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Chapter 1

Introduction

In 2003 the Belle[1] collaboration announced the discovery of a new particle[2]

known as X(3872), so named for its mass at 3872 MeV. In this paper, the study of

this particle at the DØ detector will be discussed, as well as attempts to identify the

quark content and properties of this new state.

1.1 Overview of the Standard Model

The theoretical framework currently used to make sense of the world at length

scales smaller than 1 × 10−15 meters is known as the Standard Model of Particle

Physics, or just the Standard Model. The Standard Model describes the strong,

electromagnetic, and weak forces and their interactions with the most fundamental

building blocks of matter known to mankind. Gravity, the weakest of the four forces

is excluded from the Standard Model due to the fact that its effect at the quantum

1



level is too small to be observed. To date, the Standard Model is sufficient to account

for all observed phenomena in high energy physics.

The Standard Model states that there exist only two types of particles, fermions

and bosons. Fermions, so named for their adherence to Fermi-Dirac statistics, carry

half-integer spin and are responsible for all of the matter in the universe. Bosons,

named for their adherence to Bose-Einstein statistics, carry integer spin and mediate

the fundamental forces through emission and absorption by fermions.

The fermions that are described by the Standard Model are divided into two

families, quarks and leptons, which are further divided into three generations, see

Table 1.1. The charged leptons, known as the electron, muon, and tau, interact

only through the electromagnetic and weak forces. Each of these has a correspond-

ing neutral lepton, called a neutrino, which interacts only through the weak force.

The quarks are the only known particles to carry fractional electric charge and may

interact through the strong, electromagnetic, and weak forces. Quarks also possess

an additional internal cyclic degree of freedom known as color. Color charge affects

how quarks interact with one another through the strong force. The description of

the interaction of the strong force and the quarks is known as Quantum Chromo-

dynamics (QCD). QCD does not allow for the existence of free quarks due to the

fact that gluons, the mediating bosons of the strong force, may interact with each

other as well as with quarks. These interactions require that the force between two

quarks increases as the distance between them increases. This means that at large

2



name symbol charge mass(GeV/c2) type

up u 2/3 4× 10−3 quark

first down d -1/3 7× 10−3 quark

generation e-neutrino νe 0 < 2× 10−9 lepton

electron e -1 5.1× 10−4 lepton

charm c 2/3 1.3 quark

second strange s -1/3 .13 quark

generation µ-neutrino νµ 0 < 1.9× 10−4 lepton

muon µ -1 0.106 lepton

top t 2/3 178 quark

third bottom b -1/3 4.4 quark

generation τ -neutrino ντ 0 < 1.8× 10−2 lepton

tau τ -1 1.78 lepton

Table 1.1: The three generations of quarks and leptons

inter-quark distances, it becomes energetically favorable for a new quark-antiquark

pair to “pop” out of the vacuum rather than allow the distance between the quarks

to grow. Thus, all matter observed by experiment consist of two or more quarks in a

color-neutral configuration, and free quarks are not observed.

The bosons that mediate the Standard Model forces are listed in Table 1.2. The

gluon and photon, the mediators of the strong and electromagnetic forces respectively,

are both massless and electrically neutral. The mediators of the weak force, the W±

and Z, have non-zero masses with the W carrying electric charge (and thus interacting

with the electromagnetic force) as well.
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name symbol charge mass associated

(GeV/c2) force

photon γ 0 0 electromagnetic

W W± ±1 80 weak

Z Z0 0 91 weak

gluon g 0 0 weak

Table 1.2: The force carriers of the Standard Model

In order to accommodate the masses of the W and Z, the Standard Model must

contain at least one more boson, known as the Higgs boson. It is through interactions

with the Higgs that the W and Z bosons acquire their masses. To date, mass limits

have been set on the Higgs in collider experiments but no direct experimental evidence

for its existence has been found. The observation of the Higgs and the measurement

of its mass will be an important test of the Standard Model.

1.1.1 Mesons and Baryons

The matter observed in nature consist of two or more quarks arranged in a color

neutral configuration. All naturally occurring configurations of quarks observed to

date are known as mesons and baryons. Mesons consist of a quark-antiquark pair

and are unstable. The most commonly observed mesons are known as pions (π).

Baryons consist of three quarks (or three anti-quarks). The most commonly known

baryons are the proton and neutron, of which the proton is the only stable baryon.
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the Standard Model does not forbid states of matter consisting of more than 3 quarks,

however, to date none have been confirmed to exist.

1.1.2 Isospin, C and P Parity

When discussing the properties of mesons, baryons and other quark states, it is

often useful to understand their characteristics under certain transformations. One

of these transformations is known as C conjugation, which replaces all particles with

their anti-particles. Another important transformation, P transformation reverses the

signs of all coordinates. Many quark states are eigenstates of these transformations,

meaning that the wavefunctions before, φ, and after φ′ such a transformation will

be proportional to one another, such that φ′ = Cφ = λCφ and φ′ = Pφ = λPφ.

The numbers λP and λC are the eigenvalues of these transformations and often called

C and P . These transformations have the important property that being applied

twice is equivalent to not being applied at all. Thus C2φ = φ and likewise for P

transformation, which requires that λ2
C = 1 and λ2

P = 1. In other words, this property

constrains the values of λC and λP to ±1. One very important property of the C

and P parities is that they are conserved in strong and electromagnetic interactions.

Thus it is possible to determine the C and P parities of a particle through the C

and P parities of its decay products if the observed decay occurred through a strong

or electromagnetic process. The C and P parity of a system of fermions (i.e. a
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quark-antiquark pair) with orbital angular momentum L and spin S is given by the

formulae

P = (−1)L+1, C = (−1)L+S. (1.1)

The C and P parity for a system of bosons (i.e. a system of π+π− mesons) with

orbital momentum L is somewhat different.

P = C = (−1)L. (1.2)

Systems of particles are commonly identified through their total angular momentum

J , C parity and P parity, denoted as JPC . This is called the spin-parity of a particle.

Another characteristic of mesons and baryons is that of isospin, I. This is a

quantum number that is nearly conserved in strong interactions, and obeys the same

algebraic rules as regular spin S. Because of this it is often convenient to characterize a

state by the combination of its total isospin I and the projection of isospin on the third

axis I3, analogous with the characterization of spin states as |S, Sz〉. The projection

I3 is conserved in both the strong and electromagnetic interactions, however the total

isospin is not conserved in electromagnetic interactions. The isospin of u and d quarks

is equal to 1
2
, while it is zero for all other quarks, with the u quark having positive

isospin projection I3 = +1
2
, and the d quark having negative isospin projection I3 =

−1
2
. Isospin can used as an approximate symmetry due to the fact that at high

energies, the mass difference between the u and d quarks can be considered negligible.

At low energy and masses where the masses of the u and d quarks are approximately
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equal, this symmetry is broken.

Further, there exists a relationship between the C and P parities of a system of

bosons (pions) and the isospin of such a system. Consider the swapping of particles

on a system of two charged pions (π+π−). The total wave function for any system of

bosons must be symmetric under such a transformation. The total wavefunction of

this system can be factorized into a spatial, spin (irrelevant due to S = 0) and isospin

components. The spatial part of this wavefunction acquires a factor of (−1)L. The

isospin component of the wavefunction behaves just like normal spin and is symmetric

if I is even and antisymmetric if I is odd, giving an additional factor of (−1)I . Thus

the total factor is (−1)L+I and must equal 1. From equation 1.2 it is then apparent

that

P = C = (−1)I . (1.3)

These properties will become important in Chapter 2 as possible JPC assignments for

the X(3872) are discussed.
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1.2 Discovery of X(3872) at Belle and Motivation

for Study at DØ

The X(3872) was announced by the Belle Collaboration in August 2003. It was

discovered in the exclusive decay B+ → K+X(3872) → K+J/ψπ+π−[2]. Belle ob-

served a signal of 34.4±6.5 events and a measured mass of 3872.0±0.6(stat)±0.5(syst)

MeV/c2. Belle also set a limit on the decay width,

Γ(X(3872)) < 2.3MeV, 90% CL. (1.4)

Belle also observed that the dipion mass spectrum in X(3872) decays exhibited strong

peaking near the kinematic upper limit[2], hinting that the two pions may come from

a virtual ρ0 meson.

From the beginning, the discovery of the X(3872) has been puzzling. The most

natural assumption is that it must be a charmonium (cc) state. The reason to assume

this is that the X(3872) mass to small to have any b quark content, and its decay to

J/ψπ+π− suggests that it contains c and c quarks. However, the mass of the X(3872)

does not seem to fit well with predicted masses in the charmonium spectrum. The

potential models that calculate the charmonium masses have been very reliable, but

have not yet been able to interpret the X(3872).

Because of the problems associating the X(3872) with charmonium, many other

models were proposed for the nature of the X(3872). These included meson molecules
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(a two meson system loosely bound through pion exchange), more general 4 quark

interpretations, such as a diquark-antidiquark model, hybrid models, and so on.

In the following chapters, the leading interpretations of the X(3872) will be

discussed as well as efforts at the DØ experiment to confirm its existence, compare

its properties to those of known charmonium states, and to search for X(3872) in

electromagnetic decays to J/ψγ.
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Chapter 2

Theoretical Interpretations of X(3872)

2.1 Observed Properties of the X(3872)

As stated in the previous chapter, the state now known as X(3872) was first

announced by the Belle Collaboration in 2003. It was found in the exclusive decay

B+ → K+X(3872) → K+J/ψπ+π−[2]. Belle measured the mass of this new state to

be:

M(X(3872)) = 3872.0± 0.6(stat.)± 0.5 (syst.) MeV/c2 (2.1)

, and set an upper limit on the total decay width:

Γ(X(3872)) < 2.3 MeV (90% CL). (2.2)

Belle also provides a measurement of the relative B+ branching fraction:

Br(B+→X(3872)K+)× Br(X(3872)→J/ψπ+π−)
Br(B+→ψ(2S)K+)× Br(ψ(2S)→J/ψπ+π−)

= 0.063± 0.012(stat)± 0.007(syst).
(2.3)
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At the same time, Belle searched for the radiative decay X(3872) → γχc1. Find-

ing no evidence for the X(3872) in this decay channel, they set an upper limit on on

the ratio of partial widths

Γ(X(3872) → γχc1)

Γ(X(3872) → J/ψπ+π−)
< 0.89(90%CL). (2.4)

In the dipion invariant mass spectrum in X(3872) → J/ψπ+π− decays, Belle also

observed a strong peaking near the kinematic upper limit. Belle has also embarked

on many searches forX(3872) in other decay channels, with most of the results coming

up negative. In initial searches for additional radiative decays, Belle has found:

Γ(X(3872) → γχc2)

Γ(X(3872) → J/ψπ+π−)
< 1.1 (90% CL)[3] (2.5)

Γ(X(3872) → J/ψγ)

Γ(X(3872) → J/ψπ+π−)
< 1.1 (90% CL)[3]. (2.6)

In initial searches for double charm, or open charm decays involving 2 D mesons,

Belle has set less stringent limits[4]:

Br(B+ → K+X(3872))× Br(X(3872) → D+D−) < 4× 10−5 (90% CL) (2.7)

Br(B+ → K+X(3872))× Br(X(3872) → D0D0) < 6× 10−5 (90% CL) (2.8)

Br(B+ → K+X(3872))× Br(X(3872) → D0D0π0) < 6× 10−5 (90% CL) (2.9)

A later search by Belle with much more data revealed that the X(3872) may decay

through theD0D0π0 channel with quite a high rate[5], although the measuredD0D0π0

mass in this channel is 2σ higher than the current world average X(3872) mass.

11



One search for the X(3872) performed by Belle that did yield positive results

was a search for X(3872) → J/ψπ+π−π0[3], prompted by predictions of a “meson

molecule” model outlined later in this chapter. This decay channel was interpreted

as J/ψω, due to the fact that the tripion mass spectrum sharply peaks at the upper

kinematic limit as one would expect for such a hypothesis. The relative width for

this decay was found to be:

Γ(X(3872) → J/ψω)

Γ(X(3872) → J/ψπ+π−)
= 0.8± 0.3( stat)± 0.1( syst). (2.10)

The BaBar[6] Collaboration performed a search for X(3872) decaying to J/ψη[7]

as well as searches for charged partners of the X(3872)[8, 9]. The upper limits ob-

tained in these searches are:

Br(B+ → X(3872)K+)× Br(X(3872) → J/ψη) < 7.7× 10−6( 90% CL), (2.11)

Br(B0/B0 → X±Kp)× Br(X± → J/ψπ±π0) < 5.8× 10−6( 90% CL), (2.12)

Br(B± → X±K0
s )× Br(X± → J/ψπ±π0) < 11× 10−6( 90% CL). (2.13)

The BES[10] Collaboration and the CLEO III[11] Collaboration also set strong

limits on the relative width of the decay X(3872) → e+e−:

Γ(X(3872) → e+e−)× Br(X(3872) → J/ψπ+π−) < 10 eV (90% CL)[12] (2.14)

Γ(X(3872) → e+e−)× Br(X(3872) → J/ψπ+π−) < 8.3 eV (90% CL)[13] (2.15)
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CLEO II also searched for production of C positive X(3872) in gamma-gamma fusion

and obtained the upper limit[13]

(2J +1)Γ(X(3872) → γγ)×Br(X(3872) → J/ψπ+π−) < 12.9 eV (90% CL), (2.16)

where J represents the unknown spin of the X(3872).

Belle[14] and CDF[15, 16, 17] have performed angular analyses of X(3872) →

J/ψπ+π− decay products, as well as analyses of the dipion mass spectrum in attempts

to determine the JPC quantum numbers of the X(3872)Ṫhe Belle experiment claims

to rule out all JPC states except 1++ and 2++, while CDF claims to rule out all JPC

states except 1++ and 2−+.

2.2 Charmonium Interpretation

There are many possible charmonium states that have to date, not been observed

experimentally. As charmonium is the most natural interpretation for the X(3872)

it is worth taking a look at the candidates, and strengths and weaknesses of all of

them in describing the X(3872). The cc system, as a system of two fermions, is

very similar to the hydrogen atom, or more accurately, positronium. As such, it can

be characterized with the same quantum numbers that are used to characterize the

hydrogen atom: n, the radial quantum number, L, the orbital angular momentum,

total spin S, and total angular momentum J . These numbers are expressed compactly

in the spectroscopic notation as n2S+1LJ . In this notation L is often expressed as a
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letter: S, P,D, F... (L = 0, 1, 2, 3...). For completeness, the JPC quantum numbers

are also listed with these states. The charmonium states also follow a pre-defined

nomenclature. States with even J and PC = −+ are called ηc(nL), states with odd

J and PC = +− are called hc(nL), states with PC = ++ are called χcJ(nL), and

states with PC = −− are called ψ(nL) states. The lowest ψ state, ψ(1S) is also

called the J/ψ for historical reasons, and the three lowest χ states, χJ(1P ) often

simply called χc0, χc1, and χc2.

Most of the low lying charmonium states have been observed and their properties

well established. These include the ηc(1S), J/ψ, χc0, χc1, χc2, and the ψ(2S). Others

have only been seen recently, such as the hc(1
1P1). While the ηc(2S) was seen over

20 years ago by the Crystal Ball collaboration, it was only recently seen by Belle, but

at a different mass.

Only a few states above the DD threshold have been seen experimentally. Those

that are allowed to decay to DD by spin-parity conservation are expected to be

very broad (and thus difficult to find) due to the rapid decays through this channel

(sometimes called the open-charm channel).

