An interesting exception to this overall behavior is the Brazil nut tree which 

notably concentrates Ra (-100 x soil concentrations) in its nut (i.e., endosperm) and to 

lesser but significantly large factors in other tissues. Interestingly, plants growing in soils 

with notably high Ra activities (both natural soils and uranium mill tailings) do not exhibit 

greater uptake, proportionally, than similar plants in normal soils. In fact, one of the sur

prising aspects of investigations of Ra uptake by terrestrial plants is the finding that 

bioconcentration factors can decrease exponentially with increasing Ra concentration. 

Lastly, terrestrial primary consumers do not appear to easily transfer Ra to their soft 

tissues in normal environmental settings (Halbert et al., 1990). The fraction of Ra con

tained in food and water consumed by domestic animals that can be transferred to tissues 

used as food by humans is quite small ( .... 1 o-3 maximum and typically .... 10-4). 

Health Effects of Radiation Exposure, Biological Consequences of Radiation Exposure 

If body tissue or organs are exposed to excessive radiation, biological damage can 

occur in the individuals exposed or in their offspring. The biological consequences of 

exposure to ionizing radiation include somatic effects such as anemia, fatigue, loss of hair, 

cataracts, skin rash, and cancer. Genetic effects include inheritable changes resulting from 

mutation in reproductive cells (Sawyer and McCarty, 1978). 

External radiation sources can pose a threat to human health, but this threat can be 

easily mitigated. When naturally occurring radionuclides spontaneously decay, they emit 

ionizing radiation in the form of helium nuclei, electrons and high energy photons (referred 
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to as a,~ and yradiation, respectively). Despite their high energies, the external radiation 

threat to human health posed by a and ~ emissions can be readily mitigated by modest 

shielding. The energy of a particles is completely dissipated after traveling a few centime

ters in air, and a particles cannot penetrate human skin. Although far more penetrating, ~ 

particles can be completely stopped by a thin aluminum sheet and can penetrate only the 

surface layer of human skin. In contrast, y radiation can penetrate thick steel and can com

pletely pass through the human body. This makes y radiation the primary risk from an 

external radiation source. 

Internal radiation sources pose a far greater risk to human health than external 

sources. Internal radiation sources, once in place, cannot be avoided. For the same degree 

of radioactivity, internal sources which emit a and ~particles pose a greater health threat 

than y emitting sources. This is because a and ~particles deposit all their energy in tissues 

surrounding their source. The high energy photons comprising y radiation do not interact 

as strongly with matter, and much of the energy from an internal y source will pass harm

lessly from the body. 

Internal radiation sources derive from radioactive material that is either ingested or 

inhaled. After inhalation or ingestion, this radioactive material may remain as distinct for

eign particles, or actually be metabolized and become incorporated in tissues. Depending 

on the physical and chemical nature of the inhaled or ingested material, it may or may not 

be able to pass from the body. The most damaging internal source materials, then, are those 

which are a and ~ emitters whose chemistry or physical size allow more or less permanent 

association with biological tissues. 

Radium (Ra) isotopes and their decay daughters, especially radon gas (Rn), can be 

viewed as high health hazard materials. Most of the energy released from the decay of Ra 

and its decay daughter products is via the emission of a particles. The chemistry of Ra is 

similar to that of calcium (Ca). Consequently, Ra can become incorporated in bone and 
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other Ca-bearing tissues. When so incorporated, the radioactive decay ofRa and its daugh

ter products will expose surrounding tissues to a high dose of ionizing radiation. Because 

it is a gas, Rn, if present in air, will be inhaled. More importantly, Rn decay yields radio-

. active metallic ions which may become associated with fine particles. If sufficiently fine, 

such particles may become lodged in deep lung tissue. In fact, inhalation of Rn-222 present 

in normal air is estimated to comprise the single largest radiation dose to the human popu

lation at large (Nero, 1989). 

Regulatory Climate 

In September 1989, the State of Louisiana became the first state to regulate NORM. 

The current Louisiana NORM regulations were promulgated in June 1992 (LAC 

33:XV.14). These regulations contain a number of specific provisions which: (1) exempt 

specific materials from regulation, (2) specify radiation detector characteristics, (3) provide 

for general licensing of NORM producers and special licensing for NORM handlers and 

processors, ( 4) restrict the release of land contaminated by NORM, (5) specify worker pro

tection requirements, (6) specify NORM waste storage and transfer requirements, and 

(7) dictate financial responsibilities for NORM transporters, treaters and storers. 

The net effect of these regulations and their accompanying implementation docu

ment (LADEQ, 1992) has been the reengineering how the petroleum industry carries on 

normal production operations and property transfers in Louisiana. Surface equipment, pip

ing and soil at each facility must be surveyed for radiation. Each NORM general license 

must submit a worker protection plan for approval by the LADEQ Radiation Protection 

Division. All NORM-contaminated areas must be clearly marked. Release of land for 

unrestricted use must pass a stringent radiation survey and a written request for release must 

be submitted to the Radiation Protection Division. Approval of NORM disposal options is 

conducted on a case-by-case basis. NORM-contaminated piping and equipment must be 
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given special handling, and decontamination of NORM-contaminated equipment and han

dling of NORM waste must be conducted by a specially licensed contractor. 

Proposed and existing regulations in other states vary in detail, but are generally sim

ilar to those in force in Louisiana. At present, four states (Louisiana, Mississippi, Arkansas 

and Texas) have NORM regulations in force and thirteen states (Alabama, Kentucky, New 

Mexico, Oklahoma, Illinois, Michigan, Alaska, Kansas, Ohio, California, Colorado, North 

Dakota and Pennsylvania) either are reviewing and revising NORM regulation drafts or are 

studying the issue of NORM regulation. No federal regulations with specific reference to 

NORM are currently in force. Even so, this issue is under study at the federal level (EPA. 

1991). Further, some materials containing elevated levels of NORM in the absence of a 

specific exemption could be regulated under Hazardous Materials Regulations 

49CFR 171-179. Lastly, NORM wastes generated by operations regulated by the MMS 

(Minerals Management Service) are subject to MMS restrictions and guidance. As cur

rently practiced, NORM waste management involves identification of NORM 

contamination, decontamination of tubulars (tubing), equipment and soil, packaging of 

NORM wastes, and disposal of NORM wastes. A general guidance document has been 

prepared by American Petroleum Institute (API) (API, 1992). 

NORM contamination is identified using commonly available NZI scintillation 

detectors capable of J,.LR resolution. Tubulars and equipment are decontaminated by water 

or air blasting techniques engineered to eliminate air emissions of particulates. Detailed 

decontamination may require hand scrubbing. Few soil decontamination projects have 

been attempted to date, but these have typically involved excavation. When possible, 

NORM-contaminated fines have been concentrated from inert coarse materials (e.g., 

shells). NORM waste packaging is somewhat variable. Often, NORM wastes are simply 

placed in 55-gallon steel drums, but "encapsulation" in lengths of steel casing or PVC pipe 

has become an increasingly practiced alternative (Hoover, 1994). 
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Both downhole and landfill disposal of NORM wastes are accepted alternatives 

(API, 1990). Because of a general fear of uncontrolled dispersion, NORM waste downhole 

injection has not been frequently practiced. More often, NORM wastes have been 

"entombed" as part of the material used in well plugging and abandonment operations. 

Since, in reality, landfill disposal of NORM wastes actually constitutes storage rather than 

disposal, it is a less desirable "disposal" option. Nevertheless, landfilling at the two sites 

in the United States which will accept NORM wastes is frequently practiced for purely 

logistical reasons (i.e., wells scheduled for plugging and abandonment are not always avail

able). 
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CHAPTER3 

MATERIALS AND METHODS 

Characterization of NORM Vessel Solids 

Examples of vessel solids (tank bottoms and separator sands) were obtained from 

equipment located in the Gulf Coast region of the United States and from Trinidad. Upon 

receipt, these samples were divided into aliquots for specific analyses: oil, water and solids 

content, mineralogical composition, bulk chemistry, particle size, radionuclide identifica

tion and quantification, scanning electron microscopy and surface chemistry. Excess vessel 

solids were combined as a "composite vessel solids" sample which was used in the mechan

ical separation and dissolution experiments. Table III provides a summary of the analyses 

conducted and the methods employed. Table IV provides cursory information concerning 

the origin of the samples tested. The general scheme of sample processing and analysis is 

shown in Figure 2. 

Radiation Screening 

Before the samples were extensively processed, risks that might be associated with 

sample processing and shipping was assessed by screening each sample for emission of 'Y 

radiation. The yradiation field at a distance of one inch from the sample was measured with 

a Ludlum Model3-97 survey meter using the intemal1 in. x 1 in. Nai detector (Ludlum 

Measurements, Inc., Sweetwater, TX). Samples were received in plastic bags or glass jars. 

Measured radiation field intensities (adjusted for background radiation of approximately 
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TABLE III 

Analyses Used in Vessel Solids Investigation 

Analysis Methods Used 

Gross physical Examination Visual Observation, Photography 

Microscopic Examination Optical Microscopy, Photomicrography, Scanning 
Electron Microscopy 

Particle Size Characterization Sieve Analysis, Laser Interferometry, Scanning 
Electron Microscopy 

Surface Chemistry Scanning Electroscopy, Energy Dispersive X-Ray 
Fluorescence, Electron Backscatter Imaging 

Bulk Chemistry Wavelength Dispersive X-Ray Fluorescence, 
Inductively Coupled Atomic Emission Spectros-
copy 

Mineralogy X-Ray Diffractometry 

Oil, Water, Solids Content Gravimetric Thermal Retorting 

Radiochemistry HPGe Gamma Spectrometry 
Radiation Field Determination 

TABLE IV 

Geographic Locations and Sample Type 

Dose Rate* 
Sample Geographic Location Sample Type (J.LR!hr) 

11374-2 Eugene Island Separator Sand 900 

11374-3 E. M. Watkins Lease Separator Sludge 60 

11374-4 Lacasine Old Thorwell Field Pipe Scale 4,000 

11374-5 South Florence Field Tank Bottom 20 

11374-7 Bickham No. 1 Separator Sand 10 

11374-8 Bickham No. 2 Separator Sand 20 

11374-9 South Florence (E. M. Watkins) Separator Sand 10 

11374-10 South Kaplan (E. M. Watkins) Separator Sand 90 

11374-11 Georgia Pacific, Livingston Parish Separator Sand 1,000 

11374-12 Georgia Pacific No. 3 Separator Sand 20 

11374-57 Pennington No.3 Separator Sand 95 

11374-58 Trinidad Sludge 25 

11374-80 OCS 61248 MBD-0150 Separator Sand 150 

11374-81 OCS 61248 MBD-0100 Separator Sand 160 

11374-82 OCS 61248 MBD-0160 Separator Sand 28 

11374-83 OCS 61248 M117 Separator Sand 170 

11374-84 OBU Sample Separator Sand 18 

*Measured one inch from the sample 
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10 JlR!hr) ranged from 10 JlR!hr to 4,000 JlR!hr. None of the samples, therefore, could be 

considered especially hazardous. The exposure limit specified for the general public by the 

Nuclear Regulatory Commission is 0.5 rem/hr based on continuous exposure, 24 hours per 

day and 365 days per year. 

Visual Examination and Surface Chemistry Determinations 

All samples were examined optically using a stereomicroscope, and documentary 

photographs were made of all samples as received (normal photographs and photomicro

graphs). In addition, selected samples were examined by scanning electron microscopy 

(SEM) to obtain a photographic record of grain sizes and grain shapes. The distribution 

and associations of barite in these samples were investigated with the SEM by obtaining 

barium maps backscattered electron imaging. Gross chemistry of the viewing field was 
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also determined using an energy dispersive X-ray spectrometer (KEVEX (Unispec System 

7000, San Carlos, CA). KEVEX results show the elements present in the vessel solids. All 

SEM work was conducted on samples which had been cleaned by dichloromethane reflux 

· extraction to remove hydrocarbon. Samples were mounted on a carbon stub and sputter-

coated with gold and palladium. 

Oil. Water and Solids Content 

The oil, water and solids content of the samples was determined using a Baroid 

50 ml retort (Baroid Testing Equipment, Houston, TX). This device expels water and oil 

from the samples by heating a known mass of sample. The expelled water and oil are con

densed and collected in a graduated tube which can be read to an accuracy of 0.5 ml. The 

volumes of expelled liquid are converted to masses through knowledge of their density. To 

insure that mass balance was maintained, original sample mass was compared to the sum 

of retorted sample mass plus expelled fluid mass (weighed). In all cases, mass was con

served. 

Mineralogy 

The mineralogy of each sample was determined by X-ray diffraction (XRD) using a 

Seimens D500 X-ray diffractometer and data analysis system (Seimens Instruments, Fed

eral Republic of Germany). Samples were air dried, and any oil present in the sample was 

removed by reflux extraction with dichloromethane using a Soxtec System HT2 (Tecator, 

Hoganas, Sweden). Samples were ground to 50 J.lii1 or less prior to analysis as random 

powder mounts. The resulting diffractograms were interpreted by comparison to diffracto

grams obtained from standard solids. X-ray diffractometry can only examine crystalline 

materials present at percent levels. The method is completely blind to amorphous materials 

and is not sufficiently sensitive to detect crystalline phases present at less than -1%. 
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Particle Size Characterization 

Particle size analysis was conducted using two methods. The mass of particles 

larger than 180 Jlill was determined by sieving. The size distribution of particles finer than 

180 Jlill was determined by laser interferometry using a Laser Optical Particle Sizer (Mal

vern Instruments, Malvern, England). Samples were cleaned by reflux extraction with 

dichloromethane prior to this analysis. A known mass of this dried material was placed in 

a 100 ml beaker containing 50 ml of a solution of sodium hexametaphosphate ( .01% ). This 

suspension was sonicated (Model W-380 Sonicator, Heat Systems-Ultrasonics, Inc., Farm

ingdale, NY) for 15 minutes to diaggregate and disperse particles. Particles larger than 

180 Jlill were removed by set sieving. Particles retained on the sieve were dried and 

weighed. The size distribution of particles passing the sieve was then determined using the 

Laser Optical Particle Sizer following the protocol set out by the instrument manufacturer. 

Bulk Chemistry 

Samples for bulk chemistry were forwarded to the contract laboratory (XRAL, Don 

Mills, Ontario, Canada) as received. At the contract laboratory, the samples were cleaned 

and processed prior to elemental analysis by wavelength dispersive X-ray fluorescence 

(XRF) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). 

Quantification of Radionuclides 

All radionuclide activity analyses were conducted using a Genie-PC Gamma Spec

troscopy System (Canberra Nuclear, Meridian, CT). This system was comprised of an 18% 

efficiency HPGe (high purity germanium) capable of both 47t (i.e., well) and Marinelli 

counting geometries, a 4096K multichannel analyzer, and data handling software. All anal

yses were calibrated against an NBS traceable mixed gamma standard (Amersham 

Certificate Standard No. 792041 ). All analyses were conducted using a 47t geometry. Prior 

to analyses, all samples were cleaned using dichloromethane reflux extraction. A consis-
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tent mass and geometry of sample was weighed into a 10 x 75 mm acrylic test tube and 

sealed. Typical counting times for these samples were 12 hours, but times were varied to 

accrue comparable total counts among samples. Quantification of Ra-226 was accom

plished by measuring its direct y at 186.21 ke V. Interference at this energy from the 

primary U-235 y at 185.71 keV was addressed by examining the spectra for other U-235 

lines; none were found. Confirmation ofRa-226 was addressed by examining the spectrum 

for its decay series daughter Bi-214 at 609.31 keV; this energy was consistently present. 

Quantitation of Ra-228 was accomplished by measuring its short-lived (t112 = 6.7 years) 

Ac-228 daughter at 911.6 ke V. All counting experiments were conducted in a lead shield 

manufactured by Canberra Nuclear for this detector. All analyses were made on a back

ground subtracted basis, corrections for detector efficiency, decay, etc., were made by the 

data analysis software. 

Soil Shielding Experiment 

The soil shielding experiment was conducted to determine the effectiveness of var

ious commonly available covering agents to mitigate y radiation from buried NORM 

material. A sample of barite scale obtained from the NORM Environmental Services Com

pany (a special licensee) processing facility in Amelia, LA, was tumbled using a large 

sample tumbler (Model1317, Associated Design and Mfg. Co., Alexandria, VA) to obtain 

a consistent, finely divided, and well packed mixture. This mixture was then formed into 

a confined rectangular source (11-1/2 x 12-1/2 x 5/8 inch) by first double-bagging it in 

one-gallon Ziploc™ bags. This source was then placed in a plywood box with an acrylic 

front having dimensions of 12-112 x 13-1/2 x 8 inch. The specific activity ofRa isotopes 

present in the source as determined by y spectroscopy was 1,085.2 pCi/g for Ra-226 and 

111.1 pCi/g for Ra-228. They radiation field at various distances above the source were 

then measured with and without various thicknesses of fill material. A schematic diagram 

of the experimental setup is given in Figure 3. The fill materials used were: (1) marine 
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pellets. (D) Cross-section view of Ottawa sand. (E) Cross-section view of 
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bivalve mollusc shells typically used for location paving in the Gulf Coast area, 

(2) standard Ottawa sand, and (3) limestone pellets. For reference, radiation field measure

ments were also made with a 0.125 inch lead sheet covering the NORM radiation source. 

The marine bivalve shells can be described as flat rectilinear grains having average dimen

sions of 4-1/2 x 4 x 1 em. The standard Ottawa sand was obtained from VWR and is 

specified to be 30-40 mesh. The limestone pellets were manufactured by Revelle (Des 

Moine, IA) and are 15-20 mesh. 

Radon Emanation Experiment 

The radon emanation experiment was conducted to determine the effect of the pres

ence of an activated charcoal absorbent to mitigate radon emanation. This experiment was 

conducted using the "accumulation method,' 1 and, overall, follows the procedure of Wilson 

and Scott (1992). Materials used were the NORMCO scale material (see above), standard 

Ottawa sand (30-40 mesh), and activated coconut charcoal (EM Science, Gibbstown, NJ), 

8-12 mesh. The one-quart size paint can and its content used for this experiment are shown 

in Figure 4. Experimental design of the radon emanation experiment is shown in Figure 5. 

The samples containing lower percentages of scales represent contaminated soil. The 

100% scale sample represents equipment scales. 

Scale-sand mixtures were made by tumbling ( 48 hours) a weighed amount of Ottawa 

sand with a weighed amount of NORM-contaminated scale. The 100% scale experiments 

were conducted with the scale on an as-received basis. The scale was not subjected to tum

bling, but was dried. Specific activities of both Ra-226 and Ra-228 were determined for 

each mixture and the pure scale sample. 
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The scale, sand, or scale-sand mixtures were sealed inside one-quart paint cans along 

with various amounts of activated coconut charcoal, completely degassed by vacuum, 

returned to atmospheric pressure, and then allowed to grow in Rn-222 for 30 days. At the 

end of this period, an aliquot of gas was removed from the can and assayed for total Rn 

activity. Radon analyses were conducted using gas scintillation counting. The specific 

equipment used was a Pylon Model AB-5 portable radiation monitor and Pylon Model 

llOA Lucas Cells (Pylon Electronics, Ottawa, Ontario, Canada). 

Mechanical Separation Experiment 

The mechanical separation experiment was conducted to determine if the finely 

divided NORM-contaminated barite in the vessel solids could be effectively separated from 

the nonradioactive components of the vessel solids. In all, six experiments were conducted. 

Experimental conditions used are outlined in Table V. The format of the tests involved 

mixing the composite vessel solids with water to achieve a 10% (by volume) slurry in a 

ten-gallon container. This slurry was fed through a hydrocyclone at a measured rate of 

40 gpm using a 5-hp pump running at 3,520 rpm. Figure 6 shows the flow diagram of 

hydrocyclone experiment. Solids present in both the overflow and underflow streams from 

the hydrocyclone were collected and assayed for radioactivity. 

TABLEV 

Experimental Design for Hydrocyclone Experiment 

Untreated Dispersator Only Dispersant Only 
Original untreated sample Slurried with water and sheared DFLC was added to the slurry 

for 45 minutes 

Dispersator and Dispersant Dispersant and Dispersator** Ultrasonic Probe 
Sheared for 45 minutes with Sheared for one hour with 
DFLCadded DFLC added 

**Underflow was collected and fed through the hydrocyclone. Additional water was added to make 
up the ten gallons. This was done to simulate hydrocyclones running in series. 

27 



1 j 
Hydrocyclone 

Flowmeter 

j 
Overflow 

Underflow 
Valve 

Figure 6. Flow diagram of hydrocyclone experiment. 

Drillaid DFLC (Welchem, Inc., Houston, Texas) is a low molecular weight sodium 

polyacrylate. DFLC was used to disagglomerate vessel solids prior to being fed through 

the hydrocyclone. The dispersator (Premium Mill Corp., New York) is a high shear mixing 

device with variable speed control. The ultrasonic probe (Ultrasonic Liquid Processor, 

Model W-380, by Heat Systems- Ultrasonics, Inc., Farmingdale, New York) uses a wave 

frequency above the audible range to shear and disagglomerate particles. 

Dissolution Experiment 

The dissolution experiment was conducted to determine the possibility of separating 

the finely divided NORM-contaminated barite from the nonradioactive components of the 

vessel solids by dissolution. Two dissolution media were used in these experiments. The 

first dissolution media was Calnox-271, a commercial barite scale dissolver produced by 

Baker Chemical. The second dissolution media was a solution adjusted to a pH of 12 with 

KOH containing 196,700 mg/1 DPTA (diethylaminepentaacetic acid) and 45,000 mg/1 

oxalic acid. Experiments were run in duplicate. In each experiment, unwashed composite 

vessel solids were combined with 60 ml of dissolution media in a 250-ml acrylic plastic jar 

and shaken for 24 hours. The samples were then removed from the shaker and allowed to 
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settle for 24 hours at room temperature. Solids were dried following separation from the 

liquid by decantation, centrifugation and filtration. Both solids and liquids were retained. 

and the specific activity of both solids and liquids was determined by y spectroscopy. One 

set of experiments was conducted at room temperature. The other set of experiments was 

conducted at 75°C. 
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CHAPTER4 

RESULTS AND DISCUSSION 

Introduction 

This chapter presents and discusses results obtained from the NORM vessel solids 

characterization study, the soil shielding experiment, the radon emanation experiment, the 

mechanical separation experiment, and the chemical dissolution experiment. The goals of 

this work were to: (1) establish the chemical, mineralogical, and morphological nature of 

NORM-contaminated process vessel solids, (2) examine the effectiveness of common fill 

materials as radiation shields for y radiation from NORM-contaminated materials, 

(3) determine the effectiveness of activated charcoal in reducing radon emanation from 

NORM-contaminated materials in soils, (4) explore the possibility of achieving an effec

tive mechanical separation of NORM-contaminated barite from nonradioactive vessel 

solids components using a hydrocyclone, and (5) examine the efficiency of a barite scale 

dissolver in dissolving NORM-contaminated barite present in the vessel solids (Calnox 

S-271 or DTPA (diethylaminepentaacetic acid) and oxalic acid solution). 

Characterization of NORM Vessel Solids 

Overview 

Extensive visual, physical, chemical, mineralogical, and radiochemical analyses 

were performed on the NORM-contaminated vessel solids to determine the applicability of 

various waste volume reduction approaches. 
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Particulate matter in NORM-contaminated vessel solids was a mixture of quartz, 

barite, and amorphous iron and manganese oxides. These particles ranged in size from fine 

to very fine sand to silt. Particle geometry is a function of composition. Barite particulates 

are angular plates, while quartz grains are subround to subangular spheroids. Barite is not 

exclusively present as discrete particulates, but is often found as microcrystalline patches 

and coatings on quartz grains. When present as grain coats, the geometry of the barite is 

similar to that described by Snodgrass ( 1986). Due to coprecipitation of radium with bar

ium in these barites, some vessel solids were substantially radioactive. In addition to 

radium, other materials of environmental concern present were substantial levels of zinc, 

lead, copper, and arsenic. 

