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CHAPTER 1
INTRODUCTION
The following was an effort to develop a computer program that: (1)
presented the user with a valuable dose-response assessment tool, (2) helped the
user in the process of environmental decision making, (3) was user friendly, and
4) requir;ad little computer knowledge to operate. The computer program that
was developed, called Q-Risk, could be considered a "Decision Support System"
which is defined as "an interactive data processing and display system used to
assist in a concurrent decision-making process, and also conforms to the following
characteristics:

o it is sufficiently user-friendly to be used by the decision maker(s) in
person.

® it displays its information in format and terminology which is familiar
to its user(s).

® it is selective in its provision of information and avoids exposing its
users(s) to an information overload." (Simons, 1985).
In the past, programs were written in less "user friendly" languages that
did not supply the user with ample information to accurately address their
concerns. Also, the user generally had to be extremely computer literate to

operate these programs. Q-Risk was an attempt to bridge this barrier between



user and computer in the area of dose-response extrapolations. These
extrapolations are made necessary when utilizing high-dose, short duration
animal toxicity testing to determine potency or slope factors necessary to
determine unit health risks from environmental contaminants. As such, this code
is intended to be used within the Environmental Risk Assessment process.

Q-Risk was designed to aid the scientist in the "Toxicity Assessment" step
by the incorporation of dose-response models for low-dose extrapolation of
quantal bioassay data. Animal models are acting surrogates for humans
subjected to high exposure levels to initiate a response. Then by the use of
mathematical models the data are extrapolated to the low-dose region more
typically found in environmental exposures. From this low-dose extrapolation a
slope or potency factor is determined. The slope factor, in units of (mg/Kg-day)™
is multiplied by the dose in mg/Kg-day units to determine an incremental excess
cancer probability. Comparison of high to low dose extrapolation for six dose-
response models (Brown, 1984) is presented in Figure 1. A residual exposure
producing "Acceptable incremental risk," (i.e. one in one million) can be
determined from this figure. Table 1, the Goodness of fit statistics for the data
used in Figure 1, presents how well the six various models fit the observed data
where virtually safe dose is represented by VSD (Brown, 1984). The chi-square
() value shows how well the model fits the data. A high x? value corresponds to

a "good-fit" and subsequently a low p-value (probability).



FIGURE 1
COMPARISON OF HIGH TO LOW DOSE EXTRAPOLATION FOR
6 DOSE-RESPONSE MODELS
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Source: ( Brm_vn, 1984)

TABLE 1
GOODNESS OF FIT FOR FIGURE 1

Goodness-of-fit Statistic

Extrapolation vsD* of Model to Observed Data
Model (ppm DDT in daily diet) x2 (d.€.) P-value
Log normal 6.8 x 10~} 3.93  (2) 0.14
Weibull 5.0 x 10-2 3.01  (2) 0.22
Multihit 1.3 x 10-2 3.31 (2) 0.19
Log logistic 6.6 x 10~3 .45  (2) 0.18
Multistage 2.5 x 107" ————
Single-hit 2.1 x 107 5.10 (3) 0.16

* 97,52 lower confidence limit on VSD computed by the likelihood
method described in (22)

**. no goodness-of-fit statistic since the number of parameters
equals the nwaber of data points

Source: (Brown, 1984) 3



To combine the science of low-dose extrapolation and computers,
Microsoft” Quickbasic, version 4.5, was used to generate and compile code
necessary to extrapolate laboratory toxicity data by means of several alternative
formulae. Plots are produced comparing the unit risk (risk associated with its
corresponding dose) associated with each calculation. This programming
approach was chosen because of the ability to generate user friendly graphical
screens, and to calculate lengthy algorithms with Quckbasic. The resultant
graphics allows the end user, the risk assessment engineer or scientist, the
opportunity to easily and visually compare toxicological extrapolations with a
range of techniques. Q-Risk was designed to allow the user to choose between
five dose-response models: Probit, Log-Logistic, Weibull, One-Hit, and
Multistage. The Multi-Hit model was described but was excluded from
computational applications due to its similar extrapolation characteristics with the
Weibull model (Brown, 1984). Help screens were generated to guide the user in
selecting an appropriate model, and to guide the user easily through the
program.

Risk assessment is the process by which scientists "determine the nature
and magnitude of risk associated with various levels and conditions of human
exposure to a carcinogen and non-carcinogen." (Rodricks & Tardiff, 1984). The
data could come from two separate sources: (1) epidemiological studies or (2)
experimental data from animal studies (Fenner-Crisp, 1986). The epidemiological

source is not practical because it either involves subjecting humans to the



exposure of potentially hazardous chemicals or compiling worker exposure data
which generally lack statistical rigor. Figure 2 represents the four steps involved
in determining human health risk (EPA, 1989). The data collection and
evaluation step "... involves gathering and analyzing the site data relevant to the
human health evaluation and identifying the substances present at the site that
are the focus of the risk assessment process," while exposure assessment "... is
conducted to estimate the magnitude of actual and/or potential human exposures,
the frequency and duration of these exposures, and the pathways by which
humans are potentially exposed." "Toxicity Assessment for contaminants found
at Superfund sites is generally accomplished in two steps: hazard identification
(identifying which contaminants are hazardous) and dose-response assessment."
Risk Characterization "... summarizes and combines outputs of the exposure and
toxicity assessments to characterize baseline risk, both in quantitative expressions
and qualitative statements.”" (EPA, 1989). Q-Risk was prepared to address the
dose-response component found in the Toxicity Assessment element. A typical
dose-response curve is represented by Figure 3A plots dose (mg/Kg/day) versus
response (which could be a death or any adverse effect) in the observable range
(Environ Corp., 1987). Also shown is the linear extrapolation from the typically
high dose experimental range to the near origin region where chronic, long-term
effects are expected to occur. Figure 3B plots the observed data and the Weibull
and Multi-stage models as fitted to the data. At a dose of 50 mg/Kg/day a

"threshold" is observed in the Weibull plot (indicated by the sharp increase in



FIGURE 2
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FIGURE 3A
DOSE-RESPONSE CURVE-LINEAR
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slope). This threshold can be used to assume a point below which greater safety
or lowered risk is observed. The other two models linearize the data near the
origin, thereby perfecting greater unit risks for comparable doses. The current
administrative position of the USEPA is that thresholds do not exist for
carcinogens. The main reason for this is to be more conservative in determining
a dose relating to acertain risk. This allows safer protection for the population as
a whole. To assign a threshold to a general population would be a gross mis-
interpretation, because of the vast genetic variability within a population. This
latter view is shared by most toxicologist. Also, to obtain thresholds, research
would take enormous resources and even if found would be suspect (Rall, 1978).

Figure 4 plots dose (mg/Kg/day) versus response (Environ Corp., 1987)
and represents the method by which EPA extrapolates lab data to low-dose
regions. A risk is selected by assigning a unit exposure dose of 1 mg/Kg/day. In
the plot the corresponding risk is 0.0228, which means that incremental cancer
risk per unit dose of chemical is 2.28 x 102, This translates to one incremental
cancer in 44 potential exposures. In general, regulatory levels of one in one
million exposures are considered "acceptable." The USEPA recommends either
the linear Multistage or the One-Hit model equation to estimate the risk
associated with high carcinogenic risk levels (EPA, 1989).

USEPA has established computerized data bases such as the Toxic
Substances Release Inventory, the Chemical List, Information Pointer System,

MIXTOX, and the Integrated Risk Information System (IRIS) to provide agency
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estimates of these slope factors and related information (Shoeny, 1991). These
data bases provide estimates of low-dose extrapolation from single models.

In summary, all of the models employed fit the high-dose data within
acceptable statistical ranges. Extrapolation to low-doses, however, shows
significant variation, as observed in Figure 1. Using one incremental incidence of
cancer per million of population as exposed an acceptable incremental risk
illustrates some of the uncertainties associated with model selection. While
essentially endemic to the current state of epidemiological knowledge, this
uncertainty reduces confidence in the resultant assessments.

The following sections include descriptions of the assumptions inherent in
each of the models, coding of the Q-Risk program, a report of the results from
data analyzed with Q-Risk, a comparison and discussion of these results, and a

conclusion stating what has been accomplished.
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CHAPTER I

MATHEMATICAL MODELS USED FOR DOSE-RESPONSE
EXTRAPOLATIONS

"Cancers are believed to be single cell in origin .... Of a large number of
cells at risk in the individual organism, one undergoes certain changes that allow
it to divide and grow into a tumor. Thus we can view the carcinogenic process as
mechanistically single cell in origin even though, by the time a cancer is
pathologically recognizable, very extensive changes may have developed. ... If the
individual cancers arise from an original, single, "transformed" cell, then the
statistical nature of the carcinogenic dose-response will be governed by the
extreme tail of the "transformation" response distribution. The effect of this is to
make virtually any process of discrete events approximately linear at low dose."
(Crump, Hoel, Langley, and Peto, 1976). This means it would be linear in the
sense that the slope would be equal to one and the shape of the dose-response
curve would be linear and not convex or concave.

