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CHAPTER I 

INTRODUCTION 

Since the repon by l\1ayo in 1895, nitrate has been recognized as toxic to 

cattle. Excessive levels of nitrate accumulate in plant material due to moderate 

drought conditions, over-fertilization, successive cloudy days during the early growing 

season, frost damage or any other condition that prevents or slows the plants ability to 

convert nitrate to plant proteins. The name "nitrate" toxicity is actually a misnomer 

for the nitrate ion is itself innocuous. The actual toxicosis results from the reduction 

of nitrate (N03-) to nitrite (N02-) by rumen microbes using the nitrate ion as a 

terminal electron acceptor during anaerobic respiration. Nitrite accumulates in the 

rumen as the normal rumen microbiota are unable to further reduce or utilize nitrite. 

As nitrite levels rise in the rumen, the nitrite ion readily passes through the rumen wall 

and enters the blood stream. Once in the blood stream, the nitrite ions bind to the 

oxygen binding sites of hemoglobin molecules which converts the hemoglobin to 

methemoglobin. This methemoglobin is unable to carry oxygen. Some 

methemoglobin is reconverted back to hemoglobin by NADPH reductase but the rate 

of reconversion is slow and ineffectual in toxic situations. As methemoglobin 

concentration increase, the blood takes on a characteristic chocolate brown color as 

the animal begins to experience the symptoms of "nitrate" toxicity. As methemoglobin 

concentration reach 30 to 40%, the animal becomes lethargic, develops a staggering 



gait and begins to pant while experiencing a rapid pulse. When the methemoglobin 

concentration exceeds 50o/o the animal develops labored breathing, muscle tremors, 

collapse, fall into a coma and die due to anoxia. The entire course of symptoms can 

occur in as little as 30 minutes or as long as 12 hours after the ingestion of a toxic 

dose of nitrate. Onset of toxicosis is dependent on the concentration of nitrate 

ingested, the availability of that nitrate, condition of the animal, stress factors and 

individual animal variation. 

One possible solution for " nitrate" toxicity would be to reduce the amount of 

nitrite that accumulates in the rumen. This could be accomplished through the 

establishment of a naturally occurring, denitrifying bacteria in the rumen. The feeding 

of specific viable microorganisms to livestock with the intent to alter microbial balance 

within the gastrointestinal tract has been practiced for many years. Although the 

modes of action and beneficial effects of these direct-fed microbial products has not 

always been scientifically demonstrated, the importance of microbes in fermentation 

and digestion is well recognized. 

One group of bacteria capable of reducing nitrate and nitrite to non-toxic 

nitrogenous compounds are propionibacteria. The microaerophilic propionibacteria 

are an industrially important group of microorganisms primarily used in the dairy 

industry as starter cultures for Swiss-type cheeses. Other industrial applications 

include the production of vitamin B 12 and propionic acid as well as their use as direct

fed microbial inoculates for silage and grains. The objectives of this study were then 

to ( 1.) identify all strains of propionibacteria capable of denitrification, (2.) select a 

strain capable of rapid, large scale reduction of nitrate and nitrite, (3.) determine the 

capacity of the selected strain to establish in the rumen and ( 4.) determine if the 
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established strain is able to lessen the occurrence and severity of "nitrate" toxicity in 

vivo. 
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CHAPTER II 

"NITRATE" TOXICITY-OVERVIE\\' 

The consumption of excessive levels of nitrate is toxic to livestock was first 

reported by Mayo in 1895. Nitrate (NO 3) is now recognized as the non-toxic precursor 

with its derivative nitrite (N02) being the toxic agent. To date, nitrate toxicity has been 

demonstrated in such widely diverse livestock species as beef cattle, dairy cattle, sheep, 

swine (Deeb and Sloan, 1975 ), goats (Prasad, 1983 ), reindeer (Nordkrist el a!., 1984) and 

water buffalo (Prasad el a!., 1984 ). 

Nitrate can accumulate in the environment and enter the animal's food supply 

through two different avenues. The first is through the water supply Across Oklahoma, 

the nitrate concentration of ground water ranges from 0 5 and 26 5 ppm (J Duncan, State 

Environmental Laboratory, personal communication). Local nitrate concentrations may be 

much higher due to run-off and leaching of nitrate from over-fertilized fields, feedlots or 

other animal \vaste sources into the surface or ground water supplies. Nitrate in drinking 

water can be particularly dangerous as it is immediately available in the rumen while feed 

sources of nitrate must be released from plant cells first. This increased availability results 

in the increased toxic affect of water-borne nitrate over nitrate contained in feed. The 

second and more common source of nitrate is from forages via the soil. Accumulations of 

nitrate in the soil can occur due to over-fertilization of fields, leaching of nitrate into the 

soil from feedlots and other sources of animal waste or inhibited plant growth due to 

severe drought or herbicide treatment. (Pfister, 1988) on fields moderately fertilized over 

several seasons. 

Nitrate is a key component in plant growth acting as the inorganic nitrogen source 

for the production of plant proteins (Wright and Davidson, I 964 ). Certain species of 

plants are more prone than others to accumulate nitrate. Common forages and feedstuffs 

known to accumulate nitrate under certain conditions include alfalfa, annual brome, 
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clovers, fescue, kikuyugrass, orchardgrass, pearl millet, sorghum, sorghum x sudan 

crosses, sunflower, sweetclover, S\Vitchgrass, timothy, wheatgrasses, wild rye, witchgrass, 

barley forage, beet pulp, corn forage, kale, molasses, oat forage, rape, turnips and wheat 

forage. Certain weeds common in pastures and crop fields also accumulate nitrate these 

include such species as dock, goldenrod, jimson weed, johnsongrass, kochia, lamb's 

quarter, nightshade and pigv.'eed. 

Normally found in plants, nitrate seldom accumulates because it is rapidly reduced 

and combined with carbohydrates to form amino acids and plant proteins (O'Hara and 

Fraser, 1975 ). Nitrate, however, does accumulate in plants under certain environmental 

conditions and in certain stages of plant gro\vth. Environmental conditions that result in 

nitrate accumulation are those in which the plant continues to absorb nitrate from the soil 

but is unable to photosynthesize. These conditions include during and immediately after a 

moderate drought in which the plant continues to take up nitrate from the soil but nitrate 

reductase activity is reduced due to leaf stress caused by low water availability (Pfister, 

1988). Other conditions include frost damage to leaves and shading of the plant, 

particularly during the early growth phases (Pfister, 1988). 

Nitrate also accumulates in certain plants parts. Highest nitrate concentrations wi]] 

be found in the stems followed by the leaves with the lowest concentrations found in the 

grain (Krejsa eta/., 1987~ Pfister, 1988~ Fjell eta/., I 991 ). Forage maturity also plays a 

role in nitrate accumulation with early growth and regrowth having higher accumulation 

than older more mature plants (Pfister, 1988~ Fjell eta/., 1991 ). 

The form and manner in which the forage is consumed also affects its toxicity. 

Hays become more permeable during rehydration in the rumen and release their nitrate 

more quickly (80°/o in 20 minutes) than fresh plant material (30°/o in 20 minutes). This 

makes dry hay more toxic than lush, green forage (Geurink el a/., 1979) even though they 

may contain the same concentration of nitrate. 
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Once the nitrate enters the rumen of pre-gastric fermenters or the cecum of post

gastric fermenting species it is reduced by the normal microtlora. in most cases, to nitrite. 

The nitrite formed may or may not be reduced further depending on the species of microbe 

and its requirements. 

Nitrate may be reduced for one of two reasons. Firsc reduction of nitrate is an 

energetically favorable process in propionibacteria as well as some other species (Van 

Gent-Ruijters eta/., 1975; Kaspar, 1982: Allison and f\1acfarlane, 1989). In species of 

bacteria capable to anaerobic respiration, nitrate can increase production of A TP through 

increased citric acid cycle activity and by oxidative phosphorylation coupled to nitrate 

reduction (Van Gent-Ruijters eta/., 1975). 

Nitrate also may be reduced to nitrite as the first step in the production of 

ammonia for later use in the synthesis of microbial protein (Lewis, 1951; Kaspar and 

Tiedje, 1981 ). 

The key enzyme responsible for nitrate reduction is nitrate reductase. It catalyses 

the reduction of nitrate (N03) to nitrite (N02). Nitrate reductase is a constitutive enzyme 

whose production is stimulated by nitrate (Van Gent-Ruijters eta/., 1976: Kaspar, 1982) in 

some bacteria including certain strains of propionibacteria. Many gastrointestinal 

microbes produce nitrate reductase so that when large quantities of nitrate are consumed, 

nitrite can accumulate rapidly in the gastrointestinal tract. The pH optimum of nitrate 

reductase is 6.5 (Tillman eta/., 1965) which is within the normal pH range ofthe rumen of 

ruminants fed forage (6.2-6.5); hence, nitrite production within the rumen is more 

favorable when host animals are fed forage. 

A limited number of species of bacteria in the gastrointestinal tract reduce nitrite 

further to other less toxic nitrogenous compounds such as nitrous oxide (N20) or 

ammonia (NH4+) (Lewis, 1951 ~Cheng eta/., 1988). Normally, reduction of nitrite by the 

gastrointestinal microflora is much slower than the reduction of nitrate. The rate of nitrite 

reduction can be as much as two times slower than that of nitrate reduction (Allison and 

6 



Reddy, 1984 ). The rate of nitrite reduction may be slower because nitrite reduction is an 

energetically unfavorable process (Hasan and Hall, 1977, Cole, 1978) The nitrite ion is 

unable to replace nitrate as the electron acceptor in phosphorylation-coupled electron 

transfer. In addition, the nitrite ion can be toxic to some bacteria (Kaspar, 1982). This 

information suggests that the nitrite reductase enzyme is a detoxifYing mechanism. 

Another factor contributing to the slower nitrite reduction is that the pH optimum 

of nitrite reductase is 5.6 (Tillman e/ a!., 1965) well below that of the rumen of ruminants 

fed forage (6.2-6.5). Slower reduction than production of nitrite leads to the 

accumulation of nitrite in the rumen. 

The enzymes nitrate and nitrite reductase require a number of cofactors; these 

include such minerals as copper, iron, magnesium and manganese In addition, 

molybdenum is essential for nitrate reductase activity (Korzeniowski el a/., 1980~ 1981 ). 

Coupling of nitrate reductase to nitrite reductase in propionibacteria and other species may 

be attributed to the need to detoxify nitrite. 

The nitrate-nitrite reductase enzyme system is stimulated by the presence of nitrate 

in the gastrointestinal tract because the bacteria that can adapt to a high nitrate diet must 

be able to detoxify nitrite (AJiison and Reddy, 1984; Alaboudi and Jones, 1985). This 

increase in nitrate and nitrite reductase synthesis can occur in as little as four hours but 

may require as long as three to six days for optimum adaptation of the community. This 

communal adaptation, however, can be lost just as quickly with the removal of nitrate 

from the diet of the host animal (Allison and Reddy, 1984; Alaboudi and Jones, 1985). 
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THE PHYSIOLOGY OF "~ITRATE'' TOXICITY 

\Vhile nitrate can be absorbed through the rumen wall and into the bloodstream 

there is no evidence to indicate that this circulating nitrate can be reduced to nitrite in the 

bloodstream (\Vang eta/., 1961, \Vinter. 1962). Up to 27~/~ of nitrate can be excreted in 

the urine within a few hours of dosing (\Vang eta/., 1961, Setchell and \Villiams, 1962), 

with some being recycled into the gut from the bloodstream \·ia salivary and 

gastrointestinal secretions (Deeb and Sloan, 1975) 

As the nontoxic nitrate is being absorbed, the nitrite accumulating in the rumen 

also is passing readily through the rumina! wall into the bloodstream. Once in the 

bloodstream, the nitrite ion oxidizes the ferrous iron of hemoglobin to ferric iron 

producing methemoglobin, a chocolate-colored pigment that is unable to carry oxygen. 

Signs of "nitrate 11 toxicity will begin to appear when 40 to 60~1o of the hemoglobin is 

converted to methemoglobin ( Deeb and Sloan, 197 5) \Vhile methemoglobin can be 

converted back to hemoglobin by NADPH reductase (Venregt, 1977). this capacity is 

limited and easily exceeded \Vhen concentrations of methemoglobin exceed 70-80o/o, 

death from methemoglobinemia usually occurs. However, individuals vary widely in 

susceptibility. 

Ruminants and post-gastric fermenters are more susceptible to "nitrate11 poisoning 

than monogastrics because gastrointestinal microorganisms are responsible for essentially 

all the reduction of nitrate and nitrite (Lev/is, 1951) Species susceptibility to 

methemoglobinemia also is related to its capacity to reduce methemoglobin (O'Hara and 

Fraser, 1975). In studies ofthe rate of methemoglobin formation in man, goats, sheep, 

horses, cattle and pigs, the rate of methemoglobin reduction of ruminants was highest in 

sheep and lowest in cattle (Smith and Beutler, 1966 ). Hemoglobin from ruminants also 

was more easily oxidized to methemoglobin than was the hemoglobin ofnonruminants 

(Smith and Beutler, 1966 ). 
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ACUTE AND CHRONIC "NITRATE" TOXICITY 

Nitrate toxicity can be classitied as acute or chronic (\\'right and Davison, 1964). 

In acute cases, death may occur 2 to 3 hours after symptoms of a lethal dose appear or the 

animal may collapse and recover spontaneously. Collapse and death, \vhen it occurs, is 

the result of hypoxia brought about by methemoglobinemia causing the oxygen transport 

capacity of blood to drop below that required for life (Deeb and Sloan, 1975). Symptoms 

of acute nitrate poisoning may include one or more of the follo\ving: staggered gait, 

excessive salivation, lethargy, accelerated pulse, labored breathing, muscle tremors, 

frequent urination, brownish discoloration of nonpigmented skin and vaginal membranes, 

collapse, coma and death. Blood samples taken within this time frame will be chocolate 

brown in color due to its high concentration of methemoglobin. 

