
MODELING UPDATE CACHING IN WEAK

CONSISTENCY PROTOCOLS

By

ZEESHAN SHAFAQ SYED

Bachelor of Engineering

Computer Systems Engineering

N. E. D. University of Engineering and Technology

Karachi, Pakistan

1990

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of
the requirements for

the Degree of

MASTER OF SCIENCE
July, 1994

OKLAfJO~-IA STATE !TNIVERSITY

MODELING UPDATE CACHING IN WEAK

CONSISTENCY PROTOCOLS

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

11

ACKNOWLEDGMENTS

I wish to express my sincere thanks to my graduate advisor Dr. Mitchell L. Neilsen

for his guidance, encouragement and help for completion.of my thesis work. Without

his constant support, supervision and ideas, this thesis would have been impossible.

His group seminar meetings helped me to broaden the horizons of knowledge in other

areas, which are not related to my thesis work. I would like to thank Dr. K. M. George

and Dr. D. Paul Benjamin for serving on my graduate committee and providing me

with some feedback for improving my thesis. I want to thanks Dr. George for

his advice and suggestions during my stay at Oklahoma State University. I want

to express my special thanks to Dr. Mansur Samadzadeh for his guidance, advice

and suggestions during my stay at Oklahoma State University. I want to thank Dr.

Blayne Mayfield for his support and encouragement. I want to express my thanks to

the persons who are providing knowledge bases on the Internet.

My respectful and very special thanks to my late father Syed Muhammad Rafique

and my mother Mrs. Safia Rafique for their love, encouragement, support and confi­

dence on me. It was my parents wish that I should pursue my MS from USA. I want

to thanks all of my family members for their love and support.

111

TABLE OF CONTENTS

Chapter

1. INTRODUCTION

1.1 Thesis

1.2 Organization

2. LITERATURE REVIEW

2.1 Consistency and Replicated Service

2.2 Types Of Consistency ..

2.2.1 Message delivery

2.2.2 Delivery ordering

2.2.3 Time of delivery .

2.3 Message Updates . .

2.3.1 Direct mail

2.4

2.3.2 Rumor mongery .

2.3.3 Anti-Entropy ..

Timestamped Anti-Entropy Protocol Description

2.4.1 Best-effort multicast

2.4.2 Partner selection ...

2.5 Group Communication Architecture.

2.6 Protocols for Epidemic Group Membership Management

2.6.1

2.6.2

2.6.3

Data structures

Initializing a new group

Group join

iv

Page

1

2

2

4

4

6

6

7

7

7

8

8

8

9

10

12

13

15

15

15

16

2.6.4 Group leave . . .

2. 6. 5 Failure recovery .

3. PROPOSED MODEL

3.1 Caching Updates

3.2 Mathematical Formulae

3.3 Expected Behaviour . . .

4. SIMULATOR DESIGN AND IMPLEMENTATION ISSUES

4.1 System State

4.2 Generation of Adjacency Matrix . .

4.3 Scaling Transition Probabilities

4.4 Random Number Generator ...

4.5 Success and Failure Probability

4.6 Output of Simulator

5. ANALYSIS

6. SUMMARY, CONCLUSIONS AND FUTURE WORK

6.1 Summary ..

6.2 Conclusion . .

6.3 Future Work .

BIBLIOGRAPHY . . .

APPENDIX A: USER MANUAL

A.1 Interactive Execution of the Simulator

A.2 Arguments From Standard Input

A.3 Redirection of Standard Input . .

v

16

16

17

18

22

23

24

24

25

25

26

26

27

28

34

34

34

35

36

38

39

39

40

APPENDIX B: INSTALLATION GUIDE . 41

APPENDIX C: SIMULATOR CODE AND SAMPLE FILES 43

vi

LIST OF TABLES

Table

1. Adjacency Probability Matrix

vii

Page

25

Figure

1. Replicated Data

LIST OF FIGURES

Page

5

2. Message Logs for Replicas . . 11

3. Summary Vectors for Replicas 11

4. Anti-Entropy Session 11

5. Summary Vector after Anti-Entropy Session . 11

6. Group Communication Architecture 14

7. Markov Model 18

8. State Transition Diagram of Proposed Markov Model 20

9. General State Transition Model 21

10. Success Probability vs Relative Propagation Rate and Caching Prob-

ability . 29

11. Success Probability vs Caching Probability . 30

12. Success Probability vs Relative Propagation Rate and the Number of

Sites . 31

13. Success Probability vs Caching Probability and the Number of Sites . 32

Vlll

CHAPTER 1

INTRODUCTION

A computer network is an interconnected collection of autonomous computers. A

distributed system is a computer network in which the existence of the underlying

network is transparent to the user (Tan89]. If the interconnected computers are

located in the same room, building or campus, then the network is called a Local

Area Network. If the interconnected co~puters are located in different cities, states,

countries or continents, then the network is called Wide Area Network. The Internet

is a major public computer network. The size of the Internet or almost any wide

area network imposes some constraints on the availability of the information. Ideally,

distributed systems should make the information highly available. The system must

respond gracefully to host and network failure. The presence of mobile computers

imposes additional constraints. For example, a machine can be disconnected from

the network temporarily.

The service provided by a distributed system can be implemented using a cen­

tralized server or a distributed server. Furthermore, copies of data can be stored

at different sites. Copies of data that are stored at different sites are called repli­

cas. To provide good response time and to meet the constraints outlined above,

replicas should be geographically located near the clients. Processes manage repli­

cas by communicating over a network through message passing. Two possibilities

exist for updating the replicas: update synchronously at all replicas, or update asyn­

chronously at different replicas. Synchronous updating implies strong consistency

among the replicas and asynchronous updating implies weak consistency.

The Time Stamped Anti-Entropy (TSAE) protocol is used to propagate updates

efficiently in a system ~hat enforces weak consistency . This protocol is discussed in

detail in Chapter 2. An analytical model of the TSAE protocol has been proposed

1

2

by Golding and Long [G L92a].

1.1 Thesis

\Ve propose a model that measures the effect of caching updates on the probability

of successfully propagating an update to all operational nodes. A iv1onte Carlo sim­

ulation is carried out to analyze the proposed ~1arkov Inodel. The sirnulator, when

run with a zero caching probability, produces the sarne results obtained by the model

of Golding and Long [GL92a]. When a non-zero caching probability is used by the

simulator, the probability of success decreases. However, the benefits of caching may

outweigh this small decrease.

1.2 Organization

The thesis is organized into the following chapters:

• Chapter 2: A detailed literature review of the previous work on weak consistency

protocols.

• Chapter 3: The proposed analytical model is described and the derivations for

the model are presented.

• Chapter 4: The issues related to simulator design and implementation are dis­

cussed.

• Chapter 5: The results obtained are analyzed.

• Chapter 6: A summary of the thesis work and a few ideas related to the exten­

sion of the current work are discussed.

• Appendix A: A user manual for the simulator.

3

• Appendix B: An installation guide.

• Appendix C: Code listing including header files.

CH~t\PTER 2

LITERATURE REVIEW

2.1 Consistency and Replicated Service

In a distributed system~ if there is only one central server and the clients access

the service through that server, then the response tin1e will be greatly affected by

the distance between the clients and the server. Also~ if the central server is down~

then no service will be available. Service replication is the mechanism for achieving

availability demands and scalability [Gol92J. The replicated data model is shown in

Figure 1. If replicated service is available~ fast response time can be provided. A

large number of replicas makes it possible to spread the query load over more sites.

Furthermore~ if any one replica has failed~ the clients can still access the data. A

large number of replicas makes it possible to spread the query load over more sites.

Consistency protocols in which all copies of data at every replica are required to be

identical at all times are called strong consistency protocols [BH G87J. Such protocols

are used in applications where consistent information is necessary. For example~ in

an airline reservation systems~ all replicas should have the same data. However this

imposes additional constraints because all replicas must be updated synchronously.

Consequently~ the time required to read or write information will be much larger.

Also, updates must be propagated immediately to a number of sites. However, the

update time might be the peak time for network traffic. Strong consistency protocols

performance degrades sharply when communication is unreliable or the network is

partitioned [GL92b].

Protocols that allow inconsistencies among different replicas are called weak con­

sistency protocols. An application that uses a weak consistency protocol must be

able to tolerate temporary inconsistencies.