The exact mechanisms for most environmentally induced diseases are not
fully understood. To bridge this knowledge gap, the environmental toxicologist
employs dose-response testing where laboratory models (i.e. animals, protists,
etc.) are subjected to the chemicals of concern at defined dosage levels and for

specific time periods. Typically, these are high-dosage, relatively short duration

11



tests to optimize laboratory resources while providing information in a timely
manner (Brown, 1984).

Most human exposures are chronic rather than acute in nature. These
involve low-doses over extended periods. As such, laboratory models can not be
applied directly to predications on human systems. To accomplish this
conversion from acute to chronic exposures, mathematical extrapolations from
the testing region to the typical exposure levels are attempted. The models
available for this are of two types:

® mechanistic

® tolerance distribution
Mechanisitic models assume that for carcinogenesis to occure a normal cell must
be exposed to a certain number of hits by a toxicant. Tolerance distribution
models assume that each individual has a unique exposure level or tolerance to a
toxicant. Both type has several functional forms available to make these
extrapolations. Selection is dependant upon either the underlying biological
mechanisms of disease initiation or with fitting data with various statistical
distributions (i.e. normal, log-normal, or Weibull).

Extrapolations to low-dose regions result in either low-dose linearizations,
as indicated in the previous quote (Crump et al, 1976), or in the formation of a
concentration threshold below which a response (disease) will not occur. Rall
(1978) states "Many diseases resulting from exposure to foreign chemicals are

delayed in their onset and, to some extent at least, are irreversible. That is, if

12



the chemical is removed, the disease continues to progress, or at least not regress.
Typical are the diseases called cancer." (Rall, 1978). Figure 5 presents this
threshold theory of chronic irreversible toxic effects. Part (a) of Figure 5
illustrates the concept of assigning a concentration above which a deleterious
effect is observed in any animal or human and below which there is no effect
observed (i.e. a threshold). Part (b) illustrates the uncertainty of which the
concentration should represent a threshold. Part (c) illustrates the point that if a
threshold is assigned to a particular person or part of a population, then the
question is to whom and when is this threshold applied. Figure 5 illustrates the
threshold, but does not illustrate this important question.

There are six commonly used mathematical dose-response models for this
high-to-low dose extrapolation in animal test subjects. These are the Probit, Log-
Logistic, Weibull, One-hit, Multi-hit, and the Multi-stage models (Brown, 1984).
Dose-response refers to the response of a subject to various levels of a stimulus
(dose). The response may be quantified in terms of the number of tumors, birth
defects, deaths, etc. observed. The dose concentration may be quantified in
terms of dietary percent or volumetric concentrations ingested, inhaled or
dermally contacted. The source of exposure can be either by air, food, soil or
other external stimulus.

Once the data have been extrapolated to the low-dose region an
"acceptable incremental risk" can be calculated corresponding to a specific low

level of response. Typically, for carcinogens, 95% upper bound confidence level

13



FIGURE 5

THRESHOLDS FOR CHEMICALS THAT CAUSE
CHRONIC IRREVERSIBLE DAMAGE
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or percentile is determined about the unit response (USEPA, Means, 1989). This
value, termed a slope or potency factor is used in conjunction with chemical
exposure levels to calculate probabilities of incurring excess cancers.

The first three models are considered tolerance distribution models, while
the last models are mechanistic based models.

Tolerance distribution models

Tolerance distribution models assume that each individual in an exposed
group has a unique level of tolerance to a toxicant, the level of dose below which
the toxicant is ineffective in producing an effect (i.e. the threshold). The only
difference among the three tolerance distribution models is the assumption
regarding the mathematical character of the distribution of response frequency.
These models (Probit, Log-Logistic, and Weibull) possess a common assumption
that there is a specific dose at which a subject will produce a quantal response
(Brown, 1984). Above this concentration, a response is certain; below it there is
no response. This is considered the subject’s tolerance (Brown, 1984).

Equation 1 gives a mathematical expression of the frequency distribution of
tolerances, f(D) (Brown, 1984). This frequency distribution can be thought of as
the range of tolerances for a population

f(D) = aP(D)/aD 1)
where:

dP(D) = Partial derivative as a function of dose (D)
dD = Partial derivative in terms of dose (D)

15



and dD (the difference between the doses corresponding to each subjects tolerance
level within the population) is small. This represents the proportion of subjects
whose tolerances lie between D and D + dD. If all the subjects have a tolerance
below or equal to an exposure dose, D,, then all of them will produce a
response. The proportion, P(D,), that represents the total population responding
is represented by equation 2,

P(D,) = | f(D)aD, (2)
where the integral is evaluated in the range 0 < D < D,. If it is assumed that
all the subjects would respond to a considerably large dose level, then equation 2
becomes:

P() = [f(D)ID = 1, 3)
where the integral is evaluated in the range 0 < D < o. Figure 6 compares a
tolerance frequency distribution, f(D), with its similar cumulative distribution,
P(D). This shows that the dose-response can be viewed as being represented by
the function P(D) for a whole population or a randomly selected individual
(Brown, 1984).

Most often the frequency distribution of tolerances is skewed to one side as
seen in Figure 7. This figure illustrates the frequency of response versus the
concentration for the tolerance concentrations of a population (Finney, 1971).
When a common logarithm transformation is applied to the scale of measurement
(i.e., expressing the tolerances in terms of the common logarithm of

concentrations), the distribution can resemble the Gaussian or normal
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FIGURE 6

REILATIONSHIP BETWEEN TOLERANCE DISTRIBUTION
AND DOSE-RESPONSE CURVE
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FIGURE T

EXAMPLE OF SKEWED FREQUENCY DISTRIBUTION OF TOLERANCES
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distribution as seen in Figure 8 (Finney, 1971). Figure 8 plots the logarithm of
the concentration versus the frequency of response to produce a normal
distribution curve. The significance is that they illustrate the use of log
transformation to fit data to a symmetrical tolerance distribution.

Probit (Log-Normal) Model. Equation 4 presents the probit or log-normal

model for the tolerance frequency distribution (Finney, 1971). "Gaddum
proposed to measure the probability of response on a transformed scale, the
normal equivalent deviate (or N.E.D)" (Finney, 1971). N.E.D is represented by
the dose corresponding to probability in a norma distribution with mean zero and
variance one (N.E.D = y).

P(D) = (1/6(27)"*)exp-(log10D -u)2/2¢2)aD, 4)
where:
¢ = standard population deviations
p = mean

dD = partial derivative in respect to dose

P(D) = probability of a response as a function of dose

-0 < log, (D) < + o (Finney, 1971).
The dose-response function, P(D), is represented by equation S (Food Safety
Council, 1980). Equation 5 is a result of the integration of equation 4. Y
represents the response metameter which is a result of the probability log
transformation and Y + 5 is the probit of P. (Food Safety Council, 1980)

Y = P(D) = ®[(log(D) - p)/o] = $(a + Blog(D)) = « + Blog(D)

Y = &' (P(D)) = a + Blog(D) )

19



FIGURE 8

NORMAL FREQUENCY DISTRIBUTION FOR THE
LOGARITHM OF THE TOLERANCE CONCENTRATIONS

Source: (Finney, 1971)
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where:
$(x) = Standard normal integral from -co to x
a = -plo (referred to as y-intercept)
6 = 1/o (referred to as slope)
The final equality in Equation 5 replaces the parameters p and ¢ with « and 3.
The idea of incorporating population statistics to determine tolerance
distributions or dose response functions was first introduced by Gaddum (1933)

and then by Bliss (1934) (Brown, 1984). Bliss (1934) looked at the effectiveness

of a poison to kill Aphis rumicis L. Bliss observed an asymmetrical S-shaped

curve when dosage was plotted directly against response, and stated that a
common logarithmic plot of the dosage versus response in "probits" might have to
be done to show a uniform dose-response distribution. Bliss suggested that the
response interval be from 0.01% to 99.99%. This interval would then be
transformed into a range of probits from 0 to 10, with 50% equaling S probits.

Probit transformation originated with psychophysical investigators. Their
problem was quantifying the effect of stimulus on human subjects whose
statements were measured as "right or wrong" or "greater than or lesser than"
answers.

As indicated in Figure 9 the rate of increase of response per unit of dose is
minimal in the zero and 100 percent ranges, but is sharp between the lower and
upper responses. This produces a sigmoid curve as seen in Figure 9, which is
derived from the skewed frequency tolerance distribution presented in Figure 7

(Finney, 1971). Figure 9 is an example of a plot of percentage responding against

21
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dose. When the doses were transformed to the common logarithms, the
tolerances became normally distributed as seen in Figure 10, which plots the
logarithm of concentration versus percentage of insects affected (Finney, 1971).
This shows that dose approaches zero at infinitely small values, but is limited at
infinitely high doses. It is limited at infinitely high doses because all subjects
will produce a response (shown by the uper "flat" portion of the s-curve.

Gaddum proposed the transformation of response to the normal equivalent
deviate (N.E.D.). This is represented by Y where Y + 5 equals the probit of the
response (Food Safety Council, 1980). Figure 11 shows the effect on the
frequency of response by this probit transformation (Finney, 1971) while Table 2
gives the resulting probit corresponding to each percent mortality (Bliss, 1935).
This table is useful in transforming a percent response into the corresponding
probit. For example for a percent response of 10 the corresponding probit is
3.7184 (Bliss,1935).