Experimental Results 

Gross Composition ofVessel Solids 

The oil, water, and solids content of each sample was determined using a Baroid 

50-ml retort. A mass balance was calculated for each experiment. Results of these mass 

balance calculations were never worse than 99%. The average vessel solid contained 78.51 

weight percent solids, 15.97 weight percent water, and 5.52 weight percent oil. These data 

are given in Table VI. 

Particle Size ofVessel Solids 

The particle size distribution of the vessel solids was determined by wet sieve anal

ysis and Malvern laser optical particle size analyzer. On average, 22.58 weight percent of 

particles were greater than 180 J.l1ll in diameter. The median grain size for particles less than 

180 J.l1ll was 26.2 J.l1ll in diameter, and half of all particles finer than 180 mm were between 

10.77 mm and 39.44 mm in diameter. Results of all particle size determinations are sum

marized in Table VI and given in detail in Appendix A. 
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Sample 

11374-2 

11374-3 

11374-4 

11374-5 

11374-7 

11374-8 

11374-9 

11374-10 

11374-11 

11374-12 

11374-57 

11374-58 

11374-80 

11374-81 

11374-82 

11374-83 

11374-84 

Mean 

Maximum 

Q3 

Median 

Ql 

Minimum 

Oil 

TABLE VI. 

Oil, Water and Solids Content, Mineralogy and 

Particle Size Distribution for Vessel Solids 

Weight% 
Mineralogy from X-Ray Particles 

Water Solids Diffraction >180mm 

Weight% 

2.61 4.71 92.68 Quartz, barite 57.72 

4.40 15.08 80.52 Quartz, barite, ferroan dolomite, 29.02 
calcite 

1.19 5.13 93.68 Quartz, barite (Sr substituted) 3.08 

7.75 7.75 84.50 Quartz, barite, albite, bassinite 18.82 

nd nd nd Quartz, calcite 1.34 

2.20 11.63 86.17 Quartz, barite 30.76 

6.77 10.04 83.19 Quartz, barite 3.70 

11.96 28.13 59.91 Quartz, barite, calcite, celestite 6.23 

1.17 0.75 98.08 Barite, quartz 32.50 

0.65 15.56 83.79 Quartz, barite 22.72 

9.72 15.14 75.14 Quartz, barite, calcite, pyrite 7.72 

3.58 20.58 75.84 Quartz 36.51 

1.55 24.37 74.08 Quartz, barite, calcian albite 12.42 

5.99 10.75 83.26 Quartz, barite, calcian albite 11.62 

1.82 15.87 82.31 Quartz, calcian albite 23.30 

1.54 1.55 96.91 Barite 85.08 

23.47 68.42 6.11 Quartz, barite, calcian albite 1.36 

5.52 15.97 78.51 22.58 

25.47 68.42 98.08 85.08 

7.02 17.05 87.80 30.76 

3.10 13.36 83.23 18.82 

1.55 7.10 75.67 6.23 

0.65 0.75 6.11 1.34 

Identity of Crystalline Phases 

Size Distribution for 
Particles < 180 mm 

Ql Median Q3 

5.66 16.76 29.00 

6.05 13.45 22.46 

1.90 12.05 5.71 

10.39 26.78 44.85 

3.11 14.13 17.81. 

2.03 11.15 8.42 

4.95 14.89 28.70 

29.51 16.73 13.90 

7.60 19.79 30.58 

9.93 28.98 57.44 

4.66 15.68 48.74 

2.33 34.19 7.78 

31.68 58.16 82.04 

12.81 34.49 65.65 

32.75 69.88 106.22 

8.13 25.91 69.10 

9.61 32.36 32.12 

10.77 26.20 39.44 

32.75 69.88 106.22 

10.39 32.36 57.44 

7.60 19.79 30.58 

4.66 14.89 17.81 

1.90 11.15 5.71 

X-ray diffraction, XRD, was used to determine the identity of crystalline phases 

present in the vessel solids. Minerals present in the vessel solids were principally quartz 
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and barite, with minor and infrequent occurrences of calcite, celestite, bassinite, calcium

rich albite, ferroan dolomite and pyrite. Mineralogy data obtained for the vessel solids are 

given in Table VI. It should be noted that XRD is blind to amorphous material, cannot 

· detect crystalline materials present at less than about one weight percent abundance, and 

because of the specific X-radiation used, is less sensitive to iron-bearing crystalline mate

rials than minerals not containing iron. 

Bulk Chemistry o..fVessel Solids 

Elemental analysis of the vessel solids was done using both wavelength dispersive 

X-ray fluorescence (XRF), and inductively coupled plasma atomic emission spectrometry 

(ICP-AES). 

The average bulk composition of the vessel solids was 46.92 weight percent Si02, 

19.23 weight percent BaS04 + SrS04 (mostly BaS04), 4.67 weight percent Fe20 3, 

2.13 weight percent CaO, 2.36 weight percent FeO, and 1.73 weight percent Al20 3. The 

average loss on ignition was 6.41 percent by weight. This high loss on ignition (LOI) may 

reflect the organic and the sulfur compound content of these materials. Table VII lists the 

major constituents of the vessel solids. Minor constituent data are given in Table VIII. 

Average concentrations of Zn, Pb, Cu, and As were 3,440 ppm, 2,804 ppm, 302 ppm, and 

151 ppm, respectively. The samples also consistently contained tungsten (W). It is 

unlikely that W is naturally present in the samples. It is more likely a sample preparation 

artifact. Grinding equipment used to prepare the samples is made from or coated with W. 
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TABLE VII 

Major Constituents of Vessel Solids 

BaS04 

+ 
Sample Si02 SrS04 Al20 3 CaO MgO Na20 K20 Ti02 Cr20 3 PzOs MnO Fe20 3 FeO LOI 

Weight% 

11374-2 22.30 40.32 0.21 0.13 <0.01 0.30 0.28 0.263 <0.01 0.02 0.02 0.17 0.10 1.77 

11374-3 14.20 31.87 1.21 1.72 0.06 0.60 0.28 0.344 0.02 0.07 0.22 28.10 18.70 4.93 

11374-4 2.07 45.34 0.36 0.92 <0.01 0.28 0.13 0.287 <0.01 0.05 0.11 13.70 1.90 2.70 

11374-5 77.40 4.82 1.66 3.01 0.10 0.81 0.62 0.451 <0.01 0.05 0.05 2.78 1.10 5.65 

11374-7 72.00 7.44 0.42 4.39 0.08 0.49 0.25 0.232 0.02 0.03 0.06 7.93 2.90 6.62 

11374-8 87.00 3.30 0.43 0.61 0.17 0.52 0.26 0.426 <0.01 0.05 0.02 1.50 1.10 3.85 

11374-9 82.80 1.08 3.85 2.93 0.19 1.23 1.05 0.380 0.03 0.05 0.07 0.84 0.40 4.50 

11374-10 24.20 28.55 2.66 2.88 0.35 0.67 0.44 0.351 <0.01 0.26 0.13 10.70 5.90 18.80 

11374-11 1.99 46.41 0.32 0.12 <0.01 <0.01 0.18 0.269 <0.01 0.02 0.04 2.44 0.90 1.23 

11374-12 88.50 6.84 0.45 0.31 0.14 0.20 0.21 0.234 <0.01 0.03 0.01 0.40 0.20 1.45 

11374-57 2.62 19.39 0.11 11.40 0.07 2.90 0.06 0.114 <0.01 0.50 0.48 3.66 2.60 7.70 

11374-58 87.00 0.68 1.54 3.39 0.36 0.40 0.36 0.227 <0.01 0.05 0.03 1.59 0.80 7.54 

11374-80 62.90 17.39 4.48 0.93 0.25 2.44 1.04 0.242 <0.01 0.04 0.03 0.75 0.30 2.70 

11374-81 62.00 19.61 3.53 1.35 0.56 1.18 0.86 0.226 <0.01 0.04 0.03 0.83 0.50 2.16 

11374-82 84.70 2.33 4.54 0.82 0.22 1.29 1.10 0.236 <0.01 0.05 0.03 1.24 0.60 2.08 

11374-83 1.27 48.46 0.59 0.36 <0.01 0.56 0.04 0.262 <0.01 0.14 0.01 0.50 0.20 0.62 

11374-84 24.70 3.14 3.12 1.01 1.31 7.22 0.67 0.269 <0.01 0.09 0.04 2.22 2.00 34.60 

Mean 46.92 19.23 1.73 2.13 0.30 1.32 0.46 0.283 0.02 0.09 0.08 4.67 2.36 6.41 

Maximum 88.50 48.46 4.54 11.40 1.31 7.22 1.10 0.451 0.03 0.50 0.48 28.10 18.70 34.60 

Q3 82.80 31.87 3.12 2.93 0.35 1.25 0.67 0.344 0.03 0.07 0.07 3.66 2.00 6.22 

Median 62.00 17.39 1.21 1.01 0.19 0.64 0.28 0.263 0.02 0.05 0.04 1.59 0.90 3.85 

QI 14.20 3.30 0.42 0.61 0.10 0.47 0.21 0.234 0.03 0.04 0.03 0.83 0.40 2.08 

Minimum 1.27 0.68 0.11 0.12 0.06 0.20 0.04 0.114 0.02 0.02 0.01 0.17 0.10 0.62 

Radium Occurrence in the Vessel Solids 

The activities of radium isotopes in the vessel solids were determined by 'Y spectrom-

etry. A high purity germanium well detector (HPGe) was used for all 'Y spectrometry 

experiments. The specific activity of both Ra-226 and Ra-228 was measured. Secular equi

librium was assumed to exist between Ra-228 and Ac-228. Radioactive equilibrium in 

which the parent activity does not decrease measurably during many daughter half-lives is 

known as secular equilibrium (Fredlander et al., 1981). Typical counting time for these 
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TABLE VIII 

Minor Constituents of Vessel Solids 

Sample B 

ppm 

11374-2 12 12 31 295 103 <3 6 6 <2 <3 <2 5 <5 41 3 79 9 145 22 

11374-3 11 45 146 528 3750 <3 50 10 <2 <3 <2 49 <5 27 <2 107 14 572 9 

11374-4 II 20 216 591 1170 <3 41 <3 <2 <3 <2 43 <5 64 36 <5 <5 1080 <3 

11374-5 16 47 25 lOS 1670 10 64 22 <2 696 12 <2 <5 IS 4 302 <5 531 7 

11374-7 <2 38 71 754 108 <3 II 54 <2 80 5 30 141 47 <2 768 <5 76 6 

11374-8 5 78 35 64 2700 14 540 42 <2 156 20 16 <5 25 25 597 <5 4500 7 

11374-9 31 77 17 2 8247 16 25 43 <2 578 11 <2 9 23 14 603 6 160 10 

11374-10 7 34 liS 713 10900 <3 234 7 <2 <3 <2 54 <5 73 <2 77 57 3950 <3 

11374-11 <2 18 25 292 520 <3 6 <3 <2 <3 <2 53 <5 393 38 64 8 193 15 

11374-12 <2 70 IS 15 421 <3 37 40 <2 <3 7 <2 <5 <3 19 537 <5 306 <3 

11374-57 8 31 90 353 21900 12 430 <3 <2 <3 <2 31 <5 <3 <2 <5 75 12300 II 

11374-58 12 70 19 18 2310 <3 35 15 <2 276 9 <2 <5 17 12 578 <5 236 <3 

11374-80 28 34 11 72 115 <3 67 8 <2 <3 4 <2 <5 36 17 259 <5 872 6 

11374-81 25 35 29 731 271 <3 253 14 <2 <3 <2 <2 <5 30 14 494 <5 3480 <3 

11374-82 32 86 32 91 204 <3 125 18 <2 213 7 <2 8 13 12 661 <5 919 <3 

11374-83 14 IS 52 404 291 <3 444 <3 <2 <3 <2 14 <5 48 79 55 <5 16200 26 

11374-84 <2 28 56 82 11800 <3 192 10 <2 17 6 2 <5 3 <2 117 38 2150 <3 

Mean 16 43 58 302 3440 13 !51 22 na 288 9 30 53 33 23 353 30 2804 12 

Maximum 32 86 216 754 21900 16 540 54 na 696 20 54 141 73 79 768 75 16200 26 

Q3 25 70 71 528 2700 15 234 40 na 427 11 48 75 44 28 588 48 3480 14 

Median 12 35 32 292 520 13 64 15 na 213 7 31 9 30 16 302 14 872 10 

Ql 11 28 25 72 247 12 35 10 na 118 6 15 9 20 12 93 9 236 7 

Minimum 5 12 11 IS 103 10 6 6 na 17 4 2 8 3 3 55 6 76 6 

samples was 12 hours, but times were varied to accrue comparable total counts. Table IX 

lists the concentrations of barium, strontium, barium to strontium ratios, concentrations of 

actinide elements, and specific activities of Ra-226 and Ra-228 in the vessel solids. The 

average activities ofRa-226 and Ra-228 were 62,201 pCi/g and 8,867 pCilg, respectively. 

The median activities were 2,142 pCi/g for Ra-226 and 560 pCi/g for Ra-228. These activ

ities are comparable to those obtained by Gott ( 1953) for highly radioactive barite scales in 

southeastern Kansas. 
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Sample 

11374-2 

11374-3 

11374-4 

11374-5 

11374-7 

11374-8 

11374-9 

11374-10 

11374-11 

11374-12 

11374-57 

11374-58 

11374-80 

11374-81 

11374-82 

11374-83 

11374-84 

Mean 

Maximum 

Q3 

Median 

Ql 

Minimum 

TABLE IX 

Barium, Strontium, Barium: Strontium Ratio, Actinide Elements, 

Ra-226 and Ra-228 in Vessel Solids 

Ba Sr Ba/Sr Si Th u Ra-226 1 0 Ra-228 

ppm ppm mole ratio ppm ppm ppm pCilg pCilg pCilg 

228,000 7,490 19.42 103,000 24 <2 2,142 107.0 1,208 

182,000 4,470 25.98 76,600 <2 <2 148 7.9 47 

231,000 29,000 5.08 105,000 16 <2 152,270 7.619.0 29,500 

26,800 1,270 13.46 14,400 9 3 53 3.6 17 

40,700 2,470 10.51 21,900 <2 2 1,054 78.4 160 

18,000 1,140 10.07 11,300 47 <2 29 2.1 11 

5,730 513 7.13 4,260 4 4 49 3.0 20 

162,000 4,820 21.44 80,600 46 <2 667 34.0 105 

260,000 10,600 15.65 116,000 <2 <2 2,648 134.0 560 

39,100 907 27.51 17,100 8 <2 386 51.1 63 

106,000 6,560 10.31 151,000 138 2 7 0.9 2 

3,520 382 5.88 6,770 3 3 6352 350.0 1,399 

101,000 1,070 60.23 43,300 12 <2 36,620 1,856.0 12,796 

110,000 4,380 16.02 48,400 38 <2 117,400 5,883.0 49,229 

12,900 650 12.66 5,530 13 <2 7,772 543.1 3,453 

247,000 30,900 5.10 121,000 178 <2 723,200 36,540.0 49,620 

17,800 535 21.23 63,100 20 <2 6,620 359.4 2,556 

105,385 6,303 16.92 58,192 40 3 62,201.0 8,867.3 

260,000 30,900 60.23 151,000 178 4 723,200.0 49,620.0 

182,000 6,560 21.23 103,000 44 3 7,772.0 3,453.0 

101,000 2,470 13.46 48,400 18 3 2,142.0 560.0 

18,000 907 10.07 14,400 10 3 148.0 46.5 

3,520 382 5.08 4,260 3 <2 7.1 1.5 

1 0 

pCilg 

13.7 

0.8 

372.-0 

0.4 

9.4 

0.3 

0.4 

1.9 

7.0 

7.9 

0.2 

29.1 

164.0 

579.9 

60.9 

14,440.0 

42.0 

All samples exhibited higher Ra-226 activity than Ra-228 activity. The minimum 

activity ratio for Ra-226 to Ra-228 was -50. Observations by Kraemer and Reid (1984) 

and Fisher (1994) of the Ra-226 to Ra-228 ratio in Gulf Coast region produced waters indi

cate that freshly precipitated barites should have a Ra-226 to Ra-228 ratio of approximately 

0.4 to 1.2. The Ra-226 to Ra-228 values obtained from the samples showed strong deple

tion in Ra-228 relative to Ra-226. This is probably due to the age of the vessel solids. 
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Many of these samples were collected from out-of-service equipment. Length of 

out-of-service time was unknown. Ra-228 had a substantially shorter half-life than Ra-226. 

Consequently, if Ra-228 in the barite is not renewed by equilibrium exchange with pro

duced water, it will decay to low activity levels much faster than Ra-226. This apparently 

accounts for the data observed in this effort. 

Actinide Elements in the Vessel Solids 

Thorium (Th) was found above detection level ( <2 ppm) in all but three samples. In 

contrast, uranium (U) was found above detection level in only four samples. The average 

concentration ofTh was 40 ppm, and the highest U concentration was 4 ppm. Based on the 

calculated averages shown in Table IX, the U to silicon (Si) ratio is approximately that 

expected for crustal rocks (Taylor, 1964). If the below detection units are taken into 

account, U can be considered depleted with respect to normal crustal rocks. In contrast, Th 

to Si ratio shows substantial enrichment with respect to crustal rocks, on the average by a 

factor of approximately 3.5. Neither Ra-226 nor Ra-228 activity appears to vary in 

response to either Thor U concentrations. TheRa isotopes present in the vessel solids are 

unsupported by their parental actinides. 

Relationship ofBarium and Strontium in the Vessel Solids 

Average Ba and Sr concentrations in the vessel solids were 105,385 ppm and 

6,303 ppm, respectively, and the average Ba to Sr mole ratio was 16.92. Both the samples 

displayed a wide range of Ba to Sr mole ratios. Samples enriched in Sr have Ba:Sr mole 

ratios less than -10 (seven samples), while samples depleted in Sr have Ba:Sr ratios greater 

than -10 and range to -60. The quantitative results obtained by Hanor (1969) show that 

the Ba:Sr ratios for sea water and deep sea sediments was approximately two; however, 

sediment samples near East Pacific Rise were approximately seven. Barite-enriched sam

ples from this experiment suggest that the general region of the samples had additional 
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sources of barium and mechanisms for the precipitation of barite. Perhaps commingling 

with the produced water may have resulted in more precipitation of barite. 

SEM Analysis o.,fVessel Solids 

Vessel solids were examined by SEM to obtain visual information on grain sizes and 

morphologies. SEM photographs indicate that barite in these vessel solids are present in 

two distinct geometric arrangements. Samples rich in barite contain fine to very fine sand 

size, angular, platy, massive clasts of barite. These clasts may have originated as scale par

ticles detached from piping and subsequently deposited in separators and tanks. The 

barite-poor samples are comprised of angular to subrounded quartz grains, and the barite is 

typically present as grain coats and isolated patches. This barite habitat in the barite-poor 

vessel solids is similar to that described by Snodgrass (1986) in experimental studies of bar

ite precipitation. In this work, small microcrystalline spherical patches of barite were found 

to preferentially precipitate on silicate grains. Figures 7 and 8 show the SEM photographs 

of these contrasting types of vessel solids. 

Results ofKEVEX analysis indicate all samples contain barium, silicon, and sulfur. 

KEVEX data also confirmed the presence of Zn in some samples. The origin of the zinc 

may be natural, or may arise from heavy zinc bromide completion fluids. Completion fluid 

is the liquid that is kept in the well as it is being completed. Figures 9 and 10 show the typ

ical spectra obtained from KEVEX on dark material and bright material. The light material 

consisted of white or bright spots that appeared on the larger grain surfaces from the back

scattered imaging. Dark material seen from the photographs was smooth surface of grain. 

These light and bright materials were examined to determine the occurrences of barium. 

The light material consistently contained higher barium peaks in all the samples. The dark 

materials were examined to determine the occurrences of quartz. The dark materials 

showed higher silicon peaks. 
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Figure 7. SEM photographs of barite-poor vessel solids (sample 11 374-9). (A) X250 image showing partic le morpholo
gies. (B) X I 000 image showing detailed particle morphologies. (C) X250 image showing barium X-ray map of 
image shown in (A). (D) XI 000 image showing barium X-ray map of image shown in (8). 
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Figure 8. SEM photographs of barite-rich vessel solids (sample 11374-2). (A) X I 50 image showing particle morphologies. 
(B) X500 image showing detailed particle morphologies. (C) X I 50 image showing barium X-ray map of image 
shown in (A). (D) X I 000 image showing barium X-ray map of image shown in (B). 
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Summary 

Average vessel solids contain -6 weight percent oil, 16 weight percent water, and 

79 weight percent solids. Vessel solids particulates were typically fine to very fine sand and 

silt sized quartz and barite. In addition to its occurrence as discrete particles, barite was 

also present as both diffuse and continuous grain coats and spherical microcrystalline 

patches on quartz grains. Amorphous iron and manganese oxides were also present as both 

coatings and discrete accumulations. Barite in these vessel solids was radioactive due to 

its content of Ra-226 and Ra-228, and can have a high degree of Sr substitution for Ba. The 

activity ratio of Ra-2281Ra-226 is much lower than that observed for produced waters in 

the Gulf Coast region. 

These characterization data for the NORM vessel solids waste stream suggest sev

eral lines of attack with respect to waste volume reduction. On mass basis, the ratio of 

quartz to barite is approximately 2: 1, but their volume ratio is 3.5: 1 due to higher density 

of barite (4.6 glee) compared to quartz (2.6 glee). Removal of quartz alone would result in 

an average volume reduction of 39%. Based on their densities, the relative average volu

metric abundance of fluid and solids constituents in a vessel solids waste stream is 

approximately 14% oil, 31% water, 48% inert solids, and 7% radium-contaminated barite. 

Consequently, simply removing the fluids would reduce waste volume by approximately 

45%. Overall, removal of both fluids and quartz would result in an average ultimate waste 

volume reduction of 88%. Although fluid removal is straightforward, separation of barite 

from the quartz is not. Barite is brittle and mechanical handling of the vessel solids would 

tend to break and grind the barite present into finer fragments. Such treatment, however, 

would not be adequate to achieve the level of barite removal necessary to decontaminate 

the nonradioactive solids (to background levels). In addition to its occurrence as discrete 

particles, barite is also present as various precipitate geometries on quartz grains. Removal 
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of this barite would also be necessary. This might be accomplished mechanically or chem

ically. 

Some of these vessel solids contain substantial concentrations of materials with 

environmental concerns. The average concentration of Pb is -3,000 ppm, and the average 

As concentration -150 ppm. Similar concentrations of these materials would be expected 

in nonradioactive vessel solids. In the past, these vessel solids have been treated like nor

mal oilfield waste (Gray, 1993). Landfilling and landspreading have been used for their 

disposal. In view of the potential for land contamination by heavy metals that could results 

from such disposal practices, vessel solids should be analyzed for their heavy metals con

tent prior to land disposal. 

Soil Shielding 

Introduction 

The soil shielding experiment was conducted to determine the effectiveness of var

ious commonly available covering agents as y radiation shields. NORM wastes in soils 

present a radiological exposure risk. This radiological exposure risk is a combination of a, 

~andy exposure from the decay of radium and their daughter products. One way to reduce 

the total radiological exposure risk is to bury the NORM material beneath soil or under 

commonly used materials. Such burial would provide a shield against ionizing radiation. 