Table 2.1 shows the known charmonium states as well as the as yet unobserved

charmonium states which may be candidates for the X(3872). Below, each of the

possible options will be discussed in greater detail. The candidate states with positive

C parity force the dipion system in the decayX(3872) → J/ψπ+π− to have negative C

parity due to the negative C parity of the J/ψ. As shown in Section 1.1.2, this requires
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the dipions to have isospin I = 1. This means that for all charmonium X(3872)

assignments with positive C parity, the decay X(3872) → J/ψπ+π− is an isospin

violating decay. In general, this would seem to indicate that this decay channel is

strongly suppressed. If a parallel is drawn between the X(3872) and the ψ(2S), which

has the isospin conserving decay ψ(2S) → J/ψπ+π− and the isospin violating decay

ψ(2S) → J/ψπ0, one sees that the isospin violating decay has a partial width 200

times smaller than the isospin conserving decay[18], and 3-60 times smaller than the 4

dominant radiative decays. Thus one may reasonably expect that a positive C parity

charmonium assignment should dominantly decay through some isospin conserving

process. However, large isospin violation could be explained through virtual coupling

to the D0D∗0 system. The mass of the X(3872) is very close to the mass of the

D0D∗0 system, which is not an isospin eigenstate. As such, virtual couplings may

allow conventional charmonium to ignore isospin conservation and decay to C parity

negative dipions through this channel[19, 20].

Also note that analyses by CDF[16, 17] and Belle[14] of angular distributions

and the dipion mass spectrum in X(3872) → J/ψπ+π− decays are all compatible

with either S or P wave decays through J/ψρ0. These results strongly imply that

the X(3872) does indeed possess positive C parity, and that if the X(3872) is a

charmonium state, its decay to J/ψπ+π− must be isospin violating. As such, the

negative C parity states are immediately eliminated from consideration.
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2.2.1 11D2−+ State

This state cannot decay via the open-charm channel DD due to spin-parity

conservation, and as such it is expected to have a total width of about 1 MeV [24],

n2S+1LJPC Known Mass Width

States MeV/c2 MeV

11S0−+ ηc(1S) 2980[18] 17[18]

13S1−− J/ψ 3097[18] 0.1[18]

11P1+− hc(1P ) 3526[18]

13P0++ χc(1P ) 3415[18] 10[18]

13P1++ χc(1P ) 3511[18] 1[18]

13P2++ χc(1P ) 3556[18] 2[18]

11D2−+ 3838[21]

13D1−− ψ(3770) 3770[18] 25[18]

13D2−− 3830[21]

13D3−− 3868[21]

21S0−+ ηc(2S) 3654[18] 17[22, 23]

23S1−− ψ(2S) 3686[18] 0.3[18]

21P1+− 3968[21]

23P0++ 3932[21]

23P1++ 4008[21]

23P2++ 3966[21]

31S0−+

33S1−− ψ(4040) 4040[18] 52[18]

Table 2.1: Summary of charmonium spectrum. States that have yet to be observed
by experiment are given masses at their expected values. States at 2D, 3P , 3D
and higher are not listed as they are expected to be too heavy to even consider as
candidates for the X(3872), as are states with L > 2.
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which makes it a plausible candidate for the X(3872). However, the fact that the

isospin conserving decay to ηcπ
+π− has not yet been observed makes this description

unlikely. CDF [17, 16] found that the dipion mass distribution in X(3872) decays

supports the hypotheses of JPC = 2−+ and JPC = 1++, however Belle has claimed

[14] that this state is ruled out by the dipion mass distribution. Belle has also recently

observed X(3872) decaying to D0D0π0[5] at a rate much higher than that J/ψπ+π−,

which seems to disfavor this state.

2.2.2 23P0++ State

Open charm channel decay for this state is allowed. Due to this fact, the predicted

total width is an order of magnitude higher than the 2.3 MeV upper limit set by Belle,

which makes this state a very unlikely candidate. This state also suffers from the non-

observation of the X(3872) in γγ fusion at CLEO-III[13]. The limit set by CLEO

in this mode is four times greater than the partial width of χc0, this state’s lighter

companion, to γγ. If the partial widths of these two states to γγ are comparable,

then this state can be safely dismissed.

2.2.3 23P1++ State

Although this state’s predicted mass and width are much higher than 3872

MeV/c2[25, 24, 26, 27], if this state’s mass is set to 3872 MeV/c2, it’s width could
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shrink to the order of 1-2 MeV[24]. This state is also predicted to have dominant

decays to J/ψγ and ψ(2S)γ[24], however predicting the branching fraction for these

modes is very difficult and highly dependent upon model details. The dipion mass

spectrum analyses and angular analyses carried out by CDF and Belle both support

the JPC = 1++ assignment[14, 16, 17]. This state is also supported by the evidence

for decays to J/ψω[3].

2.2.4 23P2++ State

This state is very similar to the 23P0++ state. Its width is expected to be an order

of magnitude larger than 2.3 MeV [24], and the non-observation in γγ fusion[13] would

seem to rule this out.

2.2.5 31S0−+ State

As part of the 3SJ doublet, this state is highly unlikely. Its mass is believed to be

set by the observation of ψ(4040), the 33S1−− state. From the 1S and 2S states, it is

known that the mass splittings between the 1S0−+ states and 1S0−+ states are about

120 MeV/c2 and 50 MeV/c2 respectively. This pattern of decreasing mass splittings

is expected to continue on up the potential well, as is also observed in the Υ meson

family. This fact makes this state a very unlikely interpretation for the X(3872).
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2.2.6 Summary of Charmonium States

Taking all of the experimental data gathered to date, and the expectations from

the charmonium models, there are only two charmonium states that deserve strong

consideration as candidates for the X(3872): 23P1++ and 11D2−+ . Of these two, the

more likely interpretation is the 23P1++ charmonium state. In Chapter 7, this model

will be tested by searching for decays to J/ψγ at DØ.

2.3 Meson-Molecule Interpretation

Due to the problems associating X(3872) with a charmonium state, the inter-

pretation that the X(3872) may be a weakly bound D − D∗ “meson-molecule” has

gained popularity since the discovery of X(3872). This is due primarily to the close

proximity of the X(3872) mass, for which the world average is currently [2, 28, 29, 30]:

m(X(3872)) = 3871.2± 0.5 MeV/c2. (2.17)

Compare this with the PDG world average value for the D − D∗ mass threshold

(recently CLEO-III has provided a precision measurement of this threshold which is

quoted below the world average):

m(D0D∗0) = 3870.32± 2.0 MeV/c2[18] (2.18)

m(D0D∗0) = 3871.81± 0.36 MeV/c2[31] (2.19)
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The proximity of the X(3872) mass to this threshold has made the possibility that

the X(3872) is some kind of D0−D∗0 compound, bound through pion exchange, very

attractive. Indeed, the existence of such a molecular state at precisely this mass was

predicted as far back as the early nineties[32, 33].

The concept of meson molecules dates back to the late sixties, and has since

been used as an attempt to explain many phenomena before eventually losing out to

conventional meson states[34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45].

The molecular model has several aspects that make it appealing as an inter-

pretation for the X(3872). Perhaps the most notable is that the DD∗ system is

not an isospin eigenstate, and thus isospin is not expected to be conserved. In pure

molecular models, the decay toD0D0π0 is expected to be the primary decay mode[33],

which does agree with the Belle Collaborations recent observation of this decay mode.

However, in a similar model which assumes that the X(3872) is not a simple D0D∗0

molecule, but rather a JPC = 1++ state composed primarily of D0D∗0 with a mix

of D+D∗−, J/ψω, and J/ψρ[46]. This model predicted X(3872) decaying into both

J/ψρ and J/ψω. Following this prediction, Belle searched for X(3872) decaying to

J/ψω, and found evidence for this decay channel with a rate comparable to the decay

rate to J/ψπ+π−. This model also predicts that the decay rate to J/ψγ should be

small, as should the decay to D0D0π0. Belle however has shown quite strong evidence

that D0D0π0 may be a dominant decay mode of the X(3872).
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2.4 Diquark-Antidiquark Interpretation

This model for interpretation is a more general four quark model in which all four

quarks interact with each other equally rather than in a bound state of bound states.

In this model, a so-called diquark [cq] and antidiquark [cq′] (q, q′ = u or d) act as

composite antiquarks and quarks. This leads to a number of X states in addition to

the observed state at 3872 MeV/c2[47]. In particular, two 0++ states, two 1−+ states,

one 1++ state, and one 2++ state. The 1++ is proposed for the X(3872) because

it does match many of the observed properties, such as the narrow width, and the

allowed decays to both J/ψρ and J/ψω. This model also predicts that each of these

states should exhibit a small mass splitting due to the mixing of u and d choices

for q and q′. The predicted maximal mass splitting is on the order of 7 MeV/c2,

and to date no such mass splitting has been observed. This model also requires the

existence of charged partners to the X as well. To date, no such charged partners

have been observed, although the limits on charged X(3872) partner production set

by BaBar[8, 9] are not in contradiction with this model yet.

2.5 Summary

As outlined above, the theoretical interpretation for the X(3872) is currently

unresolved. In addition to the leading models mentioned above, other models have

been proposed such as hybrid charmonium[48], a glueball-charmonium mixture[49]
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and a dynamic cusp[50]. These models however are not in very good agreement

with recent data however. Of the models mentioned, likely interpretations include

conventional charmonium, with 1D2−+ ,3 P1++ being the most likely assignments, a

DD∗ molecule, or a diquark-antidiquark state. Note that these hypotheses do not

necessarily exclude one another, as it is possible for theX(3872) to be some mixture of

any of them[25, 51]. With such a wide range of options, it is possible that the X(3872)

may remain a mystery for some time. In the following chapters, the confirmation of

the existence of theX(3872) decaying to J/ψπ+π− at DØ will be discussed in Chapter

6. These results were published in [29] on a smaller dataset than the results presented

here. Chapter 7 will detail search for X(3872) decaying to J/ψγ, a characteristic

decay of the 23P1 charmonium state, which is naively expected to be a dominant

decay channel with respect to J/ψπ+π−.
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Chapter 3

Experimental Apparatus

3.1 Introduction

The Fermilab Tevatron is currently the world’s highest energy accelerator, pro-

ducing collisions of protons and anti-protons at a center of mass energy of 1.96 TeV.

This chapter will describe the Tevatron in detail as well as the DØ detector elements

most important to the analysis performed.

3.2 The Tevatron Accelerator

The Tevatron accelerator is the last in a series of seven accelerators which is

used to bring beams of protons and anti-protons up to energies of 0.98 TeV. At this

energy, the beams of protons and anti-protons are steered to collide at two interaction

regions. These interaction regions are named B0 and D0 for their location along the
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Tevatron ring, as shown in Figure 3.1, which are surrounded by the general purpose

detectors CDF and DØ. The analyses presented in this paper were performed using

data from the DØ detector. Below is a brief overview of the complex that provides

the DØ experiment with the pp collision data. The interested reader is referred to

[52] and [53] for more detail.
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Figure 3.1: Diagram of the Fermilab Tevatron Complex. This figure is a standard
Fermilab figure.

The Pre-Accelerator (Preacc) produces and accelerates negatively charged hy-

drogen (H−) atoms, and accelerates them to an energy of 750 KeV by means of a

Cockroft-Walton accelerator. After leaving the Preacc, the beam of H− atoms are

bunched and fed into the Linac, which accelerates the ions by means of RF cavities

24



to an energy of 400 MeV. From the Linac, the 400 MeV H− atoms are transferred

to the first synchrotron accelerator in the chain, known as the Booster. The Booster

contains a series of magnets around 18 RF cavities arranged in a circle of 75 meters.

The Booster strips the H− atoms of their electrons, leaving only bare protons, and

then accelerates these protons to an energy of 8 GeV.

From the Booster, 8 GeV beams of protons are sent to the Main Injector where

they are either accelerated to 120 GeV and transferred to the anti-proton (p) source,

or accelerated to 150 GeV and inserted into the Tevatron. At the p source, protons

collide with a nickel target and produce many secondary particles. Approximately

one out of every 105 of these collisions will produce an anti-proton. The anti-protons

are captured by the debuncher and temporarily stored in the accumulator at 8 GeV

until enough (' 1011) anti-protons have been produced for a Tevatron store. The

Debuncher uses RF ’bunch rotation’ and adiabatic debunching to reduce the mo-

mentum spread of the anti-protons from the anti-proton source for transfer to the

Accumulator. In the Accumulator, stochastic cooling is used to reduce the beams

emittance. This is accomplished by sampling the anti-protons motion in the beam

with a pickup, and then correcting that motion downstream with a kicker. From the

Accumulator, anti-protons are transferred into the main injector and accelerated to

150 GeV for transfer to the Tevatron. The Main Injector then transfers 150 GeV

protons and anti-protons into the Tevatron where they are then accelerated to an

energy of 0.98 TeV.
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The protons and anti-protons circle the Tevatron in 36 groups or bunches. At the

interaction regions, proton bunches are steered to intersect with anti-proton bunches.

These bunch crossings occur once every 396 nanoseconds. A measure for the number

of hard scatters or collisions that are taking place is the instantaneous luminosity.

Instantaneous luminosity is typically expressed in units of cm−2s−1, or collisions per

unit cross section per second. Each experiment has a dedicated detector subsystem

for measuring the instantaneous luminosity. The integrated luminosity is a measure

of how many collisions have taken place over a given time. Integrated luminosity is

given in units of inverse barns (b−1), where one barn is equal to 100fm2, or, in the

case of the Tevatron, inverse picobarns (pb−1) or inverse femtobarns (fb−1).

A typical ’store’ of protons and anti-protons will collide in the Tevatron for ap-

proximately one day. When the instantaneous luminosity drops too low, the particles

are removed from the Tevatron and a new set of protons and anti-protons are in-

jected into the machine. Since the process of building up the necessary numbers of

anti-protons can be time consuming, this process occurs while the previous store is

colliding to limit downtime for the experiments.

3.3 Interactions of Particles with matter

The DØ detector examines the remnants of pp collisions through a series of instru-

ments that record a particles position and energy as a result of a particles interaction
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with matter in the detector. In order to understand the signals in the detector, it is

thus necessary to understand how particles interact with matter. Tracking detectors

are designed to record the position of a charged particle with minimal energy loss,

while calorimeters are designed to fully absorb the energy of most particles and its

resulting shower and to measure the energy and position of the particle in the process.

The interactions which make these measurements possible are described below.

3.3.1 Electrons and Photons

Electrons passing through matter lose energy primarily through bremsstrahlung

radiation and ionization. Above a critical energy, Ec [18]:

Ec =
800

Z + 1.2
MeV (3.1)

where Z is the atomic number of the medium. At DØ, bremsstrahlung radiation is

the dominant process for energy loss for electrons and photons. High energy photons

interacting with matter produce electron-positron pairs. Thus, both electrons and

photons produce showers of electrons and photons until the energy of the electrons

falls below the critical energy. Below the critical energy the electrons interact primar-

ily through ionization. The mean distance over which an electron loses all but 1/e of

its energy is known as the radiation length, X0[18]

X0 =
716.4A

Z(Z + 1) ln(287/
√
Z)

g cm−2 (3.2)
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where A is the atomic mass of the medium. The radiation length X0 is also 7
9

of the

mean free path of pair production for high energy photons through a medium.