This model was originally incorporated in the area of drug
standardization, where the responses in the 5 to 95% range were of most interest
in assessing the potency of drugs. Therefore no threshold was assumed for the
individual tolerances (Food Safety Council, 1980). When measuring the response
directly, when a delay between the time of exposure and a response was
observed, the tolerance dose could be overestimated (Finney, 1971). Historically
this model was used for dose-response interpolation (observable range) instead of

extrapolation (outside observable range) (Brown, 1984). Mantel and Bryan
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FIGURE 10

NORMAL SIGMOID CURVE DERIVED FROM FIGURE 8
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TABLE 2

PROBITS OR PROBABILITY UNITS FOR TRANSFORMING THE
SIGMOID DOSAGE-MORTALITY CURVE TO A STRAIGHT LINE
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(1961) however, proposed a method for obtaining a "virtual safety" dose of
carcinogenic compounds by low-dose extrapolation using the probit model. In
this method, every agent was considered carcinogenic. A 1/100 million response
for calculating a "virtually safe" dose was suggested. It was stated that
extrapolation to low-dose levels based on various dose-response data could lead to
overestimation of risk, because the tumor occurrence and dose relationship in the
low-dose region might be different than that in the observed region. To avoid
this overestimation the use of a low slope (i.e. equal to one) value from the
observed data was suggested. They suggested that a slope of one probit per
common logarithm be used. The statistical assurance level was set at 99 percent.
Control data to check for spontaneously occurring responses were also employed.
When spontaneous rates are rather low, the "safe" dose determined would not be
considerably affected. It was also suggested that responses be observed over wide
ranges of stimulus and that statistical variations in large sampling sizes be
considered negligible.

Mantel and Bryan et al. (1975) proposed an improved method to that
investigated in 1961. An attempt was made to improve procedures to allow for
spontaneous response rates, combining data from wide dose ranges, and
calculating a combined "safe" dose from various data sets. The results from
hypothetical experimental data sets revealed that the combined "safe" doses were

considerably higher than those of the independent data sets.
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Schneiderman and Mantel (1975) observed that experiments with large
data sets with few responses produced a higher "safe" dose than those from
similar smaller data sets. One major disadvantage of the Mantel-Bryan method
is that it lacked biological credibility. A zero dose did not correspond to zero
response. Brown (1984) did not propose this method for valid estimates of
lowdose risk. Therefore, the dose-response curve did not have any biological
support (Guess and Crump, 1976). The Mantel and Bryan dose-response

function is represented by Equation 6.

P(d) = P(0) + (1 - P(0)) ® (a + b log, d), (6)
Where:

P(0) = response due to background (Guess and Crump, 1976).

d = dose

P = dose-response function to be estimated

¢ = standard normal distribution function

a = curve fitting parameter

b = curve fitting parameter (referred to as the slope)

assumed to be one
(Guess & Crump, 1976).

Although overestimation of the parameters a, b, P(0) were chosen in the high-
dose range for this method, the increased risk over background approached zero
at a rapidly decreasing rate in the extrapolated region (Guess and Crump, 1976).
When the probit model was applied to low-dose extrapolations of vinyl chloride
fed rats, a "safe" dose of approximately 500 times that of the one-hit model
(described below) was produced (Guess and Crump, 1976). Guess and Crump
(1978) analyzed data from animals exposed to vinyl chloride, DDT,

dimethylnitrosamine, and ionizing radiation. They observed that in low-dose
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extrapolations of four sets of data the extremely flat (probit-like) dose-response
curves in the low-dose region fit the data worse than those linear curves (one-hit
and Multi-stage) in the same region. Guess and Crump (1976) proposed that
large animal experimental data could produce ". . . valid lower confidence
curves on dose that decrease with decreasing dose at a faster than linear rate.".
Presently the use of confidence intervals with the linear multi-stange and one-hit
models is being used in place of the conservative estimates of the Mantel and
Bryan parameters and slope of 1 (Hanes and Wedel, 1985). This results in the
production of "safe" dose levels which could be met by industries as opposed to
those practically near zero (Guess & Crump, 1976).

Log-Logistic Model. The log-logistic model is also called the growth

function, autocatalytic curve, or the logit function as it was developed from
chemical kinetic theory (Brown, 1984). The resulting curve is sigmoidal in shape
(Berkson, 1944) and has been used to assess the potency of drugs (i.e. the L.D.
50; dose at which 50% of subjects will die) as compared to the probit model
(Wilson and Worcester, 1943). Berkson (1944) stated that the term logistic was
developed in 1920 by Pearl and Reed, who used the model for the description of
population growth. The function itself is similar to the normal distribution, but
fits the data from physicochemical phenomena better (Berkson, 1944). Equation
7 represents the logistic function.

P(D) = 1/[1 + exp-(a + b logl0(D))], )]
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where b > 0 (Brown, 1984). The logistic function has an advantage of giving a
better fit with large data sets over the log-normal model (Berkson, 1944). Table
3 summarizes Berkson’s comparison between the logit and the probit models.
This shows on the basis of chi-square results, that either the results are the same
or the logistic appears to have a slight advantage. The only result showing a
distinct advantage (large difference between chi-square values) of the logistic is
the Murray data. This may indicate that with a large sampling group the logistic

is favorable.

Weibull Model. The assumption of this model is that the distribution of
response as a function of dose follows the Weibull distribution (Hallenbeck,
1988), which previously has been utilized for the modeling of time to failure of
electrical and mechanical devices (Hanes and Wedel, 1985). The model assumes
a tolerance of the dose of a carcinogen for each subject (Hanes and Wedel, 1985)
and is represented by equation 8 (Hallenbeck, 1988).

P(D) = 1 - exp-a(D)" 8)
where:

P(D) = probability of response as function of dose (D)

a = curve fitting parameter (y-intercept) - when linearized
D = dose
b = curve fitting parameter (slope) - when linearized

This model does have biological credibility because the probability of response at
zero dose equals zero (Hallenbeck, 1988). In the low-dose region the curve is
linear for b = 1, concave for b < 1, and convex for b > 1 (Food Safety Council,

1980).
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COMPARISON OF THE LOGISTIC AND THE NORMAL CURVE IN THE

TABLE 3

ESTIMATION OF DRUG POTENCY
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Another general formula for the Weibull model is given by equation 9.

P = 1-exp-(a + 8x™), 9)

where:

= dose

= probability of response

= estimated parameter

estimated parameter

= estimated parameter (Carlborg, 1980).

wR g U

Parameter « represents the background incidence rate, and the excess risk over
background in the low-dose range can be given by gx™ (Carlborg, 1980). The
Virtually Safe Dose (VSD) at a 1/1,000,000 risk over background can be
calculated by equation 10 (Carlborg, 1980).

VSD = ((10%)/8)'™ (10)
Weighted least squares are used to estimate the parameters by linearizing the
model (Carlborg, 1980).

Y = -In(1-P) = « + Bx", (11
The weight (W) for an observed value of Y is given by equation 12.

W = nQ/P, (12)
where Q = 1 - P and n represents the number of subjects at risk. A trial-and-
error would need to be performed on the parameter m (Carlborg, 1980) if a
linear weighted least-squares program was used. The Weibull model parameters
given in equation 8 can be estimated by linear regression of data sets of three

points or greater (Hallenbeck, 1988).
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Carlborg (1980) calculated VSDs for varying values of m. These are
presented in Table 4 and Figure 12. Figure 12 plots the dose versus tumor rate
for varying values of the parameter m. Carlborg (1980) proposed that it is the
parameter m that determines the VSD in the low-dose range. Table 4 and Figure
12 both show that the parameter m determines the VSD at low concentrations.
The sharp increase in VSD resulting from an increase in the parameter m
supports this observation.

The tolerance distribution models are based on the assumption that when
the response is quantal the frequency will depend on the concentration of the
toxicant. The tolerance varies among subjects within the population due to the
biological variability. Therefore, it is convenient to consider frequency of
distribution of tolerances throughout the population (Brown, 1984).

Mechanistic Models

Mechanistic models are based on the assumption that for a normal cell to
become cancerous a certain number of "hits" by a toxicant is required. These
models, unlike the tolerance distribution models, do not have biological credibility
(this means that at zero dose a zero response is obtained).

Brown (1984) states, "A number of dose-response models have been
suggested on the basis of assumptions regarding the mechanism of action of the
toxic agent upon its target site. The "hit" or mechanism of action is the basis of
the mechanistic theory. The "hit theory" rests upon the suggestion that a

response is produced by the cell after being exposed to certain number of hits by
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TABLE 4

THE RELATIONSHIP BETWEEN THE VIRTUALLY SAFE DOSE (1SD):
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the toxic substance or by a certain number of stages of change (Hallenbeck,
1988). Four postulates upon which the "hit theory" is based are (Brown, 1984):

"(1) the organism has some number M of "critical targets" (usually
assumed to be infinitely large);

"(2) the organism responds if m or more of these critical targets are
"destroyed";

"(3) a critical target is destroyed if it is "hit" by k or more toxic particles:
"(4) the probability of a hit in the low dose region is proportional to the

dose level of the toxic agent, i.e., Prob(hit) = Ad, A>0."

