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PREFACE 

The binary vapor-liquid phase equilibria of nitrogen in normal heavy paraffins is 

investigated in this work. Solubilities of nitrogen in four solvents, n-decane, n-eicosane, 

n-octacosane, and n-hexatriacontane, were measured at temperatures from 323.2 to 

423.2 K and pressures to 18.0 MPa. For all the binary mixtures, interaction parameters 

and Henry's constants were obtained for both the Soave-Redlich-Kwong (SRK) and Peng­

Robinson (PR) equations of state (EOS) using the newly acquired experimental data. 

In addition, a database for the solubility of six supercritical fluids (carbon dioxide, 

carbon monoxide, nitrogen, hydrogen, methane and ethane) in aromatic and naphthenic 

solvents was generated. SRK and PR EOS binary interaction parameters were regressed 

from these data, and estimates for Henry's constants and infinite-dilution partial molar 

volumes were determined. 
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CHAPTER I 

INTRODUCTION 

The phase behavior of asymmetric mixtures at high pressures is of practical and 

theoretical importance in many industrial applications, including enchanced oil and gas 

recovery, hydrotreating and coal gasification. Ideally, the phase behavior of complex 

systems can be predicted using equations of state (EOS) such as the Soave-Redlich­

Kwong (SRK) or Peng-Robinson (PR) EOS. However, the use ofEOS for such 

predictions is limited by the availability of experimental phase behavior information that is 

needed to optimize these equations for more accurate predictions. 

A wealth of vapor-liquid equilibrium data has been determined on several 

supercritical fluids such as C02 and methane in paraffins, aromatics and naphthenes. 

Several studies ( 1 7, 21, 54) have been devoted to evaluating the ability of various cubic 

equations of state to predict the phase behavior of such supercritical-fluid-containing 

mixtures. The PR and SRK EOS are the most widely used because of their simplicity and 

reasonable accuracy. 

In contrast, the phase behavior of nitrogen mixtures containing n-paraffins is 

scarcely studied, compared with other supercritical gases. To date, n-hexadecane is the 

heaviest member of the normal paraffin homologous series for which nitrogen vapor-liquid 

equilibrium data exist (1). 

The first objective of the present work was to determine the solubilities of nitrogen 

in heavy normal paraffins (n-decane, n-eicosane, n-octacosane and n-hexatriacontane). 

The newly aquired experimental data, together with the available literature data, were 

regressed using the SRK and PR EOS. The binary interaction parameters Cij and Dij for 



the SRK and PR EOS were obtained, as well as values for Henry's constants and partial 

molar volumes. 

The second objective of this study was to set up a database which contains the 

equilibrium properties of six supercritical gases (nitrogen, hydrogen, carbon dioxide, 

carbon monoxide, methane and ethane) in aromatic or naphthenic solvents and to obtain 

the binary interaction parameters Cij and Dij for the SRK and PR EOS, as well as values 

for Henry's constants and partial molar volumes. 

2 

Chapter II describes previous experimental and theoretical work relevant to the 

present study. The experimental apparatus and procedures used in this study are 

presented in Chapter III. The experimental results and discussion are the topic of Chapter 

IV. In Chapter V, correlation of the solubility of nitrogen in n-paraffins is presented. 

Chapter VI is devoted to evaluating the cubic equations of state. Finally, conclusions and 

recommendations are given in Chapter VII. 



CHAPTER II 

LITERATURE REVIEW 

This chapter contains a brief review of experimental and theoretical work directly 

pertinent to the present study. The topics surveyed are: experimental methods used to 

measure vapor-liquid equilibrium phase behavior, vapor-liquid equilibrium data for 

nitrogen and n-paraffins, and previous efforts to correlate the solubility of light gases in 

hydrocarbon solvents using cubic equations of state. 

Experimental Apparatus 

A rapid and accurate method for determining vapor-liquid equilibrium properties is 

needed in industry for the design and operation of various processes. Experimental 

equilibrium measurements are used directly for such purposes, or to develop correlations 

and predictive models. Various methods have been proposed to make such 

measurements. In general, the methods employed to determine compositions can be 

classified into analytical (direct sampling) methods and synthetic (indirect) methods. The 

analytical methods can be sub grouped on the basis of the technique used to achieve 

equilibrium conditions as static (2, 9), continuous flow (3) and circulation methods (4). 

Continuous flow and circulation methods are considered to be dynamic methods. 

Analytical methods are commonly used to determine vapor-liquid equilibrium 

properties. These methods depend heavily on sampling. At high pressures, especially near 

the critical point, large disturbances to equilibrium can occur when withdrawing samples 

from the cell. Thus, this method works best for pressures far away from the critical point. 

Nevertheless, some improvements have been made to overcome this problem by reducing 

3 



the amount of samples withdrawn ( 5 ), i.e., by using fast -acting pneumatic or electro­

magnetic valves ( 6) or detachable sampling microcells (7). 

Synthetic methods applied to multicomponent mixtures yield the p, T and x 

information. Several techniques based on these synthetic methods (9, 20, 31) are 

discussed in the literature. In a synthetic method, no sampling is necessary, and hence the 

difficulties related to the sampling process are avoided. Thus, the synthetic approach is 

commonly used for systems for which phase compositions are difficult to analyze. It is 

particularly well suited for measurements of phase equilibria at elevated pressures, and for 

complex multi phase equilibria. The main disadvantage of this method, however. is the 

difficulty associated in obtaining tie lines in the phase envelope. 

Some analytical and synthetic methods incorporate the capacity for visual 

observations of the phase behavior (28). A visual equilibrium cell has the added advantage 

of observing the phase separation directly. A review of experimental apparatus covering 

the 1970s is given by Eubank, et al. (8). Fornari ( 1 0) gave the review covering the 1980s, 

and a more recent review is given by Park (31 ). 

Experimental Data 

Experimental vapor-liquid equilibrium (VLE) measurements for nitrogen + 

n-paraffins are needed to determine EOS binary interaction parameters for a more 

accurate prediction of the phase behavior of such systems. Most of the data reported in 

the literature are concerned with nitrogen+ light alkane systems. Binary system studies 

involving nitrogen and methane, ethane, or propane have mostly addressed operations 

under cryogenic conditions ( 13 ). High temperature and high pressure VLE data of 

nitrogen and alkanes are scarce. A number of binary nitrogen + n-alkane systems were 

reviewed by Wisotzki and Schneider ( 11 ), and several new nitrogen + n-alkane systems 

(n 8, 9, 10, 12) were measured by Llave and Chung (13). Nitrogen+ n-decane binaries 

at temperatures from 310.9 K to 410.9 K were studied by Azamoosh, et al. (12). 
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However, the heaviest n-paraffin among the nitrogen + n-paraffin mixtures studied is 

n-hexadecane ( 1). A summary of existing VLE data for nitrogen in normal paraffins is 

presented in Table I, along with the ranges of temperature, pressure, and mole fractions of 

nitrogen in the liquid phase. In the present EOS analysis, only solubility data (T, p, x) are 

used in order to achieve consistency among the different sources. During analysis of the 

data, pressures are restricted to below 90% of the mixture critical pressure to avoid the 

near -critical region where essentially all contemporary equations of state become 

inherently inaccurate. 

Equation-of-State Correlation ofExperimental Data 

Among the many EOS currently in use, the SRK and PR equations have been found 

particularly useful for this purpose due to their simplicity and reasonable accuracy when dealing 

with hydrocarbon mixtures. The SRK (24) equation is given below: 

where 

and 

P= RT _ 
v-b 

a(T) = aca.(T) 

a(T) 

v(v+ b) 

b = 0.08664RTC I PC 

ac = 0. 42748R 2Tc2 I PC 

a.(T)112 = 1 + K(1- T~12 ) 

K= 0.480+1.574ro-0.176ro2 

The PR (25) equation is given as follows: 

(2-1) 

(2-2) 

(2-3) 

(2-4) 

(2-5) 

(2-6) 
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TABLE I 

BINARY DATA FOR NITROGEN IN NORMAL PARAFFINS 

Solvent Temperature Pressure N2 Mole Reference 
Range, K Range, bar Fraction Range 

c3 143.2- 353.2 13.8- 137.9 0.018- 0.323 60 
230.0- 290.0 11.9-219.2 0.018- 0.528 61 

nC4 250.0 - 344.4 4.5- 157.9 0.007 - 0.268 48 
310.9-422.0 35.7-290.9 0.011 - 0.375 49 
310.9-410.9 3.6-285.2 0.012- 0.610 50 
310.9-410.9 16.3 - 144.2 0.025- 0.490 51 

nC5 277.5- 377.6 2.5-207.9 0.003- 0.400 52 
nC6 310.9- 444.3 17.2- 344.6 0.021 - 0. 700 53 
nC7 305.4- 366.5 55.0- 349.0 0.056- 0.397 13 

305.5 91.0- 998.5 0. 1 00 - 0. 661 7 
305.4- 455.4 70.3- 691.2 0.080- 0.505 55 
453.2-497.2 12.0- 294.5 0.008- 0.670 6 
453.2- 497.2 44.0-278.0 0.075- 0.588 62 
453.2 15.2-276.6 0.018- 0.580 63 

nC8 322.0- 344.3 32.3- 350.4 0.043- 0.347 13 
nC9 322.0 - 344.3 37.2-347.4 0.048- 0.332 13 
nC 10 344.3 40.2-346.4 0.069 - 0.380 13 

310.9-410.9 2.8- 344.7 0.033 - 0.398 12 

nCI2 327.6- 366.5 31.0- 346.9 0.048- 0.349 13 

nCI6 462.7 - 703 .4 20.1 - 254.6 0.038 - 0.555 1 



where 

and 

RT 
p=--

v-b 

a(T) = aca(T) 

a(T) 

v(v+b)+b(v-b) 

b = 0. 07780RTC I PC 

a(T)1
.' 2 = l + K(l- T// 2 ) 

K = 0.37464+ 1.54226ro-0.26992ro2 

(2-7) 

(2-8) 

(2-9) 

(2-1 0) 

(2-1 1) 

(2-12) 

To apply the SRK or PR equations of state to mixtures, the values of a and b are 

determined using the following mixing rules (26): 

!\ ;-.; 

a= ~!: z1zj(l-C1j )(a1a)v2 (2-13) 
I J 

N N 
b= 0 5""""Z·Z·(1+D··)(b· +b·) . ~~ I J IJ I J (2-14) 

1 J 

In Equations (2-13) and (2-14 ), the summations are over all chemical species and 

C1j and Du are empirical interaction parameters characterizing the binary interactions 

between components "i" and "j". Most investigators use only one interaction parameter, 

Cij. However, for mixtures involving heavy hydrocarbons, use of two interaction 

parameters, Cij and Dij, has proven more precise (27-30, 47). 

Values of the interaction parameters were determined by fitting the experimental 

data to minimize the objective function, SS, which represents the sum of squared errors in 

the predicted bubble point pressures: 

7 
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np 

SS = L (Pexp -peal )
2 (2-15) 

n=l 

Further details on the data reduction techniques are given by Gasem (27). 

For binary systems, at constant temperature and pressure, Henry's law constant can be 

defined as: 

(2-16) 

Estimates for Henry's constant can be obtained analytically or graphically using solubility data. 

Applying the graphical method, values of the solute vapor phase fugacity divided by the solute 

liquid phase concentration are plotted as a function of the solute liquid phase concentration and 

extrapolated to zero solute concentration. Henry's constant can also be determined analytically 

using an equation of state (58), such as the SRK or PR EOS. 

Previous Efforts to Correlate the Solubility of Nitrogen in Normal Paraffins 

Equations of state are widely used for calculating VLE properties of mixtures 

involving non-polar and slightly polar substances. Studies of phase equilibrium 

calculations using EOS have been reported in recent works (14, 17, 21, 27-30, 40, 44, 47, 

54, 76-80). A few of the EOS developed over the years have been reviewed by Walas 

(81) and Takeuchi and Arai (82). Chao and Lin (15) examined the EOS predictions of 

VLE data for highly asymmetric mixtures. More recently, Park (31) proposed a new 

equation of state to predict VLE properties of these mixtures and compared it with the 

PR, the simplified-perturbed-hard-chain theory (SPHCT) and modified SPHCT EOS. 

Similarly, Shaver (32) modified the SPHCT equation of state and improved its 

performance for both equilibrium and volumetric property predictions. 

Binary interaction parameters are generally incorporated in the mixing rules of an 

equation of state in order to obtain improved predictions. The optimal values of the 



binary interaction parameters are determined from binary VLE data by minimizing the 

difference between the calculated and experimental values of a selected equilibrium 

property. A number of optimality criteria that have been used in determining binary 

interaction parameters were summarized by Paunovic, et aL ( 16). They are (a) 

minimization of deviations in the predicted bubble point pressures ( 17, 64 ), (b) 

minimization of deviations in the predicted vapor and liquid component fugacities ( 16, 

18), (c) minimization of deviations in the predicted K values (21, 65), (d) minimization of 

deviations in the predicted bubble point vapor composition ( 64 ), (e) minimization of the 

sum of variances ofboth the vapor and liquid compositions (66), and (f) minimization of 

the flash volume variances ( 67). 

9 

Among these criteria, the bubble point pressure criterion appears to be the most 

widely used method (27, 35, 67, 68). Graboski, et aL (67) and Kato, et al. (68) found the 

bubble point pressure criterion to be extremely sensitive to variations in the cij binary 

interaction parameter of the Redlich-Kwong EOS. Similarly, the fugacity criterion is also 

used frequently, where the whole pTxy data set is used to evaluate the optimum Cij 

interaction parameter. By contrast, when the bubble point pressure criterion is applied, 

only part of the pTxy data set is used in calculating the interaction parameter (the 

temperature and the liquid phase compositions). Cited advantages of the fugacity criterion 

are: ( 1) iterative calculations, which are involved in bubble point pressure criterion, are not 

required (16)~ (2) the EOS accuracy for predicting other VLE properties is guaranteed, in 

contrast to the bubble point pressure criterion, which does not do so ( 18). 

Myosan, et aL ( 17) correlated the phase behavior of systems containing nitrogen 

with the SRK EOS. In their study, the evaluation of the interaction parameters was made 

by comparison with experimental data for binary mixtures, and their optimum values were 

calculated by minimizing the following objective function: 



10 

np p - p 2 
S S = I, ( ..:a! exp ) 

n=l Pe\.-p 
(2-17) 

A general correlation was developed for the SRK EOS interaction parameters of 

several gases in hydrocarbon solvents. They separated the effect of temperature on the 

interaction parameter (for a given solute) as follows: 

where a temperature-independent solvent interaction parameter is amended by a 

generalized correlation to account for temperature effects. 

(2-18) 

For nitrogen mixtures, Moysan, et al. ( 17) found that Ct
1 

is mainly a function of 

temperature, and proposed the following correlation: 

Cij = 1-A'(l B'T)/(1-C'ff) (2-19) 

where, A' 0.7046, B' = 0.00136 and C' = 0.0313. As such, the above correlation 

predicts the same value of the interaction parameter at a given temperature, regardless of 

the solvent in the mixture. 

Correlation of binary interaction parameters for nitrogen mixtures was also 

undertaken by Valderrama, et al. ( 18) using five equations of state including the SRK and 

PR EOS. A binary interaction parameter was estimated by regressing the VLE data of 

several nitrogen mixtures at several temperatures for each EOS. The fugacity criterion 

which was developed by Paunovic, et al. ( 16) was used as the objective function: 

Ss - ~ (fy -fL)/f\.1+ !(f\' -fL)/f\. 1 

-L 1 1 l 2 2 21 

where np is the number of data points in the pxy data set at a given temperature. 

(2-20) 

In their study, they found that both temperature and the size of the solvent strongly 



affect the C11 value. This is in contrast to the assessment given by Moysan, et al. ( 17). 

They correlated the optimum interaction parameters for five EOS using the following 

correlation: 
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c .. = A 8/T. 
IJ IJ (2-21) 

where T rj is the reduced temperature of the solvent, and A and B are empirical 

coefficients. These coefficients were related to the structure of the solvents using the 

acentric factor of the solvent mj as follows: 

A= A0 + A1mj +A 2m/ 

B 8 0 + B1m j + B2m / 

(2-22) 

(2-23) 

All the coefficients for the SRK and PR EOS are given in Table II. 

EOS 

SRK 

PR 

TABLE II 

COEFFICIENTS~ AND Bi IN THE GENERALIZED CORRELATION 
FOR THE SRK AND PR EOS INTERACTION PARAMETERS (18) 

~~ A, A, Bo B, B, 

-0.4909 5.1567 -5.5304 -0.2540 2.3300 -2.3126 

-0.3432 4.1428 -3.8309 -0.1777 1.8079 -1.4731 

Han, et al. (2 1) and Oellrich, et al. (22) proposed a different approach for handling 

interaction parameters. They treated Cij as temperature independent in the SRK and PR 

EOS. Significant improvement was observed by introducing Cij for each mixture. The 

optimum Cij values were presented in their study for each mixture. However, no 

generalized correlation was given. 

In general, nitrogen-containing, light hydrocarbon mixtures have been extensively 

investigated using cubic equations of state, and reasonable fits are obtained when binary 



interaction parameters are employed. 

VLE Correlation of Supercritical Gases in Aromatics and Naphthenes 

Many investigators have correlated the solubility of supercritical solutes in 

paraffins using equations of state (see, e.g., 27, 35, 47). Relatively less effort has been 

devoted to supercritical solutes in aromatic and naphthenic systems. Among them, Gray, 

et al. (34) studied a number of binary hydrogen+ aromatics or naphthenes systems. 

Valderrama, et al. (36, 39) and Nishiumi, et al. (37) suggested correlations for the PR 

EOS interaction parameters of hydrogen systems. Several investigations (56, 57, 58) 

dealing with carbon dioxide in aromatics and naphthenes have appeared in the literature. 
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In addition, Nishiumi (54) successfully correlated the binary interaction parameters 

of the PR EOS in terms of the ratio of the critical molar volumes and the absolute 

difference between the acentric factors of each component. The correlation covers 

systems of hydrocarbons, carbon dioxide, nitrogen and hydrogen sulfide. Maysan, et al. 

( 1 7) provided correlations of Cij values for the SRK equation for mixtures of nitrogen, 

hydrogen, carbon dioxide, carbon monoxide and methane with n-paraffins, olefins, 

naphthenes and aromatics, respectively. 

For hydrogen systems, Valderrama, et al. (36, 39) and Nishiumi, et al. (37) 

suggested correlations for the interaction parameter of the PR EOS. In 1983, Valderrama, 

et al. (39) presented a correlation in the form 

C·· = a-AfT· IJ p fJ 
(2-24) 

where a and ~ are empirical parameters and T rj is the reduced temperature of the solvent. 

Using Equation (2-24), significant deviations in the predicted interaction parameters were 

observed for some systems, such as hydrogen + aromatics (39). Later, in 1986, a new 

correlation was proposed by Valderrama (36) as follows: 



(2-25) 

where A B and C are constants specific to each mixture. The accuracy of the EOS 

predictions was substantially improved by using the new correlation. 

Nishiumi, et al. (3 7) correlated the PR EOS interaction parameters for hydrogen 

containing binary mixtures as a function of temperature 

where 

c .. = 1-M .. 
lJ lJ 

Mij = 1. 224-0. 0044T + 3.251 x 10- 5T2 forT> 461.75 K 

= 56.98-0.1655T+ 1.199x 10-4T2 forT~ 461.75 K 

(2-26) 

This correlation covers hydrogen-alkane, -cycloalkane, -aromatic systems as well as 

hydrogen systems involving some polar compounds. Precise representations were 

achieved using the above correlation. Absolute average deviation of0.007 and 0.018 in 

the mole fraction of vapor and liquid phases were obtained using the optimized values at 

each temperature of the system and the generalized value from the correlation, 

respectively. 

Kordas, et al. (57) gave a generalized correlation for the PR EOS interaction 

parameters for the systems of carbon dioxide with alkane, 1-alkenes, naphthenes and 

aromatics. The correlation for carbon dioxide + non-alkane systems was proposed as: 

-MWxSG 

ffi·=A-e 8 
J 

(2-27) 

(2-28) 

where the interaction parameter is a function of the reduced temperature of C02 and the 

effective acentric factor of the non-alkane, which was calculated from Equation (2-28). 

The parameters a, b and c are functions of ffi j . The effective acentric factor values were 
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correlated in tenns of the molecular weight (MW) and the specific gravity at l5°C (SG). 

The values of A and Bare 0.658 and 46.027, respectively. By applying this correlation, 

typical average relative errors in the bubble point pressure predictions were in the range of 

2-6%. 

Yau et al. (58) calculated the solubility of carbon dioxide in aromatics using the 

SRK equation of state. Henry's constants and infinite dilution partial molar volumes were 

also evaluated in their work. 



CHAPTER III 

EXPERIMENTAL APPARATUS AND PROCEDURES 

Experimental Apparatus 

The apparatus used in this study is briefly described here. A synthetic method was 

employed in measuring the solubilities of solute gases in heavy hydrocarbon solvents. A 

variable volume, static-type blind equilibrium cell was used. The experimental apparatus 

was originally built by Gasem (27) in 1982, and has been modified by Buffkin (29), 

Barrick (23), Darwish (28) and Park (31 ). No modifications were made to the apparatus 

during the course ofthis study. A detailed description of the apparatus and a step-by-step 

procedure for the operation are given by Park (3 I). The general schematic diagram of the 

apparatus as given by Park (31) is shown in Figure 1. 

The equilibrium cell is a variable-volume, rocking type cell. It consists of a 3 16 

stainless steel micro-reactor (Cat. No. MS-16, OD 1 in, ID 1/2 in, 19 cc in volume) 

supplied by High Pressure Equipment Inc. One end of the cell is plugged while the other 

end is connected to 1/16 in OD stainless steel tubing through which the solvent, solute and 

mercury are injected. Two stainless steel balls (diameter of 113 in) are placed inside the 

cell to enhance mixing. The volume of fluid mixture in the cell can be varied by the 

introduction and withdrawal of mercury using a screw pump. A solvent storage cell is 

used to store degassed liquid solvent at the operating temperature of the experiment. This 

is shown as SV in Figure 1 and is a high pressure reactor supplied by High Pressure Inc. 

(Cat. No. OC-1, OD 2.5 in, ID 1 in). The mercury storage cell (MC) is a 5 cc micro­

reactor supplied by High Pressure Inc. (Cat. No. MS-11, OD 9/16 in, ID 5/16 in). The 

15 



CF -CLEANING FLUID CYIJNDER 
CR - CLEANING FLUID RESERVOIR 
DWG - DEAD WEIGHT GAUGE 
EC - EQUll.IBRTIJM CELL 
GAS - SOLUTE GAS 
GIP - SOL UTE GAS INJECTION PUMP 
HE - HELTIJM GAS 
1\.IDP - MERCURY DISPLACEMENT PUMP 
MGI - MERCURY-GAS INTERFACE 
MC - MERCURY STORAGE CELL 
MOl - MERCURY-OIT.1NTERFACE 
MR - MERCURY RESERVOIR 
PT'S - PRESSURE TRANSDUCERS 
SG - SIGHT GLASS 
SIP - SOL VENT INJECTION PUMP 
SV - SOL VENT STORAGE CELL 
V"S -VALVES 

Figure 1. Schematic Diagram of the Experimental Apparatus 

16 
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cleaning fluid cell (CF) contains the cleaning solvent (n-pentane), which is injected into the 

equilibrium cell and the solvent storage cell by introducing mercury into the cleaning fluid 

cell. 

Three positive displacement hand-pumps are used in this work. The solvent 

injection pump and the solute injection pump, each 25 cc in volume, were supplied by 

Temco Inc. (Model No. HP-25-1 0). The solvent injection pump is used for injecting 

solvent and measuring the amount injected. This pump is also used for transferring 

mercury to and from the equilibrium cell during the experiment. The solute injection 

pump is used to inject solute gas and measure the amount injected. The maximum 

operating pressure of these pumps is 68.9 MPa. The resolution of these pumps is 0.005 

cc. The other pump was supplied by Ruska Instruments Inc. (Model No. 2210-80 I) and 

has a volume of 500 cc. This pump is normally used for cleaning operations and supplying 

mercury to the solvent injection pump. 

Two air baths are used in the apparatus. One is used to house the solvent and 

solute injection pumps. The temperature in this bath is set at 50.00 °C and is controlled by 

a PI controller supplied by Halikainen Instruments (Model No. 1 053A). The other bath 

contains the equilibrium cell, the solvent-storage cell and the mercury storage cell. The 

bath temperature is regulated by a PID controller supplied by Omega Engineering Inc. 

(Cat. No. CN9000A). Both air baths are controlled within 0.1 °C of the setpoint. The 

temperatures in the two air baths are measured using platinum resistance thermal detectors 

with digital displays supplied by Fluke Inc. (Model 2180A). The resolution of the displays 

is 0.01 °C. 

