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Chapter 1

Nonlinear propagation techniques are no\v creating a revolution in teleconl1llu-

nicatiollS. Since Mollenauer et al. [22] delnOllstrated the propagation of solitons

tllrough a single-illode fiber, tIle potential application of optical solitons in the

field of optical fiber cOllllnunication has induced a large anl0unt of tlleoretical and

experinlental work in this area.

A solitoll is a kind of nOIlliIlear \va\'e. Usually, \vaves \vill disperse after a long

distance propagation in the lllediuIll, but the nOlllinear pro!)ert:y of a Iuediunl can

nlake \vaves becallle narrower and narro\ver. If these effects balance, these \vaves

beCOllle solitons. So a soliton can 1110ve stably, and \ve can use this propert)' in

COll1Il1unication. Optical solitons are ideal carriers of information because they can

improve the translllission rate of infornlation.

As pulses get shorter auel nlore iIltense, botll dispersive and nOlllinear effects

becollle 1110re illlportant. The follo\ving generalized 110nlinear Schrodinger equation

includi11g higher-order dispersion terlns and higher-order nonlinear terms is suitable

for descriptioll of pulses as short as 10 fs [12].

\vhere

z is the z coordillate of an optical fi ber,
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T = t - 131Z and t is the time,

\ve llse T instead of t, since in this \vay \ve can elilllinate a ternl,

A is the slowly varying anlplitude of the \vave,

"( is the nonlinearity coefficieIlt,

Q is the absorption coefficient,

f3 is the \vaVenUll1ber,

(..(,'0 is the carrier frequenc~y,

TR is a parallleter related to the slope of the Ranlan gain and it is estilllated

to be al)out 5 fs.

SillCl~ sllorter pulses 111ean luore infornlatioll transferred on a single optical

fiber, tllis ,viII greatly reduce the cost of COlllnlunication. On the other hand, "An

understanding of the soliton behavior in the fenltosecond regime is, ho\vever, far

frOll1 C0111plete. " [ 12, pp. 43, I)P. 142].

If \ve set tIle particular coefficient values III the above equation as a = 0,

TR == 0, /33 = 0, Wo = 00, then the equation is the \vell-kll0\Vn nonlinear Schrodinger

Equation (NLS)[12, 14].

The present thesis consists of the follo\ving chapters. In Chapter 1, the intro-

duction, SOllle background about the GNLS equation is presented. In Chapter 2,

\ve iIltroduce an overview of nUlnerical methods, in particular, the spectral method
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and split-step technique. In Chapter 3, \ve introduce the fast Fourier transform,

which is important for the split-step Fourier method. In Chapter 4, \ve justify the

split-step Fourier method for the GNLS and propose a nunlerical algorithnl. In

Chapter 5, \ve discuss the nunlerical results of our algorithln. In Chal)ter 6, \ve

discuss soliton solutions, and finally in Cllapter 7, \ve sUlnmarize our \vork and

present the conclusions.
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Chapter 2

Numel--ical Method

Roughly speaking, there are t\VO nUlllerical 111ethods for sol\ring initial \ralue

fJroblenlS in partial differential equation ( the nlethod of lines could belong to

either of thenl ):

(1) Fini te difference methods

Finite difference Inethods for solving initial boundary value probleIll deterlnine

approxinlation at finite number of points in the domain and involve four basic

1. Sllbdivide tIle dOlllain , for exanlple by the unifornl lllesh,

2. Repb:lce derivatives by proper fillite difference quotients to approximate

tIle ciifferential equation.

3. Ill1pose the boundary alld initial conditiollS on the systeln generated in step 2.

4. Solv(~ the finite difference equations generated in steps 2 and 3 [34].

TIle basic idea is to replace a differential equation and auxiliary condition by

a systenl of algebraic equations.

For example, if \ve apply finite difference methods to the GNLS Equation:
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u(x,O) = f(x)

u(O, t) = u(27r, t)

tilen tIle above problem can be discretized as

2: Iu1!l 1
2 'U ~n - Iu1!l 1

2U '.n I~u 1!1 1
2 - I'U 1!1 1

2
_ .,.. [I nl 12 nl. + _l J +1 J +1 ) -1 ) -1 _ T I' Tn 1 J +1 ) -1 ]
-~f u· U· RU,

J J Wo 2~x J 2~2~r

U rn - U 111

o - N

(2) Function approxilnation Inethods.

(0.3)

Botll spectral lnethods and finite elell1ent l11ethods belong to this category, but

finite element methocls use local functions \vith fixed lo\v degree to approxilllate

unknO\VIl functioI1S.

SUPI)OSe we are given the differential equation

In the fillite elelllent lllethod \ve determine an approxilnation of the form

N

UN(X, t) = L an(t)¢n(x)
n=l

to the solution of the above equation. This method involves three steps:

1. Choose a finite dimension space S. For example, the space

spanned by ¢i(X), i = 1,2, ...N,

'\'here ¢i (x) is hat function defined by

(0.4)
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o otllerwise

y

L..- ..L-_...J-_...... -"'""'-_... .x

Figure 1. lIat fUIlctioI1S are basis functions for tillite elelllellt luethods.

2. Approxilllate u(x,t) by

Substitute u(x,t) iIlto the equation

tJ,1. - Auat - ·

To minimize the the residual R = ~; - Au

we clloose <pj(x), i = 1,2, ...N as weight functiollS.

Then we get (Pl.:, DDr - AUN) = 0

k=l, 2, 3, ... N,

or the Galerkin Equation:
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8f ct>n,U.v) == (A.. Au (x t))at \.Pn, N ,

\vhere (u,v) denotes the scalar product of the vectors u and v.

3. Solve the above system of ordinary differelltial equations

sllbject to the initial condition.

TIle system of ordinary differential equations could be solved

b)' sillgle step (Runge-I{utta) or nlultistep 111ethods.