One-hit Model. Iverson and Arley produced one of the first quantitative

theories of carcinogenesis, which became known as the "one-hit" model (Brown,
1976). Equation 13 represents the one-hit model (Food Safety Council, 1980).

P(D) = 1 - exp(-AD),

(13)
where:

P(D) = probability of response as a function of dose (D)

D = dose

A = curve fitting parameter (slope) - when linearized
and A>0. AD represents the number of effective hits of an offending chemical
and is taken to follow a Poisson distribution as a function of dose (Rai and Van
Ryzin, 1979). This means that the model assumes a toxic effect occurs after a
single effective hit is received (Rai and Van Ryzin, 1979). The parameter A, is

considered the slope of the curve at the origin (Refer to equation 14) (Rai and

Van Ryzin, 1979).
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lim (d-0) (P(d)/d) = X (14)
This shows that as the limit of dose-response function approaches a dose of zero
the parameter A equals the slope of the dose-response curve. The EPA currently
uses the one-hit model for risk evaluation and disregards the concept of threshold
(Wardlaw, 1985). "Radiation experience has been cited as the best evidence for
the one-hit model, even though the action of genotoxic carcinogens differs from
that of radiation. The pattern of responses seen in the induction of genetic
mutation, which are likely involved in the cancer process, also suggests that the
one-hit model may be valid . . . This model is the most conservative in terms of
setting the VSD" (Wardlaw, 1985).

The Food and Drug Administration (FDA) also uses the one-hit model for
risk evaluation of toxic chemicals (Maxim and Harrington, 1984). The FDA used
the one-hit model with a 99 percent confidence interval as a safety factor for
calculation of the VSD for polychlorinated biphenyls (PCB) concentrations in fish
(Maxim and Harrington, 1984).

In a report by a subcommittee on estimation of risks of irreversible,
delayed toxicity to the Department of Health, Education, and Welfare Committee
(DHEW), the one-hit model was recommended for low-dose extrapolation of
incidence data (Hoel, et al., 1975). The one-hit model was also recommended for
risk assessment by the BEIR Report (Hoel, et al. 1975). They found that the "...
use of the linear extrapolation from data obtained at high doses and dose rates

may be justified on pragmatic grounds as a basis for risk estimation" (Hoel, et
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al., 1975). The one-hit and multistage models become approximately linear at
low dose levels. This linearity is important that these are conservative models
(Brown, 1984). this means that the linearity in the low dose region produces a
higher risk at a particular dose than does the convex curve.

Multi-Hit Model. Rai and Van Ryzin (1979) proposed a generalized multi-
hit model based on a stochastic biological basis. This model assumes that a
response (i.e., cancer) will be induced by series of "k" hits over a fixed period of
time. Equation 15 represents the probability estimate of the toxic response
occurring given a multi-hit mechanistic assumption of cancer initiation and
propagation (Rai and Van Ryzin, 1979). This equation represents the probability
of a response occurring if the number of fixed hits over a period of time follows a
Poisson distribution with expectation d for dose d (Rai and Van Ryzin, 1979).

P(d)= P{X>= k}= ¥ {(6d)'exp™/i!} =

| (t“'exp™/(k-1)!)dt, (15)

where:

P(d) = probability of response

k = number of hits

t = time

6d = expectation of number of hits

d = dose

0 <t < 6d (Rai and Van Ryzin, 1979).
The last equality is a result of "... repeated integration by parts." (Rai and Van
Ryzin, 1979). Equation 15 is rewritten to form equation 16 (Rai and Van Ryzin,

1979).

P(d) = P(d;k,0) = | g(t)at, (16)
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where 0 < t < d. Equation 17 represents the function g(t) (Rai and Van Ryzin,
1979).

g(t) = 6* t“'exp™/I'(k), 0 < t < oo, (17
where:

6 = scale parameter

k = shape parameter

t = time
The gamma function I'(k) is represented by equation 18 (Rai and Van Ryzin,
1978).

Fw) = | tletdt (18)
where 0 <t< o and u>0. This produces a statistical interpretation of the model.
The scale parameter represented by 6 and the shape parameter by k (k> 0) are

used to fit data to the dose-response model. Equation 19 represents the response

in the low dose region (Rai and Van Ryzin, 1979).

lim (d=0) {P(d)/d*} = */T(k+1) =¢c > 0 19)
where:

k = curve fitting parameter (referred to as "number of hits")

P(d) = probability of response

6 = scale parameter

I' = gamma function

At low dose (near zero), response is represented by equation 20 (Rye and Van
Ryzin, 1979).

P(d) = cd" (20)
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At k = 1 the model becomes the one-hit model. At k<1 the curve is concave
(gives higher estimate of risk) and at k> 1 convex (gives lower estimate of risk)
(Rai and Van Ryzin, 1979). This means that the risk estimate is dependant on
the number of hits required for carcinogenesis. At low doses the logit model and
multi-hit model are similar, and at high doses the multi-hit model is similar to the
probit model (Food Safety Council, 1980). The Weibull model, a tolerance
distribution model, also has similar extrapolation characteristics to the multi-hit
model in which the tolerance distribution is gamma (Brown, 1984).

Rai and Van Ryzin (1987) also proposed a multi-hit dose response model
that incorporated non-linear Kinetics. The incidence of spontaneous background
response, when incorporated into the model, produced four parameters. They
used maximum likelihood estimation to estimate these four parameters. They
investigated three animal carcinogenicity bioassays that produce, respectively,
concave, linear, and convex dose-response curves in the observed region (Rai and
Van Ryzin, 1987). Figure 13 reveals the model from a compartmental point of
view. This figure shows that a dose (D,(t)) administered at time t in
compartment one is transformed by an outgoing process, T,, to an internal toxic
dose (D,(t)) at the target organ in the second compartment. Next this toxic dose
is converted into a nontoxic dose by another outgoing process, T,, into
compartment three. Rai and Van Ryzin stated that the transformation process
for any single compartment "... is said to follow dose-dependent Michaelis

Menten nonlinear Kkinetics if
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FIGURE 13

DOSE-RESPONSE MODEL INCORPORATING NONLINEAR KINETICS
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D’(t) = - [(bD(t))/(c+D(t))], b>0, c>0 (21a)
where D(t) is the dose concentration at time t in the single compartment and D’(t)
is the first derivative of D(t) with respect to t. The constant b is the maximum
rate of change and c is the Michaelis-Menten constant, i.e., the dose
concentration in the compartment at which the rate of change is 1/2(b)" (Rai and
Van Ryzin, 1987). The dose response model proposed by Rai and Van Ryzin
(1987) based on nonlinear Kinetics is represented by equation 21b.

f(D) = 1 - exp-(a« + ADP) (21b)
where:

f(D) = probability of response

a = curve fitting parameter
A = curve fitting parameter
f = curve fitting parameter

Multi-stage (Armitage-Doll) Model. The processes involved in

carcinogenesis are transformation and growth. One or more changes in a normal
cell that enable it to form a tumor is called transformation. When the cell
duplicates into multiple cells and produces a family of cells called clones, it is
termed growth (Whittemore and Keller, 1978). The onset of carcinogenesis is
caused by carcinogens (i.e. chemicals or viruses) (Whittemore and Keller, 1978).
As stated in Whittemore and Keller (1978) Iverrsen and Arley (1952) proposed
the earliest quantitative theory of carcinogenesis, which suggested that the normal
cells were transformed to cancer cells in one stage. Equations 22 and 23 describe
this theory.

apy/at = -A(O)p,(1), Po(0) = 1 (22)
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op,/at = A(t)py(t), P(0) =0 (23)
where:

pPo(t) = probability that a cell is normal at time t
p:(t) = the probability that the cell is transformed at time t
A(t) = the transition probability rate

The multi-stage theory proposed by Muller and Nordling suggests that a
cell can produce a tumor only after passing through k number of mutations
(Whittemore and Keller, 1978). Figure 14 is a schematic of the k-stage theory of
transformation where cells start as normal cells at stage zero and are transformed
at the kth stage (Whittemore and Keller, 1978). A cell has the probability q of
having one mutation in any year, but it cannot have more than one. (Whittemore
and Keller, 1978). Equation 24 represents this assumption and resembles a

binomial distribution (Whittemore and Keller, 1978).

q“'(1-q),(a-1)...(a-k+1)/(k-1)! (29)
where:
q = probability of having one mutation in any year (carcinogen studies
are performed over a 70 year period)
k = number of mutations
a = year of mutation

This equation produces the transformation probability rate per cell in the a,,
year.

As stated in Whiittemore and Keller (1978) Armitage and Doll (1954) in
light of the work of Muller and Nordling (1953) proposed that ". . . k changes

have different transition rates \(t), i = 0, ... ,k-1, ... and they must occur in the
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FIGURE 14

SCHEMATIC REPRESENTATION OF THE K-STAGE
THEORY OF TRANSFORMATION

Source: (Whittemore and Keller, 1976)42



order 0,...,k-1." Armitage and Doll further assumed that the effect of the agent
at some of the stages was additive to effects induced by external stimuli at those
stages. This caused a lower power than k (stages) for D (dose)." (Food Safety
Council, 1980). Equation 25 presents the formula for this latest set of
assumptions from Crump, Hoel, Langley and Peto (1976). This equation assumes
additivity at all stages (Food Safety Council, 1980),

P(D) = 1 - exp{->aD’}, a;>0 (25
where:

P(D) = probability of response

a = estimated parameter

D = Dose

i = number of stages

0 <i < o and «, is nonnegative.