Three pressure transducers are used in the apparatus. Two of them (PT1, PT2) 

are connected to the injection pump to measure the pressure in the equilibrium cell, the 

third (PT3) is connected to the solute injection pump to measure the pressure of the solute 

gas. All transducers are connected to digital displays. All pressure transducers and digital 

displays were supplied by Sensotec Inc. PT1 and PT3 (Model No. ST5E1890) have a 
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range ofO to 13.8 MPa whereas PT2 (Model No. TJE/743-11) has a range ofO to 68.9 

MPa. The digital displays for PT I and PT3 (Model No. 450D) have maximum readings of 

13.8 MPa and have 0.0007 MPa resolution. PT2 is connected to a digital display (Model 

No. GM) which has a maximum reading of68.9 MPa and a resolution of0.007 MPa. 

All fittings, tubings and valves used in this study were supplied by High Pressure 

Equipment Company. The sizes oftubings used are 1/16, 1/8 and 1/4 in. All chemicals 

used in this work were supplied by commercial suppliers. No further purification of the 

chemicals was attempted. The suppliers and the stated purities are listed in Table III. 

Experimental Procedures 

According to the phase rule, a binary mixture in the state of two coexisting phases 

at equilibrium has two degrees of freedom. This means that only two independent 

intensive thermodynamic variables are required to describe the state of the system fully. 

For evaluation of any thermodynamic model such as an equation of state, at least one 

additional variable should be measured. In this work, the three measured variables are: 

temperature, pressure and the mole fraction of the solute (solubility) in the liquid phase. 

The experimental procedure used in this study is simple. Known amounts of 

solvent and solute are injected into the equilibrium cell. The pressure in the equilibrium 

cell is changed by the introduction or withdrawal of mercury, which serves as an 

incompressible fluid "piston". In order to accelerate the approach to equilibrium, two 

stainless steel balls are placed in the equilibrium cell and the cell is rocked 45 degrees 

about the horizontal level. The bubble point pressure is identified by observing the break 

point in a pressure-volume curve as the mixture passes from two phases to a liquid phase. 

A typical pressure-volume plot is shown in Figure 2. Two to four points are measured in 

each run by subsequent solute injections. At least two runs are done for each isotherm to 

confinn the results. A detailed operating procedure is given by Park (31 ). 

For the nitrogen system, the equilibrium time varied with the solvents and the 



Chemicals 

Nitrogen 

Carbon Monoxide 

Carbon Dioxide 

trans-Decalin 

n-Decane 

n-Eicosane 

n-Octacosane 

n-Hexatriacontane 

TABLE III 

CHEMICALS AND THEIR PURITIES 

Source 

Liquid Air, Inc. 

Matheson Gas Products 

Union Carbide 

Aldrich Chemical Company 

Aldrich Chemical Company 

Aldrich Chemical Company 

Aldrich Chemical Company 

Alfa Chemical Company 
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Purity ( mol %) 

99.9999+ 

99.99+ 

99.99+ 

99 

99 

99 

99 

99 



13.5 

J 

13 

p/MPa 12.5 

12 

11.5 

0 0.02 0.04 0.06 

Incremental Volume ofMercury Injected I cc 

Figure 2. Graphical Determination of the Bubble Point for a Mixture of Nitrogen+ 

n-Hexatriacontane at 373.2 K (xN2 = 0.2089) 
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system temperature. Generally, it took at least 20 minutes to reach equilibrium for the 

systems studied in this work. At low temperature~ it took about I 0 more minutes to reach 

equilibrium. 



CHAPTER IV 

BINARY VAPOR-LIQUID PHASE EQUILffiRIUM FOR 

NITROGEN + HEAVY NORMAL PARAFFINS 

Abstract 

The solubilities of nitrogen in n-decane, n-eicosane, n-octacosane, and 

n-hexatriacontane were measured at temperatures from 323.2 to 423.2 K and pressures to 

18.0 MPa. The uncertainty in these solubility measurements was estimated to be less than 

0.001 in mole fraction. The data were analyzed using the Soave-Redlich-Kwong and 

Peng-Robinson equations of state. In general, the two equations represent the 

experimental data well when one interaction parameter is used for each isotherm in each 

binary system. 

Results and Discussions 

The nitrogen solubility measurements are presented in Tables IV- VII. The effect 

of temperature and pressure on the solubility of nitrogen in each of the solvents studied is 

shown in Figures 3 - 6. In general, a trend of increasing solubility with increasing 

temperature and pressure is observed. This behavior is similar to that of carbon monoxide 

(30, 40) and hydrogen (31), and in contrast to the behavior observed for carbon dioxide 

(27), methane (28) and ethane ( 44). The effect of the molecular size of the solvent on the 

solubility is shown in Figure 7. The figure indicates that the solubility of nitrogen 

increases with increasing carbon number at a given temperature and pressure. 

The EOS representations of the solubilities for the systems considered are shown 
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TABLE IV 

SOLUBILITY OF NITROGEN (I) IN N-DECANE (2) 

------------------------------- 334.3 K (71.1 °C, 160.0 °F) ---------------------------------

0.0556 

0.0590 

0.0633 

4.33 

4.61 

4.97 

0.1178 

0.1202 

0.1539 

9.84 

10.06 

13.40 

0.1087 8.99 0.1578 13.81 

------------------------------- 3 77.6 K ( 104.4 °C, 220.0 °F) -------------------------------

0.0568 

0.0689 

0.1158 

4.05 

4.97 

8.73 

0.1271 9.66 

0.1662 

0.1708 

0.1967 

13.15 

13.63 

16.04 

------------------------------- 41 0. 9 K ( 13 7. 8 oc' 280.0 °F) -------------------------------

0.0598 

0.0749 

0.1162 

3.91 

4.92 

7.89 

0.1343 

0.1690 

0.1894 

9.25 

11.99 

13.61 
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TABLE V 

SOLUBILITY OF NITROGEN ( 1) IN N-EICOSANE (2) 

X1 p!MPa X1 piMPa 

------------------------------- 323.2 K (50. 0 °C, 122.0 °F) --------------------------------

0.0610 

0.0689 

0.0704 

4.49 

5.13 

5.25 

0.1292 

0.1413 

0.1789 

10.61 

11.90 

16.22 

0.0967 7.54 0.1866 17.23 

------------------------------- 3 7 3. 2 K ( 1 00.0 oc' 212.0 °F) -------------------------------

0.0629 

0.0715 

4.03 

4.61 

0.1364 

0.1639 

9.74 

12.10 

0. 1199 8. 3 3 0. 190 5 14.61 

-------------------------------423.2 K (150.0 °C, 302.0 °F) -------------------------------

0.0679 

0.0930 

0.1278 

3.83 

5.38 

7.76 

0.1445 

0.1728 

0.2121 

8.89 

11.09 

14.24 
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TABLE VI 

SOLUBILITY OF NITROGEN (1) IN N-OCTACOSANE (2) 

------------------------------- 348.2 K (75.0 °C, 167.0 °F) ---------------------------------

0.0726 

0.1108 

0.1245 

4.30 

6.93 

8.04 

0.1334 8.70 

0.1900 

0.1909 

0.2181 

13.70 

13.70 

16.47 

--------------------------------- 3 73.2 K ( 1 00.0 oc' 212.0 °F) ------------------------------

0.0862 

0.0988 

4.87 

5.63 

0.1698 

0.2071 

10.89 

14.18 

0.1466 9.08 0.2289 16.10 

-------------------------------- 4 23.2 K ( 15 0. 0 oc' 3 02.0 °F) ------------------------------

0.0896 

0.1010 

0.1689 

4.46 

5.11 

9.31 

0.1951 

0.2320 

0.2578 

11.07 

13.94 

16.01 

25 



TABLE VII 

SOLUBILITY OF NITROGEN (I) IN N-HEXATRICONTANE (2) 

xl p/MPa X 1 p!MPa 

-------------------------------- 3 73.2 K ( I 00. 0 oc, 2I2. 0 °F) -------------------------------

O.I054 

O.II97 

5.30 

6.IO 

0.2089 

0.2628 

I2.23 

I6.8I 

O.I934 Il.IO 0.2749 I7.99 

--------------------------------- 423.2 K (I50.0 °C, 302.0 °F) ------------------------------

0.1I85 

0.1240 

0.2040 

5.28 

5.56 

10.22 

0.2263 

0.2747 

0.2970 

II. 7I 

I5.2I 

I7.I1 
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Figure 3. Solubility ofNitrogen (1) in n-Decane (2) 
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Figure 5. Solubility of Nitrogen ( 1) in n-Octacosane (2) 
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Figure 6. Solubility of Nitrogen (1) in n-Hexatriacontane (2) 

w 
0 



20 ~----------------------------------------------------------------~ 

----tr- n-Eicosane / 
16 -CJ- n-Octacosane 

--()--- n-Hexatriacontane 

12 

piMP a 

8 

4 

0 ~--------~----------+----------+----------+----------+--------~ 
0 0.05 0.1 0.15 0.2 0.25 0.3 

Mole Fraction Nitrogen 

Figure 7. Bubble Point Pressure Data for Nitrogen (I) in n-Paraffins (2) at 3 73.2 K 

w -



32 

in Tables VIII- XI. Optimum binary interaction parameters were obtained by minimizing 

the sum of the squares of pressure deviations from the experimental data~ and Henry's 

constants were estimated. A detailed procedure for data reduction is given by Gasem 

(27). The input parameters for the pure components (acentric factors~ critical 

temperatures and critical pressures) required by the SRK and PR equations of state, 

together with the literature sources, are presented in Table XII. In general, the SRK and 

PR equations are capable of representing the data with RMS errors less than 0. 006 in mole 

fraction for a given system when a single interaction parameter~ Cij, is used over the entire 

temperature and pressure range. Only a minor improvement is observed when the second 

interaction parameter, Dij, is employed~ RMS errors of0.005 in mole fraction are 

obtained. 

When a single interaction parameter, Cij, is used for each isotherm, the SRK and 

PR equations of state are able to fit the data with RMS errors less than 0. 002 in mole 

fraction with the exception of the system of nitrogen + n-hexatriacontane which has RMS 

errors of0.004 in mole fraction at 423.2 K using the SRK EOS. For all the systems, RMS 

errors yielded by the PR equation of state at each isotherm are less than those of the SRK 

equation. When an additional interaction parameter, Dij' is employed, for nitrogen in 

n-decane , n-ejcosane and n-octacontane, no significant improvement was observed, as 

revealed in Tables VIII - X. However, for the nitrogen + n-hexatriacontane system, 

significant improvements in the EOS representation were achieved. The RMS error was 

dramatically reduced from 0.004 to 0.001, as shown in Figure 8. These results indicate 

that the SRK and PR equations of state can represent data of relatively low carbon number 

of nitrogen systems very well with one interaction parameter per isotherm. This behavior 

is also observed in methane (28), ethane (44) and other binary systems (31, 27, 30). 

As shown in the EOS representation, the values of interaction parameters Cij are 

larger than those typically obtained for the other solutes. Nevertheless, the temperature­

dependent c .. is not sufficient for correlating the larger molecules such as 
IJ 



33 

TABLE VIII 

SRK AND PR EQUATION-OF-STATE REPRESENTATIONS OF THE 
SOLUBILITY OF NITROGEN (1) IN N-DECANE (2) 

T/K SRK Parameters Error in SRK Henry's Contant 
(PR Parameters) Nitrogen Mole Fraction (PR Henry's Contant) 
cl2 Dl2 RMS I MAXI MPa 

344.3 0.1440 0.0142 0.0001 0.0002 73.7 

(0.1634) (0.0102) (0.0001) (0.0001) (73.6) 

0.2163 0.0006 0.0008 71.8 

(0.2087) (0.0005) (0.0006) (72.1) 

377.6 0.1193 0.0190 0.0003 0.0006 67.8 

(0.1516) (0.0114) (0.0003) (0.0005) (67.7) 

0.2118 0.0010 0.0015 65.5 

(0.1991) (0.0007) (0.0010) (66.3) 

410.9 0.0753 0.0287 0.0002 0.0003 61.8 

(0.1258) (0.0163) (0.0002) (0.0003) (61. 7) 

0.2164 0.0013 0.0016 59.3 

(0.1936) (0.0008) (0.0011) (60.2) 

344.3, 377.6 0.1225 0.0185 0.0004 0.0008 
and 410.9 

(0.1205) (0.0191) (0.0010) (0.0024) 

0.2146 0.0011 0.0022 

(0.2026) (0.0013) (0.0032) 
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TABLE IX 

SRK AND PR EQUATION-OF-STATE REPRESENTATIONS OF THE 
SOLUBILITY OF NITROGEN (1) IN N-EICOSANE (2) 

T/K SRK Parameters Error in SRK Henry's Contant 
(PR Parameters) Nitrogen Mole Fraction (PR Henry's Contant) 
cl2 Dl2 RMS I MAXI 

l\1Pa 

323.2 0.3199 0.0011 0.0002 0.0004 67.1 

(0.3183) (0.0003) (0.0002) (0.0003) (67.3) 

0.3307 0.0002 0.0003 66.8 

(0.3211) (0.0002) (0.0003) (66.9) 

373.2 0.2700 0.0043 0.0004 0.0007 59.9 

(0.2873) (0.0009) (0.0004) (0.0008) (59.9) 

0.3153 0.0005 0.0010 59.1 

(0.2956) (0.0004) (0.0007) (59.7) 

423.2 0.2378 0.0063 0.0004 0.0006 52.7 

(0.2737) (-0.0004) (0.0004) (0.0006) (52.9) 

0.3038 0.0006 0.0010 51.8 

(0.2707) (0.0004) (0.0006) (52.8) 

323.2, 373.2 0.3380 -0.0013 0.0018 0.0047 

and 423.2 (0.2784) (0.0035) (0.0038) (0.0081) 

0.3248 0.0018 0.0047 

(0.3096) (0.0038) (0.0085) 
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TABLE X 

SRK AND PR EQUATION-OF-STATE REPRESENTATIONS OF THE 
SOLUBILITY OF NITROGEN (I) IN N-OCTACOSANE (2) 

T/K SRK Parameters Error in SRK Henry's Contant 
(PR Parameters) Nitrogen Mole Fraction (PR Henry's Contant) 
cl2 DI2 RMS I MAXI MPa 

348.2 0.3850 0.0048 0.0004 0.0007 54.2 

(0.3925) (0.0032) (0.0004) (0.0007) (54.1) 

0.4583 0.0009 0.0014 52.9 

(0.4343) (0.0006) (0.0011) (53.3) 

373.2 0.3873 0.0049 0.0007 0.0011 51.0 

(0.4019) (0.0023) (0.0007) (0.0011) (51.0) 

0.4624 0.0009 0.0015 49.8 

(0.4306) (0.0007) (0.0011) (50.4) 

423.2 0.3178 0.0099 0.0004 0.0006 45.4 

(0.3571) (0.0050) (0.0004) (0.0006) (45.5) 

0.4672 0.0016 0.0022 43.6 

(0.4177) (0.0009) (0.0011) (44.5) 

348.2, 373.2 0.3779 0.0055 0.0010 0.0020 
and 423.2 

(0.3574) (0.0057) (0.0012) (0.0024) 

0.4611 0.0014 0.0028 

(0.4300) (0.0014) (0.0039) 
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TABLE X 

SRI< AND PR EQUATION-OF-STATE REPRESENTATIONS OF THE 
SOLUBILITY OF NITROGEN (I) IN N-OCTACOSANE (2) 
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(0.3571) (0.0050) (0.0004) (0.0006) (45.5) 

0.4672 0.0016 0.0022 43.6 

(0.4177) (0.0009) (0.0011) (44.5) 

348.2, 373.2 0.3779 0.0055 0.0010 0.0020 
and 423.2 

(0.3574) (0.0057) (0.0012) (0.0024) 

0.4611 0.0014 0.0028 

(0.4300) (0.0014) (0.0039) 
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TABLE XI 

SRK AND PR EQUATION-OF-STATE REPRESENTATIONS OF THE 
SOLUBILITY OF NITROGEN (I) IN N-HEXA TRIA CO NT ANE 

T/K SRK Parameters Error in SRK Henry's Contant 
(PR Parameters) Nitrogen Mole Fraction (PR Henry's Contant) 
cl2 D12 RMS I MAXI MPa 

373.2 0.3687 0.0126 0.0006 0.0009 44.7 

(0.3958) (0.0113) (0.0006) (0.0009) (44.7) 

0.6258 0.0033 0.0045 41.1 

(0.585ll (0.0029l ~0.00372 ~41. 72 

423.2 0.3712 0.0148 0.0004 0.0006 39.3 

(0.4191) (0.0115) (0.0005) (0.0006) (39.4) 

0.6731 0.0037 0.0048 36.2 

(0.6059~ ~0.00272 ~0.0034l ~37.ll 

3 73.2 and 423.2 0.3975 0.0119 0.0046 0.0072 

(0.4543) (0.0083) (0.0027) (0.0044) 

0.6398 0.0056 0.0086 

(0.59182 ~0.0035l !0.0054l 



TABLE XII 

PHYSICAL PROPERTIES OF THE HEAVY N-PARAFFINS USED 
IN THE SRK AND PR EQUATIONS OF STATE 

Component Pci.MPa Tc/K (J) Reference 

Nitrogen 3.390 126.2 0.0390 45 

n-Decane 2.096 617.6 0.4885 46 

n-Eicosane 1.069 766.6 0.8791 46 

n-Octacosane 0.661 827.4 1.1617 46 

n-Hexatricontane 0.428 864.0 1.4228 46 
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n-hexatriacontane. This inadequacy may be attributed to poor mixing rules and/or poor 

estimates for the critical properties. 
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In general, both the SRK and PR equations of state exhibit comparable abilities in 

representing the data using two interaction parameters. The RMS errors in mole fraction 

are comparable with the estimated uncertainties in the measurements. This excellent fit of 

the data illustrates both the ability of the equations of state and the precision of the 

experimental measurements. 

Comparisons of the present solubility data for nitrogen in n-decane with those of 

Azamoosh and McKetta (12) and Llave and Chung (13) are given in Figures 9- 11. 

These comparisons are shown in terms of solubility deviations generated by comparing 

optimum SRK predictions to the experimental measurements. For this purpose, the 

interaction parameters, Cij, of the SRK equation of state were regressed from the data 

obtained in this work at 344.3, 377.6 and 410.9 K. Figures 9- 11 indicate significant 

disagreement between the present data and those of Azamoosh and McKetta ( 12) and 

Llave and Chung ( 13). In addition, interaction parameters regressed from the present 

data, as expected, show substantial disagreement with those from Azamoosh and McKetta 

(12) and Llave and Chung (13), as is evident in Table D.II, Appendix D. In comparison, 

Han, et al. (21) gave average temperature-independent values ofCij of0.188 and 0.228 for 

the SRK and PR equations, which show fair agreement with the present results. For the 

time being, no obvious explanation can be given for the large differences between the 

present work and those ofMcKetta, et al. and Llave, et al. No literature data for the 

solubility of nitrogen in n-eicosane, n-octacosane, and n-hexatriacontane are available for 

comparison. 

The effect of temperature on the interaction parameter is presented in Figure 12, 

which indicates that the interaction parameter cij is only weakly temperature dependent. 

For each system, the interaction parameter Cij, shows a slight linear dependence with 

temperature. The effect of the carbon number on the interaction parameter Cij' is depicted 
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in Figure 13. The interaction parameters for nitrogen in n-decane are extrapolated from 

the higher temperature data. The figure reveals the increasing trend of Cij values for both 

the SRK and PR equations as the carbon number of the solvent increases. A similar trend 

has been observed for the other isotherms. A linear relation for the increase of Cij with 

increasing carbon number is produced by the present nitrogen systems. 

Henry's constants and partial molar volumes for nitrogen in n-decane, n-eicosane~ 

n-octacosane, and n-hexatriacontane were determined. No literature data could be found 

for comparison purposes. 
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CHAPTER V 

CORRELATION OF NITROGEN SOLUBILITIES 

IN NORMAL PARAFFINS 

The prediction of vapor-liquid equilibrium (VLE) properties of hydrocarbon 

mixtures containing nitrogen is important in the chemical industry and receives particular 

attention in petroleum refining and enhanced oil recovery. Much effort has been made to 

calculate the VLE properties of these mixtures and, as mentioned in Chapter II, cubic 

equations of state have been used successfully in predicting the phase behavior of 

nitrogen-hydrocarbon mixtures. 

Binary mixture data for the nitrogen+ heavy n-paraffins (C 10, C20, C28, C36) 

acquired in this work (as given in Tables IV - VII), combined with the literature data for 

these systems, were utilized in model evaluations. The literature data used in the 

evaluation are presented in Table I, along with the temperature and pressure ranges and 

the literature sources for the data. The data cover a temperature range from 143.2 to 

703.4 K and pressures from 0.3 to 99.9 MPa. The solvents vary in carbon number from 

c3 to c36• All the data collected are isothermal bubble point pressures as a function of 

liquid mole fraction. The bubble point pressure data are restricted to pressures below 

90% of the critical-point pressure to avoid the near-critical influence on the prediction 

accuracy. The data were analyzed using the SRK and PR equations of state, implemented 

in a software developed by Gasem (27). Some of the critical properties used in this work 

are shown in Table XII, and the rest are taken from the property data bank of Reid, et al. 

(70). 

In the present work, five different cases were examined to test the abilities of the 
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TABLE XIII 

SPECIFIC CASES STUDIED IN EOS MODEL EVALUATION 

Case Description 

1. Cij, Dij = 0 A single value of Cij is used for all the binary systems. 

2. Cij(CN), Dij = 0 A separate value ofCij is determined for each binary 
system, independent of temperature. 

3. Cu (CN), Dij (CN) Two interaction parameters are used for each binary 
system, independent of temperature. 
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4. Cij (CN, T), Dij = 0 A separate value ofCij is determined for each isotherm of 
each system. 

5. Cij (CN, T), Dij (CN, T) Two interaction parameters are used for each isotherm of 
each system. 



SRK and PR EOS. The various cases included are presented in Table XIII. For Cases 2 

and 3, for each binary, data from different sources were analyzed separately. Optimum 

binary interaction parameters were obtained for each case, varying from one interaction 

parameter for all the binary systems to the use of two interaction parameters c .. and D .. 
' IJ IJ' 
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for each isotherm of each system. Table XIV shows a summary of the results for the cases 

described in Table XIII using the SRK and PR EOS. Detailed results for each case 

containing the interaction parameters along with their uncertainties, Henry's constants, 

infinite dilution partial molar volumes, and the associated statistics are given in Appendix 

D. The overall model statistics are given for the bubble point pressure predictions. No 

generalization of the interaction parameters was attempted in this study. 

The basic abilities of the SRK and PR EOS to predict bubble point pressures are 

evaluated using Cij = 0 and Dij = 0 (Case 1 ). However, the predictive abilities of both the 

SRK and PR equations of state are very poor for nitrogen binaries (RMSE = 59.1 bar, 

%AAD = 22.7 for SRK~ RMSE = 66.3 bar, %AAD = 25.1 for PR). Thus, an average 

value ofthe interaction parameters ofCase 2 is used (Cij = 0.15 and Dij = 0) to re-evaluate 

Case 1. The result of Case 1 appears in Table D. I, Appendix D. As shown by Table D. I, 

the predictive abilities of both the SRK and PR equations of state are still very poor for 

the nitrogen binary systems considered (RMSE = 36.5 bar, %AAD = 13.8 for SRK~ 

RMSE = 31.5 bar, %AAD = 13.0 for PR), when a common interaction parameter is used. 

This indicates that the SRK and PR EOS prediction for the nitrogen binary mixtures could 

lead to large errors when a single interaction parameter is used to represent the entire 

range of temperature and solvent size. The observed results may be attributed to two 

factors. First, all of the EOS predictions are performed at temperatures far greater than 

the critical temperature of nitrogen. Second, the variation in the hydrocarbon molecular 

size is not well accounted for by a common value for the interaction parameter. 

The effect of the carbon number of the solvent is considered in Case 2. Using an 

interaction parameter, Cij, for each paraffin results in dramatic improvements in the EOS 



TABLE XIV 

RESULTS FOR REPRESENTATION OF BUBBLE POINT PRESSURES 

OF NITROGEN+ N-PARAFFIN SYSTEMS 

Case Number BUBBLE POINT PRESSURE 
RMSE BIAS AAD o/oAAD 
(bar) (bar) (bar) 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

1 36.46 8.56 19.10 13.8 
2 10.89 -2.71 7.11 5.8 
3 5.96 -0.14 3.88 3.9 
4 9.80 -2.86 6.28 5.3 
5 3.95 0.10 2.49 2.6 

PENG-ROBINSON EQUATION OF STATE 

I 31.54 6.45 17.23 13.0 
2 9.85 -2.07 6.51 5.4 
3 5.73 0.05 3.70 3.7 

4 8.62 -2.30 5.56 4.8 

5 3.86 0.12 2.40 2.5 
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predictions over Case 1 (RMSE = 10.9 bar, o/oAAD = 5.8 for SRK~ RMSE = 9.9 bar, 

%AAD 5.4 for PR). This indicates that an interaction parameter to account for 

variation in molecular size is essential for reasonable predictions. Figures 14 and 1 5 show 

the interaction parameter for this case. The figure reveals that the interaction parameter is 

dependent on the carbon number, especially for larger carbon numbers, where Cij increases 

with increasing carbon number. In comparison, the values of the interaction parameters 

obtained in this study for Case 2 are about 20°/o lower than those of Han, et al. (21) who 

used a different objective function, which minimizes deviations in the predicted K values. 