\Ve llave the following mathenlatical fralne\vork for spectral nlethods [9]. Let H

be a Hilbert space, u(x, t) E H. Let B N be the approxilnation space. Then \ve can

write

N

Ul~(X, t) == L an(t)¢n(x)
n=l

For tIle differeIltial eCluation

auat = Au

the sell1i-discrete spectral approxinlations ha\'e the form

\Vllere P n is a projection operator. \\'e have various choices for B.rv and PJv .

(0.5)

TIle different spectral methods and pseudospectral methods differ mainly in

their \vay of Illinilnizing the follo\ving residual function:

Some important spectral methods are:

(0.6)
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1. Galerkin approximation [9]

This nletllod is very similar to finite elenlent lllethod, but here \ve use different

base function and weigllt function. If \ve expand the solution in the forIll:

N

UN(X, t) == L Qn9n
11=1

Natural idea is to choose ai to 11liniIllize

To do so, \ve GIlly need [9]

That is,

k==l, 2,3, ... N.

(0.7)

Equivalelltly, this method deternlines the expansion coefficient an by the Galerkin

equation

'n== 1,2,3, ... ,1\1

(0.8)

For the Galerkin method, \ve assunle that all the expansion functions satisfy

homogeneous boundary condition individually, but this is not required for the Tau

approxill1e:ltion [9].
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2. Tau method

r.fhe approximate solution is assuIl1ed to have the forin

N+k

UN(X, t) == L an¢n
n=l

11 == 1, ...N

\vhich satisfy the equation

11 = 1,2, 3, ... ,N, and

N+k

L anB¢n == 0
n=l

(0.9)

(0.10)

(0.11)

IIere we expand more terlns thall the expansion in the Galerkin Inethod to give

more freedom to satisfy boundary COllstraints.

3. Pseudospectral approximatioll [3,9]

Let D be the domain of a unknown function: {xiii = 1,2 ...N} c D. These

points are called collocation points. In this Illetllod \ve determine the expansion

coefficients by the equation

N

U(Xi) t) = L an¢n(Xi)
n=l

i = I, ... lV.

N

L an<Pn(xd = U(Xi)
n==l

(0.12)
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thell this rnethod is called the Fourier pseudospectral nlethod. \\'e can prove that

(aI, (l2, ...an ) is the DFT (discrete Fourier transforlll) of (UI, 'U2, ....un ). If.~ is linear,

we call write eCluation (2) ill tile fornl:

BUN ~ F- 1AF[u.]at N l

4. S!)lit-step Fourier metilod

Given the nonlinear eCluatioIl

au
- == A'uat (0.13)

\vhere A is a nonlinear differential operator, the basic idea of the split-step lnethod

is to s!)lit the operator A into different pieces. For each of the pieces, if \ve have

differellt scileilles for updatiIlg tIle variable froll1 tiI1leste!) n to tinlestep n + 1, tllen

we let these pieces of the operator act separately.

For exanlple, ,ve lIla)' rewrite the above equation in the fornl:

au ~ ...
at = (D + N)u (0.14)

\vhere D is a linear differential operator and IV is a nonlinear operator. The split-

ste!) Fourier 111ethod use tIle follo\ving scllenle:

In tIle first step, let D == 0, and \ve ha\'e

'Ul(X, t + h) == exp(hlV}u(x, t)

In the second step, let N == 0, and we have

u(x, t + h) == exp(hD}Ul(X, t + h)

(0.15)

(0.16)
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The lillear step D is implelnented by the FFT (fast Fourier transforll1), that is,

exp(hD)y(x, t) = {F-1exp[hD(iw)]F}y(x, t)

where F denote the DFT and D(iw) is obtained by replacing tx by iw.

For the NLS equation T. R. Taha and 11. J. Ablo\vitz [2] cornpared se\'en nu~

merical methods and concluded that the split nlethod is the best method, follo\ved

by I)Seudospectral 111ethod. The reasoll \vhy the split step spectral 111ethod is so

fast lIla)' be explained by the follo\ving considerations.

(1) Generally, the Fourier expansions ha\'e exponential convergence, if the so

lution fUI1Ctioll is illfinitely differentiable. But this is not al\vays true; D. Gottlieb

and S. A. Orszag [9] gave SaIne exaillples sho\ving spectral approximation \vith al

gebraic order for SOIne nlixed initial-boundary value probleln. On the other hand,

if a fllnctioll has a discolltinuity at Xo, thell its Fourier expansion \villnot converge

uniforll1ly ill the neighborhood of Xo- This nonuniform behavior of con\'ergence is

called tIle Gibbs phenoIllenon [9]. In other \vords, if f(x) llas sonle discontinuity at

Xo, its Fourier expansion Inay ha\re bad accuracy near IO'

(:2) If tIle Fourier 111ethods or Chebyshev lllethods [3,9] are used, then the fast

Fourier trallsforlll can be used \vhich also makes the spectral methods more efficient

thall tillite difference nlethods.

Sillce tIle spectral method may get sanle accuracy for a relati\rely snlall number

of grid points, it can also save meulory space.

There are sonle dra\vbacks of spectral methods. Usually, spectral methods are
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more difficult to program tllan finite difference Iuethods. If the dOlllains of the

problems are irregular, spectral methods ,viII loss accuracy and efficienC)T hea\rily

[3]. For Fourier spectral nlethods, if the solution of the probleIll is not a periodic

functioll, then tIle error will have a lower bound, that is, the solution has lilnited

accuracy, even as .6.z -1' 0, alld N --t (X).
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Chapter 3

Fast Fourier Transfonn (FFT)

'1
1

0 rnake this thesis self-contained, \ve introduce the fast Fourier transfornl

(FFT) l)riefly.

Let x = (Xl,X2, ... ,xn ) be a \'ector. TheIl the discrete Fourier transfornl (DFT)

\Vllere

n-1

X k = LXjW
jk

, k=O,l,2, ...n-l
j=O

w = exp{ -i27f/12}, i = v=1

The DFT plays a key role in physics, because it can be used to describe the

reia.tioll bet\veen tIle tillle dOIllain and frecluency dOIllain. The DFT lIas also 111any

applications in Inathenlatics problelns such as interpolation problenls, and solving

partial differelltial equations. The discrete Fourier transform of an n-vector can

be COlllputed ill a straightfor\vard \va.y using '11 2 multiplicatioIl and fe\ver than '12 2

addit.ions. An efficient method for COlllputing the DFT (using O(n log n) arithmetic

operations) is called the fast Fourier transforll1 or FFT [19,20].