Guess and Crump (1976) proposed a method of estimating the parameters
in the Armitage and Doll Model by maximum likelihood estimation. They found
that the lower order coefficients of the k = 4 curve were similar to those of the k
= o and k = 9 (Guess and Crump, 1976). Figure 15 illustrates these findings,
where the observed frequencies of the various kth stages in the extrapolated
region match almost exactly. Dose is parts per million of DDT fed to femal and
male mice and resonse is the percentage of mice exhibiting tumors. The observed
frequencies of the various kth stages vary only in the high dose region.
Correction For Backkground Response

Two methods are commonly employed to correct for background response

at zero dose. That is, there is a base level of disease incidence associated with
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FIGURE 15

COMPARISON OF OBSERVED FREQUENCY OF RESPONSE
VARYING K STAGES
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any population. Toxicity testing focuses upon incremental increases in cancer or
other effects. These background-response-correction methods offer alternatives
to make null these non-specific effects. The first method, termed "Abbott’s
correction," assumes an independent action between the stimulus and the
background (Brown, 1984). Equation 26 represents this assumption,

P(D) = P, + (1-P,)P(D), (26)
where:

P*(D) = dose-induced probability of response

P(D) = probability of response

P,(D) = probability of response due to background

(Brown, 1984).
This equation corrects the probability of response based on the independent
background assumption. The second method proposes that the
stimulus/background relationship is always additive and the overall probability of
response will be a linear combination of the experimental and background
chemical doses. This is illustrated by equation 27,

P(D) = P'(D+D,) 27
where:

D’ = some unknown background dose
Brown reports that "... both assumptions lead to identical mathematical models
for overall response rates when the assumed dose-induced model is either the
single-hit or multistage" (Brown, 1984). Figure 16 graphically shows the
difference between the additive and independent assumption of background

response using the log-logistic model by plotting dose versus response probability
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FIGURE 16

COMPARISON OF LOG-LOGISTIC DOSE-RESPONSE MODELS
ASSUMING INDEPENDENT AND ADDITIVE BACKGROUND
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(Brown, 1984). This figure shows both correction assumptions describe data
equally well. Table 5 presents data showing the vast difference between the two
assumptions in the low-dose region using the log-normal model at various doses
(Brown, 1984). Hoel found that "... low dose linearity prevails except when the
background mechanism is totally independent of the dose-induced mechanism."
(Brown, 1984).

Each of these correction methods will introduce specific biases. In order
to standardize this approach a decision was made to remove this background
before the dose-response data was modeled.

Summary

As shown in Figure 1 and discussed in the preceding information, these
five dose-response models can generate vastly different results. Professional
scientists and engineers require techniques which allow comparisons between
alternative formulations whenever environmentally critical decisions are to be
made. Similarly, students can benefit from techniques which allow quantification
and subsequent comparisons among often arcane theoretical material. Q-Risk is

an attempt to aid all of these audiences with these problems.
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TABLE 5

EXCESS RISK (P(D)-P(0)] FOR LOG-NORMAL DOSE-RESPONSE
MODEL ASSUMING INDEPENDENT AND ADDITIVE BACKGROUND

Type of Background

Dose (D) Independent Additive
109 4.0 x 10-! 4.0 x 10~}
1=} 1.5 x 10=2 5.2 x 1072
10-2 1.6 x 10™° 5.2 x 10~3
10-3 3.8 x 10~10 5.1 x 10
10" 1.8 x 10-16 5.1 x 10~°

#p(0) = 0.1; log normai model slope = 2 from (Ji)

Source: (Brown, 1984)



CHAPTER III

MATERIALS AND METHODS
Q-Risk Computer Program

Development of Program

This program was developed to aid the scientist in extending dose response
data. The main focus of the program was to provide a "user-friendly" computer
code to aid in risk calculations and serve as a tutorial in some of the areas of
environmental decision making. The program incorporated the Probit, Weibull,
Log-logistic, One-hit, and Multi-stage dose-response models and was structured to
allow users with minimal computer knowledge to spend more time completing
data analysis than learning how to operate a computer or specific, more complex
codes.

To accomplish this, Microsoft” QuickBasic, version 4.5, was used to
generate the basic code. This complex language was chosen due to its graphic
capabilities and abilities to do reiterative calculations. Version 4.5 is also
equipped with its own compiler so that "stand-alone" executable files could be
made. These "stand-alone" executable files allow the user to be able to run the
code under Microsoft’ or related DOS without having to use interpretive
QuickBasic, allowing easier, quicker and more universal operation on practically

any IBM’-compatible home computer.
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The program was designed with tutorial screens explaining the various
dose-response models, calculations, and graphing. Menus are generated to allow
easy access to any part of the program. Data files and output files (containing
estimated parameter values and model information) are written during execution
for future use. Graphs of the original data and extrapolated data are generated
for the user to do dose-response determination. Axis ranges of the graphs can be
chosen by the user to allow some flexibility in plotting. Parameters for each
model are calculated instantly by simple, directed keystrokes. The program will
analyze a minimum of 3 and a maximum of 30 dose-response data points.

Code For Model Parameter Calculations

Method Of Estimation. The method chosen to estimate the curve fitting
parameters for the tolerance distribution models was linear regression. This was
chosen over maximum likelihood estimation because of the ease of calculation,
coding of the program sequence, and processing time. The following equations,
28 through 30, were used for the linear regression calculations.

A (y-intercept) = Xy - B*Xx/n (28)

B (slope) = n*Txy - Tx*Ty/(n*Tx* - (2x)?) 29)

r (correlation coeff) =

n*(Sxy - Zx2y)/(VIn*2x’ - Ex)’l[n*Zy* - Xy)’)), (30
where:

n = number of data points.

y = represents response data point
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X = represents dose data point
These equations were used to calculate the curve-fitting parameters for the
tolerance distribution models by linear regression using the equation of the line (y
= mX + b). The A and B parameters would correspond to the curve fitting
parameters in the linearized tolerance distribution equations as described below.

The One-Hit and Multi-stage model parameters were estimated using
Gauss-Jordan elimination instead of the alternative method maximum likelihood
estimation, because of the the ease of calculation, coding of the program
sequence, and processing time. Although linear regression could have been used
on the One-Hit model, Gauss-Jordan elimination was used because of the need to
normalize the parameter estimation for the mechanistic models. That is, to apply
the same method of parameter estimation for each of the mechanistic models.
For a detailed description of the Gauss-Jordan elimination method see Appendix
A (Equations 38-43).

Probit Model. The probit model parameters were estimated using the
equation found in Hallenbeck (1988) (Equation 32). This equation is in the linear
form and is derived from Equation 31 after log transformation and linearization

as discussed by Hallenbeck (1988).

P, = 1/27)"* | exp{-z*/2}dz 31

z=Dblog,D + a (32)
where:

z = standard normal variate

a = -u/o (p = population mean of log,, D

51



o = population standard deviation of log,, D)
b = 1/e.

The standard normal variate was calculated using a probit data file similar
to that previously presented in Table 2 (Finney, 1971) that related probits to their
corresponding percent response. The standard normal variate was calculated
using equation 33 (Food and Safety Council, 1980).

z = Probit - 5 33)
Once the probability of response was converted and the common logarithm of
dose calculated, the curve parameters a and b and the regression coefficient were
calculated.

Log-logistic Model. Equation 34 was transformed into a linear form
(equation 35), and linear regression was used for calculating the curve

parameters (Hallenbeck, 1988). See Appendix A for linear transformation.

P, = 1/(1 + e®*bheD) (34)
- In [(1-P)/P] = a + b*log D 35)
where
P, = probability of response

o
e}

urve fitting parameter (y-intercept)
urve fitting parameter (slope)

[£)

Weibull Model. The original model equation (equation 36) was
transformed into a linear form (equation 37), and linear regression was used for
calculating the curve parameters (Hallenbeck, 1988). See Appendix A for linear

transformation.
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P, = 1 - exp-(aD®) 36)
In[-In(1-P,)] = Ina + b*In D 37

One-Hit Model. The one-hit model is represented by equation 44

(Hallenbeck, 1988). Parameter A was calculated using Gauss-Jordian elimination
to solve a least-squares polynomial fit of n data pairs. The polynomial is set to
the first degree (p = 1), thereby assuming that "cancer" was produced in one
stage.

P(D) =1-e"? (44)
The linear equation (equation 45) used for estimation of the parameter, A\, was a
transformation of equation 44. Y in equation 38 is represented by -In (1-P,), and
only the first two coefficients are determined as the degree of the polynomial was
set equal to one in conjunction with the one-hit assumptions.

-in (1-P) = AD + A (45)

Multi-Hit Model. The multi-hit model was not included in the Q-Risk

program because of its similarity of extrapolation characteristics to the Weibull
model (Brown, 1984).