The longitudinal shower behavior of electromagnetic cascades can be reasonably

described by a gamma distribution[18]:

dE

dt
= E0b

(bt)a−1 e−bt

Γ (a)
(3.3)

where a and b are constants and t = x/X0, where x represents longitudinal distance

within the shower. The maximum, tmax then occurs at (a − 1)/b. The Particle

Data Group[18] have made fits to shower profiles in elements ranging from carbon

to uranium at energies ranging from 1 GeV to 100 GeV and found that the energy

deposition profiles are well described by equation (3.3), with[18]:

tmax = (a− 1)/b = 1.0× (ln y + Cj) , j = e, γ (3.4)

where y = E/Ec, with E representing energy, and Ce = −0.5 for electron showers

and Cγ = +0.5 for photon showers.

3.3.2 Muons

Muon interaction through bremsstrahlung radiation occurs at a much lower rate

than that of electrons due to the much larger mass of the muon. The critical energy

of muons is on the order of 1 TeV[18]. Muons produced at the Tevatron have energies

on the order of 1 GeV and thus muon energy loss in the DØ detector occurs primar-

ily through ionization. These muons are minimum ionizing particles, or MIPs, and
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typically deposit only minimal energy in all of the detector subsystems.

3.3.3 Hadrons

Hadronic particles interact inelastically with the nuclei of the medium, producing

pions and nucleons. At high energies these resulting particles also interact with nearby

nuclei producing showers of hadronic particles. The characteristic length scale for

hadronic showers is the nuclear interaction length, λI , which is roughly independent

of energy[18].

λI ≈ 35 A1/3 g cm−2 (3.5)

3.3.4 Neutrinos

Neutrinos interact with matter only through weak interactions. Direct detection

of neutrinos at DØ is impossible, however the presence of high energy neutrinos can

be inferred from transverse momentum conservation constraints.

3.4 The DØ Detector

The Run II DØ detector is a multi-purpose detector designed to measure the

kinematics of the remnants of pp collisions. The detector consists of 3 major sub-

systems. In the core of the detector is the tracking system. The tracking system is

surrounded by a solenoid which produces a 2 Tesla magnetic field oriented along the
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beam axis. The tracking system allows for precision measurements of the position of

charged particles as they travel outward from the interaction point. The magnetic

field in the tracking volume allows the tracking system to also measure the trans-

verse momentum of charged particles by measuring their radius of curvature. Just

outside of the tracking volume and solenoid are the DØ calorimeters, a system of

finely grained Uranium and Liquid Argon calorimeters which record the energies and

positions of hadronic and electromagnetic showers. Finally, a large 3 layer muon spec-

trometer detects the presence and measures the momentum of muons which escape

the calorimeter. The interested reader is encouraged to see [54] and [55] for more

detail.

3.4.1 Coordinate System

The DØ coordinate system is a right handed system that places the beam-line

on the z axis, with protons flowing in the positive z direction and anti-protons in the

negative z direction. The y axis is then vertical, with the positive direction pointing

upward, and the positive x axis points away from the center of the Tevatron ring.

Because the DØ detector has cylindrical symmetry about the z axis, it is often useful

to use standard cylindrical coordinates about the z axis (r, φ), which is transformed

from the standard Cartesian (x, y, z) coordinate system through:

r =
√
x2 + y2 (3.6)
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Figure 3.2: DØ Detector cutaway view. This is a standard DØ figure

φ = tan−1(
y

x
) (3.7)

Additionally, it is often convenient to utilize a new coordinate, pseudo-rapidity,

η:

η = − ln tan
Θ

2
(3.8)

where Θ is the polar angle defined by,

Θ = cos−1 z√
x2 + y2 + z2

. (3.9)

Pseudo-rapidity is a convenient choice at DØ and other detectors because of

the fact that it approaches the rapidity, y = 1
2
ln(E+pz

E−pz ) in the zero mass limit. The
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rapidity, y is Lorentz-invariant under boosts along the z axis, and additionally, the

multiplicity of high energy particles is approximately constant in η.

The choice of the origin is the last piece to completely define the coordinate

system at DØ. There are two common choices that are often used, physics coordinates,

where the origin is located at the reconstructed vertex of the interaction, and detector

coordinates, where the origin is chosen to be at the center of the DØ detector. All

coordinates used here will be physics coordinates unless otherwise noted.

3.4.2 The Central Tracking System

The central tracking system is designed to measure the momentum, direction, and

sign of the electric charge for charged particles produced in an event. The system has a

mean radius of 60 cm and resides inside a 2 Tesla solenoid. The central tracking system

consists of two tracking detectors, a silicon micro-strip detector (SMT) positioned just

around the beam pipe and a central fiber tracker (CFT) positioned just around the

SMT, see Figure 3.3

The SMT

The SMT was designed to give an accurate measurement of track impact param-

eters, or the distance of closest approach (DCA) of a track to the primary interaction

point (primary vertex). The SMT also allows for the identification of primary and

secondary vertices, and optimizes tracking efficiency over a large range of η and a
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Figure 3.3: Closeup schematic of the DØ detector subsystems[54].

large spread in vertex z position. The silicon modules that make up the SMT are

thin n-type silicon wafers with p-type strips etched onto the surface. The silicon

modules are reverse-biased when in operation which creates a depletion region within

the silicon wafer. A charged particle passing through the depletion region of a sili-

con module will deposit a small amount of energy through ionization. This leads to

the production of electron/hole pairs. Due to the bias voltage, the ionized charge is

accelerated toward the conductive strips, where the charge is collected and read by

readout chips at the end of the strips.
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The SMT consists of six barrels of eight layers each, organized as four super-

layers, with an inner radius of 2.5 cm and an outer radius of 10 cm. Interspersed

between the barrels and appended to the ends of the structure are 12 ’F-disks’ as well

as 4 larger ’H-disks’. These disks allow for greater tracking efficiency at high values

of η and measurement of a particles momentum in the z direction. This configuration

is illustrated in Figure 3.4

The silicon modules are known as ’ladders’ in the barrels and ’wedges’ in the

disks. They are 300µm thick, with strips of 50µm pitch. All of the ladders, except

for those in layers 1 and 3 of the outermost barrels, are double-sided, capable of

both axial (parallel to the beam axis) and stereo (at some angle relative to the beam

axis) readout. In super-layers 1 and 3 the stereo angle is 90o with a strip pitch of

153.5µm. These modules with 90o stereo angle are known as double sided, double

metal (DSDM) modules. In super-layers 2-4 the stereo angle is 2o with 62.5µm strip

pitch. Super-layers 1 and 2 of the barrels have 12 ladders each while super-layers 3

and 4 have 24 ladders. The F disks each contain 12 double sided (DS) wedges with

30o stereo angle. The H disks contain 24 wedges made of two single sided (SS) silicon

wafers glued back to back which give an effective stereo angle of 15o. The properties

of the various sensor types in the SMT are shown in Table 3.1[54].

This configuration of the SMT subsystem, when combined with the central fiber

tracker, provides a resolution on the primary vertex of approximately 10 microns over

the range where the primary vertex z position is within ±40 cm of the center of the
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Module Type Layer Pitch (µm) Stereo Length Inner/Outer

p/n angle (cm) radius(cm)

F-Disks DS - 50/62.5 30o 7.93 2.57/9.96

H-Disks SS - 40 15o 7.63i 9.5/26

80readout (effective) 6.33o

Central DSDM 1,3 50/153.5 90o 12.0 2.715/7.582

barrels(4) DS 2,4 50/62.5 2o 6.0 4.55/10.51

Outer SS 1,3 50 - 6.0 2.715/10.51

barrels(2) DS 2,4 50/62.5 2o 6.0 4.55/10.51

Table 3.1: Specifications of the various sensors in the DØ silicon detector. i indicates
the inner H-disk sensor while o indicates the outer H-disk sensor.

Figure 3.4: Three dimensional view of the DØ Silicon Micro-strip Detector assembly.
This is a standard DØ figure.

detector[56], and a track impact parameter resolution of approximately 20 microns

as shown in Figure 3.5.
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Figure 3.5: Track impact parameter resolution as a function of track transverse mo-
mentum for SMT only configuration and SMT+CFT configuration.[56]

The Central Fiber Tracker

The central fiber tracker (CFT) is a larger tracking detector just outside the

SMT. Its purpose is to complete tracking coverage throughout the tracking volume,
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as well as to provide transverse momentum (pT ) and total momentum measurements

of charged particles as they make their way to the calorimeter. The CFT is composed

of approximately 200km of scintillating fiber. When a charged particle passes through

one of the scintillating fibers, it will deposit a small amount of energy through ioniza-

tion. As the fibers are non-conductive, this leaves behind a wake of excited molecules.

The core substance of the fibers, polystyrene, rapidly transfers this energy to a 1%

concentration paraterphenyl dye, then releases a small fraction of this energy (≈3%)

in the form of optical photons of 340nm wavelength over just a few nanoseconds

through a rapid fluorescence decay. In the fiber, these photons are absorbed by a

wave-shifting dye, 3-hydroxyflavone, and re-emitted at 530nm. These photons then

traverse the fibers through total interal reflection until they arrive at longer clear fiber

waveguides that transmit them to visible light photon counters (VLPCs) to read out

the signal. Because the fibers are read out from only one end, the end of the fiber

opposite the readout is mirrored to reflect the light back to the readout.

The fibers that make up the CFT have a diameter of 835µm and are mounted in

32 concentric layers over 8 barrels. Each barrel consists of two double layers of fibers,

one axial double layer and one double layer of either u(+3o) or v(−3o) stereo fibers.

To provide maximal coverage, the fibers of a doublet layer are offset by half a fiber

width, as shown in Figure 3.6. The 8 cylinders alternate between zu doublet layers

and zv doublet layers. In total the CFT contains 76,800 fibers over its 32 layers. The

design of the CFT gives an inherent doublet position resolution of approximately 100
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µm provided that the position of each individual fiber is known to within 50 µm.

The VLPCs are solid state photo-multipliers that operate at a temperature of 9K

and detect photons with a quantum efficiency of approximately 85%. They produce

between 30,000 and 60,000 electrons per photon which makes them ideally suited for

CFT readout.

Figure 3.6: One ’ribbon’ assembly of the CFT showing the staggered configuration
of two layers of fibers. This figure is a standard DØ figure.

This CFT configuration provides good transverse momentum resolution,
σpT
pT

≈

0.02, as shown in Figure 3.7.

3.4.3 Solenoid

The transverse momenta of charged particles are determined from their curvature

in the 2 Tesla magnetic field produced by the DØ solenoid magnet. The solenoid is a

2.7 meter long superconducting magnet with a two layer coil and mean radius of 60
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Figure 3.7: Fractional pT resolution as a function of η[54].

cm. It has a stored energy of 5 MJ and operates at 10K. The magnetic field inside

the tracking volume is kept uniform by the use of two grades of conductor in order to

minimize the radiation length of the solenoid. The uniformity of the field inside the

tracking volume is within 0.5%, and the solenoid has a thickness of approximately

0.9 radiation lengths.

3.4.4 Pre-shower Detector

The pre-shower detectors are situated just outside of the solenoid and just before

the calorimeter and are used to aid in electron identification and background rejection.
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Both the forward and central pre-shower detectors are constructed with interleaved

triangular strips of scintillator shown in Figure 3.8. The triangular design was chosen

to eliminate dead space between strips and to improve the position measurements

since most tracks will traverse more than one strip. Embedded in the center of the

pre-shower strips are wavelength shifting fibers that collect and carry the light to the

end of the detector where they are read out by VLPCs in the same manner as for the

CFT.

The central pre-shower detector consists of 3 concentric cylindrical layers of scin-

tillating fibers arranged in an axial-u-v configuration, with a u stereo angle of 23.774o

and a v stereo angle of 24.016o. Between the solenoid and the CPS is a lead radiator

that is approximately 1 radiation length in thickness covering |ηdet| < 1.3

The forward pre-shower detectors are located just inside the calorimeter end-

caps, and cover the region of 1.5 < |ηdet| < 2.5. Within the region 1.5 < |ηdet| < 1.65

electrons and photons are expected to shower as they pass through the solenoid.

In this region there are two layers of scintillating pre-shower fibers. In the region

|ηdet| > 1.65 there is no appreciable material to induce showering, so a two radiation

length lead absorber is placed in front of the double layer of scintillating fiber. Directly

in front of the lead absorber are two additional layers of scintillating pre-shower fibers

which are known as the MIP layers. This configuration is constructed with wedges

that are illustrated in Figure 3.9. Because there is no appreciable material prior to

the MIP layers, they can be used as tracking detectors as well.
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Figure 3.8: Geometry of scintillating fibers in the pre-shower detectors.[54]

Figure 3.9: Geometry of forward pre-shower detector wedges.[54]

3.4.5 The DØ Calorimeter

The DØ calorimeter itself has been left unchanged from Run I. To accommo-

date the higher luminosity and faster bunch crossing times of the Run II Tevatron

however, the readout of the calorimeter had to be upgraded. The calorimeter is a liq-

uid argon-uranium sampling compensating calorimeter. Particles which pass through

41



the calorimeter interact with the material of the calorimeter and shower. The par-

ticles leaving the material (absorber) then ionize the liquid argon (active medium)

and charge from the ionized liquid argon is collected at high voltage pads in each

calorimeter cell. The geometry of a calorimeter cell is shown in Figure 3.10. The

amount of charge collected is proportional to the amount of energy deposited in each

cell. The DØ calorimeter also attempts to equalize the response of calorimeter signals

from hadrons and electrons. This is accomplished by tuning the thickness and the

material chosen for the absorbers.

The calorimeter is separated into 3 regions. The four innermost layers of the

calorimeter are the electromagnetic layers. These layers are finely segmented and

utilize depleted uranium absorbers. Just outside the electromagnetic layers are the

fine hadronic layers. These are three layers of larger segmentation and utilize thicker

uranium-niobium alloy absorbers. Beyond the fine hadronic layers is a single coarse

hadronic layer, which utilizes a coarsely segmented absorber made of thick copper

(stainless steel in the end-caps). The parameters of each layer are summarized in

Tables 3.2 and 3.3[57], and the physical layout of the calorimeter is illustrated in

Figure 3.11.

The electromagnetic calorimeter layers are designed to stop the showers that are

produced by electrons and photons. The maximum of the electromagnetic showers

(shower-max) for high energy EM particles is calculated to take place in the third
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Module Type EM Fine Had. Coarse Had.

Central

ηdet coverage ±1.1 ±1.0 ±0.7

Absorber Material Uranium Uranium Copper

(1.7% Niobium)

Readout Layers 4 3 1

Segmentation 0.1× 0.1 (Layers 1,2,4), 0.1× 0.1 0.1× 0.1

(∆η ×∆φ) 0.05× 0.05 (Layer 3)

Thickness 1.4, 2.0, 6.8, 9.6 X0 1.3, 1.1, 0.76 λa 3.2 λa

Total X0 19.8 96 33

Total λa 0.76 3.16 3.2

Table 3.2: DØ Central Calorimeter Parameters.

Figure 3.10: Geometry of a Calorimeter Cell.[54]

electromagnetic region, and thus this region is more finely segmented for a more pre-

cise measurement. This calculation still holds despite the fact that it was originally

performed for the Run I detector which did not have the additional material of the
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Module Type EM Fine Had. Coarse Had.