Additional problems have been associated with chronic nitrate toxicity, including 

abortion, decreased weight gain, decreased milk production. vitamin A deficiency and 

hyperthyroidism (\Vright and Davison, 1964, Deeb and Sloan, 1975 ). Much contradicting 

data surrounds these problems and attempts to veri(y or refute them have had variable 

results (Deeb and Sloan, 1975 ). 

Sublethal levels of nitrate have been reported to cause abortions in cattle. 

Abortions have been noted in cows eating high nitrate silage (Pfander eta/., 1964) and in 

cows grazing high nitrate \Veeds in \Visconsin ( Sund eta/., 195 7; Simon et al., 1958, 

1959a, 1959b). Abortions have been induced in pregnant heifers by feeding nitrate or 

placing nitrate into their n1mens (Simonet a/., 1959a~ Davison el a!., 1964). Johnson et. 

a!. ( 1984) analyzed the nitrate contents of 227 stillborn or aborted fetuses and found that 

83 had high nitrate levels in their aqueous humor: 54 of those fetuses also had high nitrate 

concentrations in their blood. Conversely, \Vinter and Hokanson ( 1964) found no adverse 

effect to pregnancy from feeding nitrate to 15 heifers. 
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The mechanism of abortion due to nitrate is not kno\\·n exactly·. Studies with 

guinea pigs suggest that fetal death is from hypoxia due to maternal methemoglobinemia 

(Sinha and Sleight, 1971 ). This hypoxia ma~· be due to insuflicient ox~·gen transfer to the 

fetus from the dam (J\1alestein eta/., 1980). Reduced oxygen transfer from the datn to the 

fetus results in intrauterine death 

Effects of nitrate on weight gain and milk production is much more variable. 

Reduced \veight gains attributed to chronic nitrate poisoning have been reported by 

researchers in cattle, sheep and s\vine (\Veichenthal et ul., 1963, Pfander eta/., 1964; 

O'Hara and Fraser, 1975). However, researchers have failed to demonstrate decrease in 

weight gain (Sokolowski et ul., 1961: Cline e1 ol, 1962: Smith eta/., 1962, Crawford et 

a/., 1966) Milk yields generally have not decreased in cases of chronic nitrate toxicity 

(Davison eta/., 1963; Crawford et ul., 1966; Farra and Satter, 1971) However, Wright 

and Davison ( 1964) found that milk production was reduced by nitrate consumption when 

feed consumption was depressed or cows were near collapse. Nielson ( 1974) found that 

milk yields were lowered consistently in cows on high nitrate forages. 

While nitrates impair thyroid function in rats by competing with iodine for 

receptors and interfering with thyroxine synthesis (Lee, 1970; Deeb and Sloan, 1975), 

such effects have not been detected in cattle (Jainudeen eta/., 1965; Wright and Davison, 

1964). 

In research with rats, nitrites oxidized vitamin A and its precursor carotene in the 

gastrointestinal tract (Wright and Davison, 1964, Deeb and Sloan, 1975 ). Similar studies 

with nitrates showed no influence on carotene, vitamin A or vitamin A storage in the liver. 

Therefore, nitrites may destroy vitamin A in ruminants under certain conditions, but 

considering the amount of nitrite required, acute .. nitrate" toxicity would be a far greater 

concern (Deeb and Sloan, 1975). 
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TOXIC LEVELS OF NITR.\T£ AND \'ARIABILITY IN SUSCEPTIBILITY 

The consequences of nitrate to.\icit~' on beef cattle varies with the concentration of 

nitrate present and the reproductive state of the animal For pregnant cattle, N03 

concentrations below 1,500 ppm are considered safe for both cow and calf Nitrate 

concentration in the range of 1,500 to 5,000 ppm may cause early term abortions and 

reduce breeding performance \Vhen nitrate concentrations rise to 5,000 to 10,000 ppm, 

mid to late term abortions can occur, calves that are born can be weak, and grovvth and 

milk yields by cows are reduced. \\'hen nitrate concentrations in susceptible animals 

exceed 10,000 ppm, abortions, acute nitrate toxicity symptoms and death can occur. 

Safe levels for non-pregnant beef cattle range form 0 to 5,000 ppm N03. Milk 

yields and growth rate are decreased with subacute symptoms starting at 5,000 ppm up to 

10,000 ppm N03. Depending on the animal's susceptibility, acute nitrate toxicity 

symptoms and death can occur at l'\03 concentrations of I 0,000 ppm or above. 

An animal's susceptibility to nitrate toxicity can be altered based the animal's 

feeding behavior, previous adaptation and the type and form of its diet. Hungry animals 

eat more and are more likely to ingest a toxic dose of nitrate from marginally toxic feed 

than well-fed animals (Kretschmer, 1958). Environmental factors also can affect hunger~ 

snow and ice cover can create hunger conditions that will increase intake when animals 

next receive feed. Many high nitrate feeds are highly palatable and digestible: this 

increases their consumption over that of less palatable, lower nitrate feeds 

Another factor which alter an animal's susceptibility to nitrate is adaptation. 

Adaptation can occur on two levels, one is the adaptation of the rumina! microorganisms 

to subtoxic levels of nitrate and nitrite. This occurs due to the inducible nature of the 

nitrate/nitrite reductase enzyme system; once adapted, microbes detoxify a greater amount 
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of nitrite than if they were not adapted. This allo\vs the animal to tolerate a higher level of 

nitrate. 

A second level of adaptation can occur in the animal's physiological response to 

long term subtoxic nitrate concentrations. These physiological adaptions include increased 

hemoglobin and blood volumes (Jainudeen e/ u/, 196.:!) The increased hemoglobin 

concentration helps to compensate for hemoglobin lost via methemoglobin formation and 

helps to maintain the animal's oxygen supply. The increased blood volume also helps to 

compensate for the vasodilation and the resulting low blood pressure caused by the 

presence of nitrite in the bloodstream. 

Diet can affect susceptibility in several ways. High energy feeds may stimulate the 

increased growth of rumen microorganism which lowers the rumen pH into a range closer 

to the optimum pH of nitrite reductase and a\vay from the optimum of nitrate reductase. 

This tnay increase the rate of reduction of both nitrate and nitrite in the rumen to non-toxic 

nitrogenous compounds (Burrows el a/., 1987) This allows the animal to consume a 

higher level of nitrate in the diet without experiencing ill etfects. Conversely, research 

conducted by Smith el a/. ( 1992) indicated that energy supplementation, in levels tested, 

had no effect on methemoglobin concentration. However, they demonstrate that a dietary 

protein supplement, two to four pounds of 16°;~ CP daily, reduced maximum 

methemoglobin levels and increased the rate of reconversion back to normal hemoglobin 

(Smith eta/., I 992). 

The form in which the nitrate is consume also is important. Nitrate in water is 

available immediately in the rumen and therefore is more toxic than nitrate released 

gradually from plant materials. Dry hays release their nitrate more quickly in the rumen 

(80% in 20 minutes) than lush, green forages (30°/o in 20 minutes) (Geurink eta/., 1979). 

Finally, diets that produce elevated amounts of ammonia, such as feeds high in 

protein or nonprotein nitrogen, may inhibit the reduction of nitrate through negative 
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feedback mechanisms. This inhibition is the result of ammonia being one of the end 

products of nitrite reduction in certain bacteria. 
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CON VENTI 0 N :\ L 1\ IAN:\ G E 1\ IE NT STRATEGIES 

Feeds that are high in energy may speed nitrate and nitrite reduction by stimulating 

microbial growth and lowering rumen pH This method of feeding a supplementary high 

energy feed has the additional benefit of diluting the nitrate 

Adaptation exploits the elevated levels of nitrate and nitrite reductase produced by 

rumen microbes due to the presence of elevated but non-toxic levels of nitrate in the diet. 

For this, nitrate is fed at an increasing level in the diet for several days before the animals 

are released on to the potentially toxic feed source 

A third method is to blend in a low nitrate feed vv·ith the high nitrate feed source so 

that the total dietary nitrate concentration is reduced to a manageable level. 

A newer management strategy include the incorporation of tungsten into the diets 

of cattle on high nitrate feeds. Korzeniowski et a/. ( 1980: 198 I) showed that tungsten 

was incorporated in place of molybdenum into the nitrate reductase enzyme forming an 

inactive analog. Consequently, tungsten inhibits nitrite formation in the rumen. While this 

experimental method inhibited nitrite formation, tungsten has several adverse affects. 

Feeding tungsten inhibits sulfite and xanthine oxidase and decreases cellulose digestion 

and copper metabolism (Korzeniowski el a/., 1980). Other problems include 

accumulation of tungsten in the bones, organs, and other tissues of the animal's body as 

well as the excretion of tungsten into the milk of treated animals. Fertilizer produced from 

the manure of treated animals also might have an adverse affect on soil and root microbes 

and higher plants. 

The major problem associated with these conventional methods is that the nitrate 

content of the animal's diet must be assessed beforehand. This requires that the nitrate 

content of various components of the animal's diet (feed, forage and water) be tested. In 

addition, samples to be tested must represent the variability in nitrate concentrations found 
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in the feed. For exa1nple, in order to accurately sample hay bales. individual core samples 

must be tested from between 20 and 40°/o of the total number of bales. Sa1npling of green, 

standing forages and hays has to be extensive due to the uneven accumulation of nitrate 

across a given field creating what are known as "hot spots". Ani1nals fed hay baled from 

one of these spots may experience nitrate toxicity while other animals fed on bales from 

other areas of the same field may be perfectly safe. In addition. animals grazing these "hot 

spots" as green forage are in danger. 

A final strategy for combating nitrate toxicity is a direct-fed microbial product. In 

order for this product to be effective, the microbe used would have to survive and 

establish in the gastrointestinal tract in such numbers so as to reduce the concentration of 

nitrite present. Additional goals of such a product would be long tenn survival and 

establishment with long term protection based on constitutive or low threshold stimulation 

ofthe nitrate and nitrite reductase enzymes. Such a product, once established, might 

protect an animal indefinitely and reduce that animaf•s susceptibility to nitrate toxicity for 

the life to the animal. 
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DIRECT-FED i\IICROBIALS 

The rumen is a complex ecosystem \\·ith a diverse community of microbes. The 

rumina! bacteria are adapted to grow and reproduce at a pH between 5.5 and 7.0 in the 

absence of oxygen at temperatures of between 3 7 to -l0°C The rumina! bacteria gro\v in 

a constantly changing environment of fermentation products and substrate from feed 

ingesta. The steady supply of nutrients from feed ingesta and continuous removal of 

fermentation products maintains a relatively· constant condition for dense populations of 

bacteria to develop (Hungate, 1966) 

:tv1icrobes play an essential role in the nutrition of rummants The bacteria in the 

rumen produce energy for their life processes largely by fermenting organic compounds 

found in feedstuffs ingested by the host or produced tt·om the host's cells. The process of 

fermentation yields organic acids which are excreted by the bacteria and absorbed into the 

bloodstream of the host where they are utilized as the primary energy source for the 

ruminant. In addition, bacteria are a significant source of protein for the host. 

Into this complex and imponant ecosystem, a direct-fed microbial product must 

successfully compete and adequately perform its job Direct-fed microbial products can be 

defined as live bacterial or yeast preparations that are administered orally or added to 

feeds or premixes. The theory behind direct-fed products is that the selected cultures 

might augment normal rumina! microbiotic function making the system utilize available 

nutrients more efficiently, or make the host animal more resistant to stress-induced 

diseases or even help the microbiota detoxify noxious compounds detrimental to the host. 

These tasks can be performed by the direct-fed organism in the lumen of the 

gastrointestinal tract or by their establishment on the epithelial surfaces of the tract or in 

the mucosal biofilm associated with that tract. 
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Although direct-fed products have been used for years, their exact modes of action 

are not known. ~1 ost products are assumed to work b\ com pet it ive exclusion, antibiotic 

or bacteriocin production and immuno-stimulation. 

Regardless of mode of action for a certain product, products ultimately succeed or 

fail based on the allogenic and autogenic factors present in the environment and in the 

strains selected as direct-fed microbial products. In brief allogenic t~lctors are those 

influences on the microbiota coming from the host, the hos(s ingesta and the environment 

(Savage, 1989). Autogenic factors, on the other hand, are intluences of the resident and 

introduced microbes on themselves and on other microorganisms (Savage, 1989). 

Competitive exclusion, also known as competitive amagonism or colonization 

resistance, is a natural defense system found in the host animal's gastrointestinal tract 

formed by the indigenous microbiota The microbiotic barrier created makes target 

epithelial cells unavailable for pathogen colonization or creates an environment detrimental 

to pathogens or other novel microbes. 

Target cells are rendered unavailable to pathogens or less et11cient indigenous 

bacteria simply by a direct-fed organism being attached to the particular site preferred by 

the other organisms. Allogenic factors affecting this process include the types and number 

of binding sites presented by the host, the rate of cell sloughing of the host, the passage 

rate of ingesta through the host, the type of nutrients available from the ingesta and the pH 

maintained in the gastrointestinal tract by the host on a particular diet. Autogenic factors 

influencing this process include the ability of the direct-fed organism to bind to the proper 

sites on the epithelia and the ability of the direct-fed organism to compete and survive in 

the gastrointestinal tract on the nutrients and under the conditions present. 

In addition, the doubling rate of direct-fed organisms is very important. Those 

direct-fed organisms with doubling rates slower than the rate at which epithelial cells are 

sloughed or slower than the passage rate of the ingesta in the gastrointestinal tract, must 

be continuously introduced into the gastrointestinal tract or their protection or efficiency 
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wiii be lost over time. On the other hand, those direct-fed organisms \Vith doubling times 

equal to or greater than the host's sloughing or passage rates, once established, can 

maintain their population level and, in the latter case, increase it. This type of doubling 

rate would help maintain or increase the level of protection or efficiency over time 

assuming all other conditions remained constant. 