Multi-Stage Model. The multi-stage model parameters were estimated by

the Gauss-Jordan code sequence. The user was given a choice of choosing up to
a fifth degree polynomial. The limit was based on two reasons: (1) Guess and
Crump (1976) found that the low-order coefficients of a polynomial curve of
degree 4 (K = 4) were the same as those for a polynomial curve of degree o up

to 9 significant figures, and (2) Whittemore and Keller (1978) stated that there

53



"... there is a lack of any direct experimental evidence that cancer occurs in more
than two stages." The linear equation (equation 47) used for estimation of the
polynomial coefficients was transformed from the original model equation
(equation 46).

P(D) = 1 - exp-(X < D) (46)

-In (1I-P) = =4 + D + o,D* + ;D + ... + o, D, (47)
where o«; > 0 and 0 < i < k (Food and Safety Council, 1980). See Appendix A
for the linear transformation.

Coding Of Q-RISK’S Programs

Q-Risk was divided into ten separate programs. The entire code was
divided into ten separate programs. This was done to facilitate compiling. The
ten separate programs together occupy approximately 500,000 bytes of memory.
Each compiled program was accessed from a central code responsible for
displaying the user menus and graphing the results. The ten basic programs are
listed in Table 6, which lists the function/description of each of these executable
files. Figures 17A and 17B, Q-Risk flow charts, present program flow charts for
the total code. The QRA.EXE program is the main program from which all
subroutines and subprograms are called upon response from the user. QRA.EXE
is executed by typing QRA at the disk drive prompt. The user has the option of
exiting to DOS throughout the program. Information screens describing what the

program does and models included are presented after the subroutines are called.
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TABLE 6

FILES INCORPORATED INTO Q-RISK

FILE NAME

FUNCTION/DESCRIPTION

QRA.EXE

Main Program. Contains Main Menu and all subsequent menus,
model descriptions, model limitations, model data requirements and
graphing routine.

Subroutine OSU

Draws the letters "OSU." Called from QRA.EXE. Draws initial
screens

INTRO.EXE

Lists models and brief introduction. Called from QRA.EXE.

Subroutine SCPDR

Sets the screen coordinates and resolution for graphing. Called from
QRA.EXE.

ENTRY.EXE

Called from QRA.EXE. User is allowed to either input new data or
use an existing data file. Creates DRI.DAT. Produces output file
containing input data.

PROB.EXE

Called from QRA.EXE. Uses linear regression to estimate curve
fitting parameters for Probit Model. Calls a PROB.DAT file for
transformation of percent response. Produces output file
PROBIT.OUT and data file PROBIT.DAT.

WEIL.EXE

Called from QRA.EXE. Uses linear regression to calculate curve
fitting parameters for the Weibull model. Produces output file
WEIL.OUT and data file WEIL.DAT.

LOGCAL.EXE

Called from QRA.EXE. Uses linear regression to calculate curve
fitting parameters for the Log-logistic model. Produces output file
LOGLOG.OUT and data file LOGCAL.DAT.

ONEHIT.EXE

Called from QRA.EXE. Uses Gauss-Jordan elimination sequence to
calculate curve fitting parameter for One-Hit model. Produces
output file ONEHIT.OUT and data file ONEHIT.DAT.

MULTSTG.EXE

Called from QRA.EXE. Uses Gauss-Jordan elimination sequence to
calculate coefficients of the kth degree polynomial for the Muliti-Stage
Model. Produces output file MULTSTG.OUT and data file
MULSTG.DAT.

Subroutine WELSR

Draws screen that displays author and program version.

Subroutine WELC3

Draws second welcome screen.

DATALIM.EXE

Program for displaying model information.

DATAREQ.EXE

Program for displaying model requirements for program.
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Fig. 17A. - Q-RISK FLOWCHART PART 1

! QRA.EXE l-- MAIN PROGRAM
OSU |--SR
RETURN [ ¥
-- SR
TO DOS W.‘.’EL;(_CE__
WELC3 '-- SR
MAIN }ﬁﬁ;’(_ INTRODUCTORY
r., A INFO —
SCREENS
INTRO.EXE
PRE-MENU
SR - SUBROUTINE SCREEN
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MODEL J ‘DATA REQUIRED
DECRIPTION/INFO FOR EA(i"MODEL

Fig. 17B. - Q-RISK FLOWCHART PART 2

| MAIN MENU:
. 4

RETURN
TO DOS

2

|

DATALIM.EXE

— LOG-NORMAL
— LOG-LOGISTIC
— WEIBULL

— ONE-HIT

= MULTI-HIT

- MULTI-STAGE

. RETURN TO
MAIN MENU

[ DATAREQ.EXE |

SCREENS THAT
DISPLAY GENERAL
AND INDIVIDUAL
MODEL
REQUIREMENTS

RETURN TO

MAIN MENU

¥

¥

| DATA ENTRY |

MODEL CURVE-FITTING
PARAMETER ESTIMATION

| ENTRY.EXE | T
ey S | v | s
EXAMPLE oo ONE RETURN YO
10arsTIC T MAIN MENU
E;IES“NG
RETURN TO DATAFILE
MAIN MENU — .
ENTER weos.ixe | § | wenexe | | [mutrstoexe)
DATA [toocat.exe] [owemrr.exe]
OUTPUT OF RESULTS
. (VIEWGRAPHS)
LOG_NORMAL LOW-DOSE o:lsggﬁn man,

EXTRAPOLATION
pPLOT pLOT

LOG-LOGISTIC
WEIBULL
ONE-HIT
MULTI-STAGE

PRINT
PLOT

RE'U‘N TO0
DOS
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Next, the main menu is displayed giving the user a list of functions to perform by

pressing a function key.

The following are the functions available to the user:

® Model Information/Description

® Data Required For Each Model

® Data Entry

® Parameter Estimation

® Output Of Results
The "Model Information/Description" function provides a description of each
model’s assumption and general information. The "Data Required For Each
Model" function explains what parameters are required for each model. The
"Parameter Estimation" function estimates the parameters for each model after
selecting the desired model. The "Qutput Of Results" function produces graphs
of the original and extrapolated data after parameter estimation. Before the user
can perform parameter estimations data must be entered or a data file selected
by the user. The user must also perform the parameter estimation before
selecting the "Output Of Results" option. After performing each option the user
is given the choice of returning to the main menu or exiting to DOS. A Shift +
Printscrn option is given to the user to allow them to print the plot.

QRA.EXE Program. Three subroutines are incorporated into the main
program (see Table 6). This main program also includes routines for the "Main

Menu" (from which all functions of the program are called), information screens,

help screens, and graphing sequences.
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Introductory Screens. Upon entry to QRA.EXE the user can go to the

main menu or choose to view the introductory information screens that tell about
Q-Risk. The program INTRO.EXE is executed upon selection of the latter option
which displays these information screens.

Model Info/Data Requirements. The subprogram DATALIM.EXE is

executed upon selection of the model description/information option from the
main menu. This code sequence gives the user a list of models to choose from for
information. The subprogram DATAREQ.EXE presents the user with screens
explaining the data required for each model.

ENTRY.EXE Program. This option presented a help screen named "Data

Limitations." This screen explains the limitations of the model in terms of the
degree of the polynomial for the Gauss-Jordan elimination (see Appendix A for
explanation of this method). The user could either input new data or use a
previously created data file. The user was allowed to enter up to 30 dose-
response data points. Since the models used in the program do not compensate
for background response, the user was not allowed to input a response greater
than zero for a corresponding dose of zero. Once the data are entered a screen
was created to review and correct, if necessary, the input data. A data file is
created once the user inputs the name they wish to call the file, called
"NAME.DAT". This *.DAT file contains the original data points, number of
data points, and the dose-response units of measurement and is named by the

user. This file can be called for future use. Recall that this program must have
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been executed by the user before any parameter estimation or plotting could be

performed.

PROB.EXE Program. By selecting the parameter estimation option from

the main menu and then the Probit Model option. PROB.EXE is executed. This
program opens the previously created data file PROB.DAT, which contains the
corresponding Probit values for the percent responses. The percent response was
transformed into a standard normal variate, and then the curve fitting
parameters were estimated using linear regression. Once the parameters are
estimated, the viewer is given a screen displaying the parameters, the model
equation, and the correlation coefficient. This saves to two output files named
"PROBIT.OUT"and "PROBIT.DAT" containing the identical information as the
screen as well as the estimated parameters. These files consisting of the input,
output and parameter files can be subsequently manipulated by DOS editors or
appropriate word processors.

LOGCAL.EXE Program. This program also called from the main

program’s menu through selection of the parameter estimation option generates
the Log-Logistic Model option. The curve fitting parameters for the Log-Logistic
Model are calculated using linear regression. Two output files are created called
"LOGCAL.DAT" and "LOGLOG.OUT." The latter file contains the estimated
parameters, the equation of the model, the estimated parameters, and the

correlation coefficient. The *.DAT file contains only the estimated parameters.
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WEIL.EXE Program. The WEIBULL Model option is called from the

main program. The curve fitting parameters for the Weibull model were
calculated using linear regression. A data file called "WEIL.DAT" is created
which contains the estimated parameters, and an output file called "WEIL.OUT"
containing the equation of the model, the estimated parameters, and the
correlation coefficient is produced.