4

5

Replica A Replta B RepocaC

X= 12 X=O X= 12

Y=13 Y=13 Y=13

update

(X=12)
-.711'

Figure 1. Replicated Data

6

For example, distributed load balancing is a candidate for a weak consistency

protocol [GL92a]. In a wide-area network, the strong consistency constraint is very

difficult to satisfy and degrades the response time. In contrast, weak consistency

protocols allow updates to be asynchronous. Asynchronous updating provide each

replica with more independence. Weak consistency protocols allow for replicas to

suffer transient failures, and only guarantee the eventual propagation of an update

to all replicas. For example, Figure 1 shows an update that originated at Replica A

that has only reached Replica B. Thus, weak consistency protocols work well for an

unreliable network such as the Internet.

2.2 Types Of Consistency

Levels of consistency in a replication protocol depends on the consistency provided

by the communication protocol. There are three different categories [Gol92]:

1. Message Deli very

2. Delivery Ordering

3. Time of Delivery

2.2.1 Message delivery

Message can be delivered reliably or with best effort. Reliable delivery guarantees

message delivery. In case of best effort, the system tries its best to deliver the message,

but message delivery is not guaranteed. Atomic delivery means that a message is

delivered to each replica or to none. Quorum delivery means that a message is

delivered to at least some fraction of the total replicas.

7

2.2.2 Delivery ordering

Messages can be delivered in any order. A total ordering means that every replica

will receive messages in same order. Causal ordering means that any message with

a potential causal relation will be delivered in the same order at all replicas. In

per-process or FIFO channel ordering, the message from any particular replica are

delivered in order, but messages from some other replica may be interleaved.

2.2.3 Time of delivery

Synchronous delivery is performed immediately within a bounded time. Interac­

tive delivery is performed immediately, but may require finite but unbounded time.

Bounded delivery may queue the messages or delay them, but delivery will complete

within a bounded time. Eventual delivery queues or delays the messages and it may

require a finite but unbounded time to deliver.

2.3 Message Updates

The updates are performed by a client at one replica. Then the updates are propa­

gated to other replicas using message passing. In synchronous updates, all replicas

receive updates at the same virtual time and hence all replicas are consistent. How­

ever, all servers (replicas) stop providing service before propagating an update to all

other replicas. In contrast, with asynchronous updates, the updates are propagated

eventually, but servers (replicas) do not stop providing service while updating. As

discussed earlier, synchronous updates are used in strong consistency protocols, while

asynchronous updates are used in weak consistency protocols.

The asynchronous communication is used among the replicas (using weak con­

sistency protocols) for updates. The replicas are grouped together for propagating

and receiving updates. The following methods can be used for group communication

8

[Dea88]:

1. Direct Mail

2. Rumor Mongery

3. Anti-entropy

2.3.1 Direct mail

The source site immediately multicast an.update to all other sites. If there are n sites,

then n messages are generated per update. Each message traverses all network links

between its source and destination. Consequently, the traffic generated is proportional

to the number of sites times the average distance between sites [Dea88]. This protocol

is efficient, but not fully reliable. Individual sites do not know about the state of other

sites. Queues are used to keep the messages at the server to avoid delay in senders.

These queues are maintained on stable storage, to prevent it from being affected if

the server crashes.

2.3.2 Rumor mongery

Initially all sites are ignorant. When a site receives an update, it considers the update

as a 'hot rumor'. Any site holding a hot rumor selects another site at random and

passes the update to the chosen site. When too many sites observe the update, the

update is no longer a hot rumor. So, only the most recent updates are sent to other

replicas. If rumor cycles are too fast, then there is a chance that an update might

not reach all sites [Dea88].

2.3.3 Anti-Entropy

In anti-entropy, an update occurs at one site and is propagated to the other replicas. A

replica holding an update initiates an anti-entropy session with a partner. In this way,

9

from time to time, replicas initiate anti-entropy sessions to exchange updates, and

hence each update is eventually propagated to all replicas. The protocol guarantees

the eventual delivery of updates to all replicas. Anti-entropy sessions can be initiated

at off-peak time to reduce peak network traffic [GT92]. A detailed description of the

anti-entropy protocol follows in the next section.

2.4 Timestamped Anti-Entropy Protocol Description

Timestamped anti-entropy (TSAE) is developed by Richard A. Golding [GL93, Gol92,

GL92a] to be used as weak consistency protocol. TSAE provides reliable, eventual

deli very. The message is originated at one replica and is propagated in the background

to all other replicas. TSAE supports total or causal message ordering, it supports

mobile computing and it fulfills the constraints outlined above. TSAE requires loosely

synchronized clocks between all replicas. Replicas have access to stable storage (a

hard disk) which is not affected by replica crashes. There are two types of failures:

transient failures and permanent failures. In case of transient failure, a site (replica)

goes down for a short period of time and then it comes back up and joins the protocol

again. In case of permanent failure, the replica is permanently removed from service.

Permanent failures are fail-stop; that is in case of permanent failure, a site does not

send any failure message, but simply stops.

When a replica wishes to send an update, it stamps the update with the current

logical time and a replica identifier and stores the update in a message log. A mes­

sage log is shown in Figure 2. There are three replicas A, B and C in the group. For

message exchange,each replica maintains a summary timestamp vector. The sum­

mary timestamp vector is indexed by the replica identifier and contains the greatest

timestamp it has received from all other replicas. When a replica enters into an anti­

entropy session with a partner, it compares its summary timestamp vector with the

partner's summary timestamp vector. Hence, a replica can determine which updates

10

need to be exchanged. Then, replicas exchange the determined updates. As a result

of this exchange, the partners also update their summary timestamp vectors. Thus,

after the end of a session, both partners have the same summary timestamp vector.

Consider a distributed system having three replicas A, B and C. At some point in

time, replicas A and B enter into an anti-entropy session. The message log of replicas

A and B, before the anti-entropy session, are shown in Figure 2 and their respective

summary timestamp vectors in Figure 3. Figure 4 shows the replicas after an anti­

entropy session between replicas A and B. The summary vectors after anti-entropy

are shown in Figure 5. As mentioned earlier, both replicas will have same summary

timestamp vector after the anti-entropy session, hence only one vector is shown.

The message logs can become very large, so there should be some method to purge

the message logs. The replicas need to determine which messages have been received

by all other replicas, to limit the size of their message logs. This is achieved by having

an acknowledgment time vector. The acknowledgment time vector is also exchanged

during an anti-entropy session. Any message in the log having a timestamp smaller

than every timestamp in the acknowledgment timestamp vector has been received

and acknowledged by every other replica in the group, so it can be purged.

2.4.1 Best-effort multicast

The performance of the TSAE protocol can be improved by combining it with best­

effort multicast. First, the replica receiving an update will multicast the update to all

replicas and then engage in anti-entropy sessions. Replicas that have not received the

multicast message, due to the unreliable network, will receive it through anti-entropy.

Furthermore, the time required to propagate an update to all replicas will decrease

sharply.

1

2

2

Replica A Replica B

3 5 12

3 4

Figure 2. Message Logs for Replicas (Source: [GL93])

Replica A Replica B

131
rul
QJ

9 11

Figure 3. Summary Vectors for Replicas (Source: [GL93])

Replica A Replica B

5 - 12

5 - 11

3-4

Figure 4. Anti-Entropy Session (Source: [GL93])

Figure 5. Summary Vector after Anti-Entropy Session
(Source: [GL93])

11

12

2.4.2 Partner selection

The replicas can use several partner selection policies for anti-entropy sessions. Part­

ner selection policy effects message delivery and hence the degree of consistency be­

tween replicas, and the amount of network traffic generated by the protocol.

Golding [GL93] has given three classifications for the partner selection policies:

random, deterministic and topological. Thomas [Tho93) has extended this classifica­

tion to include two more policies: hierarchical and combination.

Random Policies

The replica selects its partner randomly for an anti-entropy session. In the uniform

policy, each replica has an equal probability of being selected. In a distance-biased

policy nearby replicas have a greater probability of being selected. In oldest-biased,

the probability of selecting a replica is proportional to the age of its replica in the

summary timestamp vector.