Since Cooley and Tuke)' introduced the fast Fourier transform in 1965 [20], the

use of the FFT nlethod has increased in various areas. SOllie authors even clailll

that tIle FF\T has changed the face of science and engineering so much so that life

as \ve kno\v it \vould be very different without the FFT [8] .

.~ltllougll the FFT algorithlll has been kno\vn only since the mid-1960s, the
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efficient Illethod for cOlnputing the DFT had beell independently discovered by as

many as a dozen individuals, starting \vith Gauss in 1805 [21,24]. Danielson and

Lanczos sho\ved (19408) that a DFT of length N can be re\vritten as the sum of

two DFTs eacll of length N/2 [34]. It is \VOIlderful that the D-L lelunla can be

used recursively. If N is a po\ver of 2 then \ve can continuously use tile D-L lemma

until a transform of length 1 is reaclled that is the identity transforill. (If possible

we prefer 11 = 2n1
• )

After Cooley aIld Tukey proposed the FFT, nlany develo!)111ents have been

made in the area. Various radixes such as radix-2, radix-4, radix-8, mixed radix

and split-radix transforms [23,33] have been considered. To inlprove the efficiency

of tIle algoritlllU, maIlY authors proposed various algorithlllS fronl different stand

POilltS. \Villograd and SOIne others developed an algorithnl that used only O(n)

lllUlti!)lieatiOllS [27]. SOllIe otller researcllers developed algori thnlS to red lice the

llull1bers of botll adcJitioI1S and 111ultiplicatiolls.

11athelllatically, tllere are at least t\VO interpretations of FFT. First, \ve can

let eaelI FFT algorithll1 correspond to a factorization of the DFT nlatrix. In fact,

the COll1plex Fourier transfOflll of a \'ector x can be expressed as a matrix [8]

111ultiplication

X=Tx

\vhere T is an '1~ X '11 lllatrix of conlplex exponentials with

tjk = exp(i21rjkjrL)
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In conlputing the fast Fourier transforn1, \\'e factor T as

\vhere Fi is the 111atrix corresponding to the i-th trallsforlll step and P is the per-

nlutatioll Illatrix corresponding to bit-reversal, \vhich is a S}'111Il1etric perIllutatioIl

nlatrix. The perillutatioll P is required because the transforlned result is initially

in bit-reversed order, i.e. the Fourier coefficient X j \vith j = jn1 2,n- 1+ ... + )2 2 + jl

is found in locatioll jl, where jl is the bit-reversal of j and jl is defined by

" _ . l)m-1 . ') .
)1 - )1" + ... + )171.-1- + Jm'

III other \vords, if \ve represent j in bilIary fornl by [jlj2 ...jnl-l] \vhere ji is 0 or

1, tllerl the bit-reversal of j is (Jrn-1 ... jl]' i.e. the salllC bits in reverse order. Tile

111atrices Fi can be further factored to )'ield

\vhere R-i is a diagonal lllatrix of rotation factors called t,vidclle factors and Ti can

be partitioned iIItO 11/2 idelltical sCluare sublllatrices, each a matrix of the complex

Fourier transforll1 of dilllellsion n/2 [8] .

..~notller point of vie\v of the FFT is tllat \ve can interpret the COlllponent of

x = (ao, al.' .an-l) as the coefficients of a polynomial [34]

Let w be the n-th roots of 1; then computing the DFT of x is equivalent to evalu-

ating the I)olynolIlial at wO ...wn
-

1 i.e. at each of the n-th roots of unity. Based on
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the same strategy of Divide and Conquer, \ve nlay use recursion to evaluate the

polynomial p at n points. That is

It is suffices to evaluate Pe1Jen and Podd at 1,w2•••• , then do n/2 multiplications

for XPodd(X2) and n additions and subtractions. The polynomials Peven and Podd

can be evaluated recursively by the same scheme. That is, they are polynomials

of degree n/2-1 and will be evaluated at the n/2th roots of unity: 1, w, ....w n
/

2- 1•

Clearly, when the polynolnial to be evaluated is a constant, there is no \vork to be

done, and hence we have finished the recursion.
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(0.17)

Let

~"T = i ~f1..4.1
2

. 4i -8A 2i 8.4
!vI = 21'[(- - TR)A- + (- - TR ) ..4-]

Wo aT Wo aT
Q 'i 82 1 83

L = - 2 - 2. (32 8T2 + "6 (33 8T3

Then the algorithIll is:

A~l) = [exp(i\tl(zm)L\z)] . A~O)

Aj+l = Fj-
1[exp(L~z)] · F[AP)]

(0.18)

(0.19)

(0.20)

where [A~l)] is a vector, and F[A~l)] is its DFT ( discrete Fourier transform), L is

obtained by replacing the differential operator :r in the operator by iw, where w

is the frequency in the Fourier domain. [exp(L~z)].F[AP)] is the inner product of

the vector [exp(L~z)] and the vector F[AP)]. F is implemented by the fast Fourier

transfornl (FFT).

\\'e inlplenlent the algorithnl in a double precision FORTRAN code. To im-

prove the speed of the conlputatioll, we use real arithmetic to implement complex

operations. Tile FFT subroutille is obtained from the book" Numerical Recipes"

[21]. The user may re\\'rite the subroutine for the initial condition to fit a special

problenl.
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Chapter 5

NUlnel'ical tests

If \ve set Q = 0, then tIle GNLS equation has the progressive plane \vave solutioll

..4(z, T) == a * exp(i(kz - sT))

If \ve substitute the above equation illto the GNLS eCluatioll, \ve \viII get the

follo\ving dispersion relation:

The solution is Cluite Sill1ple , but it can be used to test the prograll1.