ONEHIT.EXE Program. The coefficients of the first degree polynomial

for the One-Hit model were calculated using the Gauss-Jordan elimination
sequence. The estimated coefficients for the first degree polynomial and the chi-
square value for the model were written to a data file called "ONEHIT.DAT".
The chi-square value gives a quantitative description of how well the model fits
the data (i.e. the higher the value the better the model fits the data). The
estimated coefficients for the first degree polynomial, the chi-square value, and
the equation of the model were written to an output file called "ONEHIT.OUT".

MULTSTG.EXE Program. Prior to parameter estimation the viewer was

given a help screen explaining the polynomial equation used and the selection of
the kth (kth refers to the stage of cancer) degree of the polynomial. These

parameter values, the chi-square value, and the model equation were written to
an output file called "MULSTG.OUT". The parameters were written to a data

file called "MULSTG.DAT".
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CHAPTER 1V

RESULTS AND DISCUSSION
Q-RISK BASIC CODE SEQUENCE

Q-RISK Input AND Output

Figure 18 is the first screen that appears once Q-Risk is started. This
screen is an emblem for the Oklahoma State University (OSU). Figures 19
through 30 represent welcome and information screens throughout the Q-Risk
program. Figures 31 through 35 are examples of the selection menus found in
the program. Figure 31 is the main menu from which all other functions are
accessed. The model was programmed to allow the user to use a data file
previously generated or to input original data. The user was allowed to name the
file also with a *.dat file extension for later manipulation or review. Figures 36
through 40 are the screens which display the parameter estimate results for each
of the models. These screens are produced by selecting the "Parameter
Estimation" function and subsequently the function key for the corresponding
model whose parameters are to be estimated. Figures 36, 37, 38, 39, and 40 are
screens which lists the results of the linear regression for each model and the
equation for that model. The parameter A is the y-intercept and B is the slope.

The "Log Dose (#)" values represent X values and the "Transformed Response"
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FIGURE 18
OSU EMBLEM SCREEN

(Ppress any key to continue or (ESC} to QUIT)

63



FIGURE 19
FIRST WELCOME SCREEN

{ TODAYS DATE | ——=====x

I
i 07-06-1994

Q-RISK
Welcome to Oklahoma State University
Quantitative Dose-Response Comparison Program
Written by: 3ryce K. Smith
William F. McTernan

Programmed by: Bryce K. Smath

OSU - Department of Civil/Environmental Engineering

(c) COPYRIGHT - 1994

(Press any key to continue or <ESC> to QUIT)

FIGURE 20
SECOND WELCOME SCREEN

{ TODAYS DATE]

07-06-1994

Q-RISK
QUANTITATIVE RISK ASSESSMENT PROGRAM
VERSION - 1.0
0SU - Department of Civil/Environmental Engineering

(¢) COPYRIGHT - 1994

(Press (Fl1)- continue,<ESC> - QUIT, or F10 - Main Menu)




FIGURE 21
FIRST INTRODUCTORY INFORMATION SCREEN

—=r{Q-RISK]

Q-RISK, Quantitative Risk Assessment Program, incorporates 6
commonly used math models for guantitative dose-response
comparisons of the results of experizental assays. These models
! | extrapoiate the results from high-dose to low-dose levels.

This 1s done to address the long term, chronic effects that
result from low-dosages of critical chemicals. These tests,
called dose-response evaluations, are commonly completed with
high concentrations of critical chemicals, for relatively short
periods of time with animal subjects. From this extrapolation
! a risk factor can be calculated. This risk factor serves as a
i quantitative measurement of the human health risk from the

| exposure to toxlc substances at low-dose levals.

Selection of a particular model often results in widely differ- J
ing risk estimates. Work reported in Brown (1984) shows a six

order 1ncrease in daily pesticide dose for a given risk lavel
depending upon model selection. This model uncertainty, theretore,
can have significant public health, environmental or economic
impact.

{<PGDN>- continue, or <ESC>- Quit.)

p—

FIGURE 22
SECOND INTRODUCTORY INFORMATION SCREEN

{Q-RISK]

The models that are included in this program are:

(1) Log-normal (probit)

(2) Log-logistic (logit)

(3) Weibull

(4) One=hit .

(5) Multi-hit (*Description only®)
(6) Multi-stage

[<PGDN> - continue, <PGUP> -~ previous page, or <ESC> to quit.)
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FIGURE 23
THIRD INTRODUCTORY INFORMATION SCREEN

- (Q-RISK]

The single-hit and the multi-stage models are the most conserv- ’

ative 1n the sense that they produce near-origin linear estimataes. \

! i In lieu of actual cause-effect data, EPA recommends that these

more conservative estimators be used. These s1x models can be

divided up into two general groups. The first three listed \

: (log-normal, log-logistic, and Weibull) are considered Toleranca

; Distribution Models. These models basically assume that there 1s \
|
\
|
|
|

a specific dose at which a subject will produce a quantal response.

! There are set dose levels above which there 1s a probability that

! i a response will occur, telow this level there is reduced probability
i of a response occurring. The event of a quantal response for any
I

i

particular subject is mainly dependant on the dose of the toxicant.
Each of these models also assumes that the data fit a frequency
distribution of tolerances. The dose below which there is no
response produced and above which is a probability of a response,
is termed the concentration threshold.

e— ( <PGDN>-continue OR <F10>-MENU. )

FIGURE 24
FOURTH INTRODUCTORY INFORMATION SCREEN

-(Q-RISK .
(q Rlihg last three above listed models (One-hit, Multi-hit, &
Multi-hit) are mechanistic modeis. These mo@ela assume that

a quantal response is generated from a certain number of hits

on a single critical target. An example would be the exposure of

a particular gene to a specific toxicant or radiation required for
mutation (i.e. cancer).

Krewski and Van Ryzin (1981) showed that the log-normal (probit)
model produces an estimate of the VSD (virtually safe dose) that
is larger than that of the Weibull, log-logistic, and multi-
hit, and single-hit models.

Since most human exposures are chronic rather than gccute in
in nature. The exposure period can be an extended pgr;od of time.
These models attempt to extrapolate animal quantal bio-assay data
from the observed region to the typical exposure levels. This is
due to the short-exposure pericds involved, and because subjecting
humans to high doses of toxicant would not be practical.
{<F10>- Menu OR <PGUP> - pravious screen|]
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FIGURE 25
PRE-MAIN MENU SCREEN

To review the previcus l1nformation
press <PGUP>. to continue to the main
menu press <PGDN>.

CAP LCCK KEY MUST BE CN!! i

FIGURE 26
EXAMPLE SCREEN OF MODEL INFORMATION

=(PROBIT MODEL]

This model assumes that logarithms of the tolerance concentra=-
ions follow a normal frequency distribution. This model
was first used by psychophysical investigators, who were faced
with the problem of quantifying the magnitude of the effect
of a stimulus on their patients based on statments from their
patients. -

In 1933 Gaddum suggested the use of converting
each percentage to its normal equivalent deviation (N.E.D).
This resembles Fechners transformation in 1860. This model was
used by Mantel-Bryan in 1961 for deriving virtual safe doses of
carcinogenic agents. The Mantel-Bryan procedure was later revised
in 1975. They defined the virtual safe dose to be 1/100 million.
This model however does lack complete biological credibility,
because the arobality of a response at 0 dose doesn't equal 0.

{<PGDN> - continue, or <F10> - RETURN TO MENU. ]
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FIGURE 27
EXAMPLE OF DATA REQUIREMENT SCREEN

={DATA REQUIREMENTS]
i
I i

GENERAL:

This program supports a minimum of 3 and a maximum of

of 30 Dose/Response data points. The response should be in the
form of ¥ of population having a response to a specific dose.

The estimates of the paramaeters for these models do not include a
correction tor background induced response. That is, these models
are intended to calculate the probability of incremental rather thant
total effect. Numerous corrections are available to remove

these background effects. These include various additive and
independant assumptions, which mean that the background incidence
rate acts either in addition to or independant of the toxicant.

| Each of these correction methods will introduce specific biasas.

In order to standardize this approach a decision was made to
remove this background before the dose-response data were modeled.
The user may find data in the open literature (Food Safety Councail,
1980) where this background correction was made. Because of the
lack of background corrections, these models will not reproduce
these data well.

{<PGDN>-continue, or <F10>-RETURN TO MAIN MENU.]

FIGURE 28
EXAMPLE OF DATA LIMITATION SCREEN

DATA LIMITATIONS:

The one-hit and multi-stage model parameters are solved by
Guass~Jordan elimination. In the subroutines for each of these
models there exists a statement in which dose is to the nth power.
The nth power is the degree of the polynomial plus one. If the
value of dose is extremely large, the limits of Q-Basic are
exceeded and the program will lock-up.

Therefore the degree of the polynomial is limited to 5. This
is supported by the lack of strong evidence to suggest that
requires more than 2 stages for a cancerous cell to be genarated.

Also, the lower order coefficients are quite similar to those of
the i = o lower order coefficients
(Guess & Crump,1976).