Deterministic Policies

These policies use some fixed rule to determine the replica to select as a partner. In

oldest-first, a replica with the oldest (smallest) summary timestamp vector value is

selected. In latin square a truncated square of size n x n-1 is used, where every row

and column has every entry just once [ABM87]. Anti-entropy sessions are divided

into rounds. This policy guarantees messages to be received by all replicas in O(log

n) time.

Topological Policies

In these policies replicas are organized into some fixed graph structure. In the ring

policy, replicas are organized into a ring. In the binary tree policy, replicas are orga.-

13

nized into a binary tree, and message are propagated randomly along tree branches.

In the mesh policy, replicas are organized in a two dimensional mesh. In the hy­

percube policy [Tho93], the replicas are arranged as nodes in a hypercube. In the

minimum spanning tree policy, replicas are arranged as nodes of a graph [Tho93J.

Anti-entropy sessions are denoted as edges in a minimal spanning tree. The minimal

spanning tree is constructed by using PRIM's algorithm [TS91 J.

Hierarchical Policies

The replicas are divided into a hierarchy. Level 1 is the top level, followed by level 2,

and so on. The replicas at level 1 are connected with the most expensive links.

Combination Policies

Numerous policies can be obtained by combining many of the above described policies.

For example a random policy can be combined with a distance-biased policy. Thus

improved performance can be obtained by combining different policies.

2.5 Group Communication Architecture

The group communication architecture, as proposed by Golding (GL92bJ is shown

in Figure 6. The architecture consists of four components: an application, message

delivery and ordering components, and a group membership component. These com­

ponents communicate through a shared data structure.

The message delivery component implements a multicast communication service

that exchanges messages with other replicas. It decodes incoming messages and route

them either to the group membership component or to the log. It may also maintain

the summary information of messages received and sent.

Application

~essages

~essage
log

~essages ~essage
ordering

Delivery
requests ~emberships

Message
delivery

I

I I
Other sites

Summary
timestamps

~embership
messages

Group
list

~emberships

Group
membership

Figure 6. The Components Implementing a Weak Consistency Group
Multicast System (Source: [GL92b])

14

15

The group membership component maintains the list of replicas (processes) that

are in the group. The list is called the local view of the replica group. When there is a

change in the list, this component communicates with the peer component of the other

replicas, using the group membership protocol. The message ordering component is

responsible for ordering of incoming messages. The ordering is application dependent.

It also processes outgoing messages so that the ordering components at other process

will have enough information to properly order messages.

The Refdbms system implements a distributed bibliographic database. It is based

on TSAE. The Tattler system is a distributed availability monitor for Internet and it

uses a weak-consistency protocol.

2.6 Protocols for Epidemic Group Membership Management

Golding (GT92] has proposed the following protocol for group membership.

2.6.1 Data structures

Each replica maintains a view of the members in the group of which it is part. Updates

in group membership are propagated among replicas, like the updates in the data.

The status and timestamp fields are used for group membership. The replica which

is a member of a group has a status of 'member'. One which has left the group has

a status of 'left' and a failed replica has a status of 'failed'.

2.6.2 Initializing a new group

A replica can create a.new group through operation initialization. The initialization

operation creates a new group and sets up a group membership.

16

2.6.3 Group join

A replica can join a group by contacting enough members and by finding enough spon­

sors to satisfy the k-resilience condition. A knows-about graph that can withstand

k simultaneous replica failures and still be correct is called k-resilient membership

graph. The knows-about graph is a directed graph for representing membership in

the group.

2.6.4 Group leave

When a member leaves a group, it should not destroy the k-resilience condition.

2.6.5 Failure recovery

Anti-entropy inherently handles the temporary failures. As soon as replica comes

up again it starts receiving the anti-entropy sessions. Permanent failure is a difficult

problem and must be handled to maintain k-resilience.

CHAPTER3

PROPOSED MODEL

The proposed model measures the effect of caching updates in weak consistency

protocols. The Markov model of the system for three sites is shown in Figure 7.

Each state is labelled as <m, f>. Anti-entropy sessions are assumed to be a Poisson

process. Let Aa denote the probability that a site having an update engages in anti­

entropy with a site that doesn't have the update. Let .\1 denote the probability that

a site fails. Let f denote the total number of replicas and m denote the number of

available replicas that have observed the update. Let 'ljJ denote the probability that

the update is cached instead of being propagated. The following assumptions are

made to simplify the analysis:

1. Nodes (replicas) are independent.

2. Failure means that an update has been lost completely. Success means that an

update has been received by all available sites.

3. Failure can either occur before or after an anti-entropy session, but not during

a session.

4. The network is fully connected.

5. All failures are permanent. Temporary failures are not considered.

17

18

'l'c
1. 3

Aa 'I' C A a
2. 3

I

12/..f Af

I

2Af Af
I

~ l

0 'l'c 1. 2
A a

2. 2

A.f

o. 1

Success

Figure 7. Markov Model

Caching should improve the performance because it will reduce the communication

overhead. Several updates can be cached and sent through the network at once.

However, caching will also decrease the probability of success. To analyze the effect

of caching updates, we use the model shown in Figure 8.

3.1 Caching Updates

Let a denotes the probability that an update is cached, instead of being propagated

immediately through an anti-entropy session. The states are identified by the ordered

pairs <m,f>. The transitions are labelled as Tl, T2 and T3, with the following

meanings:

• Tl: The successful propagation of an update to another site (which does not

have the update). So m increases by 1 after a Tl transition and f remains the

19

same.

• T2: A site site which has the update has failed. This transition decreases m by

1 and hence decreases f by 1.

• T3: A site which does not have the update has failed. This transition decreases

f by 1, but m remains the same.

The model in Figure 8 shows that there are only three possible transitions T1,

T2 and T3 out of an intermediate state. But when the the system reaches a final

state (state of success or state of failure), then the system stays there forever, for a

particular update. To execute the experiment a number of times, every final state in

the system will return back to the initial state <1 ,f> with probability 1. The generic

transition diagram is shown in Figure 9. Consider the intermediate state given by

<m, f>.

• After transition Tl, the new state will be <m+1,f>.

• After transition T2, the new state will be <m-1 ,f-1>.

• After transition T3, the new state will be <m,f-1>.

20

Success

State 0 Stale 1 Stale 2

Tl Tl

T2 T3 T2 T3

Tl

State 3 Stale 4 State 5

Failure State
T2 T3

Failure State

State 6 State 7

Figure 8. State transition diagram of proposed Markov Model for 3 sites

21

<m,f> <m+IJ>

Tl

T2 T3

0
<m-IJ-1> <mJ-1>

Figure 9. General State Transition Diagram

22

3.2 Mathematical Formulae

If there are n sites in the system. Then, the total number of feasible states in the

Markov model for the system is given by

which can be expressed as

which can be expanded to

which is finally equal to

n

(n) + L i
i=2

n

(n-~)+Li
i=l

(n-l)+ n(n+l)
2

n 2 + 3n- 2
2

For example, for n = 3, there are 8 feasible states, as shown in Figure 8.

Consider the model in Figure 8. Let us assume that the system is at state <m,f>.

Since m is the number of sites that have observed the updates and f is total number

of available sites, then

• f-m = number of sites that have not observed the update;

• f-1 = number of other operational sites

• therefore, (f-m)/(f-1) is the fraction of sites that have not received the update.

• The rate of anti-entropy is A a.

• If the caching probability is o:, then the rate of anti-entropy is Aa(l - o:).

23

• Therefore, the probability of useful anti-entropy session (denoted by transition

Tl) is given by

f-m
m J Aa(l- o)

-1

Since m is the number of sites having the update and .X1 is the probability that a

site will fail, the probability of transition T2 is given by

Since f denotes the the number of available sites and m denotes the number of

sites that have observed the update,

• (f-m) denotes the number of sites that have not received the update;

• the probability that the any of the sites that have not received update has failed

is given by

3.3 Expected Behaviour

It is evident from the formula for Tl, that the probability of success will decrease

and hence indirectly, the probability of failure will increase. The effect of caching

is measured in the results obtained through the simulation of the proposed Markov

model.

CHAPTER 4

SIMULATOR DESIGN AND IMPLEMENTATION
ISSUES

To simulate the Markov model discussed in Chapter 3, a Monte Carlo simulator

is designed and implemented. The simulator code is attached in Appendix C. The

simulator uses the Markov model, rather than using event driven simulation. The

simulator is designed in such a way that the results can be obtained in a variety of

ways.