On the other hand, Oellrich, et al. (22) gave a value for the interaction parameter of 

nitrogen + hexane which is identical to the present work. 

When two interaction parameters are employed for each system, a significant 

improvement is achieved (RMSE = 6. 0 bar, o/oAAD = 3. 9 for SRK~ RMSE = 5. 7 bar, 

%AAD = 3. 7 for PR). The improvement in the prediction further demonstrates the need 

for the use of binary interaction parameters to account for unlike molecular interactions, 

and to some extent, empirically amend the model deficiency due to asymmetry in mixing. 

Case 4 describes the effects of temperature and carbon number on the interaction 

parameters. Some improvement over Case 1 is achieved with the use of a single 

interaction parameter, C;j, specific to each isotherm of a given system (RMSE = 9.8 bar, 

0/oAAD 5.3 for SRK~ RMSE = 8.6 bar, 0/oAAD = 4.8 for PR). Comparison of Cases 3 

and 4 indicates that use of Dij leads to better predictions than accounting for temperature 

effects. 

Figure 16 shows the dependence of Cij on temperature and carbon number of the 

solvent. Although it is difficult to see a uniform pattern in the data, a few trends are 

observed. The first trend shows that each binary system exhibits some temperature 

dependence, although the dependence differs for each system. The second trend 

demonstrates the increased value of C;j as the carbon number of the solvent increases. 

Similar behavior is observed using the Peng-Robinson EOS. Compared with Case 2, Case 
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4 yields only slightly (about 10%) lower over-all RMSE values. However. Case 2 uses 

fewer interaction parameters (one per syste1n) than Case 4. which needs one parameter per 

isotherm. Thus the use of a single interaction parameter Cij for each mixture seems to be 

superior to Case 4 for describing the bubble pressure of the nitrogen + n-paraffin systems 

with comparable accuracy. This case has been studied by Valderrama ( 18). As discussed 

in Chapter II, he presented a correlation of the interaction parameter as functions of the 

reduced temperature and the accentric factor of the solvent. Applying his correlation 

leads to interaction parameters which are higher than those of the present work. 

Case 5 is the most complex one~ two interaction parameters are applied to each 

isotherm of each system. An enhanced fit for the data is seen in Table D.IV (RMSE 4.0 

bar, o/oAAD 2.6 for SRK~ RMSE 3.9 bar, 0/oAAD = 2.5 for PR). The results show 

further improvement when a second interaction parameter is also used specific to each 

isotherm of each system. These results indicate that the interaction parameters for 

n-paraffins are temperature and carbon number dependent. Moreover, the detailed results 

given in Table D.V, Appendix D, show no discernible difference between the light and 

heavy solvents, all being fitted equally well. Although the level of complexity in this case 

may be excessive for routine applications, the precision offered is excellent. As such, Case 

5 is considered as the optimum case to assess the correlative capability of cubic equations 

of state. 

It should be noted that some of the regressed interaction parameters contain large 

uncertainties, which may be attributed to the imprecision of the data. For example, for 

nitrogen+ n-heptane mixture, the uncertainty in the interaction parameter cij obtained 

from the data of Brunner, et al. (62) is over thirty percent, as shown in Table D.IV. Care 

should be taken when using these data, since similar data for other members of the 

homoglous series are well described by the same model. 

Henry's constants and partial molar volumes for nitrogen in n-paraffins are 

determined in this work using the SRI< and PR EOS. Examination of Table D.V, 
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Appendix D shows that, in general, Henry's constant increases with increasing temperature 

when the temperature is not much in excess of the nitrogen critical temperature, and 

decreases when the temperature is much higher than the nitrogen critical temperature. 

Thus, for a wide temperature range, Henry's constant goes through a maximum (47). 

However, no simple generalization was made regarding the temperature effect on Henry's 

constant. Henry's constant and partial molar volume data for these systems could not be 

found in the literature for comparison with the present results. 



CHAPTER VI 

VAPOR-LIQUID EQUILIBRIUM PREDICTIONS USING 

CUBIC EQUATIONS OF STATE 

Estimates of the solubility of important supercritical gases such as carbon dioxide, 

carbon monoxide or hydrogen in hydrocarbon solvents are required in many chemical 

process applications, including hydrotreating and coal gasification. When the available 

experimental data cannot meet the demands of VLE calculations, accurate predictive 

models provide reliable estimates. 

An extensive literature search was conducted to identify the available VLE data 

involving supercritical fluids of interest to the energy sector. A broad database containing 

carbon dioxide, carbon monoxide, hydrogen, nitrogen, methane and ethane with aromatic 

and naphthenic solvents has been assembled in this work. All the data considered are 

constant-temperature bubble point pressures for different liquid mole fractions. A 

summary of the database employed in the evaluation including ranges of temperature, 

pressure and solute liquid-phase mole fraction, along with their sources, is presented in 

Table E.I- E. VI, Appendix E. The data cover a wide range of temperature and pressures 

and are restricted to 90% of the critical pressure. 

The data are represented using the Peng-Robinson and Soave-Redlich-Kwong 

equations of state. Optimum values of interaction parameters are determined by fitting the 

experimental data to minimize an objective function expressed as the sum of the squared 

errors in the predicted bubble point pressures, as mentioned in Chapter II. In fitting the 

equation of state to experimental data, the values for the optimized interaction parameters 

are dependent on the properties T C' PC' and ro, which are used in the evaluation of the 
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pure-component parameters (a and b) in Equations (2-13, 2-14). The pure tluid properties 

employed in this study are presented in Table XV. 

In this work, a method established in earlier work (27) for evaluating cubic 

equations of state and modified ( 4 7) to include Henry's constants and infinite dilute partial 

molar volumes is pursued. As described in Chapter V, five different cases are exan1ined to 

test the abilities of the EOS in representing the solubility data. Owing to the poor 

predictions obtained without interaction parameters, an average value for the interaction 

parameters obtained in Case 2 is used for Case 1 Results for the SRK and PR equations 

of state for the five cases studied, together with Henry's constants and the infinite dilution 

partial molar volumes are discussed below. Detailed results of the evaluation of the five 

cases for the six supercritical solutes (carbon dioxide, carbon monoxide, hydrogen, 

nitrogen, methane and ethane) in aromatics or naphthenes using the PR equation of state 

are presented in Tables I - V, Appendixes F - K. These tables provide the interaction 

parameters along with their uncertainttes, Henry's constants, infinite dilution partial molar 

volumes and statistics assessing the quality of the fit. 

Nitrogen + Aromatics and Naphthenes 

The summarized results for nitrogen in aromatics or naphthenes are listed in Table 

XVI. As expected, the RMS errors in the bubble point pressure are extremely large. The 

predictive abilities of both the SRK and PR equations of state as given by Case 1 are poor 

for the nitrogen binaries (RMSE 47.4 bar and 0/oAAD = 16.2 for SRK~ RMSE 50.4 

bar and 0/oAAD 16.2 for PR). Thus, the effect of temperature and/or the molecular size 

must be considered for better predictions. 

Significant improvement in the EOS predictions is observed with an interaction 

parameter for each binary mixture as specified by Case 2 (RMSE 18.9 bar and o/oAAD = 

7.6 for SRK~ RMSE 18.0 bar and 0/oAAD = 6.9 for PR). However, the error in bubble 

point pressure is still large. As indicated in Table F.II, Appendix F, the largest RMSE is 



TABLE XV 

PHYSICAL PROPERTIES OF AROMATICS AND NAPHTHENES 
USED IN THE SRK AND PR EQUATIONS OF STATE 

Chemical Ts (bar) ps (K) {I) Source 

Nitrogen 126.3 33.9 0.039 45 
Hydrogen 33.2 13.0 -0.218 70 
Ethane 305.4 48.8 0.099 70 
Methane 190.4 46.0 0.011 70 
Carbon Monoxide 132.9 35.0 0.066 70 
Carbon Dioxide 304.1 73.8 0.239 70 
Cyclopentane 511.7 45.1 0.196 70 
Cyclohexane 553.5 40.7 0.212 70 
Methylcyclohexane 572.2 34.7 0.236 70 
Ethylcyclohexane 609.0 30.0 0.243 70 
Propylcyclohexane 639.0 28.0 0.258 70 
Benzene 562.2 48.9 0.212 70 
Toluene 591.8 41.0 0.263 70 
Ethylbenzene 617.2 36.0 0.302 70 
Propyl benzene 638.2 32.0 0.344 70 
Isopropylbenzene 631.1 32.1 0.326 70 
Butylbenzene 660.5 28.9 0.393 70 
Hexylbenzene 697.2 23.0 0.470 19 
Heptylbenzene 714.2 21.1 0.514 19 
Octylbenzene 729.2 19.5 0.557 19 
o-Xylene 630.3 37.3 0.310 70 
m-Xylene 617.1 35.4 0.325 70 
p-Xylene 616.2 35.1 0.320 70 
Mesitylene 637.3 31.3 0.399 70 
Naphthalene 748.4 40.5 0.302 70 
1-Methylnaphthalene 772.0 36.0 0.310 70 
2-Methylnaphthalene 761.0 35.0 0.382 70 
Tetralin 720.2 33.0 0.297 69 
trans-Decal in 687.1 31.4 0.270 71 
Pyrene 938.2 26.0 0.830 31 
Phenanthrene 873.2 33.0 0.540 73 
Diphenymethane 770.0 28.6 0.442 70 
Quinoline 794.5 57.8 0.320 74 
Diphenyl 789.0 38.5 0.372 70 
m-Cresol 705.8 45.6 0.454 70 

Styrene 647.0 39.9 0.257 70 
Anisole 645.6 42.5 0.347 58 
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TABLE XV (Continued) 

Chemical Ts (bar) Ps (K) ro Source 

Benzaldehyde 694.8 45.4 0.316 70 
1-Naphthol 826.1 46.9 0.520 58 
2-Naphthol 822.4 46.9 0.520 58 
Phenol 694.2 61.3 0.438 70 
Catechol 772.2 78.7 0.641 58 



TABLE XVI 

SUMMARY OF THE RESULTS FOR REPRESENTATION OF BUBBLE POINT 
PRESSURES OF NITROGEN+ AROMATICS AND NAPHTHENES 

Case Number BUBBLE POINT PRESSURE 
RMSE BIAS AAD %AAD 
(bar) (bar) (bar) 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

1 47.36 -8.51 29.14 16.2 
2 18.85 -2.38 12.19 7.6 
3 13.68 -1.59 8.97 6.5 
4 12.66 -3.95 8.44 6.0 
5 6.79 -4.41 3.48 3.0 

PENG-ROBINSON EQUATION OF STATE 

I 50.39 -12.73 30.52 16.2 
2 18.00 -1.36 11.37 6.9 
3 11.27 -0.97 7.73 6.1 
4 11.33 -3.23 7.42 5.3 
5 5.62 -0.05 3.11 2.9 
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29 bar. Also, the optimum values of Cij obtained from different data sources for the same 

mixture show considerable difference. Richon, et al. (38), for example, have shown 

unreasonable discrepancies between the results reported by Llave, et al. ( 13) and their 

measurements for mixtures of the nitrogen + toluene. Thus, the quality of the 

experimental data used, together with the temperatures and pressures considered, are the 

predominant factors in the determination ofthe interaction parameter. Figures 17 and 18 

present the interaction parameters for this case against the molecular weight. As shown in 

the figures, the interaction parameters for aromatics are about 0.1 higher than those of 

naphthenes, and all the parameters are strongly dependent on the molecular weight. Some 

of the binaries have been studied by Han, et al. {21 ). Generally, the present work yields 

higher parameter values than those of Han, et al. The disagreements may be attributed to 

differences in the critical properties and the objective function used. 

Substantial improvement is achieved in the quality of the predictions (RMSE = 

13.7 bar and %AAD = 6.5 for SRK; RMSE = 11.3 bar and %AAD = 6.10 for PR) by 

introducing the second interaction parameter Dij over the entire temperature range (Case 

3). This indicates the need to account for variations in the solvent molecular size. The 

effect of temperature on the interaction parameter Cij is taken into consideration in Case 4. 

This resulted in 30% improvement over Case 2, which demonstrates the temperature 

dependence ofCij· The predictive ability of Case 4 is similar to that of Case 3. Thus, both 

temperature and molecular size effects are equally important. 

When an additional interaction parameter Dij for each isotherm is introduced (Case 

5), an adequate representation of nitrogen binary mixtures is achieved. This improved fit 

is revealed in Table XXI with RMSE = 6.8 bar and %AAD = 3.0 for SRK; RMSE = 5.6 

bar and %AAD = 2.9 for PR. In this case, the overall error was lowered by 12 bar when 

compared with Case 2, which indicates that the interaction parameters for the nitrogen 

binary systems are strongly dependent on temperature and molecular size. However, even 

with two interaction parameters being employed for each isotherm, the RMSE is still large 
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(up to 6 bar), and only reasonable results are obtained. 

Both equations do not represent the bubble point pressure vel)' well, especially, for 

nitrogen in toluene, m-xylene and mesitylene systems~ the RMSE (Case 5) in bubble point 

pressure is 26 bar for the mesitylene binal)'. The experimental data for these systems were 

taken from the same source in the literature (38). By disregarding the two isotherms 

which give the largest RMSE, the overall RMSE is reduced from 6 to 4 bar using the PR 

EOS. Thus, some of the lack-of-fit may be attributed to inconsistency in the experimental 

data and to the solvent functional group. 

In comparison with the nitrogen+ n-paraffin systems, the present systems are more 

demanding due to the solvent molecular structure and polarity. The values of interaction 

parameters (extending from 0 to 0. 3) are not so regular as those of the nitrogen + 

n-paraffins, which have a range extending from 0 to 0. 7. For both types of systems, the 

interaction parameters increase with increasing solvent molecular weight. 

Carbon Dioxide+ Aromatics and Naphthenes 

A summal)' of the results for carbon dioxide in aromatics or naphthenes is given in 

Table XVII. The predictive abilities for Case 1 using both the SRK and PR equations of 

state are inadequate to represent the carbon dioxide binal)' system (RMSE = 15.6 bar and 

%AAD = 13.2 for SRK~ RMSE = 15.4 bar and %AAD = 12.4 for PR). 

Substantial improvement is observed in the quality of the EOS predictions when a 

single interaction parameter is used for each binal)' mixture (Case 2) (RMSE = 3.8 bar and 

o/oAAD = 6.0 for SRK~ RMSE = 4.0 bar and o/oAAD = 6.2 for PR). As indicated in 

Tables G.II, Appendix G (85), the optimum values of Cij obtained from different data sets 

(originating from different literature sources) for the same binal)' mixture system show 

considerable scatter. This can be attributed, at least in part, to inconsistency among the 

data from different sources. Y au, et al. (59), for example, have shown significant 

discrepancies between the results reported by Devaney, et al. (83) and their measurements 



TABLE XVII 

SUMMARY OF THE RESULTS FOR REPRESENTATION OF BUBBLE POINT 
PRESSURES OF CARBON DIOXIDE+ AROMATICS AND NAPHTHENES 

Case Number BUBBLE POINT PRESSURE 
RMSE BIAS AAD %AAD 
(bar) (bar) (bar) 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

15.62 -1.35 6.95 13.2 
2 3.81 -0.90 2.59 6.0 
3 2.22 -0.03 1.20 2.9 
4 3.10 -0.74 2.16 5.2 
5 1.21 0.03 0.68 1.8 

PENG-ROBINSON EQUATION OF STATE 

15.39 -0.48 6.75 12.4 
2 3.95 -0.90 2.62 6.2 
3 2.33 -0.02 1.22 2.9 
4 3.08 -0.78 2.17 5.2 
5 1.65 -0.02 0.68 1.8 
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for the carbon dioxide+ phenanthrene mixture. In addition, the differences in the 

interaction parameters were further amplified during data regression as a result of 

variations in the temperature and pressure range. Thus, the quality of the experimental 

data used together with the ranges of temperature and pressure considered are the 

predominant factors in determining the values of the interaction parameter. 
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Figures 19 and 20 present the interaction parameters for this case plotted against 

the solvent molecular weight. As shown, the majority of the binary systems fall within the 

range of± 0.1 from the commonly encountered value of0.12. Only the interaction 

parameters for the carbon dioxide + pyrene, anisole, benzaldelyde, catechol and quinoline 

differ in behavior. This may be attributed to the high polarity of those solvents, apart from 

pyrene. While the interaction parameter values show scatter, the optimum value of the 

interaction parameter for most systems is about 0.12. Nevertheless, it is difficult to 

generalize these interaction parameters with satisfactory results. Lin (56) has reported a 

constant value of Cij = 0. 125 using the PR EOS for binary mixtures of carbon dioxide 

with a variety of hydrocarbons. This value is close to the estimate from the present work. 

For each mixture, most of the interaction parameters are close to the values reported in 

this study. The variations are mostly due to differences in the objective function used. In 

Lin's study, deviations in the predicted K values for both components were minimized. In 

contrast, Han,et al. (21) evaluated the binary interaction parameters for several binary 

mixtures which show significant disagreement with the present work. 

Moderate improvement is observed in the EOS predictions (RMSE = 2.2 bar and 

%AAD 2.9 for SRK; RMSE = 2.3 bar and %AAD = 2.9 for PR) when the second 

interaction parameter Dij is introduced over the entire temperature range (Case 3). Case 4 

addresses the temperature effect on the interaction parameter Cij· In this case, a minor 

improvement is observed over Case 2. The predictive ability of Case 4 is worse than that 

of Case 3. This demonstrates that the effect of molecular size is more important than that 

of temperature, except for highly polar solvents such as catachol and quinoline. 
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Therefore, one interaction parameter for each binary mixture may be adequate with little 

loss in the accuracy of the EOS predictions. This case was evaluated by Yau, et al. (58) 

for carbon dioxide in twenty-eight aromatic solvents. Their results are generally in good 

agreement with the ones reported here. A generalized correlation of the interaction 

parameter for this case was given by Kordas, et al. (57). No comparison can be made 

between this work and Kordas's due to differences in the data sets used. 
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As expected, when an additional interaction parameter DiJ for each isotherm is 

introduced (Case 5), excellent representation is achieved for carbon dioxide binary 

mixtures. This improved fit is revealed in Table XVI with RMSE = 1.2 bar and %AAD = 

1. 8 for SRK; RMSE 1. 7 bar and %AAD = 1.8 for PR. Case 5 provides the best 

representation for the carbon dioxide binary system. 

Compared with the carbon dioxide + n-paraffin systems, the values of the 

interaction parameters for Case 2 are about 0.2 larger than those of Bader (47) and seem 

to increase slightly with increasing molecular weight, which is in contrast to the behavior 

observed for the carbon dioxide + n-paraffins. For both types of systems, the effect of 

temperature on interaction parameters is not very significant. 

Finally, the prediction results using the PR and SRK equations are compared. For 

all the carbon dioxide binary mixtures studied in this work, both equations represent the 

bubble point pressure reasonably well. With one interaction parameter for each binary, 

both equations of state give fairly good representation. Generally, the interaction 

parameters CiJ for the PR equation is slightly lower than those for the SRK equation. 

Carbon Monoxide + Aromatics 

A limited amount of literature data is available for carbon monoxide + aromatic 

systems. A summary of the results for carbon monoxide in aromatics is given in Table 

XVIII. The results indicate that the predictive abilities of both the SRK and PR equations 

of state for Case 1 are poor for these systems (RMSE = 7. 7 bar and %AAD = 6. 5 for 



TABLE XVIII 

SUMMARY OF THE RESULTS FOR REPRESENTATION OF BUBBLE POINT 
PRESSURES OF CARBON MONOXIDE+ AROMATICS 

Case Number BUBBLE POINT PRESSURE 
RMSE BIAS AAD %AAD 
(bar) (bar) (bar) 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

I 7.69 -2.75 5.21 6.5 
2 2.58 -0.24 1.69 2.8 
3 2.28 -0.10 1.60 2.4 
4 0.79 -0.25 0.62 1.3 
5 0.65 -0.13 0.43 0.9 

PENG-ROBINSON EQUATION OF STATE 

I 14.32 -8.20 9.24 9.6 
2 2.44 -0.03 1.86 2.9 
3 2.43 0.03 1.82 2.9 
4 0.75 -0.23 0.59 1.2 
5 0.47 -0.04 0.29 0.6 
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SRK; RMSE 14.3 bar and %AAD = 9.6 for PR). 

The effect of solvent molecular weight on the interaction parameter is represented 

by Case 2. Significant improvement in the EOS predictions is observed when an 

interaction parameter for each binary mixture is used (RMSE = 2.6 bar and o/oAAD = 2.8 

for SRK; RMSE = 2.4 bar and o/oAAD = 2.9 for PR). As indicated in Figures 21 and 22, 

the interaction parameter is highly dependent on the molecular weight; it increases with 

increasing molecular weight. In contrast to the carbon dioxide systems, the interaction 

parameter Cij for the PR EOS is much higher than that for the SRK EOS. 

Only marginal improvement is observed in the quality of the EOS (RMSE = 2.3 

bar and o/oAAD = 2.4 for SRK; RMSE 2.4 bar and %AAD = 2.9 for PR) by introducing 

the second interaction parameter Dij over the entire temperature range (Case 3). This 

clearly demonstrates that there is no need for employing a second interaction parameter to 

account for the molecular size effects. 

Substantial improvement in the EOS representations over Case 2 is revealed in 

Table H.IV, Appendix H (85) by introducing the temperature-dependent interaction 

parameters (RMSE = 0. 8 bar and o/oAAD = 1. 3 for SRK~ RMSE = 0. 8 bar and o/oAAD = 

1.2 for PR). When an additional interaction parameter Dij is introduced for each isotherm, 

to account for the molecular size effects (Case 5 ), only moderate improvement is revealed 

in Table XVIII (RMSE = 0.7 bar and %AAD = 0.9 for SRK; RMSE = 0.5 bar and %AAD 

= 0.6 for PR). The overall error was marginally reduced compared with Case 4. 

The values of the interaction parameters for Case 2 continually increase with 

increasing molecular weight. However, for the carbon monoxide + n-paraffin systems, Cij 

increases to a maximum, then decreases with increasing molecular weight. For both types 

of systems, the effects of the solvent molecular weight and temperature on the interaction 

parameters are important. Overall, Cij depends highly on the temperature and the 

molecular weight. However, there seems to be no need for the use of Dij to account for 

the molecular size effects. For all the mixtures studied in this work, both the SRK and PR 
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equations represent the bubble point pressure reasonably well. 

Methane + Aromatics and Naphthenes 

The summarized results for methane in aromatics or naphthenes are listed in Table 

XIX. These results of Case I indicate that the predictive abilities of both the SRK and PR 

equations of state are unsatisfactory for the methane binary systems (RMSE = 22.I bar 

and %AAD = 10.6 for SRK~ RMSE = I8.9 bar and %AAD = I0.3 for PR). 

When a single interaction parameter for each binary mixture is used (Case 2), some 

improvement in the EOS predictions is observed (RMSE = 6.6 bar and %AAD = 4.0 for 

SRK~ RMSE = 6.I bar and %AAD = 3.7 for PR). As shown in Table 1.11, Appendix I 

(85), the optimum values ofCij obtained from different data sources for the same mixture 

system show considerable difference. This is similar to earlier observations concerning 

other solute mixtures studied in this work. Figures 23 and 24 present the interaction 

parameters for this case. As shown in the figures, the interaction parameter of aromatics 

increases with increasing molecular weight except for methane + quinoline. The Cij 

interaction parameters of the PR EOS are slightly higher than those of the SRK EOS. 

Moderate improvement in the EOS predictions is observed (RMSE = 5. I bar and 

%AAD 3.3 for SRK; RMSE = 4.6 bar and %AAD = 3.0 for PR) by introducing the 

second interaction parameter Du over the entire temperature range (Case 3). The 

temperature effect on the interaction parameter Cu is considered in Case 4, which resulted 

in about 25% improvement over Case 2. The EOS ability of representation is similar to 

that of Case 3. This demonstrates that the effect of temperature is as important as that of 

molecular size. 

When an additional interaction parameter Du for each isotherm is introduced (Case 

5), a further improved fit is revealed in Table XIX (RMSE = 2.3 bar and %AAD = I.6 for 

SRK; RMSE = 2.I bar and %AAD = 1.5 for PR). Case 5 shows a 50% improvement 

over Case 4, which indicates that molecular size effects are very important. 



TABLE XIX 

SUMMARY OF THE RESULTS FOR REPRESENTATION OF BUBBLE POINT 
PRESSURES OF METHANE+ AROMATICS AND NAPHTHENES 

Case Number BUBBLE POINT PRESSURE 
RMSE BIAS AAD %AAD 
(bar) (bar) (bar) 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

1 22.12 2.72 12.86 10.6 
2 6.57 -0.96 3.92 4.0 
3 5.07 -0.08 3.00 3.3 
4 4.78 -0.99 2.96 3.2 
5 2.30 0.19 1.25 1.6 

PENG-ROBINSON EQUATION OF STATE 

I 18.93 -0.74 11.66 10.3 
2 6.06 -0.84 3.59 3.7 
3 4.55 0.01 2.69 3.0 
4 4.34 -0.88 2.67 2.9 
5 2.13 0.15 1.15 1.5 
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For the heavier solvents, the c. of the present svstems increases with increasing IJ - ._. 

molecular weight while it has a relative constant value at molecular weights of less than 

130. In comparison, a decrease in CiJ with the carbon number is observed for the heavier 

n-paraffin systems ( 4 7). At low molecular weights, the values of the interaction 

parameters for both types of systems are similar and yield an average value of about 0.05. 