To test the progranl, \ve set 132 == 2, 133 == 0.1, , == 0, Q == 0 then the equation

beconles:

Tilis is a linear eCluation \vitil dispersion relation:

(0.21)
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Table 1. If \ve set s= 6 then the theoretical solution is A(z,T) = exp(i(39.6z-6T)

We run the program \vith N = 128.

~z z-out Loo error

1.0000000000000D-03 1.0000000000000D-O1 3.3938130084010D-14

1.0000000000000D-03 1.0000000000000D-02 2.9809488211185D-14

1.0000000000000 1.0000000000000 3.3084646133830D-14

0.50000000000000 1.0000000000000 3.3306690738755D-14

1.OOOOOOOOOOOOOD-O1 1.0000000000000 3.5638159090468D-14

1.00000OOOOOOOOD-02 1.0000000000000 3.8413716652030D-14

5.0000000000000D-03 1.0000000000000 4.8849813083507D-14

1.0000000000000D-03 1.0000000000000 1.0080825063596D-13

\vhere z-out is tIle value of z at \vllich the solution is desired.

L00 is illfinity 1101"111 of errors [39].

FroIl1 Table 1, \ve can see that it does not make a big difference \vhen the

stepsize of z decreases. Actually, the errors in Table 1 are only roundoff errors due

to fillite precision; There is no trancation error. The reason could be explained by

that

1. TIle pseudospectral lllethod is exact at the collocation points.

2. " ... till1e discretization errors in both difference and spectral methods are

typically nluch smaller than are spatial discretization errors." [9]

The program works \vell for a linear problenl.

No\v, \ve consider the follo\ving mixed initial-boundary value problem \vith f32
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=2, /33 = 0.1, 'Y = -2, ex = 0 , TR = 0.1, Wo = 100, N = 128. That is, \ve include

the nonlinear step for the GNLS equation.

8A .82A 1 ()3 A . 2 i 81AI 2A 81AI 2

8z + t 8T2 - 608T3 = -·t2[1AI A + 50 aT - 0.1 8T ] (0.22)

Table 2.

~z z-out Loo error L·oo relati\'e error

1.0000D-04 1.0000D-03 3.4523536330405D-06 9.2420709913220D-05

1.0000D-03 1.0000D-Ol 3.4547117312748D-04 5.l077l08002296D-04

1.0000D-02 1.0000D-O! 3.4547117313591D-04 5.1077108004455D-04

I.OOOOD-Ol 1.0000 3.4515901820111D-03 9.8970811276756D-03

5.0000D-02 1.0000 3.4515901820225D-03 9.8970811277047D-03

1.0000D-02 1.0000 3.4515901820309D-03 9.8970811277655D-03

1.0000D-03 1.0000 3.4515901821377D-03 9.8970811280756D-03

Table 3

N ~z z-out L oo error L oo relative error

256 I.OD-03 I.D-O! 8.6649296361174D-05 1.2816912888162D-04

512 1.OD-03 I.D-01 2.1679952097020D-05 3.2D72137772496D-05

1024 1.0D-03 I.D-01 5.4210902762615D-06 8.0199016464118D-06

1024 1.0D-02 1.0 2.23842772623170-02 10.2103249330695

1024 1.DD-03 1.0 4.7118171342954D-02 7.0282392416296

where Loo relative error is the infinity norm of relative error [3,21].
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Table 2, and Table 3 show that the errors are much bigger than the errors of

the linear problem and the errors do Ilot converge rapidly to zero as N increases, or

as ~z decreases. Since the above equation is obtained by adding nonlinear steps

to the linear equation, the bigger error must be caused by the nonlinear part. If

we want to improve the accuracy efficiently, we only need to improve the accurac)'

of tIle nOlllinear steps. If \ve examine the nonlinear part carefully, \ve can see that

the derivative in the nonlinear operator is evaluated by a 3-point fornlula, and the

error for this forll1ula is second order, \vhich is the bottle-neck in the accuraCj' of

the overall algorithln.

Now we use a 5-point formula to evaluate the derivative in nonlinear steps, in

which tIle error is fifth order.

Table 4. Progressive plane wave solution with {32 = 2, (33 = 0.1, , = -2, Q = 0

TR = 0, Wo = 100

~z z-out Loo error

1.OOOOOOOOOOOOOD-O1 1.0000000000000 5.9519327331538D-05

1.0000000000000D-02 1.0000000000000 5.9519327315544D-05

5.0000000000000D-03 1.0000000000000 5.9519327334993D-05

1.0000000000000D-03 1.0000000000000 5.9519327400503D-05

1.0000000000000D-03 1.OOOOOOOOOOOOOD-O1 5.9577604658101D-06

1.0000000000000D-04 1.0000000000000D-02 5.9567595906210D-07

1.0000000000000D-07 1.0000000000000D-05 5.9577526527639D-IO
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Table 5. Progressive plane wave solution \vith {32 = 2, /33 = 0.12, "'( = -2, Q = a

TR = 0, Wo = 100

N ~z z-out L oo error

128 1.25000000000D-03 1.00000000000000 5.9574326256490D-05

256 0.01 1.0 3.7523477387173D-06

512 0.01 1.0 2.3497629336039D-07

1024 0.01 1.0 1.4694140970184D-08

We have improved the accuracJ' dramaticall)T. The results in Table 4 and Table

5 sho\v that we have illlproved accuracy about 100 tillles over the one \vith 3 point

fornlula. In another words, the errors have been reduced do\vn to 1% of error of

algorithnl \vith 3-point forlnula.