The probability of caching an update, can be specified for each replica. So the

simulator can run for different values of a.

The relative propagation rate [GL92a], p, is defined as the ratio of the successful

anti-entropy rate to the permanent site failure rate. That is

An array of p values can be specified, for each run of the simulator. For a particular

value of >..1 , different values of A a are calculated. These values are then used to run

the simulator to measure the probability of success.

4.1 System State

Based on the number of sites, n, the total number of feasible states can be calculated

using the formula derived, in Chapter 3. Since a state of a system is identified by

<m, f>, the following structure is used for states

typedef struct{ int m; int f; } STATE;

The array of states is generated and initialized. This array is indexed from zero.

The first member of the array is always state <1 ,n>.

24

25

4.2 Generation of Adjacency Matrix

Once the states are generated, the adjacency matrix, denoting the probability of

transition to the next state, is geqerated, using the formulae for transitions T1, T2

and T3 (as discussed in Chapter 3). The probability of transition to a non-adjacent

state (keeping in view the model of Figure 8) is 0. For example, the probability of

transition from state 0 <1,3> (refer to Figure 8, for three sites) to state 2 <3,3>,

is zero, because state 2 is not adjacent to state 0. But from state 0 < 1, 3> to state

1 <2 ,3> is transition T1, which can be calculated using the formula of Chapter 3.

Table 1 shows the adjacency matrix for 3 sites, with p equal to 50, o equal to .2, and

3000 updates.

Table 1 Adjacency Probability Matrix

State 0 1 2 3 4 5 6 7

0 0.000 0.930 0.000 0.023 0.047 0.000 0.000 0.000

1 0.000 0.000 0.930 0.000 0.047 0.023 0.000 0.000

2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000 0.952 0.024 0.024

5 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4.3 Scaling Transition Probabilities

The sum of all transitions should be 1 for each row in the adjacency matrix. Since

Aa and AJ are independent, the sum may not be 1. For each row of the adjacency

matrix, the transition probabilities are scaled to sum up to 1. Table 1 shows the

matrix after scaling.

26

4.4 Random Number Generator

The random number generator routine written by M. H. MacDougall, [Mac87J is

used. A uniform random number generator is used for generating the state transition

probabilities.

4.5 Success and Failure Probability

A failure state is a state from which an update cannot be propagated in the system.

Therefore, states of the form <0, a> are failure states. A success state is a state in

which an update reaches all operational sites. Therefore, states of form <a, a> are

success states.

A failure state or success state is a final state. Once the system reaches a final

state, the time it spends there is counted as 1. After each update reaches a final

state (whether it is successful or not), the system returns to the initial state <1 ,n>,

to dete~mine the fate of the next update.

From all non-final states (intermediate states), the system eventually reaches to

a final state (the time spent in each non-final state is zero).

The simulator is started in state 0 <1 ,n>. Depending on the outcome of the

random number generator and the transition probability out of that state (any value

in that particular state's row in the adjacency matrix), the next state is calculated

and the system advances to the next state. Eventually, the system must reach a final

state.

The system is run for a specific number of updates, and the percentage of time

that the system ends up in success or failure, is calculated. Hence, the probability of

success is calculated for each run; that is, for a particular value of a, p and number

of sites n.

27

4.6 Output of Simulator

The simulator expects some parameters from standard input. When all parameters

are supplied to the simulator, it generates output on standard output It also generates

a user specified data file.

The output sent to standard output is the value of >.. 1 and the number of updates.

Then, the p the probability of success, the o and the number of sites for each run

of the simulator, is printed on standard output.

The user specified data file contains p, the probability of success, a, and the

number of sites. These four columns are printed in the output file without column

labels, so that the output data file can be fed to a graph plotting utility.

CHAPTER 5

ANALYSIS

The simulator can be run in a variety of ways to study the effect of each parameters

on the probability of success.

As defined in Chapter 3, a success state is a state in which all operational sites

have received the update.

To study the effect of a, the probability of caching of update, on the success rate,

Figure 10 is plotted for varying values of p. The simulator was run for 3000 updates

and for ten sites. Two curves are plotted in the figure. One for the a = 0.0 and

the other for a = 0.5. It is evident from the graph that the probability of success

increases as p increases. For higher values of p, the probability of success approaches

100 percent. The probability of succees is higher for a = 0.0 than for a = 0.5, as

anticipated, for every value of p. The reason for this behavior is that caching reduces

the rate of anti-entropy. Hence as a increases, the probability of success decreases.

To analyze the effect of a on the probability of success, Figure 11 is plotted

for different values of a. The value of >.., is chosen to be 0.02, and p to be 50,

which is quite reasonable (as determined experimentally). The simulator was run

for 3000 updates with ten sites. The probability of success decreases as the caching

probability, a, increases. The decrease in the probability of success is quite fiat for

a < 0.8. But for a > 0.8, the probability of success decreases quite rapidly. One

interesting observation can be made from the graph, that when a is 1, even then the

system goes to some successful state (although the probability of success is just 10%).

For a = to 0.0, the probability of T1 transition becomes zero. That is, the system

never follows the useful anti-entropy transition.

28

...
0 60

). ... ·--·-ll
m
.D
0
a.
a.

40

20

I
60

I
80

Relative Propagation Rate

I
100

Figure 10. Success Probability vs Relative Propagation Rate and

Caching Probability

29

30

lOP = so

f) ,
G) 80
()
(.)

~

UJ .. 60
0

>-.. ... -- 40 .a
I
ll
0
&.

Q. 20

0 0.2 0.4 0.6 0.8 1

Caching Probability

Figure 11. Success Probabiliy vs Caching Probability

31

Osites = 5
U) ~sites = 10 Ul
G) so Osites = 15 ()
(.)

D sites = 20 ::s
(/)

.... 60
0

)\
~ ·--·-.c
m
.c
0
a.
c.

40

20

I
60

I
80

Relative Propagation Rate

I
100

Figure 12. Success Probability vs Relative Propagtion Rate and the

Number of Sites

,
U)
G) 80
()

u
::J

tJJ
.... 60

0
)\ ..,
·-- 40 ·-.Q
m
.a
0
'- 20
a.

I
0

I
0.2

I
0.4

I
0.6

I
0.8

Caching Probability

32

Osites = S

~sites = 10

Osites = IS

0 sites = 20

Figure 13. Success Probability vs Caching Probability and the Number

of Sites

33

It may reach a success state due to the failure transition T3 (refer to Figure 8). The

observation to be made is that state < 1, 1> is a successful state, too.

To analyze the effect of the o and p on increasing the number of sites, Figure 12 is

plotted. The value of AJ used was 0.02, the simulator was run for 3000 updates. The

value of o used was 0.5. The probability of success is lower for higher number of sites.

But for the higher values of the p, the difference becomes insignificant. The difference

is due to the fact that if there are more sites the caching probability increases the

chances of caching updates within a larger number of sites, which in turn decreases

the probability of success.

Figure 13 shows the effect of varying o on the probability of success for a constant

p and for different numbers of sites. If the number of sites is increased, the probability

of succees decreases when the number of sites in the system increases. Again the same

interesting observation can be made that at o equals 1, the probability of success is

not zero, for a larger number of sites.

CH_._PTER 6

SUMMARY, CONCLUSIONS AND FUTURE WORK

The work presented is summarized in this chapter. Also conclusions and and

future enhancements are discussed.

6.1 Sumn1ary

The model to reflect the effect of caching of updates~ in TSAE protocol is presented.

The weak consistency protocol is modeled using a ~farkov Nlodel. The state transition

diagram is discussed in detail in Chapter 3. The transitions from one state to another

are classified into three types~ namely, T L T2 and T3. The formulae used to calculate

the probability associated with these transitions are derived and presented. The

formula to calculate the total number of feasible states (which is dependent on the

number of sites in a system) is also derived.

A Monte Carlo simulator is designed and implemented to solve the proposed

model. Whenever the system reaches a success state, it is counted as successful

propagation of an update to all operational replicas. But if system ends up in a failure

state, it means that the update has been lost. In this way, for a specified number of

updates, the probability of success or failure can be measured. The simulator can be

run in a variety of way to analyze the effect of caching updates.

6.2 Conclusion

It was anticipated that caching of updates will decrease the probability of success.

Through the results of simulation the anticipated behaviour of the system is verified.