The most significant risk from external radiation exposure is due to high energy pho

tons (X-rays andy-rays). The most effective shields for photons are materials of high 

density and high atomic number (Chilton, Shultis and Faw, 1984). Elemental lead, for 

example, has a density of 11.288 g/cm3 and an atomic number of 82, and is an excellent 

shielding material. Shield performance, however, is not solely a function of density or the 

atomic number(s) of the materials from which it is constructed. Shield performance will 

be degraded by the presence of voids (i.e., porosity), regions of low density (i.e., lateral 
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inhomogeneities), and penetrations. Shield performance is also a function of the energy of 

the photons interacting with the shield. Low energy photons are easily stopped; high 

energy photons require thicker shielding. 

The ability of a material to shield against ionizing radiation is a function of its linear 

attenuation coefficient. Radiation traversing a layer of material is reduced in intensity by a 

constant fraction 1-1 (the linear attenuation coefficient in units of 1/length). After penetrating 

to a depth x, the intensity of radiation is given by: 

where Ro is the intensity of radiation at the entry surface of the material. The ability of 

materials to shield against ionizing radiation may be expressed by a half-thickness (the 

thickness of material required to reduce the incoming radiation field by a factor of two) or 

by the linear attenuation coefficient, 1-1· The photon linear attenuation coefficient, J.1, is the 

probability per unit distance of travel that a gamma photon undergoes any significant inter

action (Chilton, Shultis and Paw, 1984). For photon energies in the range of 10 Ke V to 

1 0 MeV, the photoelectric effect, pair production, and Compton scattering mechanisms of 

interactions predominate over all others (Gollnick, 1988). Figure 11 shows the interaction 

of source gamma rays (Chilton, Shultis and Paw, 1984). 

A sample of barite scale was tumbled to obtain a consistent, finely divided mixture 

that could be easily packaged in a rectangular geometry. With this geometry, the theoretical 

radiation field (in vacuum) should fall off as 1/r (where r is the separation distance between 

the detector and the source) (Gollinick, 1992). This mixture was double-bagged in plastic 

Ziploc™ bags, and placed in a plywood box having an acrylic front. The radiation field 

was measured at various vertical separations from this source, both with and without shield

ing materials covering the source. A Ludlum Model 3-97 Survey Meter set to detect using 

its internal 1x1 Nal crystal was used for all radiation measurements. Shield materials 

investigated were: (1) marine bivalve mollusc shells typically used for location paving in 
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Figure 11. The interaction of source gamma rays. 

the Gulf Coast area, (2) standard Ottawa sand, and (3) pelleted limestone. The mollusc 

shells and limestone pellets were used because of their CaCo3 composition. 

Porosity of the experimental shielding materials was determined by packing a tared 

1,000 ml graduated cylinder to the 1,000 ml mark with shielding material, determining the 

mass of this volume of shielding material, and then determining the mass of water required 

to bring the water level in this shielding material packed container to exactly the 1,000 ml 

mark. Grain density of the shielding material was determined by placing a known mass of 

shielding material (crushed in the case of the shell material) in a 100 ml volumetric flask, 

and determining the mass of water required to bring the total volume of the system to 

exactly 100 ml. Bulk density of each shielding material was calculated by: 

Pbulk = P grain (1 -<I>) 

where Pbulk is the bulk density, and Pgrain is the grain density in glee. Porosity, <j>, is 

expressed as a fraction. 
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Experimental Results 

The radiation field measurements for the NORM source without any shielding mate

rial decreased from 165 ~hr immediately at the surface of the NORM source to 31 ~hr 

at an eight-inch (20.32 em) separation from the source. A plot of this radiation field is 

given in Figure 12, and shows that the unshielded experimentally determined radiation field 

does decrease in proportion to 1/r. Linear attenuation coefficients for the various covering 

materials were calculated from radiation field measurements made with the detector imme-

diately atop of the shielding material. All additional experimental data of shield 

measurements at various distances are given in Appendix B. The experimentally deter-

mined effective linear attenuation coefficients for these materials are given in Table X. 

Porosity and bulk density data for the various shielding materials are given in Table XI. 

Figure 13 shows the linear attenuation coefficient decreases with the increasing shield 

material's unit density. Lower linear attenuation coefficient increases the shielding effi-

ciency. 
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Figure 12. Exposure rate ratio of unshielded to shielded 
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TABLE X 

Linear Attenuation Coefficients of Shielding Materials at Various Thicknesses 

Shielding 
Material Air 

Seashells 

Limestone Pellets 

Ottawa Sand 

- 0.6 = ~ ·-~ 0.5 e: 
~ 
C> u 0.4 =-.s e 
-= ~ 0.3 =....c =-~ 0.2 --< .. 

0.1 Clll 
~ = ·-.;;l 0 

0 

Linear Attenuation Coefficient (1/cm) 

Thickness of Shielding Material 

1 in. 2 in. 3 in. 4 in. 5 in. 6 in. 7 in. 

0.4773 0.2990 0.2655 0.2558 - - -

0.5506 0.3490 0.3134 0.2741 0.2738 0.2375 0.2319 

0.3943 0.3376 - - - - -

TABLE XI 

Porosity and Density of Shielding Materials 

Shielding Material Porosity (%) Bulk Density (glee) 

Seashells 64.9 

Limestone Pellets 44.6 

Ottawa Sand 35.4 

5 10 15 20 

Shielding Material Unit Density 
(g/sqcm) 

.867 

1.218 

1.615 

25 

• Seashells 

-o-- Limestone 
Pellets 

--+- Ottawa Sand 

Figure 13. Linear attenuation as a function of shielding material density. 
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Discussion 

The Ottawa sand was the most effective of the radiation shield materials examined. 

Although comprised of low atomic number material and has a lower grain density, the 

Ottawa sand had the highest bulk density. Ottawa sand had the lowest attenuation coeffi

cients when compared to the limestone pellets and mollusc shells for the shield thickness 

tested. Burial of NORM-contaminated material by a layer of quartz sand 2.5 em in thick

ness would reduce the radiation field by half. To achieve an equivalent reduction in 

radiation field, a layer of the pelletized limestone would need to be 3 em thick, and a layer 

of mollusc shells would need to be 5.08 em thick. 

The mollusc shells yield a half-value layer comparable to that for concrete. This is 

a bit surprising, given the high porosity of the mollusc shell material. The half-value layer 

for concrete is approximately 4.8 em for a similar gamma source (Gollinick, 1992). The 

limestone pellets and Ottawa sand had smaller half-value layers. The effectiveness of a 

mollusc shell burial shield could be increased by crushing. This would produce better 

packing, lower porosity, and greater bulk density. Although covering contaminated 

material with sand might be more effective, covering with mollusc shells may be more 

practical; mollusc shells are available, abundant and cost effective, especially in the Gulf 

of Mexico region. 

Summary 

For photons ( y and X -rays), materials with high density and high atomic number pro

vided the most efficient shielding. Penetrations, voids, or regions of lower densities, 

however, reduce shield efficiency despite their high grain densities. Mollusc shells had the 

lowest bulk density and highest porosity, and consequently had highest (i.e., poorest) linear 

attenuation coefficient. In contrast, the high bulk density and gram amount of sand made 

it a good shielding material, even though Si and 0 have relative low atomic numbers. 
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Radiation drops off as the distance from the source increases. Shielding has a greater 

effect in reducing the exposure rates when closer to the source. Results obtained from this 

experiment indicated that mollusc shells may be an effective shielding material if the void 

volume can be reduced. For instance, crushing the shells would decrease the void volume. 

Covering the contaminated sites with shells might also be more cost effective due to their 

availability. 

Large pieces of contaminated land could be shielded with various natural shielding 

materials to prevent or decrease radiation exposure. 

Radon Emanation 

Introduction 

The radon emanation experiment was conducted to determine the effect of the pres

ence of an activated charcoal adsorbent in mitigating radon exposure. Radium isotopes and 

their decay daughters, especially radon gas, can be viewed as high health hazard materials. 

Because it is a gas, Rn, if present in air, will be inhaled. More importantly, Rn decay yields 

radioactive metallic ions which may become associated with fine particles. If sufficiently 

fine, such particles may become lodged in deep lung tissue. In fact, inhalation of Rn-222 

present in normal air is estimated to comprise the single largest radiation dose to human 

population at large (Nero, 1989). 

Freundlich, Langmuir High and Low, and Brunauer, Emmet, Teller (BET) isotherms 

were generated to determine the adsorption capacity and strength of the bond of the acti

vated charcoal to radon gas. The results also indicate that the sample highly dispersed 

NORM has higher emanation power than nondispersed (i.e., scale). 
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This experiment was performed using the accumulation method, and follows the 

procedure of Wilson and Scott (1992). Various mixtures of NORM-contaminated scale and 

sand (quartz) were sealed in one-quart paint cans (accumulation in cells), completely 

degassed by vacuum, returned to atmospheric pressure, and then allowed to grow in Rn for 

30 days. At the end of this period, an aliquot of gas was removed from the can and assayed 

for total Rn activity. Pseudo adsorption isotherms were constructed to evaluate the appli

cability of activated coconut charcoal as the adsorbent. 

Experimental Results 

The addition of 8 g of activated coconut charcoal to the accumulation cells reduced 

Rn accumulation by 96% compared to equivalent accumulation cells without charcoal. The 

accumulation cell containing scale and no charcoal had an Rn-222 specific activity of 

232.43 pCi/L. In contrast, in accumulation cells containing 100% scale and 8 g of charcoal 

the Rn-222 specific activity decreased to 9.39 pCi/L. Rn-222 emanation power decreased 

from 2.32 x 10-3 to 3.87 x 10-5. Table XII lists the results from the radon emanation exper

iment. The samples containing 99.5% sand and .05% scale and 99% sand and 1% scale 

represent contaminated soil. Typical Rn-222 in the soil air are of the order of 1.5 pCi/L, 

indicative of Rn-222 concentrations at three meters (Wilkenang, 1990). Table XII and 

Figure 14 show the specific activities of Rn-222 decreased with the addition of activated 

coconut charcoal. Figure 15 is the same graph of Figure 14 without 100% scale line. 

Figure 16 is a plot of radon emanation power curve. Radon emanation power also 

decreased as the activated coconut charcoal was added. Finely divided and dispersed mate

rial yielded higher emanation power measurements. 
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TABLE XII 

Rn-222 Concentration After 30 Days of Growth with Charcoal Addition 

Sample Activity Measurements 

Sand Scale Charcoal Rn-222 Ra-226 Radon Emanation Power 
(%) (%) (g) (pCi!L) (pCi!L) Rn-222/Ra-226 

100 0 0 0 0 0 

100 0 1 0 0 

100 0 2 0 0 

100 0 4 0 0 

100 0 8 0 0 

99.5 0.5 0 1.97 0.995 3.89 

99.5 0.5 1 0.92 1.82 

99.5 0.5 2 0.42 8.29E-01 

99.5 0.5 4 0 0 

99.5 0.5 8 0 0 

99 1 0 3.87 3.09 1.23 

99 1 1 1.82 5.78E-01 

99 1 2 0.51 1.62E-01 

99 1 4 0.30 9.53E-02 

99 1 8 0.43 1.37E-01 

0 100 0 232.43 966.8 2.32E-03 

0 100 1 67.29 6.72E-04 

0 100 2 35.20 3.52E-04 

0 100 4 18.82 1.88E-04 

0 100 8 9.39 9.38E-05 

Discussion 

The activated coconut charcoal was a very effective radon scavenger. Actuated 

coconut charcoal is a proven adsorbent for gas. Adsorption of radon gas onto the activated 

coconut charcoal increased with the addition of activated charcoal. The first gram of acti-

vated charcoal decreased the specific activity by 71%. With the addition of two grams of 

activated charcoal, the specific activity was reduced by 85%. With each incremental addi-

tion of activated charcoal, the adsorption decreased proportionally. The decrease in radon 

emanation power was attributed to the increase in charcoal addition (Figure 16). The ema-
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Figure 14. Radon emanation activity curve. 
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Figure 15. Radon emanation activity curve excluding 100% scale curve. 
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Figure 16. Effect of activated charcoal on Rn-222 emanation. 

nation power data obtained from samples containing 0.5% scale were in excess over one. 

This may be due to low activity which can result in poor measurement. For example, the 

counting efficiency of the instrument was 76.2%. With a sufficient amount of activated 

charcoal addition, eventually all of the radon gas can be adsorbed. The results indicate that 

even with a modest amount of activated charcoal added, the scale will greatly reduce the 

Rn emanation from soils. 

Isotherms 

An isotherm is an equilibrium relation between the amount of solute adsorbed on the 

solids surface and the concentration of solute remaining in solution (Veenstra, 1993 ). The 

isotherms constructed for this experiment resulted in pseudo first order isotherms since the 

Freundlich, Langmuir high and low range and BET isotherms were originally developed 

for liquid systems. Table XIII shows the lab data used to determine the constants for each 
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isotherm. Table XIV shows the calculations of required constants obtained from the iso

therm graphs. The actual graphs of these isotherms is shown in Appendix C. These 

isotherms showed a high capacity of the adsorbent for the adsorbate and a strong adsorption 

bond. These coefficients indicate favorable adsorption capacity for ranges emissions pre-

sented in the experiment. 

TABLE XIII 

Isotherms 

(Freundlich, Langmuir High and Low Range, BET (Cs is assumed to be equal to Co)) 

Lab Data 

pCiof Weight 
Adsorbed of 

Charcoal Remaining Impurities Charcoal 
Doses Gas (C) Co-C (X) (M) q (X/M) C/((Cs-C 

(mg/1) (pCi/L) (pCi/L) (pCi) (mg) (pCi/mg) LogX/M LogC li(XIM) 1/C C/q )(X/M)) C/Cs 

0 232.43 

1056.74 67.29 165.14 165.14 1056.7 0.1563 -0.806116 1.828 6.3991 1.49E-02 430.59 2.607439 0.289507 

2113.5 35.2 197.23 197.23 2113.5 0.0933 -1.030029 1.5465 10.716 2.84E-02 377.2 1.912489 0.151443 

4227 18.82 213.61 213.61 4227 0.0505 -1.296411 1.2746 19.788 5.31E-02 372.42 1.743447 0.080971 

8454 9.39 223.04 223.04 8454 0.0264 -1.578679 0.9727 37.904 1.06E-01 355.91 1.595741 0.040399 

TABLE XIV 

Calculation of Required Constants 

Freundlich Isotherm 
Slope= 1/n = 0.9108, n = 1.097941 
Intercept - Log K = -2.458, K = 3.48E-03 
r (coefficient of correlation) = 0.9991204 
SD of points about the fitted line = O.Q171559 

Langmuir Isotherm, High 
Slope - 1/bQ0 - 345.47, Oo- 0.8491301 
Intercept - l!Q0 - 1.1777, b- 3.41E-03 
r (coefficient of correlation) - 0.9998694 
SD of points about the fitted line - 0.2764353 

Langmuir Isotherm, Low 
Slope - l!Q0 - 1.2431, Qo= 0.8044229 
Intercept - l!bQ0 '"' 343.41, b- 3.62£-03 
r (coefficient of correlation = 0.9767979 
SD of points about the fitted line = 8.4859126 

BET Isotherm 
Slope .. (Kb-1 )/KbQo = 4.049, Oo= 0.3768696 
Intercept = 1/KbQo = 1.3956, Kb= 1.90£+00 
r (coefficient of correlation) = 0.9894759 
DS ·of points about the fitted line = 0.0793153 
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where, 

lin 
K 

... function of strength of adsorption bond 
= Freundlich adsorption constant - related to the capacity of the adsorbent for the 

adsorbate 
= pCi of gas adsorbed/mass adsorbent 
= adsorption coefficient 
= constant related to energy of adsorption 

Summary 

Emissivity of radon gas can be significantly reduced using activated coconut char-

coal. Freundlich, Langmuir High and Low, and BET pseudo isotherms showed that the 

activated charcoal would be an efficient adsorber for the radon gas. These pseudo iso

therms also showed that the charcoal was a viable option in reducing the radon emission 

within the range of concentration tested. Mixing contaminated soil with activated charcoal 

would inhibit radon emission effectively. Massive radioactive scale with activated charcoal 

would inhibit radon emission effectively. Massive radioactive scale source has very low 

emanation power, while dispersed ground-up scale has high emanation power. 

Mechanical Separation Experiment 

Introduction 

The mechanical separation experiment was conducted to determine if the finely 

divided NORM-contaminated barite in the vessel solids could be effectively separated from 

the nonradioactive components of the vessel solids. The underflows from the hydrocyclone 

carried most of the solids, the coarser grains, suspended in some liquid, and the overflows 

contained most of the liquid and some finer solids. The overflow of the hydrocyclone con

tained approximately 4:1 ratio of barite: quartz, and the underflow contained approximately 

4:1 ratio of quartz: barite, shown by the mineralogy analysis. The hydrocyclone would 
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yield a greater separation efficiency if the flowrate of the slurry being fed through the 

hydrocyclone was increased. Larger volume of slurry being fed could accomplish constant 

rate of flow which would result in better separation. 

-
Application of hydrocyclones in the oil industry include categories of two-phase 

separation with the liquid being the suspending medium (Svarosvsky, 1984). The hydro-

cyclone is a liquid suspension classifier of different densities. The hydrocyclone is a static 

separator based on centrifugal separation in a vortex generated within a cono- cylindrical 

body (Svarosvsky, 1984). In order for solids particles to separate under the effect of the 

centrifugal force, there has to be finite density difference between the solids and the liquid. 

Even though there were very steep velocity profiles in the flow, leading to high shearing 

forces which tend to break any loose floes, or agglomerates, the shearing forces were not 

able to break loose barite grain coats from the silica grains. The barite grain coats from the 

silica grains were not broken loose with the treatments applied in this experiment. 

Six sets of experiments were conducted using the hydrocyclone. The format of the 

tests involved mixing the composite vessel solids with water to achieve a 10% (by volume) 

slurry in a ten-gallon container. This slurry was fed through a hydrocyclone at a rate of 

40 gpm using a 5 hp pump running at 33,520 rpm. Solids present in both the overflow and 

underflow streams from the hydrocyclone were collected, dried and assayed for radioactiv

ity. First, the original untreated sample was fed through the hydrocyclone, then the samples 

treated with dispersator only, dispersant only, dispersator and dispersant, and ultrasonic 

probe. The dispersator and ultrasonic probe were additional shearing devices (aside from 

the hydrocyclone) used to break up the attached barite particles. 

Composite vessel solids were examined by SEM to obtain visual information on 

grain sizes and morphologies before and after the hydrocyclone experiments. The under-

flows and overflows were similarly examined. The distribution and associations of barite 
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in these samples were investigated with SEM by obtaining barium maps with backscattered 

electron imaging. 

X-ray diffraction, XRD, was used to determine the identity of crystalline phases 

present in the vessel solids. Samples were ground to 50 J.lffi or less prior to analysis. All 

XRD analyses were executed on radon power mounts. The results of the XRD were inter

preted by comparison of diffractograms obtained for the samples to diffractograms of pure 

minerals. 

Experimental Results and Discussion 

Radium Distribution ofthe Overflows and Underflows 

Table XV lists the specific activity measurements obtained from the hydrocyclone 

experiments. The specific activity measurements of untreated samples (e.g., overflow= 

1269.5 pCilg and underflow= 1155.5 pCi/g) and samples that sheared with the dispersator 

(e.g., overflow= 212.6 pCilg and underflow= 1104.85 pCi/g) showed slightly lower spe

cific activity measurements for the underflows (coarse) than the overflows (fine). The 

samples treated with the dispersant (e.g., overflow= 669.32 pCilg and underflow= 

1283.6 pCilg) and ultrasonic probe (e.g., overflow= 639.32 pCi/g and underflow= 

1004.27 pCil g) showed much lower overflow specific activities than the underflows. When 

both the dispersant and the dispersator was used, the underflow specific activity 

(1018.6 pCilg) was much lower than the overflow specific activity (577.05 pCi/g). The 

overflow of the second run of the experiment ran with the dispersant and dispersator 

increased approximately 500 pCi/g (from 1403.75 pCilg to 1899.2 pCi/g). The second run 

of the underflow collected was to simulate hydrocyclones run in series. Unfortunately, 

mass balance and activity balances could not be achieved due to lack of sample obtained 

from the underflows and overflows. 
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Sample 

Original Untreated 

Untreated 

Dispersator only 

Dispersant only 

Dispersator and 
Dispersant 

Dispersator and 
Dispersant 

Ultrasonic Sonica-
tor Probe 

TABLE XV 

Specific Activity Measurements 

Hydrocyclone Experiment 

Specific Activity (pCilg) 

Type Ra-226 1 0 Ac-228 

- 1040.9 58.4 333.6 

Overflow 1264.5 80.7 393.4 
Underflow 1155.5 65.8 325.3 

Overflow 1212.6 103.4 433.5 
Underflow 1104.85 81.98 353.94 

Overflow 669.32 66.9 196.32 
Underflow 1283.6 90.96 477.3 

Overflow 1018.6 90.7 310.7 
Underflow 577.05 49.4 170 

Overflow* 1403.75 108.4 417.34 
Overflow** 1899.2 157.47 652.99 
Underflow** 1063.95 78.93 395.58 

Overflow 639.32 69.15 206.3 
Underflow 1004.27 77.59 362.69 

1 0 

6.8 

10.6 
77.4 

17.33 
12.87 

12.37 
14.25 

16.14 
8.98 

17.96 
28.43 
11.99 

15.72 
13.2 

NOTE: Overflow consists of finer grains and underflow consists of coarser 
grains. 
*First run 

**Second run 

SEM Analysis ofthe Overflows and Underflows 

Figures 19 and 20 show the typical SEM photographs of solids obtained from the 

overflows and underflows of the hydrocyclone. Additional SEM photographs from this 

experiment are attached in Appendix D. These photographs indicate that the hydrocyclone 

did a good job of separating the smaller sized particles from the larger particles. Figure 19 

shows the finer grained fraction which is rich in barite. Figure 20 shows the coarser grained 

material, mostly quartz, and the barite present appears to be generally present as grain 

coats. The overflow contained particles rich in barite, sized fine to very fine sand, angular, 

and as massive clasts of barite. These clasts may have originated as scale particles detached 

from piping and subsequently deposited in separators and tanks. The underflow contained 

barite-poor samples comprised of angular to subrounded quartz grains, and the barite is typ

ically present as grain coats and isolated patches. These photographs also indicate that 
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barium is prevalent in smaller sized particles. The barite particles are consistently attached 

to the larger grains which explains the high radioactivity measurements. 

XRD Analysis ofthe Overflows and Underflows 

Table XVI shows the mineralogy data obtained from each of the hydrocyclone 

experiments. Mineralogy data show that the overflow of the hydrocyclone contained 70 to 

83% barite and 15 to 33% quartz. The underflows of the hydrocyclone contained 14to 25% 

barite and 69 to 77% quartz. The original untreated sample showed similar percentages as 

the underflow of the hydrocyclone which carried most of the solids. The mass transferred 

to the overflow was a small amount. Mineralogy data show that the hydrocyclone was effi

cient at separating the quartz and barite materials, since the underflow contained most of 

the quartz and the overflow contained most of the barite on a percent basis. 

Sample 

Original Untreated 

Untreated 

Dispersator only 

Dispersant only 

Dispersator and 
Dispersant 

Ultrasonic Sonicator 
Probe 

TABLE XVI 

Mineralogy 

Hydrocyclone Experiment 

Mineralogy 

Output Barite(%) Quartz(%) 

- 16 76 

Overflow 83 16 
Underflow 22 77 

Overflow 83 15 
Underflow 18 69 

Overflow 51 33 
Underflow 25 70 

Overflow* 70 27 
Overflow** 70 24 
Underflow** 18 77 

Overflow 60 33 
Underflow 18 72 

Feldspar (%) 

8 

1 
7 

2 
13 

1 
5 

3 
6 
5 

1 
10 

NOTE: Overflow consists of coarser grains and underflow consists of finer grains. 
*First run 

**Second run 
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Figure 17. SEM photographs of solids obtained from the overflow of the hydrocyclone of untreated sample 
(11385-43). (A) x500 image showing particle morphologies. (B) x2000 image showing detai led 
particle morphologies. (C) x500 image showing barium X-ray map of image shown in (A). 
(D) x2000 image showing barium X-ray map of image shown in (8). 