The second major factor to consider in competitive exclusion, that of creating an 

environment detrimental to pathogens or other less desirable microbes, generally is 

controlled by autogenic factors. A pathogen or less desirable microbial population may be 

reduced or eliminated from the gastrointestinal tract by the active metabolism of selected 

direct-fed cultures. This metabolism could produce byproducts that inhibit the growth and 

survival of certain other microbes. Such byproducts include hydrogen peroxide, certain 

organic acids or bases, ineflicient or harmful analogs of compounds required for the 

gro\\-1h and survival of pathogens or less desirable microbes and compounds that alter the 

local redox potential These inhibitory efTects may be local, associated only with the 

binding site regions on the epithelia or in the biofilm, or systemic, inhibiting growth and 

survival of less desirable microbes throughout an entire region of the gastrointestinal tract. 

Another theory, that of antibiotic or bacteriocin production by the direct-fed 

organism is based mostly on autogenic factors. Antibiotics and bacteriocins are 

compounds produced by bacteria solely for the purpose of inhibiting the growth or 

survival of other strains of bacteria These compounds may be strain specific or broad 

ranged and generally work by inhibiting transcription, translation, and protein synthesis or 

by disrupting membrane permeability, nutrient transport or energy production in 

susceptible strains. (Mikolajcik and Hamdan, 1975; Savage, 1987; Gaya and Verhoef, 

1988; Itoh and Freter, J 989). A direct-fed culture operating under this theory would need 

to survive and produce functional antimicrobial compounds under rumina! conditions. 

These antimicrobial compounds then would need to have contact with their target 

microorganisms. This contact might require that the direct-fed and target microorganisms 
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be in close proximity depending on the sensitivity of the target microbe, the ability ofthe 

antimicrobial to defuse through the surrounding substrares and the toxicity of the 

antimicrobial. 

The final theory, that of immune-stimulation by direct-fed microorganisms. is the 

most recently advanced. Simply srared, the direcr-fed cuhure stimulates the host animal's 

immune system to produce more antibodies rhat recognize other microorganisms such as 

pathogens or cancerous cells of the host (Perdigon el of., 1987). This stimulated immune 

response has been demonstrated to be initiated by increased production of gamma 

interferon, Y -IFN, in some host species due to certain direct-fed cultures (De Simone et 

a/., 1986). The allogenic and autogenic factors regularing immune stimulation have yet to 

be determined specifically. Germ-free animals have a much reduced immune system when 

compared to conventional animals: the introduction of any new strain of bacteria into a 

host may elicit an immune stimulation response (Abrams and Bishop, 1965). 
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DIRECT-FED :\liCROBIAL CU L TrRES 

Direct-fed products have been marketed for virtually all domesticated animals. 

These animals include beef and dairy cattle, sheep, s\vine, horses, goats, poult I)', dogs and 

cats. In addition, direct-fed products have been developed for humans 

Many livestock direct-fed microbial products have been marketed as a means to 

increase the survival rate or decrease the mortality in young animals experiencing 

nutritional, environmental or emotional stre~s or dirl'ctly following amibiotic treatment. 

Other products have been marketed as a means to decrease the prevalences of certain 

disease states or gastrointestinal detlciencies such as scours, mastitis, metritis, lactose 

maldigestion and hypercholesterolemia. Finally, some direct-fed products have been 

marketed on the basis of increased live weight gains, increased daily gains and advantages 

in feed efficiency and utilization. 

Regardless of the purpose or the host species involved, the number of microbial 

cultures used in direct-fed products is relatively small. l\.·1ost are from the genus 

Lactohaci//us and include such species as r. acidophi/11.\·, / .. brevis, L. hulgaricus, L. 

casei, L. ce//ohiosus, L. curPat11s, / .. de/hr11ekii, L ferment/1111, L facti.\', L. plantarum and 

L. reuterii. The second most common genus is Streptococcus and includes such species as 

S. crentoris, S. diacetylactis, S. faecium, S intermedius, S. /act is and S. thremophi/us. 

Closely following Streptococcus are the HUidohucte/'liiJ/1 species H. aJo/escentis, B. 

anima/is, B. hijidun1, B. 111_{antis, H. long11m and R. thenuophih1111. Next comes members 

of the genus Bacteroides with the strains H. amylophi/us, H. capil/osus, B. runtinocola 

and B. suis. Other bacterial strains include H. coaRulans, H. /incheniformis, B. puntilus, 

B. lentus and B. suhti/is from the genus Hacillus. The genus PeJiococcus also is 

represented in the direct-fed market by such strains asP. acidi/acticii, P. cerevisiae and P. 

pentosaceus. Other bacterial strains include l~ellcol/ostoc mesenteroiJes and the 
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Propionibacteri11n1 strains P. ji·eudf.!llrt!ichii, fJ. sht.!r!llullii and P. acidipropionici 

(Hutcheson, 1991 ). 

Several strains of yeast and fungi also ha\·e been marketed as direct-fed microbial 

products. These cultures include A.,pergillus tuger .. -1. oty:ue. and .\accharmnyces 

cerevisiae (Hutcheson, 1991) 

Efficacy, panicularly in the animal direct-fed area, has long been of concern for 

researchers and manufacturers of direct-fed products. In many cases, the data supporting 

the products in question are limited, tla\ved or non-existent In most cases, particularly 

with the data gathered by manufacturers, the research consists of information collected 

from in vitro trials and/or poorly controlled feeding trials \\·ith limited numbers of animals 

with large variations in animal's size, sex, diet and environment. This is not to suggest that 

direct-fed products do not or cannot work, but to point out that more careful and 

extensive research is required to determine the true value of many direct-fed microbial 

products being marketed today. 

One problem that can account for variable ef1icacy is the manufacturing and 

packaging of the products. Cultures that prove ef11cacious i11 l'ltru often do not survive 

the delivery system. Survival problem can result from the culture being unable to 

withstand one or more of the following processes; lyophilization, dehydration and high 

temperatures during pelleting process (as seen with top dressing and pellet type products)~ 

rehydration in the gastrointestinal tract; exposure to oxygen during processing; inability to 

escape from the final form into the gastrointestinal tract (as seen with both pellets and 

gels); survival with premixes and minerals that are present in the tina I form of the product. 

In a study conducted on fifteen lactobacilli feed supplements from eight different 

manufacturers in 1981, the numbers of lactobacilli contained in the products varied widely. 

All fifteen products were plated from their final forms onto lactobacillus selection agar 

(LBS) and LBS plus 0.2 percent oxgall (LBSO). While all products claimed to have 

counts from between 1 x 10 7 to I xI o9 CFU/g. only t\vo had counts greater than 1 x 10 7 
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CFU/g. Two additional products had counts greater than I xI o5 CFU/g and the rest had 

counts of 6. 9x I o4 CFU/g or less; three of the products had counts less than I 00 CFU/g on 

LBS agar (Gilliland, 1981 ). 

Other factors that affect efficacy of a product and the dosage level required include 

the animal species tested, the animal's stage of maturity, plane of production, level of 

stress, and the environment. Because of this wide spectrum of variables, it is surprising 

that the range of responses to direct-fed microbial products is broad. \Vhat is noteworthy 

from the literature is not so much the lack of response, but the plethora of positive 

responses spanning a huge range of experimental protocols, animal species, geography and 

products tested (Fox, 1988 ). 

In a brief review of literature on cattle studies, positive results have been reported 

with calves under production conditions. In one study, more lactobacilli and fewer 

coli forms were found in the small intestines of calves fed pasteurized whole milk 

containing L. acidophilus than in non-treated control calves (Gilliland, 1980). In another 

study, a 36. 9°/o reduction in calf scours was attributed to the use of a raclohacillus 

inoculant (Tournot, 1976 ). Under feedlot conditions, a 13 .2~·o increase on average daily 

gain, a 6.3°/o increase in feed efficiency and a 27. 7°/o decrease in morbidity was observed in 

cattle given Probios (Pioneer Hi-Bred), a lactic acid bacteria (LAB) combination, when 

compared to untreated cattle (Wren, 1987a,b) Two important factors that affect the 

performance of direct-fed products are dosage level and establishment 

Dosage level, in many cases, is fully as important as the species and strain ofthe 

direct-fed culture used. Factors that affect the minimum effective dose include product 

purity, batch to batch consistency and product shelf-life In products developed for cattle 

and pigs to improve average daily gain and feed etliciency, direct-fed microbial 

manufacturers recommend a minimum dose in the range of 1 x 1 o8 to 1 x 1 01 0 

CFU/head/day. Those companies that offer guaranteed microbial counts employ dose 

ranges from 1. Sx 1 o8 to 1 X 10 I 0 CFU/dose. 
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Site of establishment of a direct-fed culture also is very important to its 

performance in vivo. In general, a culture may establish in one or more of three areas of 

the gastrointestinal tract, the epithelial surface. the biofilm layer or the lumen of the 

gastrointestinal tract. In addition, the culture may establish one or more of the regions of 

the gastrointestinal tract. These regions include the rumen of ruminants or the intestines. 

Cultures that do not establish in the biotilm layer or on the epithelial surface must 

reproduce quickly (faster than the rate of passage of the gastrointestinal tract) or be dosed 

on a continual basis. If not, the effects of these cultures will be lost over time as they are 

flushed through the digestive tract and eventually voided by the animal. 

Most successful direct-fed cultures become established in the digestive tract. Both 

lactobacilli and streptococci are known to attach to the epithelial surface of the 

gastrointestinal tract (Fuller eta/., 1978 ). Factors affecting attachment to the epithelia 

include the sloughing rate of epithelial cells and, in some cases, host specificity of the 

direct-fed culture (Wesney and Tannock, 1979; Barrow eta/., 1980). 

Other bacteria, such as members of the genus Haci//us, may establish and have 

their effect in the biofilm layer that covers the surface of gastrointestinal epithelia. 

Finally, the region of the gastrointestinal tract where a direct-fed culture is to 

establish and have an effect can alter the efficacy of the product. Those cultures intended 

to establish and modify the functions of the lower digestive tract (small and large 

intestines, cecum) must be able to survive the high acidity of the gastric stomach and be 

bile tolerant. Cultures that are deficient in one or both of these characteristics may not 

survive to have an effect or will survive in such low numbers as to be ineffective. 

The method of tracking a culture can affect its presumed efficacy. Most direct-fed 

cultures today are monitored using differential-selective media and confirmed through 

carbohydrate fermentations or other biochemical tests. 
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TRACKING INTRODUCED CtrL TURES IN COl\IPLEX ENVIRONl\fENTS 

A major ditrlculty associated \Vith efficacy studies of direct-fed cultures is the 

problem of accurate and consistent recovery and enumeration of the direct-fed organism 

in vivo. The indigenous population present in the normal gastrointestinal tract may exceed 

100 billion CFU/g (1x1oll CFU/g) (\Volin, 1981; Savage, 1986). Techniques used to 

detect a single species in this milieu and provide an accurate and consistent count have 

included selective-differential medias, plasmid profiling and DNA "fingerprinting". 

The most common but least accurate method of identification of direct-fed 

microbial products is the use of selective-differential media (Tannock, 1988). In brief, 

differential media does not inhibit the growth of the vast majority of the microbes present 

but does allow an observer to ident it)' a specific strain or genus of bacteria within that 

population. This usually is carried out through strain or genus specific chemical reactions 

with the media and is commonly detected as a color change. On the other hand, selective 

medias attempt to inhibit the gro\vth of all microorganisms present except the species or 

genus of interest. This process usually is performed through the use of antibiotics, unique 

nutrient sources or other inhibitory compounds. Selected colonies on this type of media 

may or may not be distinguished based on colony morphology. A ditTerential-selective 

media is a combination of the two types of media in which the genus or species to be 

enumerated can be differentiated from the background microbes that have survived the 

selective properties of the media. 

Once colonies have been isolated on differential-selective media, the next step is to 

perform a series of biochemical reaction tests; plasmid profiling or DNA "fingerprinting" 

serves as the final confirmation tool. 

While differential-selective media can be effective as an isolation tool, their use as 

a strain specific identification tool is limited, particularly when dealing with complex 
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environments. In most cases, especially for those strains currently being used as direct-fed 

cultures, current differential-selective medias are not strain specific. Therefore, in order to 

distinguish between the introduced strain and native strains that may be present in the 

indigenous population, additional confirmation steps must be performed. 

Once suspected colonies are isolated, the most common confirmatory tests 

performed are biochemical tests (Tannock, 1988). These biochemical tests, which 

normally consist of specific carbohydrate fermentations and other strain specific reactions, 

are intended to identify specific strains of bacteria based on colorimetric reactions. One 

problem associated with biochemical testing is that even though two suspect colonies may 

share identical phenotypic characteristics and test reactions this doesn't necessarily indicate 

that they are genotypically identical Closely or not so closely related indigenous strains 

may share identical phenotypes and reaction profiles \·vith introduced strains. More 

accurate identification requires genetic analysis to distinguish between closely related 

strains. 

Plasmid profiling is simply the comparison of isolated plasmid DNA patterns of 

suspected colonies with the patterns generated from pure isolates of the introduced strain. 

Plasmid profiling has been used to distinguish strains of lactobacilli in the digestive tract of 

piglets (Tannock el a/., 1990), to monitor populations of specific strains of Lactobacillus 

plant arum in silage fermentations (Hill and Hill, 1986) and to monitor Bacillus pumilus 

inoculant strains in hay (Hendrick el al, 1991 ). 

While plasmid profiling is a more specific tool to confirm the identity of a strain, 

plasmids often are transient genetic elements in a bacterial cell. For example, plasmids 

may be subject to conjugal transfer within or bet\veen species in an environment. 