Sillce we call get accuracy of nlore than 5 digits \vithin 20 seconds \vhen \ve

solve tIle progressive plane \vave solution, \ve did not count the CPU tinle. FraIn

table 5, \ve can filld easily that the error \vill decrease as the nunlber of grid points

N increases, so \ve 111ay impro\Te accuracy further if \ve use a bigger N. But the split

step Fourier nlethod is very sensitive for the periodicity of boundary condition. If

\ve disturb the periodicity by subtracting a sinall number from 2 7T, \ve have the

follo\ving results:
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Table 6. Progressive plane \vave solution \vith {32 = 2, (33 = 0.1, Ii = -2, a = 0

TR = 0.1, Wo = 100 N = 256, L = length of the interval

L ~z z-out Loo error

27r 1.OOOOOOOD-02 1.00000 3.7525799286659D-06

2 7r-O.OO01 1.000000D-02 1.0000 0.35021404768869

2 7r-O.OOOOOI 1.0000D-02 1.0000 3.2529175756306D-03

21r 1.OD-03 1.OOOOOOOOOOOOOD-O1 3.7525553560087D-07

2 11'"-0.000001 1.000D-03 1.00000D-Ol 7.3680337973683D-06

So if the periodicity is not satisfied and z is big enough, then accuracy could be

bad. Since the basis functions in the Fourier 11ICthod are periodic and approxinlate

solutioI1S are also periodic, the approxill1ate solution can lI0t converge to a solution

\vithout periodicity. vVe got very good accurac)' for the progressive plane \vave

solution since it is periodic.
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Chapter 6

Soliton Solutions for GNLS the Equation

Generally, tIle GNLS equation has no soliton solutions, but for SOllIe special

coefficients, the GNLS equation has a solitOl1 solution, or exact solution. For ex

arnple, tile NLS equation is the special case of the GNLS equation and it has

envelope soliton solutions. There are various 11Iethods to get the soliton solutiollS

for a solitall equation such as the inverse scattering method, Hirota method, pro

longation method, Backlund transform lnetllod [40], trace method [14,16,17] and

so on. I got N-soliton solutions of NLS equation by the trace 111ethods and proved

that the N-soliton solutions obtained by inverse scattering, Hirota nlethod, and

trace InetIlod are equivalent [14].

If we set tIle coefficient of the higher-order nonlinear term and higher-order

disperse terIllS very small, then \ve can consider the GNLS as a perturbed NLS

equatioll.

\\'e set the initial condition (nlathematically, for z = 0) of the GNLS equation

as follo\vs:

A(T,O) = sech(T)

Then \ve have output as follo\vs:
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Table 7. Soliton solution \vith /32 = 0.02, {33 == 0.0012, "'/ == -0.02, (l = 0,

TR == 0, Wo = 100

N L oo error ~z z-out

64 2.5443370713321D-06 1.0000000000D-02 1.0000000000000

128 2.5244348991198D-06 1.0D-02 1.0000000000000

256 2.51470185257440-06 1.0D-02 1.0000000000000

512 2.5098352640913D-06 1.0D-02 1.0000000000000

1024 2.5074020049061D-06 1.OD-02 1.0000000000000

2048 2.50618536538150-06 1.0D-02 1.0000000000000

512 3.9253598949636D-04 1.0000000000000D-02 10.0000000000000

512 3.9254346963622D-04 1.0000000000000D-Ol 10.0000000000000

512 3.9261830140740D-04 1.0000000000000 10.0000000000000

512 3.9270151896993D-04 2.0000000000000 10.0000000000000

FrOlll tIle Table 7, \ve find that Loo decreases very slo\vly as ~z decreases or as

N increases. This can be explained by that the major part of the errors is caused

by nOllperiodicity of soliton solution, \vhich does not depend on L\z or N and it is

related z-out.

\Ve plot nunlerical output in Figure 2, 3, 4, 5, 6.

Figure 2 is an initial soliton \vith A(T) = sech(T) and the nunlber of grid points

N =256, length = 81r.

Figure 3 is the output of the GNLS eCluation for abo\'e initial soliton \vith (32

=0.02, ;33 == 0.0012, , = -0.02, Q == 0, TR == 0, Wo == 100, N = 256, length = 81f, z
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= 100. The figure sho\vs that the soliton propagates stably.

Figure 4 is the output of the GNLS equation for the same initial soliton as

above \vith f32 =0.02, (33 = 0.0012, 1 = -0.02, ex = 0, TR = 0, Wo = 100, N = 256,

length = 87r, Z = 300.

1"he figure shows that the soliton has clearly visible defoflnation, if z is big.

F"igure 5 is initial soliton with A(T) = sech(T) and the nUluber of grid points

N =256, lengtll = 201T

Figure 6 is output of the GNLS equation for initial soliton ill Figure 5 \vith (J2

=0.02, 133 = 0.0012, 'Y = -0.02, a: = 0, TR = 0, Wo = 100, N = 256, length = 201r,

Z = 60. The figure sho\vs that the soliton propagates stably.

Fronl tIlese figures, \ve find that if z is not very big, then the errors are small.

Generally, a soliton equation has an infinite 11ulnber of conserved quantities.

TIle cOllserved qualltities are llot DIlly useful to keep track of the nUlllerical cal

culation, but also very useful as 111atheInatical tool to prove the existence and

uniqueness of the solution.

\·\'e can prove that

E = 1: IAI 2dT = constant

is an invariant.



28

Table 8. shows an invariant of the soliton solution \vith /32 = 0.02,133 = 0.0012,

I = -O.02,a = 0, TR = 0, Wo = 100, N = 128

~z z-out invariant E

1.0000000000D-Ol 50.0000000000 40.591701777239

1.0000000000D-Ol 10.0000000000 40.591663813317

1.0000000000D-Ol 5.00000000000 40.591659328647

1.0000000000D-02 I.DOaOOOOD-01 40.591654865618

1.OOOOOOOOOOD-Ol 1.0000000000 40.591655750701

From the output of our prograln, we can observe the conservatioll of the invari

ant for tIle soliton solution.
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Chapter 7

Conclusiol1S

We llave presented a split step Fourier illetllod for solving the GNLS eClution.

AccordiIlg to l1uIllerical test, \ve have the follo\ving conclusions:

1. vVhen \ve use the split step Fourier Illethod to solve the GNLS equation, if

solution is a periodic fUllctioll, thell errors l)lailll~y are caused by nonlinear ste!)s.

To illlprove the accurac)', \ve should concentrate 011 nonlinear steps. By" using a

nlore precise fOfll1ula to approxilllate deri\'atives, \ve have inlproved the accuracy'

drall1atically.

2. Errors increase as z illcreases and decrease as N ( the IlUlnber of grid points

for T) illcreases.