0\ 
N 

\ ·. ' c- . , r ::. ···., .. , .. 
,' ' . ' ', .. '• ' .. '""/ . ' '·· . y ~ -~ ,•'. ·'l;"' ·~'· ~- • '•: .,.~:,. '· .. c.~· /~' '· ·, ;Y 

}··. . .~ ~ (~-.... 't;' -r' ''t .'. 1- .. · .,.·:!'- _,-.. ·• '), f .r'· ·,-/W.J:·.(' c~f-~ -- .-. ~' ,, ' v ~--"'"""""'~ ... · ~J· ' ... , "'"' ..,., ... ' .':' -~- . ,: ' . ~--... · ;{ ,,, ._.-· . • :·' •, ~.;?'• -~ · .. -~"-···· • . ;''\ \~ ~ ' .... -, -". '-<~ ...... " ' 
f} .} .·~ ~<1~ '} ' ,. ,> w «<\ 

~ ~>. . '·:~~~ I!VJ r~ 
Bl 
E . "'\.:' ~,, r:·. r~PJ:,-/· , ·,. -\ ._) ' ~ ,.-.·<3 , ,._~-v., ~ I .•J I"· -~-· · 
~'-, "~,:,r ·• . '• < ' )> ~- • ' • •. ',:' t_ ~--' · ,. -~- r~ 

\,. . ~- ~- ./ ~- !I' I 
. '-' . . p > r ~ ' ./., . ,_,, .. ·· ·. ~-: ·, I 
. -- .A: ...... ,·'/ / a" . ~- ;""" ·. ~ t•• · · · v- . · : . ' 4'" . ,, J~ .··. -~ /·# ~ << " .. ~~ -_ ... ~,/ f 

Figure 18. SEM photographs of solids obtained from the overflow of the hydrocyclone of untreated sample 
( 11385-44). (A) x 150 image showing particle morphologies. (B) x500 image showing detailed 
particle morphologies. (C) x 150 image showing barium X-ray map of image shown in (A). 
(D) x500 image showing barium X-ray map of image shown in (8). 



Interpretation ofBarite Svecific Activity 

Using the specific activity measurement data of total grams of sample and mineral-

ogy data obtained from overflows and underflows of this experiment, the barite specific 

activities were calculated in units of pCi of Ra-226/g of barite. These values resulted in 

higher specific activity for the underflows than overflows on per gram of barite basis. The 

specific activity of the overflows ranged from approximately 1 ,000 to 2,000 pCi of 

Ra-226/g of barite, whereas the underflows ranged from approximately 4,000 to 6,000 pCi 

of Ra-226/g of barite. These results suggest that barite attached onto silica grains has a 

higher specific activity of Ra. 

TABLE XVII 

Calculation of Barite Specific Activity in pCi of Ra-226/g of Barite 

Sample Overflow Underflow 

Untreated 1,523 5,252 

Dispersator only 1,461 6,138 

Dispersant only 1,116 5,134 

Dispersator and Dispersant 1,340 4,122 

Dispersator and 2,005* -

Dispersant 2,713** 5,911 ** 

Ultrasonic Sonicator Probe 999 5,579 

NOTE: Overflow consists of coarser grains and underflow consists of finer grains. 
*First run 
**Second run 

Summary 

The specific activity measurements of underflows and overflows of each experiment 

were inconsistent. Despite the ability of the hydrocyclone to separate barite from quartz, 

the radioactivity did not necessarily follow the barite. In some instances, the underflows 

showed higher specific activity than the overflows and vice-versa. One explanation might 

be that the hydrocyclone, dispersator, or the ultrasonic probe did not provide the shearing 

capability to disrupt the barite particles from quartz grains. 

63 



A closer look revealed that when the specific activity of barite was calculated, the 

values resulted in higher specific activity for the underflows than the overflows on per gram 

of barite basis. These results show that the barite attached onto silica grains are more radio

active on per gram basis. This explains the high total specific activity measurements 

obtained for total grams of solids event through the hydrocyclone was very efficient at sep

arating the larger particles and small particles. These barite particles that could not be 

sheared off from the inert silica grains were approximately four to five times more radioac

tive than the loose barite particles. This indicates that barite that was coated onto the silica 

grains are significantly more radioactive than the barite that was loosely attached. 

The attempt to separate the NORM-contaminated vessel solids and 

non-NORM-contaminated vessel solids was not successful with the use of the hydrocy

clone. Neither the dispersator nor the ultrasonic probe, along with the dispersant and the 

hydrocyclone, were able to disagglomerate the radiobarite particles from the sand grains. 

Chemical Dissolution 

Introduction 

The dissolution experiment was conducted to examine the possibility of separating 

NORM-contaminated barite from the nonradioactive components of the vessel solids by 

dissolution. Commercial scale dissolvers have previously been shown to stimulate the 

majority of barite, calcite and mixed scales deposited was removed by dissolvers (Rhudy, 

1993). Paul and Fieler (1992) have also developed a solvent for oilfield scales using an effi

cient chelating agent and synergist similar to chemicals used for this experiment. 

Two dissolution media were used in these experiments, Calnox-271 and a DPTA 

(multidentate ligand material) and oxalic acid solution. Oxalate is used to suppress calcium 

dissolution. Ten grams of unwashed composite vessel solids were combined with 60 ml of 

dissolution media in a 250-ml acrylic plastic jar, and shaken for 24 hours. The samples 
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were then removed from the shaker and separated from the liquid by decantation, centrifu

gation, and filtration. Specific activity of both solids and liquids were determined by 

gamma spectroscopy. This experiment was performed at room and elevated temperatures. 

Composite vessel solids were examined by SEM to obtain visual information on 

grain sizes and morphologies before and after the chemical dissolution experiments. The 

samples obtained from experiments running at room and elevated temperatures were exam

ined. The distribution and associations of barite in these samples was investigated with the 

SEM by obtaining barium maps with backscattered electron imaging. 

X-ray diffraction, XRD, was used to determine the identify of crystalline phases 

present in the vessel solids. Samples were ground to 50 J.LII1 or less prior to analysis. All 

XRD analyses were executed on random powder mounts. The results of the XRD were 

interpreted by comparison of diffractograms obtained for the samples to diffractograms of 

pure minerals. 

Experimental Results and Discussion 

Radium Distribution in the Vessel Solids and Solution 

With both solvents at room and elevated temperatures, the specific activity measure

ments of the liquid concentrations are negligible compared to the specific activity 

measurements of the solids concentration. Composite vessel solids in Calnox-271 solution 

showed slightly lower specific activity measurements than the 50/50 mixture of DPTA and 

oxalic acid solution in the solids concentration. Paul and Fieler (1992) used a 50/50 mix-

ture of DPTA and oxalic acid solution in their experiment. The liquid concentration from 

the Calnox-271 showed slightly higher specific activity measurements than the 50/50 mix-

' 
ture at both room temperature and elevated temperature. 

Table XVIII lists the specific activity measurements for solids and liquids performed 

at room temperature. The dissolution experiment performed at room temperature showed 
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an increase in the solids, in the specific activity of Ra-226 from 1,040.9 pCi/g of untreated 

sample to 1,233.85 pCi!g and 1,270.45 pCilg for samples treated with Calnox-271 and 

DTPA and oxalic acid, respectively. Similarly, increases in the specific activity measure-

· ments for Ac-228 are seen. 

TABLE XVIII 

Specific Activity Measurements 

Dissolution Experiment at Room Temperature 

Specific Activity (pCilg) 

Sample Type Ra-226 1 0 Ac-228 

Untreated Sample Soil 1040.9 58.4 333.6 

Calnox-271 Liquid 16.3 2.15 4.59 
Solid 1233.85 71.9 407.6 

DPTA and Oxalic Acid Liquid 19.7 2.3 4.96 
Solid 1270.45 73.1 405.75 

1 0 

6.8 

0.28 
8.64 

0.3 
8.66 

These results indicate that the solids became more concentrated with treatment with 

the scale dissolvers and negligible amounts of radium went into solution. This may 

attribute to dissolution of barite and not radium. 

At an elevated temperature of75°C, both the Calnox-271 and DTPA and oxalic acid 

showed a decrease in specific activity measurements of the solids. Increased temperature 

enhanced the dissolution rate and capacity, as expected for most reactions (Paul and Fieler, 

1992). Despite demonstrated effectiveness of the solvent at de scaling and decontaminating 

production tubing in a field environment under laboratory conditions tested by Harris and 

Fisher (1994), using Barrage™ (a commercial scale dissolver), the dissolution rates were 

slow. This experiment also showed that the dissolution rates are shown using Calnox 

S-271. Field conditions (higher temperatures and pressures downhole) may be the reason 

for better dissolution rates shown in Paul and Fielder's (1992) study. DTPA and oxalic acid 

showed higher specific activity compared to the Calnox S-271. For solids in Calnox-271, 

the solids concentration of Ra-226, Ac-228, and Bi-214 were 801.45 pCi/g, 296.8 pCi/g, 

and 303.9 pCi!g, respectively. However, the specific activity in the liquid concentration 
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increased to 81.45 pCi/g, 23.5, and 16.59 for Ra-226, Ac-228, and Bi-214. Table XIX 

shows the specific activity measurements obtained from the dissolution experiment per-

formed at elevated temperature. 

TABLE XIX 

Specific Activity Measurements 

Dissolution Experiment at Elevated Temperature (75°C) 

Specific Activity (pCilg) 

Sample Type Ra-226 ±lcr Ac-228 1 0" Bi-214 

Untreated Sample Soil 1040.9 58.4 333.6 6.8 445.4 

Calnox-271 Liquid 81.45 4.57 23.5 0.49 16.59 
Solid 801.45 51.5 296.8 7.24 303.9 

DPTA and Oxalic Acid Liquid 61.6 3.91 15.3 0.41 13.9 
Solid 1008.25 60.38 355.65 7.85 388.9 

1 0" 

8.7 

0.44 
7.88 

0.41 
8.9 

Even though more radium went into solution at an elevated temperature, the specific 

activity measurements in the solids concentrations were too high for this process to be con-

sidered an effective solution to the NORM-contaminated vessel solids problem. Similar 

work conducted by Skeaff (1977) showed that much of the Ra-226 is dissolved from 

coarser material and redistributed to the finer material, indicating that it must enter the solu-

tion. If this is true, after the dissolution process, a mechanical separation technique such as 

a hydrocyclone may result in a waste volume reduction. 

Figures 19 and 20 graphically illustrate the comparisons of Calnox-271 and DTPA 

and oxalic acid at room temperature and at elevated temperature for Ra-226, Ac-228 and 

Bi-214. These figures indicate that radium was most soluble in Calnox-271 at elevated 

temperature. Clearly, waste volume reduction cannot be easily achieved through simple 

dissolution of barite. 

Mass Balance and Activity Balance 

Table XX shows the mass balance and activity balance calculated from the dissolu

tion data. The specific activity of the untreated sample was multiplied by the original 
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amount of sample (i.e., 10 g), and the specific activity of the liquid obtained after 

dissolution was multiplied by the mass of the liquid (i.e., 71.82 g for Calnox S-271) to 

obtain the total activities. Amount of solids dissolved in the solution was determined by 

conservation of mass calculations. Then the specific activity of the solids was multiplied 

by the remaining mass to obtain the total activity of the solids after dissolution. In Calnox 

S-271, 11.2% of the solids were dissolved at room temperature, whereas 56.2% of the sol

ids were dissolved at the elevated temperature. Similarly, more solids were dissolved with 

DTPA and oxalic acid solution at the elevated temperature. Total activity balance was not 

achieved. This may be the result of 20% variations in the gamma spectrometer. The higher 

activity resulting from the activity balance may be attributed to the fact that removing bar

ium decreased the self-shielding capabilities within the particles. 

TABLE XX 

Activity and Mass Balances of Dissolution Experiment at Room Temperature 

Original Untreated Solids Remaining Solids Dissolved 

Total Total Total 
Sample Activity Activity Activity o/o 

Dissolved In (pCi) Mass (g) (pCi) Mass (g) (pCi) Mass (g) Dissolved 

Calnox S-271 10,409 10 10,956.6 8.88 18.26 1.12 11.2 
@room temp 

Oxalic acid @ 10,409 10 11,179.96 8.8 23.64 1.2 12 
room temp 

Calnox S-271 10,409 10 3,510.35 4.38 479.75 5.62 56.2 
@ elev. temp 

Oxalic acid @ 10,409 10 6,291.48 6.24 231.56 3.76 37.6 
elev. temp 

SEM Analysis ofthe Vessel Solids After Dissolution 

Figures 21 and 22 show the composite vessel solids before dissolution and after dis

solution with Calnox-271 at elevated temperature. The barium maps indicate that solids 

dissolved in Calnox-271 at elevated temperature contained less barium in the solids. More 
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Figure 21. SEM photographs of untreated composite vessel solids (11385-25). (A) x1 00 
image showing particle morphologies. (B) x800 image showing detailed particle 
morphologies. (C) xlOO image showing barium X-ray map of image shown in (A). 
(D) x800 image showing barium X-ray map of image shown in (B). 
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Figure 22. SEM photographs of sample from dissolution experiment performed at e levated temperature with 
DTPA and oxalic acid solution (11 374-33F). (A) xI 00 image showing partic le morphologies. 
(8) x 1000 image showing detailed partic le morphologies. (C) x I 00 image showing barium X-ray 
map of image shown in (A). (D) x I 000 image showing barium X-ray map of image shown in (B). 



barite particles were dissolved in Calnox S-271 solution overall. Additional SEM photo

graphs of solid particles obtained from this experiment are attached in Appendix E. 

XRD Analysis of the Vessel Solids After Dissolution 

The mineralogy of the solids indicates that the barite percentage in the solids 

decreased in both cases. The untreated sample contained 16% barite, 76% quartz, and 8% 

feldspar. At room temperature, both Calnox-271 and DTPA and oxalic acid slightly 

reduced the percentage of barite. At elevated temperature, more of the barite was dissolved 

in Calnox-271 and DTPA and oxalic acid. Table XXI shows the resulting mineralogy data 

at room temperature and at elevated temperature. As the percentages of barite left in the 

solids decreased, the liquid radium concentration increased, as expected (Table XVII). 

Sample 

Untreated Sample 

Calnox-271 

DTPA and Oxalic Acid 

Summary 

TABLE XXI 

Mineralogy of the Solids 

Dissolution Experiment 

Mineralogy 

At Room Temperature At Elevated Temperature 

Barite(%) Quartz(%) Feldspar (%) Barite(%) Quartz(%) Feldspar(%) 

16 76 8 16 76 8 

11 81 8 6 88 6 

11 82 9 7 88 5 

Overall, chemical dissolution would not be an effective method for reducing the vol-

ume of NORM waste. The liquid to solution ratio was approximately 7: 1 on mass basis. 

Laboratory experiments suggest that at favorable conditions (Calnox S-271 at elevated 

temperature), 120 ml of solution would be necessary in order for 10 g of vessel solids to 

completely transfer of radium into solution, assuming equilibrium conditions. The com-

mercial scale dissolver is $23.47 per gallon. In order to dissolve barite in one kilogram of 
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vessel solids, it would cost $533.04 at the elevated temperature, dissolving a little over 

50%. To dissolve the barite completely, it would cost over $1,000 per one kilogram. The 

cost of the commercial scale dissolver and the amount needed to treat the radioactive scales 

make this process ineffective economically. 
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CHAPTERS 

CONCLUSIONS 

Characterization 

The characterization study determined that the vessel solids (tank bottoms and sep

arator sands) are comprised of fine, very fine, and silt sized particles. These particles are a 

mixture of quartz, barite, and amorphous iron and manganese oxides. Barite in these mate

rials is present as isolated precipitates on grains, grain coats, and fine to very fine sand 

particles. Vessel solids can be substantially radioactive due to the coprecipitation of radium 

with barite. Barium radium sulfate is attached onto the surface of the silica grains. These 

radioactive particles are usually isolated in the fine grains or as precipitates on larger grains. 

Both U and Th are also present in these materials. When present, U is at crustal abundance 

relative to Si, but Th is, on the average, present above crustal abundance levels with respect 

to Si. In addition to radium, vessel solids can contain substantial levels of Zn, Pb, Cu, and 

As. 

Due to the small size, brittle, easily ground nature, and sometimes intimate associa

tion with inert materials, removal of radium-contaminated barite from these solids by 

simple physical means is extremely difficult. The simplest means to reduce the volume of 

this waste stream is fluid removal. Based on their densities, the relative average volumetric 

abundance of fluid and solid constituents in a vessel solids waste stream is approximately 

14% oil, 31% water, 48% inert solids, and 7% radium-contaminated barite. Consequently, 

simply removing the fluids would reduce waste volume by approximately 45%. On a mass 

basis, the ratio of quartz to barite is approximately 2:1, but the volume ratio is 3.5:1 due to 
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the higher density of barite (4.6 glee) compared to quartz (2.6 glee). Removal of quartz 

alone would result in an average volume reduction of 39%. Overall, removal of both fluids 

and quartz would result in an average ultimate waste volume reduction of 88%. Since the 

fine-grained barite containing the radium is largely present as disseminated patches 

cemented to inert quartz grains, successful separation technology will require a means of 

shearing barite precipitates from these grains. 

Soil Shielding 

This study showed the Ottawa sand was the most effective of the radiation shield 

materials examined. Although the Ottawa sand was comprised of low atomic number 

material and had a lower grain density, it had the highest bulk density. Ottawa sand had the 

lowest attenuation coefficients when compared to the limestone pellets and mollusc shells. 

Burial of NORM-contaminated material by a layer of quartz sand 2.5 em in thickness 

would reduce the radiation field by half. The unshielded material experimentally deter

mined the radiation dropped off as distance increased. 

The linear attenuation coefficient decreases with increasing the shield material's 

density. Mollusc shells had the lowest bulk density and highest porosity, and consequently 

had highest (i.e., poorest) linear attenuation coefficient. In contrast, the high bulk density 

and sufficient amount and thickness of sand made it a good shielding material, even though 

Si and 0 have relatively low atomic numbers. The mollusc shells yield a half-value layer 

comparable to concrete. 

Radon Emanation 

The radon emanation experiment showed that the emissivity of radon gas can be sig

nificantly reduced using activated charcoal. The addition of 8 grams of activated coconut 

charcoal to accumulation cells reduced Rn accumulation by 96%, compared to equivalent 

accumulation cells without charcoal. The decrease in radon emanation power was attrib-
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uted to an increase in charcoal addition. With sufficient amounts of activated charcoal, 

eventually all of the radon gas can be adsorbed. The results indicated that even a modest 

amount of activated charcoal would greatly reduce the Rn emanation from soils. 

Activated coconut charcoal used for this experiment showed very favorable pseudo 

isotherms. The Fruendlich, Langmuir High and Low, and BET isotherms showed high 

capacity of the adsorbent for the adsorbate and strong adsorption bond. These isotherms 

also proved that the charcoal was a viable option in reducing the radon emission. There

fore, mixing contaminated soil with activated charcoal would inhibit radon emission very 

effectively. This study also showed that the massive radioactive scale source has very low 

emanation power, while dispersed ground-up scale has high emanation power. 

Mechanical Separation Experiment 

The hydrocyclone experiment showed that the specific activity measurements of 

underflows and overflows of each experiments were inconsistent. Despite the ability of the 

hydrocyclone to separate barite from quartz, the radioactivity did not necessarily follow the 

barite. In some instances, the underflows showed higher specific activity than the over

flows, and vise versa. The attempt to separate the NORM-contaminated vessel solids and 

non-NORM-contaminated vessel solids was not successful with the use of the hydrocy

clone. Neither the dispersator nor the ultrasonic probe, along with the dispersant and the 

hydrocyclone, were not able to disagglomerate the radiobarite particles from the sand 

grains. 

Mechanical separation with the hydrocyclone resulted in the overflow from the 

hydrocyclone containing approximately 4: 1 ratio of barite:quartz, and the underflow con

taining approximately 4:1 ratio of quartz: barite. Solids obtained from overflows and 

underflows of the hydrocyclone resulted in inconsistent specific activity measurements. 
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The specific activity measurements reported with the hydrocyclone experiment were too 

high for this process to be an effective method. 

A closer look revealed that when the specific activity of barite was calculated. the 

values resulted in higher specific activity for the overflows than the underflows on per gram 

of barite basis. These results indicate the barite that is attached onto silica grains is more 

radioactive on a per gram basis. This explains the high total specific activity measurements 

obtained for total grams of solids, even though the hydrocyclone was very efficient at sep

arating the larger particles and smaller particles. These barite particles which could not be 

sheared off from the inert silica grains were approximately four to five times more radioac

tive than the loose barite particles. 

Dissolution Experiment 

The attempt to dissolve radiobarite particles in the scale dissolver was not very suc

cessful. While barite is effectively removed by known commercial scale dissolvers, radium 

sulfate is not easily dissolved. The specific activity measurements from the dissolution 

experiment indicate that only minute quantities of radium are dissolved into solution. Even 

though barium and radium dissolved more readily at elevated temperatures, the specific 

activity measurements of the solids concentrations remained at a high level of radioactivity. 

Composite vessel solids in Calnox-271 solution showed slightly lower specific 

activity measurements than the 50/50 mixture of DTPA and oxalic acid solution in the sol

ids concentration. The liquid concentration from the Calnox-271 showed slightly higher 

specific activity measurements than the 50/50 mixture at both room temperature (25°C) and 

elevated temperature (75°C). In both cases, at room and elevated temperatures, the specific 

activity measurements of the liquid concentrations are negligible compared to the specific 

activity measurements of the solids concentration. 
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Even though more radium went into solution at an elevated temperature, the specific 

activity measurements in the solids concentrations were too high for this process to be an 

effective solution. 

The cost of the commercial scale dissolver and the amount needed to treat the radio

active scales make this process ineffective economically. The liquid-to-solution ratio was 

approximately 7:1 on a mass basis. Laboratory experiments suggest that, at favorable con

ditions (Calnox S-271 at elevated temperature), 120 ml of solution would be necessary in 

order for 10 grams of vessel solids to completely transfer radium into solution, assuming 

equilibrium conditions. The commercial scale dissolver is $23.47 per gallon. In order to 

dissolve barite in one kilogram of vessel solids, the cost would be $533.04 at the elevated 

temperature, dissolving a little over 50%. To dissolve the barite complet~ly, it would cost 

over $1 ,000 per one kilogram. 