Specifically, conjugal transfer of plasmids has been noted between strains of Lactobacillus 

reuteri and between lactobacilli and /·.'lllf!rococcus laecalis (Tannock, 1987) and a number 

of Gram-positive bacteria (Shrago eta/., 1986 ). Other reported cases include transfer 

between streptococci and gastrointestinal strains of lactobacilli and betweeen strains of 
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Lactobacillus plan/orum ( Vescova ct ul., 198J, Shrago el a/ .. 1986) In addition, there 

may be a natural loss of plasmids \\·ithin certain species of bacteria over time. This is due 

to incongruent replication rates between those plasmids and their host cells. A final 

problem associated with plasmid profiling is that the introduced strains may not have any 

plasmids or may lack a unique plasmid profiles Thus plasmid profiling. while useful for 

identification of some strains, is not the most certain method of strain identification. 

The most positive method of strain identification involves the profiling of the 

bacterial genome itself. This is accomplished by digesting the bacterial chromosorne with 

a combination of restriction enzymes that produces a unique chromosomal profile. Once 

this is performed on suspected isolated colonies, the pattern generated can be compared to 

a parent profile to determine its identity This method has been used successfully in the 

recent past to identify specific strains of bacteria including l~schenchia coli, Shigella ssp. 

and PropionibacreriumfreuJenreichit using pulsed-tield gel electrophoresis (Ogram and 

Sayler, 1988; Venkatesan el a/. 1988~ Rehberger, 1993 ). 

Care must be taken to ensure that the combination of restriction enzymes used 

creates a truely unique chromosomal profile Other problems include ditliculties in 

isolating and extracting intact DNA for the chromosomal profiling proceedure. Other 

methods of strain identification used in the past include phage susceptibility, antibiotic 

resistance, cell wall fatty acid profiles and cell surface proteins The disadvantage of these 

techniques is that they are slow and do not always discriminate between strains within a 

species. 
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PROPIONIBACTERIA 

Propionibacteria are characterized as Gram-positive, catalase-positive, nonspore

forming, nonmotile, microaerophilic, pleomorphic, rod-shaped bacteria (Hettinga and 

Reinbold, 1971 ). 

Industrially, the propionibacteria are an important group of organisms used 

primarily by the dairy industry as starter cultures for S\viss-type cheeses (Langsrud and 

Reinbold, 1973 ). Other industrial applications of propionibacteria include their use as 

direct-fed microbial products for humans ( Kornyeva, 1981, Nabukhotnyi eta/., 1983 ), as 

inoculants for grain and silage (\Voolford, 197 5; Flores-Galarza eta/., 198 5 ), and as 

producers of vitamin B 12 and propionic acid (Perlman, 1978; Playne, 1985). 

One of the distinguishing characteristics of propionibacteria listed in Bergey's 

Manual of Determinative Bacteriology is the ability of some strains to reduce nitrate and 

nitrite (Buchanan and Gibbons, 1974) In /). acf(/iprop!ollicl, nitrate reductase synthesis is 

constitutive that also is nitrate stimulated (Van Gent-Ruijters eta/., 1976; Kaspar, 1982). 

The reduction of nitrate is an energetically favorable process in propionibacteria 

(Van Gent-Ruijters el a/. 1975; Kaspar, 1982: Allison and l\1acFarlane, 1989). In studies 

with P. acnes, cell yields were higher ( 12-22o/o) in chemostats with nitrate added (Allison 

and MacFarlane, 1989) indicating that the metabolism of nitrate was energetically 

favorable. In work with P. achhpropionici, growth rates were increased 20-SOo/o by the 

presence of 1 OmM nitrate (Kaspar, 1982) In other work with fJ. acidipropionici (Van 

Gent-Ruijters eta!., 1975), molar growth yields were increased in the presence of nitrate; 

this was attributed to an increased production of A TP through increased citric acid cycle 

activity and by oxidative phosphorylation coupled to nitrate reduction. 

In contrast, the reduction of nitrite is energetically unfavorable in such species as 

Clostridiun1 lerlillfn (Hasan and Hall, 1977) and 1~.\·cherichiu coli (Cole, 1978). In some 
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species of propionibacteria. as I itt le as lmTVl of nit ritt> inhibited gro\\·t h ~ these include P. 

acidipropionici. P . .fi·eudenref(.:h/1, F. JL!IISI!IIII, F. shl.!n/JUJJ/1 and fJ. thoL!Jlli (Kaspar, 

1982). In the case of propionibacteria, the nitrite ion is unable to replace nitrate as the 

electron acceptor in phosphorylation-coupled electron transfer The nitrite ion also shows, 

to varying degress, a toxic effect on propionibacteria (Kaspar, 1982) This evidence 

suggests that nitrite reductase is a det oxitication mechanism and not an energy producing 

system in propionibacteria. The production of toxic nitrite f)·om the energetically 

favorable nitrate reduction may account for the coupling of nitrate reductase to nitrite 

reductases in some species of propionibacteria 

Future prospects for the 111 l'il'o reduction of nitrite in beef cattle appears 

encouraging. Although Kaspar ( 1982) indicated that some propionibacteria strains were 

inhibited by nitrite, the strains he used w·ere not selected for their ability to denitrify and 

were not nitrate stimulated before exposure to nitrite. Adeqwlte strain selection is a key 

component in the successful reduction of nitrite in ''"'o Therefore, our first consideration 

\Vas to determine the best strains of propionibacteria to use based on Ill Pil'o studies of 

their individual abilities to reduce nitrite. Once the strains were screened based on 

quantitative nitrite reduction studies, the next factor we considered was the ability of the 

selected strains to survive and reduce nitrite in the rumen. Initial studies then were 

conducted using rumina! fluid in ''itro as a screening process Those strains that survived 

and reduced nitrite in rumen fluid in l'ttro \·vere used for"' l'il'o etftcacy trials. Factors we 

considered from in vivo trials include survival in the functioning rumen, level of inoculum, 

establishment of the strain in the rumen, site of establishment, population level of 

established culture and length of establishment The ability to track our culture was 

extremely important in gathering information on in l'il'rJ populations. Fortunately, our lab 

had developed a reliable differential-selective media capable of enumerating 

propionibacteria in complex environments. 
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The final and conclusive test was toxicity trials \Vith test animals. These trials 

determined if the established population of propionibacteria were capable of reducing 

nitrite exposure to the animals and could protect them from "nitrate11 toxicity. These and 

many other factors were considered in our studies. 
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ABSTRACT 

Strains of Propionibacreriun1 were screened for denitrification and ruminal 

establishment to examine their possible use as a direct-fed microbial for nitrate toxicity. 

Seventeen strains were found to be capable of denitrification and were tested for their 

ability to denitrify high levels of nitrate (20,000 ppm). Of those seventeen strains, only 

two strains, PS and P42, reduced these higher levels of nitrate. When media was 

inoculated with strain P5 at 105 CFU/ml, 50% of the nitrate was reduced in 24 h. 

Nitrite accumulation started at 12 h tnd continued for the next 60 h, after which nitrite 

was reduced. Strain P42 reduced nitrate and nitrite at slower rates than PS. The 

enzymes for nitrate and nitrite reduction in strain PS were produced under both aerobic 

and anaerobic conditions in the absence of nitrate. However, nitrate reductase activity 

was stimulated by the presence of nitrate. Stimulated cells were able to reduce 80% of 

the available nitrate in 6 h; non-stimulated cells required 16 h to reduce an equivalent 

amount of nitrate. 

Rumina] establishment trials indicated animals inoculated daily with P5 at 105 

CFU/ml of rumen volume had counts greater than 104 CFU/ml by day 30. In a second 

trial, animals inoculated daily with PS at 107 CFU/ml of rumen volume had counts 

greater than 105 CFU/ml by day 30. At 115 days post-inoculation, PS populations 

were maintained at their established levels. Propionibacteria populations were 

monitored using a selective-differerttial medium. Typical colonies were confirmed as -- . 
PS based on plasmid DNA analysis. 

(Key Words: Propionibacreriun1, Beef Cattle, Denitrification) 
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INTRODUCTION 

.. Nitrate" toxicity, often seen in ruminants, is caused by the reduction of 

excessive levels of nitrate to nitrite by the normal rumen microbiota during anaerobic 

respiration. Nitrite accumulates in the rumen because the normal rumen microbiota 

reduce or utilize nitrite very slowly. The nitrite passes readily through the rumen wall 

into the bloodstream where it binds with hemoglobin to form methemoglobin. 

Methemoglobin is unable to carry oxygen and, in acute cases, may cause death in the 

host animal due to anoxia. Various method have been explored to reduce the impact of 

"nitrate" toxicity on ruminants. These methods include the incorporation of nitrate into 

the diet (Majak er a/., 1982) to adapt the rumen microbiota and the incorporation of a 

nitrate reductase inhibiting compound, tungsten, (Korzeniowski era/., 1980, 1981) into 

the diets of ruminants. Other methods include feed management strategies that blend 

high nitrate feeds with low nitrate feed sources as well as energy (Burrows er a/., 1987) 

and protein (Smith er a/., 1992) supplementation. These methods require continual 

incorporation during the course of high nitrate exposure to ensure adequate protection 

from 11 nitrate 11 toxicity. Another unexplored possibility is to develop a direct-fed 

microbial product capable of reducing nitrite and thus preventing the formation of 

methemoglobin. 

Propionibacrerium are an industrially important group of bacteria used primarily 

as starter cultures for Swiss-type cheeses (Langsrud and Reinbold, 1973), grain and 

silage inoculants (Flores-Golarza er of. 1985 ~ Tomes, 1989; Dawson er al., 1991) and 

the production of vitamin B 12 and propionic acid (Perlman, 1978; Playne, 1985). 

Propionibacteria are a normal constituent of the rumen accounting for 1.4% of the total 

rumen population (lxl09-1x1010 CFU/ml) (Oshio er a/., 1987). Some strains of 

propionibacteria also are known to reduce nitrite as well as nitrate to other non-toxic 

compounds (Buchanan and Gibbons, 1974 ). While the use of propionibacteria as 

direct-fed microbial cultures for livestock production has been limited, their ability to 

function in the rumen as well as to reduce nitrite makes them a potential candidate for 

use as a direct-fed microbial product for "nitrate" toxicity. 

The purpose of this study was to identify those propionibacteria strains capable 

of nitrite reduction, to determine their survival and denitrification in an in vitro rumina! 

fluid system and to determine the survival and establishment in vivo of a selected 

propionibacteria strain in the rumen. 
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MATERIALS AND l\1ETHODS 

Bacterial strains 

Propionibacteriunt strains were obtained from the Oklahoma State University 

Department of Animal Science culture collection. Strains were grown at 32oc in 

sodium lactate broth (NLB) or on sodium lactate agar (NLA) (Hofherr and Glatz, 

1983). The culture collection and subsequent rumina! isolates were Jnaintained in NLB 

supplemented with 10% glycerol at -750C. 

Experimental designs and pa·ocedures 

Qualitative strain selection 

Propionibacteriunt strains were grown in 10 ml tubes of NLB supplemented 

with 1% KN03 for 36 hours at 32oc. After 36 hours, qualitative nitrate and nitrite 

reduction was determined in the 10 ml tubes using the colormetric assay developed by 

Schneider and Yeary ( 1973). 

Quantitative strain selection 

Propionibacteriunt strains capable of denitrification were grown 1n 100 ml of 

NLB supplemented with KN03 (20,000 ppm). Nitrate concentrations were monitored 

over time using a nitrate ion specific electrode (Hach Co1npany, Ames, Iowa). Nitrite 

concentrations were monitored over time using a colormetric assay (Schneider and 

Yeary, 1973). 

In vitro rumina! fluid survival 

Propionibacteriunl strains capable of reducing high levels of nitrate (20,000 

ppm) were inoculated into 200 ml of freshly collected rumina! fluid supplemented with 

20,000 ppm KN03. Strains were inoculated at lxl07 CFU/ml of rumen fluid in 

duplicate flasks with two additional flasks maintained as uninoculated controls. The 

rumina] fluid was incubated at 39oc with agitation. Samples were taken at 0, 12, 24, 

36 and 48 hours and analyzed for propionibacteria populations. Serial dilutions of each 

sample were plated on propionibacteria selective agar (PSA). Plates were incubated for 

seven days at 32°C anaerobically to enumerate propionibacteria populations. 

Inducibility of denitrification 

To determine if denitrification could be induced in the selected strain an 

additional in vitro experiment was conducted. The selected strain was grown in either 

NLB or NLB supplemented with 0. 1% KN03 at 32°C. These Propionibacterium 

treatments were then used as the inoculum at I x 107 CFU/ml for duplicate 500 ml flasks 

of NLB supplemented with 500 ppm KN03 and incubated at 39°C to resemble 

concentrations and conditions found in the rumen. Samples were collected every hour 

41 



for the first four hours with two additional samples at 6.5 and 19.5 h for the 

determination of nitrate concentration using an ion specific electrode. 

In vivo establishn1enr srudies 

Two in vivo establishment trials were conducted using a freeze-dried preparation 

of P5 at two different inoculation levels (105 CFU/ml of rumen fluid and 107 CFU/ml 

of rumen fluid). In both trials, 10 crossbred heifers fitted with rumina] cannulas were 

fed a low nitrate 50:50 concentrate: roughage diet balanced for protein, 1ninerals and 

vitamins. Animals were separated spatially to avoid cross-contamination; two animals 

were maintained as uninoculated controls. Experimental animals received a daily dose 

of propionibacteria culture as a top dressing on their feed. Ruminal san1ples (250 ml) 

were collected 6 h after daily inoculation via rumen cannulas on days 0, 1, 2, 3, 4, 5, 

7, 10, 14, 18, 21, 24, 29, and 32. These samples were serially diluted and plated (I0-

3, 1 o-4, I o-5) on PSA. Plates were incubated for 7 days under anaerobic conditions at 

32°C. Following incubation, suspected colonies were enumerated and isolated. 