However, the EOS representation for the present systems is worse than that for methane + 

n-paraffins systems. This is n1ainly attributed to the solvent chemical structure and the 

polarity of aromatics and naphthenes. 

Finally, the EOS predictions using the PR and SRK equations are compared. For 

all the methane binary mixtures studied in this work, both the SRK and PR EOS represent 

the bubble point pressure fairly well. 

Ethane+ Aromatics and Naphthenes 

The summarized results for ethane in aromatics or naphthenes are listed in Table 

XX. These results of Case 1 suggest that the predictive abilities of both the SRK and PR 

equations of state are poor for the ethane binary systems (RMSE = 21.3 bar and o/oAAD = 

12.3 for SRK~ ~\1SE = 23.9 bar and o/oAAD = 13.6 for PR). Thus, using a single 

interaction parameter for all ethane binary systems, the representation of the data by both 

equations is not satisfactory. 

When an interaction parameter for each binary mixture is used (Case 2), a dramatic 

improvement is observed in the EOS predictions (RMSE = 3.3 bar and o/oAAD = 4.7 for 

SRK; RMSE = 3.5 bar and O;oAAD = 4.9 for PR). As shown in Table J.II, Appendix J 

(85), the optimum values ofCij obtained from different sources for the same solvent show 

considerable difference, see, e.g., the ethane+ 1-methylnaphthalene mixture. Figures 25 

and 26 present the interaction parameters for this case against the solvent molecular 

weight. As shown in the figures, the interaction parameters of aromatics increase with 

increasing molecular weight. Only the interaction parameters of benzaldehyde + ethane 



TABLE XX 

SUMlvfARY OF THE RESULTS FOR REPRESENTATION OF BUBBLE POINT 
PRESSURES OF ETHANE+ AROMATICS AND NAPHTHENES 

Case Number BUBBLE POINT PRESSURE 
RMSE BIAS AAD o/oAAD 
(bar) (bar) (bar) 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

1 21.25 -6.64 8.55 12.3 
2 3.29 -0.63 2.09 4.7 
3 2.22 -0.06 1.43 3.5 
4 2.58 -0.55 1.55 2.7 
5 0.87 0.06 0.55 1.5 

PENG-ROBINSON EQUATION OF STATE 

1 23.85 -8.01 9.66 13.6 
2 3.45 -0.81 2.17 4.9 
3 2.30 -0.09 1.42 3.4 
4 2.89 -0.68 1.74 4.0 
5 0.83 0.07 0.51 1.5 
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and 1-methylnaphthalene + ethane are vastly different from the rest of the ethane binaries. 

Moderate improvement is realized in the quality of the EOS predictions by 

introducing the second interaction parameter Dij over the entire temperature range, as 

specified by Case 3 (RMSE = 2.2 bar and o/oAAD = 3.5 for SRK~ RMSE = 2.3 bar and 

%AAD 3.4 for PR). The temperature effect on the interaction parameter Cij is 

accounted for in Case 4. No improvement over Case 3 and only marginal improvement 

over Case 2 is observed. This demonstrates that Cij depends heavily on the molecular size. 

Further, an additional interaction parameter Dij for each isotherm is introduced (Case 5). 

In this case, considerable improvement is achieved with RMSE 0. 9 bar and 0/oAAD = 

1. 5 for SRK; RMSE 0. 8 bar and %AAD 1. 5 for PR. The overall error was lowered 

by 70% using both the PR and SRK EOS compared with Case 4. 

In comparison, Cij values of the present system increase with increasing molecular 

weight. However, for the ethane + n-paraffin systems, minor variations in Cij values are 

observed for carbon numbers below 20. For light molecular weights (MW < 130), both 

systems have very close Cij values, that are similar to those of the methane systems. The 

EOS representation is good for both types of systems. 

Generally, both the SRK and PR equations represent the bubble point pressure of 

all the ethane binary mixtures studied in this work equally well. For these systems, the 

solvent molecular size has a major effect on the interaction parameters of both equations. 

Hydrogen+ Aromatics and Naphthenes 

The summarized results for hydrogen in aromatics or naphthenes are listed in Table 

XXII. As expected, for Case 1, the predictive abilities of both the SRK and PR equations 

of state are deficient for the hydrogen binary systems (RMSE = 46.4 bar and %AAD = 

17.3 for SRK; RMSE = 58.4 bar and %AAD = 18.7 for PR). To improve the 

representation ofboth equations for hydrogen binary systems, evaluations accounting for 

variations in the solvent molecular size and temperature are considered. 



TABLEXXI 

SUM:M.ARY OF THE RESULTS FOR REPRESENTATION OF BUBBLE POINT 
PRESSURES OF HYDROGEN+ AROMATICS AND NAPHTHENES 

Case Number BUBBLE POINT PRESSURE 
RMSE BIAS AAD o/oAAD 
(bar) (bar) (bar) 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

I 46.40 7.55 24.70 17.3 
2 15.47 -5.71 10.35 8.0 
3 11.91 -4.59 7.68 7.0 
4 10.27 -3.64 6.27 5.2 
5 4.51 -0.96 2.13 1.9 

PENG-ROBINSON EQUATION OF STATE 

1 58.35 18.68 28.02 18.7 
2 13.52 -4.45 8.73 6.6 
3 10.45 -3.61 6.42 5.7 
4 8.77 -2.86 5.18 4.2 
5 2.86 -0.31 1.30 1.4 
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When an interaction parameter for each binary mixture is used (Case 2), 

considerable improvement in the EOS representations is obtained with (RMSE = 15. 5 bar 

and o/oAAD = 8.0 for SRK~ RMSE = 13.5 bar and 0/oAAD = 6.6 for PR). However, the 

error in bubble point pressures is still notably large. As indicated in Table K.II, Appendix 

K (85), the greatest RMSE is 29 bar. Also, the optimum values of Cij obtained from 

different data sources for the same mixture system show considerable difference, as 

exemplified by the hydrogen + 1-methylnaphthalene binary mixture. Figures 27 and 28 

present the interaction parameters for this case against the solvent molecular weight. As 

shown in the figures, the interaction parameters are widely scattered. The difference 

between the largest and smallest interaction parameter is about I . 0. The interaction 

parameters for hydrogen systems are larger in magnitude than for other solutes. And 

while most of the interaction parameters fall within 0.2- 0. 7, some are much larger, as 

seen for the hydrogen + tetralin binary. 

By introducing the second interaction parameter Dij over the entire temperature 

range (Case 3 ), substantial improvement in the quality of the EOS fit is achieved (RMSE = 

11.9 bar and o/oAAD = 7.0 for SRK~ RMSE = 10.5 bar and %AAD = 5.7 for PR). This 

indicates the need to account for molecular size effects. Case 4 considers the temperature 

effect on the interaction parameter cij· Accounting for Ci/S temperature variations 

resulted in a 30o/o improvement over Case 2. As mentioned earlier in Chapter II, Case 4 

has been attempted by Valderrama and coworker (36, 39). In one study (39), they 

correlated interaction parameters for the PR EOS in terms of the accentric factor and the 

reduced temperature of the solvent. Later on, they proposed another correlation for the 

PR EOS interaction parameters which was applied to a wider temperature range and 

results in a more accurate representation of the hydrogen+ aromatics systems (36). 

When an additional interaction parameter Dij for each isotherm is introduced (Case 

5), the best representation of hydrogen binary mixtures is achieved. This enhanced fit is 

revealed in Table XXI with RMSE = 4.5 bar and o/oAAD = 1.9 for SRK~ RMSE = 2.9 bar 
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and %AAD = 1. 4 for PR. Therefore~ the effect of molecular size must be considered for 

hydrogen binary systems as noticed in Case 3. 
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Although substantial improvement is realized in Case 5~ the EOS representation~ as 

expressed by the RMSE, is not very good. These results may be attributed to the low 

critical temperature and pressure of hydrogen and the negative value of the accentric 

factor, and/or inconsistency in the experimental data. For example, the RMSE in bubble 

point pressure for the hydrogen+ benzene mixture (84) is as high as 15 bar for Case 5. 

In general~ the interaction parameter for hydrogen binary systems is strongly 

temperature and molecular size dependent. For all the hydrogen mixtures studied in this 

work, neither equation represents the bubble point pressure very welL However, on a 

relative basis, the predictive capabilities of the SRK and PR EOS are very good. This 

behavior may be attributed to the steep slope of a p-x plot for these systems, which 

indicates that hydrogen does not easily dissolve in the hydrocarbon solvents. Thus~ slight 

changes in solubility can cause large errors in the bubble point pressure. Moreover, the 

PR EOS gives a little better representation than the SRK EOS. 

Discussion 

The vapor-liquid equilibrium data of six supercritical gases in aromatic and 

naphthenic solvents are correlated using the SRK and PR EOS for five specific cases 

(Table XIII). A summary of the overall results is presented in Table XXII. As shown in 

the table, the SRK and PR EOS are capable of representing the phase behavior of carbon 

dioxide, carbon monoxide, methane, ethane, hydrogen and nitrogen in aromatic and 

naphthenic solvents. However, neither equation represents the bubble point pressure very 

well for the nitrogen and hydrogen systems. The basic abilities (Case 1) of both SRK and 

PR EOS are grossly inadequate to represent all the systems studied here. Particularly, for 

nitrogen and hydrogen systems, large differences are observed (for hydrogen systems, 

RMSE = 46.7 bar and o/oAAD 18.1 for SRK; RMSE = 58.6 bar and %AAD = 19.6 for 



TABLE XXII 

SUMMARY OF THE RESULTS FOR REPRESENTATION OF BUBBLE POINT PRESSURES: 

CASE 
NUMBER 

t. ci.i· Dij = o 

2. Cij(MW), l\i 0 

3. Cij(MW), Dij (MW) 

4. Cij(MW, T), Dij 0 

5. Cij(MW, T), Dij (MW, T) 

l. Cij, Dij = 0 

2. Cij(MW), Dij = 0 

3. Ci_j(MW), Dij (MW) 

4. Ci_j(MW. T), Dij 0 

5. Cij(MW, T), Dij (MW, T) 

SUPERCRITICAL GASES + AROMA TICS AND NAPHTHENES 

RMS Error in Bubble Point Pressure, bar (o/oAAD) 

C02 co CH4 C2H6 H2 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

15.62 (13.2) 7.69 (6.5) 22.12 ( 1 0.6) 21.25 (12.3) 46.40 ( 17.3) 
3.81 (6.0) 2.58 (2.8) 6.57 (4.0) 3.29 (4.7) 15.47 (8.0) 
2.22 (2.9) 2.28 (2.4) 5.07 (3.3) 2.22 (3.5) 11.91 (7.0) 
3.10 (5.2) 0.79(1.3) 4.78 (3.2) 2.58 (2.7) 10.27 (5.2) 
1.21 (1.8) 0.65 (0.9) 2.30 (1.6) 0.87 (1.5) 4.51 (1.9) 

PENG-ROBINSON EQUATION OF STATE 

15.39 (12.4) 14.32 (9.6) 18.93 (10.3) 23.85 (13.6) 58.35 (18.7) 
3.95 (6.2) 2.44 (2.9) 6.06 (3.7) 3.45 (4.9) 13.52 (6.6) 
2.33 (2.9) 2.43 (2.9) 4.55 (3.0) 2.30 (3.4) 10.45 (5.7) 
3.08 (5.2) 0.75 (1.2) 4.34 (2.9) 2.89 (4.0) 8.77 (4.2) 
1.65 (1.8) 0.47 (0.6) 2.13 (1.5) 0.83 (1.5) 2.86 (1.4) 

N2 

47.36 (16.2) 
18.85 (7.6) 
13.68 (6.5) 
12.66 (6.0) 
6.79 (3.0) 

50.39 ( 16.2) 
18.00 (6.9) 
11.27 (6.1) 
11.33 (5.3) 
5.62 (2.9) 

00 ..... 
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PR and for nitrogen systems, RMSE = 47.4 bar and o/oAAD = 16.2 for SRK~ RMSE = 

50.4 bar and 0/oAAD = 16.2 for PR). The best representation ofthe experimental data can 

be achieved by using two interaction parameters for each isotherm of each mixture (Case 5 

for PR: RMSE = 1. 7 bar and o/oAAD = 1. 8 for carbon dioxide systems~ RMSE = 0. 5 bar 

and %AAD = 0. 6 for carbon monoxide systems~ RMSE = 2. 2 bar and 0/oAAD = 1. 7 for 

methane systems~ RMSE = 0.8 bar and %AAD = 1.5 for ethane systems~ RMSE = 5. 7 bar 

and 0/oAAD = 2. 1 for hydrogen systems~ RMSE = 5. 8 bar and o/oAAD = 2. 9 for nitrogen 

systems). 

Table XXII reveals that the effects of temperature and molecular size are different 

for different binary systems. For the carbon dioxide and ethane systems, the effect of 

molecular size is more important than the effect of molecular size in the carbon monoxide 

systems. For the rest of the systems, the effects of temperature and molecular size are 

almost equally important. 

Based on the earlier discussion concerning each solute, it can be stated that the 

EOS interaction parameters are dependent on the dissimilarity in the molecular species, 

i.e., the more dissimilarity in molecular type, the greater the values required for such 

parameters. This is well illustrated by the hydrogen systems. The largest Cij value is 

greater than 1 for systems such as hydrogen + methylnaphthane. Similar behavior is 

observed for hydrogen + n-paraffins ( 4 7)~ as illustrated by the hydrogen + n-octane 

mixture, which has an interaction parameter greater than 1 . 

The overall results given in Tables XXII and XXIII suggest the SRK and PR 

equations represent the bubble point pressure of supercritical gases in n-paraffins better 

than that of supercritical gases in aromatics and naphthenes. These results may be 

attributed to variations in the molecular structure and polarity of some aromatics and 

naphthenes. Table XXIII reveals that the predictive capability of the SRK and PR EOS 

without interaction parameters (Case 1) varies for different solutes. However, on a 

relative basis, the deviations produced using two parameters per isotherm (Case 5) are 



CASE 
NUMBER 

t. ci.i' oij = o 
2. Cij(CN), Dij = 0 

3. Cij(CN), Dij (CN) 

4. Cij(CN,T), Dij = 0 

5. Ci_j(CN, T), Dij (CN, T) 

t. cij, Dij = o 
2. Cij(CN), Dij 0 

3. Cij(CN), Dij (CN) 

4. Cij(CN,T), Dij = 0 

5. Cij(CN, T), Dii (CN, T) 

TABLE XXIII 

SUMMARY OF THE RESULTS FOR REPRESENTATION OF BUBBLE POINT 
PRESSURES: SUPERCRITICAL GASES+ N-PARAFFINS 

RMS Error in Bubble Point Pressure, bar (%AAD) 

C02 (47) co (47) CH4 (47) C2H6 (47) H2 (47) 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

10.36 (21.6) 6.23 (1 0.4) 3.28 (9.2) 5.15 (8.0) 23.88 (17.9) 
2.10 (4.7) 2.17 (3.4) 1.51 (5.0) 2.50 (4.3) 12.04 (7.1) 
1.45 (3.5) 1.93 (3.1) 0.83 (2.6) 2.13(3.9) 8.88 (7.0) 
1.07 (2.9) 1.02 (1.9) 1.11 (4.0) 1.05 (1.6) 4.09 (3.3) 
0.41 (1.1) 0.43 (0. 7) 0.32(1.1) 0.57(1.1) 1.25 (1.2) 

PENG-ROBINSON EQUATION OF STATE 

9.48 (20.1) 6.57 (10.9) 3.51 (9.9) 5. 73 (8. 7) 26.67 (20.2) 
2.24 (4.9) 2.22 (3.4) 1.51 (4. 7) 2.85 (4.8) 11.03 (6.4) 
1.55 (3.7) 1.95 (3.1) 0.83 (2.7) 2.48 (4.3) 7.73 (6.1) 
1.07 (2.9) 1.10 (1.9) 1.10(4.0) 1.04 (1.5) 3.10 (2.4) 
0.44 (1.1) 0.43 (0. 7) 0.32(1.1) 0.57 (1.0) 1.27 (1.1) 

N2 

34.46 (13.8) 
10.89 (5.8) 
5.96 (3.9) 
9.80 (5.3) 
3.95 (2.6) 

31.54 (13.0) 
9.85 (5.4) 
5.73 (3.7) 
8.62 (4.8) 
3.86 (2.5) 

00 
w 
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about 1% for all the solutes considered except the nitrogen systems ( 4 7). In comparison, 

Table XXII shows that the predictive capability of the SRK and PR EOS (Case 5) varies 

for the different solutes and greater relative errors are observed (1-3o/o). Moreover, 

neither equation is precise in representing the nitrogen systems. 

Tables XXII and XXIII reveal that the RMS errors of the nitrogen systems are at 

least five times greater than those of the carbon dioxide systems, aside from Case 1. 

However, absolute average percent deviation (o/oAAD) of the nitrogen systems is only 

twice as high as that of the carbon dioxide systems. These results may be attributed to the 

low solubility of nitrogen compared with carbon dioxide at the same temperature and 

pressure. Thus, the bubble point pressure is very sensitive to the solubility of nitrogen. 

The unsatisfactory results may have also resulted from the low critical temperature and 

pressure of nitrogen and/or inconsistency in the experimental data. 

The quality of representation of the bubble point pressures using the SRK and PR 

EOS is presented in Tables XXIV and XXV for six supercritical gases in n-paraffins, 

aromatics and naphthenes based on the absolute average percent deviations. Both 

equations provide excellent representations for carbon monoxide systems. With a single 

interaction parameter for each mixture, both equations represent the bubble point pressure 

of carbon monoxide systems with reasonable accuracy. The excellent fit of the EOS for 

the carbon monoxide systems may be partially attributed to the limited amount of data, 

which have originated mostly from OSU. For carbon dioxide+ aromatics and naphthenes 

systems, while the use of two interaction parameters for each mixture yields good 

representation for the bubble point pressure, the use of one interaction parameter for each 

isotherm of each mixture gives poor representation. Similar behavior is observed for 

methane + n-paraffins. With a single interaction parameter for each mixture, both 

equations are adequate to describe the carbon monoxide, methane and ethane systems. In 

comparison, two interaction parameters for each isotherm of each mixture are required for 

hydrogen + aromatics and naphthenes systems to produce very good representations. 



CASE 
NUMBER 

I. Cij, Dij 0 

2. Cij(MW), Dij 0 

3. Cij(MW), Dij (MW) 

4. Cij(MW, T), Dij = 0 

TABLE XXIV 

QUALITY OF REPRESENTATION OF THE BUBBLE POINT PRESSURES: 
SUPERCRITICAL GASES+ AROMATICS AND NAPHTHENES 

C02 co CH4 C2H6 H2 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

p p 

5. cij<MW. T), oij <MW. T) ::\:·:.m::::U·'::;:.::o-M<;..::::::::::::::::::::::·,::.·:.:::--mH.:.;::::.u::::::c:::m:.~e.·::::::.·n·· 

1 cij· uij o 
2. Cij(MW), Dij = 0 

3. Cij(MW), Dij (MW) 

4. Cij(MW, T), Dij 0 

5. Cij(MW, T), Di_j (MW, 

*P = poor; 0/oAAD > 5 
VG = very good; 1 < %AAD < 2 

PENG-ROBINSON EQUATION OF STATE 

p 

A = adequate; 3 < o/oAAD <5 
E = excellent; 0/oAAD < 1 

G = good; 2 < o/oAAD <3 

N2 

oc 
v. 



TABLE XXV 

QUALITY OF REPRESENTATION OF THE BUBBLE POINT PRESSURES: 

CASE 
NUMBER 

1. cij· oij = o 
2. Cij(CN), Dij = 0 

3. Cij(CN), Dij (CN) 

4. Cij(CN,T), Dij = 0 

5. Cij(CN, T), Dij (CN, T) 

1. Cij, Dij = 0 

2. Cij(CN), Dij = 0 

3. Cij(CN), Dij (CN) 

4. Cij(CN,T), Dij = 0 

5. Cij(CN, T), Dij (CN, T) 

*P =poor~ 0/oAAD > 5 

C02 (47) 

P* 
A 
A 

p 

VG = very good~ 1 < 0/oAAD < 2 

SUPERCRITICAL GASES+ N-PARAFFINS 

co (47) CH4 (47) C2H6 (47) H2 (47) 

SOAVE-REDLICH-KWONG EQUATION OF STATE 

p p p p 

A A A p 

A A p 

PENG-ROBINSON EQUATION OF STATE 

p 

A = adequate~ 3 < 0/oAAD <5 
E =excellent~ %AAD < 1 

G = good~ 2 < 0/oAAD <3 

N2 

p 
p 

A 

oc: 
0\ 



However, for nitrogen + aromatics and naphthenes systems, even with two interaction 

parameters for each isotherm of each mixture, both equations can only represent the 

bubble point pressure with reasonable accuracy. 
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All systems can be described very well by Case 5 using the SRK and PR EOS, 

except the nitrogen systems. The experimental uncertainty of the OSU data is typically 

within 1 o/o of the bubble point pressure. Aside from the nitrogen binaries, the EOS 

representations of bubble point pressure yield deviations twice the size of the experimental 

uncertainty for all the other systems. The predictive abilities of the SRK and PR EOS for 

the systems containing n-paraffins are similar to those of the systems containing aromatics 

and naphthenes. Moreover, the SRK and PR equations of state, in general, exhibit 

comparable abilities in representing the present data. 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

The present study deals with the experimental determination of solubility data for 

nitrogen in selected n-paraffins and evaluation of the SRK and PR equations of state 

abilities to represent asymmetric mixtures involving light gases and hydrocarbon solvents. 

A broad database for carbon dioxide, methane, ethane, carbon monoxide, hydrogen, and 

nitrogen with aromatics and naphthenes has been generated in this work. The data have 

been correlated using the PR and SRK equations. Bubble point pressure calculations have 

been performed using the GEOS computer software (27) to determine (a) the SRK and 

PR EOS interaction parameters for each binary along with their uncertainties, (b) Henry's 

constants, (c) infinite dilution partial molar volumes, and (d) statistics assessing the quality 

of the fit. The following conclusions and recommendations may be stated based on this 

work. 

Conclusions 

1. The solubilities of carbon monoxide in n-decane and carbon dioxide in trans-decal in at 

160°F were measured. The carbon monoxide + n-decane data are in excellent 

agreement with the literature data~ deviations are within 0.0006 in mole fraction. The 

carbon dioxide + trans-decalin data are in reasonable agreement with previous 

measurements. 

2. The solubilities of nitrogen in selected n-paraffin solvents (n-decane, n-eicosane, 

n-octaconsane, and n-hexatriacontane) were measured at temperatures from 323.2 to 

423.2 K and pressures up to 18.0 MPa (2069 psia). The uncertainty in these 

88 



89 

solubility measurements is estimated to be less than 0.001 in mole fraction. 

3. Optimum binary interaction parameters as well as Henry's constants for the newly 

acquired data were obtained using the SRK and PR equations of state. The equations 

exhibit comparable abilities in representing the data using two interaction parameters~ 

the RMS errors in mole fraction are less than 0.001. 

4. The nitrogen + n-paraffin systems are well represented by both the SRK and PR 

equations of state. The interaction parameter is highly dependent on the carbon 

number of the solvent and slightly dependent on temperature. Two interaction 

parameters for each system are needed to represent the bubble point of nitrogen in 

n-paraffins with reasonable accuracy (%AAD of 3. 9 for SRK~ 0/oAAD of 3. 7 for PR). 

5. The abilities of the PR and SRK EOS to represent the bubble point pressure 

(solubility) of light gases in hydrocarbon solvents vary for different solutes. For 

example, while carbon monoxide mixtures are fitted excellently by both equations, 

nitrogen mixtures are only adequately represented. 

6. When two interaction parameters are used, both the SRK and PR EOS represent the 

bubble point pressure of methane, ethane, carbon dioxide, and carbon monoxide 

binary systems with RMS errors of less than two bar. For the nitrogen binary 

systems, the RMS errors are as high as six bar. Both equations, in general, exhibit 

comparable abilities in representing the data. 

Recommendations 

1. Further studies are recommended on nitrogen+ aromatics or naphthenes (e.g., 

benzene, naphthalene, phenanthrene, pyrene). Such studies will complement the 

existing database and provide an improved basis for comprehensive evaluation of the 

nitrogen phase behavior. 

2. Although the interaction parameters for six supercritical gases in aromatics and 

naphthenes have been extensively studied, the development of generalized 



correlations for estimating the EOS interaction parameters for different systems is 

desirable and should have wide applications. 
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APPENDIX A 

Computer Program Used to Calculate the Density of Nitrogen 

This program implements an equation of state developed by IUP AC (75) for high-

accuracy determination of nitrogen density as a function of temperature and pressure. The 

equation of state may be written as: 

32 

p= pRT[I+INi(X)d (A-1) 
i::::l 

where, Ni are the coefficients of the equation, (X)i are in terms of temperature and density 

(75). To calculate p for a specified T and p, a numerical successive substitution algorithm 

is employed with the initial guess given by the ideal gas law. 