Endcap

ηdet coverage ±(1.3-4.1) ±(1.6-4.5) ±(2.0-4.5)

Absorber Material Uranium Uranium Copper

(1.7% Niobium)

Readout Layers 4 4 (IH) 1 (IH)

4 (MH) 1 (MH)

0 (OH) 1 (OH)

Segmentation 0.1× 0.1 (Layers 1,2,4), 0.1× 0.1 0.1× 0.1

(∆η ×∆φ) 0.05× 0.05 (Layer 3)

Thickness 1.6, 2.6, 7.9, 9.3 X0 1.1λa (IH) 4.1 λa (IH)

0.9λa (MH) 4.4 λa (MH)

< 6.0λa (OH)

Total Depth 21.4 X0 (0.96 λa) 4.4 λa (IH) 4.1 λa (IH)

3.6 λa (MH) 4.4 λa (MH)

< 6.0λa (OH)

Table 3.3: DØ Endcap Calorimeter Parameters. IH denotes Inner Hadronic cells.
MH denotes Middle Hadronic cells. OH denotes Outer Hadronic cells.

solenoid and the pre-shower absorber. Because it is more finely segmented and ex-

pected to absorb most of the energy of electromagnetic showers, the third layer (or

floor) of the EM calorimeter is used to calculate the position of EM-objects identified

by the calorimeter.

The readout electronics had to undergo a significant upgrade to accommodate the

much faster bunch crossing rate in Run II. The rate changed from one bunch crossing
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Figure 3.11: Layout of cells in the calorimeter. This figure is rotationally symmetric
about the horizontal axis and exhibits symmetry of reflection about the vertical axis
at η = 0.[54]

every three microseconds in Run I, to one bunch crossing every 396 nanoseconds in

Run II. This increased interaction rate greatly complicates calorimeter readout due

to the fact that charge from previous events are still being collected while additional

events are taking place. This complication is handled through a process known as

baseline subtraction, where the calorimeter dynamically assigns a value to the amount

of energy at the time of a beam crossing and then subtracts that value from the energy

deposited at a later time after the collision to obtain a measure of the charge collected

for the current event[58].
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3.4.6 Muon System

The outermost detector subsystem is devoted exclusively to the detection of

muons. Because muons will not shower in the calorimeter, and because all other

particles other than neutrinos should be contained by the calorimeter, the muon

system is naturally placed outside of the calorimeter. The system is composed of

sheets of scintillating pixels, proportional drift tubes (PDTs) and mini drift tubes

(MDTs) for both a time measurement, to reject cosmic ray muons, and for a position

measurement. A 1.8 T iron toroid magnet provides the ability for a momentum

measurement independent of the central tracking system. The muon system is divided

into a central muon system which gives coverage for |ηdet| ≤ 1 and utilizes PDTs for

position measurements, and a forward muon system which covers 1 < |ηdet| ≤ 2 with

MDTs. Both systems employ scintillating counters for triggering and cosmic muon

vetoing. Each muon subsystem has 3 layers known as the A, B, and C layers. The A

layer is the innermost layer, and is positioned just outside the calorimeter, but inside

the toroid. The B and C layers are positioned outside the toroid. In the region below

the calorimeter, only partial muon coverage is possible due to the fact that the DØ

support structure and readout electronics are located in this region.

The PDTs are rectangular gas filled volumes. Charged particles traversing this

volume ionize the gas. Electrons from this ionization are collected and amplified by

tungsten sense wires that run through the center of the chamber to provide a position
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measurement of a charged particle. Comparison of the arrival time of the pulse signal

from adjacent wires, and a measurement of charge deposition on vernier cathode

pads located above and below wires allows for a position measurement resolution of

approximately 1 mm[54]. The MDTs which cover the forward region are similar to the

PDTs but have shorter electron drift time (< 132 ns, as opposed to approximately

500 ns in the PDTs), and slightly better coordinate resolution of ≈ 0.7 mm [54].

Figure 3.12 shows the layout of PDTs and MDTs in an expanded view.

Figure 3.12: Expanded view of PDT and MDT layout in the muon system.[54]

Sheets of scintillating material serve to provide additional position measurements

and are used for triggering, cosmic ray veto and track reconstruction. These sheets

collect scintillation light from passing particles with a photomultiplier tube attached

to one corner. Scintillating muon detectors are arranged in each layer except the B
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layer of the central muon system as shown in Figure 3.13

Figure 3.13: Expanded view of the scintillator layout in the muon system.[54]

3.5 Trigger

The DØ trigger system is a three tiered system whose purpose is to filter through

events occurring in the DØ detector at a rate of 2.5 MHz and select only those events

which have the signature of interesting physics for recording to tape. The recording

rate is limited to approximately 50 Hz. This is acceptable because an overwhelming

fraction (99.996%) of the bunch crossings in the Tevatron result in simple soft scatters.

The trigger is designed to determine when a hard scatter has occurred and to select

that event for recording. some of the telltale signs of hard scatters are the presence of
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leptons, jets, central tracks, electromagnetic objects, and missing transverse energy.

The trigger system looks for the signatures of one or more of these conditions in the

detector as the data arrive. At DØ this is accomplished through a 3 tiered trigger

system, the first two layers of which are illustrated in Figure 3.14. The first tier,

level 1, is a hardware based system designed to make very quick decisions based upon

the readout of individual components. The second tier, level 2, consists of a set of 5

pre-processors associated with the sub-detectors that build physics objects from the

detector readout which are then passed to a global level 2 triggering computer that

makes a selection decision. The third tier, level 3 consists of a farm of approximately

200 PCs that run the full reconstruction code on an event and decide whether any

pre-defined criteria are met.

3.5.1 Level 1 Trigger

The level 1 trigger system is a purely hardware based trigger designed to read

events at a rate of 2.5 MhZ and pass events on at a rate of approximately 2 kHz. The

level 1 system is divided into 4 subsystems. These subsystems are the calorimeter

trigger (L1Cal), which selects events based on energy deposits in the calorimeter

exceeding pre-defined limits; the muon system trigger (L1Muon) and the central

track trigger (L1CTT), and checks them against pre-defined transverse momentum

thresholds.
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Figure 3.14: Configuration of the Level 1 and Level 2 trigger systems.[54]

3.5.2 Level 2 Trigger

The level 2 trigger system takes its inputs from the level 1 triggers as well as from

the detector components themselves. It consists of 6 preprocessors and one global

trigger. The preprocessors are each associated with a detector subsystem and receive

their inputs from the detector subsystem(s) they are associated with and/or the level

1 trigger they are associated with. The preprocessors create physics objects(tracks,

muons, jets, missing ET ) for each event which are then taken as inputs by the global

L2 trigger which makes a decision of pass or fail based upon the contents of the physics

50



objects in the event. In this way level 2 can utilize the matchings of physics objects

in its decision making process. The six pre-processors at level 2 are: L2 calorimeter

(L2CAL) which is used for the fast identification of jets, electromagnetic objects,

and missing transverse energy; L2 Central Muon and L2 Forward Muon(L2MUC and

L2MUF), which both serve the purpose of identifying muons from the muon system

and utilizes calibration and precise timing information to improve the quality of the

muon candidates from level 1; L2 Pre-shower (L2PS), which takes information for

the forward and central pre-shower detectors and provides evidence for early shower

development by giving a good spatial point for comparison with calorimeter clusters;

The level 2 central track trigger (L2CTT) takes inputs from L1CTT and L2STT,

the level 2 silicon track trigger, and provides the global processor with information

on track isolation and track pointing information for future matching to calorimeter

clusters and muon objects; L2STT uses the list of L1CTT tracks as seeds and takes

its inputs from the SMT to improve rejection of spurious L1 triggers and provides

the ability to trigger on tracks with a large impact parameter, which is a signature of

the decay of long lived particles, such as B hadrons. These preprocessors send their

results to the level 2 global trigger which combines all of the information available

and makes a decision based upon a number of pre-defined criteria, such as matches

of tracks to muons or calorimeter clusters, or jets plus a displaced track, etc. The

events that pass these criteria are passed on to level 3, at a rate of approximately 1

kHz
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3.5.3 Level 3 Trigger

The level 3 trigger system is a full software based system running on a farm

of Linux computers. These computers run the events through a more complete

reconstruction and base their decisions on the complete physics objects and the rela-

tionships between them. This system is designed to read events in at approximately

1 kHz, and to output the events to tape at a rate of approximately 50 Hz.
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Chapter 4

Event Reconstruction

The raw data from the DØ detector consists of digitized readout for each channel

of each sub-detector. These readouts consist of pulse heights of collected charge in

the calorimeter and silicon, light yields from the scintillators, and time differences in

the muon drift chambers. In order to put all this data together for physics analyses,

a computer program called DØ Reco is run over the raw data. DØ Reco applies

corrections from calibration and alignment studies and groups ’hits’ in various parts

of the sub-detectors into “physics objects”, such as electrons, muon, taus, jets, missing

transverse energy, calorimeter clusters, vertices, and tracks. In many cases these base

physics objects can be combined to improve efficiencies and reduce backgrounds. For

instance, muons found in the muon system (local muons) can be matched to a track to

create a “global muon” in order to get a better measurement of the muon momentum

and its production vertex.
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4.1 Track Reconstruction

In order to reconstruct tracks of charged particles through the detector, DØ

Reco first finds clusters of hits in each layer of the SMT and the CFT. The energy

weighted centroids of these clusters serve as inputs to the two tracking algorithms

that run in parallel and form a set of candidate tracks. These candidate tracks are

then subjected to a set of quality requirements in order to produce the final set

of tracks. The two tracking algorithms which run in DØ Reco are known as the

Histogramming Track Finder (HTF) and the Alternative Algorithm (AA). The AA

algorithm finds track candidates by performing both an “inside-out” and “outside-in”

extrapolation of clusters of hits in the detector. The HTF algorithm finds tracks by

filling a histogram of track parameter space with values consistent with each hit in

the CFT and SMT. Local maxima in this histogram are taken to be physical tracks.

4.1.1 AATrack

When the AA algorithm runs, it begins by looking for track candidates that

begin in the SMT. It starts by finding “seed clusters” that may occur on any SMT

barrel or F-disk. Track segments are then formed by searching for a second hit in

any silicon layer of greater radius within a window in phi of |∆φ| < 0.08. If a second

hit is found, a third hit is searched for in any further SMT layer. If a third hit is

found, these three points are projected onto the x − y plane and are fit to a circle.
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The resulting track segment candidate is kept if it passes all of the following criteria:

• The fitted circle’s impact parameter (or distance of closest approach) with re-

spect to the beam spot is less than 2.5 cm.

• The radius of curvature is at least 30 cm (pT > 180 MeV)

• The χ2 of the fit is less than 16

For track segments meeting these requirements, the algorithm continues by searching

the remaining layers of the SMT and CFT, in order of increasing radius, for hits to

associate with the track segment. A hit is kept if the resulting χ2 of the fit to a circle

in the x − y plane increases by less than 16 for each new hit. If multiple hits in the

same layer match the candidate, then the hypothetical track is split and each result is

considered separately. The number of layers with missed hits is monitored, adjusted

for dead and disabled channels. This process continues for each track hypothesis until

the outermost layer is reached, at which point the track is accepted and passed onto

the track selection stage, or until three contiguous layers are passed with a missed

hit, at which point a track is rejected.

To locate tracks that have few or no hits in the SMT, the same algorithm is

repeated, but starting from the outer layers of the CFT. Because the combinatoric

background is much worse in the CFT, due to the lack of z-segmentation, the track

candidates found in this manner are rejected if they are not consistent with a vertex

that was identified in the track selection stage.
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4.1.2 Histogramming Track Finder

The HTF algorithm finds tracks through local maxima of a histogram in track

parameter space which is filled for track parameters consistent with each hit[59],

as illustrated in Figure 4.1. The projection of a track on the x - y plane can be

expressed in terms of three parameters. The radius of curvature ρ = qB/pt, where

q is the charge, B is the magnetic field and pT is the transverse momentum of the

particle; the impact parameter b; and the azimuthal angle of the track trajectory at

the point of closest approach φ0. For illustrative purposes we can assume that b ≈ 0.

In this limiting case, each point in the x - y plane maps to a line in the parameter

space in the ρ - φ0 plane. By examining the lines in parameter space associated with

all points of a physical trajectory, the lines should form a vertex at the trajectories

true curvature and direction. HTF discretizes this parameter space into a set of

bins, and each hit in the detector fills a number of associated bins, and the vertices

in parameter space are identified by searching for local maxima in the histograms.

These vertices are used then to define a set of track candidates that are passed to the

track selection algorithm along with the AA track candidates.

4.1.3 Track Selection

The track hypotheses given by the AA and HTF algorithms are first filtered by

requirements on the number and type of missed hits along the track trajectory. The
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Figure 4.1: Sample track reconstruction with HTF. Plot a) shows the family of tracks
that can be associated with a given hit. Plot b) shows the representation of the family
of tracks associated with a given hit in curvature-azimuthal angle (ρ−φ0) space. Plot
c) shows the representation of 5 hits in ρ − φ0 space. The intersection of these lines
indicate the values of the true parameter values for the track that generated these hits.
Plot d) illustrates how these lines are used to fill a histogram, where the intersection
is determined as the local maximum.[59]

three types of hit misses are:

• Inside Misses: Missed hits between the innermost and outermost hits on the

track

• Forward Misses: Missed hits after the outermost hit on the track

• Backward Misses: Missed hits before the innermost hit on the track
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Together, forward and backward misses are referred to as outside misses.

For a track to pass selection, it must satisfy the following:

• The track must have at least four hits, with hits in axial and stereo layers of

the complete tracking system.

• The total number of hits must greater than five times the total number of misses.

• The total number of outside misses must be less than seven.

• The total number of inside misses must be less than four.

• The track must have fewer than three inside misses in the SMT.

• For tracks with inside misses:

– The total of inside and forward misses must be less than five.

– The total of inside and backward misses must be less than four.

The tracks which pass these requirements are then filtered for duplicate or near

duplicate tracks. This is done by sorting the remaining track candidates by the

number of hits (in descending order), the number of misses (in ascending order) and

the fit χ2 (in ascending order). Candidates with axial hits that are not shared with

earlier entries in the list are accepted, and candidates that do share hits with previous

entries are accepted if:

• Nshared ≤ 2
3
Ntot
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• Nshared ≤ Ntot
5

and Ntot −Nshared > 3

Where Ntot is the total number of axial hits on a track and Nshared is the number

of those hits that are in common with previous track candidates.

Finally, the remaining tracks are grouped by common vertices by an algorithm

similar to the one in described in Section 4.2[60]. These vertices are required to have

five tracks with χ2 < 36. The track candidates are then re-sorted, filtered as before

except that those associated with a vertex are “granted” two addition unshared hits,

and previously accepted hypotheses may be rejected, with a preference for keeping

candidates that are associated to a vertex.

The tracking efficiency under these conditions are measured by [61] to be ap-

proximately 95% for low pT tracks, as shown in Figure 4.2

Figure 4.2: Tracking efficiency in data measured with single muons. [61]
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4.2 Vertex Reconstruction

The vertexing algorithm[56] is used to determine the position of the hard-scatter

interaction that was responsible for triggering the event. Finding the primary vertex

is a two pass process. Initial vertex candidates are built from tracks that satisfy loose

selection requirements. In the second pass, the track selection cuts are tightened and

the vertices are refit from the remaining tracks. The primary vertex is chosen with a

probabilistic method based on the associated track momenta.