3. The split step lllethod is very sensitive to the periodic boundar~y COllditioll.

If tIle periodicity is not satisfied and z is big enough, tllen \ve \vill lose accuracy

heavily.

4. If the coefficients of tlle GNLS eCluation are not big or z is not big, then \ve

can get good accuracy for the solitoll solution, and the soliton solution can keep

the invariallt constant quite \vell. If z is big, \ve have only limited accuracy for

soliton solutioll due to nonperiodicity of the solutions, even as Llz --? 0, and N --;

00. This is a nlajor disadvantage of Fourier spectral methods.

Since the GNLS equation \vas deduced in 1987 [41], it is quite ne\v and it
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has direct physical application. There is a lots of work \ve can do, such as exact

solution under some restrictions, the existence and uniqueness of solutions for

the GNLS equation, stability and error estinlation of spectral methods, allal~ytic

nletllods under some restrictions, other numerical nlethods, and so on. But these

are beyond the scope of this thesis.
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the subroutine for the initial condition, aI1d call that
subroutine.
To apply the program to an interval other than
(-Pi,Pi), the user should set the length which is the
interval for T.

APPENDIX A

FORTRAN PROGRAM TO SOLVE
THE GNLS EQUATION

C*************************************************c
C Ref: Thesis W. Zheng C
C This program solves the generalized C
C nonlinear Schordinger equation C
C by the split step Fourier method. C
C D(A)/DZ + alpha*A/2+i*beta2*DDA/DTT/2- C
C beta3*DDDA/DTIT = i*gama*(IAIiAIA + C
C 2i* d(IAIIAIA)/DT /omegaO-Tr*A*DIAI1\2/dt) C
C under periodic boundary condition: C
C A(z,-Pi) = A(z,Pi) C
C and initial condition C
C A(O,T)= g(T) C
C Author: Weiming Zheng C
C Adviser: Dr. J. P. Chandler C
C Computer Science Department C
C Oklahoma State University C
C Aug. 2, 1994 C
C**************************************************C
C
C Usage: To fit a special application, the user nlay rewrite
c
c
C
C
C
C
C Parameters and Arguments:
C NN -- The number of grid points for the variable T.
C dz -- The step size for the variable z.
C L -- The number of steps for the variable z
C ds -- The step size for the variable T.
C X -- The array of values for the variable A at all grid points.
C It sets the initial value of A (at z = 0). And finally, X is
C the solution at z = zout.
C Y -- The exact solution components at z =zout.
C zout -- This is a point at which a solution is desired.
C DX --- The nunlerical derivative of A with respct to T.
C ganla, beta2, beta3, alpha, omegaO, Tr -- Coefficents of the

35
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This program solves the generalized NLS.
PROGRAM gnlsps3
implicit none
INTEGER NN,NN2,j,L,model
real*8 PI,h,lenth
PARAMETER (PI =3. 14159265358979dO)
PARA:METER (NN=512,NN2=2*NN)
PARAMETER (outpt = 10)
lenth is the length of the interval of T

PARAMETER ( lenth = PI*2dO)
PARAMETER (lenth = 20dO)

CHARACfER fig
DOUBLE PRECISION X(NN2),DX(NN2),Y(NN2)
real*8 c,ds,dz,b,Tr,w
real*8 end,gama, omegaO, beta2,beta3,alpha
b= 2*PI/lenth

open( UNIT= 10, FILE ='Error', status='UNKOWN')
c=-PI

c

c

C GNLS p.d.e.
C Er -- The error in the solution =maxIY(i)-X(i)1
C REr -- The relative error = maxi (Y(i)-X(i)){X(i)1
C E --- invariant of the GNLS equation

C ------------------------------------------------------------
C
C

C tn1 = time
1 write(*,*)'# Enter the zout '

read(*,*) end
write(*,*)'# Enter the dz '
read(* ,*) dz
L = end Idz
ds = 2dO*PI/NN

C***** Sets the coefficient of the pde ********
gama =-2DO
gama = -2D-2
beta2 = 2DO
beta2 = 2D·2
alpha = 000
beta3 = 1.2D-1
beta3 = 1.2D-3
TR = OdO
onlegaO = ID2

C****** Initialization of X ********
call inislt(X,NN,ds,gama,beta2,beta3,omegaO,b)

w=6dO
call iniplw(X,NN,b,ds,w)



c****** Compute the solution ********
beta2 =beta2*b*b
beta3 = beta3*b*b*b
omegaO = omegaO/b
TR=TR*b
do 50 j=l,L,l
call1iner(X,NN,ds,dz, alpha, beta2, beta3)
call nolin(X,DX,NN,ds,dz,gama,omegaO,TR)

C call1iner(X,NN,ds,dz/2., alpha, beta2, beta3)
50 CONTINUE

C *************Compute the exact solution ******
C nlodel = 1 for soliton solution, model =2 for plane wave solution

model = 2
call extslt(Y,NN,ds,gama,beta2,beta3,omegaO,b,n1odel,end,n1odel,w)

C ***** Output*************
calloutput(X,Y,NN,model)
WRITE(outpt,*) 'dz=', dz
WRITE(outpt,*) 'zout =',end
WRITE(*,*) 'Would you like another test? yIn'
read(*,*) fig
if (fig .EQ. 'y') then
goto 1
end if
close(outpt)
END

c
subroutine output(X,Y,NN,model)

C-------------------------------------------------------------------
C SUBROUTINE OUTPUT (X,Y,NN,ffiodel)
C This subroutine outputs the results for GNLS PDE.
C NN -- The number of grid points for the variable T.
C X _. The array of approximate solution values at all grid points.
C Y -- The array of exact SOIUtiOll values at all grid points.
C model -- model=l for soliton solution,
C model=2 for plane wave solution

<:------------------------------------------------------------------
implicit NONE
integer i,NN,model

C lowbd is a small number to check errors and to avoid underflow.
PARAMETER ( lowbd =Id-30)