To validate the implementation of Equation (A-1), a comparison was made 

between calculated densities and values reported in the literature. As shown in Table A.I, 

the maximum percent deviation is 0.032, which resulted from the round-off error of the 

listed values. 
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TABLE A.I 

CO:MPARISON OF NITROGEN DENSITIES 

Pressure Temperature Peat, xi04 PrerXI04 I Peal - Prefj /pref 
psi a K g-mole/cc g-mole/cc % 

290.08 26.85 8.0402 8.0386 0.020 
76.85 6.8520 6.8540 0.029 

362.59 26.85 10.0543 10.0543 0.000 
76.85 8.5570 8.5543 0.032 

435.11 26.85 12.0687 12.0685 0.002 
76.85 10.2580 10.2585 0.004 



c ************************************************************ 
C * TillS PROORAM IS USED TO CALCUIA TE NITROOEN DENSITY * 
c ************************************************************ 

IMPLICIT REAL *·8 (A-H, M-Z) 
DATA N1, N2, N3 I .185927462121, 1.30155934655, -2.64054394027/, 

* N4, N5, N6 I .292709245322, -.287482987766, .1612255928351, 
* N7, N8, N9 I -.135129830972, 1.37262707287£-5, 13.68608087031, 
* NlO,N11 ,N121 .0012897330086, 0.315240491447, -.5486704307291, 
* N13,N14,N151 .0744966916902,-.151712926147,-.7281198814051, 
* N16,N17,N181 .112790673192,-.0187922799332,.0460360632178/, 
* N19,N20,N211 -.00251321896106, -12.5428246147, -.7228436037621, 
* N22,N23,N24/-9.07779852949, .333590008958, -2.101752821241, 
* N25,N26,N271 -.24475274962,-.611651799016,-.0244254052253/, 
* N28,N29,N301 -.0230295508018, .0157620487302, -.0126428070667/, 
* N31 ,N32ALPHA/-.00146576723582, 9.15063203408E-5, -.703718961 

DATA PC,TC,DENC,RR/ 34., 126.2, 0.01121, 83.14341 

WRITE(*,*) 'ENTER PRESSURE, IN PSIA' 
READ(*,*) pp 

C CHANGE UNIT TO 'BAR' 
PP=PP*l.01325114.696 

WRITE(*,*) 'ENTER TEMPERATURE, IN DEGREE' 
READ(*,*) TEMP 

C CHANGE UNIT TO 'K' 
TEMP=TEMP+273.15 

C CALCULATE INITW.., VALUE OF DENSITY 
DEN=PPI(RR *TEMP) 

C SUCCESSIVE SUBSTITION MElliOD 
10 OMEGA=DEN/DENC 

TI=TCffEMP 
ZZ=I.+OMEGA*(Nl+N2*TI**0.5+N3*TI+N4*TI**2.+N5*TI**3.) 

* +OMEGA**2.*(N6+N7*TI+N8*TI**2.+N9*TI**3.) 
• 
• 
• 
• 
• 
• 
• 
• 
• 

+OMEGA **3. *(N1 O+Nll *TI +Nl2*TI**2. }+OMEGA **4. *(N13*TI) 
+OMEGA **5. *(Nl4*TI**2.+N15*TI**3. }+OMEGA **6. *(N16*TI**2.) 
+OMEGA **7. *(N17*TI**2.+N18*TI**3. }+OMEGA **8. *(N19*TI**3.) 
+(OMEGA* *2. )*DEXP(ALPHA *OMEGA* *2. )*( (N20*TI**3 .+N21 *TI**4.) 
+(OMEGA **2. )*(N22*TI**3.+N23*TI**5.) 
+(OMEGA **4. )*(N24 *TI**3.+N25*TI**4.) 
+(OMEGA **6. )*(N26*TI**3.+N27*TI**5.) 
+(OMEGA **8. )*(N28*TI**3.+N29*TI**4.) 
+(OMEGA**10.)*(N30*TI**3.+N31 *TI**4.+N32*TI*5.)) 

DENI =PPI(RR *TEMP*ZZ) 
DEV=(DENI-DEN)IDEN 
IF ( ABS(DEV) .GT. 1.E-5) TiffiN 
DEN=DEN1 
GOTO 10 
END IF 
WRITE(*,*)'DENSITY OF NTIROOEN= ',DEN1, I G-MOLEICC' 
STOP 
END 
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APPENDIXB 

Estimated Uncertainty in the Density ofNitrogen 

The uncertainty of the nitrogen density depends on the temperature and pressure 

of the solute. In this work~ all the nitrogen injections were done at 50 °C and near 3 70 

psia. The uncertainty in the density of nitrogen can be given as (28): 

1 

ap~2 = [(apN2 lap)T2(ap)2+ (apN2 laT)p2(aT)2p 

where 

aPN2 = is the uncertainty in nitrogen density 

Op = is the uncertainty in pressure 

aT = is the uncertainty in temperature 

(B-1) 

The values for Op and aT are 0.05 psia and 0.1 K, respectively, according to 

Barrick (23 )~ and are unique to the apparatus used in this work. The partial derivatives of 

the pressure were evaluated by directly differentiating Equation (A-1 )~ which leads to: 

32 

caplap)T = RT [1+ INi(Xp)d (B-2) 
i=l 

32 

cap 1 aT)p = Rp [I+ I Ni(XT)d (B-3) 
i=l 

in which (Xp)i and (XT)i are in terms of temperature and density (75). Also 

cap 1 ap )T = 1 1 cap 1 ap )T (B-4) 
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(B-5) 

Substituting into Equation (B-1 }, the uncertainty of nitrogen density could be evaluated 

for selected pressures and temperatures. Typically, the value of the uncertainty is about 

0.03% in nitrogen density for the present experiments. 



APPENDIXC 

ERROR ANALYSIS 

Measurement errors are two types, systematic errors and random errors. A 

systematic error is one that invariably has the same magnitude and the same sign under the 

same conditions. Systematic errors are attributable to known conditions and vary with 

these conditions. Such errors can be evaluated and applied, with signs reversed, as 

corrections to measured quantities or eliminated by modifying the experimental procedure 

(41 ). 

Although systematic errors are generally cumulative, it is sometimes possible to 

employ precautionary procedures to prevent their accumulation, which may impair the 

accuracy of the final result. In this work, the systematic errors are detected by calibrating 

the pressure transducers and temperature sensors periodically. Calibration of the pressure 

transducers was made against a dead weight test. The detailed calibration procedure is 

given by Darwish (28). The temperature sensors were checked by measuring the ice point 

of pure water and calibrated regularly against an HP-2804A quartz thermometer (accuracy 

of 0. 04 °C) at the experimental temperature. 

To verify the reliability of the apparatus and the procedure of the experiment, two 

kinds of reproducibility tests were conducted: vapor pressure measurement and bubble 

point pressure measurements of binary mixtures. The vapor pressure of n-pentane at 

101.85 °C was measured. Compared with values reported in the literature (43), the 

measured vapor pressure of this work and the reported literature value agree to within I 

psi a. The slight difference is within the experimental uncertainty of the apparatus. Two 

binary mixtures (carbon monoxide + n-decane and carbon dioxide + trans-decalin) were 
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chosen as test systems for bubble point pressure measurements at 160.0 °F. The 

experimental data of the two systems are presented in Tables C.I and C. II. The interaction 

parameters, Cij, of the SRK EOS were regressed from the data obtained in this work. For 

the binary system of carbon monoxide + n-decane, the data were compared with the 

earlier work of Yi ( 40). As shown in Figure C. 1, the different data sets are in excellent 

agreement with a maximum deviation of less than 0. 00 1 in mole fraction for both data set. 

For the carbon dioxide+ trans-decalin binary, comparison of this work with those of 

Gasem (33) and Shaver (32) are presented in Figure C.2. While excellent agreement is 

observed between the present work and the data reported by Shaver at higher pressures, 

significant disagreement exists among the various sources at lower pressure. These 

comparisons provide an acceptable measure of the internal consistency of the experimental 

setup and the procedure used. 

Random errors are less predictable than systematic errors and are usually treated 

by statistical methods. In this work, there were three prime errors associated with 

temperature, pressure and volume, which propagate during the course of an experiment. 

Those prime errors were determined as follows according to Darwish (28): 

Er = 0.1 °C 

Ep = 0.004p psia 

Ev = 0.0075 cc 

(C-1) 

(C-2) 

(C-3) 

Error propagation is used to estimate the overall uncertainty in solubility due to 

uncertainties in temperature, pressure and volume. Uncertainty is an interval around the 

measured value of the variable within which the true value could exist. In general, the 

variable (y) can be expressed as a function of a set of independent variables (xi), i.e., 

(C-4) 

The expected variance of y can be stated as ( 4 2): 



TABLE CJ 

SOLUBILITY OF CARBON MONOXIDE (1) IN N-DECANE (2) 

piMP a piMP a 

------------------------------- 3 44. 3 K ( 71 1 oc, 160.0 °F) --------------------------------

0.0564 

0.0608 

0.1127 

3.49 

3.79 

7.35 

TABLE C.II 

0.1194 

0.1542 

0.1679 

7.86 

10.47. 

11.61 

SOLUBILITY OF CARBON DIOXIDE (1) IN TRANS-DECALIN (2) 

piMP a piMP a 

-------------------------------344.3 K (71.1 °C, 160.0 °F) --------------------------------

0.0454 0.93 0.2670 5.33 

0.1012 2.01 0.3194 6.47 

0.1552 3.09 0.3242 6.55 

0.1894 3.75 0.3684 7.48 

0.2140 4.26 0.4103 8.32 

0.2557 5.10 0.4297 8.72 

0.2587 5.20 
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2 ~()[22 2 a y = ~ (-;-) a xi + E y (C-5) 
•=I ax 

in which, axi is the standard derivation of Xj, Ey is the instrumental error in y if y itself is 

also a measured variable. Otherwise, this term equals zero. In this investigation, 

uncertainty in solubility and bubble point pressure were evaluated. The uncertainty in 

solubility is in the form of (28): 

(C-6) 

in which, n is the number of gas injections. All variances are specified conservatively as 

(28): 

(ap
1 
I Pd 0.0015 

(a p
2 

I p 2 ) = o. 00 15 

( av
2 

I V2) = 0.0015 

av. = 0.0075 
h 

(relative uncertainty in nitrogen density) 

(relative uncertainly in solvent density) 

(relative uncertainty in solvent injection volume) 

(uncertainty in gas injection volume) 

A typical run is composed of three nitrogen injections with a total about 5 cc. 

Substitution of these values in Equation (C-6) yields: 

(C-7) 

which results in a maximum estimated error in nitrogen liquid mole fraction measurement 

of0.0006. 

Bubble point pressure of a given binary mixture is a function of the temperature 

and composition of the mixture. The uncertainty of the bubble point pressure can be 

expressed as (28): 



llO 

(C-8) 

where, £pis specified in Equation (C-2). 

Compared with the other terms, the temperature effect is generally negligible. By 

replacing £p with 0.004p psia in Equation (C-8), the estimated uncertainty in bubble point 

pressure is: 

(C-9) 

The partial derivative of pressure with respect to the solubility of nitrogen is 

estimated by employing a second order polynomial to fit p-x data at the specified isotherm 

of each system. The calculated uncertainty in bubble point pressure is about 12 psia. 



APPENDIXD 

NITROGEN+ N-PARAFFINS 

This appendix provides detailed calculation results of the representation ofbubble 

point pressures of nitrogen + n-paraffin systems for the five cases using the Peng­

Robinson equation of state. For each case, the interaction parameters along with their 

uncertainties, Henry's constants, infinite dilution partial molar volumes and complete 

statistics including the root mean squared error (RMSE), bias, absolute average deviation 

(AAD), and absolute average percent deviation (o/oAAD) are presented. For Cases 2 and 

3, the values of Henry's constants and infinite dilution partial molar volumes are at the 

highest temperature of that data set. 
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SYSTEM T(K) 

REFERENCE 

n-Propanc 143.2 
60 
60 173.2 

60 198.2 

60 223.2 

60 248.2 

60 273.2 

60 298.2 

60 323.2 

60 333.2 

60 343.2 

61 230.0 

61 260.0 

61 290.0 

TABLE D.l 

BUBBLE POINT CALCULATIONS USING PENG-ROBINSON EQUATION 
OF STATE FOR NITROGEN+ N-PARAFFINS SYSTEM: CASE I 

c,2 0,2 H1.2 
v~ 

I RMSE BIAS 

(J(' (Jp (bar) (cc/mol) (bar) (bar) 

.1500 .0000 416* 33* 134.83 122.79 

.0000 .0000 

.1500 .0000 528 38 162.13 122.70 

.0000 .0000 

.1500 .0000 578 43 83.20 64.78 

.0000 .0000 

.1500 .0000 591 50 50.92 39.51 

.0000 .0000 

.1500 .0000 575 60 17.52 29.98 

.0000 .0000 

.1500 .0000 534 77 27.29 21.28 

.0000 .0000 

.1500 .0000 473 108 20.03 14.69 

.0000 .0000 

.1500 .0000 394 179 12.42 8.27 

.0000 .0000 

.1500 .0000 358 239 12.44 8.74 

.0000 .0000 

.1500 .0000 317 350 2.98 1.76 

.0000 .0000 

.1500 .0000 590 52 105.35 78.83 

.0000 .0000 

.1500 .0000 558 67 37.53 25.72 

.0000 .0000 

.1500 .0000 495 95 22.33 16.40 

.0000 .0000 

AAD %)AAD NP 

(bar) 

122.79 156.95 6** 

122.70 120.66 6 

64.78 67.33 6 

19.51 40.90 6 

29.98 32.87 6 

21.28 22.29 6 

14.69 14.33 6 

8.27 7.43 4 

8.91 8.90 4 

2.18 3.09 4 

78.83 54.73 9 

25.72 23.66 9 

16.40 13.84 13 
t-.J 



TABLE D.l (Continued) 

SYSTEM T(K) cl2 012 Ht,2 
vO<' 

I RMSE BIAS AAD o/oAAD NP 

REFERENCE O'c O'q (bar) (cc/mol) (bar) (bar) (bar) 

n-Butane 250.0 .1500 .0000 672 52 17.67 13.34 13.34 17.06 10 
48 .0000 .0000 
48 277.0 .1500 .0000 647 62 15.21 I 1.30 11.3 13.45 12 

.0000 .0000 
48 311.1 .1500 .0000 585 84 16.()9 12.56 12.56 I2.44 I6 

.0000 .0000 
48 344.4 .1500 .0000 498 I28 8.75 6.80 6.85 7.9I 12 

.0000 .0000 
51 310.9 .1500 .0000 586 84 30.35 I9.48 23.53 17.24 6 

.0000 .0000 
51 344.3 .1500 .0000 499 127 12.66 5.39 10.13 9.35 6 

.0000 .0000 
51 377.5 .1500 .0000 390 245 8.84 6.12 7.29 6.46 8 

.0000 .0000 
50 3I0.9 .I500 .0000 586 84 34.34 I9.90 20.58 Il.21 9 

.0000 .0000 
49 3I0.9 .1500 .0000 586 84 31.3 I I 1.93 20.36 I5.19 5 

.0000 .0000 
49 366.5 .I500 .0000 429 I89 13.()3 9.96 9.96 8.30 4 

.0000 .0000 
n-Pentane 277.4 .1500 .0000 692 56 22.97 18.62 18.77 15.()4 7 
52 .0000 .0000 
52 3I0.7 .I500 .0000 652 70 I6.82 10.66 10.66 10.22 14 

.0000 .0000 
52 344.3 .I500 .0000 586 94 14.I6 8.07 8.09 7.06 II 

.0000 .0000 
52 377.6 .I500 .0000 502 138 20.04 13.8 13.80 15.44 10 

.0000 .0000 
n-Hexane 310.9 .1500 .0000 677 64 13.47 -1.24 11.34 7.34 II -·~ 



TABLE 0.1 (Continued) 

SYSTEM T{K) cl2 012 H1.2 V"" I RMSE BIAS AAD %AAO NP 
REFERENCE Oc Op {bar) (cc/mo1) {bar) {bar) {bar) 

53 .0000 .0000 
53 344.2 .1500 .0000 628 81 13.77 -8.30 9.68 4.04 11 

.0000 .0000 
53 377.6 .1500 .0000 560 109 17.65 4.19 11.90 7.07 11 

.0000 .0000 
53 410.9 .1500 .0000 479 160 8.98 -2.18 7.29 7.28 8 

.0000 .0000 
53 444.3 .1500 .0000 385 277 8.89 -4.89 8.49 8.06 6 

.0000 .0000 
n-Heptane 305.4 .1500 .0000 699 59 25.01 1.76 14.62 5.30 15 
55 .0000 .0000 
55 352.6 .1500 .0000 643 78 42.78 12.98 26.90 7.03 6 

.0000 .0000 
55 399.8 .1500 .0000 554 115 72.67 36.95 37.09 9.22 5 

.0000 .0000 
55 455.4 .1500 .0000 420 224 9.88 -3.32 7.61 4.93 5 

.0000 .0000 
13 305.4 .1500 .0000 699 59 10.49 -3.73 9.75 5.36 6 

.0000 .0000 
13 352.6 .1500 .0000 643 78 9.68 -6.69 8.58 5.82 5 

.0000 .0000 
7 305.5 .1500 .0000 699 59 39.59 16.80 26.45 5.80 43 

.0000 .0000 
14 324.3 .1500 .0000 682 65 18.27 -16.70 16.70 11.28 6 

.0000 .0000 
14 366.5 .1500 .0000 620 87 9.97 6.96 7.60 3.37 5 

.0000 .0000 
6 453.2 .1500 .0000 426 216 14.72 3.82 9.34 9.62 14 

.0000 .0000 --.... 



TABLE D.I (Continued) 

--
SYSTEM T(K) c,2 D,2 H1.2 

v~ 
I RMSE BIAS AAD %AAD NP 

REFERENCE Or <Jp (bar) (cc/mo1) (bar) (bar) (bar) 

6 472.2 .1500 .0000 374 299 5.46 .53 4.27 6.62 11 
.0000 .0000 

6 497.2 .1500 .0000 300 545 5.12 -4.46 4.78 8.02 J3 
.0000 .0000 

62 453.2 .1500 .0000 426 216 7.18 -5.87 6.14 4.75 6 
.0000 .0000 

62 472.2 .1500 .0000 374 299 16.81 9.20 13.54 9.74 5 
.0000 .0000 

62 497.2 .1500 .0000 300 545 9.97 5.12 8.06 7.75 5 
.0000 .0000 

63 453.2 .1500 .0000 426 216 13.50 5.83 7.89 5.64 10 
.0000 .0000 

n-Octane 322.0 .1500 .0000 684 62 15.76 -13.40 14.00 8.70 5 
13 .0000 .0000 
13 344.3 .1500 .0000 662 70 9.79 -8.97 8.97 8.13 7 

.0000 .0000 
n-Nonane 322.0 .1500 .0000 683 60 23.47 -20.16 20.16 11.26 6 
13 .0000 .0000 
13 344.3 .1500 .0000 665 68 13.54 -11.65 11.65 6.58 6 

.0000 .0000 
n-Decane 310.9 .1500 .0000 669 57 25.27 18.79 18.87 8.71 22 
12 .0000 .0000 
12 344.3 .1500 .0000 652 67 23.18 17.72 18.17 8.50 30 

.0000 .0000 
12 377.6 .1500 .0000 619 80 5.63 3.38 4.52 3.77 29 

.0000 .0000 
12 410.9 .1500 .0000 573 98 7.58 -5.44 5.89 4.01 20 

.0000 .0000 
13 344.3 .1500 .0000 652 67 33.45 28.73 28.73 16.32 6 -VI 



TABLE D .I (Continued) 

--
SYSTEM T(K) ell D12 Ht2 V"" I RMSE BIAS AAD %AAD NP 

REFERENCE ac <lg (bar) (cc/mol) (bar) (bar) (bar) 

.0000 .0000 
This work 344.3 .1500 .0000 652 67 10.79 -9.98 9.98 11.36 8 

.0000 .0000 
This work 377.6 .1500 .0000 619 80 8.89 -8.23 8.23 8.22 7 

.0000 .0000 
This work 410.9 .1500 .0000 573 98 5.52 -5.20 5.20 6.19 6 

.0000 .0000 
n-Dodecane 327.6 .1500 .0000 648 60 19.00 -17.76 17.76 10.24 6 
13 .0000 .0000 
13 344.3 .1500 .0000 641 64 11.37 8.96 8.96 5.41 6 

.0000 .0000 
13 366.5 .1500 .0000 625 72 14.55 -6.44 12.05 11.52 4 

.0000 .0000 
n-Hexadecane 462.7 1500 .0000 499 115 5.61 -4.39 4.39 3.12 8 
1 .0000 .0000 
I 543.5 .1500 .0000 389 202 2.7 -2.35 2.35 2.27 7 

.0000 .0000 
623.7 .1500 .0000 264 480 6.48 -5.76 5.76 6.26 7 

.0000 .0000 
n-Eicosane 323.2 .1500 .0000 498 62 34.12 -30.03 30.03 29.77 8 
This work .0000 .0000 
This work 373.2 .1500 .0000 494 76 20.09 -18.14 18.14 19.83 6 

.0000 .0000 
This work 423.2 .1500 .0000 468 96 12.64 -11.46 11.46 13.06 6 

.0000 .0000 
n-Octacosane 348.2 .1500 .0000 368 79 41.91 -38.34 38.34 36.59 7 
This work .0000 .0000 
This work 373.2 .1500 .0000 366 88 36.84 -33.50 33.5 32.29 6 

.0000 .0000 -(; 



TABLE D. I (Continued) 

SYSTEM T(K) cl2 012 Hu V"' I RMSE BIAS AAD %AAD NP 
REFERENCE O'c O'p (bar) (cc/mol) (bar) (bar) (bar) 

This work 423.2 .1500 .0000 352 Ill 28.64 -25.94 25.94 25.39 6 
.0000 .0000 

n-Hexatriacontane 373.2 .1500 .0000 272 108 56.31 -51.32 51.32 43.43 6 
This work .0000 .0000 
This work 423.2 .1500 .0000 263 136 44.90 -40.98 40.98 37.05 6 

.0000 .0000 

OVERALL STATISTICS 31.54 6.45 17.23 12.99 657 

* Estimated value. 
* * The data are not converged. 