Plasmid DNA from suspected colonies was isolated and purified by a rapid mini-scale 

procedure (Rehberger and Glatz, 1990) and analyzed by agarose gel (0.7%) 

electrophoresis (Maniatis er a/., 1982). Plasmid profiles generated from isolated 

colonies were compared to the profile of the inoculated strain (Rehberger and Glatz, 

1990) to confirm the strain identification. 
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RESULTS 

Strain selection 

Seventeen of 154 Propionibacreriun1 cultures reduced nitrate and nitrite. The 

denitrifying strains were P. acidipropionici strains P3, P5, P5-3, P5-23, Pll, P42, 

P58, P90, Pl05, Pl08, Pill; P. freudenreichii strains P22, P75 P80, Pl04, Pl20; P. 
jensenii strains P9. Of those 17, two cultures, P. acidipropionici strains P5 and P42, 

were capable of reducing high levels of nitrate (20,000 ppm). In virro studies indicated 

that P5 was able to reduce nitrate from 20,000 to 2,000 ppm in 84 h; P42 took 108 h. 

NLB supplemented with 20,000 ppm nitrate inoculated with P5 at lx 105 CFU/ml 

showed a 50% reduction in nitrate concentration at 24 h. Nitrite accumulation began at 

12 h, continued to 60 h, but had decreased by 90% by 84 h (figure 1 ). In virro ruminal 

fluid survival of P5, inoculated at 1xJ07 CFU/m1, was 8.7xl06 CFU/m1 at 1 h (87%), 

5.6xl06 CFU/m1 at 24 h (56%) and 8.0x JQ5 CFU/ml at 36 h (1 %). Therefore P5 was 

chosen for in vivo establishment studies. 

Inducibility of denitrification 

The P5 culture grown in the presence of 0.1% KN03 reduced 80% of the nitrate 

in 6 h. In contrast, a non-induced culture required 16 h to reduce an equivalent amount 

of nitrate (figure 2). However, nitrate concentrations before 4 h or at 20 h were not 

different. 

In vivo establishn1ent studies 

Trial] 

Five of eight heifers fed P5 at 1 x 1 o5 CFU/ml rumen tluid/day had detectable 

counts of propionibacteria ( > 103 CFU/ml) by day 18. By day 30 of feeding, eight of 

eight heifers had counts greater than 1 o4 CFU/ml. Neither of the two control animal 

had detectable propionibacteria counts. Counts taken two and ten days after inoculation 

had ceased showed similarly high populations indicating that the organism had been 

retained. 

Trial 2 

Eight of eight heifers fed P5 at lx J07CFU/m1 rumen fluid/day had 

propionibacteria counts greater than 103 CFU/ml by day 10. Again, neither control 

animal showed a detectable propionibacteria count. Counts taken two and ten days 

after inoculation had ceased showed that populations remained constant. In trials 1 and 

2, plasmid profiles generated from all colonies recovered were identical to the profile 

of strain P5 (figure 3) which exhibits a single 6. 7 kb plasmid (pRGO 1). 

43 



20000 10000 
NITRITE 

18000 9000 

16000 800() 

14000 7000 

- 12000 6000 -. s 6 D. D. 

t ~ 10000 5000 ..5 
Cll 

lG ·j; .b z 8000 4000 z 

6000 3000 

4000 2000 
NITRATE 

2000 1000 

0 0 

0 12 24 36 48 60 72 84 

Time (h) 

Figure 1. In vitro denitrification ofP5 in NLB. 
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Figure 2. Induced vs. ~oq-induced in vitro denitrification of P5. 
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Figure 3. Plasmid DNA profiles of propionibacteria ruminal isolates: (1) 
Escherichia coli V517; (2) strain PS; (3) strain PS; (4) 641-1; (5) 610-1; (6) 610-2; (7) 
610-3; (8) 634-1; (9) 634-2; (10) 634-3. 
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DISCUSSION 

Of the 154 propionibacteria strains screened, 11% exhibited the capacity to 

denitrify. Of that 11%, the 11 strains of P. acidipropionici accounted for 65% of 

denitrifiers and 7% of total strains tested. The 5 P . .fi·eudenreichii strains accounted for 

29% of denitrifiers and 3% of total strains tested. Finally, the P. jensenii strain 

represented 6% of denitrifiers and l% of total strains tested. These results agree with 

those reported in Bergey's Manual of Determinative Bacteriology (8th ed.) as well as 

previous studies (Kaspar, 1982; Van Gent-Ruijters er a/., 1975). High rates of nitrate 

and nitrite reduction of PropionibacTerium acidipropionici have been reported by other 

researchers, in particular, Kaspar (1982) noted that strains of P. acidipropionici had 

higher nitrite reduction activities than other strains of propionibacteria species tested. 

The inducibility of denitrification in P. acidipropionici was reported previously. 

Kaspar ( 1982) observed that the incorporation of 1 mM nitrate into the growth medium 

of P. acidipropionici increased the denitrification activity by 40-fold compared to 

unadapted cultures. 

While the results of in virro experiments were encouraging, successful 

establishment of populations of P5 in the rUinen is 1nore difficult to explain. One of 

the factors that may have aided the survival and establishment of strain P5 in the rumen 

of beef cattle is constant presence of low levels of nitrate in the forage portion of the 

ruminant diet. All plant materials contain detectable amounts of nitrate (Selk, 1993). 

In P. acidipropionici nitrate reductase synthesis is both constitutive and nitrate 

stimulated (Van Gent-Ruijters er a/., 1976; Kaspar, 1982). In addition, the reduction 

of nitrate is an energetically favorable process in propionibacteria (Van Gent-Ruijters et 

al., 1975; Kaspar, 1982; Allison and MacFarlane, 1989). For P. acidipropionici, 

growth rates were increased by 20-50% by including 10 mM nitrate in the media 

(Kaspar, 1982). In other work with P. acidipropionici (Van Gent-Ruijters et al., 

1975), molar growth yields were increased by the presence of nitrate; this was 

attributed to an increased production of ATP through increased citric acid cycle activity 

and by oxidative phosphorylation coupled to nitrate reduction. 

The presence of nitrite reductase in P5 gives it an advantage for survival and 

establishment over other propionibacteria strains and the normal rumen microbiota that 

are unable to reduce nitrite and therefore are inhibited or killed by nitrite. 

Plasmid profiles to monitor specific populations in complex environments is 

used as a final confirmation tool in strain identification. Plasmid profiling has been 

used to distinguish strains of lactobacilli in the digestive tract of piglets (Tannock et al., 

47 



1990), to monitor populations of specific strains of Lacrobacillus planrarum in silage 

fermentations (Hill and Hill, 1986) and to monitor Bacillus pun1ilus inoculant strains in 

hay (Hendrick er al., 1991). While plasmid profiling is one positive step toward 

confirmation of strain identification, plasmids are subject to conjugal transfer within 

and between species in an environment as well as to spontaneous loss during cell 

division. This makes strain identification less than 100% positive even after its plasmid 

profile has been determined. To be more certain, a chromosomal profile unique to the 

strain to be monitored must be developed. This project currently is underway for 

OSU' s propionibacteria culture collection utilizing pulsed field gel electrophoresis 

(PFGE) (Rehberger, 1993). 

While the results of this initial research look promising for the development of a 

direct-fed microbial product for "nitrate" toxicity, further research is needed to answer 

additional questions about the population levels required to reduce a toxic level of 

nitrite in vivo and how closely the in vi1ro nitrite reduction results compare with 

requirements by animals produced under various conditions. 
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ABSTRACT 

Eight crossbred beef heifers fitted with ruminal cannulas were used to evaluate the 

effect of inoculation with ruminal propionibacteria on nitrate toxicity. Four heifers were 

dosed daily with Propionibacterium acidipropionici strain P5 (107 CFU/ml ofruminal fluid); 

the remaining four heifers served as uninoculated controls. Ruminal populations of P5 were 

monitored using differential-selective media and plasmid DNA profiling. Heifers were fed 

coarsely chopped native grass hay for 7 d prior to the nitrate challenge. In trial 1, heifers 

were challenged with pearl millet hay (21,766 ppm nitrate). Rumina) nitrate concentrations 

peaked at approximately 450 ppm, 2 h post-challenge for both groups and were not affected 

(P=. 68) by inoculation. Ruminal nitrite concentrations increased more rapidly and declined 

sooner in inoculated heifers than in control heifers. Compared to controls, inoculated heifers 

had 43% less rumina) nitrite. Blood nitrite concentrations in inoculated heifers peaked at 8.9 

ppm, 4 h post-nitrate challenge and decreased to 3.2 ppm at 5.5 h. In contrast, blood nitrite 

concentrations of controls continued to increase throughout the sampling period to 10.2 ppm 

at 5.5 post-feeding. In trial2, heifers were challenged with pearl millet hay containing 23,850 

ppm nitrate. Ruminal nitrate concentrations were not affected by P5 inoculation and peaked 

at 759 ppm at 2 h post-feeding; however, hay intake was 17% higher (P=.18) for inoculated 

heifers. Ruminal nitrite concentrations peaked at 1, 743 ppm for control heifers; ruminal 

nitrite was lower (P<.0001) at 6 and 8 h (552 ppm) for inoculated heifers. Blood nitrite 

concentrations were reduced by 38% (21.0 vs. 13.6 ppm) at 6 (P=.02) and 8 (P=.009) h in 

heifers inoculated with propionibacteria. Inoculation also reduced percent methemoglobin by 

35% (40.54 vs. 26.72%) at 8 (P=.04) and 12 (P=.06) h. Compared to controls, P5 

inoculation reduced ruminal nitrite concentration by 46%, blood nitrite by 3 8% and percent 

methemoglobin by 35%. This study illustrates that the effects of consumed nitrate were 

reduced when beef cattle were pre-inoculated with Propionibacterium acidipropionici strain 

PS. 
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Introduction 

"Nitrate" toxicity in ruminants is caused by the reduction of excessive levels of nitrate 

to nitrite by the normal rumen microbiota (Lewis, 1951 ). Nitrite is absorbed into the 

bloodstream where it binds with hemoglobin to form methemoglobin (Deeb and Sloan, 

1975). Methemoglobin is unable to carry oxygen and, in acute cases, the resulting anoxia 

may cause death (Wright and Davison, 1964). 

Propionibacterium, an industrially important group of bacteria, are used as starter 

cultures for Swiss-type cheeses (Langsrud and Reinbold, 1973) and in the production of 

vitamin B 12 and propionic acid (Perlman, 1978; Playne, 1985). Propionibacteria also have 

been used as grain and silage inoculants (Flores-Golarza et al., 1985; Tomes, 1989; Dawson 

et al., 1991 ). In addition, some strains of propionibacteria reduce nitrite and nitrate to non

toxic compounds (Buchanan and Gibbons, 1974). While the use of propionibacteria as 

direct-fed microbial cultures for livestock production has been limited, this additional 

property justifies research into their development as a direct-fed microbial product for 

preventing "nitrate" toxicity. Previous work identified a Propionibacterium strain (P5) which 

rapidly denitrifies in vitro and becomes established as a viable population ( 1 o5 CFU/ml 

rumina( fluid) in the rumen (Swartzlander and Rehberger, unpublished data). 

The objective of this study was to determine the prophylactic value of an established 

population of PS for animals challenged with a potentially toxic dose of feed containing a 

high nitrate concentration. 
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Materials and Methods 

Eight crossbred beef heifers (23 6 kg) were fitted with ruminal cannulas and employed 

in research following procedures outlined by the Oklahoma State University Animal Care and 

Use Committee. All animals were maintained individually in 2.44 m by 3.81 m slatted floor 

pens in an environmentally controlled building. Animals were given free access to water 

throughout the study. 

Propionibacterium acidipropionici strain P5 was grown in pure culture in large scale 

fennenters and lyophilized by a commercial company (FAR-MOR Biochem Inc., Milwaukee, 

WI). Four heifers were assigned randomly to receive daily doses (107 CFU/ml of ruminal 

fluid) of lyophilized Propionibacterium acidipropionici strain P5 delivered via the ruminal 

cannula throughout the adaptation and sampling periods. The remaining heifers served as 

uninoculated controls. Treatment groups were separated by a feed alley (4.27 m) to avoid 

cross-inoculation. 

The heifers were fed a low nitrate diet (50:50 roughage:concentrate) balanced for 

protein, minerals and vitamins (NRC, 1984) for 14 d. Heifers then were fed a low nitrate, 

low quality native grass hay for seven additional days. A nitrate challenge was given on day 

22 by offering all animals coarsely chopped (2.54 em screen) high nitrate pearl millet hay 

containing 21,766 ppm nitrate as N03- (DM basis) in trial 1 and 23,850 ppm in trial 2. Hay 

refusals were weighed to determine hay intake and orts were discarded. Two nitrate toxicity 

trials, separated temporally by a 90 d de-adaption period, were conducted to determine the 

efficacy of the inoculated strain. 

Prior to the nitrate challenge, all animals were fitted with in-dwelling jugular 

catheters. In addition, cylindrical stainless steel filters (76.2 mm by 25.4 mm) attached to a 2 

m length of rubber vacuum hose (12.7 mm interior diameter) were inserted through the 

ruminal cannula plug of each heifer. On day 22 (nitrate challenge), ruminal fluid and blood 

samples were taken at 0, 1, 2, 3, 3.5, 4 and 6 h post-feeding for trial 1. For trial 2, ruminal 

ss 



fluid and blood sampling for tria12 was extended to 12 h (0, 1, 2, 3.5, 4, 5, 6, 8, 10 and 12 h 

post-feeding). At each sampling time, approximately 50 ml of ruminal fluid were removed 

using a vacuum pump connected to the in-dwelling ruminal filters. Samples were analyzed 

immediately for nitrate concentration with a pHIISE meter equipped with a nitrate-ion 

specific electrode (Hach Co., Ames, lA). Three ml then were transferred to a 

microcentrifuge tube and the debris was pelleted by centrifugation at 12,000 rpm for five min. 