A combination of chemical and mechanical separation techniques may yield better 

results at separating the NORM-contaminated vessel solids from the inert solids. Also, ion 

exchange may be a viable solution as a waste reduction treatment option. 
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Particle Size Analysis 

Sample # 11374-2 

Total Weight 1.89 grams 

grain sizes > 180 um 1.1 grams 

size um weight (g) 
>850 0.042 
>600 0.061 
>425 0.098 
> 300 0.171 
>250 0.232 
> 180 0.487 

sum 1.091 

grain sizes < 180 um 0.79 grams 

size um %under % welaht fa) size um %under % weliihfTci) 
< 188 100 0 0.0000 < 17.7 56.7 5.5 0.0435 
< 162 100 0 0.0000 < 15.3 51.2 3.4 0.0269 
< 140 100 0 0.0000 < 13.2 47.8 3.2 0.0253 
< 120 100 0 0.0000 < 11.4 44.6 3.9 0.0308 
< 104 100 0 0.0000 < 9.8 40.7 4.5 0.0356 
< 89.9 100 0.5 0.0040 < 8.5 36.2 4.1 0.0324 
< 77.5 99.5 1.6 0.0126 < 7.3 32.1 3.9 0.0308 
< 66.9 97.9 2.7 0.0213 <6.3 28.2 4.5 0.0356 
< 57.7 95.2 3.7 0.0292 < 5.4 23.7 4 0.0316 
< 49.8 91.5 4.5 0.0356 <4.7 19.7 2.7 0.0213 
< 42.9 87 4.6 0.0363 <4.1 17 1.8 0.0142 
< 37.1 82.4 4.6 0.0363 < 3.5 15.2 1.7 0.0134 
< 32 77.8 4.1 0.0324 < 3.0 13.5 2.4 0.0190 
< 27.6 73.7 3.9 0.0308 < 2.6 11.1 2.5 0.0198 
< 23.8 69.8 ' 5.8 0.0458 <2.2 8.6 2.2 0.0174 
<20.5 64 7.3 0.0577 < 1.9 6.4 6.4 0.0506 

Total 0.79 
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Particle Size Analysis 

Sample~ 11374-3 

Total Weight 5.92 grams 

grain sizes> 180 um 1.85 grams 

size um weight (g) 
> 850 0.936 
>600 0.137 
>425 0.149 
> 300 0.166 
>250 0.139 
> 180 0.191 

sum 1.718 

grain sizes < 180 um 4.07 grams 

size um %under % weiaht (a) size um %under % weight (g) 
< 188 100 0 0.0000 < 17.7 62.1 6.9 0.2808 
< 162 100 0 0.0000 < 15.3 55.2 5.3 0.2157 
< 140 100 0 0.0000 < 13.2 49.9 4.8 0.1954 
< 120 100 0 0.0000 < 11.4 45.1 5.1 0.2076 
< 104 100 0 0.0000 < 9.8 40 5 0.2035 
<89.9 100 0.3 0.0122 <8.5 35 4.6 0.1872 
< 77.5 99.7 0.4 0.0163 <7.3 30.4 4.2 0.1709 
<66.9 99.3 0.5 0.0204 < 6.3 26.2 4.4 0.1791 
< 57.7 98.8 0.7 0.0285 <5.4 21.8 3.9 0.1587 
<49.8 98.1 2.6 0.1058 <4.7 17.9 3.1 0.1262 
<42.9 95.5 3.6 0.1465 < 4.1 14.8 2.4 0.0977 
< 37.1 91.9 3.9 0.1587 < 3.5 12.4 2.1 0.0855 
< 32 88 4.4 0.1791 <3.0 10.3 2 0.0814 
<27.6 83.6 5.6 0.2279 < 2.6 8.3 2 0.0814 
< 23.8 78 7.4 0.3012 < 2.2 6.3 1.8 0.0733 
<20.5 70.6 8.5 0.3459 < 1.9 4.5 4.5 0.1832 

Total 4.07 
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Particle Size Analysis 

Sample# 11374-4 

Total Weight 5.46 grams 

grain sizes > 180 urn 0.17 grams 

size urn weiaht (C) 
> 850 0.007 
> 600 0.034 
> 425 0.026 
> 300 0.04 
> 250 0.019 
> 180 0.042 
sum> 180 urn 0.168 

grain sizes < 180 urn 5.29 grams 

size urn %under % weight (g size urn %under % weight (g) 
< 188 100 0 0.0000 < 17.7 100 0.2 0.0106 
< 162 100 0 0.0000 < 15.3 99.8 0.5 0.0265 
< 140 100 0 0.0000 < 13.2 99.3 1.9 0.1005 
< 120 100 0 0.0000 < 11.4 97.4 4.1 0.2169 
< 104 100 0 0.0000 < 9.8 93.3 3.9 0.2063 
< 89.9 100 0 0.0000 < 8.5 89.4 3.8 0.2010 
< 77.5 100 0 0.0000 < 7.3 85.6 5.2 0.2751 
< 66.9 100 0 0.0000 <6.3 80.4 8.3 0.4391 
< 57.7 100 0 0.0000 < 5.4 72.1 8.1 0.4285 
< 49.8 100 0 0.0000 < 4.7 64 5 0.2645 
<42.9 100 0 0.0000 < 4.1 59 2.9 0.1534 
< 37.1 100 0 0.0000 < 3.5 56.1 2.8 0.1481 
< 32 100 0 0.0000 < 3.0 53.3 4.2 0.2222 
< 27.6 100 0 0.0000 < 2.6 49.1 7 0.3703 
< 23.8 100 0 0.0000 < 2.2 42.1 8.7 0.4602 
< 20.5 100 0 0.0000 < 1.9 33.4 33.4 1.7669 

Total 5.29 
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Particle Size Analysis 

Sample## 11374-5 

Total Weight 3.98 grams 

grain sizes> 180 urn 0.77 grams 

size urn weioht Co) 
> 850 0.028 
> 600 0.034 
>425 0.035 
> 300 0.086 
>250 0.093 
> 180 0.473 

sum 0.749 

grain sizes< 180 urn 3.21 grams 

size urn %under % weiaht (a) size urn %under % weiaht(Q) 
< 188 100 0 0.0000 < 17.7 39.8 5.4 0.1733 
< 162 100 0 0.0000 < 15.3 34.4 3.9 0.1252 
< 140 100 0 0.0000 < 13.2 30.5 3.3 0.1059 
< 120 100 0.6 0.0193 < 11.4 27.2 3.5 0.1124 
< 104 99.4 2.3 0.0738 < 9.8 23.7 3.5 0.1124 
< 89.9 97.1 4.1 0.1316 < 8.5 20.2 2.9 0.0931 
< 77.5 93 5.3 0.1701 < 7.3 17.3 2.3 0.0738 
<66.9 87.7 5.4 0.1733 <6.3 15 2.5 0.0803 
< 57.7 82.3 4.5 0.1445 < 5.4 12.5 2.3 0.0738 
< 49.8 77.8 3.9 0.1252 <4.7 10.2 1.6 0.0514 
< 42.9 73.9 4.6 0.1477 < 4.1 8.6 1 0.0321 
< 37.1 69.3 6.2 0.1990 < 3.5 7.6 0.9 0.0289 
< 32 63.1 6.2 0.1990 < 3.0 6.7 1.2 0.0385 
< 27.6 56.9 5 0.1605 < 2.6 5.5 1.2 0.0385 
< 23.8 51.9 5.6 0.1798 < 2.2 4.3 1.1 0.0353 
< 20.5 46.3 6.5 0.2087 < 1.9 3.2 3.2 0.1027 

Total 3.21 
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Particle Size Analysis 

Sample# 11374-7 

Total Weight 1.49 grams 

grain sizes> 180 um 0.02 grams 

size um weight (g) 
> 850 
>600 
>425 
> 300 
> 250 
> 180 0.02 

sum 0.02 

grain sizes < 180 um 1.47 grams 

size um %under % weight (a) size um %under % weight (g) 
< 188 100 0 0.0000 < 17.7 74.8 5.4 0.0794 
< 162 100 0 0.0000 < 15.3 69.4 4 0.0588 
< 140 100 0 0.0000 < 13.2 65.4 4.4 0.0647 
< 120 100 0 0.0000 < 11.4 61 4.9 0.0720 
< 104 100 0 0.0000 < 9.8 56.1 4.3 0.0632 
< 89.9 100 0.1 0.0015 < 8.5 51.8 3.9 0.0573 
< 77.5 99.9 0.1 0.0015 < 7.3 47.9 4.2 0.0617 
<66.9 99.8 0.1 0.0015 <6.3 43.7 5.8 0.0853 
< 57.7 99.7 0.4 0.0059 < 5.4 37.9 5.5 0.0809 
< 49.8 99.3 1.9 0.0279 <4.7 32.4 3.4 0.0500 
< 42.9 97.4 2.5 0.0368 < 4.1 29 2.3 0.0338 
< 37.1 94.9 2.3 0.0338 < 3.5 26.7 2.2 0.0323 
< 32 92.6 3 0.0441 < 3.0 24.5 3.2 0.0470 
<27.6 89.6 4.3 0.0632 < 2.6 21.3 3.9 0.0573 
< 23.8 85.3 5.5 0.0809 < 2.2 17.4 4.1 0.0603 
<20.5 79.8 5 0.0735 < 1.9 13.3 13.3 0.1955 

Total 1.47 
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Particle Size Analysis 

Sample # 1137 4-8 

Total Weight 5.02 grams 

grain sizes > 180 urn 1.59 grams 

size urn weiaht Cal 
> 850 0.004 
>600 0.011 
> 425 0.016 
> 300 0.393 
> 250 0.488 
> 180 0.632 

sum 1.544 

grain sizes < 180 urn 3.43 grams 

size urn %under % weight (g) size urn o/o under o/o weight (g) 
< 188 100 0 0.0000 < 17.7 89.9 3.1 0.1063 
< 162 100 0 0.0000 < 15.3 86.8 2.6 0.0892 
< 140 100 0 0.0000 < 13.2 84.2 2.7 0.0926 
< 120 100 0 0.0000 < 11.4 81.5 3.1 0.1063 
< 104 100 0 0.0000 < 9.8 78.4 3.2 0.1098 
< 89.9 100 0 0.0000 < 8.5 75.2 2.9 0.0995 
< 77.5 100 0 0.0000 < 7.3 72.3 4 0.1372 
<66.9 100 0 0.0000 < 6.3 68.3 7.1 0.2435 
< 57.7 100 0.1 0.0034 < 5.4 61.2 7.4 0.2538 
< 49.8 99.9 0.4 0.0137 < 4.7 53.8 4.7 0.1612 
<42.9 99.5 0.6 0.0206 < 4.1 49.1 3.2 0.1098 
< 37.1 98.9 0.7 0.0240 <3.5 45.9 3.7 0.1269 
< 32 98.2 0.8 0.0274 < 3.0 42.2 6.2 0.2127 
< 27.6 97.4 1.2 0.0412 < 2.6 36 7.2 0.2470 
< 23.8 96.2 2.6 0.0892 <2.2 28.8 6.8 0.2332 
< 20.5 93.6 3.7 0.1269 < 1.9 22 22 0.7546 

Total 3.43 
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Particle Size Analysis 

Sample# 11374-9 

Total Weight 5.76 grams 

grain sizes > 180 urn 0.22 grams 

size urn weight (g) 
> 850 0 
> 600 0.031 
>425 0.065 
> 300 0.026 
> 250 0.032 
> 180 0.059 

sum 0.213 

grain sizes < 180 urn 5.54 grams 

size urn %under % weight size urn %under % weight 
< 188 100 0 0.0000 < 17.7 61.8 4.2 0.2327 
< 162 100 0.1 0.0055 < 15.3 57.6 3 0.1662 
< 140 99.9 0 0.0000 < 13.2 54.6 3.1 0.1717 
< 120 99.9 0 0.0000 < 11.4 51.5 3.7 0.2050 
< 104 99.9 0 0.0000 < 9.8 47.8 4.4 0.2438 
< 89.9 99.9 1.2 0.0665 < 8.5 43.4 4.1 0.2271 
< 77.5 98.7 3.6 0.1994 < 7.3 39.3 4.4 0.2438 
<66.9 95.1 4.5 0.2493 <6.3 34.9 6.2 0.3435 
< 57.7 90.6 4.3 0.2382 < 5.4 28.7 5.8 0.3213 
< 49.8 86.3 3.5 0.1939 <4.7 22.9 3.7 0.2050 
< 42.9 82.8 2.9 0.1607 < 4.1 19.2 2.5 0.1385 
< 37.1 79.9 2.8 0.1551 < 3.5 16.7 2.5 0.1385 
< 32 77.1 2.8 0.1551 < 3.0 14.2 3.3 0.1828 
< 27.6 74.3 3.1 0.1717 < 2.6 10.9 3.1 0.1717 
< 23.8 71.2 4.3 0.2382 < 2.2 7.8 2.2 0.1219 
< 20.5 66.9 5.1 0.2825 < 1.9 5.6 5.6 0.3102 

Total 5.54 

100 

I 
? I I 

90 

I 

! / I I .. I 

vw I 

I 

80 

70 

#. 50 
I L~ I I 

~·/ I 

60 

• ' 
~~' ! ! 

' ! 

'I I i i ~ ' l 

v I 

! I 

./ ---T i 
./ I I 

40 

30 

20 

10 

0 i i i 

10 100 1000 

Particle Size (micrometer) 



130 

Particle Size Analysis 

Samplei\l 11374-10 

Total Weight 4.99 grams 

grain sizes > 180 urn 0.33 grams 

size urn weight (g) 
> 850 0.036 
> 600 0.012 
> 425 0.01 
> 300 0.024 
> 250 0.126 
> 180 0.103 

sum 0.311 

grain sizes < 180 urn 4.66 grams 

size urn %under % weight size urn %under % weight 
< 188 100 0 0.0000 < 17.7 79.3 2.5 0.1165 
< 162 100 0.1 0.0047 < 15.3 76.8 2.7 0.1258 
< 140 99.9 0.1 0.0047 < 13.2 74.1 3 0.1398 
< 120 99.8 0 0.0000 < 11.4 71.1 3.5 0.1631 
< 104 99.8 0 0.0000 < 9.8 67.6 3.7 0.1724 
< 89.9 99.8 1.8 0.0839 < 8.5 63.9 3.9 0.1817 
< 77.5 98 4.7 0.2190 < 7.3 60 4.7 0.2190 
< 66.9 93.3 4.5 0.2097 < 6.3 55.3 6.8 0.3169 
< 57.7 88.8 1.4 0.0652 < 5.4 48.5 6.9 0.3215 
< 49.8 87.4 0.7 0.0326 <4.7 41.6 5.3 0.2470 
< 42.9 86.7 0.7 0.0326 < 4.1 36.3 3.9 0.1817 
< 37.1 86 0.7 0.0326 < 3.5 32.4 3.6 0.1678 
< 32 85.3 0.6 0.0280 < 3.0 28.8 4.4 0.2050 
<27.6 84.7 1.2 0.0559 < 2.6 24.4 5 0.2330 
< 23.8 83.5 1.9 0.0885 < 2.2 19.4 4.8 0.2237 
< 20.5 81.6 2.3 0.1072 < 1.9 14.6 14.6 0.6804 

Total 4.66 
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Particle Size Analysis 

Sample' 11374-11 

Total Weight 6.32 grams 

grain sizes> 180 um 2.12 grams 

size um weight (g) 
> 850 0.801 
> 600 0.122 
>425 0.105 
> 300 0.211 
> 250 0.242 
> 180 0.573 

sum 2.054 

grain sizes< 180 um 4.2 grams 

size um %under % weioht size um %under % weioht 
< 188 100 0 0.0000 < 17.7 49.2 5.6 0.2352 
< 162 100 0 0.0000 < 15.3 43.6 4.1 0.1722 
< 140 100 0 0.0000 < 13.2 39.5 4 0.1680 
< 120 100 0 0.0000 < 11.4 35.5 4.2 0.1764 
< 104 100 0 0.0000 < 9.8 31.3 3.9 0.1638 
< 89.9 100 0.1 0.0042 < 8.5 27.4 3.2 0.1344 
< 77.5 99.9 0.9 0.0378 < 7.3 24.2 2.7 0.1134 
<66.9 99 2 0.0840 < 6.3 21.5 3 0.1260 
< 57.7 97 3.8 0.1596 < 5.4 18.5 2.7 0.1134 
< 49.8 93.2 5.3 0.2226 <4.7 15.8 2.2 0.0924 
<42.9 87.9 5.6 0.2352 < 4.1 13.6 1.5 0.0630 
< 37.1 82.3 5.4 0.2268 < 3.5 12.1 1.3 0.0546 
< 32 76.9 5.9 0.2478 < 3.0 10.8 1.5 0.0630 
<27.6 71 6.8 0.2856 < 2.6 9.3 1.8 0.0756 
< 23.8 64.2 7.7 0.3234 < 2.2 7.5 1.8 0.0756 
< 20.5 56.5 7.3 0.3066 < 1.9 5.7 5.7 0.2394 

Total 4.2 
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Particle Size Analysis 

Sample# 11374-12 

Total Weight 5.66 grams 

grain sizes > 180 um 1.36 grams 

size um welaht (a) 
> 850 0.016 
> 600 0.023 
> 425 0.052 
> 300 0.061 
> 250 0.127 
> 180 1.007 

sum 1.286 

I grain sizes< 180 um 4.3 grams 

size um %under % weighf<ii) size um %under % wei!ihtM 
< 188 100 0 0.0000 < 17.7 35.6 3.4 0.1462 
< 162 100 0 0.0000 < 15.3 32.2 2.6 0.1118 
< 140 100 0 0.0000 < 13.2 29.6 2.4 0.1032 
< 120 100 1.1 0.0473 < 11.4 27.2 2.4 0.1032 
< 104 98.9 3.3 0.1419 < 9.8 24.8 2.3 0.0989 
< 89.9 95.6 5.8 0.2494 < 8.5 22.5 2 0.0860 
< 77.5 89.8 7.2 0.3096 < 7.3 20.5 2.2 0.0946 
< 66.9 82.6 7.4 0.3182 <6.3 18.3 2.7 0.1161 
< 57.7 75.2 6.1 0.2623 < 5.4 15.6 2.7 0.1161 
< 49.8 69.1 4.7 0.2021 <4.7 12.9 2 0.0860 
< 42.9 64.4 4.6 0.1978 < 4.1 10.9 1.6 0.0688 
< 37.1 59.8 5.4 0.2322 < 3.5 9.3 1.4 0.0602 
< 32 54.4 5.5 0.2365 < 3.0 7.9 1.5 0.0645 
< 27.6 48.9 4.6 0.1978 < 2.6 6.4 1.4 0.0602 
< 23.8 44.3 4.5 0.1935 < 2.2 5 1.4 0.0602 
< 20.5 39.8 4.2 0.1806 < 1.9 3.6 3.6 0.1548 

Total 4.3 
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Particle Size Analysis 

Sample6\ 11374-57 

Total Weight 5.3 grams 

grain sizes> 180 um 0.46 grams 

size um weiaht (a) 
> 850 0.084 
> 600 0.056 
>425 0.028 
> 300 0.082 
> 250 0.056 
> 180 0.103 

sum 0.409 

grain sizes < 180 um 4.84 grams 

size um %under % weight size um %under o/o weight 
< 188 100 0 0.0000 < 17.7 53.7 3.1 0.1500 
< 162 100 0 0.0000 < 15.3 50.6 2.6 0.1258 
< 140 100 0 0.0000 < 13.2 48 2.6 0.1258 
< 120 100 0.7 0.0339 < 11.4 45.4 2.9 0.1404 
< 104 99.3 2.8 0.1355 < 9.8 42.5 2.7 0.1307 
< 89.9 96.5 4.9 0.2372 < 8.5 39.8 2.9 0.1404 
< 77.5 91.6 6.1 0.2952 < 7.3 36.9 3.3 0.1597 
< 66.9 85.5 5.9 0.2856 < 6.3 33.6 4.3 0.2081 
< 57.7 79.6 4.2 0.2033 < 5.4 29.3 4.1 0.1984 
< 49.8 75.4 2.6 0.1258 < 4.7 25.2 3 0.1452 
<42.9 72.8 2.5 0.1210 < 4.1 22.2 2.2 0.1065 
< 37.1 70.3 3.4 0.1646 < 3.5 20 2 0.0968 
< 32 66.9 3.6 0.1742 < 3.0 18 2.6 0.1258 
<27.6 63.3 3 0.1452 < 2.6 15.4 3 0.1452 
< 23.8 60.3 3.2 0.1549 <2.2 12.4 3 0.1452 
< 20.5 57.1 3.4 0.1646 < 1.9 9.4 9.4 0.4550 

Total 4.84 
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Particle Size Analysis 

Sample# 11374-58 

Total Weight 5.38 grams 

grain sizes> 180 um 2.05 grams 

size um weiaht Ca) 
> 850 0.785 
> 600 0.199 
>425 0.171 
> 300 0.217 
> 250 0.235 
> 180 0.357 

sum 1.964 

grain sizes< 180 um 3.33 grams 

size um o/o under o/o welaht size um o/o under o/o weiaht 
< 188 100 0 0.0000 < 17.7 97.4 3.3 0.1099 
< 162 100 0 0.0000 < 15.3 94.1 3.6 0.1199 
< 140 100 0 0.0000 < 13.2 90.5 3.5 0.1166 
< 120 100 0 0.0000 < 11.4 87 4.7 0.1565 
< 104 100 0 0.0000 <9.8 82.3 4 0.1332 
< 89.9 100 0 0.0000 < 8.5 78.3 5.5 0.1832 
< 77.5 100 0 0.0000 <7.3 72.8 7.1 0.2364 
<66.9 100 0 0.0000 <6.3 65.7 9.5 0.3164 
< 57.7 100 0 0.0000 < 5.4 56.2 8.6 0.2864 
<49.8 100 0 0.0000 <4.7 47.6 5.7 0.1898 
<42.9 100 0 0.0000 < 4.1 41.9 3.9 0.1299 
< 37.1 100 0 0.0000 < 3.5 38 3.8 0.1265 
< 32 100 0 0.0000 < 3.0 34.2 5.2 0.1732 
<27.6 100 0.1 0.0033 < 2.6 29 5.9 0.1965 
< 23.8 99.9 0.3 0.0100 <2.2 23.1 5.6 0.1865 
< 20.5 99.6 2.2 0.0733 < 1.9 17.5 17.5 0.5828 

Total 3.33 
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Particle Size Analysis 

Sample~ 11374-80 

Total Weight 5.92 grams 

grain sizes> 180 um 0.74 grams 

size um weiaht (a) 
> 850 0.006 
> 600 0.059 
> 425 0.097 
> 300 0.155 
> 250 0.092 
> 180 0.326 

sum 0.735 

grain sizes < 180 um 5.18 grams 

size um %under % weiaht fa) size um %under % weTcihtM 
< 188 100 0.5 0.0259 < 17.7 11.5 2.1 0.1088 
< 162 99.5 1.8 0.0932 < 15.3 9.4 1.5 0.0777 
< 140 97.7 3.3 0.1709 < 13.2 7.9 1 0.0518 
< 120 94.4 5.4 0.2797 < 11.4 6.9 1 0.0518 
< 104 89 7.6 0.3937 < 9.8 5.9 0.7 0.0363 
< 89.9 81.4 10.1 0.5232 < 8.5 5.2 0.7 0.0363 
< 77.5 71.3 11.2 0.5802 < 7.3 4.5 0.6 0.0311 
< 66.9 60.1 10.5 0.5439 < 6.3 3.9 0.7 0.0363 
< 57.7 49.6 7.9 0.4092 < 5.4 3.2 0.6 0.0311 
<49.8 41.7 5.4 0.2797 < 4.7 2.6 0.4 0.0207 
< 42.9 36.3 4.9 0.2538 < 4.1 2.2 0.4 0.0207 
< 37.1 31.4 6 0.3108 < 3.5 1.8 0.3 0.0155 
< 32 25.4 5.5 0.2849 < 3.0 1.5 0.3 0.0155 
< 27.6 19.9 3.5 0.1813 <2.6 1.2 0.3 0.0155 
< 23.8 16.4 2.5 0.1295 < 2.2 0.9 0.3 0.0155 
< 20.5 13.9 2.4 0.1243 < 1.9 0.6 0.6 0.0311 

Total 5.18 
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Particle Size Analysis 