In the first pass of the vertex finding algorithm, tracks are required only to have

a transverse momentum greater than 0.5 GeV/c2, greater than one SMT hit and the

significance of the distance of closest approach ( DCA
σDCA

) to the detector origin must

be less than 100. These tracks are fit to a common vertex position with a Kalman

filter[60] algorithm. If the resulting χ2 of the fit is greater than ten, the track with

the largest contribution is removed, and the process is repeated until the vertex fit

χ2 is less than ten. This process is then repeated over the excluded tracks to identify

additional vertices, and this set of preliminary vertices is then passed to the second

pass of the algorithm.

In the second pass, the preliminary vertex positions are used to determine the

location of the beam spot. The first pass algorithm is applied again, with the ex-

ception that tracks are required to have a DCA significance of less than three with

respect to the measured beam spot. In order to separate the primary vertex from the
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grazing minimum bias collisions, each vertex is given a likelihood value that is formed

from the associated track momenta[62]. For each track associated with any vertex, a

probability, P (pT ) is assigned such that:

P (pT ) =

∫∞
log10(pT )

F (x)dx∫∞
log10(0.5)

F (x)dx
(4.1)

Where F (x) is the distribution of x = log10(pT ) for tracks from Monte Carlo minimum

bias as shown in Figure 4.3. For each vertex, the product of these probabilities for

each associated track is calculated and weighted by the track multiplicity to form a

probability that the vertex is a minimum bias vertex. The vertex with the lowest

probability for being a minimum bias vertex is selected as the primary vertex.

Figure 4.3: Distribution of log10(pT ) for tracks from minimum bias events. The data
distribution is taken from from a sample of Z → µµ events.
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4.2.1 Vertex Fitting

Vertex fitting is accomplished with a Kalman filter[60], which is an algorithm

to identify the vertex position, ~x = (x, y, z) and the momentum qk for every track k

associated with it. Every track is represented as a vector of track parameters, mk,

with components z0, φ, cot(θ), impact parameter, and curvature. For each vertex, a

measurement vector and its error matrix may be defined as:

~dm =

 m1

m2

 (4.2)

V =

 V1 0

0 V2

 (4.3)

A function ~d(~q), then defines the track parameters for a given ~q. With this

information, the Kalman filter algorithm then minimizes the equation:

χ2 = ( ~dm − ~d(~q))TV −1( ~dm − ~d(~q)) (4.4)

through an iterative procedure described in[56] to find the vertex fit parameters.

4.3 Muons

Muons are first reconstructed locally in the muon system before being matched

to tracks in the tracking detectors. In the muon system, hits in the drift chambers

are used to make local track segments in each layer (A, B, and C) of the muon

system. Hits in the scintillator paddles are added to these segments. Segments
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consistent with a common trajectory are merged into local muon tracks[63]. The

local tracks are then matched to central tracks identified in the CFT and SMT to

form a global muon. Segment reconstruction begins by only considering PDT and

MDT hits consistent in time with a beam crossing. This helps to reject backgrounds

from the radioactive environment and (anti-) protons which have scattered off the

beam pipe or the Tevatron magnets. The timing of the hits in each wire of a drift

chamber constrain the location of the muon to a circle surrounding the wire. All

possible pairs of hits within a chamber are formed, provided that they are not on the

same drift circle and are separated by less than 20 cm in the y direction. Additionally,

two wire hits may not be in the same plane of wires unless they are consistent with

a track passing between adjacent wires, see Figure 4.4.

Figure 4.4: Sample of a muon traversing a drift chamber. Tracks are constrained by
the hits timing information to lie on circles (red) around the wires that contain hits.
[63]
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Pairs of hits are combined into track segments of three or more hits and fit to

a straight line, with every permutation allowed. The segments are sorted first by

the number of hits and then by the fit χ2. All but the first four of these segments

are used to reconstruct local muons. Nearby scintillator hits in the same layer are

associated with the segment. Segments in each layer are then matched to one another

and fit again into local tracks, although the fit is not required to converge[64]. The

toroid provides a local pT measurement for muons with segments in both the A and

B or C layers of the muon system. In the cases where the fit does not converge, an

estimate of the muon pT is obtained by using the bending angle between segments.

The resolution of transverse momentum in the muon system is limited at low energies

by multiple scattering in the iron toroid and at high energies by the resolution of the

drift chambers and the scintillators.

If the local fit converges, the five standard track parameters 4.2.1 are obtained

from the resulting momentum measurement, the A layer position, and the propagation

of the track back to the point of closest approach to the primary vertex. All central

tracks with pT > 1 GeV and ∆φ < 1 and ∆θ < 1 are considered for matching to the

local muon track. To match one of these tracks to a local muon track, a new set of

track parameters Pf are calculated as an average of the central track and local muon

track parameters, Ptrk and Ploc, weighted by their uncertainties:

Pf = (E−1
trk + E−1

loc )
−1(E−1

trkPtrk + E−1
locPloc) (4.5)
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where Etrk and Eloc are the central and local track error matrices. The match is

obtained by taking the central track with the minimum χ2, where[65]:

χ2 = (Ptrk − Ploc)
T (Etrk + Eloc)

−1(Ptrk − Ploc). (4.6)

When the local muon fit does not converge, local muon tracks are propagated to

the A layer only and the closest central track in θ − φ space is chosen as the track

match, provided it satisfies the initial criteria for the χ2 matching. For the purposes

of this dissertation, all muon kinematic variables are those of the central track, even

when the local muon fit converges.

nseg Muon Type Track match

3 local muon track Yes

2 BC segment Yes

1 A-segment Yes

0 Central track Yes

-1 A-segment No

-2 BC-segment No

-3 Local muon track No

Table 4.1: Muon nseg definitions.

After a muon is found, it is assigned a category, nseg, depending on whether it

contains A, B, or C layer segments and the presence of a matching track, as shown in

Table 4.1 [66]. A quality is also defined as being either tight, medium, or loose based

on the nseg and the number and location of hits in the muon system[67].
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4.4 Photon Reconstruction

To reconstruct photons, a clustering algorithm known as CellNN is used to

reconstruct clusters of energy in the calorimeter. Since photons are expected to

deposit most of their energy in a narrow region of the electromagnetic section of the

calorimeter, only clusters that have at least 90% of their energy contained in the

electromagnetic calorimeter are considered. Further cuts to limit the width of the

cluster are applied once the cluster has been found.

4.4.1 The CellNN Algorithm

The CellNN algorithm creates clusters in a two step process. First clusters are

made on a layer by layer (or floor by floor) basis. These floor clusters are then

combined into global calorimeter clusters. The floor by floor clustering begins by

searching for a local energy maximum cell to serve as a seed cell for the floor cluster.

This cell is defined to be any cell with an energy above a threshold of 200 MeV

whose energy is greater than that of each of its neighbors. In the EM calorimeter, a

neighboring cell is defined as any cell which shares a face, so that each EM cell has

only 4 neighbors. The algorithm then iterates through cells in order of decreasing

energy down to a threshold of 25 MeV, and each cell is added to the floor cluster

that contains its highest energy neighbor. The cluster centroid is computed as an

energy weighted mean of the positions of all cells belonging to the floor cluster. In
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the case where a cell could be put into more than one cluster, the energy in each cell

at the boundary between separate clusters is shared based upon a parameterization of

shower shapes and the distance of the cell to the cluster centroid described in[68]. In

the case of EM floor clusters which have seed cells that share a corner, the difference

between the minimum energy of the two seed cells and the maximum energy of the

two common neighbor cells are compared to a threshold of 150 MeV. If this difference

is below the threshold, the two clusters are merged, see Figure 4.5

Figure 4.5: Floor cluster merging procedure in the CellNN algorithm.[68]

Once the floor clusters are built, the global clustering begins by using each floor
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cluster in the third layer of the EM-cal as a seed cluster. Floor clusters in EM4 are

added to a global cluster if their centroids lie in a cone defined by a given radius

(7cm at layer 3) and in the direction defined by the line from the primary vertex to

the EM3 floor clusters centroid. This same procedure is applied on up through the

calorimeter into the hadronic section for the reconstruction of jets, and then back

down to the first and second layers of the electromagnetic calorimeter. If no floor

clusters are found at EM3, EM4 floor clusters will then initiate global clusters, and

so on up through the calorimeter until a non-empty floor is found. If a floor cluster

cannot be merged with another floor cluster, then it will start its own global cluster.

Global clusters are not allowed to have a missing floor in the middle of the cluster,

except in special regions of the hadronic layers. If a floor cluster can be merged with

multiple clusters from the starting floor, the floor clusters energy is shared with each

of the starting global clusters based upon a shower shape parameterization described

in [18] and the cell distance to the cluster centroid, similar to the sharing of energy

for cells in floor clusters. The longitudinal shower shape of each global cluster is then

examined. If a significant minimum occurs in either EM4 or FH1, the global cluster

is then split into two separate clusters: an EM cluster and a hadronic cluster, and

the cells in the floor containing the minimum share their energies with each cluster.

Global clusters are then kept if their total energy is above a threshold of 1 GeV.
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Chapter 5

Event Selection

The analyses that follow were performed on data taken by the DØ detector

between April of 2002 and August of 2004, corresponding to approximately 550 pb−1

of data, as shown in Figure 5.1.

Proton-antiproton collision events at the Tevatron occur at a rate of 2.5 MHz.

The rate at which events can be recorded to tape is limited to 50 Hz, which means

that an experiment must very carefully define which events are of enough interest to

be written to tape. In the two analyses of X(3872) decays outlined in this paper,

the X(3872) is searched for in decays to J/ψ’s plus other particles. The reason for

choosing these decay modes rests primarily with our ability to trigger. The inclusive

J/ψ production cross section at the Tevatron is extremely high, approximately 240

nb[69], and because of their characteristic decays to µ+µ− , they are relatively easy

to trigger. The initial discovery of X(3872) was in the decay mode X(3872) →

J/ψπ+π−. A study of this state at DØ should therefore begin with this decay mode.
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Figure 5.1: Integrated luminosity at DØ from 2002 to the present. The data sample
used in the following analyses were collected before August 2004, which is denoted
by the vertical line.

Additionally, one of the possible charmonium assignments for the X(3872) (JPC =

1++) should couple strongly to J/ψγ, and thus J/ψγ candidate events are also selected

for study.

5.1 Dimuon triggers

Triggering on J/ψ candidate events begins in the level 1 muon trigger system

which scans the muon system for signatures of muons. At level 1 these signatures

are separated into four categories based on loose and tight requirements in either

muon scintillator or wire chambers. Loose scintillator triggers require only an A layer
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scintillator hit, and loose wire triggers require an A layer scintillator hit matched

to an A layer wire stub. Tight requirements in the scintillator search for matches

between A and B layer scintillator hits in the forward system and A and C layer hits

in the central system, while tight wire triggers match A and B layer wire stubs to A

and B layer scintillators in the forward section and A and C layer wire stubs to A and

C layer scintillator hits. At level 2 these muon candidates are then matched to tracks

in the central tracker, and the trigger is fired if the track matched muon candidates

satisfy a pre-defined pT cut and a track match quality cut.

The primary trigger responsible for triggering J/ψ decaying to µ+µ− is called

DMU1 1L1MM2. This trigger requires that two muons meeting tight scintillator

requirements[70] are present at level 1. At level 2, only one muon meeting the level

2 medium quality[71] requirements is required for an event to pass. At level 3, the

trigger is satisfied if there is a primary vertex with z-coordinate within ±35 cm of the

center of the detector, and one loose and one medium[72] central muon candidates

with pT greater than 2 GeV.

5.2 Dimuon Skim

Because DØ is a multi-purpose detector, the dimuon triggers used in this analysis

are run in conjunction with many other triggers that are used for other analyses. A

large fraction of the full data set that is written to tape naturally contains events
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that would be thrown out during selection cuts. In order to reduce processing times

for physics groups, the full data set is divided up into smaller subsets known as

“skims.” An event is tagged for one or more skims during reconstruction based upon

a set of predefined selection criteria based on the physics objects reconstructed in

the event. Because the final states in this analysis depend on the reconstruction and

identification of a J/ψ decaying to µ+µ−, a dimuon skim known as AA JPSI is used

as the initial data set. This skim tags events that meet the following requirements:

• The event must contain two certified muons of opposite charge.

• At least 2 muons must have transverse momentum greater than 1.5 GeV.

• Each muon must be associated with a track that contains at least one hit in the

CFT.

• At least one of the muon in the event must have nseg equal to 3.

• For muons with nseg greater than 0, its transverse momentum must be greater

than 1.5 GeV

• For muons with nseg equal to 0:

– The dimuon transverse momentum must be greater than 4.0 GeV.

– a muon in calorimeter track (MTC) is searched for.
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– CalEsig()>0.015*CalNLayer(), where CalEsig is the significance of energy

given to an MTC track, and CalNLayer is the number of calorimeter layers

associated with an MTC track

– Its total momentum must be less than 7 GeV.

– The transverse momentum of the second muon must be greater than 2.5

GeV.

– The χ2 of the global muon fit must be less than 25 for both particles.

• The dimuon invariant mass must be greater than 2.5 GeV.

• If the dimuon mass is greater than 3.6 GeV:

– nseg greater than 1 for both muons

– Each muon must have a transverse momentum greater than 2.5 GeV.

Note that events are selected independently of trigger requirements. After select-

ing the skim, events are further required to have fired any dimuon trigger. Also note

that the dimuon invariant mass is the Lorentz invariant mass of the dimuon system.

5.3 J/ψπ+π− candidate selection

To select J/ψπ+π− candidates, events which fired a dimuon trigger are searched

for dimuon candidates which are required to have a common vertex, opposite charge,
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the candidate pT is greater than 5 GeV, and an invariant mass within the J/ψ mass

window of 2.80 to 3.35 GeV, as shown in Fig. 5.2. Each muon is also required to

have a matched track, and nseg, see Table 4.1, greater than zero. Two charged tracks
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Figure 5.2: Dimuon invariant mass spectrum in the J/ψ mass window.

with opposite charge are then added to the J/ψ candidate under the assumption that

they represent the path of charged pions. The 4 tracks constituting the J/ψπ+π−

candidate are then required to have at least one hit between them in the silicon in

order to remove bad tracks. The candidate is also required to have a 4 track vertex χ2

less than 16. After applying these basic quality cuts, the invariant mass distribution

is plotted, as M(µ+µ−π+π−)−M(µ+µ−) to remove the resolution effect of the J/ψ,

see Fig. 5.3. In this sample, the obvious peak corresponds to the well known ψ(2S)

charmonium state which also decays prominently to J/ψπ+π−[18].

In the expected mass window (0.73 < ∆M < 0.81 GeV) for the X(3872), no
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Figure 5.3: M(µ+µ−π+π−) −M(µ+µ−) With only basic quality cuts applied. The
invariant mass difference between the 4-particle candidate and the dimuon candidate
is used in place of the 4 particle invariant mass in order to cancel resolution effects.

obvious peak is observed, indicating that combinatoric backgrounds dominate over

any signal. In order to determine whether the X(3872) is in this sample, as many

random combinations of tracks as possible must be removed. In order to accomplish

this, the lowest transverse momentum tracks are removed, as they are the largest

sources of combinatoric backgrounds. Since the X(3872) is not a particularly heavy

object, it is dangerous to cut too hard on transverse momentum for risk of removing

the signal. The transverse momentum of all tracks is plotted in Figure 5.4. In order

to remove a significant number of fake tracks, a transverse momentum cut is made

for each pion candidate track that requires pπ
±
T to be greater than 0.7 GeV.