--l 



SYSTEM 

REFERENCE 

n-Propane 
60 
60 

61 

n-Butane 
48 
51 

49 

50 

n-Pentane 
52 
n-Hexane 
53 
n-Heptane 
55 
7 

13 

6 

T(K) 

TABLE 0.11 

BUBBLE POINT CALCULATIONS USING PENG-ROBINSON EQUATION OF 
STATE FOR NITROGEN+ N-PARAFFINS SYSTEM: CASE 2 

cl2 012 H1.2 
yoo 

I RMSE BIAS 

Range crc <Jp (bar) (cc/mo1) (bar) (bar) 

(143.2- .0909 .0000 12.04 3.58 
248.2) .0018 .0000 479 59 

(273.2- .0557 .0000 4.66 -1.33 
343.2) .0063 .0000 281 334 

(230.0- .0564 .0000 5.59 -2.97 
290.0) .0025 .0000 404 92 

(250.0- .0955 .0000 2.42 -.27 
344.4) .0015 .0000 458 126 

(310. 9- .0944 .0000 9.04 -2.25 
377.6) .0080 .0000 365 240 

(310.9- .0894 .0000 13.55 -5.12 
366.5) .0174 .0000 396 185 

(310.9) .0672 0000 10.42 -4.53 
.0107 .0000 495 82 

(277.5- .0924 .0000 5.31 .II 
377.6) .0031 .0000 466 136 

(310.9- .1463 .0000 13.43 -3.55 
444.3) .0041 .0000 384 277 

(305.4- .1351 .0000 19.18 -7.88 
455.4) .0031 .0000 414 223 

(305.5) .1362 .0000 20.54 -10.09 
.0014 .0000 678 59 

(305.4- .1565 .0000 12.05 -1.76 
366.5) .0038 .0000 626 87 

(453.2- .0921 .0000 6.80 -4.29 
497.2) .0098 .0000 290 538 

AAD o/oAAD NP 

(bar) 

8.31 8.85 30 

3.94 5.55 24 

4.92 6.85 31 

1.70 3.05 49 

6.57 6.54 20 

11.05 11.60 8 

8.11 9.60 9 

3.20 5.04 42 

10.05 6.70 47 

14.16 6.36 30 

18.93 6.15 43 

10.20 6.33 22 

5.77 9.51 38 -00 



TABLE D. II (Continued) 

SYSTEM T(K) c12 012 Ht.2 
y~ 

I RMSE BIAS AAD %AAD NP 
REFERENCE Range Oc (jp (bar) (eel mol) (bar) (bar) (bar) 

62 (453.2- .1187 .0000 10.80 -1.65 9.02 7.37 16 
497.2) .0193 .0000 294 541 

63 (453.2) .0750 .0000 5.43 -2.90 4.98 6.69 10 
.0122 .0000 399 213 

n-Octane (322.0- .1723 .0000 6.43 -2.49 5.30 4.87 12 
13 344.3) .0038 .0000 688 71 
n-Nonane (322.0- .1814 .0000 5.39 -1.02 4.44 2.76 12 
13 344.3) .0026 .0000 702 68 
n-Decane (310. 9- .1112 .0000 4.16 -1.20 3.54 3.74 49 
12 344.3) .0012 .0000 610 66 
12 (377.6- .1507 .0000 6.49 .01 5.11 3.89 49 

410.9) .0024 .0000 573 98 
13 (344.3) .0962 .0000 3.03 1.54 2.87 2.94 6 

.0025 .0000 595 66 
This work (344.3- .2026 .0000 1.19 -.10 .96 1.06 21 

410.9) .0015 .0000 609 99 
n-Dodecane (327.6- .1600 .0000 14.37 -.41 12.71 8.82 16 
13 366.5) .0066 .0000 635 72 
n-Hexadecane (462.7- .1815 .0000 2.68 -.83 1.69 1.95 22 
I 623.7) .0040 .0000 267 482 
n-Eicosane (323.2- .3095 .0000 3.36 .86 2.89 3.17 20 
This work 423.2) .0041 .0000 548 97 
n-Octacosane (348.2- .4298 .0000 1.23 .00 .93 .85 19 
This work 423.2) .0017 .0000 450 113 
n-Hexatriacontane (373.2- .5917 .0000 2.52 -1.08 2.30 2.42 12 
This work 423.2) .0045 .0000 367 138 

OVERALL STATISTICS 9.85 -2.07 6.51 5.38 657 -\&) 



SYSTEM 

REFERENCE 

n-Propane 
60 
60 

61 

n-Butane 
48 
51 

49 

50 

n-Pentane 
52 
n-Hexane 
53 
n-Heptane 
55 
13 

7 

6 

T(K) 

TABLE 0.111 

BUBBLE POINT CALCULATIONS USING PENG-ROBINSON EQUATION OF 
STATE FOR NITROGEN + N-PARAFFINS SYSTEM: CASE 3 

c.2 012 H1.2 v-
I RMSE BIAS 

Range O'c O'p (bar) (cc/rnol) (bar) (bar) 

(143.2- -.0064 .0639 6.25 2.95 
248.2) .0094 .0061 531 67 

(273.2- -.0283 .0750 3.74 -.76 
343.2) .0197 .OI68 296 363 

(230.0- .0074 .0499 2.77 -.74 
290.0) .0051 .0049 448 IOI 

(250.0- .0566 .0227 1.58 II 
344.4) .0031 .0013 468 130 

(310.9- -.Oll2 .0882 6.60 -.11 
377.6) .0274 .0213 404 270 

(310.9- -.0966 .1519 3.74 1.43 
366.5) .0233 .OI68 482 227 

(310.9) -.0390 .0956 2.66 .28 
.0109 .0088 641 99 

(277.5- .0177 .0410 3.75 1.00 
377.6) .0124 .0066 491 146 

(310.9- .0586 .0490 9.51 -1.20 
444.3) .0136 .0072 405 296 

(305.4- .0794 .0329 I0.39 -.15 
455.4) .0068 .0038 437 236 

(305.4- .0827 .0324 9.78 .47 
366.5) .0229 .0099 678 94 

(305.5) .0763 .0356 4.22 .78 
.0019 .0011 814 66 

(453.2- -.0606 .1090 3.01 -.87 
497.2) .0136 .0086 329 6I2 

AAO 0/oAAO NP 

(bar) 

4.32 6.49 30 

2.74 3.30 24 

2.33 3.53 31 

1.10 1.86 49 

5.06 6.97 20 

2.88 4.22 8 

2.38 4.23 9 

2.36 4.09 42 

7.08 6.27 47 

7.32 3.87 30 

8.15 5.84 22 

3.59 1.52 43 

2.47 4.55 38 -N 
0 



TABLE D.III (Continued) 

SYSTEM T(K) c,2 D,2 H,,2 
y~ 

I RMSE BIAS AAD %AAD NP 

REFERENCE Range <lc (jp (bar) (cc/mo1) (bar) (bar) (bar) 

62 (453.2- -.0868 .1323 6.66 1.37 4.62 3.90 16 
497.2) .0489 .0279 339 629 

63 (453.2) -.0269 .0720 1.64 -.12 1.13 1.22 )0 
.<HOI .0064 457 241 

n-Octane (322.0- .0915 .0295 2.86 .40 1.94 2.97 12 
13 344.3) .OI27 .0046 752 77 
n-Nonane (322.0- .I803 .0003 5.36 -1.13 4.45 2.76 12 
I3 344.3) .0043 .OOI7 703 68 
n-Decane (3IO. 9- .0842 .0000 3.83 -.44 3.02 2.86 49 
I2 344.3) .0088 .0000 630 68 
12 (377.6- .I868 -.0117 6.19 -.84 4.82 3.77 49 

4I0.9) .OI63 .0053 555 95 
I3 (344.3) .1334 -.0128 1.05 .12 .95 1.04 6 

.0077 .0026 562 63 
This work (344.3- .I207 .0190 .7I .20 .61 .74 21 

4I0.9) .014I .0032 625 I05 
n-Dodecane (327.6- .102I .0146 13.95 1.30 12.08 9.14 16 
13 366.5) .0595 .0148 67I 76 
n-Hexadecane (462.7- .1792 .0006 2.68 -.79 1.69 1.96 22 
I 623.7) .0077 .0016 268 482 
n-Eicosane (323.2- .2768 .0037 3.35 1.00 2.86 3.14 20 
This work 423.2) .0453 .0053 554 100 
n-Octacosanc (348.2- .3568 .0058 .97 .26 .79 .86 19 
This work 423.2) .0226 .0018 459 ll8 
n-Hexatriacontane (373.2- .4549 .0082 2.10 -.56 1.72 1.47 12 
This work 423.2) .0618 .0037 382 150 

OVERALL STATISTICS 5.73 .05 3.70 3.67 657 -tv 



SYSTEM T(K) 

REFERENCE 

n-Propanc 143.2 
60 
60 173.2 

60 198.2 

60 223.2 

60 248.2 

60 273.2 

60 298.2 

60 323.2 

60 333.2 

60 343.2 

61 230.0 

61 260.0 

61 290.0 

TABLE D.IV 

BUBBLE POINT CALCULATIONS USING PENG-ROBINSON EQUATION 
OF STATE FOR NITROGEN+ N-PARAFFINS SYSTEM: CASE 4 

c,2 D,2 Ht.2 
y~ 

I RMSE BIAS 

<lr O'q (bar) (cc/mol) (bar) (bar) 

.0953 .0000 272* 33* 4.30 -.77 

.0007 .0000 

.0842 .0000 358 37 5.77 -1.76 

.0025 .0000 

.0728 .0000 401 42 5.48 -1.48 

.0040 .0000 

.0678 .0000 412 49 6.13 -1.82 

.0065 .0000 

.0593 .0000 434 59 5.26 -1.10 

.0077 .0000 

.0562 .0000 422 75 5.27 -1.13 

.0103 .0000 

.0538 .0000 389 104 5.44 -1.20 

.0146 .0000 

.0629 .0000 343 172 4.36 -1.71 

.0219 .0000 

.0367 .0000 304 227 3.95 -1.48 

.0241 .0000 

.0988 .0000 297 341 1.44 -.57 

.0172 .0000 

.0530 .0000 416 51 5.25 -2.35 

.0030 .0000 

.0631 .0000 438 65 5.26 -2.19 

.0009 .0000 

.0676 .0000 414 93 4.90 -1.95 

.0065 .0000 

AAD o/.)AAD NP 

(bar) 

3.48 4.71 6 

5.16 8.36 6 

4.79 7.62 6 

5.33 8.90 6 

4.42 6.28 6 

4.44 6.39 6 

4.49 5.97 6 

4.28 5.68 4 

3.87 5.41 4 

1.41 2.45 4 

4.78 6.58 9 

4.32 6.19 9 

4.43 5.93 13 -I-..) 
N 



TABLE D.IV (Continued) 

-
SYSTEM T(K) cl2 012 H1.2 

y~ 
I RMSE BIAS AAD %AAD NP 

REFERENCE Oc Oq (bar) (cc/mol) (bar) (bar) (bar) 

n-Butane 250.0 .1016 .0000 576 51 1.49 -.59 1.27 2.66 ]() 

48 .0016 .0000 
48 277.0 .1005 .0000 569 62 1.52 -.54 1.35 3.67 12 

.0017 .0000 
48 311.1 .0842 .0000 512 83 2.04 -.64 1.66 2.70 16 

.0025 .0000 
48 344.4 .0858 .0000 451 125 .91 -.41 .86 1.86 12 

.0022 .0000 
51 310.9 .0920 .0000 521 83 13.21 -2.66 10.14 8.66 6 

.0147 .0000 
51 344.3 .1050 .0000 465 126 8.35 -2.76 7.37 7.78 6 

.0192 .0000 
51 377.5 0943 .0000 365 240 4.16 -.82 3.34 3.98 8 

.0121 .0000 
50 310.9 .0672 .0000 495 82 10.42 -4.53 8.11 9.60 9 

.0107 .0000 
49 310.9 .0899 .0000 519 83 17.05 -8.45 16.58 17.14 5 

.0228 .0000 
49 366.5 .0733 .0000 388 184 1.46 -.44 1.24 1.95 4 

.0057 .0000 
n-Pentane 277.4 .1050 .0000 614 56 4.39 .04 3.53 4.34 7 
52 .0041 .0000 
52 310.7 .0943 .0000 580 69 1.92 -.91 1.61 3.93 14 

.0020 .0000 
52 344.3 .0863 .0000 527 92 2.85 -1.14 2.25 3.99 II 

.0046 .0000 
52 377.6 .0481 .0000 439 135 2.50 .35 1.97 4.37 ]() 

.0051 .0000 
n-Hexane 310.9 .1466 .0000 672 64 13.26 -3.07 11.26 7.21 II -N 

w 



TABLE D.IV (Continued) 

SYSTEM T(K) c,2 012 H1.2 
y~ 

I RMSE BIAS AAD %AAD NP 

REFERENCE Oc Op (bar) (cc/mo1) (bar) (bar) (bar) 

53 .0061 .0000 
53 344.2 .1666 .0000 646 81 10.61 -1.32 7.52 3.72 11 

.0062 .0000 
53 377.6 .1222 .0000 539 108 12.07 -5.66 11.06 8.46 ll 

.0088 .0000 
53 410.9 .1391 .0000 473 159 8.64 -4.04 7.40 7.79 8 

.0149 .0000 
53 444.3 .1614 .0000 389 278 8.73 -3.50 8.09 7.56 6 

.0260 .0000 
n-Heptane 305.4 .1386 .0000 681 59 17.47 -10.11 14.66 6.73 15 
55 .0032 .0000 
55 352.6 .1201 .0000 613 78 24.74 -12.27 20.97 8.49 6 

.0106 .0000 
55 399.8 .0572 .0000 495 113 21.29 -11.86 20.00 10.13 5 

.0186 .0000 
55 455.4 .1565 .0000 422 224 9.68 -1.55 8.21 5.18 5 

.0159 .0000 
13 305.4 .1569 .0000 710 59 8.70 1.41 8.07 5.27 6 

.0045 .0000 
13 352.6 .1560 .0000 650 79 9.03 -3.76 8.00 5.21 5 

.0077 .0000 
7 305.5 .1362 .0000 678 59 20.54 -10.09 18.93 6.15 43 

.0014 .0000 
14 324.3 .1691 .0000 708 66 12.50 -5.56 11.85 8.31 6 

.0077 .0000 
14 366.5 .1324 .0000 604 86 3.04 -1.03 2.43 1.49 5 

.0029 .0000 
6 453.2 .0760 .0000 399 213 7.49 -4.24 6.02 10.56 14 -.0135 .0000 N ..... 



TABLE D.IV (Continued) 

SYSTEM T(K) cl2 012 H1.2 V"" I RMSE BIAS AAD %AAD NP 

REFERENCE <lc CJp (bar) (cc/mol) (bar) (bar) (bar) 

6 472.2 .ll45 .0000 364 297 3.99 -2.11 3.40 6.78 II 
.0123 .0000 

6 497.2 .2107 .0000 312 551 4.08 -2.05 3.59 6.00 J3 
.0225 .0000 

62 453.2 .1779 .0000 436 217 5.13 -1.57 4.79 3.75 6 
.0124 .0000 

62 472.2 .0607 .0000 350 294 8.82 -3.17 7.83 7.79 5 
.0306 .0000 

62 497.2 .0513 .0000 283 533 4.82 -2.36 4.22 5.69 5 
.0293 .0000 

63 453.2 .0750 .0000 399 213 5.43 -2.90 4.98 6.69 10 
.0122 .0000 

n-Octane 322.0 .1807 .0000 727 62 4.45 -.84 4.12 4.44 5 
13 .0042 .0000 
13 344.3 .1663 .0000 681 71 5.81 -3.28 5.21 5.33 7 

.0047 .0000 
n-Nonane 322.0 .1876 .0000 736 61 2.53 -1.18 2.00 2.09 6 
13 .0017 .0000 
13 344.3 .1737 .0000 693 68 3.71 -1.15 2.78 1.87 6 

.0029 .0000 
n-Decane 310.9 .lll4 .0000 617 56 3.50 -1.39 3.13 3.67 22 
12 .0013 .0000 
12 344.3 .1105 .0000 610 66 5.23 -1.04 4.33 3.68 30 

.0019 .0000 
12 377.6 .1425 .0000 612 80 4.74 .83 3.91 3.32 29 

.0022 .0000 
12 410.9 .1675 .0000 584 99 4.50 -.42 3.37 2.65 20 

.0029 .0000 
13 344.3 .0962 .0000 595 66 3.03 1.54 2.87 2.94 6 ;:::; 

v. 



TABLE D.IV (Continued) 

SYSTEM T(K) cl2 012 Ht.2 
y~ 

I RMSE BIAS AAD o/oAAD NP 

REFERENCE <lc <lg (bar) (cc/mol) (bar) (bar) (bar) 

.0025 .0000 
This work 344.3 .2087 .0000 721 67 .46 -. )7 .45 .62 8 

.0009 .0000 
This work 377.6 .1990 .0000 663 80 .59 -.20 .51 .64 7 

.0013 .0000 
This work 410.9 .1936 .0000 602 99 .59 -.22 .53 .78 6 

.0020 .0000 
n-Dodecane 327.6 .1783 .0000 683 60 5.87 -2.37 5.36 4.17 6 
13 .0039 .0000 
13 344.3 .1355 .0000 625 64 7.59 1.82 4.97 3.15 6 

.0060 .0000 
13 366.5 .1915 .0000 665 72 8.26 3.97 7.24 I 1.97 4 

.0156 .0000 
n-Hexadecane 462.7 .1817 .0000 513 115 .56 .08 .45 .49 8 
1 .0012 .0000 
I 543.5 .1693 .0000 393 202 .95 -.44 .80 1.00 7 

.0029 .0000 
623.7 .1998 .0000 269 482 3.84 -2.02 3.25 4.23 7 

.0145 .0000 
n-Eicosane 323.2 .3210 .0000 669 62 .19 -.04 .17 .22 8 
This work .0003 .0000 
This work 373.2 .2955 .0000 597 77 .35 .01 .28 .38 6 

.0010 .0000 
This work 423.2 .2705 .0000 528 97 .28 .03 .26 .35 6 

.0011 .0000 
n-Octacosane 348.2 .4342 .0000 533 80 .57 -.15 .49 .49 7 
This work .0012 .0000 
This work 373.2 .4303 .0000 504 89 .64 -.07 .55 .51 6 

.0017 .0000 -N 
0\ 



TABLE D.IV (Continued) 

SYSTEM T(K) cl2 012 Ht,2 
y~ 

I RMSE BIAS AAD %AAD NP 
REFERENCE Oc Op (bar) (cc/mo1) (bar) (bar) (bar) 

This work 423.2 .4174 .0000 445 113 .59 -.21 .52 .64 6 
.0020 .0000 

n-Hexatriacontane 373.2 .5850 .0000 417 109 2.09 -.89 2.04 2.20 6 
This work .0048 .0000 
This work 423.2 .6060 .0000 371 138 1.72 -.72 1.68 1.93 6 

.0056 .0000 

OVERALL STATISTICS 8.62 -2.30 5.56 4.78 663 

-N 
-' 



SYSTEM T(K) 

REFERENCE 

n-Propane 143.2 
60 
60 173.2 

60 198.2 

60 223.2 

60 248.2 

60 273.2 

60 298.2 

60 323.2 

60 333.2 

60 343.2 

61 230.0 

61 260.0 

61 290.0 

TABLED.V 

BUBBLE POINT CALCULATIONS USING PENG-ROBINSON EQUATION 
OF STATE FOR NITROGEN+ N-PARAFFINS SYSTEM: CASE 5 

cl2 012 Ht.2 \!"' I RMSE BIAS 

Oc Og (bar) (cc/mol) (bar) (bar) 

.0877 .0048 278* 34* 4.23 -.66 

.0196 .0123 

.0314 .0371 420 41 4.78 -.16 

.0436 .0300 

.0177 .0405 466 46 4.58 -.08 

.0459 .0333 
-.0096 .0585 514 55 4.73 -.21 
.0485 .0343 

-.0083 .0532 494 65 4.57 -.01 
.0471 .0378 

-.0212 .0647 480 84 4.57 -.06 
.0697 .0570 

-.0378 .0849 449 120 4.57 -.07 
.0697 .0614 

-.0521 .1246 408 205 .52 .10 
.0112 .0112 

-.0818 .1434 366 275 .46 .06 
.0184 .0151 

-.0718 .1423 323 395 .38 -.03 
.0346 .0271 
.0196 .0350 480 55 1.75 .02 
.0049 .0049 

-.0044 .0644 522 74 .95 .28 
.0047 .0042 

-.0242 .0882 491 108 .32 .05 
.0019 .0017 

AAD %AAD NP 

(bar) 

3.31 4.15 6 

3.32 3.16 6 

3.16 2.99 6 

3.39 3.35 6 

3.18 3.32 6 

3.14 2.88 6 

3.17 3.03 6 

.48 .70 4 

.41 .50 4 

.33 .63 4 

1.59 2.69 9 

.72 2.42 9 

.24 .41 13 
N 
00 



TABLE D.V (Continued) 

SYSTEM T(K) cl2 D,2 H,,2 V'"' I RMSE BIAS AAD %AAD NP 

REFERENCE oc Op (bar) (cc/mol) (bar) (bar) (bar) 

n-Butane 250.0 .0388 .0333 619 56 .29 .04 .25 1.04 10 
48 .0042 .0022 
48 277.0 .0425 .0330 607 66 .66 .05 .46 2.12 12 

.0079 .0045 
48 311.1 .0269 .0362 545 89 1.30 .02 .69 .90 16 

.0132 .0083 
48 344.4 .0287 .0363 471 133 .20 -.05 .15 .52 12 

.0045 .0028 
51 310.9 -.0081 .0843 645 98 9.87 1.25 7.25 11.43 6 

.0695 .0516 
51 344.3 -.0816 .1383 575 155 4.29 .27 3.66 5.83 6 

.0638 .0445 
51 377.5 .0235 .0693 401 264 3.47 .14 2.73 3.19 8 

.0436 .0391 
50 310.9 -.0390 .0956 641 99 2.66 .28 2.38 4.23 9 

.0109 .0088 
49 310.9 -.1073 .1590 763 IIO 1.05 -.06 .95 1.43 5 

.0075 .0053 
49 366.5 .0680 .0059 392 186 1.42 -.28 1.27 1.81 4 

.0226 .0191 
n-Pentane 277.4 .1580 -.0265 572 52 3.91 -.85 2.89 4.96 7 
52 .0514 .0254 
52 310.7 .0462 .0258 616 74 .90 -.13 .72 1.88 14 

.0072 .0038 
52 344.3 .0184 .04ll 575 101 1.13 .13 .81 1.43 II 

.0112 .0065 
52 377.6 .0301 .0144 452 138 2.38 .71 1.91 4.98 10 

.0218 .0169 
310.9 .0447 .0515 793 74 8.96 1.95 7.83 9.73 II -n-Hexane t-..> 

\0 



TABLE D.V (Continued) 

SYSTEM T(K) c,2 D,2 H,,2 V'"' I RMSE BIAS AAD %AAD NP 
REFERENCE Oc aD (bar) (cc/mol) (bar) (bar) (bar) 

53 .0294 .0145 
53 344.2 .1013 .0355 711 89 8.97 1.45 7.14 6.06 11 

.0367 .0194 
53 377.6 .0212 .0731 657 126 2.69 .24 2.17 1.79 11 

.0080 .0053 
53 410.9 -.0227 .1059 576 191 .63 .19 .57 1.17 8 

.0044 .0028 
53 444.3 -.0488 .1489 479 339 3.16 .46 2.72 2.61 6 

.0469 .0299 
n-Heptane 305.4 .0884 .0283 783 64 7.18 .75 6.21 3.54 15 
55 .0061 .0033 
55 352.6 .0479 .0522 763 90 9.99 1.59 7.89 4.91 6 

.0158 .0104 
55 399.8 .0054 .0619 620 131 4.23 .98 3.60 2.60 5 

.0074 .0070 
55 455.4 .1265 .0241 442 234 9.54 -.92 8.38 4.92 5 

.0999 .0770 
13 305.4 .1892 -.0135 676 56 8.39 .31 7.01 4.27 6 

.0564 .0234 
13 352.6 .0650 .0429 739 88 4.56 .00 3.87 2.72 5 

.0307 .0141 
7 305.5 .0763 .0356 814 66 4.22 .78 3.59 1.52 43 

.0019 .0011 
14 324.3 .0188 .0637 867 79 4.36 -.04 4.18 3.27 6 

.0230 .0098 
14 366.5 .1027 .0154 632 90 1.67 .20 1.32 1.40 5 

.0108 .0055 
6 453.2 -.0497 .0973 485 251 2.20 -.37 1.88 4.31 14 

.0120 .0079 -\..>.) 

0 



TABLE D. V (Continued) 

SYSTEM T(K) cl2 012 Ht,2 
v<>O 

I RMSE BIAS AAD %AAD NP 
REFERENCE Oc Op (bar) (cc/moi) (bar) (bar) (bar) 

6 472.2 -.02I7 .0864 4I2 337 1.80 -.3I l.4I 3.40 II 
.0264 .0150 

6 497.2 -.0802 .15I4 354 646 1.76 -.16 1.28 2.21 13 
.0410 .0197 

62 453.2 -.0785 .0574 478 239 2.82 .49 2.09 2.47 6 
.0340 .0188 

62 472.2 -.1536 .1567 449 368 4.66 .16 3.68 2.60 5 
.0815 .0523 

62 497.2 -.1206 .1332 333 626 1.38 -.30 1.24 1.62 5 
.0285 .0205 

63 453.2 -.0269 .0720 458 241 1.64 -.12 1.13 1.22 10 
.0101 .0064 

n-Octane 322.0 .1196 .0205 774 67 3.36 .64 2.40 4.03 5 
13 .0408 .0135 
13 344.3 .0882 .0303 753 78 1.98 -.I1 1.36 2.05 7 

.0122 .0047 
n-Nonane 322.0 .1539 .0106 764 63 1.60 -.19 1.31 1.18 6 
13 .0125 .0039 
13 344.3 .1309 .0143 729 72 2.55 .21 1.81 l.4I 6 

.0205 .0068 
n-Decane 310.9 .0851 .0080 641 59 3.02 -.56 2.53 2.56 22 
12 .0106 .0032 
12 344.3 .0908 .0064 626 68 5.05 -.40 3.93 3.15 30 

.0138 .0044 
12 377.6 .1855 -.0137 585 76 4.14 -.26 3.42 2.93 29 

.0148 .0047 
12 410.9 .1385 .0099 602 102 4.24 .32 3.23 2.81 20 

.0192 .0065 -13 344.3 .1334- .0128 562 63 1.05 .12 .95 1.04 6 w 



TABLE D.V (Continued) 

SYSTEM T(K) cl2 D,2 H1.2 
v.., 

I RMSE BIAS AAD o/oAAD NP 
REFERENCE Oc aD (bar) (cc/mol) (bar) (bar) (bar) 

.0077 .0026 
This work 344.3 .1621 .0105 736 70 .07 .01 .06 .09 8 

.0027 .0006 
This work 377.6 .1503 .0117 678 83 .24 .02 .18 .19 7 

.0105 .0025 
This work 410.9 .1268 .0160 617 104 .15 .01 .12 .14 6 

.0082 .0020 
n-Dodecane 327.6 .0977 .0196 749 66 3.46 -.21 3.02 2.16 6 
13 .0280 .0068 
13 344.3 .2242 -.0235 559 57 5.46 -.58 4.18 3.78 6 

.0476 .0125 
13 366.5 .5633 -.0816 519 46 2.65 .52 2.43 3.53 4 

.1018 .0223 
n-Hexadecane 462.7 .1948 -.0025 509 114 .58 -.05 .42 .42 8 
I .0077 .0015 
1 543.5 .1318 .0092 402 208 .37 .02 .29 .41 7 

.0070 .0017 
623.7 .0827 .0466 295 524 .60 .09 .55 .76 7 

.0086 .0031 
n-Eicosane 323.2 .3053 .0018 673 63 .25 .05 .17 16 8 
This work .0009 .0001 
This work 373.2 .2875 .0009 599 78 .34 .04 .27 .41 6 

.0084 .0008 
This work 423.2 .2634 .0008 529 98 .29 .05 .26 .38 6 

.0060 .0006 
n-Octacosane 348.2 .3928 .0032 541 83 .38 .02 .33 .36 7 
This work .0112 .0009 
This work 373.2 .3913 .0031 511 92 .58 .07 .50 .56 6 -.0178 .0014 w 

N 



TABLE D.V (Continued) 

SYSTEM T(K) c12 012 H1.2 y-
I RMSE BIAS AAD %AAD NP 

REFERENCE crc (Jp (bar) (cc/mol) (bar) (bar) (bar) 

This work 423.2 .3538 .0052 455 117 .27 .02 .24 .25 6 
.0147 .0012 

n-Hexatriacontane 373.2 .3955 .Oll3 447 125 .38 .05 .33 .40 6 
This work .0164 .0010 
This work 423.2 .4193 .0114 394 155 .30 .03 .28 .32 6 

.0161 .0010 

OVERALL STATISTICS 3.86 .12 2.40 2.47 663 

-l..oJ 
l..oJ 



APPENDIXE 

DATABASE FOR SIX SUPERCRITICAL GASES IN 

AROMA TIC OR NAPHTHENIC SOL VENTS 

This appendix describes the solubility database for six supercritical gases (carbon 

dioxide, carbon monoxide, nitrogen, hydrogen, methane and ethane) in aromatic and 

naphthenic solvents. Tables E.I- E. VI present for each binary the range of temperature, 

pressure and solute liquid mole fraction and the literature sources. The references for the 

database are given at the end of this appendix. 