Sample lll 11374-81 

Total Weight 6.3 grams 

grain sizes> 180 um 0.75 grams 

size um weight (g) 
> 850 0.158 
> 600 0.031 
> 425 0.038 
> 300 0.081 
> 250 0.108 
> 180 0.316 

sum 0.732 

grain sizes < 180 um 5.55 grams 

size um %under % weight_{g) size um %under % weight (g) 
< 188 100 0 0.0000 < 17.7 31.4 3.3 0.1831 
< 162 100 0.3 0.0166 < 15.3 28.1 2.6 0.1443 
< 140 99.7 1.1 0.0611 < 13.2 25.5 2.3 0.1277 
< 120 98.6 2.7 0.1498 < 11.4 23.2 2.1 0.1165 
< 104 95.9 4.5 0.2498 < 9.8 21.1 2.1 0.1166 
< 89.9 91.4 7 0.3885 < 8.5 19 2.1 0.1166 
< 77.5 84.4 8.3 0.4607 < 7.3 16.9 2.2 0.1221 
< 66.9 76.1 8.1 0.4495 < 6.3 14.7 2.3 0.1276 
< 57.7 68 6.2 0.3441 < 5.4 12.4 2.2 0.1221 
< 49.8 61.8 4.5 0.2498 < 4.7 10.2 1.6 0.0888 
< 42.9 57.3 4.4 0.2442 < 4.1 8.6 1.3 0.0722 
< 37.1 52.9 5.3 0.2941 < 3.5 7.3 1.2 0.0666 
< 32 47.6 5 0.2775 < 3.0 6.1 1.2 0.0666 
< 27.6 42.6 3.9 0.2164 <2.6 4.9 1.1 0.0611 
< 23.8 38.7 3.6 0.1998 <2.2 3.8 1 0.0555 
< 20.5 35.1 3.7 0.2054 < 1.9 2.8 2.8 0.1554 

Total 5.55 
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Particle Size Analysis 

Sample ~ 1137 4-82 

Total Weight 5.79 grams 

grain sizes > 180 um 1.45 grams 

size um weiaht Cal 
>850 0.062 
> 600 0.01 
> 425 0.016 
> 300 0.045 
> 250 0.09 
> 180 1.126 

sum 1.349 

grain sizes < 180 um 4.34 grams 

size um %under % weight (g) size um %under % weight (g) 
< 188 100 2.2 0.0955 < 17.7 14.1 1.7 0.0738 
< 162 97.8 5.8 0.2517 < 15.3 12.4 1.4 0.0608 
< 140 92 8.3 0.3602 < 13.2 11 1.3 0.0564 
< 120 83.7 10.1 0.4383 < 11.4 9.7 1.1 0.0477 
< 104 73.6 9.9 0.4297 <9.8 8.6 1.1 0.0477 
< 89.9 63.7 9.5 0.4123 < 8.5 7.5 1 0.0434 
< 77.5 54.2 8.1 0.3515 < 7.3 6.5 1 0.0434 
< 66.9 46.1 6.6 0.2864 <6.3 5.5 1 0.0434 
< 57.7 39.5 4.9 0.2127 < 5.4 4.5 0.9 0.0391 
< 49.8 34.6 3.6 0.1562 < 4.7 3.6 0.8 0.0347 
< 42.9 31 3.1 0.1345 < 4.1 2.8 0.5 0.0217 
< 37.1 27.9 3.4 0.1476 < 3.5 2.3 0.5 0.0217 
< 32 24.5 3.3 0.1432 < 3.0 1.8 0.4 0.0174 
< 27.6 21.2 2.8 0.1215 <2.6 1.4 0.4 0.0174 
< 23.8 18.4 2.3 0.0998 <2.2 1 0.3 0.0130 
< 20.5 16.1 2 0.0868 < 1.9 0.7 0.7 0.0304 

Total 4.34 
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Particle Size Analysis 

Sample • 11374-83 

Total Weight 7.421 grams 

grain sizes> 180 um 6.35 grams 

size um weight (g) 
> 850 5.311 
> 600 0.422 
> 425 0.194 
> 300 0.157 
> 250 0.088 
> 180 0.142 

sum 6.314 

grain sizes< 180 um 1.071 grams 

size um %under % weight (g) size, um %under % weight (g) 
< 168 100 0.8 0.0086 < 17.7 39.4 3.3 0.0353 
< 162 99.2 2.2 0.0236 < 15.3 36.1 2.4 0.0257 
< 140 97 3.4 0.0364 < 13.2 33.7 2.3 ·o.0246 
< 120 93.6 4.4 0.0471 < 11.4 31.4 2.7 0.0289 
< 104 89.2 4.8 0.0514 < 9.8 28.7 2.9 0.0311 
< 89.9 84.4 5.2 0.0557 < 8.5 25.8 2.6 0.0278 
< 77.5 79.2 5.3 0.0568 < 7.3 23.2 2.6 0.0278 
<66.9 73.9 4.9 0.0525 <6.3 20.6 3 0.0321 
< 57.7 69 4.4 0.0471 < 5.4 17.6 2.7 0.0289 
<49.8 64.6 3.9 0.0418 <4.7 14.9 2 0.0214 
<42.9 60.7 3.4 0.0364 < 4.1 12.9 1.4 0.0150 
< 37.1 57.3 3.4 0.0364 < 3.5 11.5 1.2 0.0129 
< 32 53.9 3.2 0.0343 < 3.0 10.3 1.6 0.0171 
< 27.6 50.7 3.2 0.0343 < 2.6 8.7 1.8 0.0193 
< 23.8 47.5 3.8 0.0407 < 2.2 6.9 1.7 0.0182 
< 20.5 43.7 4.3 0.0461 < 1.9 5.2 5.2 0.0557 

Total 1.071 
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Particle Size Analysis 

Sample I 1137-4-84 

Total Weight 2.94 grams 

grain sizes> 180 um 0.042 grams 

size um weight (g) 
> 850 0.007 
> 600 0.005 
> -425 0.006 
> 300 0.004 
>250 0.005 
> 180 0.013 

sum 0.04 

grain sizes < 180 um 2.898 grams 

size um %under % weioht (O) size um %under % weioht (O) 
< 188 100 0 0.0000 < 17.7 44.6 5.8 0.1681 
< 162 100 0 0.0000 < 15.3 38.8 4.2 0.1217 
< 140 100 0 0.0000 < 13.2 34.6 4.3 0.1246 
< 120 100 0 0.0000 < 11.4 30.3 4.7 0.1362 
< 104 100 0 0.0000 < 9.8 25.6 4.2 0.1217 
< 89.9 100 0.3 0.0087 < 8.5 21.4 3.3 0.0956 
< 77.5 99.7 0.4 0.0116 < 7.3 18.1 3 0.0869 
<66.9 99.3 0.4 0.0116 <6.3 15.1 3.4 0.0985 
< 57.7 98.9 1.4 0.0406 < 5.4 11.7 3.3 0.0956 
<49.8 97.5 6.5 0.1884 <4.7 8.4 2.3 0.0667 
<42.9 91 8.4 0.2434 < 4.1 6.1 1.4 0.0406 
< 37.1 82.6 7.8 0.2260 < 3.5 4.7 1.2 0.0348 
< 32 74.8 7.3 0.2116 < 3.0 3.5 1.1 0.0319 
< 27.6 67.5 7.3 0.2116 < 2.6 2.4 0.8 0.0232 
< 23.8 60.2 8 0.2318 < 2.2 1.6 0.5 0.0145 
< 20.5 52.2 7.6 0.2202 < 1.9 1.1 1.1 0.0319 

Total 2.898 
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Particle Size Analysis 

Sample 'If. 11385-25 

Total Weight 6 grams 

grain sizes > 180 urn 1.889 grams 

size urn welaht Cal 
> 850 0.678 
>600 0.092 
>425 0.112 
> 300 0.099 
> 250 0.185 
> 180 0.723 

sum 1.889 

grain sizes < 180 urn 4.111 grams 

size urn o/o under o/o weiaht Cal size urn o/o under o/o weiaht Co) 
< 188 100 1.6 0.0658 < 17.7 26.3 2.8 0.1151 
< 162 98.4 -4.2 0.1727 < 15.3 23.5 2.3 0.0946 
< 140 94.2 8 0.2487 < 13.2 21.2 1.9 0.0781 
< 120 88.2 7.4 0.3042 < 11.4 19.3 1.9 0.0781 
< 104 80.8 7.6 0.3124 < 9.8 17.4 1.8 0.0740 
< 89.9 73.2 7.4 0.3042 < 8.5 15.8 1.8 0.0740 
< 77.5 65.8 6.6 0.2713 < 7.3 13.8 1.9 0.0781 
<66.9 59.2 5.5 0.2261 <6.3 11.9 2.1 0.0863 
< 57.7 53.7 4 0.1644 < 5.4 9.8 2 0.0822 
<49.8 49.7 3 0.1233 <4.7 7.8 1.6 0.0658 
<42.9 46.7 3.2 0.1316 <4.1 6.2 1 0.0411 
< 37.1 43.5 4 0.1644 < 3.5 5.2 0.9 0.0370 
< 32 39.5 4 0.1644 < 3.0 4.3 0.8 0.0329 
<27.6 35.5 3.2 0.1316 <2.6 3.5 0.8 0.0329 
<23.8 32.3 2.9 0.1192 <2.2 2.7 0.7 0.0288 
<20.5 29.4 3.1 0.1274 < 1.9 2 2 0.0822 

Total 4.111 
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Retort Data 

Sample No. 11374-2 

Before Retort: 

Tare 1589.5 g 
Content 118.8 g 

Weight of cy Iinder = 73.17 g 
Weight of stopper = 4.09 g 

After Retort: 

Weight of cylinder, content and stopper= 85.4 g 
Weight of content in cylinder= 8.14 g 

Volume of water= 5.6 ml 
Volume of oil = 2. 7 ml 

Weight of solids content after cooled = 110.1 g 

Content Weight (g) Weight Percent (%) 

Water 5.6 4.71 

Oil 3.1 2.61 

Solids 110.1 92.68 

WOR: 2.07 
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Sample No. 11374-3 

Before Retort 

Tare 1548 g 
Content 95.5 g 

Weight of cylinder= 73.17 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper= 94.27 g 
Weight of content in cylinder = 17.01 g 

Volume of water = 14.4 ml 
Volume of oil = 2.2 ml 

Weight of solids content after cooled= 76.9 g 

Content Weight (g) Weight Percent (%) 

Water 14.4 15.08 

Oil 4.2 4.4 

Solids 76.9 80.52 

WOR: 6.55 
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Sample No. 11374-4 

Before Retort: 

Tare 1589.1 g 
Content 83.8 g 

Weight of cylinder = 72.2 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper= 81.55 g 
Weight of content in cylinder= 5.26 g 

Volume of water = 4.3 m1 
Volume of oil = 0. 7 ml 

Weight of solids content after cooled = 78.5 g 

Content Weight (g) Weight Percent (%) 

Water 4.3 5.13 

Oil 1 1.19 

Solids 78.5 93.68 

WOR: 6.14 
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Sample No. 1137 4-5 

Before Retort: 

Tare 1550.2 g 
Content 74.9 g 

Weight of cylinder = 72.2 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper = 89 g 
Weight of content in cylinder= 12.71 g 

Volume of water= 5.8 ml 
Volume of oil = 6.5 ml 

Weight of solids content after cooled= 63.3 g 

Content Weight (g) Weight Percent (%) 

Water 5.8 7.75 

Oil 5.8 7.75 

Solids 63.3 84.5 

WOR: .89 
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Sample No. 11374-8 

Before Retort: 

Tare 1590.1 g 
Content 81.7 g 

Weight of cylinder = 72.2 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper= 87.65 g 
Weight of content in cylinder = 11.36 g 

Volume of water= 9.5 ml 
Volume of oil == 2.1 m1 

Weight of solids content after cooled = 70.4 g 

Content Weight (g) Weight Percent (%) 

Water 9.5 11.63 

Oil 1.8 2.2 

Solids 70.4 86.17 

WOR: 4.52 
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Sample No. 11374-9 

Before Retort: 

Tare 1589.6 g 
Content 82.7 g 

Weight of cylinder= 73.17 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper= 91.1 g 
Weight of content in cylinder= 13.84 g 

Volume of water= 8.3 ml 
Volume of oil = 6. 7 ml 

Weight of solids content after cooled= 68.8 g 

Content Weight (g) Weight Percent (%) 

Water 8.3 10.04 

Oil 5.6 6.77 

Solids 68.8 83.19 

WOR: 1.24 
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Sample No. 11374-10 

Before Retort: 

Tare 1551.9 g 
Content 87.6 g 

Weight of cylinder = 73.17 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper= 105.8 g 
Weight of content in cylinder= 28.54 g 

Volume of water = 24.7 ml 
Volume of oil = 4. 7 ml 

Weight of solids content after cooled = 52.6 g 

Content Weight (g) Weight Percent (%) 

Water 24.7 28.13 

Oil 10.5 11.96 

Solids 52.6 59.91 

WOR: 5.26 

147 



Sample No. 11374-11 

Before Retort: 

Tare 1550 g 
Content 93.8 g 

Weight of cylinder = 72.2 g 
Weight of stopper= 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper= 77.96 g 
Weight of content in cylinder = 1.67 g 

Volume of water= .7 ml 
Volume of oil ..., .3 ml 

Weight of solids content after cooled = 92 g 

Content Weight (g) Weight Percent (%) 

Water .7 .75 

Oil 1.1 1.17 

Solids 92 98.08 

WOR: 2.33 
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Sample No. 11374-12 

Before Retort: 

Tare 1587.5 g 
Content 76.5 g 

Weight of cylinder= 73.17 g 
Weight of stopper= 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper= 89.68 g 
Weight of content in cylinder= 12.42 g 

WOR: 

Volume of water= 11.9 ml 
Volume of oil = .6 ml 

Weight of solids content after cooled = 64.1 g 

Content Weight (g) Weight Percent (%) 

Water 11.9 15.56 

Oil .5 .65 

Solids 64.1 83.79 
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iii 

Sample No. 11374-57 

Before Retort: 

Tare 1603.2 g 
Content 72 g 

Weight of cylinder= 73.17 g 
Weight of stopper= 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper= __ g 
Weight of content in cylinder = __ g 

Volume of water= 10.9 ml 
Volume of oil= 11.1 ml 

Weight of solids content after cooled = 54.1 g 

Content Weight (g) Weight Percent (%) 

Water 10.9 15.14 

Oil 7 9.72 

Solids 54.1 75.14 

WOR: .982 
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Sample No. 11374-58 

Before Retort: 

Tare 1584.7 g 
Content 86.5 g 

Weight of cylinder = 72.2 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper = 97.47 g 
Weight of content in cylinder= 21.18 g 

Volume of water = 17.8 ml 
Volume of oil- 3.7 ml 

Weight of solids content after cooled= 65.6 g 

Content Weight (g) Weight Percent (%) 

Water 17.8 20.58 

Oil 3.1 3.58 

Solids 65.6 75.84 

WOR: 4.81 
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Sample No. 11374-80 

Before Retort: 

Tare 1549.8 g 
Content 98.5 g 

Weight of oylinder = 73.09 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper = 101.17 g 
Weight of content in cylinder= __ g 

Volume of water = 24 ml 
Volume of oil = .5 ml 

Weight of solids content after cooled = 7 4.3 g 

Content Weight (g) Weight Percent (%) 

Water 24 24.37 

Oil 1.53 1.55 

Solids 72.97 74.08 

WOR: 15.7 
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Retort Data 

Sample No. 11374-81 

Before Retort: 

Tare 1613.9 g 
Content 80 g 

Weight of cylinder= 72.01 g 
Weight of stopper = 4.09 g 

After Retort: 

WOR: 

Weight of cylinder, content and stopper= 87.81 g 
Weight of content in cylinder= 11.71 g 

Volume of water= 8.6 ml 
Volume of oil = 4.1 ml 

Weight of solids content after cooled = 66.61 g 

Content Weight (g) Weight Percent (%) 

Water 8.6 10.75 

Oil 4.79 5.99 

Solids 66.61 83.26 
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Sample No. 11374-82 

Before Retort: 

Tare 1549.7 g 
Content 81.31 g 

Weight of cylinder= 73.09 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper= 91.46 g 
Weight of content in cylinder = 14.2 g 

Volume of water = 12.7 ml 
Volume of oil = 2.1 ml 

Weight of solids content after cooled= 66.93 g 

Content Weight (g) Weight Percent (%) 

Water 12.9 15.87 

Oil 1.48 1.82 

Solids 66.93 82.31 

WOR: 8.72 

154 



Sample No. 11374-83 

Before Retort: 

Tare 1615.1 g 
Content 64.7 g 

Weight of cylinder= 72.01 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper = 76.57 g 
Weight of content in cylinder= .47 g 

Volume of water = 1 ml 
Volume of oil = 1 ml 

Weight of solids content after cooled = 62.7 g 

Content Weight (g) Weight Percent (%) 

Water 1 1 

Oil 1 1 

Solids 62.7 98 

WOR: 1 
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Sample No. 11374-84 

Before Retort: 

Tare 1549.9 g 
Content 47.5 g 

Weight of cylinder = 72.04 g 
Weight of stopper = 4.09 g 

After Retort: 

Retort Data 

Weight of cylinder, content and stopper= 122.5 g 
Weight of content in cylinder= 47.9 g 

Volume of water = 32.5 ml 
Volume of oil= 15.4 ml 

Weight of solids content after cooled = 2.9 g 

Content Weight (g) Weight Percent(%) 

Water 32.5 68.42 

Oil 12.1 25.47 

Solids 2.9 6.11 

WOR: 2.69 
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SEM photographs of sample 1137 4-3. (A) x50 image showing particle morphologies. (8) x500 
image showing detailed particle morphologies. (C) x50 image showing barium X-ray map of 
image shown in (A). (D) x500 image showing barium X-ray map of image shown in (B) . Vl 
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SEM photographs of sample 11374-4. (A) xI 00 image showing particle morphologies. 
(B) xI 000 image showing detailed particle morphologies. (C) xI 00 image showing barium X-ray 
map of image shown in (A). (D) xI 000 image showing barium X-ray map of image shown in (B). Vl 
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SEM photographs of sample 11374-5. (A) xI 00 image showing particle morphologies. 
(B) x1250 image showing detailed particle morphologies. (C) xI 00 image showing barium X-ray 
map of image shown in (A). (D) x 1250 image showing barium X-ray map of image shown in (8). Vl 
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SEM photographs of sample 11374-8. (A) x50 image showing particle morphologies. (B) x300 
image showing detailed particle morphologies. (C) x50 image showing barium X-ray map of 
image shown in (A). (D) x300 image showing barium X-ray map of image shown in (B). 0\ 
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SEM photographs of sample 11374- 10. (A) x250 image showing particle morphologies. 
(8) x 1000 image showing detailed particle morphologies. (C) x250 image showing barium X-ray 
map of image shown in (A). (D) x 1000 image showing barium X-ray map of image shown in (8 ). 0\ 



SEM photographs of sample 11374- 11. (A) xI 00 image showing particle morphologies . 
(B) x500 image showing detailed particle morphologies. (C) xI 00 image showing barium X-ray 
map of image shown in (A). (D) x500 image showing barium X-ray map of image shown in (B). a. 
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SEM photographs of sample 11374- 12. (A) xI 00 image showing particle morphologies. 
(B) xl 000 image showing detailed particle morphologies. (C) xlOO image showing barium X-ray 
map of image shown in (A). (D) x I 000 image showing barium X-ray map of image shown in (B). 0\ 
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SEM photographs of sample I I 374-58. (A) x30 image showing particle morphologies. (B) x 175 
image showing detailed particle morphologies. (C) x30 image showing barium X-ray map of 
image shown in (A). (D) x 175 image showing barium X-ray map of image shown in (B). 0\ 
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SEM photographs of sample 11374-80. (A) x250 image showing particle morphologies. 
(B) xI 000 image showing detailed particle morphologies. (C) x250 image showing barium X-ray 
map of image shown in (A). (D) xI 000 image showing barium X-ray map of image shown in (B). 0\ 
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SEM photographs of sample 11374-81. (A) x50 image showing particle morphologies. 

ElliJili'lil 

(B) xl500 image showing detailed particle morphologies. (C) x50 image showing barium X-ray 
map of image shown in (A). (D) x500 image showing barium X-ray map of image shown in (B). 0\ 
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SEM photographs of sample 11374-83. (A) x 17 image showing particle morphologies. (B) x24 
image showing detailed particle morphologies. (C) x 17 image showing barium X-ray map of 
image shown in (A). (D) x24 image showing barium X-ray map of image shown in (B) . . 0\ 
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SEM photographs of sample 11374-83. (A) x 100 image showing particle 
morphologies. (B) x300 image showing detailed particle morphologies. 
(C) xlOO image showing barium X-ray map of image shown in (A). 
(D) x300 image showing barium X-ray map of image shown in (B). 
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KEVEX Results 
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KEVEX Results 
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KEVEX Results 
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KEVEX Results 
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KEVEX Results 
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KEVEX Results 
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KEVEX Results 
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KEVEX Results 
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KEVEX Results 
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X-RAY ASSAY LABORATORIES 
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0 1137-4•1 55 12 4 <111 19 7' 12 557 489 14 235 
D 11374•12 50 ,, 47'300 

IANPI.E TL I'PM ,. I'PH Ill ..... TMm u "" LOI ll: ox 
ICIIF XII' XRF XIIP Xllf IIR loll .................................................................................................................. 

11374·1 ' 4 c:s oc2 oc2 29.5 91.6 
11374·2 ' 145 22 24 <2 1.'77 71.5 
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XRALData 

'93 16:29 X-RAY ASSAY LAB 416 445 4152 P.3 
• ~ 01 

,..u,y MfAY LAICIIATC.Iil 01•AN•93 UIQtl ••••• IIJ. 14!51 PAGI 2 

CAMPLI TL. 111111 """ 11,.. Til PM UPPM LOI l ...... 
XII ., •• ... .., .. .. 

················-··························--·······-~---······-·········-·······--,,.,.., '14 sn 9 ~ oez '·" 77.7 
11374•4 "' 1010 0!3 16 oez 2.70 6Z.a 
11!174•!5 oC5 551 7 ' 3 1.65 06.3 
11374·6 ' 61 4 4 oe2 1.54 60.5 
nl7'4·:1 c5 76 6 q 2 6.62 91.2 
11:514·8 c5 4500 7 47 <2 !.85 w:r 
1137'4·0 6 160 10 4 ' 4.50 "·a 1137'4•10 17 IHO ell 46 ~ · 1a.a 90.1 
11374·11 I 193 15 c2 oC2 1.2! 64.2 
11!74•12 "' 306 c5 I C2 1.45 97.3 

D 11374•1 "' 6 c! cz 42 27.4 88.8 
D 113'74·12 1.45 96.2 



XRALData 

10·JUII•93 REPORT 23005 

ELEMENT METIKI) 11374•57 11374·57·0 11374•51 

C02" 
S PPM 

s" 
CL PPM 
Tl PPM 

FE PPM 
FEO X 
CO PPM 
Nl PPM 
CU PPM 

ZN PPM 
GAPPM 
AI PPM 
SE PPM 
R8 PPM 

SR PPM 
Y PPM 
ZR PPM 
NB PPM 
MD PPM 

SN PPM 
SB PPM 
BA PPM 
TA PPM 
II PPM 

TL PPM 
PI PPM 
II PPM 
TH PPM 
U PPM 

SI02 X 
AL203 X 
CAOX 
MGO X 
NA20 X 

K20 X 

FEZO:S X 
MNO X 
TI02 X 
P205 X 

CR203 X 
LOI X 
SUIIX 

COULQII 
XRF 
LECD 
XRF 
XRF 

XRF 
IIET 
XRF 
XRF 
XRF 

XRF 
XRF 
XRF 
XRF 
XRF 

XRF 
XRF 
XRF 
XRF 
XRF 

XRF 
XRF 
XRF 
XRF 
XRF 

XRF 
XRF 
XRF 
XRF 
XRF 

IIR 
IIR 
IIR 
IIR 
IIR 

IIR 
IIR 
IIR 
IIR 
IIR 

IIR 
IIR 
IIR 

9.43 
151000 

13.7 
6210 

295 

38800 
2.6 

31 
90 

353 

219000 
c3 

429 
<3 
II 

6560 
<2 
<3 
<2 
33 

<5 
<3 

106000 
<2 
<5 

74 
12200 

12 
141 
<2 

2.62 
• 11 

11.4 
.07 

2.90 

.06 
3.66 

.41 

.114 

.50 

<.01 
7.70 
29.6 

9.40 
150000 

13.9 
6220 
292 

39200 
2.5 

35 
92 

351 

221000 
c3 

430 
c3 
9 

6660 
<2 
<3 
<2 
31 

<5 
<3 

105000 
<2 
<5 

75 
12300 

11 
138 

<2 . 