The resulting invariant mass distribution, shown in Figure 5.5 still shows that the

sample is dominated by combinatoric backgrounds, with little evidence for X(3872).
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Figure 5.4: Transverse momentum of tracks in events selected by the dimuon skim.

In order to further reduce combinatoric backgrounds, a variable ∆R =
√

∆η2 + ∆φ2

is computed for each pion track momentum with respect to the momentum of the 4

track candidate at the point of closest approach to the primary vertex. Both pion

track candidates are required to have ∆R values less than 0.4. The resulting invariant

mass distribution after applying this cut is shown in Figure 5.6.

The tracks that are accepted are then combined, under the assumption that

the non-muon tracks are charged pions, to form an X(3872) candidate. While the

above kinematic cuts were made to reduce the combinatoric background inherent

in hadronic collisions, the combinatoric backgrounds are still very high. To make

the combinatorics more manageable, a further cut was introduced based upon the

BELLE collaboration’s observation that the di-pion invariant mass spectrum was
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Figure 5.5: M(µ+µ−π+π−)−M(µ+µ−) with only basic quality cuts in addition to a
pion pT cut.
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Figure 5.6: M(µ+µ−π+π−)−M(µ+µ−) with only basic quality cuts in addition to a
cut on each pions pT and ∆R.

heavily skewed toward the upper kinematic limit[2]. Noting this, a further cut, re-

quiring the two pion reconstructed invariant mass to be greater than 0.52 GeV, was
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used. The result of these selection criteria is shown in Figure 5.7

)2  (GeV/c-µ+µ-M-π+π-µ+µM
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2
E

ve
n

ts
 / 

10
 M

eV
/c

0

500

1000

1500

Figure 5.7: M(µ+µ−π+π−)−M(µ+µ−) with all analysis cuts applied.

As can be seen from Figure 5.7, a peaking structure near the expected mass of

the X(3872) is seen. In Chapter 6 this data sample will be analyzed to make a mea-

surement of the mass of the X(3872). At the same time, the X(3872 content of this

sample will be compared to the ψ(2S) charmonium state in a number of production

and decay variables. A measurement of the lifetime properties of these two states

will also be performed at that time. It is well known that charmonium production at

the Tevatron proceeds through “prompt” pp interactions as well as through B meson

decay. Measurements of the X(3872) prompt fraction can test the charmonium hy-

pothesis. If it is found that the X(3872) has a significantly different prompt fraction

than other well known charmonium states, then charmonium hypotheses could be

severely limited. However, before proceeding with these analyses, there is one other
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dataset that will be used for analysis.

5.4 J/ψγ selection

This decay channel was selected for several reasons. First, an observation of

X(3872) in this decay channel would require that the C parity of X(3872) be posi-

tive. Although other experiments have proclaimed this to be the most likely result,

observation of this decay channel would leave no doubt. Secondly, for some charmo-

nium hypotheses, the naive expectation would be that this channel should dominate

due to the fact that it is an isospin conserving decay while the decay to J/ψπ+π−

is not. More recent calculations however have stated that this does not have to be

the case however. Lastly, for nearly every proposed theoretical interpretation of the

X(3872), the expected dominant decay channels involve neutral particles in the final

state, primarily photons or neutral pions. While the DØ detector was not designed

to detect these particles individually at such low energies, it is not impossible to do

so. Searching for the X(3872) in this decay channel then is a natural place to start

testing the limits of the DØ detector.

J/ψ candidates were selected for this channel in much the same way as the above

section, but with the further requirements that the muons from the J/ψ candidate

have an nseg value greater than 1, and that the p
J/ψ
T be greater than 7 GeV. The cen-

tral electromagnetic calorimeter is then searched for CellNN clusters. These clusters
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are required to have at least 90% of their energy in EM cells, and no more than one

cell at layer 1 in order to reduce the contributions from π0, η and other hadrons that

decay into two photons. A track match veto is also applied which requires that the

spatial χ2 probability of the best potential track match be less than 1% to eliminate

most of the contribution from electrons from our sample. The clusters that are found

by this method constitute the photon candidates. The energy of the candidate pho-

tons are taken to be the sum of the energy deposited in each cell associated with the

cluster. In order to reconstruct the 4-vector of the photon, the momentum vector is

determined as the vector with a magnitude equal to the reconstructed energy in the

direction of the line passing through the J/ψ decay vertex and the energy weighted

centroid of the cluster at the third layer of the electromagnetic calorimeter. With the

momentum of the photon determined, it is then combined with the J/ψ to form an

X(3872) candidate, and the resulting invariant mass distribution plotted in Figure

5.8, again in the variable ∆M = M(µ+µ−γ)−M(µ+µ−).

As can be seen from Figure 5.8, the χc states appear as a strong peak, signaling

that this sample certainly contains a large number of photons. However, no such

peaking structure is obvious in the X(3872) mass region. In Chapter 7, this sample

will be examined with more scrutiny and a limit on the relative branching ratio for

this state will be set.
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Figure 5.8: M(µ+µ−γ)−M(µ+µ−) with all analysis cuts applied.
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Chapter 6

Analysis of X(3872) → J/ψπ+π−

6.1 Monte Carlo Simulation

Monte Carlo simulation can be a poor description of the data, therefore Monte

Carlo is used primarily to understand resolution effects and mass biases for the two

expected physics signals in the data, the ψ(2S) and X(3872). Two different Monte

Carlo samples were used. The first sample consisted of ψ(2S) decaying to J/ψπ+π−,

and the second represented X(3872) decaying in the same manner. Because little is

understood about the composition of X(3872), this sample was created by simulating

a “heavy” ψ(2S) in which the ψ(2S) mass was artificially set to 3872 MeV. These

simulated events are then passed through a detector simulator which simulates the

outputs of the DØ detector, and subsequently run through the reconstruction algo-

rithms outlined in Chapter 4. With 23,000 simulated X events and 24,000 simulated

ψ(2S) events, the mass difference M(J/ψπ+π−) −M(J/ψ) for each candidate from
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the reconstructed events are plotted in Figure 6.1.

Figure 6.1: Invariant mass difference distribution in Monte Carlo for combined
X(3872) and ψ(2S) samples.

This distribution is then fit to a 3rd order polynomial background shape plus two

Gaussian to represent the X(3872) and ψ(2S). The results of this fit indicate that

we should expect the X(3872) width to be 27% ± 10% wider than that ψ(2S) peak,

and that we should expect to find the X(3872) mass difference at 0.773 ± 0.00060

GeV and the ψ(2S) mass difference at 0.589 ± 0.00057 GeV.

6.2 Mass Measurement

To measure the mass of the X(3872), the mass difference plot of Figure 5.7 is

fit to a background function plus two signal Gaussian, one each for the ψ(2S) and

X(3872). The background function is chosen to be a 3rd order polynomial for the
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purposes of keeping the fit simple and because it describes the data well. The fit was

performed using the MINUIT minimization processes on a χ2 between the data and

the fit curve. Because MINUIT, or any other minimization software for that matter,

is a numeric algorithm, the resulting fit is somewhat dependent on the initial guesses

made for each parameter in the fit. This is due to the fact that the software cannot

distinguish between an absolute minimum and a local minimum if a local minimum

occurs far from any other minimum of a function. As initial guesses, the expected

mass difference and peak width for the ψ(2S) and X(3872) obtained from the Monte

Carlo are used, along with parameters for the background curve that approximately

follow the shape observed in data. An initial round of fitting is first performed

assuming no contribution from X(3872). For these initial fits, the errors for each bin

in the expected X(3872) signal region are artificially set to a very large number (in

this case, 100,000) so that effectively these points do not contribute to the fit and

allow us to determine a background shape with these bins excluded. A first fit is

performed fixing the mean and width of the Gaussian representing the ψ(2S) signal

to values expected from Monte Carlo, and fitting to a 3rd order polynomial plus a

single Gaussian, shown in Figure 6.2. The fixed values are then allowed to float and

a fit to the same function is performed again, see Figure 6.3. At this point, a good

description for the background has been found, and a new function which consists

of the background function and single Gaussian of the first two fits plus an extra

Gaussian representing the X(3872) contribution is defined. The errors on the bins in

84



the X(3872) region are reset to their original values, and the initial guesses for the

mean and width of the new X(3872) Gaussian are set to the mean and width of the

peak described by the heavy ψ(2S) Monte Carlo. With these initial guesses, the final

fit is performed, see Figure 6.4. On the sample created by the cuts defined in Section

5.3, this fitting procedure yields a mass difference measurement for the X(3872) of

0.7647± .0024 GeV with 799± 134 events in the X(3872) Gaussian. For the ψ(2S)

a mass difference of 0.5865 ± 0.0003 GeV is measured, with 2592 ± 81 events in the

ψ(2S) Gaussian. The difference in the measured value of the ψ(2S) mass and it’s

PDG value (0.5891 GeV [18]) is used in Section 6.2.1 to set the systematic error on

the X(3872) mass. The full results of the fit are shown in Table 6.1. The significance

of the X(3872) peak can also be approximated through the χ2 difference of the fit to

a background function only and the fit to background plus a Gaussian X(3872). The

significance level is then approximated from the p-value where p = 1 − F (∆χ2;n),

where F (∆χ2;n) is the χ2 probability distribution function for n additional degrees

of freedom. In the fitting procedure described above, ∆χ2 = 93.34 and the number

of additional degrees of freedom are the 3 extra fit parameters associated with the

X(3872) signal Gaussian. The p-value is then 5.42 × 10−20. This p-value represents

the probability that the data in the region of the X(3872) mass are better described

by our choice of a 3rd order polynomial background representation than the same 3rd

order polynomial plus a Gaussian to represent an additional signal.
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Figure 6.2: Result of fitting χ2 fit with fixed ψ(2S) signal Gaussian, and large errors
in X(3872) mass window.
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Figure 6.3: Result of fitting with ψ(2S) Gaussian released, ignoring the X(3872) mass
window.

6.2.1 Systematic Error

The systematic error on the mass measurement of the X(3872) was determined

by taking the difference between the PDG value of M(ψ(2S))−M(J/ψ))[18] and the
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Figure 6.4: Result of final fit with Gaussian for X(3872) added.

ψ(2S) norm 1048.7± 33.8

ψ(2S) mean 0.5865± 0.0003

ψ(2S) width 0.009861± 0.000307

polynomial 0th order −1.417× 104 ± 35.7

polynomial 1st order 4.581× 104 ± 78.3

polynomial 2nd order −4.268× 104 ± 100.2

polynomial 3rd order 1.235× 104 ± 83.7

X(3872) norm 209.1± 32.5

X(3872) mean 0.7647± 0.0024

X(3872) width 0.01525± 0.00321

Table 6.1: J/ψπ+π− mass fit results with a bin width of 0.01 GeV.

DØ value of M(ψ(2S))−M(J/ψ) and scaling by the fitted mass difference between

the X(3872) and J/ψ. This scale factor is added to the fitted mass and given a 100%
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error, yielding a final mass measurement of ∆M = 0.7681± .0024(stat) ±.0034(sys).

The central value corresponds to an X(3872) mass of 3865 MeV. Other sources of

systematic errors were found to be negligible.

6.3 Comparison to ψ(2S) Charmonium State

A comparison of theX(3872) state to the charmonium state ψ(2S) was performed

by selecting several production and decay variables and comparing the distribution

of ψ(2S) and X(3872) with respect to these variables. Due to low statistics and

the high contributions by backgrounds however, it was chosen to only utilize two bin

histograms. The separation value of these two bins are chosen to be either a physically

informative value or at a value in which roughly half of the total event sample lies on

either side of the cut. The variables chosen for comparison, along with the value of

the bin separation are:

• rapidity, with bins of |y| < 1, and |y| ≥ 1

• 2d distance from primary vertex to decay vertex, dlxy, with bins of dlxy ≤ 0.01,

and dlxy > 0.01

• pT of X(3872)/ψ(2S) candidate, with bins of pT ≤ 15, and pT > 15

• isolation, I, with bins of I = 1, and I < 1

• cos θµ, with bins of | cos θµ| ≥ 0.4, and | cos θµ| < 0.4
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• cos θπ, with bins of | cos θπ| ≥ 0.4, | cos θπ| < 0.4

where isolation is defined as:

I =
|~pcand|∣∣∣∣∣~pcand +
∑

conetrks

~ptrk

∣∣∣∣∣
(6.1)

and the summation is over all tracks around the X(3872) candidate such that, ∆R =√
∆φ2 + ∆η2 < 0.5 with respect to the η, φ direction of the X(3872) candidate. The

term cos θπ is defined by first boosting the X(3872) candidate and the pions from

the X(3872) candidate into the dipion rest frame. The angle θπ is then defined to

be the angle between the candidates direction and the direction of one of the pions.

Likewise, for the term cos θµ this procedure can be repeated by boosting into the

dimuon rest frame and taking the angle between the candidate and one of the muons.

From this angle, the helicity of the dipion and dimuon systems can be inferred. For

each of these variables, the sample is split into two at the cut value, and using the

same mass fitting procedure as discussed in Section 6.2. The number of X(3872) and

ψ(2S) in each bin are obtained. The results are reported in Table 6.3, and plotted in

figures 6.5, 6.6, 6.7, 6.8, 6.9, and 6.10. Figure 6.11 condenses these results into one

plot as the fraction of the total number of X(3872) and ψ(2S) that appear in each

region.
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Variable ψ(2S) yield X(3872) yield

(a) |y| < 1 1552 ± 62 494 ± 78

1 < |y| < 2 1046 ± 60 319 ± 71

(b) | cos θµ| ≥ 0.4 1285 ± 56 349 ± 65

| cos θµ| < 0.4 1306 ± 63 474 ± 81

(c) | cos θπ| ≥ 0.4 1192 ± 57 410 ± 73

| cos θπ| < 0.4 1407 ± 58 397 ± 70

(d) pT > 15 GeV 876 ± 46 267 ± 57

pT ≤ 15 GeV 1714 ± 68 531 ± 82

(e) dlxy ≤ 0.01 cm 1898 ± 70 526 ± 85

dlxy > 0.01 cm 694 ± 41 278 ± 51

(f) I = 1 544 ± 30 156 ± 28

I < 1 2058 ± 74 658 ± 95

Table 6.2: Yields of ψ(2S) and X(3872) for different ranges of variables. The fitted
widths of ψ(2S) and X(3872) are not constrained in the initial selection, however
over the ranges listed in these tables, the Gaussian widths for ψ(2S) and X(3872) are
fixed to the values obtained in the fit over the full sample. The uncertainties in this
table reflect only the uncertainty in fitted Gaussian normalization and do not reflect
the small uncertainties in background

6.4 Lifetime Analysis

The X(3872) decays to J/ψπ+π− through QCD interactions, resulting in a life-

time too short to be measured with the DØ detector. Useful information can still

be obtained through a lifetime analysis of the X(3872). At the BELLE experiment,

X(3872) is produced through decays of B mesons, which decay through weak inter-

actions, and thus exhibit large and measurable lifetimes. At the Tevatron, however,
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Figure 6.5: ∆M distribution for the two ranges of rapidity in the µ+µ−π+π− system.
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Figure 6.6: ∆M distribution for the two ranges of | cos θµ| in the µ+µ−π+π− system.

X(3872) may be produced directly through pp̄ collisions and also through decays of

B mesons. By observing the pseudo-proper time associated with the X(3872), it is

possible to determine the ratio of these two production mechanisms at the Tevatron
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Figure 6.7: ∆M distribution for the two ranges of | cos θπ| in the µ+µ−π+π− system.