C output is parameter of unit when open a fue
PARAMETER ( outpt = lO)
DOUBLE PRECISION X, Y,Er, REr,sum, tmp,E
DOUBLE PRECISION tmp1,tmp2
dimension X(*),Y(*)
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exact'
solution'

exact'
solution'

backspace (10)

C *** Output soliton solution ****
if ( model .eq. 1) then
WRITE(*,*)' approximate
WRITE(*,*)' solution
do 51 i=I,2*NN-l,2
tmpl = sqrt«X(i»)**2 + (X(i+l»**2 )
tmp2 = sqrt«Y(i»**2 + (Y(i+l»**2 )
WRITE(*,*) tmp1, tmp2

C ***** For plot only *****
C WRITE(outpt,*) '# soliton solution Zout= " zout
C WRITE(outpt,*) i/2, tmpl

51 CONTINUE
Er= OdO
REr =OdO
do 55 i=1,2*NN
if(abs(tmp I-trnp2) .GT. Er) then
Er = abs(tmp I-tnlp2)
end if
if( abs(tmpl) .GT. lowbd) then
if(abs«tmpl-tmp2)/unpl) .GT. REr) then
REr = abs(tmpl-tmp2)/abs(unpl)
end if
el1d if

55 CONTINUE
end if

C *** Output plane wave solution ****
if ( model .eq. 2) then
WRITE(*,*)' approximate
WRITE(*,*)' solution
do 61 i=1,2*NN-l,2
WRITE(*t*)(i+l)/2, X(i), X(i+l), Y(i), Y(i+l)

61 CONTINUE
Er= OdD
REr =OdD
do 65 i=1,2*NN
if(abs(X(i)-Y(i» .GT. Er) then
Er = abs(X(i)-Y(i»)
end if
if( abs(X(i» .GT. Id-30) then
if(abs(X(i)-Y(i)jX(i» .GT. REr) then
REr = abs«X(i)-Y(i»jX(i»
end if
end if

65 CONTINUE



do 12 i=l,NN,l
s =(-PI + i*ds)/b
X(2*i-l) = DCOS(dl *s)/DCOSH(cl *s)
X(2*i) =DSIN(dl *s)/DCOSH(cl*s)

C X(2*i-l) =DCOS(dl*(a+ds*I)/DCOSH(c1 *(a+I*ds»
C X(2*i) = DSIN(dl *(a+ds*I»/DCOSH(c1 *(a+I*ds»

12 CONTINUE
return
end

c
c

subroutine iniplw(X,NN,b.ds)w)

C -----------------------------------------------------------------
C subroutine iniplw(X,NN,b,dstw)
C This subroutine sets the initial condition for PDE
C with progressive plane waves.
C NN -- The number of grid points for the variable T.
C ds -- The step size for the variable T.
C X -- The array of values for the variable A at all grid points.
C It sets the initial value of A (at z =0).
C b =2*pi /lenth
C w -- A parameter in dispersion relation.

C-----------------------------------------------------------------
implicit NONE
integer i,NN
DOUBLE PRECISION PI
PARAMETER ( PI = 3.14159265358979dO)

C DOUBLE PRECISION X(NN*2).a,ds
DOUBLE PRECISION X,b,ds,w,s
dimension X(*)
do 11 i=l,NN,l
s =(-PI + i*ds)/b
X(2*i-l) = DeaS( -w*s)
X(2*i) =DSIN( -w*s)

11 CONTINUE
RETURN
END

c
c

subroutine extslt(Y,NN,ds,gama,beta2,beta3,omegaO,b,model,zend)

<: -------------------------------------------------------------------
C SUBROUTINE EXTSLT(X)NN,ds,gama,beta2,beta3,omegaO,b t model,zend)
C This subroutine computes the exact solution for GNLS PDE.
C NN -- The number of grid points for variable T.
C ds -- The step size for the variable T.
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c x -- The array of value for variable A at all grid points.
C gama, beta2, beta3, alpha, omegaO, Tr -- Coefficents of the
C GNLS p.d.e.
C end -- this is the value of z at which a solution desired.

C-------------------------------------------------------------------
C This subroutine sets the exact solution for GNLS PDE.

implicit NONE
DOUBLE PRECISION PI,gama,beta2,beta3,omegaO
integer i,NN, model
DOUBLE PRECISION Y Jds,cl,dl,b,s,c2,d2. zend,f,w
dimension Y(*)
PARAMETER ( PI = 3.14159265358979dO)
c1 =SQRT(-6d0*gama/beta3/omegaO)

c cl=ldO
dl = omegaO*beta3*cl *cl+2dO*ganla
if( d 1 .NE. OdD) then
dl = omegaO*(gama+beta2*cl *cl)/dl

end if
d2 = -beta2*(cl *cl-dl *dl)/2dO-beta3*(dl*dl *dl-3*cl *cl *dl)/6dO
c2 =beta2*cl*dl + beta3*(cl *cl *cl-3dO*cl *dl *dl)/6dO
do 55 i=l,NN,1
s = (-PI + i*ds)/b
y(2*i-l) =DCOS(dl *s+d2*zend)/DCOSH(cl *s+c2*zend)
y(2*i) = DSIN(dl *s+d2*zend)/DCOSH(cl *s+c2*zend)

c
C Compute the dispersion relation ******

w=6dO
f=beta2*w*w/2dO+beta3*w*w*w/6dO+gama*(ld0+2dO*w/omegaO)
if ( model .eq. 2) then
Y(2*i-l) = COS(f*zend -w*s)
Y(2*i) =SIN( f*zend -w*s)
end if

55 CONTINUE
return

end
c
c

subroutine liner(X,NN,ds,dz, alpha. beta2, beta3)

(:---------------------_._-------------------------------------------
C subroutine liner(X,NN,ds,dz, alpha, beta2, beta3)
C This subroutine computes the linear step for the PDE
{: NN -- The number of grid points for the variable T.
C ds -- The step size for the variable T.
C X -- The array of values for the variable A at all grid points.