The probability of success decreases when the caching probability increases. The

comparative graph with 0 caching probability and 0.5 probability is drawn to empha-

34

35

size the effect of caching updates.

The effect of caching probability (a) on the success probability is analyzed at a

fixed relative propagation rate (p). The system behaves well for a < 0.8, but the

probability of success decreases sharply for a > 0.8 .

The probability of success decreases with an increase in the number of sites. This

effect is also verified by the simulation results.

6.3 Future Work

The caching of updates reduces the propagation time. The reason being that instead

of several small messages (of updates) one big message can be sent after caching of

the updates. This reduces the overhead involved in each anti-entropy sessions. The

underlying assumption being that messages are not of very large size. Hence, caching

of updates, speeds up the performance by reducing the effective propagation time.

The above mentioned feature of caching of updates is not modeled in the proposed

model. A new model can be proposed to depict the effect of caching of updates on

the propagation time and the simulator can be developed based on that model.

BIBLIOGRAPHY

[ABl\187) Nog Alon~ Ambon Bark. and Cdi \'lanber. On disserninating inforn1ation

reliability without broadcasting. In Procrfdings of thr 7th International

Conference on Distributed Computing Systems. pages 74-81. IEEE Com­

puter Society. 1987.

[BHG87) P. A. Bernstien, V. Hadzilacos, and N. Goodman. C"oncurrency Control

and Recovery in Database Systems. Addision- \Vesley Publishing Company,

1987.

[Dea88) Alan Demers and et al. Epidemic algorithms for replicated database main­

tenance. Operating Systems Review, 22:8-32, 1988.

[GL92a) Richard A. Golding and Darrel D. E. Long. The performance of weak­

consistency replication protocols. Technical Report UCSC-CRL-92-30,

Concurrent Systems Laboratory - Computer and Information Sciences -

University of California at Santa Cruz, 1992.

[GL92b) Richard A. Golding and Darrell D. E. Long. Design choices for weak­

consistency group communication. Technical Report UCSC-CRL-92-45,

Concurrent Systems Laboratory - Computer and Information Sciences -

University of California at Santa Cruz, 1992.

[GL93) Richard A. Golding and Darrel D. E. Long. Modeling replica divergence in a

weak-consistency protocol for global-scale distributed data bases. Technical

Report UCSC-CRL-93-09, Concurrent Systems Laboratory Computer and

Information Sciences - University of California at Santa Cruz, 1993.

36

37

[Gol92] Richard A. Golding. A weak-consistency architectures for distributed infor­

mation services. Technical Report UCSC-CRL-92-31, Concurrent Systems

Laboratory - Computer and Information Sciences - University of California

at Santa Cruz, 1992.

[GT92] Richard A. Golding and Kim Taylor. Group membership in the epidemic

style. Technical Report UCSC-CRL-92-13, Concurrent Systems Laboratory

- Computer and Information Sciences - University of California at Santa

Cruz, 1992.

[Mac87] M. H. MacDougall. Simulating computer systems. MIT Press, 1987. Ran­

dom number generator routine.

[Tan89] Andrew S. Tanenbaum. Computer Networks. Prentice Hall Inc. Englewood

Cliffs NJ, second edition, 1989.

[Tho93] Parkash John Thomas. Partner selection techniques for time stamped anti­

entropy protocols. Master's thesis, Department of Computer Science- Ok­

lahoma State University, 1993.

[TS91] J. P. Tremblay and P. G. Sorenson. An Introduction to Data Structures

with Applications. McGraw Hill, 1991.

APPENDIX A

USER MANUAL

38

39

The name of simulator is sim. It requires command line arguments and other

parametrs from standard input. But standard input can be redirected from a file (if

desired).

A.l Interactive Execution of the Simulator

The command line parameters include the value of AJ, the number of iterations (for

which simulator is to run) and the output filename. The output file is used by the

program to store the simulation results. The simulator sends the simulation results

to an output file and standard output. Hence, the simulator is invoked using:

sim < AJ ><number of updates ><output filename>

For AJ = 0.02, with 3000 iterations, and an output file named chk.out, the simulator

is invoked using:

sim 0.02 3000 chk.out

A.2 Arguments From Standard Input

The simulator prompts the user for the parameters it requires. These parameters

include:

• tot_si tes_ values: The number of simulations to be performed. For example,

if the user only wants a single simulation, then the user should enter 1 (only

one n value).

• tot_si tes_array: Here the user needs to specify the number of sites for each

simulation to be performed.

• alpha_ values: The user enters the number of different o values, to simulate

the system for this run. Suppose user wants to use two values: 0.0 and 0.2.

40

Then user needs to enter 2 (the count of alpha values).

• alpha_ array: Now, the user needs to enter the values of a. For the above

example: 0 0.2

• The count of rou_ values: The user enters the number of p (relative propagation

rate = >..a/ AJ) values, for this simulation. Suppose user wants to run for 8

different p values: 0.8 1.0 2.0 4.0 6.0 8.0 10.0 100.0, then the user needs to enter

8.

• rou_array: The user needs to enter the p values. For the above example: 0.8

1.0 2.0 4.0 6.0 8.0 10 100.0.

Note that this flexibility is provided, so that the user can run the simulator in

a number of ways. The simulator can be executed for various combinations of the

above parameters in a single run. Refer to SAMPLE.SCR (sample script file) and

SAMPLE.DAT (the corresponding output file) for an interactive input example.

A.3 Redirection of Standard Input

The user can redirect standard input from a file. Suppose the file prepared for input

redirection is chk. inp. The simulator will be invoked using

sim 0.02 3000 chk.out < chk.inp

Refer to SAMPLE_F . INP for the format of the input file, SAMPLE_F . SCR for the

corresponding script file and SAMPLE_F. DAT for the corresponding output data file.

APPENDIX B

INSTALLATION GUIDE

41

42

The simulator consists of following files:

• zee_sim. c: The main simulator program.

• const.h: The· constant header file.

• data.strc.h: The header file containing data structure definitions.

• zee_sim. h: Constant definitions related to the random number generator.

• README and SAMPLE files

To run the simulator for a larger number of sites, the parameter MAX_ STATES needs

to be changed (the value of it can be calculated using the formula in Chapter 3 for

the total number of feasible states). Similarly, to run the simulator for more p values,

more a values or more site values, the constants MAX_ROU_COUNT, MAX_ALPHA_COUNT,

and MAX_SITES_COUNT need to be modified.

Of course, if there is any change made to the header file(s), the program needs to

be recompiled.

APPENDIX C

SIMULATOR CODE AND SAMPLE FILES

43

44

1***1
I• File: zee_sim.c •I
I• Main Simulator file •I

1•**1

linclude "zee_sim.h"
linclude "const.h11

#include "datastrc.h"

I• Function declarations •I
int calculate_result();
int print_detailed_result();
int init();
real uniform(real a, real b);
real ranf();
int get_input(int argc, char •argv[]);
int print_input_parameters();
int initialize();
int generate_states();
int print_state_id();
int get_state_index(int m, int f);
int generate_adj_matrix();
int print_adj_matrix();
int scale_transitions();

int calculate_summary_result();

int print_summary_result();
int get_rou_array();
int print_rou_array();
int get_alpha_array();
int print_alpha_array();
int get_tot_sites_array();
int print_tot_sites_array();
int print_final_form();

I• End of function declarations •I

I• Prints the detailed result •I

I• Gets Input parameter •I
I• Prints the input parameters •I
I• Initialize Data Structures •I
I• Generate feasible states •I
I• Prints State_id (m.f) •I
I• Returns the state_index •I
I• Generates Adjacency Matrix •I
I• Prints the adjacency Matrix •I
I• Scales the transitions out •I
I• of one state •I
I• Calculates the summary •I
I• result •I
I• prints the summaary result •I
I• gets the rou_array •I
I• prints the rou_array •I
I• gets the alpha_array •I
I• prints the alpha_array •I
I• gets the total sites array •I
I• prints the alpha_array •I
I• prints in final format •I

I* Variable Declarations
I* Input parameters •/
double alpha; I* The probabilty of caching •I

45

double la.mbda_a; I• The global usefule anti-entropy rate
double la.mbda_f; I• The global failure rate
int tot_sites; I• Total No. of sites for simulation
int end_time;