2.51 
.10 

11.1 
.07 

2.16 

.05 
3.61 

.47 
• 109 
.49 

<.01 
7.54 
29.0 

2.57 
6770 

.50 
4740 
1240 

7160 
.a 

TO 
19 
11 

2310 
12 
35 
15 
12 

312 
<2 

276 
9 

<2 

<5 
17 

3520 
12 

578 

<s 
236 

<3 
3 
3 

17.0 
1.54 
3.39 

.36 

.40 

.36 
1.59 
.03 
.227 
.05 

<.01 
4.30 
99.3 

D • QUALITY CQIITROL DUPLICATE 
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UF.FILE 14851•16 PAGE 1 Of' 1 

X-RAY ASSAY LABORATORIES 1885 Leala Street Don Mia Ontario M3B 3J4 (418)445-6755 Fax (4181446·4152 Tix 08-986947 
-. •• nf th• !lt:!l r.mun tsac:;'t' GWrale de Survetll•ncel 
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XRALData 

[XRALI 
10·JUN·93 II£PORT 23006 liEF. FILE 14859·16 PAGE 1 OF 1 

EL!MENT METHOD 11374·80 11374·80·0 11374·111 11374•82 11374•83 11374·84 

...................................... --- .............................................................................................. ---- ................ ----
c :1: LECO .18 .17 .46 .56 .26 13.0 
C02 :1: COULON .34 .34 '.34 .21 .09 .42 
C OltG X COULON .29 .33 2.83 1.49 2.03 14.6 
SPPM XRF 43300 43600 48400 5530 121000 63100 
s :1: LECO 3.20 3.07 3.811 .39 13.7 6.60 

CL PPM XRF 34200 34000 7020 6090 621 355000 
Tl PPM XRF 909 916 841 1240 287 550 
FE PPM XRF 2020 1920 3890 4930 1950 46200 
FEO :1: WET .3 .3 .5 .6 .2 2.0 
CO PPM XRF 34 36 35 86 15 28 

Nl PPM XRF 11 14 29 32 52 56 
CU PPM XRF 72 73 731 91 404 82 
ZN PPM XRF 115 109 271 204 291 11800 
GA PPM XRF 3 4 <3 16 <3 <3 
AS PPM XRF 67 68 253 125 444 192 

SE PPM XRF 8 8 14 18 <3 10 
RS PPM XRf 28 28 <J 32 14 <2 
SR PPM XRF 1070 1080 4380 650 30900 535 
YPPM XRF <2 <2 <2 <2 <2 <2 
ZR PPM XRF <3 <3 <3 213 <3 17 

NS PPM XRF 4 3 <2 7 <2 6 
MO PPM XRF <2 <2 <2 <2 14 2 
SN PPM XRF <5 <5 <5 8 <5 <5 
SB PPM XRF 36 38 30 13 48 3 
BA PPM XRF 101000 101000 110000 12900 247000 17800 

TA PPM XRF 17 17 14 12 79 <2 
II PPM XRF 259 266 494 661 55 117 
TL PPM XRF <5 <5 <5 <5 <5 38 
PS PPM XRF 1172 863 3480 919 16200 2150 
Bl PPM XRF 6 4 <3 <3 26 <3 

TH PPM XRF 12 13 38 13 178 20 
U PPM XRF <2 <2 <2 <2 <2 <2 
SI02 :1: IIR 62.9 62.9 62.0 84.7 1.27 24.7 
AL203 X IIR 4.48 4.52 3.53 4.54 .59 3.12 
CAO:I: IIR .93 .96 1.35 .82 .36 1.01 

MGO X IIR .25 .27 .56 .22 <.01 1.31 
~AZO X WR 2.44 2.43 1.1! 1.29 .56 7.22 
K20 X IIR 1.04 1.05 .86 1.10 .04 .67 
FE203 X IIR .75 .77 .83 1.24 .50 2.22 
MNO X IIR .03 .03 .03 .03 .01 .04 

TI02 X IIR .242 .273 .226 .236 .262 .269 
P205 X IIR .04 .04 .04 .05 .14 .09 
CR203 X IIR <,01 <.01 <,01 <,01 <.01 <,01 
LOI X IIR 2.70 2.47 2.16 2.08 .62 34.6 
SUMX IIR 75.11 75.7 72.8 96.3 4.4 ·75.3 

D • QUALITY CONTROL DUPLICATE 

X-RAY ASSAY LABORATORIES 1885 Leala Street Don Mills Ontario M3B 3J4 (4181446-6766 Fax 14181446·4162 Tix 08·98694' 
Member of the SGS Group <Societe Generale de Surveillance> 



t8I 

.LN3WHI3dX3 DNIG'l3IHS 'liOS O.L DNINIV.L'M3d V.LVG 'lVNIDHIO 

HXIGN3ddV 



185 

Dose Rate in Jlfem/hr From the Shielding Experiment 

Distance Depth of Thickness of 

from Depth of Seashells Ottawa Sand Depth of Limestone Pellets Lead 

Source 0 1" 2" 3" 4" 0 1" 2" 0 I" 2" 3" 4" 5" 6" 7" 0 !18" 1/4" 

I" 120 - - - - 120 - - 120 82 - - - - - - 120 25 19 

2" 90 85 - - - 89 75 - 89 73 68 - - - - - 89 25 19 

3" 70 70 60 - - 70 70 55 70 63 61 50 - - - - 70 22 18 

4" 60 60 50 47 - 58 53 50 58 55 53 46 41 - - - 58 21 19 

5" 48 47 45 40 35 50 48 44 50 48 45 41 39 29 - - 50 19 18 

6" 40 40 38 35 31 42 42 39 42 41 40 38 35 28 27 - 38 19 15 

7" 35 35 34 30 30 38 36 35 38 ,,35 37 32 31 27 27 21 38 19 15 

8" 31 31 30 30 30 32 31 31 32 34 33 30 28 25 25 22 32 18 14 

120 T Shielding Material 
Thickness 

I 

I 
100 

-----0 

-D--1" 

'i:' 80 -+--- 2'' 

~ I 
.e. B ~ 

C2 60 
I 

f a .. 
c. 
"' 40 liol 

20 

0 

0 2 3 4 5 6 7 8 

Distance from Source (in) 

Exposure rate curve using mollusc shells as shielding material. 



120 

100 

'i:' 80 
ca 

I ..:. .. 
~ 60 

I _._ 

I ~ 
= I .. = i c. .. 40 t [;o;l 

j 20 

0 

0 

120 

100 

'i:' 80 
~ 
..:. 
:l • 60 ~ .. ... 
= .. 
Q 
c. .. 40 f;l;l 

20 

0 

0 

2 3 4 5 6 7 

Distance from Source (in) 

Exposure rate curve using limestone pellets as shielding material. 

1 2 3 4 6 

Distance from Source (in) 

Exposure rate curve using Ottawa sand as shielding material. 

8 
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Shielding Material 
Thickness 

.---o I 
I : -o-- 1" 

I I I 

I---+- 2"1 
--<>----- 3'' 

----.- 4'' 

~s·· 

----- 6'' 

--c-- 7'' 

Shieldin& Material 
Thickness 

---o 

--o---- 1'' 

--+-2'' 

7 8 
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************************************************************************* 
***** G A M M A S P E C T R U M A N A L Y S I S ***** 
************************************************************************* 

Report Generated On 

sample Title 
Sample Identification 
Sample Type 

2-0B-94 10:35:56 PM 

NORMCO scale 
94020701 I!~'?-C,o 
soil 

Sample Geometry : 3 

Peak Locate Threshold : 
Peak Locate Range (in channels) 
Identification Energy Tolerance 

Sample Size 

sample Taken On 
Acquisition started 

Live Time 
Real Time 

. . 
: 

: 

5.00 
1 - 4096 

1.00 

5.900E+OOO grams 

1-13-94 12:00:00 PM 
2-08-94 10:23:25 PM 

600.0 seconds 
602. 0 seconds 

Energy Calibration Used Done on 
Efficiency Calibration Us.ed Done On 

: 6-16-93 
: 6-16-93 
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Nuclide Identification Report 2-08-94 10:36:15 PM Page 2 

************************************************************************* 
***** N U C L I D E I D E N T I F I C A T I 0 N R E P 0 R T ***** 
************************************************************************* 

Sample Title: NORMCO scale 
Nuclide Library Used: C:\GENIEPC\CAMFILES\STDLIB.NLB 

IDENTIFIED NUCLIDES 

Nuclide Id Energy 
Name Confidence (keV) 

SC-46 

CD-109 
BI-211 

BI-212 

PB-212 

BI-214 

PB-214 

0.196 889.25 
1120.51* 

0.876 88.03* 
0.190 72.87 

351.10* 
404.80 
426.90 
831.80 

0.425 . 39.86 
727 .17* 
785.42 

1620.56 
0.923 74.81* 

77.11* 
87.20* 
89.80* 

115.19 
238. 63* 
300.09 

0.768 609.31* 
768.36* 
806.17 
934.06* 

1120.29* 
1155.19 
1238.11* 
1280.96 
1377.67* 
1385.31 
1401.50 
1407.98 
1.509.1.9 
1661.28 
1729. 60* 
1764 .49* 
1847.44 
2118.54 

0.978 74.81* 
77.11* 
87.20* 
89.80* 

241.98* 

Yield 
(%) 

99.98 
99.99 
3. 72 
1.20 

12.20 
4.10 
1.90 
3.30 
1.10 

11.80 
2.00 
2.75 
9.60 

17.50 
6.30 
1.75 
0.60 

44.60 
3.41 

46.30 
5.04 
1.23 
3.21 
1~.10 
1.69· 
5.94 
1.47 
4.11 
0.78 
1.39 
2.48 
2.19 
1.1.5 
3.05 

1.5.80 
2.12 
1.21 
6.33 

10.70 
3.70 
1.03 
7.49 

Activity 
(uCijgram) 

1.077E-003 
9.352E-003 

3.195E-002 

9.858B-004 

6.224E-003 
5.921E-003 
5.309E-003 
6.912E-003 

2.883E-003 

5.759E-003 
4.965E-003 

5.891E-003 
5.733E-003 

5.449E-003 

9.322E-003 

1.299E-002 
8.769E-003 

9.439E-003 
9.684E-003 
9.039E-003 
1.174E-002 
1.199E-002 

Activity 
Uncertainty 

6.128E-005 
7.439E-004 

1.346E-003 

2.166E-004 

5.549E-004 
4.485E-004 
4.222E-004 
7.126E-004 

1.286E-004 

1.803E-004 
6.1.23E-004 

1.112E-003 
3.261E-004 

6.473E-004 

1.194E-003 

1.407E-003 
4.821E-004 

8.416E-004 
7.335E-004 
7.190E-004 
1.21.1E-003 
5.823E-004 
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Nuclide Identification Report 2-08-94 10:36:15 PM Page 3 

Nuclide Id Energy Yield Activity Activity 
Name Confidence (keV) (%) (uCijgram) Uncertainty 

PB-214 0.978 295.21* 19.20 1.083E-002 4.922E-004 
351.92* 37.20 1.048E-002 4.413E-004 
785.91 1.10 

RA-226 0.999 186.21* 3.28 1.364E-002 7.634E-004 
AC-228 0.368 89.95* 2.10 5.760E-003 5.939E-004 

93.35 3.50 
129.08 2.80 
209.28 4.40 
270.23 3. 60 
327.64 3.20 
338.32* 11.40 1.749E-003 2.036E-004 
409.51 2.13 
463.00 4.40 
794.70 4.60 
911.60* 27.70 1.607E-003 1.552E-004 
964.60 5.20 
969.11* 16.60 8.015E-004 2.218E-004 

1587.90 3.71 
U-235 0.470 89.96* 1.50 8.064E-003 8.314E-004 

93.35 2.50 
105.00 1.00 
109.14 1.50 
143.76 10.50 
163.35 4.70 
185.71* 54.00 8.283E-004 4.637E-005 
202.12 1.00 
205.31 4.70 

* = Energy line found in the spectrum. 
Energy tolerance used was 1.000 
Nuclide confidence index threshold = 0.01 
Errors quoted at 1.000 sigma 

Nuclide Identification Report 2-08-94 10:36:15 PM Page 4 

********** UNIDENTIFIED PEAKS ********** 

Peak Locate Performed on: 
Peak Locate From Channel: 
Peak Locate To Channel: 

2-08-94 10:35:59 PM 
1 

4096 

Peak Energy 
No. (keV) 

Peak Size in 
Counts per Second 

Peak CPS 
% Uncertainty 

1 31.96 
12 583.39 

1.8225E+OOO 
8 .3771E-001 

M = First peak in a multiplet region 
m = Other peak in a multiplet region 

Errors quoted at 1.000 sigma 

4.89 
7.23 
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Nuclide MDA Report 2-08-94 10:36:29 PM Page 5 

************************************************************************** 
***** NUCLIDE M D' A REPORT ***** 
************************************************************************** 

Detector Name: NORMCO soil shield exp 
Sample Geometry: 3 
Spectrum Title: NORMCO scale 
Nuclide Library Used: C:\GENIEPC\CAMFILES\STDLIB.NLB 

Nuclide Energy Yield Line MDA Nuclide MDA 
Name (keV) (%) (uCijgram) (uCijgram) 

K-40 1460.81 10.67 1.18E-003 1.18E-003 
+ SC-46 889.25 99.98 1.30E-004 1.19E-004 

1120.51* 99.99 1.19E-004 
C0-57 122.06 85.51 5.71E-005 5.nE-005 

136.48 10.60 4.81E-004 
C0-60 1173.22 100.00 1.18E-004 1.18E-004 

1332.49 100.00 1.21E-004 
SE-75 96.73 3.41 1.75E-003 9.36E-005 

121.11 16.70 3.22E-004 
136.00 59.20 9.36E-005 
198.60 1.45 4.33E-003 
264.65 59.80 1.00E-004 
279.53 25.20 2.64E-004 
303.91 1.32 5.46E-003 
400.65 11.40 7.12E-004 

KR-85 513.99 0.43 1.99E-002 1.99E-002 
@ KR-85M 151.18 75.30 1.00E+020 1.00E+020 
@ 304.87 14.00 1.00E+020 

SR-85 513.99 99.27 1.14E-004 1.14E-004 
Y-88 898.02 93.40 1.32E-004 1.05E-004 

1836.01 99.38 1.05E-004 
+ CD-109 88.03* 3. 72 1.70E-003 1.70E-003 

SN-113 255.12 1.93 3.19E-003 1.31E-004 
391.69 64.90 1.31E-004 

CS-134 475.35 1.46 5.12E-003 1.25E-004 
563.23 8.38 8.85E-004 
569.32 15.43 5.06E-004 
604.70 97.60 1.68E-004 
795.84 85.40 1.25E-004 
801.93 8. 73 1.25E-003 

1038.57 1.00 1.18E-002 
1167.94 1.80 6.72E-003 
1365.15 3.04 3.99E-003 

CS-136 66.91 12.50 2.24E-003 4.00E-004 
86.29 6.30 5.30E-003 

153.22 7.46 2.68E-003 
163.89 4.61 4.21E-003 
176.55 13.56 1.43E-003 
273.65 12.66 1.94E-003 
340.57 48.50 7.15E-004 
818.50 99.70 4.00E-004 

1048.07 79.60 5.97E-004 
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Nuclide MDA Report 2-08-94 10:36:29 PM Page 6 

Nuclide Energy Yield Line MDA Nuclide MDA 
Name (keV) (%) (uCijgram) (uCijgram) 

CS-136 1235.34 19.70 3.38E-003 4.00E-004 
CS-137 661.65 85.12 1.02E-004 1.02E-004 

@ CS-138 138.10 1.49 1.00E+020 1.00E+020 
@ 227.76 1.51 1.00E+020 
@ 408.98 4.66 1.00E+020 
@ 462.79 30.70 1.00E+020 
@ 546.94 10.80 1.00E+020 
@ 871.80 5.11 l.OOE+020 
@ 1009.78 29.80 1.00E+020 
@ 1147.22 1.24 1.00E+020 
@ 1343.59 1.14 1.00E+020 
@ 1435.86 76.30 1.00E+020 

CE-139 165.85 80.35 6.73E-005 6.73E-005 
HG-203 279.19 77.30 1.09E-004 1.09E-004 

+ BI-214 609.31* 46.30 1.75E-004 1.75E-004 
768.36* 5.04 1.67E-003 
806.17 1.23 8.66E-003 
934.06* 3.21 3.33E-003 

1120.29* 15.10 6.32E-004 
1155.19 1.69 7.83E-003 
1238.11* 5.94 1.69E-003 
1280.96 1.47 8.82E-003 
1377. 67* 4.11 3.30E-003 
1385.31 0.78 1.98E-002 
1401.50 1.39 9.80E-003 
1407.98 2.48 5.88E-003 
1509.19 2.19 6.90E-003 
1661.28 1.15 1.10E-002 
1729.60* 3.05 3.15E-003 
1764.49* 15.80 6.33E-004 
1847.44 2.12 7.24E-003 

> 2118.54 1.21 O.OOE+OOO 
+ PB-214 74.81* 6.33 .1.04E-003 1.98E-004 

77.11* 10.70 ·6.13E-004 
87.20* 3.70 1.64E-003 
89.80* 1.03 5.41E-003 

241.98* 7.49 6.57E-004 
295.21* 19.20 3.31E-004 
351.92* 37.20 1.98E-004 
785.91 1.10 1.03E-002 

+ Nuclide identified during the nuclide identification 
* = Energy line found in the spectrum 
> MDA value not calculated 
@ Half-life too short to be able to perform the decay correction 
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Interference Corrected Activity Report 2-08-94 10:36:44 PM Page 7 

************************************************************************* 
***** N U C L I D E I D E N T I F I C A T I 0 N R E P 0 R T ***** 
************************************************************************* 

Sample Title: NORMCO scale 
Nuclide Library Used: C:\GENIEPC\CAMFILES\STDLTB.NLB 

IDENTIFIED NUCLIDES 

Nuclide Id Energy 
Name Confidence (keV) 

BI-211 0.190 

BI-212 0.425 

PB-212 0.923 

BI-214 0.768 

PB-214 0.978 

72.87 
351.10* 
404.80 
426.90 
831.80 
39.86 

727 .17* 
785.42 

1620.56 
74.81* 
77.11* 
87.20* 
89.80* 

115.19 
238. 63* 
300.09 
609.31* 
768.36* 
806.17 
934.06* 

1120.29* 
1155.19 
1238.11* 
1280.96 
1377.67* 
1385.31 
1401.50 
1407.98 
1509.19 
1661.28 
1729.60* 
1764.49* 
1847.44 
2118.54 

74.81* 
77.11* 
87.20* 
89.80* 

241.98* 
295.21* 
351.92* 
785.91 

Yield 
(%) 

1.20 
12.20 

4.10 
1.90 
3.30 
1.10 

11.80 
2.00 
2.75 
9.60. 

17.50 
6.30 
1. 75. 
0.60 

44.60 
3.41 

46.30 
5.04 
1.23 
3.21 

15.10 
1.69 
5.94 
1.47 
4.11 
0.78 
1.39 
2.48 
2.19 
1.15 
3.05 

15.80 
2.12 
1.21 
6.33 

10.70 
3. 70 
1.03 
7.49 

19.20 
37.20 
1.10 

Activity 
(uCijgram) 

3.195E-002 

9.858E-004 

6.224E-003 
5.921E-003 
5.309E-003 
6.912E-003 

2.883E-003 

5.759E-003 
4.965E-003 

5.891E-003 
5.733E-003 

5.449E-003 

9.322E-003 

1.299E-002 
8.769E-003 

9.439E-003 
9.684E-003 
9.039E-003 
1.174E-002 
1.199E-002 
1.083E-002 
1.048E-002 

Activity 
Uncertainty 

1.346E-003 

2.166E-004 

5.549E-004 
4.485E-004 
4.222E-004 
7 .126E-004 

1.286E-004 

1.803E-004 
6.123E-004 

1.112E-003 
3.261E-004 

6.473E-004 

1.194E-003 

1.407E-003 
4.821E-004 

8.416E-004 
7.335E-004 
7.190E-004 
1.211E-003 
5.823E-004 
4.922E-004 
4.413E-004 
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Nuclide Id Energy Yield Activity Activity 
Name Confidence (keV) (%) (uCijgram) Uncertainty 

RA-226 0.999 186.21* 3.28 1.364E-002 7 .634E-004 
AC-228 0.368 89.95* 2.10 5.760E-003 5.939E-004 

93.35 3.50 
129.08 2.80 
209.28 4.40 
270.23 3.60 
327.64 3.20 
338.32* 11.40 1.749E-003 2.036E-004 
409.51 2.13 
463.00 4.40 
794.70 4.60 
911.60* 27.70 1.607E-003 1.552E-004 
964.60 5.20 
969.11* 16.60 8.015E-004 2.218E-004 

1587.90 3. 71 

* = Energy line :found in the spectrum. 
Energy tolerance used was 1.000 
Nuclide confidence index threshold 0.01 
Errors quoted at 1.000 sigma 

Interference Corrected Activity Report 2-08-94 10:36:44 PM Page 9 

************************************************************************* 
***** INTERFERENCE CORRECTED REPORT ***** 
************************************************************************* 

Nuclide Wt mean Wt mean 
Nuclide Id Activity Activity 
Name Confidence (uCijgram) Uncertainty 

X SC-46 0.196 
X CD-109 0.876 

BI-211 0.190 5.5855E-003 1.6133E-003 
BI-212 0.425 9.8582E-004 2.1661E-004 
PB-212 0.923 2.3703E-003 1.2034E-004 
BI-214 0.768 6.0718E-003 1.3932E-004 
PB-214 0.978 8.6466E-003 2.9193E-004 
RA-226 0.999 1.3637E-002 7.6335E-004 
AC-228 0.368 1.3955E-003 1.0621E-004 

X U-235 0.470 

X = nuclide rejected by the interference analysis 

Errors quoted at 1.000 sigma 

Interference Corrected Activity Report 2-08-94 10:36:44 PM Page 10 

********** UNIDENTIFIED PEAKS ********** 
Peak Locate Performed on: 
Peak Locate From Channel: 

2-08-94 10:35:59 PM 
1 

Peak Locate To Channel: 4096 

Peak Energy 
No. (keV) 

Peak Size in 
Counts per Second 

1 31.96 
12 583.39 

1.8225E+OOO 
8 .3771E-00l 

M = First peak in a multiplet region 
m a Other peak in a multiplet region 

Errors quoted at 1.000 sigma 

Peak CPS 
% Uncertainty 

4.89 
7.23 

193 
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Nuclide MDA Report 2-08-94 10:36:58 PM Page 11 

************************************************************************** 
***** NUCLIDE MD A REPORT ***** 
************************************************************************** 

Detector Name: NORMCO soil shield exp 
sample Geometry: 3 
Spectrum Title: NORMCO scale 
Nuclide Library Used: C:\GENIEPC\CAMFILES\STDLIB.NLB 

Nuclide Energy Yield Line MDA Nuclide MDA 
Name (keV) (%) (uCijgram) (uCijgram) 