Following centrifugation, the supernatant was decanted and frozen ( -20° C). At a later time, 

the nitrite concentration of the sample was determined in duplicate utilizing a colormetric 

assay (Schneider and Yeary, 1973). 

Three ml of blood were collected at each sampling time utilizing a 3 cc heparinized 

syringe via the in-dwelling jugular catheter. In trial 2, duplicate .1 ml subsamples were 

removed for methemoglobin determination (Evelyn and Malloy, 1938). The remaining 

sample was separated by centrifugation and frozen ( -20° C) for later nitrite analysis as in trial 

1. 

STATISTICAL ANALYSIS 

Data were analyzed as a split plot in time with treatment, time, animal(treatment) and 

treatment( time) included in the model. Treatment differences were evaluated at each 

sampling time with a t-test (Steel and Torrie, 1980). A repeated measures procedure was 

used to determine the statistical probability of the time x treatment interaction being random 

(Ott, 1988). 
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RESULTS AND DISCUSSION 

In trial 1, prairie hay intake during the adaption period was 41% higher (P=.02) for 

the propionibacteria-inoculated heifers than control heifers (figure 1). On the nitrate 

challenge day, intake of high nitrate pearl millet hay was greater than with prairie hay (2.0% 

of BW) but was not affected by inoculation (P=.27). This level of pearl millet hay intake 

represents a nitrate challenge of 435 mg NO:Jkg BW. This exceeds the toxic level of265 mg 

N03/kg BW proposed by Hibberd eta/. (1993). 

Ruminal nitrate concentrations for all cattle increased rapidly and peaked at 

approximately 450 ppm at 2 h post-feeding (figure 2). For the entire sampling period, 

ruminal nitrate concentrations for the inoculated heifers were not different (timex treatment, 

P=.68) from the controls although ruminal nitrate concentration at 5.5 h was lower (P<.001) 

for inoculated heifers than control heifers. 

For ruminal nitrite, the time x treatment interaction evaluated over the entire sampling 

period (figure 3) was not significant (P=.90). Ruminal nitrite concentrations for inoculated 

heifers tended to increase more rapidly than the control heifers and to decline more rapidly. 

By 5.5 h post-nitrate challenge, ruminal nitrite concentrations tended (P=.16) to be lower for 

inoculated heifers. If the nitrite curves are extrapolated to zero, the total quantity of ruminal 

nitrite (estimated by the area under the curve) was 43°/o less in inoculated heifers. Deeb and 

Sloan (1975) noted that ruminal nitrate and nitrite concentrations peaked at 4 to 8 h after test 

animals were dosed with near toxic nitrate concentrations (1000 ppm N03). 

Blood nitrite concentrations for control heifers (figure 4) increased at 3.5 h post

feeding and continued to increase through the remainder of the sampling period reaching a 

concentration of 10.2 ppm at 5.5 h post-nitrate challenge. In contrast, blood nitrite 

concentrations in treated heifers increased at 3 h post-feeding and peaked (8.9 ppm) at 4 h 

post-feeding. By 5. 5 h post-feeding, blood nitrite concentrations for the inoculated heifers 

had decreased to 3.2 ppm, a concentration lower (P=.03) than in the control heifers. 

The results of trial 1 suggested that propionibacteria inoculation could reduce ruminal 

and blood nitrite concentrations in heifers challenged with high nitrate pearl millet hay. In 
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trial2, sampling times were extended to 12 h post-feeding and methemoglobin concentrations 

were determined to gain a better understanding of the toxicosis process and confirm the 

results of trial 1. 

As in trial 1, prairie hay intake during the adaption period of trial 2 was 43% higher 

(P=.005) for the inoculated than the control heifers (figure 5). On the nitrate challenge day, 

control heifers consumed 1.63% of their BW as pearl millet hay. This level of pearl millet 

hay intake represents 389 mg N03/kg BW which again exceeds the proposed toxic level of 

265 mg N03/kg BW. On the challenge day, inoculated heifers consumed 17% more pearl 

millet hay (P=.18) than the controls; this increased their nitrate intake to 456 mg N03/kg 

BW. Thus, inoculated heifers were subjected to a more severe nitrate challenge than were 

the control heifers. 

Ruminal nitrate concentrations increased rapidly and peaked 2 h post-feeding (figure 

6). Ruminal nitrate concentrations did not differ (time x treatment, P=.77) between the 

treated and the controls even though hay intake was 17% higher (P=.18) for inoculated 

heifers (figure 5). Ruminal nitrate concentrations peaked at 760 ppm; this was 62% higher 

than peak concentrations observed in trial 1. 

Ruminal nitrite concentrations in control heifers peaked 6 h post-feeding at 1, 743 

ppm (figure 7). In contrast, ruminal nitrite concentrations in inoculated heifers increased at a 

slower rate and peaked at a lower level (552 ppm). Ruminal nitrite concentrations were 

lower (P=.0001) at 6 and 8 h post-feeding in heifers inoculated with P5. Compared to 

controls, total ruminal nitrite (estimated as the area under the nitrate concentration curve) 

was 46% lower for treated than control heifers. This response was similar to the 43% 

reduction in total ruminal nitrite projected from trial 1. 

Blood nitrite concentrations mirrored changes in ruminal nitrite concentrations (figure 

8). Blood nitrite concentrations increased slowly in both groups until increasing sharply at 

3.5 h post-feeding. Blood nitrite concentrations for control heifers peaked at 21 ppm at 6 h 

post-feeding. In contrast, blood nitrite concentrations for inoculated heifers peaked at 5 h 

post-feeding (13.6 ppm) and decreased to presampling concentrations by 8 h post-feeding. 
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Although time x treatment interaction for the entire sampling period was not significant 

(P=.40), inoculation significantly reduced blood nitrite concentrations at 6 h (P=.01) and 8 h 

(P=.009) post-feeding. 

Percent methemoglobin for both groups remained low until 3 h post-feeding (figure 

9). Methemoglobin percent for inoculated heifers increased from 3 to 6 h post-feeding and 

peaked 6 h post-feeding at 26.7% of hemoglobin. Burrows eta/. (1987) noted that in acute 

toxicosis cases (50 to 6gG/o methemoglobin), methemoglobin concentrations and their 

accompanying symptoms of nitrate toxicity occurred within 3 to 6 h of ingestion of a toxic 

nitrate dose. Percent methemoglobin for control heifers continued to increase from 3 to 8 h 

post-feeding to 40.5% of hemoglobin at 8 h post-feeding. Inoculation reduced percent 

methemoglobin at 6 (P=.15), 8 (P=.04) and 12 (P=.06) h post-feeding compared to control 

heifers. The apparent decrease in percent methemoglobin in control animals at 10 h post

nitrate challenge may, in part, be attributed to one control animal that exhibited symptoms of 

acute nitrate toxicity including muscle tremors, labored breathing and lethargy. This animal 

was revived with methylene blue and was removed from the study at 10 and 12 h. Thus, the 

percent methemoglobin values for control heifers at 10 and 12 h may be biased downward 

because data from this heifer were not included. 

In both trials, established ruminal populations of P5 (> 1 o5 CFU/ml of ruminal fluid) 

were confirmed in inoculated heifers using selective-differential media (PSA) and plasmid 

profiling (Rehberger and Glatz, 1990). In neither trial did control heifers have detectable 

populations ofP5. 

Various methods have been developed to reduce the impact of nitrate toxicity on 

ruminants. Majak et a/. (1982) and Allison and Reddy (1984) illustrated that ruminal 

microbiota adapt to continuously high levels of dietary nitrate by increased ruminal nitrite 

reduction. The supposition that the continual incorporation of nitrate into a diet would 

maintain an elevated level of nitrite reduction without ill effects has yet to be tested. The 

limitations associated with this method of toxicity prevention would be that the adaptation is 

necessary and the de-adaptation period is as few as four days (Allison and Reddy, 1984). 
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Allison and Reddy (1984) also noted that as dietary nitrate exceeds 18,000 ppm, nitrate 

reduction by the adapted rumen microbiota was twice as rapid as nitrite reduction allowing 

nitrite to accumulate. Another prophylatic strategy is to incorporate of tungsten as a nitrate 

reductase inhibiting compound into the diets of ruminants (Korzeniowski et a/., 1980, 1981 ). 

While this method does inhibit nitrite formation (86-1 00% inhibition with dosage levels of 

20-100 micromoles of Na2 W04) some adverse effects have been associated with the use of 

Tungsten (Korzeniowski eta/., 1980). 

Other methods of nitrate toxicity control include feed management practices. For 

example, the addition of 3.2 kg of com into the diet of beef cattle challenged with .3 g 

NaN03/kg BW reduced percent methemoglobin by 66% (Burrows eta/., 1987). This effect 

may be due to increased growth of rumina) microorganisms and reduced rumina) pH closer to 

the optimum of nitrite reductase and away from the optimum for nitrate reductase. In 

addition, Smith eta/. (1992) noted that supplementing the crude protein content of a high 

nitrate forage diet (40,000-50,000 ppm N03) to 16% CP reduced percent methemoglobin 

from 30°/o to 14% to 19%. They postulated that the increased protein may have supplied 

rumina) microbiota with alternative nitrogen sources. 

In the current study, a population of Propionibacterium acidipropionici strain P5 was 

established in the rumen of beef cattle that reduced blood nitrite by 3 8% and percent 

methemoglobin by 3 5%. Once an efficacious population is established in the rumen ( 101 

CFU/ml of rumina) fluid for 8 d), the P5 population {105 CFU/ml of ruminal fluid) remains 

stable for over 7 months (Swartzlander and Rehberger, unpublished data) eliminating the 

need for daily dosing and the cost, management problems and adverse effects associated with 

nitrate, energy, and protein adaptation or Tungsten feeding methods. The most effective 

utilization of a direct-fed microbial product such as Propionibacterium acidipropionici strain 

P5 would be its incorporation into a comprehensive nitrate management program utilizing 

one or more of the conventional management methods to minimize nitrate levels in the ration 

and reduce nitrite formation in the rumen. 
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IMPLICATIONS 

Nitrate toxicity trials suggest that established populations of Propionibacterium 

acidipropionici strain P5 at levels of lxl05 CFU/ml of ruminal fluid can reduce nitrite 

accumulation in the rumen and blood of beef cattle consuming large quantities of nitrate. 

Consequently, production and death losses due to nitrate toxicity could be reduced through 

the use of a direct-fed microbial product developed from strain P5. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The toxic effect of high levels of nitrate in the diet of ruminants has long been 

recognized. "Nitrate" toxicity is caused by the reduction of excessive levels of nitrate to 

nitrite by the normal rumen microbiota. Nitrite passes readily through the rumen wall in to 

the blood stream where it binds with hemoglobin to form methemoglobin. The 

methemoglobin, being unable to transport oxygen and may cause death in the host animal 

due to anoxia. One possible solution to this problem is the development of a direct-fed 

microbial product for alleviating "nitrate" toxicity. 

The aim of this work was to identify strains of propionibacteria capable of nitrite 

reduction. Identified strains would have their denitrification abilities quantified for 

selection purposes. Selected strains would be tested for survival in rumina! fluid in vitro. 

One strain would then be tested for survival and establishment in vivo at two different 

inoculation levels. The selected strain would be tested to see if it had a significant 

prophylactic value for animals fed a toxic level of nitrate from a high nitrate feed. 

Response would be evaluated from rumina! nitrate/nitrite, blood nitrite and 

methemoglobin concentrations in inoculated animals versus uninoculated control animals. 

Seventeen of 154 Propionihacteri11m cultures were able to reduce nitrate and 

nitrite in vitro. Of those seventeen, two cultures, P5 and P42 reduced high levels of 

nitrate and nitrite ( 15,000 - 20,000 ppm). In vitro rumina I fluid survival studies indicated 

that P42 reduced nitrate and nitrite at a slower rate (1 08 vs. 80 hours) than PS did. In 

vivo establishment trials with strain P5 indicated that daily inoculations with 1 X 1 o7 

CFU/ml of rumina! fluid gave rumina I counts greater than I x 1 o3 CFU/ml by day 1 0; daily 

inoculation with 1 x 1 o6 CFU/ml gave rumina! counts of 1 xI o3 CFU/ml by day 18. The 

efficacy trials with strain PS inoculated daily at I xI 0 7 CFU/ml of rumina] fluid did not 
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significantly reduce rumina! nitrate peaks although inoculated heifers consumed 17 to 21 o/o 

more high nitrate hay. No reason for this increase is apparent Compared with control 

heifers, total rumina! nitrite concentrations in inoculated heifers \vere 43-45o/o lower. 

Blood nitrite concentrations were 380,'0 lower in inoculated heifers. In the second efficacy 

trial, total methemoglobin concentrations were 33°/o lower in inoculated than control 

heifers. 

An established population of }Jropionihacterilfnl acidi-propionici, strain PS in the 

rumen can exert a measure of prophylaxis when cattle consume large quantities of high 

nitrate feed. Consequently, production losses due to unitrate" toxicity could be markedly 

reduced through the use of a direct-fed microbial product developed from strain PS. The 

increased hay intake with inoculation may suggest that these microorganisms exert some 

additional physiological effect to stimulate appetite. Whether the response observed was 

due to increased fermentation of the diet or simply animal to animal variation is not yet 

known. This intake response portends even greater applications for propionibacteria in 

the beef cattle industry. The tools and procedures developed in this study could be used 

to monitor naturally occurring propionibacteria populations in vil•o to enhance the 

understanding of the ecology ofthe rumen 
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TABLE I. TRIAL I MEAN +1- SE RUMINAL NITRATE CONCENTRATIONS AT EACH SAMPLING PERIOD IN HEIFERS 
INOCULATED WITH PS (f) OR NOT (C) 

Sampling period . 