I• end of para.mter variable declarations •I

I• Simulation Variables for tracking Transitions in Markov Model •I
STATE State[MAX_STATES]; I• States are ordered pair <m, f>,,[]]] •I
float adj[MAX_STATES][MAX_STATES]; I• Stores the transition probability

int num_states;
float state_time[MAX_STATES];
float rou_array[MAX_ROU_COUNT];

from each state
I• Total No. of feasible states
I• Time Spent in each state
I• The rou_values for this run

int rou_count; I• The count of rou_values •I
float alpha_array[MAX_ALPHA_COUNT]; I• The rou_values for this run •I
int alpha_count; I• The count of rou_values •I
int tot_sites_array[MAX_SITES_COUNT];I• The rou_values for this run •I
int tot_sites_count; I• The count of rou_values •I

char state[MAX_STATES][MAX_STRING_LEN];
int current_state,next_state,tr_index,row,col;
int count, state_freq[MAX_STATES] ,link_freq[MAX_LINKS],total;
float current_time,branch_prob[MAX_STATES];
float total_state_time[MAX_STATES];
double prob;
double success_prob_total;
double failure_prob_total;

FILE •outfile;
char outfna.me[MAX_FNAME];

main(int argc, char •argv0)
{

int state_index;
int i;
int a;
int s;

get_input(argc, argv);
rou_count = 0;

alpha_count = 0;
get_tot_sites_array();
get_alpha_array();
get_rou_array () ;

I• array index of rou_array
I• array index of alpha_array
I• array index of tot_sites_array

•I
•I
•I

printf("Lambda_f: Y.4.2f No. of Updates: %d\n\n",lambda_f, end_time);
printf("Rou Success Rate%Y. Alpha Total Sites\n");
printf("===\n");

for (s = 0; s < tot_sites_count; s++) {
tot_sites = tot_sites_array[s];
for (a = O;a<alpha_count;a++) {

alpha= alpha_array[a];
for (i=O; i<rou_count;i++) {

lambda_a = rou_array[i] • lambda_f;
initialize();
generate_states();
generate_adj_matrix();
scale_transitions();
I• print_adj_matrix(); •I
calculate_result();
calculate_summary_result();
print_final_format();

} I• for i, rou_array •I
} I• for a, alpha array •I

} I• for s, total sites array •I
close(outfile);

} I• end main •I

1••···••1 I• Function calculate_result •I
I• Calculates the success and failure probability on basis of •I
I• Uniform distribution •I

I•••··•• I int calculate_result()
{

int i, j;

current_time = 0.0;
current_state = 0;
for (i=O;i<num_states;i++) {

state_freq[i] = 0;
total_state_time[i] = 0.0;

}

for (i=O;i<MAX_LINKS;i++) link_freq[i] = 0;
vhile (current_time < end_time) {
I• gather statistics •I
state_freq[current_state] += 1;

I• initialize arrays •I

46

branch_prob[O] = adj[current_state] [0];
branch_prob[num_states-1] = 1.0;
for (i=1;i<num_states-1;i++)

branch_prob[i] = branch_prob[i-1] + adj[current_state][i];
I• decide which state to branch to •I
prob = uniform(0.0,1.0);
count = 0;
while (branch_prob[count] < (float) prob)

count++;
next_state = count;
current_time += state_time[current_state];
total_state_time[current_state] += state_time[current_state];
tr_index = current_state•num_states+next_state;
link_freq[tr_index] += 1;
current_state = next_state;

} I• end while •I
} I• calculate_result •I

47

I••··•• I I• Function: print_detailed_result •I
I• Prints frequency, Y.frequency, time and Y.time •I

1••··••1 print_detailed_result()
{

int i;
printf("Markov Model Statistics\n\n");
print.f("State Statistics\n");
printf("----------------\n");
total = 0;
for (i=O;i<num_states;i++)

total+= state_freq[i];
printf("State ");printf("Name
printf(" Freq ");
printf("Freq Y.Y. ");
printf(" Time ");
printf(" Time Y.Y.\n");
for (i=O;i<num_states;i++) {

printf("X-3d ",i);
printf ("X-20s", state [i]);
printf("X6d ",state_freq[i]);

II);

printf("XS.1fY.Y. ",(float) state_freq[i] • 100.01 (float) total);
printf ("X6 .1f ", total_state_ time [i]);
I• printf(" XS.1fY.X\n",(float) total_state_time[i]• 100.01

(float) current_time); •I
printf(" XS.1fY.Y.\n",(float) total_state_time[i]• 100.01

(float) current_time);
} I• end for •I

printf("\n\n");
printf("Link Statistics\n");
printf(11 ----------------\n11

);

total = 0;
for (i=O;i<MAX_LINKS;i++)

total+= link_freq[i];
printf("Link 11

) ;printf("Id 11
);

printf(" Freq ");
printf("Freq Y.X\n");
for (i=O;i<MAX_LINKS;i++) {

if(link_freq[i] > 0) {
printf("Y.-3d ",i);
rov = ilnum_states;
col = iY.num_states;
printf(''Y.2d -> Y.2d 11 ,row,col); printf("Y.6d ",link_freq[i]);
printf("Y.5.1fXX\n",(float) link_freq[i] * 100.01 (float) total);

} I• end if •I
} I• end for •I

} I• end print_detailed_result •I

48

1***•••••1
I• Function: scale_transitions •I
I• Scales the transitions out of one state to 1 •/
I• The sum of transition prob. will be equal to 1 •/

1**1
scale_ transitions()
{

int i ,j;
float t;

I• Calculate totals and divide matrix •I
I• to create an adjacency matrix •I
for (i=O;i<num_states;i++) {

}

t = 0.0;
for (j=O;j<num_states;j++)

t += adj [i] [j] ;
for (j=O;j<num_states;j++) {

if (t != 0.0)
adj [i] [j] I= t;

} I• for j •I

} I• end scale_transitions •I

I*** I

I• These random number generator routines were written by
I• M.H. MacDougall, "Simulating Computer Systems", MIT Press, 1987
I• ---------- UNIFORM [0, 1] RANDOM NUMBER GENERATOR -------------
1•
I• function ranf(): Generates a randum number

49

1••***1
real ranf()

{

short *p,*q,k;
long Hi,Lo;
I• generate product using double precision simulation (comments •I
I• refer to In's lover 16 bits as "L", its upper 16 bits as "H") •I
p=(short •)&In[strm]; Hi= •(p)*A; I• 16807•H->Hi •I
•(p)=O; Lo=In[strm]•A; I• 16807•L->Lo •I
p=(short •)&Lo; Hi+= •(p); I• add high-order bits of Lo to Hi •I
q=(short •)&Hi; I• low-order bits of Hi->LO •I
•(p)= •(q+1)&0X7FFF; I• clear sign bit •I
k= •(q)<<1;
if (•(q+1)&0X8000) k++; I• Hi bits 31-45->K •I
I• form Z + K [- M] (where Z=Lo): presubtract M to avoid overflow •I
Lo-=M;
Lo+=k;
if (Lo<O) Lo+=M;
In [strm] =Lo;
return((real)Lo•4.656612875E-10); I• Lo x 11(2**31-1) •I

} I• end of function:ranf() •I
1**1
I• function:uniform() •I
1•------------ UNIFORM [a, b] RANDOM VARIATE GENERATOR -------------•1

1**1
real uniform(a,b)

real a,b;
{ I• 'uniform' returns a psuedo-random variate from a uniform •I

I• distribution with lover bound a and upper bound b. •I
I• if (a>b) then error(O,"uniform Argument Error: a> b"); •I
return(a+(b-a)•ranf());

} I• end of function:uniform •I

I** I
I• Function get_input() •I

Gets input from command line:
I• alpha, lambda_a, lamda_f, tot_sites, end_time •I , .. ,
int get_input(int argc, char •argvO)
{

50

if (argc ! =4) {
perror{l'usage: zee_sim <lamda_f> <No. of Updates> <Output File Na.me>\n");
exit(l);