134 
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TABLEE.I 

NITROGEN BINARY SYSTEM DATA EMPLOYED IN 
EQUATION OF STATE EVALUATIONS 

Solvent Temperature Pressure N2 Mole Reference 
Range, (K) Range, (bar) Fraction Range 

Cyclopentane 366.4-410.2 13.6- 312.8 0.021 - 0.374 2 
Cyclohexane 366.5-410.9 17.5- 275.9 0.009- 0.291 29 
Methylclohexane 453.2-497.2 52.0- 371.0 0.064 - 0.629 78 

310.9- 477.6 4.4- 168.7 0.005 - 0.268 76 
Ethylcyclohexane 310.9- 477.6 4.3-203.9 0.005 - 0.328 67 
Propylcyclohexane 313.6- 472.9 16.4-997.0 0.020- 0.459 45 
Benzene 303.2 - 398.2 62.1 - 307.1 0.035 - 0.204 72 

303.2- 373.2 67.4- 356.5 0.031 - 0.201 71 
n-Propylbenzene 313.2- 473.2 10.0- 396.7 0.015- 0.360 18 
Toluene 323.2- 348.2 36.4- 353.5 0.018-0.159 71 

313.2-472.6 22.0- 1000.0 0.018- 0.390 45 
m-Xylene 313.2- 472.6 11. 5 - 1 00 1. 0 0.019- 0.351 45 
Mesitylene 313.2-472.6 11.0- 998.0 0.018- 0.340 45 
1-Methylnaphthalene 462.2- 703.3 20.3-25.54 0.012- 0.288 75 
m-Cresol 462.2-663.6 30.9- 254.2 0.009- 0.350 77 
Tetralin 463.6 - 662.8 20.7-255.6 0.015- 0.573 77 
Quinoline 462.1 - 703.7 20.4-253.7 0.009-0.252 74 



135 

TABLEE.I 

NITROGEN BINARY SYSTEM DATA EMPLOYED IN 
EQUATION OF STATE EVALUATIONS 

Solvent Temperature Pressure N2 Mole Reference 
Range~ (K) Range~ (bar) Fraction Range 

Cyclopentane 366.4- 410.2 13.6- 312.8 0.021 - 0.374 2 
Cyclohexane 366.5-410.9 17.5- 275.9 0.009- 0.291 29 
Methylclohexane 453.2 - 497.2 52.0- 371.0 0.064 - 0.629 78 

310.9-477.6 4.4- 168.7 0.005 - 0.268 76 
Ethylcyclohexane 310.9- 477.6 4.3-203.9 0.005- 0.328 67 
Propylcyclohexane 313.6-472.9 16.4-997.0 0.020- 0.459 45 
Benzene 303.2 - 398.2 62.1-307.1 0.035- 0.204 72 

303.2- 373.2 67.4- 356.5 0.031 - 0.201 71 
n-Propylbenzene 313.2-473.2 10.0- 396.7 0.015- 0.360 18 
Toluene 323.2 - 348.2 36.4-353.5 0.018- 0.159 71 

313.2- 472.6 22.0- 1000.0 0.018- 0.390 45 
m-Xylene 313.2- 472.6 11. 5 - 1 00 1. 0 0.019-0.351 45 
Mesitylene 313.2- 472.6 11.0- 998.0 0.018- 0.340 45 
1-Methylnaphthalene 462.2 - 703.3 20.3-25.54 0.012- 0.288 75 

m-Cresol 462.2 - 663.6 30.9-254.2 0.009- 0.350 77 

Tetralin 463.6- 662.8 20.7- 255.6 0.015 - 0.573 77 

Quinoline 462.1 - 703.7 20.4-253.7 0.009 - 0.252 74 
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TABLE E.II 

CARBON DIOXIDE BINARY SYSTEM DATA EMPLOYED IN 
EQUATION OF STATE EVALUATIONS 

Solvent Temperature Pressure C02 Mole Reference 
Range, (K) Range, (bar) Fraction Range 

Cyclopentane 310.8-333.2 1.8- 82.6 0.007- 0.857 I 
366.8- 412.I 10.3- 120.0 0.033 - 0. 735 2 
276.6 - 493 .I 0.2- 120.3 0.009- 0.952 3 

Cyclohexane 473.2- 533.2 20.3- 129.7 0.020- 0.570 4 
348.2 - 423.2 19.8- 104.3 0.103 - 0.577 5 
344.3 68.7- I09.7 0.426- 0.880 6 
273.2- 303.2 7.7-58.1 0.081 - 0.806 7 
366.5-410.9 1.7- I45.1 0.067 - 0. 790 29 

Methylcyclohexane 311.0- 477.2 3.5- 148.9 0.027 - 0.979 8 
Ethylcyclohexane 310.9- 477.6 1.8- 164.3 O.OI2- 0.973 44 
Propylcyclohexane 313.1 - 472.8 20.5- 183.5 0.209 - 0. 792 45 
Benzene 344.3 69.0- 109.6 0.453 - 0.875 6 

298.2- 313.2 8.9- 77.5 0.106- 0.933 9 
313.2- 393.2 6.2- 133.0 0.047- 0.948 10 
313.4- 393.2 5.0-62.7 0.017- 0.661 II 
343.6-413.6 22.9- 153.9 0.143- 0.730 12 
273.2- 303.2 8.3 - 63.I O.I24- 0.928 7 
313.2 16.4-55.7 0.139- 0.602 5 
313.2 12.5- 55.2 0.100- 0.582 42 
3I3.2 12.2- 50.0 0.099 - 0.503 43 

Naphthalene 373.2- 423.2 13.9- 104.5 0.047- 0.336 23 
373.2- 423.2 10.1-50.7 0.027- O.I64 39 

Phenanthrene 383.2- 423.2 18.8- 106.2 0.047- 0.229 23 
423.2 - 523.2 10.I-50.7 0.016- 0.099 35 
377.6- 699.8 13.8- 110.3 O.OI7- 0.234 41 

Pyrene 433.2 7.3- 105.7 0.014- 0.172 23 
473.2- 573.2 10.1 - 50.7 0.013 - 0.074 35 

Toluene 313.3-477.0 3.3 - 152.9 0.013 - 0.97I 13 
393.3- 542.9 9.8- 52.0 0.017- 0.226 14 

353.2-413.2 2.6-131.7 0.012- 0.783 15 

353.4- 393.2 5.2- 64.5 0.019-0.361 11 

311.0 14.9- 69.3 0.131 - 0.866 16 

476.3 17.1 - 147.2 0.030 - 0.528 30 

Ethylbenzene 308.0- 328.0 13.8- 84.4 0.107- 0.921 16 

312.6 - 366.2 24.0- 142.5 0.210- 0.845 17 

n-Propylbenzene 313.2- 472.9 11.0- 193.5 0.032 - 0.848 18 
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TABLE E.II (Continued) 

Solvent Temperature Pressure C02 Mole Reference 
Range, (K) Range, (bar) Fraction Range 

Isopropylbenzene 299.3 - 383.2 7.2- 171.2 0.050- 0.986 19 
Butylbenzene 310.2- 373.2 5.1-55.7 0.028 - 0.527 20 

273.2- 293.2 10.1 -50.7 0.106-0.778 21 
Hexylbenzene 288.2 - 318.2 6.5- 92.4 0.069- 0.978 22 
Heptylbenzene 268.2 - 318.2 6.5 - 83.0 0.087- 0.904 22 
Octylbnezene 288.2 - 318.2 5.8- 82.8 0.070- 0.767 22 
o-Xylene 312.6- 366.2 14.7- 149.3 0.120- 0.936 17 
m-Xylene 462.2 - 582.6 20.8- 52.6 0.025- 0.174 14 

312.6- 366.2 13.3- 153.6 0. 116 - 0. 841 17 

310.9- 477.6 4.1 - 144.8 0.012- 0.295 31 
303.2- 343.2 6. 7- 271.5 0.076- 0.238 36 

p-Xylene 312.6- 366.2 12.0- 141.6 0.108 - 0.867 17 

353.2- 393.2 4.6-61.5 0.026- 0.397 II 

Mesitylene 310.9- 477.6 2.5- 176.0 0.016- 0.982 34 

1-Methylnaphthalene 463.1 - 703.6 19.2-51.0 0.039- 0.143 24 

353.2-413.2 18.2- 144.5 0.046- 0.488 15 

308.2 - 328.2 20.0- 240.0 0.097-0.614 32 

372.6 37.2- 206.7 0.130- 0.601 38 

2-Methylnaphthalene 307.2 8.8- 69.8 0.054- 0.434 25 

323.2- 373.2 10.1-50.7 0.041 - 0.266 39 

307.2- 373.2 15.2-65.9 0.054-0.416 20 

1-Naphthol 393.2- 453.2 10.1-50.7 0.017- 0.094 39 

2-Naphthol 413.2-473.2 I 0.1 -50.7 0.016- 0.092 39 

Tetralin 462.0-664.7 20.0- 51.3 0.023 - 0.137 26 

544.2 15.4-266.0 0.020 - 0.645 30 

344.3 - 377.6 40.7-243.8 0.185- 0.801 37 

343.6- 373.1 31.7-221.2 0.133 - 0.932 38 

trans-Decal in 323.2- 423.2 14.7- 106.6 0.052 - 0.456 5 

345.4 - 523.6 45.1 - 221.4 0.135-0.741 27 

344.3 50.6- 156.5 0.243 - 0.837 46 

Diphenylmethane 462.8- 703.8 19.2-51.0 0.039- 0.143 24 

Quinoline 343.2- 541.0 43.6- 225.4 0.082- 0.513 27 

461.8 - 703.4 20.1 - 51.0 0. 022 - 0. I 15 28 

Diphenyl 373.2- 473.2 I 0.1 - 50.7 0.025 - 0.177 39 

m-Cresol 462.7 - 664.7 19.5-51.8 0. 009 - 0. Ill 28 

308.2 - 328.2 20.0-240.0 0.081 - 0.537 32 

Styrene 308.2- 373.2 26.9- 162.4 0.176- 0.991 33 

308.0- 328.0 14.4- 83.1 0.001 - 0.006 16 

Anisole 343.1 - 372.3 24.5- 168.1 0.165 - 0.864 38 



Solvent 

Benzaldehyde 
Phenol 
Catechol 

TABLE E.II (Continued) 

Temperature 
Range, (K) 

343.0- 372.6 
348.2 - 423.2 
398.2-473.2 

Pressure 
Range, (bar) 

28.3- 183.1 
10.1-50.7 
10.1 - 50.7 

138 

C02 Mole Reference 
Fraction Range 

0.181-0.792 38 
0.021 - 0.154 40 
0.012-0.072 40 



TABLE E.III 

CARBON MONOXIDE BINARY SYSTEM DATA E:MPLOYED IN 
EQUATION OF STATE EVALUATIONS 

139 

Solvent Temperature Pressure CO Mole Reference 

Benzene 
Naphthalene 
Phenanthrene 

Pyrene 

Range, (K) 

323.2-433.2 
373.2- 423.2 
383.2- 423.2 
377.6- 699.8 
433.2 

Range, (bar) 

14.1- 92.6 
47.9- 227.9 
54.7-232.8 
13.8- 110.3 
66.5-206.8 

Fraction Range 

0.010-0.064 47 
0.024 - 0.098 48 
0.023 - 0.075 48 
0.005 - 0.093 41 
0.025 - 0.070 48 
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TABLE E.IV 

METHANE BINARY SYSTEM DATA El\1PLOYED IN 
EQUATION OF STATE EVALUATIONS 

Solvent Temperature Pressure CH4 Mole Reference 
Range, (K) Range, (bar) Fraction Range 

Cyclohexane 294.3- 344.3 13.8- 282.0 0.037- 0. 765 63 
323.2- 423.2 12.5 - 94.3 0.027- 0.222 64 

Methylcyclohexane 313.4- 473.2 25.2- 277.1 0.065- 0.737 53 
Ethylcyclohexane 311. I - 4 77.6 4.1 -207.3 0.015- 0.600 67 
Propylcyclohexane 313.4- 472.8 15.0-389.5 0.038- 0.712 53 
Benzene 423.2 6.9- 330.9 0.014- 0.695 54 

421.1 - 501.2 20.2-242.6 0.025 - 0.495 55 
313.2 36.6-374.2 0.099- 0.688 52 
313.2- 423.2 14.6- 91.4 0.028- 0.167 64 

Phenanthrene 398.2-473.2 17.7-241.7 0.017- 0.186 59 
383.2 - 423.2 20.4- 107.1 0.020- 0.090 64 
377.6- 699.8 13.8- 110.3 0.012- 0.135 41 

Naphthalene 373.2- 423.2 19.4- 86.9 0.024- 0.100 64 

Pyrene 433.2 23.5- 113.0 0.020- 0.086 64 

Toluene 422.5- 543.2 20.2-252.7 0.018-0.633 55 

313.2 I 01.0- 424.5 0.237- 0.744 52 

423.2 6.9- 365.4 0.017- 0.729 54 
323.2-423.2 11.7-89.2 0.026-0.181 66 

n-Propylbenzene 313.2- 472.8 21.4- 527.0 0.044- 0.805 53 

m-Xylene 310.9- 477.6 4.1 - 144.8 0.012- 0.295 31 

313.2 100.3 - 465.2 0.246 - 0. 783 52 

460.8- 582.4 20.2- 201.9 0.022- 0.455 60 

Mesitylene 313.2 101.7-519.1 0.278 - 0.808 52 

310.9-477.6 3.5- 145.9 0.011- 0.325 34 

1-Methylnapthalene 464.2- 704.0 20.5- 251.3 0.025- 0.454 58 

Tetralin 461.9- 664.6 20.3 - 253.3 0.029- 0.473 58 

trans- Decalin 323.2- 423.2 8.9- 96.2 0.026- 0.200 64 

Diphenylmethane 462.5- 702.9 20.1 - 253.0 0.032- 0.439 58 

m-Cresol 462.3 - 663.4 20.0-253.3 0.018- 0.489 60 

Quinoline 462.8 - 702.9 20.1 - 253.0 0.017- 0.403 61 



141 

TABLEE.V 

ETHANE BINARY SYSTEM DATA EMPLOYED IN 
EQUATION OF STATE EVALUATIONS 

Solvent Temperature Pressure C2}\ Mole Reference 
Range, (K) Range, (bar) Fraction Range 

Cyclohexane 323.2 - 423.2 3.3 - 77.7 0.049- 0.60I 70 
3I3.2 I2.3- 42.5 0.236 - 0.836 68 

Methylcyclohexane 3I3.I -473.0 6.0- 93.6 0.072- 0.923 53 
Propylcuclohexane 3I3.I - 472.9 7.6-II7.7 0.052- 0.954 53 
Benzene 323.2- 423.2 4.8- 84.6 0.049-0.600 70 

298.2 7.8-38.0 O.I20- 0.930 69 
Naphthalene 373.2- 423.2 21.5- I04.3 0.085- 0.493 70 
Phenanthrene 383.2- 423.2 22.6- 1I6.5 0.081 - 0.3I3 70 
Pyrene 433.2 28.6-99.2 0.072 - 0.209 70 
Toluene 3I3.1 - 473.2 6.3- 114.8 0.027 - 0.905 53 
Propyl benzene 313.2- 473.1 3.8- 132.8 0.033- 0.945 53 
m-Xylene 3I3. I - 4 73. I 5.1 - I20.0 0.036 - 0.925 53 

Mesitylene 3I3.2- 473.0 5.0- 128.2 0.038- 0.944 53 

1-Methylnaphthalene 308.2 - 328.2 I5.0- 145.0 0.117 - 0. 754 32 

372.5 32.4- 122.0 0.094-0.348 38 

m-Cresol 308.2 - 328.2 15.0-240.0 0.066- 0.40I 32 

trans-Decal in 323.2 - 423.2 3.5- 86.8 0.054- 0.561 70 

Benzaldehyde 372.5 24.1 - 93.8 0.051 - 0.242 38 

Anisole 372.5 24.1 - 96.5 0.083 - 0.539 38 
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TABLEE.VI 

HYDROGEN BINARY SYSTEM DATA EMPLOYED IN 
EQUATION OF STATE EVALUATIONS 

Solvent Temperature Pressure H2 Mole Reference 
Range, K Range, bar Fraction Range 

Cyclohexane 338.7- 394.3 6.9-690.4 0.003- 0.350 87 
310.9-410.9 34.5-620.5 0.014- 0.292 89 

Benzene 433.2- 533.2 19.0- 178.0 0.007- 0.132 85 
323.2- 423.2 25.5- 157.3 0.010- 0.059 48 
338.7- 433.2 5.3- 689.3 0.002 - 0.243 87 

Naphthalene 373.2- 423.2 42.9- 193.9 0.016- 0.057 48 
Phenanthrene 398.2 - 473.2 26.1 - 252.3 0. 0 17 - 0. 186 59 

383.2-423.2 58.9- 216.9 0.017- 0.056 48 
377.6- 699.8 13.8- 110.3 0.002 - 0.080 41 

Pyrene 433.2 51.7- 197.3 0.016- 0.058 48 
Toluene 542.2 - 568.2 34.6-327.0 0.019-0.514 80 

461.9- 575.2 20.2-253.7 0.008 - 0.394 90 

1-Methylnaphthalene 462.2- 701.7 20.3- 253.3 0.010- 0.259 81 
730.1 50.9-277.8 0.043- 0.336 88 

Tetralin 462.8 - 662.3 20.3- 253.3 0.012- 0.282 83 
423.2- 621.8 17.4- 273.3 0.010-0.239 84 

Quinoline 462.5- 701.7 20.1 - 253.0 0.007- 0.207 82 

Diphenylmethane 462.8- 701.7 20.3- 253.3 0.012- 0.306 79 
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APPENDIXF 

NITROGEN+ AROMATICS AND NAPHTHENES SYSTEMS 

This appendix provides detailed calculation results of the representation of bubble 

point pressures of nitrogen + aromatics and naphthenes for the five cases the using Peng­

Robinson equation of state. For each case, the interaction parameters along with their 

uncertainties, Henry's constants, infinite dilution partial molar volumes and complete 

statistics including the root mean squared error (RMSE), bias, absolute average deviation 

(AAD), and absolute average percent deviation (o/oAAD) are presented. For some 

mixtures, the infinite dilution partial molar volumes show irregularity at the higher 

temperatures. 

For Cases 2 and 3, the values of Henry's constants and infinite dilution partial 

molar volumes are at the highest temperature of that data set. 
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SYSTEM 

REFERENCE 

Methycyclohexane 
76 
76 

76 

76 

78 

78 

78 

Ethylcyclohexane 
67 
67 

67 

67 

m-Cresol 
77 
77 

TABLEF.I 

BUBBLE POINT CALCULATIONS USING PENG-ROBINSON EQUATION OF STATE 
FOR NITROGEN+ AROMATICS AND NAPHTHENES SYSTEM: CASE 1 

T(K) c,2 D,2 H,,2 yoo 
I RMSE BIAS AAD 

Oc Og (bar) (cc/mol) (bar) (bar) (bar) 

310.9 .1500 .0000 957 55 13.19 10.72 10.72 
.0000 .0000 

352.6 .1500 .0000 891 68 8.61 7.04 7.11 
.0000 .0000 

394.3 .1500 .0000 796 89 9.08 6.83 6.83 
.0000 .0000 

477.6 .1500 .0000 552 204 9.64 6.76 6.76 
.0000 .0000 

453.2 .1500 .0000 629 151 8.99 2.13 7.84 
.0000 .0000 

472.2 .1500 .0000 569 190 29.94 11.53 17.57 
.0000 .0000 

497.2 .1500 .0000 487 277 15.46 4.67 12.69 
.0000 .0000 

310.9 .1500 .0000 839 55 13.91 9.65 9.65 
.0000 .0000 

338.7 .1500 .0000 821 63 9.43 -7.00 7.22 
.0000 .0000 

394.3 .1500 .0000 745 86 8.01 5.42 6.04 
.0000 .0000 

477.6 .1500 .0000 566 167 18.9 14.00 14.00 
.0000 .0000 

462.2 .1500 .0000 1975 68 21.56 -17.14 17.14 
.0000 .0000 

542.7 .1500 .0000 1341 Ill 14.07 -10.31 10.31 
.0000 .0000 

o/oAAD NP 

14.38 7 

7.91 7 

7.73 7 

5.08 7 

4.51 5 

7.77 7 

8.65 5 

11.61 11 

9.83 11 

9.12 9 

15.19 10 

14.05 7 

7.69 7 -VI 
N 



TABLE F .I (Continued) 

--
SYSTEM T(K) c.2 012 H1.2 v-

I RMSE BIAS AAD %AAD NP 

REFERENCE oc Oq (bar) (cc/mol) (bar) (bar) (bar) 

77 624.3 .1500 .0000 797 271 13.47 -11.74 11.74 8.67 6 
.0000 .0000 

77 663.6 .1500 .0000 551 628 11.70 -9.59 9.59 7.60 5 
.0000 .0000 

Tetralin 463.6 .1500 .0000 1040 86 37.57 -29.57 29.57 23.93 7 
77 .0000 .0000 
77 544.0 .1500 .0000 800 145 36.06 -27.05 27.05 19.50 7 

.0000 .0000 
77 623.2 .1500 .0000 547 328 33.59 -27.65 27.65 19.18 6 

.0000 .0000 
Quinoline 462.1 .1500 .0000 3563 56 82.07 64.99 64.99 54.58 7 
74 .0000 .0000 
74 541.9 .1500 .0000 2530 78 77.76 60.66 60.66 48.33 7 

.0000 .0000 
74 623.9 .1500 .0000 17ll 127 72.01 54.78 54.78 41.72 7 

.0000 .0000 
74 703.7 .1500 .0000 1055 287 72.56 56.08 56.08 35.34 6 

.0000 .0000 
Cyclopentane 366.4 .1500 .0000 952 83 61.36 40.72 40.73 25.67 17 
2 .0000 .0000 
2 410.2 .1500 .0000 762 128 37.52 22.77 25.63 10.08 14 

.0000 .0000 
Cyclohexane 366.4 .1500 .0000 997 73 18.92 12.58 14.13 11.73 9 
29 .0000 .0000 
29 410.8 .1500 .0000 843 103 19.95 13.47 13.63 7.47 9 

.0000 .0000 
Propylcyclohexane 313.6 .1500 .0000 820 55 136.40 -116.18 116.18 26.68 7 
45 .0000 .0000 
45 393.2 .1500 .0000 752 81 17.37 -15.03 15.03 9.40 10 -VI 

w 



TABLE F.I (Continued) 

--
SYSTEM T(K) c,2 D,2 H,,2 v-I RMSE BIAS AAD %AAD NP 
REFERENCE ac CJp (bar) (cc/rnol) (bar) (bar) (bar) 

.0000 .0000 
45 472.9 .1500 .0000 606 140 11.25 -1.05 8.06 5.87 I 1 

.0000 .0000 
1-Methylnaphthalene 462.6 .1500 .0000 1380 73 29.84 -23.54 23.54 19.08 7 
75 .0000 .0000 
75 542.8 .1500 .0000 1089 110 21.70 -16.45 16.45 11.39 7 