)2  (GeV/c-µ+µ-M-π+π-µ+µM
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2
E

ve
n

ts
 / 

10
 M

eV
/c

0

500

1000

 < 15 GeVX
Tp

 15 GeV≥ X
Tp

Figure 6.8: ∆M distribution for the two ranges of pT in the µ+µ−π+π− system.

without fully reconstructing the decay. In order to determine the fraction of directly

produced X(3872) events, a simultaneous likelihood fit to a background and signal

region is performed on the proper lifetime distribution of the J/ψ used in the analysis.
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Figure 6.9: ∆M distribution for the two ranges of dlxy in the µ+µ−π+π− system.
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Figure 6.10: ∆M distribution for the two ranges of isolation in the µ+µ−π+π− system.

The proper lifetime, τ of any particle is defined such that:

cτ =
MLlab
|~p|

(6.2)
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Figure 6.11: Comparison of event-yield fractions for X(3872) and ψ(2S) in the re-
gions: (a) |y| of J/ψπ+π− < 1; (b)cos θµ < 0.4; (c)cos θπ < 0.4; (d) pT (J/ψπ+π−) >
15 GeV/c; (e) effective transverse proper decay length, dlxy < 0.01 cm; (e) isolation
= 1

Where τ represents the proper lifetime, or lifetime of a particle in its rest frame, M

is the particle mass, ~p is the particle’s 3-momentum vector and Llab is the distance

traveled by the particle in the lab frame. In the case of X(3872), ψ(2S), J/ψ, and

other charmonium states, the proper lifetime is so short that it is indistinguishable

from zero within the DØ tracking resolution. However, due to the large lifetime of B

mesons, one can extract the ratio of “prompt” production with respect to production

through B decay. In order to extract this ratio, a pseudo-proper lifetime is constructed

where Llab is defined to be the distance from the primary vertex to the J/ψ decay

vertex. Due to the poorer tracking resolution in the z direction, the pseudo-proper

lifetime is only calculated in the transverse plane, so that the pseudo-proper time
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becomes

cτ pseudoxy =
MJ/ψ dlxy

p
J/ψ
T

. (6.3)

The distribution of this quantity is plotted for signal and background regions in

the mass distribution, see Figures 6.12 and 6.13, and a simultaneous pseudo-proper-

lifetime fit is performed over both regions.
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Figure 6.12: Mass regions used in the ψ(2S) lifetime fit.

The background region for this fit is taken from the sidebands of the X(3872)

such that each sideband lies more than 3σ away from the mean measured X(3872)

and ψ(2S) mass, and an equal number of events are contained in each sideband.

The signal region is defined as being a 2σ region around the measured mass of the

X(3872).

Simultaneously, the background region and the signal regions are fit to a back-

ground distribution plus a signal contribution. In the background region, the signal
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Figure 6.13: Mass regions used in the X(3872) lifetime fit.

Figure 6.14: Lifetime distribution for the µ+µ−π+π− system in the X(3872) mass
window.

contribution is set to zero. The background function consists of a double Gaussian

96



Figure 6.15: Lifetime distribution for the µ+µ−π+π− system in the ψ(2S) mass win-
dow.

and symmetric exponential to describe prompt background plus one negative expo-

nential tail and two positive exponential tails. The signal function consists of a double

Gaussian and symmetric exponential to describe the prompt component and a single

exponential to describe the long lived component. All parameters are given initial

guesses and allowed to float, except for the parameter which describes the fractional

signal contribution in the signal region. This parameter is fixed based on the results

given in section 6.2. The resulting fit is shown in Figure 6.14, and yields a prompt

fraction of 70.0 ± 6.66%. This fitting procedure is repeated for the ψ(2S), utilizing

the data sample without an M(ππ) cut. The fit results are shown in Figure 6.15

and yield a prompt fraction of 77.1± 1.29%. These prompt fractions, specifically the

ψ(2S) prompt fraction will be an important part of the limit calculation in Chapter
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7. Additionally, the ψ(2S) prompt fraction was measured on a sample with a tighter

cut on muon nseg and J/psi transverse momentum to reflect the muon cuts utilized

in Chapter 7. The X(3872) prompt fraction further confirms that the primary mode

of X(3872) production at the Tevatron occurs directly through p− p collisions rather

than through the decay of B mesons.

6.5 Summary of Results

In this chapter it was shown that the X(3872) is observed at DØ in the decay

mode to J/ψπ+π− with a measured mass difference ∆M = 0.7675 ± 0.0024(stat) ±

0.0033(syst) GeV and 1011 ± 156X(3872) events. Further analysis of production

and decay properties showed that in the variables chosen for study, the X(3872)

exhibited similar properties to the charmonium state ψ(2S). Further angular analysis

and dipion mass spectrum analysis capabilities at DØ are limited due to the large

combinatoric backgrounds and the resolution capabilities of the DØ tracking. It has

also been shown that production of the X(3872) at the Tevatron proceeds not only

through B meson decay, as observed by the Belle and Babar collaborations, but also

directly through pp collisions. It is shown that such “prompt” production is in fact

the dominant production channel, with 70.0± 6.66% of events being produced in this

manner. This ratio is consistent with charmonium production at DØ and could have

implicaitons on the interpretation of X(3872) as a weakly bound meson molecule.
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Chapter 7

X(3872) → J/ψγ Analysis

Because Figure 5.8 shows no obvious excess of events near the mass of the

X(3872), an upper limit for the relative branching ratio, R, is measured.

R =
BR(X(3872) → J/ψγ)

BR(X(3872) → J/ψπ+π−)
(7.1)

R =
N obs
X→J/ψγ

N obs
X→J/ψπ+π−

εJ/ψππ
εJ/ψγ

(7.2)

The term εxyz represents the efficiency of reconstructing X(3872) decaying to a final

state xyz, and N obs
xyz represents the number of observed candidates in decay mode xyz.

It is also assumed that all J/ψ decays to µ+µ−.

To minimize the use of Monte Carlo simulation, these efficiencies are determined

using data through the convenient calibration states χc1,2 and ψ(2S) which decay
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prominently to J/ψγ and J/ψπ+π− respectively. The efficiencies can then be esti-

mated as:

εJ/ψππ =
N obs
ψ(2S)

σψ(2S)L
(7.3)

εJ/ψγ =
N obs
χc

σχcL
(7.4)

Where σ represents the inclusive production cross section of the particle in question

and L represents the integrated luminosity of the dataset. These efficiencies as for-

mulated include effects from detector acceptance as well. In order to estimate the

relative efficiencies of these two final states from the calibration states, a measure-

ment of the cross section times branching ratio for each of the calibration states is

needed. The CDF experiment provides just such a measurement from Run I of the

Tevatron[73]. This measurement however emphasizes direct production of ψ(2S) and

χc, which is known to account for roughly 70% of the samples seen at DØ. Thus, in

order to make use of the quantities measured by CDF, a measurement of the prompt

production fraction for both ψ(2S) and χc is required. The relative branching fraction

of interest then becomes:

R =
N obs
X→J/ψγ

N obs
X→J/ψπ+π−

N obs
ψ(2S)

N obs
χc

σpromptχc

σpromptψ(2S)

fpromptψ(2S)

fpromptχc

∆εX→J/ψππ

∆εX→J/ψγ

, (7.5)

where fprompt represents the measured prompt production fraction of a given particle

in the sample, and the terms ∆ε are added as multiplicative factors to account for

the effect of kinematic differences between the X(3872) and the calibration states in
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each channel. These factors are primarily derived from the Monte Carlo simulations,

and will be discussed in section 7.1.

There is no obvious sign of X(3872) → J/ψγ in the data. Thus the term in equa-

tion (7.5), N obs
X→J/ψγ presents a problem. Rather than try to set a limit on this term

and translate that number into a limit on R, equation (7.5) is instead reformulated

to be the number of signal events predicted for any given value of R. Thus,

Npred
X→J/ψγ = RN obs

X→J/ψππ

N obs
χc

N obs
ψ(2S)

σpromptψ(2S)

σpromptχc

fpromptχc

fpromptψ(2S)

∆εX→J/ψγ

∆εX→J/ψππ

. (7.6)

This prediction is then added to a background estimate in a Bayesian limit calculator[74]

in order to directly set a limit on the ratio R.

7.1 Monte Carlo Simulation of Expected Signals

In the J/ψγ decay mode, a large contribution from the χc1 and χc2 states is ex-

pected. To model the expected distribution from these states, Monte Carlo is created

for the production of χc1 and χc2. These states are then required to decay to J/ψγ

with the restrictions imposed that the photons are central (|η| < 1.1), the photon pT

is greater than 1.5 GeV, and the J/ψ is required to decay to two muons such that

each muon carries transverse momentum greater than 4.0 GeV. These requirements

are imposed to ensure that the final state particles of interest are energetic enough to

pass reconstruction cuts efficiently. Applying the event selection cuts of section 5.4 to

the Monte Carlo samples, mass distributions shown in Figures 7.1, 7.2 are obtained.
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From the Monte Carlo, it is seen that the masses of the χc states are reconstructed

to be approximately 50 MeV too low. This is due to the fact that the energy of each

photon is taken to be the sum of the deposited energy in each calorimeter cell with

no correction applied for showers that likely begin in the solenoid.

As with the previous analysis, Monte Carlo for X → J/ψγ is created as a χc1

with mass 3872 MeV. This is done to determine the expected mass window of the

X(3872). The mass distribution of the simulated X(3872) is shown in Figure 7.3.

The samples for χc1 and X(3872) are fit to distributions consisting of a Gaussian

and one or two exponential tails. The χc is given only one tail in the high mass region

due to the fact that turn-on effects diminish the effect of a low mass tail. This fit

is performed on the χc1 Monte Carlo only. For this fit, entries in Figure 7.1 above

∆M = 0.8 are excluded and assumed to be the result of simulated calorimeter noise.

The results of this fit are shown in Figure 7.4. The fitted ratio of the exponential

decay constant to the Gaussian width is found to be 1.772 ± 0.168, and the fitted ratio

of exponential normalization to the Gaussian normalization is found to be 0.1576 ±

0.0302. In the case of the X(3872), the particle is far enough away from the turn-on

curve that the tails are expected to be symmetric. The parameters found in the χc1

fit are then used to fix the tails in the fit to the X(3872) distribution, where in this

case, ∆M values above 1.2 GeV are excluded. The result of the X(3872) Monte Carlo

mass fit can be seen in figure 7.5. This fit will set the X(3872) mass window, at plus

or minus 2.5σ around the Gaussian mean later in the analysis at 0.7034±0.2014 GeV,
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in which we should expect to find 93% of the X(3872) sample we might have.
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Figure 7.1: χc1 → J/ψγ Monte Carlo after applying analysis cuts.
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Figure 7.2: χc2 → J/ψγ Monte Carlo after applying analysis cuts

The Monte Carlo is also used to estimate the efficiency ratio of X(3872) and

χc. This is estimated by counting the number of events in each sample that pass the
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Figure 7.3: Monte Carlo simulation of X(3872) → J/ψγ, by creating χc1 particles
with a mass of 3872 MeV.

)2  (GeV/c-µ+µ-Mγ-µ+µM
0 0.2 0.4 0.6 0.8 1 1.2 1.41.6 1.8 2

2
E

ve
n

ts
 / 

20
 M

eV
/c

-110

1

10

210

c1χ

Figure 7.4: χc1 → J/ψγ fitted to a Gaussian plus an exponential tail, shown in log
scale.

analysis cuts.

∆ε =

Npass
X

Ntotal
X

Npass
χc

Ntotal
χc

(7.7)
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Figure 7.5: X(3872) → J/ψγ fitted to a Gaussian plus symmetric exponential tails,
shown in log scale.

The samples used consisted of 31,268 simulated χc1 events and 7,419 simulated

X(3872)events. The number of candidates passing analysis cuts are 3044 and 783

respectively, resulting in a ∆εX→J/ψγ = 1.08 ± 0.05. The extra efficiency to recon-

struct X(3872) is due to the fact that the photon pT distribution for the X(3872)

is skewed toward higher pT photons than that of the χc due to the extra mass of

the X(3872). Similarly, the Monte Carlo samples shown in Figure 6.1 were used to

determine ∆εX→J/ψππ = 0.74 ± 0.11.

7.2 Backgrounds

In the process of setting a limit on the relative branching fraction, the determina-

tion of expected background levels in the X(3872) mass window plays a very central
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role. In an analysis where there is clear evidence for a signal peak, fitting techniques

are often adequate to describe the background shape underneath the signal peak.

However, in this case we are searching for what is apparently a small excess over

background, and thus, it is crucial to estimate the expected background as accurately

as possible.

7.2.1 Sources of Background

In this analysis, three sources of background are considered:

• Correlated dimuons and photons. These can take the form of fake or real J/ψ’s

plus energy deposited in the calorimeter. This arises as a result of some physics

process for which we get only partial reconstruction or a mis-reconstruction.

This source of background is assumed to take on the same distributions as that

of dimuons that fall in the J/ψ sidebands plus a photon; shown in Figure 7.6.

• Uncorrelated dimuons and photons. This primarily takes the form of a real

J/ψ that gets combined with a calorimeter cluster as a result of either elec-

tronic noise, or as a result of some other physics process in the event that is

independent of the process that created the J/ψ. This source of background

is modeled through “event mixing”, where a J/ψ from one event is combined

with a calorimeter cluster from another, randomly selected, event. The ∆M

distribution for this source is shown in Figure 7.7.
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• Correlated dimuons and photons arising from B meson decays. While this

can be considered a sub-set of source 1, it is considered separately due to the

possibility that the sideband data incorrectly estimate the weight given to this

production mechanism. This source was modeled with Monte Carlo, and it’s

∆M distribution is shown in Figure 7.8. The Monte Carlo used required the

production of a B meson, which decayed into a final state of a J/ψ and either

a photon or a π0 with transverse momentum greater than 1.5 GeV.
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Figure 7.6: J/ψ sideband plus photon ∆M distribution.

A first estimate for the background levels of the data sample is obtained by

fixing the normalization of the sideband distribution to the level indicated in the J/ψ

mass plot ( 15% of total). After fixing this background component, the other two

components are fit to the data distribution in the region of 1 GeV < ∆M ≤ 2 GeV.

A second estimate can also be obtained by releasing the fixed sideband level and
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Figure 7.7: J/ψ plus “Event mixed” photon ∆M distribution.
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Figure 7.8: J/ψ plus photon from B decay Monte Carlo ∆M distribution.

allowing all 3 components to float. The results of these two fitting procedures are

summarized in Table 7.2.1, and shown in Figures 7.9 and 7.10. As can be seen, these

results are not consistent with each other, and it is clear that a better determination of
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the contribution to background from these three sources is necessary. This dilemma

is solved by performing a fit with more inforation. In section 7.3, the mass fit is

combined with a fit to pseudo-proper time information. This is made possible due to

the fact that it is possible to determine the pseudo-proper time distributions for each

of the background components.

Figure 7.9: Fit to J/ψγ mass distribution with fixed sideband contribution. The χc
and X(3872) components are left out of the plot.