}

} I• end of arg_count check •I

I• strip off the parameters from command line •I
lambda_f = atof(argv[l]);
end_time = atoi(argv[2]);
strcpy(outfname,argv[3]);
if ((outfile = fopen(outfname,"v")) -- NULL) {

perror("Out File Openning Error\n 11
);

exit (1);
}

1••··•••1
Function: print_input_parameters

Prints the input parameters for current run

1•••···••1
int print_input_para.meters()
{

}

printf("The Input parameters for current run is:\n");
printf(11 ==\n");
printf(11 alpha= Y.6.4f, lamda_a = Y.6.4f,",alpha, lambda_a);
printf(" lamda_f = Y.6.4f, 11 ,lambda_f);
printf(" Total Sites n = Y.d, Total Time= Y.d\n",tot_sites, end_time);

1••···••1
I• Function: initialize() •I
I• Initializes the data structures •I

1••···••1
int initialize()
{

}

memset(adj, 1 \0 1
, sizeof(adj));

memset(State, '\0', sizeof(State));
memset(state_time, '\0', sizeof(state_time));

1••···••1 I• Function: generate_states •I
I• Generate feasible states, state id: <m,f> •I
I• where m is the no. of sites having updates •I
I• f is the total available sites •I

1••···••1

int generate_states()
{

int state_index = -1;
int m; I• the no. of sites having updates •I
int f; I• The total no. of sites having updates •I

num_states = (tot_sites-1) + ((tot_sites)•(tot_sites+1))12;

I• Generate States label for each feasibel States •I

I• Ist rov of States f = tot_sites, m = 1 to tot_sites •I
f = tot_sites;
for (m = 1; m<=f;m++) {

State[++state_index] .m = m;
State[state_index].f = f;
if (m==f)

state_time[state_index] = TIME_IN_FINAL_STATE;
}

I• For States, Rov from 2 to tot_states •I
for (f = tot_sites -1; f>O; f--) {

for (m = 0; m <= f; m++) {
State[++state_index].m = m;
State[state_index] .f = f;
I• The final states are: SUCCESS: m = f

Failure m = 0 •I
if ((m==f) I I (m==O))

state_time[state_index] = TIME_IN_FINAL_STATE;
} I• for m •I

} I• for f •I

51

I• printf("The current value of state_index should be equal to num_states -1\n")
printf("The total feasible states, num_states = Y.d\n11 ,num_states);
printf("The state_index = Y.d\n", state_index);
print_state_id(); •I

} I• end of function generate_states •I

I•***'
I• Function: print_state_id •I
I• Prints the state id <m,f> of each state •I
'**'
int print_state_id()
{

int state_index;
char open_br = '(';

printf ("State ") ;
printf("Name ");
printf("Time in Each State \n");
for (state_index = 0; state_index < num_states; state_index++) {

printf("Y.-3d ",state_index);
printf("(Y.d,Y,d)",State[state_index] .m, State[state_index] .f);

printf(11 Y.25.1f\n",state_time[state_index]);
} I• end for state_index •I
I• printf("TEST3\n"); •I

} I• end of function print_state_id •I

52

1***1
I• Function: get_state_index •I
I• Returns the state_index, if a state_id <m.f> is provided •I
1***1
int get_state_index(int m, int f)
{

int i;
int t_index = -1;

for (i=O; i< num_states;i++) {
if (State[i] .m == m)

if (State[i] .f == f) {
t_index = i;
break;

} I• if m •I
} I• for i •I

return (t_index);
} I• End of function get_state_index •I

I*** I
I• Function:generate_adj_matrix •I
I• Generates the adjacency matrix, based on alpha, lambda_a, lambda_f •I
I• and the current state, for vhich a rov is generated •I
1***1
int generate_adj_matrix()
{

int
int

int
int

i;
m,f;

nextm,nextf;
state_index;

I•
I•
I•
I•

The state vhose transitions are under •I
considerations •I
Next State •I
The state index on basis of nextm, nextf •I

for (i=O;i<num_states;i++) {
I• ther is no transition from final state (failure or success •I
I• SUCCESS: m = f, FAILURE m = 0 •I
if ((State[i].m != State[i] .f) ll (State[i] .m !=0)) {

I• There are possible transitions out of non-final states <m,f> •I
I• T1: to <m+1,f>: useful anti-entropy
* (m(f-m)l(f-1)) • (lambda_a •(1-alpha))
* T2: to <m-l,f-1>: one of the site having update is failed
* m•lambda_f
* T3: to <m,f-1>: one of the site having no update is failed
* (f-m)•lambda_f
•I
m = State[i].m;
f = State [i] . f ;

I• T1: •I
nextm = m+1;
nextf = f;
state_index = get_state_index(nextm,nextf);
adj[i][state_index] = (m•(f-m)l(f-1)) • (lambda_a • (1-alpha));

I* T2: •I
nextm = m-1;
nextf = f-1;
state_index = get_state_index(nextm,nextf);
adj[i][state_index] = m•lambda_f;

I• rem maybe int to float conv. for multiplications •I

I• T3: •I
nextm = m;
nextf = f-1;
state_index = get_state_index(nextm,nextf);
adj[i] [state_index] = (f-m) • lambda_f;

} I• if State[i] .m •I
else {

I• Final State, the probability of self transition = 1•1
adj [i] [0] = 1.0;

} I• else •I

} I• for i •I
} I• End of function generate_adj_matrix •I

53

1•••··••1
I• Function: print_adj_matrix •I
I• Prints the adjacency matrix •I

54

1***1
print_adj_matrix()
{

int i,j;
printf ("The tranistion probability Matrix (adj _matirx\n'');
printf("===\n");
printf("St Matrix\n");
for (i=O;i<num_states;i++) {

printf("Y.d ",i);
for (j=O;j<num_states;j++) {

printf("Y.5.3f ",adj [i] [j]);
} I* for j •I
printf("\n");

} I• for i •I
} I• End of function print_adj_matrix •I

1**1
Function: calculate_summary_result

Calculate_summary_result, The Y.Success Probability, Y.Failure
Probability

1**1
calculate_summary_result()
{

int i;

success_prob_total = failure_prob_total = 0.0;
for (i=O; i<num_states;i++) {

if (State[i].m == 0)
I• The Failure Final State has m=O •I
failure_prob_total = failure_prob_total + total_state_time[i];

if (State[i].m == State[i] .f)
I• Success state has m==f •I
success_prob_total = success_prob_total + total_state_time[i];

} I• end for i •I
} I• end function calculate_summary_result •I

1**1
I• Function: print_summary_result •I
I• Calculate_summary_result, The Y.Success Probability, Y.Failure •I
I• Probability •I
1**1
print_summary_result()
{

double per_success_prob, per_failure_prob;

per_success_prob = success_prob_total * 100.0/(float)end_time;
per_failure_prob = failure_prob_total • 100.0/(float)end_time;

printf("Rov = Y.3.1f, 11 ,lambda_a/lambda_f);
printf("Y.Success_probability = Y.5.2fY.Y. 11

, per_success_prob);
printf(", Y.Failure_probability = Y.5.2fY.Y.\n 11

, per_failure_prob);
} /• end function print_summary_result •I

55

'***'
I• Function:get_rou_array •I
I• Get the count of rou and the values of it •/

'***'
get_rou_array()
{

int i;
printf(11 The count of the rou_values\n");
scanf("Y.d11 ,lrou_count);
printf(11Enter the values of rou_array\n");
for (i=O;i<rou_count;i++)

scanf ("Y.f" ,trou_array [i]);
} /• end of function get_rou_array •I

'***'
I• Function:print_rou_array •I

Prints the rou_array

'***'
print_rou_array()
{

}

int i;

printf("The rou_count is: Y.d\n",rou_count);
for (i=O; i<rou_count;i++)

printf("Y.4.1f\n" ,rou_array[i]);
printf("\n");

!••***!
I• Function:get_alpha_array •/
I• Get the count of alpha and the values of it •/

'***'
get_alpha_array()
{

int i;
printf("The count of the alpha_values\n");
scanf("Xd" ,talpha_count);

printf("Enter the values of alpha_array\n");
for (i=O;i<alpha_count;i++)

scanf ("%f" ,l:alpha_array [i]);
} I• end of function get_rou_array •I

56

1••···••1 I• Function:print_alpha_array •I
I• Prints the alpha_array •I

I••···•• I
print_alpha_array()
{

}

int i;

printf("The alpha_count is: Y.d\n",alpha_count);
for (i=O; i<alpha_count;i++)

printf ("%4. 1f\n", alpha_ array [i]);
printf("\n");