0 h post-feeding 
of high nitrate hay 

I h posl-f~ing 
of high nitrate hay 

2 h post-f~ing 
of high nitrate hay 

3 h post-feeding 
of high nitrate hay 

3.5 h post-feeding 
of high nitrate hay 

4 h posl-fde.ding 
of high nitrate hay 

5.5 h posl-f~ing 
of high nitrate hay 

Pooled SEM 

Treatment Nitrate, ppm p > ITI 
c 110.75 
T 130.45 0.6812 

c 424.75 
T 448.50 0.6206 

c 438.75 
T 467.00 0.5563 

c 383.00 
T 350.75 0.5021 

c 358.75 
T 332.75 0.5880 

c 369.25 
T 334.50 0.4698 

c 443.00 
T 273.15 0.001 I 

+\-25.88 



......... 
00 

TABLE 2. TRIAL I MEAN +1- SE RUMINAL NITRITE CONCENTRATIONS AT EACH SAMPLING PERIOD IN HEIFERS 
INOCULATED WITH P5 (T) OR NOT (C) 

Sampling period Treatment Nitrite, ppm p >ITt 

0 h post-feeding c 11.64 
of high nitrate hay T 16.28 0.9696 

I h post-feeding c 78.55 
of high nitrate hay T 59.34 0.8749 

2 h post-feeding c 123.97 
of high nitrate hay T 201.84 0.5243 

3 h post-feeding c 311.68 
of high nitrate hay T 422.28 0.3672 

3.5 h post-f~ing c 508.47 
of high nitrate hay T 477.96 0.8025 

4 h pnst-f~ing c 494.60 
of high nitrate hay T 444.74 0.6830 

5.5 h post-feeding c 342.19 
of high nitrate hay T 168.90 0.1611 

Pooled SEM +\-34.92 



...... 
\0 

TABLE 3. TRIAL I MEAN +/- SE BLOOD NITRITE CONCENTRATIONS AT EACH SAMPLING PERIOD IN HEIFERS 
INOCULATED WITH PS ffi OR NOT (C) 

Sampling period Treatment Nitrite, ppm p > ITI 
0 h post-feeding c 0.840 
of high nitrate hay T 1.650 0. 7974 

I h post-feeding c 0.340 
of high nitrate hay T 0.000 0.9142 

2 h post-fc!eding c 1.883 
of high nitrate hay T 0.375 0.6332 

3 h post-ft:eding c 1.080 
of high nitrate hay T 4.028 0.3536 

3.5 h post-feeding c 3.337 
of high nitrate hay T 5.530 0.4886 

4 h post-f~ing c 4.353 
of high nitrate hay T 8.928 0.1541 

5.5 h post-feeding c 10.177 
of high nitrate hay T 3.245 0.0344 

Pnnlc:d SEM + \-1.318 



TABLE 4. TRIAL 2 MEAN+/- SE RUMINAL NITRATE CONCENTRATIONS AT EACH SAMPLING 
PERIOD IN HEIFERS INOCULA TED WITH P5 ffi OR NOT (C) 

Sampling period Treatment Nitrate, ppm p >IT! 
0 h post-feeding c 148.44 
of high nitrate hay T 336.00 0.0435 

1 h post-feeding c 758.84 
of high nitrate hay T 621.10 0.1634 

2 h post-feeding c 155.25 
of high nitrate hay T 754.00 0.9881 

3 h post-feeding c 612.75 
of high nitrate hay T 628.50 0.8506 

3.5 h post-feeding c 659.25 
of high nitrate hay T 644.50 0.8600 

4 h post-feeding c 630.25 
of high nitrate hay T 676.00 0.5848 

5 h post-feeding c 563.75 
of high nitrate hay T 517.75 0.5828 

6 h post-feeding c 333.84 
of high nitrate hay T 307.50 0.7727 

8 h post-feeding c 215.25 
of high nitrate hay T 225.25 0.9048 

10 h post-feeding c 221.20 
of high nitrate hay T 186.50 0.7034 

12 h post-feeding c 205.20 
of high nitrate hay T 189.00 0.8588 

Pooled SEM + \-21.48 
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TABLE 5. TRIAL 2 MEAN+/- SE RUMINAL NITRITE CONCENTRATIONS AT EACH SAMPLING 
PERIOD IN HEIFERS INOCULATED WI1H P5 (f) OR NOT (C) 

Sampling period Treatment Nitrite, ppm P > IT I 
0 h post-feeding C 26.58 
of high nitrate hay T 30.05 0.9845 

1 h post-feeding c 6.88 
of high nitrate hay T 0.00 0.8823 

2 h post-feeding c 161.38 
of high nitrate hay T 39.75 0.4965 

3 h post-feeding c 308.48 
of high nitrate hay T 156.11 0.3945 

3.5 h post-feeding c 458.89 
of high nitrate hay T 270.66 0.2932 

4 h post-feeding c 593.24 
of high nitrate hay T 404.18 0.2911 

5 h post-feeding c 758.93 
of high nitrate hay T 551.56 0.2471 

6 h post-feeding c 1743.48 
of high nitrate hay T 529.20 0.0001 

8 h post-feeding c 1095.79 
of high nitrate hay T 250.90 0.0001 

10 h post-feeding c 239.84 
of high nitrate hay T 155.42 0.6645 

12 h post-feeding c 139.62 
of high nitrate hay T 56.67 0.6700 

Pooled SEM +\-162.00 
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TABLE 6. TRIAL 2 JvfEAN +/- SE BLOOD NITRITE CONCENTRATIONS AT EACH SAMPLING 
PERIOD IN HEIFERS INOCULATED WI1H PS ffi OR NOT (C) 

Sampling period Treatment Nitrite, epm p >IT! 
0 h post-feeding c 1.997 
of high nitrate hay T 1.578 0.9131 

1 h post-feeding c 3.344 
of high nitrate hay T 1.788 0.6967 

2 h post-feeding c 2.414 
of high nitrate hay T 2.790 0.9096 

3 h post-feeding c 4.024 
of high nitrate hay T 3.564 0.8897 

3. 5 h post-feeding c 3.001 
of high nitrate hay T 2.445 0.8514 

4 h post-feeding c 6.018 
of high nitrate hay T 4.526 0.6158 

5 h post-feeding c 13.195 
of high nitrate hay T 13.264 0.9815 

6 h post-feeding c 20.995 
of high nitrate hay T 13.609 0.0177 

8 h post-feeding c 10.445 
of high nitrate hay T 2.308 0.0092 

10 h post-feeding c 2.389 
of high nitrate hay T 1.684 0.8276 

12 h post-feeding c 2.342 
of high nitrate hay T 1.615 0.8223 

Pooled SEM +\-1.203 
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TABLE 7. TRIAL 2 MEAN+/- SE METHEMOGLOBIN CONCENfRATIONS AT EACH SAMPLING 
PERIOD IN HEIFERS INOCULA TED WITH P5 ffi OR NOT (C) 

Sampling period Treatment Methemoglobin, mg/dl P > IT I 
0 h post-feeding C 0.135 
of high nitrate hay T 0.045 0.8593 

2 h post-feeding c 0.080 
of high nitrate hay T 0.133 0.9177 

3 h post-feeding c 0.143 
of high nitrate hay T 0.000 0.7791 

3.5 h post-feeding c 0.445 
of high nitrate hay T 0.090 0.4855 

4 h post-feeding c 0.968 
of high nitrate hay T 0.713 0.6159 

5 h post-feeding c 1.435 
of high nitrate hay T 0.810 0.2217 

6 h post-feeding c 2.663 
of high nitrate hay T 1.760 0.0799 

8 h post-feeding c 2.843 
of high nitrate hay T 1.670 0.0243 

10 h post-feeding c 2.090 
of high nitrate hay T 1.715 0.4994 

12 h post-feeding c 2.810 
of high nitrate hay T 1.580 0.0299 

Pooled SEM +\-0.140 
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FIELD TRIAL 1 

Sixty crossbred commercial feedlot cattle were used to evaluate the efficacy of a 

commercial preparation of strain PS, tradename BOY A-PRO (F AR-MOR BIOCHEM, 

Milwaukee, WI). Thirty animals were assigned randomly to one oft\vo treatments. Both 

groups were allowed access to ad /ibitun1 low nitrate hay and water for a period of 23 d. 

In addition, both groups received 2 lb/head/d of protein suppletnent. One group was fed 

daily a pelleted protein supplement which contained 1 x 10 7 CFU/ml of ruminal fluid of 

BOVA-PRO. The control group received an identical supplement formulated without 

BOVA-PRO. At the end of the initial 23 d period, both groups were released onto 

sorghum-sudan hybrid green pasture. Ten animals from each group were monitored for 

rumina] nitrate, rumen and blood nitrite and methemoglobin concentrations at 4, 6, or 8 h 

post-release (via tail bleeding and stomach tube) and then removed from the pasture. 

FORA.GE ANALYSIS: 

The pasture utilized in this trial was gridded and samples analyzed for nitrate 

content were collected at intervals of 18.29 m. Nitrate analysis was conducted on dried 

samples with an ion specific electrode. Nitrate concentrations in the pasture ranged from 

4,180 to 28,800 ppm with an average concentration of 12,020 ppm nitrate. 

RESULTS: 

Rumina] nitrate concentrations increased for both groups throughout the trial 

(figure 1 ). Control animals had an average concentration of 883 ppm at 4 h which 

increased to 2277 ppm by the 8 h sample. Similarly, treated animals began at a somewhat 

higher concentration (943 ppm) at 4 h but at 8 h post-release had a lower mean 

concentration ( 1790 ppm) of nitrate. 

Rumina] nitrite concentrations for field trial 1 were exceedingly low when 

compared to toxicity trials (figure 2). Control animals peaked at 4 h (36 ppm) then 

dropped to 22 ppm at 6 h before rebounding somewhat to 25 ppm at 8 h post-release. 

Conversely, treated animals peaked at 6 h post-release (26 ppm) and decreased to 23 ppm 

by 8 h post·release after an initial 4 h sample average of 21 ppm. 

Blood nitrite concentrations for field trial 1 were exceedingly low when compared 

to toxicity trials (figure 3 ). Control animals exhibited 3.12 ppm at 4 h, a peak at 6 h of 

3.65 ppm and a decrease by 8 h post-release to 2.41 ppm. Meanwhile, treated animals had 
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an average blood nitrite concentration at 4 h of2.44 ppm, a peak at 2.97 ppm and a 

decrease to 2.49 ppm by 8 h post-release. 

Percent methemoglobin showed the greatest separation of treatments although it 

too was extremely low compared to toxicity trials (figure 4). Control animals exhibited 

their highest concentration ofmethemoglobin at 4 h (1.37°/o) and it decreased steadily 

throughout the trial to 0.64o/o at 8 h post-release. Treated animals also showed their 

highest percent methemoglobin (I .21 o/o) at 4 h which dropped sharply by 6 h to 0.47o/o 

and ended the trial at 0.54o/o of hemoglobin. 

SUMMARY AND CONCLUSIONS: 

Animals treated with BOY A-PRO showed numerically lower rumina! and blood 

nitrite concentrations as well as percent methemoglobin, particularly during the 4 and 6 h 

post-release sample periods when compared to controls. The concentrations of nitrite and 

methemoglobin exhibited in this trial were extremely low considering the high 

concentration of nitrate present in the forage and in the rumen. The discrepancy in nitrite 

release, particularly when compared to toxicity trials, may, in part, be explained by the 

lower nitrate concentration in the forage and the form of forage consumed. During our 

toxicity trials the high nitrate forage was in the form of20,000 ppm nitrate hay where in 

the current trial, the lush, growing pasture contained 12,000 ppm nitrate. Lush, green 

forages release their nitrate more slowly than hays and nitrate may be in a form or complex 

in which the nitrate ion, contained in a fully hydrated plant cell, resists microbial 

degradation. 
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FIELD TRIAL 2 

Fifty-four crossbred cotnn1ercial feedlot cattle \Vere used to evaluate the efficacy of 

a commercial preparation of strain P5, tradenan1e BOVA-PRO (FA.R-I\10R BIOCHEt\.1, 

Milwaukee, \VI). T\venty-seven animals \Vere assigned rand01nly to one of t\VO 

treatments. Both groups vvere allowed access to ad libitJmJ low nitrate hay and \Vater. In 

addition, both groups received 2 lb/head/d of protein supplement. One group was fed 

daily a pelleted protein supple1nent \Vhich contained 1x107 CFU/ml ofruminal fluid of 

BOY A-PRO. The control group received an identical supplement formulated without 

BOVA-PRO. At the end of the initial establishment period, both groups were released 

onto sorghum-sudan hybrid green pasture. Six to eight animals fron1 each group were 

monitored for rumen nitrate, rumen and blood nitrite and n1ethemoglobin concentrations at 

4, 6, 8 and 10 h post-release (via tail bleed and stomach tube) and then re1noved from the 

pasture. 

FORAGE ANALYSIS: 

The pasture utilized in this trial \vas gridded and samples analyzed for nitrate 

content were collected at intervals of 9.15 m. Nitrate analysis was conducted on dried 

samples with a ion specific electrode. Results indicated that nitrate concentrations in the 

pasture ranged from 4,930 to 39,600 ppm \Vith an average concentration of 16,943 ppm 

nitrate. 

RESULTS: 

Rumina! nitrate concentrations decreased for both groups from 4 to 6 h but then 

treatment groups began to diverge~ treated animals showed an increase in nitrate 

concentration while control ani1nals continued to decrease (figure J ). Control animals had 

a mean concentration of 23 78 ppm at 4 h which decreased to 1443 ppm by the I 0 h 

sample. Conversely, treated animals began at a somewhat lower concentration (20 1 0 

ppm) at 4 h but at 10 h post-release had a higher mean concentration (23 75 ppm) of 

rumen nitrate. 