41



C beta2, beta3. alpha -- Coefficems of the GNLS p.d.e.
C dz -- stepsize for z
C------------------------- _
C

implicit NONE
integer NN,i, isign
DOUBLE PRECISION X
DOUBLE PRECISION dS,dz
DOUBLE PRECISION pi, tmpi,temp, cr, ci
DOUBLE PRECISION alpha, beta2, beta3
DOUBLE PRECISION bI, b3,be2
dimension X(*)
PARAMETER ( PI =3.14I59265358979dO)

C****** L operation ********
bi =-alpha/2.0
002 =beta2f2.0
b3 = -beta3/6.0
isign=l
call dfourl(X,NN,isign)
do 20 i=l,2*NN-l,2
temp = -PI*(i-I)/ds/NN
cr=bl*dz
ci = (b3*temp*tenlp*temp + be2*temp*temp)*dz
tmpi = X(i)*COS(ci)-X(i+l)*SIN(ci)
X(i+l) = X(i+l)*COS(ci)+X(i)*SIN(ci)
X(i) = tmpi
cr = (exp(cr»/NN
X(i+l) = X(i+l)*cr
X(i) =X(i)*cr

20 CONTINUE
isign=-l
call dfourl(X,NN,isign)
return
end

c
c

subroutine nolin(X,DX,NN,ds,dz,gama,omegaO,TR)

C-------------------------------------------------------------------
C subroutine noiin(X,DX,NN,ds,dz,gama,omegaO,TR)
C This subroutine computes a nonlinear step for GNLS PDE.
C NN -- The number of grid points for the variable T.
C ds -- The step size for the variable T.
C dz -- The step size for the variable z.
C X -- The array of values for the variable A at all grid points.
C gama, omegaO. TR -- Coefficents of the GNLS p.d.e.
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C DX -- The array of derivative of X.

<:-------------------------------------------------------------------

implicit NONE
integer NN,i
DOUBLE PRECISION X,DX
DOUBLE PRECISION dS,dz
DOUBLE PRECISION tmpr, tmpi,temp, cr, ci
DOUBLE PRECISION gama,omegaO,TR
dimension X(*),DX(*)
do 1 i=l,2*NN-l,2
ci = gama*( X(i)* XCi) + X(i+l)* X(i+l))*dz
temp =X(i)*COS(ci)-X(i+l)*SIN(ci)
X(i+l) =X(i+l)*COS(ci)+X(i)*SIN(ci)
XCi) = temp

1 CONTINUE
C DX operation ****
C call deriv(X,DX,NN,NN2,ds)

call deriv5(X,DX,NN,ds)
C call dxfft(DX,X,NN)
C****** M operation (exp(i*ci). X )********

cr =-2DO*ganla/omegaO
ci= -gama*TR
do 17 i=1,2*NN-l,2
tnlpr = 3DO*cr*( X(i)*DX(i)+X(i+1 )*DX(i+l))
tmpi = 2DO*ci*( X(i)*DX(i)+X(i+l )*DX(i+l))
* + cr*( X(i)*DX(i+l)-X(i+l)*DX(i))
tmpr = tropr * dz
trnpi= trnpi * dz
temp = X(i)*DCOS(tnlpi)-X(i+l)*DSIN(tmpi)
X(i+l) =X(i+l)*DCOS(tmpi)+X(i)*DSIN(tmpi)

XCi) = temp
XCi) = X(i)*dexp(tmpr)
X(i+l) =X(i+l)*dexp(tmpr)

17 CONTINUE
return
end

c
subroutine deriv5(X,DX,NN,ds)

C-------------------------------------------------------------------
<: subroutine deriv5(X,DX,NN,ds)
C This subroutine computes the numerical derivative
C for periodic function.
C NN -- The number of grid points for the variable T.
C ds -- The step size for the variable T.
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c x -- The array of values for the variable A at all grid points.
c DX -- The array of derivative of X.

(:-------------------------------------------------------------------
C implicit NONE

integer NN,NN2,i
C lowbd is a small number to check errors and to avoid underflow.

PARAMElER ( lowbd = Id-30)
DOUBLE PRECISION X.DX
DOUBLE PRECISION ds
DOUBLE PRECISION fl,f2,f4 t fS
DTh1ENSION X(*),DX(*)
NN2=2*NN
do 1 i =1,NN2
if (i.LE.4) then
fl = X(i+NN2-4)
else
fl = X(i-4)
end if
if (i.LE.2) then
f2 = X(i+NN2-2)
else
f2 =X(i-2)
end if
if (i.gt.NN2-2) then
f4 = X(i+2-NN2)
else
f4 = X(i+2)
end if
if (i.GT.NN2-4) then
f5 = X(i+4-NN2)
else
f5 = X(i+4)
end if

c
if (abs( f4-f2) .LT. lowbd) then
f4= OdD
else
f4 =2.*(f4 -f2)/3.

end if
if (abs( fI-f5) .LT. lowbd) then

fl= OdO
else
fl =(fl -f5)/12.

end if
DX(i) =(fl+f4)/ds
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1 CONTINUE
return
end

c
C SUBROUTINE dfourl(data,nn»isign)
C Refer "Numerical Recipes" Software (1986-92)
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Figure 2. Initial 1·so1iton with .-\(T) =sech(T) and the number of grid points N =256,
length = 87&
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Figure 3. Output of the GNLS equation with {32 =0.02, /33 = 0.0012, "( = -0.02, Q = 0,
Tn = 0, Wo = 100, N = 256, length = 87r, Z = 100.
The figure shows that the soliton propagates stabl)'.
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Figure 4. Output of the GNLS equation \\·ith ,.'32 ~O.(2) f"J - 0.0012, i' - -0.02,
Q = 0, Tn = 0, Wo = 100, N = 256, length = SiT, Z = 300.
The figure sho\vs that the soliton has clearl)' ,,"isible deformation, if z is big.
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Figure 5. Initial I-soliton with ..~(T) == sech(T) and the number of grid points N =256,

length = 201r
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Figure 6. Output of the GNLS equation with /32 =0.02, {33 = 0.0012, I = -0.02, Q = 0,

Tn = 0, Wo = 100, N = 256, length = 207r, Z = 60.
The figure shows that the soliton propagates sta.bly.
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