.0000 .0000 
75 624.0 .1500 .0000 792 200 18.37 -15.85 15.85 11.99 6 

.0000 .0000 
75 703.3 .1500 .0000 499 562 17.24 -15.23 15.23 10.57 7 

.0000 .0000 
Toluene 313.2 .1500 .0000 1420 50 110.33 -96.71 96.71 20.15 8 
45 .0000 .0000 
45 391.5 .1500 .0000 1142 74 31.58 -28.27 28.27 16.10 10 

.0000 .0000 
45 472.6 .1500 .0000 801 142 21.28 1.15 15.91 7.20 15 

.0000 .0000 
71 323.2 .1500 .0000 1390 52 65.03 -56.04 56.04 30.98 6 

.0000 .0000 
71 348.2 .1500 .0000 1306 58 51.95 -44.37 44.37 22.93 6 

.0000 .0000 
rn-Xylene 313.2 .1500 .0000 1274 49 118.01 -100.40 100.40 22.74 7 
45 .0000 .0000 
45 391.5 .1500 .0000 1066 71 59.09 -54.15 54.15 18.78 12 

.0000 .0000 
45 472.6 .1500 .0000 787 126 23.55 -20.37 20.37 13.52 10 

.0000 .0000 
Mesitylene 313.2 .1500 .0000 1201 49 164.80 -146.50 146.50 31.60 8 
45 .0000 .0000 -VI 

"""' 



TABLE F. I (Continued) 

-
SYSTEM T(K) c.2 012 Ht.2 v-

I RMSE BIAS AAD 0/oAAD NP 

REFERENCE O'c O'g (bar) (cc/mo1) (bar) (bar) (bar) 

45 393.2 .1500 .0000 1015 70 61.19 -58.21 58.21 21.37 9 
.0000 .0000 

45 472.6 .1500 .0000 775 117 27.13 -24.53 24.53 15.29 10 
.0000 .0000 

n-Propylbenzene 313.4 .1500 .0000 ll52 49 73.59 -63.70 63.70 38.35 8 
18 .0000 .0000 
18 403.2 .1500 .0000 968 75 36.47 -32.22 32.22 19.99 8 

.0000 .0000 
18 473.2 .1500 .0000 765 120 14.42 -13.21 13.21 8.60 8 

.0000 .0000 
Benzene 303.2 .1500 .0000 1728 48 34.93 -30.64 30.64 14.40 5 
71 .0000 .0000 
71 348.2 .1500 .0000 1499 59 10.68 -10.43 10.43 6.83 5 

.0000 .0000 
71 373.2 .1500 .0000 1364 68 9.09 2.21 6.91 3.93 5 

.0000 .0000 
72 398.2 .1500 .0000 1226 81 7.12 -.05 5.86 3.79 7 

.0000 .0000 
72 303.2 .1500 .0000 1728 48 44.72 -41.76 41.76 19.12 3 

.0000 .0000 
72 348.2 .1500 .0000 1499 59 16.81 -15.86 15.86 9.13 6 

.0000 .0000 
72 373.2 .1500 .0000 1364 68 7.80 -6.60 6.74 4.51 6 

.0000 .0000 

OVERALL STATISTICS 50.39 -12.73 30.52 16.21 424 

-V1 
V1 



SYSTEM 

REFERENCE 

Methylcyclohexane 
76 
78 

Ethy1cyclohexane 
67 
Propylcyclohexane 
45 
Cyclopentane 
2 
Cyclohexane 
29 
m-Cresol 
77 
Tetralin 
77 
Quinoline 
74 
1-Methylnaphtha1ene 
75 
Toluene 
71 
45 

m-Xylene 
45 

TABLE F.II 

BUBBLE POINT CALCULATIONS USING PENG-ROBINSON EQUATION OF STATE 
FOR NITROGEN+ AROMATICS AND NAPHTHENES SYSTEM: CASE 2 

T(K) cl2 Dt2 Hl.2 
yoo 

I RMSE BIAS AAD 

Range <lc CJp (bar) (cc/mol) (bar) (bar) (bar) 

(310.9- .1057 .0000 2.77 .26 1.63 
477.6) .0026 .0000 531 203 

(453.2- .0992 .0000 14.86 -5.13 12.10 
497.2) .0132 .0000 468 274 

(310. 9- .1238 .0000 11.43 .28 7.38 
477.6) .0072 .0000 553 166 

(313.6- .2239 .0000 28.09 8.09 17.57 
472.9) .0049 .0000 649 141 

(366.4- .04I9 .0000 13.61 -5.20 10.81 
410.2) .0068 .0000 661 125 

(366.5- .1005 .0000 5.96 -1.68 4.83 
410.9) .0042 .0000 788 102 

(462.2- .2430 .0000 5.39 -1.21 3.38 
663.6) .0062 .0000 573 636 

(463.6- .3922 .0000 9.28 -2.34 6.98 
623.2) .0121 .0000 616 338 

(462.1- -.1639 .0000 19.44 3.91 13.05 
703.7) .0221 .0000 907 276 

(462.2- .3045 .0000 3.96 -1.25 2.98 
703.3) .0048 .0000 527 572 

(323.2- .2464 .0000 11.07 -3.75 9.67 
348.2) .0045 .0000 1601 59 

(313.2- .1924 .0000 28.67 1.49 18.83 
472.6) .0035 .0000 836 43 

(313.2- .2154 .0000 18.41 -6.04 15.49 
472.6) .0027 .0000 841 128 

%AAD NP 

2.32 28 

7.94 17 

9.87 41 

5.46 28 

10.27 31 

5.64 18 

2.82 25 

5.12 20 

10.01 27 

3.12 27 

6.95 12 

7.47 33 

7.16 29 -VI 
0'\ 



TABLE F.II (Continued) 

SYSTEM T(K) c.2 012 H1.2 v-
I 

REFERENCE Range Oc O'p (bar) (cc/mo)) 

Mesitylene (313.2- .2279 .0000 
45 472.6) .0034 .0000 838 118 
Propylbenzene (313.2- .2436 .0000 
18 473.2) .0121 .0000 840 122 
Benzene (303.2- .1683 .0000 
71 373.2) .0055 .0000 1412 69 
72 (303.2- .1737 .0000 

398.2) .0052 .0000 1426 69 

OVERALL STATISTICS 

RMSE BIAS AAD 

(bar) (bar) (bar) 

27.08 -9.28 22.10 

28.59 -4.23 21.20 

16.60 -.93 12.74 

14.29 -.14 9.60 

18.00 -1.36 11.37 

o/oAAD 

8.58 

11.42 

6.02 

4.58 

6.93 

NP 

27 

24 

15 

22 

424 

-u. 
....J 



SYSTEM 

REFERENCE 

Methylcyclohexane 
76 
78 

Ethy lcyclohexane 
67 
Propylcyclohexane 
45 
Cyclopentane 
2 
Cyclohexane 
29 
m-Cresol 
77 
Tetra lin 
77 
Quinoline 
74 
1-Methylnaphthalene 
75 
Toluene 
71 
45 

m-Xylene 
45 

TABLE F.III 

BUBBLE POINT CALCULATIONS USING PENG-ROBINSON EQUATION OF STATE 
FOR NITROGEN + AROMA TICS AND NAPHTHENES SYSTEM: CASE 3 

T(K) c,2 D,2 H,,2 V'"' l RMSE BIAS AAD 

Range O'c O'p (bar) (cc/mol) (bar) (bar) (bar) 

(310.9- .0101 .0327 2.01 .46 1.49 
477.6) .0155 .0053 541 212 

(453.2- -.0370 .0905 9.16 .95 6.54 
497.2) .0317 .0186 536 311 

(310.9- -.1054 .0725 9.65 1.47 7.38 
477.6) .0583 .0181 592 188 

(313.6- .0208 .0656 16.21 9.88 13.04 
472.9) .0272 .0084 717 161 

(366.4- -.0098 .0325 13.03 -3.79 11.10 
410.2) .0311 .0185 698 132 

(366.5- -.0246 .0544 3.16 .08 2.58 
410.9) .0181 .0077 853 112 

(462.2- .1894 .0126 5.20 -1.37 3.49 
663.6) .0482 .0112 574 642 

(463.6- .8295 -.0982 5.92 -2.48 4.80 
623.2) .0867 .0196 590 299 

(462.1- -1.1652 .2188 12.55 6.20 10.49 
703.7) .2006 .0427 987 342 

(462.2- .3597 -.Oll2 3.84 -1.20 2.85 
703.3) .0407 .0081 525 566 

(323.2- -.1095 .1075 5.92 -.69 4.59 
348.2) .0754 .0226 1803 75 

(313.2- .0106 .0599 13.68 -6.17 11.60 
472.6) .0170 .0052 870 156 

(313.2- .1542 .0182 17.19 -7.19 13.73 
472.6) .0307 .0091 854 122 

%AAD NP 

3.01 28 

3.83 17 

11.81 41 

7.61 28 

9.90 31 

4.30 18 

2.90 25 

5.05 20 

13.10 27 

2.95 27 

3.82 12 

5.44 33 

6.79 29 -v. 
00 



TABLE F.III (Continued) 

SYSTEM T(K) c,2 012 Hr.2 V"" I RMSE BIAS AAD o/oAAD NP 
REFERENCE Range O'c O'p (bar) (cc/mol) (bar) (bar) (bar) 

Mesitylene (313.2- .0883 .0366 22.53 -12.88 19.15 7.64 27 
45 472.6) .0419 .0109 867 127 
Propylbenzene (313.2- -.0572 .0850 3.77 -.12 2.42 1.75 24 
18 473.2) .0085 .0022 923 143 
Benzene (303.2- -.1296 .1063 4.23 I. 78 3.53 2.08 15 
71 373.2) .0196 .0069 1570 84 
72 (303.2- -.1453 .ll44 3.23 1.54 2.73 2.08 22 

398.2) .0148 .0052 1603 85 

OVERALL STATISTICS 11.27 -.97 7.73 6.10 424 

-'JI 
\0 



SYSTEM 

REFERENCE 

Methycyclohexane 
76 
76 

76 

76 

78 

78 

78 

Ethylcyclohexane 
67 
67 

67 

67 

m-Creso1 
77 
77 

TABLEF.IV 

BUBBLE POINT CALCULATIONS USING PENG-ROBINSON EQUATION OF STATE 
FOR NITROGEN+ AROMATICS AND NAPHTHENES SYSTEM: CASE 4 

T(K) cl2 012 H1.2 V"" I RMSE BIAS AAD 

oc O'p (bar) (cc/mol) (bar) (bar) (bar) 

310.9 .1082 .0000 867 54 .99 .21 .91 
.0014 .0000 

352.6 .1140 .0000 834 68 .71 .05 .63 
.0013 .0000 

394.3 .0997 .0000 741 88 1.60 -.21 1.07 
.0040 .0000 

477.6 .0720 .0000 516 201 2.61 -.84 2.15 
.0097 .0000 

453.2 .1326 .0000 618 150 5.99 -3.17 4.44 
.0080 .0000 

472.2 .0698 .0000 530 187 16.03 -7.80 14.51 
.0239 .0000 

497.2 .0871 .0000 464 274 10.30 -4.83 9.17 
.0303 .0000 

310.9 .1134 .0000 772 55 4.87 -.10 3.48 
.0047 .0000 

338.7 .1774 .0000 866 63 5.80 -1.47 4.68 
.0065 .0000 

394.3 .1142 .0000 709 85 3.02 -.31 2.23 
.0054 .0000 

477.6 .0463 .0000 517 164 9.75 .42 7.10 
.0229 .0000 

462.2 .2448 .0000 2260 68 .94 -.19 .68 
.0015 .0000 

542.7 .2381 .0000 1455 113 2.66 .43 1.87 
.0065 .0000 

%AAD NP 

2.69 7 

2.20 7 

1.58 7 

2.48 7 

3.80 5 

9.37 7 

8.23 5 

5.67 II 

6.27 11 

5.45 9 

8.18 10 

.51 7 

1.81 7 

§ 



TABLE F.IV (Continued) 

-
SYSTEM T(K) c,2 012 Ht.2 

y-
I RMSE BIAS AAD o/oAAD NP 

REFERENCE O'c O'p (bar) (cc/mol) (bar) (bar) (bar) 

77 624.3 .2642 .0000 851 275 4.40 -1.98 3.50 3.22 6 
.0162 .0000 

77 663.6 .2158 .0000 567 633 9.65 -4.36 8.89 6.63 5 
.0463 .0000 

Tetra lin 463.6 .3558 .0000 1319 88 1.92 -.10 1.42 1.06 7 
77 .0035 .0000 
77 544.0 .4401 .0000 998 150 2.46 1.03 2.24 3.34 7 

.0065 .0000 
77 623.2 .4881 .0000 646 342 3.28 -1.56 2.94 3.18 6 

.Oll8 .0000 
Quinoline 462.1 -.0735 .0000 2467 55 1.21 .55 .92 2.28 7 
74 .0018 .0000 
74 541.9 -.1627 .0000 1782 75 .65 .26 .62 1.00 7 

.0014 .0000 
74 623.9 -.2863 .0000 1234 121 .83 .41 .65 1.95 7 

.0028 .0000 
74 703.7 -.4602 .0000 786 266 1.62 .81 1.42 2.60 6 

.0089 .0000 
Cyclopentanc 366.4 .0245 .0000 764 80 8.83 -3.54 7.10 10.61 17 
2 .0060 .0000 
2 410.2 .0684 .0000 685 125 13.17 -5.57 11.85 8.13 14 

.0099 .0000 
Cyclohexane 366.4 .1071 .0000 924 73 5.58 -1.95 4.45 6.90 9 
29 .0051 .0000 
29 410.8 .0897 .0000 777 102 4.78 -1.92 4.31 3.89 9 

.0058 .0000 
Propylcyclohexanc 313.6 .2337 .0000 987 55 4.75 -.59 3.49 1.23 7 
45 .0009 .0000 
45 393.2 .1846 .0000 790 81 4.82 -2.25 4.06 3.90 10 ~ 



TABLE F.IV (Continued) 

SYSTEM T(K) cl2 012 Ht,2 
v.., 

1 RMSE BIAS AAD %AAD NP 
REFERENCE crc crp (bar) (cc/mol) (bar) (bar) (bar) 

.0031 .0000 
45 472.9 .1354 .0000 599 139 10.06 -4.58 8.05 6.58 11 

.0095 .0000 
1-Methylnaphthalene 462.6 .2989 .0000 1667 74 .54 -.02 .48 .77 7 
75 .0009 .0000 
75 542.8 .3007 .0000 1239 112 1.50 .52 1.38 2.82 7 

.0038 .0000 
75 624.0 .3114 .0000 868 204 3.53 -1.50 3.17 3.04 6 

.0128 .0000 
75 703.3 .3429 .0000 534 574 5.67 -2.14 4.88 4.10 7 

.0244 .0000 
Toluene 313.2 .1963 .0000 1602 50 18.10 -6.52 14.84 3.28 8 
45 .0024 .0000 
45 391.5 .1980 .0000 1236 74 17.15 -6.85 14.12 8.96 10 

.0095 .0000 
45 472.6 .1263 .0000 782 141 18.40 -7.29 15.97 8.12 15 

.Oll4 .0000 
71 323.2 .2506 .0000 1779 52 12.26 -5.20 11.28 7.34 6 

.0068 .0000 
71 348.2 .2409 .0000 1583 59 8.26 -2.71 7.68 6.11 6 

.0054 .0000 
m-Xylene 313.2 .2150 .0000 1502 49 8.29 .15 7.89 2.53 7 
45 .0015 .0000 
45 391.5 .2197 .0000 1192 72 23.07 -9.62 21.79 8.46 12 

.0077 .0000 
45 472.6 .1999 .0000 827 127 15.54 -7.40 13.29 9.36 10 

.0137 .0000 
Mesitylene 313.2 .2293 .0000 1454 49 31.49 -14.13 27.39 6.87 8 
45 .0043 .0000 -"' N 



TABLE F.IV (Continued) 

SYSTEM T(K) c,2 D12 H,,2 v-
I RMSE BIAS AAD %AAD NP 

REFERENCE ac Og (bar) (cc/mol) (bar) (bar) (bar) 

45 393.2 .2174 .0000 1128 70 32.62 -15.52 30.53 11.58 9 
.0132 .0000 

45 472.6 .2218 .0000 833 118 11.40 -5.90 9.76 7.98 10 
.0101 .0000 

n·Propylbenzene 313.4 .3010 .0000 1669 50 7.08 -2.67 5.97 4.49 8 
18 .0040 .0000 
18 403.2 .2371 .0000 llOO 76 10.42 -4.49 9.67 7.70 8 

.0086 .0000 
18 473.2 .1731 .0000 783 120 11.18 -5.74 10.03 6.75 8 

.0105 .0000 
Benzene 303.2 .1875 .0000 1927 48 1.36 -.51 1.16 1.02 5 
71 .0007 .0000 
71 348.2 .1612 .0000 1537 59 6.83 -3.45 6.47 4.60 5 

.0046 .0000 
71 373.2 .1402 .0000 1339 68 6.58 -3.16 6.30 4.44 5 

.0053 .0000 
72 398.2 .1429 .0000 1212 81 6.37 -2.82 5.90 4.22 7 

.0059 .0000 
72 303.2 .2026 .0000 2012 48 1.19 -.45 .87 .61 3 

.0008 .0000 
72 348.2 .1781 .0000 1595 59 3.85 -1.53 3.53 2.40 6 

.0028 .0000 
72 373.2 .1587 .0000 1387 68 5.95 -2.65 5.36 3.35 6 

.0004 .0000 

OVERALL STATISTICS 11.33 -3.23 7.42 5.29 424 

~ 
I.N 



SYSTEM 

REFERENCE 

Methycyclohexane 
76 
76 

76 

76 

78 

78 

78 

Ethylcyclohexane 
67 
67 

67 

67 

m-Cresol 
77 
77 

TABLEF.V 

BUBBLE POINT CALCULATIONS USING PENG-ROBINSON EQUATION OF STATE 
FOR NITROGEN+ AROMATICS AND NAPHTHENES SYSTEM: CASE 5 

T(K) cl2 H1.2 V'"' I RMSE BIAS AAD 

a (bar) (cc/mo1) (bar) (bar) (bar) 

310.9 .1005 .0025 871 55 1.01 .25 .93 
.0089 .0030 

352.6 .1097 .0015 836 68 .72 .07 .65 
.0091 .0028 

394.3 .0655 .0121 753 91 1.53 -.04 1.16 
.0563 .0202 

477.6 -.0973 .0746 561 224 1.05 .19 .94 
.0311 .0137 

453.2 .0836 .0308 659 159 4.02 -.64 3.69 
.0255 .0154 

472.2 -.0818 .1089 657 223 5.60 .63 5.08 
.0281 .0171 

497.2 -.1869 .1669 585 341 1.04 .13 .83 
.0186 .0099 

310.9 .1006 .0040 780 56 4.85 .04 3.47 
.0641 .0199 

338.7 -.0076 .0552 964 74 4.89 -.07 3.07 
.0327 .0101 

394.3 .0156 .0321 751 92 2.53 .48 2.05 
.0000 .0019 

477.6 .0120 .0139 528 160 9.73 .72 7.02 
.1908 .0750 

462.2 .1668 .0169 2283 71 .74 .00 .49 
.0528 .0114 

542.7 .4124 -.0413 1414 104 2.39 -.13 1.96 
.1421 .0340 

%AAD NP 

2.86 7 

2.23 7 

1.73 7 

1.25 7 

2.91 5 

3.56 7 

.62 5 

5.67 11 

4.72 11 

6.72 9 

8.29 10 

.49 7 

2.26 7 -0"1 .... 



TABLE F. V (Continued) 

SYSTEM T(K) c.2 012 H1.2 V"" I RMSE BIAS AAD %AAD NP 

REFERENCE O'c O'g (bar) (cc/mol) (bar) (bar) (bar) 

77 624.3 -.1797 .1263 928 317 1.22 .09 1.03 1.18 6 
.0601 .0165 

77 663.6 -.5868 .2772 677 797 1.64 .41 1.56 1.39 5 
.1386 .0407 

Tetralin 463.6 .3565 -.0005 1316 88 1.94 -.36 1.45 1.15 7 
77 .0082 .0020 
77 544.0 .6696 -.0526 953 136 1.75 .15 1.29 1.35 7 

.1041 .0239 
77 623.2 .2288 .0707 685 383 1.85 -.19 1.50 1.18 6 

.0892 .0240 
Quinoline 462.1 -.0219 -.0107 2445 53 1.06 .38 .81 2.07 7 
74 .0276 .0056 
74 541.9 -.1128 -.0108 1764 73 .53 .08 .41 .59 7 

.0207 .0046 
74 623.9 -.2715 -.0035 1230 120 .82 .35 .68 1.89 7 

.0346 .0079 
74 703.7 -.4154 -.0130 777 261 1.55 .57 1.23 2.32 6 

.0793 .0224 
Cyclopentane 366.4 -.0764 .0594 871 90 5.99 -.15 4.84 9.12 17 
2 .0232 .0132 
2 410.2 -.1212 .1287 865 153 3.55 .37 2.98 2.57 14 

.0167 .0104 
Cyclohexane 366.4 .0159 .0380 990 79 4.18 -.49 3.48 6.20 9 
29 .0420 .0174 
29 410.8 -.0371 .0594 858 113 1.31 .20 1.10 1.77 9 

.0144 .0066 
Propy1cyclohexane 313.6 .2158 .0056 1007 57 4.37 .29 3.99 1.56 7 
45 .0214 .0067 
45 393.2 .1108 .0257 847 87 2.68 -.27 1.84 1.38 10 ~ 

u. 



TABLE F. V (Continued) 

SYSTEM T(K) cl2 012 Hl,2 V"' I RMSE BIAS AAD %AAD NP 

REFERENCE ac CJp (bar) (cc/mo1) (bar) (bar) (bar) 

.0163 .0056 
45 472.9 .0005 .0641 699 160 1.40 .49 1.26 1.99 II 

.0009 .0006 
1-Methylnaphthalene 462.6 .2813 .0034 1672 75 .53 .03 .46 .81 7 
75 .0145 .0028 
75 542.8 .2950 .0012 1241 112 1.50 .59 1.39 2.88 7 

.0128 .0025 
75 624.0 -.0642 .0834 934 231 1.05 .18 .93 .95 6 

.0675 .0143 
75 703.3 -.2488 .1615 604 672 2.53 .33 2.15 1.70 7 

1473 .0377 
Toluene 313.2 .0300 .0536 1774 57 14.56 -3.26 12.66 3.71 8 
45 .0809 .0258 
45 391.5 -.2658 .1604 1575 101 4.14 .73 2.93 2.34 10 

.0483 .0160 
45 472.6 -.1314 .1304 980 174 5.68 .92 4.70 3.48 15 

.0245 .0114 
71 323.2 -.2650 .1525 2106 74 5.66 -.85 4.08 2.48 6 

.3119 .0900 
71 348.2 -.1013 .1058 1809 75 4.16 .95 2.77 4.37 6 

.0951 .0293 
m-Xy1ene 313.2 .2026 .0036 1514 50 8.27 .44 7.87 2.61 7 
45 .0399 .0115 
45 391.5 -.1247 .1121 1494 93 8.69 1.56 6.68 4.70 12 

.0459 .0144 
45 472.6 -.1207 .1264 1026 159 2.10 .40 1.77 2.28 10 

.0151 .0056 
Mesity1ene 313.2 -.0034 .0597 1671 60 25.79 -11.25 23.52 5.93 8 
45 .0566 .0137 ~ 



TABLE F.V (Continued) 

SYSTEM T(K) cl2 012 H1.2 
y~ 

I RMSE BIAS AAD %AAD NP 

REFERENCE oc Og (bar) (cc/mol) (bar) (bar) (bar) 

45 393.2 -.2346 .1333 1527 98 6.47 1.23 5.69 3.04 9 
.0364 .0101 

45 472.6 -.0339 .0879 980 141 1.32 -.08 1.08 1.30 10 
.0106 .0035 

n-Propylbenzene 313.4 -.1992 .1190 1933 71 2.41 .60 1.97 3.29 8 
18 .0062 .0014 
18 403.2 -.0794 .0901 1291 95 4.59 .()4 2.99 1.43 8 

.0625 .0177 
18 473.2 -.0349 .0780 914 141 1.63 -.32 1.45 .95 8 

.0111 .0040 
Benzene 303.2 .1932 -.0019 1922 48 1.42 -.55 1.17 1.06 5 
71 .0086 .0030 
71 348.2 -.0547 .0793 1713 70 1.27 -.25 .96 .93 5 

.0181 .0066 
71 373.2 -.0480 .0734 1489 79 1.02 -.20 .77 .79 5 

.0142 .0055 
72 398.2 -.0834 .0892 1354 95 .79 -.09 .72 .44 7 

.0115 .0044 
72 303.2 .1249 .0258 2065 51 .53 -.04 .50 .28 3 

.0449 .0148 
72 348.2 .0048 .0615 1712 68 .99 .07 .93 .68 6 

.0076 .0027 
72 373.2 -.0508 .0789 1533 80 2.29 .35 2.18 1.55 6 

.0408 .0152 

OVERALL STATISTICS 5.62 -.05 3.11 2.88 424 

;: 
........ 
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