1••···••1
Function:get_tot_sites_array

Get the count of total sites and the values of it

1***1
get_tot_sites_array()
{

int i;
printf("The count of the tot_sites_values\n");
scanf("%d",l:tot_sites_count);
printf("Enter the values of tot_sites_array\n");
for (i=O;i<tot_sites_count;i++)

scanf("%d" ,l:tot_sites_array[i]);
} I• end of function get_rou_array •I

1••···••1 I• Function:print_alpha_array •I
I• Prints the alpha_array •I
1•**1
print_tot_sites_array()
{

}

int i;

printf("The tot_sites_count is: %d\n",tot_sites_count);
for (i=O; i<tot_sites_count;i++)

printf("Y.d\n",tot_sites_array[i]);
printf("\n");

57

1••··••1 I• Function: print_final_format •I
I• Calculate_summary_result, The Y.Success Probability, Y.Failure •I
I• Probability •I

1••··••1 print_final_format()
{

double per_success_prob, per_failure_prob;

per_success_prob = success_prob_total • 100.0I(float)end_time;
per_failure_prob = failure_prob_total • 100.0I(float)end_time;

printf("Y.5.1f
printf(" Y.5.2f

Y.5.2f", lambda_allambda_f, per_success_prob);
Y.d\n", alpha, tot_sites);

I• Printing in output file •I
fprintf(outfile,"Y.5.1f
fprintf(outfile, 11 Y.5.2f

Y.S. 2f", lambda_allambda_f, per_success_prob);
Y.d\n", alpha, tot_sites);

} I• end function print_summary_result •I

1••···••1 I• File: datastrc.h •I
Structure for state of network
State of network is <m,f>

1••···••1
typedef struct {

int
int

} STATE;

m·
'

f;

I• The no. of sites having update •I
I• Total available (working) sites •I

1••···••1 I• File: const.h •I
Constants declaration

1••···••1
ldefine MAX_STATES 100
ldefine MAX_LINKS MAX_STATES•MAX_STATES
ldefine MAX_STRING_LEN 20
ldefine TIME_IN_FINAL_STATE 1
ldefine MAX_ROU_COtJJT 10
ldefine MAX_ALPHA_COUNT 15

ldefine KAX_SITES_COUNT 10
ldefine MAX_FNAME 20

58

I••···•• I I• File: zee_sim.h •I
I• contains include files for zee_sim.c •I
I• and initialization for random number •I
I• generators. •I

1••···••1 linclude <malloc.h>
linclude <stdio.h>
linclude <math.h>

I• For Uniform function •I
ldefine A 16807L I• multiplier (7••5) for 'ranf' •I

I• modulus (2••31-1) for 'ranf' •I ldefine M 2147483647L

static long In[16]= {OL, I• seeds for streams 1 thru 15 •I
1973272912L, 747177549L, 20464843L, 640830765L, 1098742207L,

78126602L, 84743774L, 831312807L, 124667236L, 1172177002L,
1124933064L, 1223960546L, 1878892440L, 1449793615L, 563303732L};

static int strm=1; I• index of current stream •I

typedef double real;

I• end of declaration for uniform functions •I

I• SAMPLE.DAT file •I

0.8 47.43 0.20 3
1.0 51.13 0.20 3
2.0 63.07 0.20 3
4.0 75.17 0.20 3
6.0 80.37 0.20 3
8.0 85.17 0.20 3

10.0 87.87 0.20 3
100.0 98.57 0.20 3

I• SAMPLE.SCR file •I

Script started on Tue Mar 8 11:44:24 1994
$ stm 0.02 3000 SAMPLE.DAT

The count of the tot_sites_values

1

Enter the values of tot_sites_array

3

The count of the alpha_values

1

Enter the values of alpha_array

0.2

The count of the rou_values

8

Enter the values of rou_array

0.8 1 2 4 6 8 10 100

Lambda_f: 0.02 No. of Updates: 3000

Rou Success RateY. Alpha Total Sites

===

0.8 47.43 0.20 3

1.0 51.13 0.20 3

2.0 63.07 0.20 3

4.0 75.17 0.20 3

6.0 80.37 0.20 3

8.0 85.17 0.20 3

59

10.0 87.87 0.20

100.0 98.57 0.20

$ exit

script done on Tue Mar 8 11:45:30 1994

I• SAMPLE_F.DAT file •I

0.8 47.43 0.20 3
1.0 51.13 0.20 3
2.0 63.07 0.20 3
4.0 75.17 0.20 3
6.0 80.37 0.20 3
8.0 85.17 0.20 3

10.0 87.87 0.20 3
100.0 98.57 0.20 3

I• SAMPtE_F.INP file •I

1
3
1
0.2
8
0.8 1 2 4 6 8 10 100

I• SAMPLE_F.SCR file •I

Script started on Tue Mar 8 11:40:56 1994
$ sim 0.02 3000 SAMPLE_F.DAT < SAMPLE_F.INP

The count of the tot_sites_values

Enter the values of tot_sites_array

The count of the alpha_values

Enter the values of alpha_array

The count of the rou_values

Enter the values of rou_array

60

3

3

61

Lambda_f: 0.02 No. of Updates: 3000

Rou Success Rate1. Alpha Total Sites

===

0.8 47.43 0.20 3

1.0 51.13 0.20 3

2.0 63.07 0.20 3

4.0 75.17 0.20 3

6.0 80.37 0.20 3

8.0 85.17 0.20 3

10.0 87.87 0.20 3

100.0 98.57 0.20 3

$ exit·

script done on Tue Mar 8 11:42:32 1994

Zeeshan Shafaq S yed

Candidate for the Degree of

Master of Science

Thesis: MODELING UPDATE CACHING I~ \VEAK CONSISTENCY
PROTOCOLS

Major Field: Computer Science

Biographical Data:

Personal Data: Born in Said Pur (former East Pakistan), Pakistan, on
February 19, 1969, the son of Syed Muhammad Rafique and Safia Rafique.

Education: Graduated from Govt. Dehli Boys Secondary School (Secondary
School Certificate), Karachi, Pakistan, in 1982; graduated from Adamjee Govt.
Science College (Higher School Certificate), Karachi, Pakistan, in 1984; graduated
from N. E. D. University Of Engineering and Technology, Karachi, Pakistan,
October 1990, received Bachelor of Engineering in Computer Systems Engineering.
Completed the requirements for the ~faster of Science degree with a major in
Computer Science at Oklahoma State University in July 1994.

Experience: Programmer /Graduate Research Assistant, International Student
Services Department, Oklahoma State University, September, 1992 to May 1994.
Programmer, Agriculture Economics Department, Oklahoma State University,
February 1992, May 1992. Systems Analyst, Information System Department, Fazal
Textile Mills Limited, Karachi, Pakistan, September 1991 to December 1991.
Computer Engineer, Ericsson Telecom, Karachi, Pakistan, October 1990 to August
1991. Analyst Programmer, Information Systems Department, Fazal Textile Mills
Limited, Karachi, Pakistan, May 1990 to September 1990).

	Image1.tif
	Image2.tif
	Image3.tif
	Image4.tif
	Image5.tif
	Image6.tif
	Image7.tif
	Image8.tif
	Image9.tif
	Image10.tif
	Image11.tif
	Image12.tif
	Image13.tif
	Image14.tif
	Image15.tif
	Image16.tif
	Image17.tif
	Image18.tif
	Image19.tif
	Image20.tif
	Image21.tif
	Image22.tif
	Image23.tif
	Image24.tif
	Image25.tif
	Image26.tif
	Image27.tif
	Image28.tif
	Image29.tif
	Image30.tif
	Image31.tif
	Image32.tif
	Image33.tif
	Image34.tif
	Image35.tif
	Image36.tif
	Image37.tif
	Image38.tif
	Image39.tif
	Image40.tif
	Image41.tif
	Image42.tif
	Image43.tif
	Image44.tif
	Image45.tif
	Image46.tif
	Image47.tif
	Image48.tif
	Image49.tif
	Image50.tif
	Image51.tif
	Image52.tif
	Image53.tif
	Image54.tif
	Image55.tif
	Image56.tif
	Image57.tif
	Image58.tif
	Image59.tif
	Image60.tif
	Image61.tif
	Image62.tif
	Image63.tif
	Image64.tif
	Image65.tif
	Image66.tif
	Image67.tif
	Image68.tif
	Image69.tif
	Image70.tif