7.3 Lifetime Analysis

Due to the fact that the best estimates available for χc and ψ(2S) production

cross sections only discuss direct production of these states, it is necessary then to

determine what fraction of the χc and ψ(2S) were produced directly from pp̄ collisions
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Figure 7.10: Fit to J/ψγ mass distribution with floating sideband contribution. The
χc and X(3872) components are left out of the plot.

as opposed to the decay of B mesons. For both the ψ(2S) and χc samples, the method

followed for the determination of prompt fractions is much like the procedure outlined

in section 6.4. However, in the case of the χc fit, there is one major deviation. Simul-

taneous to the lifetime fitting of the J/ψγ sample, a mass fit is also included. This

allows for a more precise estimation of the contributions of each background source

due to the fact that it can be reasonably assumed that each source of background

carries a known lifetime distribution. It is assumed that the J/ψ sideband-modeled

source exhibits a lifetime distribution equivalent to that of just the J/ψ background

(sideband). It is also assumed that the uncorrelated background should exhibit a life-

time distribution equivalent to that of the entire J/ψ (signal and background) sample.

Further, it is assumed that the B decay contribution has a lifetime distribution of
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Fixed Sideband Contribution

Component Normalization Norm Error

(events) (events)

χc1(MC) 3571 212

χc2(MC) 518 201

X(3872)(3872)(MC) 0 5× 10−5

B decay (MC) 3502 278

Uncorrelated 1673 153

Sideband 2074 0

Floating Sideband Contribution

χc1(MC) 2996 254

χc2(MC) 846 237

X(3872)(3872)(MC) 0 1× 10−5

B decay (MC) 0 8× 10−4

Uncorrelated 672 285

Sideband 7036 479

Table 7.1: Results of separate methods of mass fitting. Due to the similarity of the
B decay and sideband contributions, mass fit results are unstable.

a simple decaying exponential (convoluted with a resolution double Gaussian). To

obtain these distributions, a sample of J/ψ’s are obtained and processed through the

lifetime fitting procedure discussed in Section 6.4, the results of which will be used

in the simultaneous mass and lifetime fit on the J/ψγ sample. In order to make the

J/ψ sample as consistent with the J/ψγ sample, it is noted that the requirement of

central calorimeter clusters imposes an implicit η cut on the J/ψ candidates of the

111



J/ψγ sample. To account for this effect, and the effect it has on lifetime resolution,

the contribution of each J/ψ in the J/ψ sample is weighted with respect to η. The

eta distributions of the J/ψγ sample and the J/ψ sample are shown in Figures 7.12

and 7.11 respectively. The weighting distribution is shown in Figure 7.13, and the

results of the lifetime fit is shown in Figure 7.14.
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Figure 7.11: η distribution of all J/ψ candidates.

7.3.1 Simultaneous Mass and Lifetime Fitting

The estimation of the χc prompt fraction is performed simultaneously to an es-

timation of the net contribution of each background source. This is made possible

due to our ability to determine the pseudo-proper time distribution for each back-

ground component as mentioned above. A maximum log likelihood fit is performed

similar to that of section 6.4. In this case, the likelihood function is expanded to
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Figure 7.12: η distribution of J/ψ candidates in J/ψγ sample.
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Figure 7.13: weight, as a function of η applied to J/ψ candidates for lifetime fitting.

include the mass distribution in data and the mass distribution of each background

component. The data are separated into two subsets for fitting, one subset extending

from 0.9 < ∆M ≤ 2.0, and one subset from 0 < ∆M ≤ 0.48. These ranges are
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Figure 7.14: Result of lifetime fit on J/ψ sample.

chosen to stay well away from the X(3872) mass window in the fit. Each data point,

(∆M, cτpseudo), is assigned a likelihood if its ∆M falls into one of the two ranges such

that:

L =



∑
i=b,s,u

f bkgi (li (cτ) +mi (∆M)) 0.9 < ∆M ≤ 2.0

f sigχ × lχ (cτ) +
(
1.0− f sigχ

)
×

( ∑
i=b,s,u

f sigb × lb (cτ)

)
0 < ∆M ≤ 0.48

.

(7.8)

In the above likelihood function, The functions li(cτ) represent the pseudo-proper

time distribution attributed to the îth background component, where b represents

background from B meson decay, s represents the component described by the J/ψ

sideband, and u represents the uncorrelated background described through event

mixing. The functions mi(∆M) represent the mass distributions of each background
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component in the background region, taken from Figures 7.8, 7.6, and 7.7. To ensure

that eachmi is given equal weight, allmi are normalized to 1 in the background region.

The terms f bkgi represent the fraction of background described by each background

component. It should be noted that f bkgu = 1.0− f bkgs − f bkgb , and is thus not included

in the fit. The terms f sigi represent these same fractions in the χc signal region, which

are directly related to the fi terms in the background region by

f sigi =

f bkgi N bkg

0.48∑
∆M=0

mi(∆M)

2.0∑
∆M=0.9

mi(∆M)

∑
i=b,s,u

f bkgi N bkg

0.48∑
∆M=0

mi(∆M)

2.0∑
∆M=0.9

mi(∆M)

. (7.9)

The fraction of χc in the signal region is then

fχ = 1−

∑
i=b,s,u

f bkgi N bkg

0.48∑
∆M=0

mi (∆M)

N sig
(7.10)

where N bkg and N sig are the number of events in the background and signal

regions respectively. The background lifetime functions in the likelihood, li are all

known and their parameters are fixed to their known values obtained from the J/ψ

lifetime fit. For the functions fs and fu, these are fixed to the J/ψ sideband dis-

tribution and the total (signal + background) lifetime distribution in the J/ψ mass
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window respectively. The function fχ is parameterized in the same way as the J/ψ

signal function described above; a long lived decaying exponential, and a prompt

double Gaussian with symmetric exponential tails. These parameter describing these

signal components are allowed to float along with their respective normalizations.

After defining the likelihood, the MINUIT fitting software is again called to minimize

− logL. The results of this minimization are shown in Table 7.2, and in Figures

7.15 and 7.16. Most importantly, from this fit, one is able to extract the χc prompt

fraction, and the total number of χc. By examining the mass distribution with the

fitted background components and the data minus fit plot, Figures 7.17, 7.18, one

can see that there are no obvious excesses in the X(3872) signal region. A fit to the

χc peak to a Gaussian plus an exponential tail, where the ratio of the tail length to

Gaussian width is fixed in Monte Carlo, and extract the total number of χcs in the

data sample.

7.4 Limit on the ratio BR(X(3872)→J/ψγ)
BR(X(3872)→J/ψπ+π−)

The limit on BR(X(3872)→J/ψγ)
BR(X(3872)→J/ψπ+π−)

is set through the DØ standard method which

utilizes Bayes’ theorem. Bayes’ theorem states that

p (σ, λ|n) =
p (n|σ, λ)π (σ, λ)∫ ∫

p (n|σ, λ)π (σ, λ)dλdσ
, (7.11)

where σ is the parameter of interest, which in this case is the relative branching

fraction. All other parameters are represented above by λ and are known as nuisance
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f bkgb 0.034± 0.024

f bkgs 0.529± 0.060

fpromptχc 0.832± 0.018

χc long-lived slope 0.0516± 0.0038 cm

fraction of prompt χc in exponential tail 0.101± 0.027

slope of prompt χc tail 0.00827± 0.00147 cm

Total Number of χc 4431± 163 events

Table 7.2: Results of J/ψγ simultaneous mass and lifetime fit. Note that widths of
prompt double Gaussian were fixed from the J/ψ lifetime fit, as were their relative
normalizations.

Figure 7.15: Lifetime fitting results on the J/ψγ sideband.

parameters. The function p (x|σ, λ) is known as the model density, which represents

the expected probability of observing n events given the values of the parameters σ, λ.

As this is a counting experiment, This probability density is taken to be a Poisson
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Figure 7.16: Lifetime fitting results in the χc signal region.

Figure 7.17: J/ψγ mass distribution with the contribution from each background
component overlaid as determined by simultaneous mass/lifetime fit.

distribution,

p(n|σ, λ) = Poisson(n, aσ + b). (7.12)

where a represents number of expected events in the X(3872) mass window for
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Figure 7.18: J/ψγ mass distribution with background components subtracted and fit
to a Gaussian with an exponential tail.

a relative branching fraction of 1, and b represents the expected background in the

mass window. The prior density, π(σ, λ), can be factorized

π(σ, λ) = π(λ|σ)π(σ), (7.13)

into a prior that involves only the parameter of interest and one that involves the

nuisance parameters conditional on the value of the parameter of interest. In our case,

we assume that the nuisance parameters are independent of the parameter of interest,

and thus π(λ|σ) = π(λ). The prior π(λ) is modeled as a multivariate Gaussian with a

known mean and covariance matrix obtained from estimates of these parameters. The

prior π(σ) is taken to be a flat prior over an interval of likely values. The posterior

density p(σ, λ|n) is then integrated of the nuisance parameters to obtain the final
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posterior probability density p(σ|n). The upper limit, σu is found through:

CL =

∫ σu

0

p(σ|n)dσ (7.14)

where CL is the desired confidence level, which in this case is set at 90%.

7.4.1 Bayesian Limit Calculation

To set a limit on the relative branching fraction BR(X(3872)→J/ψγ)
BR(X(3872)→J/ψπ+π−)

, the data

from Figure 5.8 are plotted over an interval given by the fitted, expected X(3872)

mass window given in section 7.1, as shown in figure 7.19. In addition to this, the

results of the simultaneous lifetime and mass fit are used to scale the distributions

for each background component, see Figures 7.6, 7.7, 7.8 to the nominal contribution

from each background component. These are also plotted in the same mass window,

see Figures 7.20, 7.21, 7.22. Because there is also some contribution from the χc

tails in this mass window, a plot of the expected χc distribution in this mass window

is also created, using the results of the simultaneous mass and lifetime fit to set

the normalization, see Figure 7.23. This histogram is drawn based upon the fitted

MC distribution. A histogram for the expected X(3872) mass distribution is also

drawn for this mass window, see Figure 7.24, based entirely upon the fit given in

Figure 7.5, and normalized to 0.93, the fraction of the fitted X(3872) Monte Carlo

mass distribution that falls within this window. These histograms are used by a

Bayesian limit calculator to arrive at an upper limit on the relative branching ratio
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BR(X(3872)→J/ψγ)
BR(X(3872)→J/ψπ+π−)

. In the Bayesian limit calculation, the model distribution is set

to

p (n|σ, λ) = Poisson

(
n, N

pred|R=1
X(3872)→J/ψγR +

∑
i

bi

)
(7.15)

where N
pred|R=1
X(3872)→J/ψγ is taken from equation 7.6 with R set to 1 which is repeated

below in equation 7.16, and the terms of which are given in table 7.3

N
pred|R=1
X→J/ψγ = N obs

X→J/ψππ

N obs
χc

N obs
ψ(2S)

σpromptψ(2S)

σpromptχc

fpromptχc

fpromptψ(2S)

∆εX→J/ψγ

∆εX→J/ψππ

. (7.16)

The terms bi represent the predicted background in each background channel, side-

band, uncorrelated, B decay, and spill over from the χc. These background estima-

tions are taken from Figures 7.20, 7.21, 7.22, and 7.23. This model distribution is

taken bin by bin. The prior distribution π(λ) is set to the fitted X(3872) → J/ψγ

mass distribution obtained from Monte Carlo, as shown in Figure 7.24. The nui-

sance variables in this case are the mass and N
pred|R=1
X(3872)→J/ψγ and the bi background

coefficients which are modeled through a multivariate Gaussian with means mi and

covariance matrix Σ taken from the simultaneous mass and lifetime fitting. The prior

π(R) is taken as a flat prior.

The posterior probability distribution obtained from this calculation is shown in

figure 7.25, and the 90% CL upper limit is found to be at R < 1.5.
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Term Value

N obs
X→J/ψππ 613±110

N obs
χc 4430±163

N obs
ψ(2S) 5738±156

σprompt
ψ(2S)

σpromptχc

0.17±0.026[73]

fpromptχc 0.832±0.018

fpromptψ(2S) 0.771±0.013

∆εX→J/ψγ 1.08±0.05

∆εX→J/ψππ 0.74±0.11

Table 7.3: Values of parameters used to determine N
pred|R=1
X→J/ψγ . The terms N obs

X→J/ψππ,

N obs
ψ(2S) are determined by imposing additional cuts on the muons of sample used in

Chapter 6. Those cuts are nseg> 1 for each muon, and pT (J/ψ) >7 GeV and applying
the same fitting procedure as in section 6.2
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Figure 7.19: data in expected X(3872) mass window.
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Figure 7.20: J/ψ sideband background contribution in expected X(3872) mass win-
dow.
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Figure 7.21: Uncorrelated background contribution in expected X(3872) mass win-
dow.

7.5 Summary of Results

In this chapter it has been shown that J/ψγ is not a dominant decay channel

of the X(3872) as is naively expected for the 23P1++ charmonium model based on
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Figure 7.22: B meson decay background contribution in expected X(3872) mass
window.
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Figure 7.23: χc contribution in expected X(3872) mass window.

isospin arguments. At 90% CL, the ratio of branching fractions of this decay channel

with respect to the discovery decay channel to J/ψπ+π− is less than 1.5. This is in

agreement with evidence for the discovery of this decay channel at both Belle and
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Figure 7.24: X(3872) mass distribution expected X(3872) mass window.
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Figure 7.25: Posterior probability density.

Babar. Belle observes a 4σ X(3872) peak in this decay channel resulting in a relative

branching fraction of 0.15 ± 0.5, while Babar measures this ratio to be 0.24 with a

significance of 3.4σ. If the evidence for this decay channel at Belle and Babar stand,
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this will definitively measure the C parity of the X(3872) to be positive, as well as

confirm that the discovery decay channel is in fact an isospin violating decay channel.

In light of some recent studies however, this does not seem to settle the question of

whether the X(3872) should be interpreted as a conventional charmonium state or

a meson molecule, as it has been shown that it is possible for conventional 23P1++

charmonium to both violate isospin and have a small rate to J/ψγ. Both of these

effects are also features of the meson molecule interpretation as well.
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Chapter 8

Summary of Results

Since the X(3872) was discovered by the Belle Collaboration in August 2003, it’s

interpretation through the Standard Model has been difficult. Many possible inter-

pretations have been proposed due to its close proximity to the DD∗ mass threshold,

ranging from a new state in the charmonium spectrum to a 4-quark state to a weakly

bound meson molecule. Probing the X(3872) is also made difficult due to low statisti-

cal samples at e+e− colliders and large combinatoric backgrounds at hadron colliders

such as the Tevatron. This paper presented the results of probes of this state per-

formed at the DØ detector.

8.1 Observation of X(3872)

In Chapter 6 it was shown that the X(3872) is present in the data sample col-

lected at DØ and it’s mass is measured to be 0.7861±0.0024(stat) ±0.0034(sys.) GeV
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greater than the mass of the well known J/ψ charmonium state. It is also shown that

the X(3872) behaves similarly to the charmonium state ψ(2S) with respect to several

production and decay properties. It is also shown that X(3872) production at the

Tevatron is dominated through direct pp interactions, rather than through B meson

decay, similar to known charmonium states. A prompt fraction of 70.0 ± 6.66% is

measured for the X(3872).

8.2 Search for X(3872) Decaying to J/ψγ

In Chapter 7 a search for X(3872) decaying to J/ψγ was performed. This search

did not reveal evidence of X(3872) decaying to this channel. A 90% CL limit on the

relative branching fraction to this channel was set at 1.5. This result would seem to

indicate that the X(3872) cannot be a candidate for the χc1(2P ) charmonium state

due to isospin arguments. Recent calculations have thrown these arguments into

doubt however, and seem to imply that this charmonium level would not have to be

dominated by J/ψγ decays if its mass is at 3872 MeV. Therefore this state cannot

yet be ruled out.
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