K-40 1460.81 10.67 1.18E-003 1.18E-003 
SC-46 889.25 99.98 1.30E-004 1.19E-004 

1120.51* 99.99 1.19E-004 
C0-57 122.06 85.51 5.71E-005 5.71E-005 

136.48 10.60 4.81E-004 
C0-60 1173.22 100.00 1.18E-004 1.18E-004 

1332.49 100.00 1.21E-004 
SE-75 96.73 3.41 1.75E-003 9.36E-005 

121.11 16.70 3.22E-004 
136.00 59.20 9.36E-005 
198.60 1.45 4.33E-003 
264.65 59.80 1.00E-004 
279.53 25.20 2.64E-004 
303.91 1.32 5 .46E-003 
400.65 11.40 7.12E-004 

KR-85 513.99 0.43 1.99E-002 1.99E-002 
@ KR-85M 151.18 75.30 1.00E+020 1.00E+020 
@ 304.87 14.00 1.00E+020 

SR-85 513.99 99.27 1.14E-004 1.14E-004 
Y-88 898.02 93.40 1.32E-004 1.05E-004 

1836.01 99.38 1.05E-004 
CD-109 88.03* 3. 72 1.70E-003 1.70E-003 
SN-113 255.12 1.93 3.19E-003 1.31E-004 

391.69 64.90 1.31E-004 
CS-134 475.35 1.46 5.12E-003 1.25E-004 

563.23 8.38 8.85E-004 
569.32 15.43 5.06E-004 
604.70 97.60 1.68E-004 
795.84 85.40 1.25E-004 
801.93 8. 73 1.25E-003 

1038.57 1.00 1.1BE-002 
1167.94 1.80 6.72E-003 
1365.15 3.04 3.99E-003 

CS-136 66.91 12.50 2.24E-003 4.00E-004 
86.29 6.30 5.30E-003 

153.22 7.46 2.6BE-003 
163.89 4.61 4.21E-003 
176.55 13.56 1.43E-003 
273.65 12.66 1.94E-:003 
340.57 48.50 7.15E-004 
818.50 99.70 4.00E-004 

1048.07 79.60 5.97E-004 
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Nuclide MDA Report 2-08-94 10:36:58 PM Page 12 

Nuclide Energy Yield Line MDA Nuclide MDA 
Name (keV) (%) (uCijgram) (uCijgram) 

CS-136 1235.34 19.70 3.38E-003 4.00E-004 
CS-137 661.65 85.12 1.02E-004 1.02E-004 

@ CS-138 138.10 1.49 1.00E+020 1.00E+020 
@ 227.76 1.51 1.00E+020 
@ 408.98 4.66 1.00E+020 
@ 462.79 30.70 1.00E+020 
@ 546.94 10.80 1.00E+020 
@ 871.80 5.11 1.00E+020 
@ 1009.78 29.80 1.00E+020 
@ 1147.22 1.24 1.00E+020 
@ 1343.59 1.14 1.00E+020 
@ 1435.86 76.30 1.00E+020 

CE-139 165.85 80.35 6.73E-005 6.73E-005 
HG-203 279.19 77.30 1.09E-004 1.09E-004 

+ BI-214 609.31* 46.30 1. 75E-004 1.75E-004 
768 .36* 5.04 1.67E-003 
806.17 1.23 8.66E-003 
934.06* 3.21 3.33E-003 

1120.29* 15.10 6.32E-004 
1155.19 1.69 7.83E-003 
1238.11* 5.94 1.69E-003 
1280.96 1.47 8.82E-003 
1377.67* 4.11 3.30E-003 
1385.31 0.78 1.98E-002 
1401.50 1.39 9.80E-003 
1407.98 2.48 5.88E-003 
1509.19 2.19 6.90E-003 
1661.28 1.15 1.10E-002 
1729.60* 3.05 3.15E-003 
1764.49* 15.80 6.33E-004 
1847.44 2.12 7.24E-003 

> 2118.54 1.21 O.OOE+OOO 
+ PB-214 74.81* 6.33 1.04E-003 1.9BE-004 

77.11* 10.70 6.13E-004 
87 .20* 3.70 1.64E-003 
89.80* 1.03 5.41E-003 

241.98* 7.49 6.57E-004 
295.21* 19.20 3.31E-004 
351.92* 37.20 1.98E-004 
785.91 1.10 1.03E-002 

+ = Nuclide identified during the nuclide identification 

* Energy line found in the spectrum 
> = MDA value not calculated 
@ = Half-life too short to be able to perform the decay correction 
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APPENDIXC 

ORIGINAL DATA PERTAINING TO RADON EMANATION EXPERIMENT 
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Data Obtained from Radon Emanation Experiment 

Back round Count Time in NCPM A Activity 
cell# .. mple I #1 12 13 14 #1 12 13 14 Cell (min) c,ount/min (pCi/ll 
295 1 4 8 3 1 5 2 4 3 283.2 -0.1 0.965001 -0.13558 
2915 2 8 5 5 7 0 9 2 1,' 313.2 -0.65 0.961366 -0.88463 
299 3 4 4 0 1 4 3 2 1 282 0.05 0.965146 0.067782 
300 13 1 1 2 2 2 4 2 4 304.2 0.3 0.962455 0.407827 
302 14 4 0 1 0 0 2 0 1 321 -0.1 0.960423 -0.13623 
303 15 1 2 1 2 0 1 3 1 336 -0.05 0.958612 -0.06824 
301 25 3 1 1 1 2 1 0 1 1114.2 -0.1 0.869214 -0.15053 
304 26 2 5 3 3 1 2 2 2 1135.2 -0.3 0.86692 -0.45277 
295 37 5 2 3 4 2 1 4 1 262.8 -0.3 0.96748 -0.40571 
299 38 2 1 4 1 3 0 2 1 250.8 -0.1 0.968942 -0.13503 
2915 39 1 3 1 3 3 2 2 2 244.8 0.05 0.969674 0.067465 
300 49 2 1 0 3 1 4 2 3 256.8 0.2 0.968211 0.270268 
302 50 0 1 3 0 2 1 0 1 253.8 0 0.968576 0 
303 51 6 3 1 2 1 3 2 1 251 -0.25 0.968918 -0.33759 
297 52 3 3 4 0 4 5 15 15 248 0.55 0.969283 0.742416 
304 53 5 1 3 2 4 1 1 2 1066.2 -0.15 0.874478 -0.22443 
301 54 1 2 1 2 2 0 2 1 1078.2 -0.05 0.873159 -0.07492 
295 40 2 3 5 2 2 0 1 0 295 -0.45 0.963569 -0.61103 
296 41 3 0 3 2 0 1 2 0 310 -0.25 0.961753 -0.3401 
299 42 3 2 2 4 2 0 2 1 481 -0.3 0.941285 -0.417 
300 28 0 1 3 2 1 2 0 3 478 0 0.94164 0 
301 29 0 1 3 2 3 6 1 3 549 0.35 0.933267 0.490679 
304 30 3 1 1 1 5 3 0 3 537 0.25 0.934677 0.349956 
297 16 6 0 1 0 5 5 7 2 550 0.6 0.933149 0.84127 
303 17 2 2 1 3 3 5 5 2 320 0.35 0.960544 0.476745 
296 18 1 2 1 4 6 7 10 6 315 1.05 0.961148 1.429336 
299 4 2 3 1 2 13 10 12 9 318 1.8 0.960785 2.451215 
302 5 2 4 0 2 9 10 9 10 314 1.5 0.961269 2.041652 
300 6 3 1 4 1 9 3 9 3 308 0.75 0.961995 1.020056 
304 55 0 1 0 2 2 0 2 4 304 0.25 0.962479 0.339847 
297 56 4 5 0 1 3 2 8 9 296 0.6 0.963448 0.814814 
301 57 2 1 3 4 3 3 ',4 2 292 0.1 0.963933 0.135734 
295 43 5 1 0 2 2 1 4 0 288 -0.05 0.964418 -0.06783 
303 44 0 4 3 2 2 3 6 1 235 0.15 0.97087 0.202146 
296 45 1 3 4 2 5 2 8 1 236 0.3 0.970748 0.404343 
299 31 1 1 3 0 2 3 4 4 243 0.4 0.969893 0.539599 
297 32 2 0 4 1 5 6 0 3 245 0.35 0.969649 0.472268 
300 33 0 2 4 3 3 2 2 3 255 0.05 0.96843 0.067552 
304 19 5 0 1 3 40 19 12 11 250 3.65 0.969039 4.928181 
302 20 7 0 0 1 4 2 5 4 230 0.35 0.971481 0.471378 
301 21 9 1 3 1 2 5 5 3 241 0.05 0.970137 0.067433 
295 7 5 2 3 2 17 14 18 15 265 2.6 0.967213 3.517116 
296 8 5 2 4 2 23 19 18 21 289 3.4 0.964297 4.613212 
303 9 0 3 2 0 15 12 13 16 321 2.55 0.960423 3.473866 
299 58 2 2 1 3 47 31 36 53 364 7.95 0.955241 10.88903 
300 59 2 9 1 5 31 43 36 23 372 5.8 0.954281 7.952198 
297 60 10 4 2 1 39 41 32 41 385 6.9 0.952721 9.338526 
304 46 3 1 2 0 80 86 80 89 390 16.45 0.952122 22.60521 
302 47 8 0 3 1 60 61 57 58 242 11.2 0.970015 15.10688 
301 48 4 3 2 1 77 78 71 62 239 13.9 0.970381 18.74164 
295 34 3 7 1 1 135 128 132 124 251 25.35 0.968918 34.23154 
296 35 2 2 1 1 137 120 119 109 247 23.95 0.969405 32.32477 
303 36 8 2 3 0 157 141 152 144 212 29.05 0.973683 39.03587 
299 22 4 0 1 1 265 287 261 269 210 53.8 0.973928 72.27543 
304 23 5 3 3 2 263 240 253 257 260 50 0.967821 67.59431 
300 24 1 0 0 0 213 243 223 238 272 45.8 0.966361 62.00993 
302 10 4 1 1 2 862 833 817 800 284 165.2 0.964903 224.0069 
303 11 4 1 7 1 843 923 939 922 291 180.7 0.964054 245.2404 
296 12 7 0 1 0 825 832 858 851 297 167.9 0.963327 228.0407 
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Freundlich Isotherm for 100% scale sample In Radon Emanation Experiment 
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APPENDIXD 

ORIGINAL DATA PERTAINING TO MECHANICAL SEPARATION EXPERIMENT 
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SEM photographs of sol ids obtained from the overflow of the hydrocyclone of sample treated with dispersant 

and dispersator ( 11 385-45). (A) x750 image showing particle morphologies. (8 ) x 1500 image showing 

detailed particle morphologies. (C) x750 image showing barium X-ray map of inage shown in (A). 

(D) x 1500 image showing barium X-ray map of image shown in (8 ). 
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SEM photographs of solids obtained from the underflow of the hydrocyclone o f sample treated with di spers

ant and dispersator ( I 1385-46) . (A) x 150 image showing particle morphologies. (B) x500 image showing 

detailed particle morphologies. (C) x 150 image showing barium X-ray map ofin age shown in (A) . (D) x500 

image showing barium X-ray map of image shown in (8 ). 
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SEM photographs of sol ids obtained from the overflow o f the hydrocyclone of sample treated with dispersant 

and dispersator ( 11 385-47). (A) x 150 image showing particle morphologies. (B) x500 image showing 

detailed particle morphologies. (C) x 150 image showing barium X-ray map of inage shown in (A). (D) x500 

image showing barium X-ray map of image shown in (8). 
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SEM photographs of solids obtained from the underflow of the hydrocyclone of sample treated with di spers

ant and dispersator ( 11 38S-48). (A) x I SO image show ing particle morphologies . (8) xSOO image showi ng 

detailed particle morphologies. (C) x I SO image showing barium X-ray map of inage shown in (A) . (D) x500 

image show ing barium X-ray map of image shown in (B). 
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SEM photographs of solids obtained from the overflow of the hydrocyclone of sample treated with di spersant 

and dispersator ( 11385-49). (A) x500 image showing particle morphologies. (B) xI 000 image showing 

detailed particle morphologies. (C) x500 image showing barium X-ray map of inage shown in (A). 

(D) x!OOO image showing barium X-ray map of image shown in (8). 
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SEM photographs of solids obtained from the overflow of the hydrocyclone of sample treated with dispersant 

and dispersator ( 11 385-53). (A) x700 image showing particle morphologies. (B) x 1500 image showing 

detailed particle morphologies. (C) x700 image showing barium X-ray map of inage shown in (A). 

(D) x l 500 image showing barium X-ray map of image shown in (8 ). 
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SEM photographs of solids obtained from the overflow from second run of the hydrocyclone of sample 

treated with dispersant and dispersator ( 11 385-53b). (A) x500 image showing partic le morphologies. 

(B) x 1500 image showing detailed particle morphologies. (C) x500 image showing barium X-ray map of 

inage shown in (A). (D) x 1500 image showing barium X-ray map of image shown in (B). 
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SEM photographs of solids obtained from the underfl ow of the hydrocyclone of sample treated with di spers

ant and dispersator ( 11 385-54). (A) x 150 image showing particle morphologies. (B) x500 image show ing 

detailed particle morphologies. (C) x 150 image showing barium X-ray map of inage shown in (A). (D) x500 

image showing barium X-ray map o f image shown in (8 ). 
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SEM photographs of solids obtained from the overflow of the hydrocyclone of sample treated with dispersant 

and dispersator ( 11385-57). (A) x50 image showing particle morphologies. (B) x300 image showing 

detailed particle morphologies. (C) x50 image showing barium X-ray map of inage shown in (A). (D) x300 

image showing barium X-ray map of image shown in (B). 
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SEM photographs of solids obtained from the underflow of the hydrocyclone of sample treated with di spers

ant and dispersator ( 11385-58). (A) x 150 image showing particle morphologies. (B) x500 image showing 

detailed particle morphologies. (C) x 150 image showing barium X-ray map of inage shown in (A). (D) x500 

image showing barium X-ray map of image shown in (B). 
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pjJ.~: AM355321 
AMOCO 11385-43 (93-553) 

<- 0.0150 
12/15/93 11:38 am 

228 

15.3600 -> 

Q.o?...t..? ..... f.:C . .Q.!D.: AM355321 (,;,..Q . .!D..ffi_f:l! .. D..t. .. ~.: AMOCO 11385-43 ( 93-553) 
Tim~ .. = 12/15/93 11 : 38 am 

... N.~.t ..... A.r .. f:l! .. ? ......................... N9I.!ll.?.J.~ :?.:.§1.9. ... A.r .. ~-~ ........ ..... ....... . .. G.9.m.m .. ~.D . .t. .. ~.. ........... ...... .......... ... .. . ............. . 

162.25 33.68 Si 
37.69 7.83 Ca 

124.79 25.91 Ba 
156.97 32.59 Fe 



f..JJ.~.: AM355311 
AMOCO 11385-44 (93-553) 

<- 0.0150 
12/10/93 11:50 am 

229 

15.3600 -> 

P..stt. .. ? .... f.I . .<?..m: AM355311 G.<?. . .ffi.!D.~.D. .. t...§.: AMOCO 11385-44 ( 93-553) 
Li..m.~.= 12/10/93 11 :50 am 

...... N..~ .. t. ........ A.r. .. ~.9 ......................................... N.9..I . .ffi .. §li .. ~.~.9 ....... AI .. ~ .. 9 

1093.64 
4.53 
4.87 

104.62 
27.45 

88.55 
0.37 
0.39 
8.47 
2.22 

....... G..9mm.~ .. D..t..§ ............................................................................. . 

Si 
K 
Ca 
Ba 
Fe 



f.~ .. JE:J: AM355324 
AMOCO 11385-45 (93-553) 

<- 0.0150 
12/15/93 12:51 Pm 

Fe 

230 

15.3600 -> 

Q.o?.t? ... ff . .9.1T': AM3S53"':·t: C:Qfl1ill?DtE?.: AMOCO 11385-45 ( 93-553) 
TimE?= 12/15/93 12=51 pm 

49·3 .T.:. 
25.39 
31.44 

262.43 
140,61 

51.24 
2.69 

-.~:·.7 . e:: 
14.91 

... . .... C:<:>mmt?nt :::;_. 

Si 

,...., -Do 
Fe 



f. .. ,U .. ~ .. : AM355313 
AMOCO 11385-46 (93-553) 

<- 0.0150 
12/10/93 12:45 pm 

15.3600 -> 

P~.t .. ~ .. f..r. .. Qm..: AM355313 G . .9 . .ffi:ffi~D..t. .. ~.: AMOCO 11385-46 ( 93-553) 
I..i . .m.~ .. = 12/10/93 12:45 pm 

..... N~.t ..... A .. r. .. ~-Ci! ...... ·-··-·······-········-··-.J~.9..r.:m.~ .. !.J.4.~.c;J ...... A.r .. §!.~. . .... ·'··········· ........ G .. Q.m..m .. ~.n.t .. §. .. ... .. ..................... .......... ......... .... .. ... .. 

1434.01 
23.20 
29.05 
57.53 

92.89 
1.50 
1.88 
3.73 

Si 
K 
Ba 
Fe 
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f. .. tl.5! .. : AM355314 
AMOCO 11385-47 (93-553) 

<- 0.0150 
12/10/93 1:17pm 

232 

15.3600 -> 

D9 .. t?. .. f .. LQ.ffi.: AM355314 ~ .. 9..ID.ID.~.D.t§.: AMOCO 11385-47 ( 93-553) 
I .. i . .m.~ .. = 12/10/93 1: 17 pm 

..... N.~.t ....... ~.r. .. ~ .. s............... ...... . .......... N .. <:.>.r. rrg~J . .i .. ?. .. ~ .. 9 ....... ~I .. ~.9........... ..... . ............. G..9m_rn.~ . .nt. .. §.. .. ................................................... . 

188.16 
80.89 

146.84 
178.64 

31.65 
13.61 
24.70 
30.05 

Si 
Ca 
Ba 
Fe 



f.J.J.~.: AM355316 
AMOCO 11385-49 (93-553) 

<- 0.0150 
12/10/93 2:08 pm 

15.3600 -> 

Q§.t§ ... f..I.Q.m.: AM355316 G.9 .. ffi.ITI.~D .. t.~: AMOCO 11385-49 (93-553) 
Ti.m.~= 12/10/93 2:08 pm 

.... N~t .... AI .. ~.§........... ... . ................. N.9.I.r:D.§JJ_:?;_~9 .... A.r .. ~.§ 

101.95 
3.39 

15.86 
415.15 
250.25 

12.96 
0.43 
2.02 

52.78 
31.81 

................ G.9..mm.~.nt.§ ..... 

Si 
K 
Ca 
Ba 
Fe 
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F. .. ~.J!:.!: AM355317 
AMOCO 11385-50 (93-553) 

<- 0.0150 
12/10/93 8:35 pm 

15.3600 -> 

Q..?..1;,.?. . .£.L9.m.: AM355317 G. . .9..1D.ITl.!:.!_D..t..~: AMOCO 11385-50 (93-553) 
T..i,m~: 12/10/93 8:35 pm 

..... N.!:.!t .... AI.!:.! .. <? ..... . 

989.29 
16.25 
66.97 
68.69 

86.69 Si 
1.42 K 
5.87 Ba 
6.02 Fe 
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F..iJE:l: AM355322 
AMOCO 11385-53 (93-553) 

<- 0.0150 
12/15/93 12:03 om 

235 

15.3600 -> 

P?.t.~1 .. .f.I . .9.m: Al'-13~.:.~i'322 "9iDIT.l~l1t~: AMOCO 11385-53 ( 93--553) 
Ii.rn.t'3.: 12/15/93 12:03 om 

. . 1~.~· L ... A.I .. ~.?. 

350.2':> 
56.88 

530.68 
156.83 

N 9.T .. ITI .. ? ... :l,J z ~.d ... 0..r. .. ~ .. ? .. ·.... . . 

32.00 
5.20 

48.48 
:.:.'-1 .33 

. G<?rnm~nt.$ ........................................... . 

Si 
Ca 
Ba 
Fe 



FiJE:!: AM355323 
AMOCO 11385-538 (93-553) 

<- 0.0150 
12/15/93 12:23 om 

15.3600 -> 

P<?_t. .. ? ... fi..Q!D: AM35532,;: C:.9.1DIU~D:t:::?: AMOCO 11385-538 ( 93-553) 
Tim~= 12/15/93 12=23 om 

. N~t. .. . .~.? .. Nqrm?+. izec;J ... f.:>.T.E:!.? ... ................. (9.mm~nt.s . 

569.1'? 
30.92 

281.61 
127.94 

56.37 
3.06 

27.89 
:?.E:-7 

Si 
Ca 
Ba 
Fe 

236 



f.tl~.: AM355318 
AMOCO 11385-54 (93-553) 

<-- 0.0150 
12/10/93 9:01 pm 

15.3600 -> 

P.?t.#.f..I.Q.ffi: AM355318 Gqmm~Dt§: AMOCO 11385-54 ( 93-553) 
Ti.m~.= 12/10/93 9:01 pm 

...... ~ .. ~ .. t. ...... .A.L~ .. ? .............. . 

1012.91 
3.66 

11.44 
77.03 
24.69 

.... N.9.I.In.?.li .. 7. .. ~ .. 9 .~.I .. ~ .. ? ........................... Gqmm~Dt.!? . ... . 

89.66 
0.32 
1.01 
6.82 
2.19 

Si 
K 
Ca 
Ba 
Fe 

237 



FJJ .. ~: AM355319 
AMOCO 11385-57 (93-553) 

<- 0.0150 
12/10/93 9:52 pm 

238 

15.3600 -> 

P...?.J: .. ?. .... .£..r..Q_ffi.: AM355319 ~ . .Q.!D.!'D~:Ct:t.~: AMOCO 11385-57 ( 93-553) 
TJ.m.~.= 12/10/93 9:52 pm 

...... N.s:.t. ....... A . .r.~.~ ............................ N9.r..m~.J.i. .. 7..~ .. 9 ..... A.r.~?. .......... . 

53.10 
7.57 

252.26 
85.33 
85.43 

10.98 
1.57 

52.15 
:.7.64 
17.66 

Na 
Si 
Ca 
Ba 
Fe 



F .. i.J~: AM355319 
AMOCO 11385-57 (93-5531 

<- 0.015C 
12/15/93 1:21 pm 

P.?.t.? f:r.9.rn: AM355J1 9 
Tirnt?= 12/15/93 

c;. qmu, e.:r) :t. ~>.: 
1:21 pm 

Net f4rea ... . ........................... . ................ N9J:f0<-' .L .:..zec: Area 

102.64 

172.67 
163.30 

15.68 
32.99 
26.38 
~4.95 

239 

15.3600 -> 

AMOCO 11385-S7 (93-553) 

c. o. m.u.1. El_ n t s 

Si 
Ca 
Ba 
,ce 
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APPENDIXE 

ORIGINAL DATA PERTAINING TO DISSOLUTION EXPERIMENT 



SEM photographs of sample from dissolution experiment performed at room temperature with DTPA and 

oxalic acid solution ( 11374-32F). (A) x250 image showing particle morphologies . (B) xI 000 image show

ing detailed particle morphologies. (C) x250 image showing barium X-ray map of image shown in (/\). 

(D) xI 000 image showing barium X-ray map of image shown in (B). 
N 
~ 



SEM photographs of sample from dissolution experiment performed at room temperature with Calnox 

S-271 ( 11 374-32F). (A) x lOO image showing particle morphologies. (B) xiOOO image show ing detailed 

particle morphologies. (C) xI 00 image showing barium X-ray map of image shown in (A). (D) x I 000 

image showing barium X-ray map of image shown in (8). 
10 
~ 
t .J 



SEM photographs of sample from dissolution experiment performed at elevated temperature with Calnox 

S-271 (1137 4-33 H). (A) x250 image showing particle morphologies. (B) x I 000 image showing detailed 

particle morphologies. (C) x250 image showing barium X-ray map of image shown in (A). (D) x I 000 

image showing barium X-ray map of image shown in (B). 
1:0 
~ 
(J_) 
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