Rumina! nitrite concentrations for field trial 2 were exceedingly low when 

compared to toxicity trials (figure 2). Control animals peaked at 4 h (30 ppm) then 

dropped to 26 ppm at 6 h before leveling off at 25 ppm at 8 and J 0 h post-release. 

Similarly, treated animals peaked at 4 h post-release (30 ppm). Rumina! nitrite 

concentrations in treated animals decreased continually to 17 ppm by 10 h post-release. 
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Again, blood nitrite concentrations for field trial 2 were exceedingly low when 

compared to toxicity trials (figure 3). Nitrite in control anin1als peaked at 4 hat 4.9 ppm 

and then leveled off at 3.34 ppm at 6 h and I 0 h with a slight increase to 3. 66 ppm at 8 h 

post-release. Meanwhile, treated animals had a peak mean blood nitrite concentration at 4 

h of3.80 ppm, which decreased to 3.47 and 2.86 ppm at 6 and 8 h respectively followed 

by a slight increase to 3. I5 ppm by I 0 h post -release. 

Percent methemoglobin values for treatments parallel each other with treated 

animals being consistently lower. The values exhibited in this trial were extremely low 

compared to toxicity trials (figure 4). Both treatments began this trial at a similar point 

I.63% for controls and I.67% for treated at 4 h. Control animals exhibited their highest 

concentration of methemoglobin at 6 h (3.I9%) which decreased to I.56% at 8 hand 

I.66o/o at I 0 h post-release. Treated animals also showed their highest percent 

methemoglobin (2. 74o/o) at 6 h which dropped sharply by 8 h to I.II o/o and ended the trial 

at 1.25% of hemoglobin. 

SUMMARY AND CONCLUSIONS: 

Compared with uninoculated controls, animals treated with BOY A-PRO showed 

numerical decreases in run1en nitrite concentrations as well as percent methemoglobin, 

particularly during the 6, 8 and 10 h post-release sample periods. The concentrations of 

nitrite and methemoglobin in this trial were extremely low considering the concentration of 

nitrate present in the forage and the rumen. The discrepancy in nitrite release, particularly 

when compared to toxicity trials, may, be explained, in part, by the lower nitrate 

concentration in the forage and the form of forage consumed. In our toxicity trials, the 

high nitrate (20,000 ppm) forage was in the form of hay while in the current trial the lush, 

growing pasture averaged I7 ,000 ppm. Lush, green forages releases its nitrate more 

slowly than hays, possibly because nitrate is in a form or complex contained in a fully 

hydrated plant cell that resists microbial degradation. 
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APPENDIXD 

DOSE RESPONSE TRIAL 

Taken from: RESEARCH UPDATE-Use of Propionibacteria as a Dirca Fed Microbial: Applications for Nitrate Toxicity. 

By: T.G. Rehberger. C.A Hibberd and J.H. Swartzlander 
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Dose Response Trial 

Twenty-five crossbrea heifers (500-600 lb) were used to evaluate the dosage 
effect at strain PS on the response to a high nitrate challenge. Five heifers were 
ranaomly assigned to each of the five treatments. Doses tested included 0. 36,000. 
130.000 and 2.900.000 CFU/ml of rumen fluid. In addition, one group received a one 
time dose of gel tongue paste. Blood nrtrite and methemoglobin concentrations were 
monitored for a 12 hour period during consumption of the high nitrate feed to determine 
the relationship between the dose of strain PS and the prophylactic response. 

Treatments: 

Prior to the high nitrate challenge, all animals received 2 pounds of supplement 
daily contaming 0. 790,000. 2.800.000 or 63.000,000 CFU/g of straJn PS for eight days. 
These concentrations of strain PS provided 0, 36,000, 130,000 and 2.900,000 CFU/ml 
of rumen fluid for establishment. Hay (low nitrate) and water were provided ad libitum. 
The treatments and the dosing rates for each group are summarized below. 

Group 1: 

Group 2: 

Group 3: 

Group 4: 

Group 5: 

Feed- 790,000 CFU/g 
PS dose- 38,000 CFU/ml of rumen fluid daily for 8 days. 

Feed- 2,900,000 CFU/g 
PS dose- 130,000 CFU/ml of rumen fluid daily for 8 days. 

Feed- 63,000.000 CFU/g 
PS dose- 2.900.000 CFU/mt of rumen fluid daily for 8 days. 

Gel Tongue Paste- 1 5 g dose containing 3.3 x 1 01 1 CFU/g 
administered 12 hour prior to challenge. 

Controls- no P5 added 

Forage Analysis and Intake: 

Following the eight day establishment period. heifers were given free access to 
coarsely chopped peart millet hay as the high nitrate challenge. Composite hay 
samples collected from the treatment groups were anaJyzed for nitrates using an ion. 
specific electrode. Results indicate the peart millet hay ranged from 31,200 to 32.400 
ppm nitrate. 
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Treatment grouos consumea on average 8.08 to 1 1.08 lbs per head of high 
mtrate nay. The mdividual mtake tor each treatment grouo IS listed below. There was 
no rerationsnip between the dose of stram P5 and feea mtaKe. 

Treatment 

Group 1 (36.000 CFU/ml) 
Group 2 (130,000 CFU/mi)
Group 3 (2.900.000 CFU/mi)
Group 4 (GTP) 
Group 5 (controls) 

Results 

Intake (lbs/head) 

8.8 
11.1 

8.1 
10.1 
10.1 

Blood nitrite concentrations increased slowly and peaked at 10 hours post
feeding tor four of the five treatment groups (see figure). Blood nitrite concentrations for 
grouc 1 (lowest dose) continued to increase from 8 to 12 hours post-feeding and did not 
peak by the termination of the trial. Heifers treated with the gel tongue paste had the 
highest peak blood nitrite concentration (26 ppm) while heifers in group 3 (highest dose) 
had the lowest peak nitrite concentration (1 3 ppm). The concentrations of blood nitrite 
were similar to those observed in triaJ 3 (20,000 ppm chalenge). 

Methemoglobin concentrations increased over the 12 hour sampJing period (see 
figure). At 12 hours post-feeding, heifers in four of the groups (group 1. 2. 4 and 
control) had higher percentages of methemoglobin than heifers receiving the highest 
dose of strain PS (group 3). However. since the percentage of methemoglobin 
contmued to increase over the sampling period the true peak vatues are unknown. 
Thereiore. it is not possible to determine if this represents a prophylaxis response of the 
highest dose or a shifted methemoglobin response. 

Summary and Conclusions 

Heifers treated with the gel tongue paste had the highest peak blood nitrite 
concentration and a mean percentage of methemoglobin similar to controls. Therefore, 
the risk of nitrate toxicosis was not significantly reduced with the gel tongue paste. 
Heifers receiving the highest dose of strain PS. which was 3.5 times lower than the 
current recommended daily dose. had the lowest peak nitrite concentration and a 
percentage of methemoglobin much low~r than controls at 12 hours post-feeding. An 
additionaJ animal trial is necessary to ·confirm the efficacy of this lower dose since 
maximum vaJues of methemoglobin were not definitively determined within the 12 hour 
sampling time. 
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APPENDIXE 

WITHDRAWAL TRIAL 

Taken from: RESEARCH UPDATE-Use ofPropionibacteria as a Direct Fed Microbial: Applications for Nitrate Toxicity. 

By: T.G. Rehberger. C.A Hibberd and J.H. Swartzlander 
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Withdrawal Trial 

Eight crossbred heifers (700 lb) fitted with rumina! cannulas were used to 
evaluate the effect of withdrawal time tram dosing strain PS on the response to feeding 
a high nitrate forage. Heifers were withdrawn from dosing strain PS 180 days or 210 
days prior to the high nitrate challenge. Heifers were fed coarsely chopped low-quaJity 
native grass hay and given 2 pounds of soybean mea! daily prior to the nitrate 
challenge. Rummal nitrate/nitrite and blood nitrite and methemoglobin concentrations 
were monitored for 12 hours during which time heifers were given free access to 
coarsely chopped peart millet hay containing 31 ,000 ppm nitrate. 

Results 

Rummal nitrate concentrations increased rap1dly and peaked two to three hours 
post-feeding (see figure). Heifers withdrawn 210 days had nitrate concentrations that 
were higher than heifers withdrawn for 180 days. The mean ruminaJ nitrate 
concentration for heifers withdrawn for 21 0 days peaked at 1325 ppm which was 70°/o 
higher than rumina! nitrate concentrations observed in trial 3 (20,000 ppm challenge). 
RuminaJ nitrite concentrations peaked at 5 hours post-feeding for heifers withdrawn 210 
days and at 11 hours post-feeding for heifers withdrawn for 180 days (see figure). 
Heifers withdrawn for 21 0 days had a peak nitrite level of 580 ppm which was 1/2 of the 
peak rumina! nitrite concentration observed in trial 3 (20,000 ppm challenge). HaHers 
withdrawn for 180 days had a much lower rumina! nitrite level (270 ppm). The totaJ 
quantity of ruminaJ nitrite for both groups, based on the total area under the curves. was 
much tess than controls or inoculated heifers in trial 3 (20,000 ppm nitrate). These 
results indicate that heifers in both withdrawal groups had significantly reduced the 
nitrite to nitrous oxide or other nontoxic nitrogen compounds. Alternatively. it could be 
proposed that limited amounts of nitrate were reduced to nitrite resulting in the lower 
concentrations of ruminal nitrite. However. given the large number of nitrate reducing 
microorganisms in the rumen it is unlikely that nitrate reduction was limited. 

Blood nitrite concentrations showed a similar pattern to ruminal nitrite 
concentrations: heifers withdrawn tor 21 o days peaked at 5 hours post-feeding and 
heifers withdrawn for 1 80 days peaked 1 1 hours post-feeding (see figure). Ag$in the 
peak values and total blood nitrite concentrations tor both groups were lower than the 
blood nitrite concentrations tor control and inoculated heifers observed in trial 3. The 
methemoglobin concentration. as determined as a percentage of the total hemoglobin 
concentration, peaked at 6 hours post-feeding and decreased to less than 1 °/o by 1 0 
hours post-feeding (see figure). Heifers withdrawn for 210 days had a higher peak and 
totaJ methemoglobin during the trial than heifers withdrawn for 180 days however, this 
level is not considered to be high enough to result in toxicosis. 
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Implications 

The mtrate toxicity studies with heifers withdrawn from dosing strain PS for 180 
and 210 days suggest that remaining popuiations of strain PS will exert a measure of 
prophylaxis for cattle that consume large quantities of nitrate. In fact. the resutts 
indicate that heifers withdrawn from PS dosing may reduce toxic nitrate concentrations 
more effectively than newiy established heifers. Consequently, production losses to 
nitrate toxicity may be prevented for the duration of the stocker phase if producers 
initially establish an effective population of strain P5 in the rumen. Ultimately. this 
should simpiify inocuiation programs and provide extended protection after a single, 
successful establishment dose period. 
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APPENDIXF 

GEL TONGUE PASTE TRIAL 

Taken from: RESEARCH UPDATE-Usc of Propionibacteria u a Direct Fed Microbial: Applicatiom for Nitrate Toldcity. 

By: T.G. Rehberger, C.A Hibberd and J.H. Swanz.lander 

110 



Gel Tongue Paste Trial 

The mitial nitrate tox1c1ty studies w1th heifers treated w1th a gel tongue paste 12 
hours pnor to the mtrate challenge prov1ded conclusive evidence that a gel tongue paste 
was not effective at reducing the toxic effects of high nitrate consumptton. Therefore. an 
aoditional study was conducted to determme if dosing the gel tongue paste at extended 
intervals prior to the mtrate challenge would establish strain PS in the rumen and 
provide an effective population to exert a measure at prophylaxis. 

Sixteen crossbred heifers weighing approximately 350 to 500 lb were randomty 
assigned to e1ght pens. Two pens of two heifers each were allocated to one of four 
treatments. Treatments consisted of the time of administration at the gel tongue paste 
prior to the high nitrate challenge (36 hours. 3 days or 7 days) and control heifers which 
did not receive a gel tongue paste dose. Heifers were given ad libitum access to low
quality nat1ve grass hay prior to feeding high nitrate hay. The high nrtrate chatlenge was 
accomplished by providing ad libitum access to coarsely chopped pear1 millet hay that 
contained a mean concentration of 20,380 ppm nitrate. Blood nitrite and 
methemoglobin concentrations were monitored for a 12 hour period during consumption 
of the high nttrate feed. 

Results 

Blood nitrite concentrations for all treatment and control heifers peaked at less 
than 10 ppm (see figure). Blood nitrite concentrations of control heifers were more than 
50o/a lower than observed for triaJs 2 and 3 with a similar nitrate chaJienge (20,000 ppm). 
The percentage of methemoglobin increased slowty over the 12 hour sampling period 
and did not peak within the sampling period (see figure). However. the totaJ percent 
methemoglobin for all treatment groups and controls were extremely low (<]0/o). 
Analysis of the feed intake data reveaied that heifers consumed less than 1 °/o of their 
total body weight (2.5 to 5 lbs). Therefore, due to the low intake levels, none of the 
heifers consumed a significant quantity of nitrate. 

Conclusions and Implications 

In conclusion, this trial will not be useful to determine if a gel tongue paste will 
effectly at provide a population of strain PS capable of reducing the effects of nitrate 
toxicosis. In addition, given the results from ear1ier triaJs. the current working theory of 
the mode of action of strain PS suggests that a one time dose of strain PS will not 
provide an effective population to reduce nitrate toxicosis. Therefore, we strongly 
recommend alternative methods of delivery to prevent production losses due to nitrate 
toxicity. 
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