[<PGDN> =~ EXAMPLE, <F1> - USE EXISTING DATA FILE, <F10> - ENTER DATA]”




FIGURE 29
DATA ENTRY EXAMPLE SCREEN

ENTRY EXAMPLE:

ENTER COSE UNITS: ng/kg/dayv
ENTER RESPONSE UNITS: &% KILL or % WITH TUMORS

DOSE (ppm) (ENTER IN THE CONCENTRATION VALUE;i.e. 50)

RESPONSE (% KILL) (ENTER CORRESPONDING RESPONSE, i.e. 0.1 (= 10%)

[<PGDN> - continue]
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FIGURE 30
PLOTTING HELP SCREEN

- {Q-RISK]

The following plots the dose and response values
extrapoiated to zero. The dose vaiues are asssigned from 10°-1

©> 10°-8. The piot 1s a log-iog piot. Recall zero 1is the
tne log of 1.

In most instances the linearized multi-stage model should track

tne one-nit model, and both are suggested by the EPA.

The multi-stage gives a considerably more conservative estimate due
to the dominance of the zero-oder coefficient in the polynomial
equation. The zero order coefficient :s considered the incidence

rate due to background (recall this model does not include
tackground correction).

The following reference discusses the use of background correction
with the multi-stage model:

L. Whittemore, Alice, Keller, Joseon B. (1978). Quantitative
Theories Of Carcinogenesis. SIAM Review, 20, No.l., pages 1-30.

{<PGDN> to continue, or <ESC> to quit.) ]

FIGURE 31
MAIN MENU SCREEN

Q-RISK

»(MAIN MENU]

(F1) - MODEL DESCRIPTION/INFORMATION

(F2) - DATA REQUIRED FOR EACH MODEL

(F3) = DATA ENTRY

(F4) - MODEL CURVE - FITTING
PARAMETER ESTIMATION

(FS) - OUTPUT OF RESULTS (VIEW GRAPHS)

(F10) - RETURN TO DOS
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FIGURE 32
MODEL INFORMATION MENU SCREEN

Q-RISK

7(MODEL INFORMATION)]

(F1) - LOG-NORMAL (PROBIT)
(F2) - LOG-LOGISTIC (LOGIT)
(F3) - WEIBULL

(F4) = ONE-HIT

(FS) = MULTI-HIT

(F6) - MULTI-STAGE
(F10) -~ RETURN TO MAIN MENU

FIGURE 33
PARAMETER ESTIMATION MENU SCREEN

Q=-RISK

*{ PARAMETER ESIMATION)

(F1) - LOG-NORMAL (PROBIT)
(F2) - LOG~-LOGISTIC (LOGIT)
(F3) - WEIBULL

(F4) - ONB-HIT
(FS) - MULTI-STAGE
(F10) - RETURN TO MAIN MENU
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FIGURE 34

RESULTS MENU SCREEN
I
Q-RISK '
2 GRAPHS |
(F1) - PLOT LOG-NORMAL (PROBIT) MODEL
(F2) - PLOT EXTRAPOLATION=-TO-ZERO REGION OF DOSE-

RESPONSE DATA USING THE FOLIOWING FOUR MODELS:

LOG-LOGISTIC (LOGIT)
WEIBULL

ONE-HIT

MULTI-~STAGE

(F6) - PLOT OBSERVED REGION OF DOSE-RESPONSE DATA
(F10) - RETURN TO MAIN MENU

FIGURE 35
EXTRAPOLATED PLOT MENU SCREEN

Q-RISK

»{ EXTRAPOLATED REGION GRAPH)

(F1) - PLOT EXTRAPOLATION-TO-ZERO REGION
(F2) - RETURN TO RESULTS MENU
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FIGURE 36
Q-RISK SCREEN FOR LOG-NORMAL PARAMETER ESTIMATE RESULTS

LOG-NORMAL {PROBIT) PARAMETERS

LINEAR REGRESSION RESULSTS

A (y-intercept) = -2.25400
B (slope) = 0.97001
r (correlation coefficient) = 0.9131136661

LINEARIZED LOG-NORMAL (PROBIT) EQUATION:

2z = B*LOG*(D) + A

(Press any key to continue or <ESC> to QUIT)

FIGURE 37
O-RISK SCREEN LOT- _LOGISTIC PARAMETER ESTIMATE RESULTS

LOG-LOGISTIC PARAMETERS

LINEAR REGRESSION RESULTS

A (Y-INTERCEPT) = -4.04844

B (SLOPE) = 1.73824
r (correlation coefficient) = 0.930654407

LOG-LOGISTIC LINEARIZED EQUATION:
P(D) = 1/[14EXP*~(A + B*LOG* (D)) ]

(Press any key to continue or <ESC> to QUIT)
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FIGURE 38
O-RISK SCREEN FOR WEIBULL PARAMETER ESTIMATE RESULTS

WEIBULL PARAMETERS

LINEAR REGRESSION RESULTS

A= 0.02041

ln A (y-intercept) = ~3.8919

B (slope) = 0.64556

r (correlation coefficient) = 0.945852816

WEIBULL LINEAR EQUATION:
P(D) = 1 - EXP*“-A*D"B

(Press any key to continue or <ESC> to QUIT)

FIGURE 39
Q-RISK SCREEN FOR ONE-HIT PARAMETER ESTIMATE RESULTS

ONE-HIT PARAMETERS

A( 0) = +4.31296229362E-03
A( 1) = +4.31640958413E~-03

X~2 (CHI-SQUARE) = 0.1770
DEGREES OF FREEDOM = 3

A(0) = RESPONSE DUE TO BACKGROUND
A(1) = COEFFICIENT USED IN THE ONE-HIT EQUATION

ONE-HIT EQUATION:

P(D) = 1 - EXP~[A(1)*D])
(Press any key to continue or <ESC> to QUIT)
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FIGURE 40
Q-RISK SCREEN FOR MULTI-STAGE PARAMETER ESTIMATE RESULTS

MULTI-STAGE PARAMETERS

COEFFICIENT VALUES OF THE (i)+1 DEGREE POLYNOMIAL
af( 0) = +2.34617888927E-02
a( 1) = +7.42176035419E-03
a( 2) = -1.98967845790E-05
a( 3) = =-2.12154918700E-06
a( 4) = +8.60481730314E-09

a(0) corresponds to the response dua to background
a(i) corresponds to the coefficient of tha (i)th stagae.
a(i) is the coefficient in the equation below. »
i = staga of tha cell : i + 1 = dagree of polynomial
MULTI~STAGE EQUATION:
P(D) = 1 - EXP-TL{-a(i)*D"(i)]) , 0 < i < w

(Press any key to continua or <ESC> to QUIT)
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represents Y in the linear equation, Y = mX + b. In Figures 39 and 40 "a(#)"
represents coefficients of the polynomial equation. Figures 41 through 43
represent each of the three plots Q-Risk generates.

Output Of Model

Output Files. The program automatically generates output files that can
be viewed and printed under the DOS 5.0 or 6.x editors. These files contain the
estimated parameters and the equations for ecach model. These output files are
named corresponding to the name of the model with the file extension *.out (i.e.
Weibull.OUT).

Graphs. Three graphs are generated for each simulation. The first plots
the original data points while the second plots the log,, of each dose versus the
standard normal variate. Figure 41 is an example of the first type of graph.
This graph is obtained after estimating the parameters and selecting the "Output
Of Results" function from the main menu. Figure 42 is an example of the second
type of graph. This graph is produced by following the same steps as listed for
Figure 41. The third graph plots the "extrapolated to zero" portion of the dose
versus response curve as in Brown (1984) for the log-logistic, one-hit, Weibull,
and multi-stage models. The response axis ranges from 10" to 10°. This allows
the user to determine dose that corresponds to a certain unit risk. This would
depend on what the user views as a VSD. Figure 43 represents this third type of
graph and is produced from the main menu in the same manner as Figures 41

and 42. These three figures were created using the DDT exposure data given in
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FIGURE 41 ‘
O-RISK PLOT OF DOSE VS. RESPONSE IN OBSERVED REGION

OBSERVED DATA PLOT (DOSE vs. RESPONSE)

0.50 F
0.40

0.30

0.20 ¢t

mOZOoOMVLMXY HZMOXMTY

0 .5 1 1.5 2 2.5

DOSE (ppm)x 1072
(PRESS Shift + PRSC PRINT GRAPH/ (Fl) - CONTINUE or <ESC> - QUIT)

FIGURE 42
EXAMPLE OF Q-RISK PLOT FOR THE PROBIT MODEL

Log Normal Observed Data Plot (LOG DOSE va. Std. Normal Variate)

+3.0}
o *
1 - d 1 1 1
-1.0 -0.5 0.0 +0.5 +1.0 +1.95 +2.0
*
.
.
-3.0p

LOG DOSE (ppm)

[{PRESS Shift + PRSC GRAPH] / (F1) - CONTINUE or <ESC> - QUIT
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MW Z O 0 r-Izxa

FIGURE 43
Q-RISK PLOT OF DDT DATA

EXTRAPOLATED DOSE vs. RESPONSE

[t | T R A
T s W w—
I i I3
I | W
I w 47
T R Pl A
S L]
1048 i S 4
L R
18429 MSE (ppw) 182-2
LOG-LOGISTIC — ONE-HIT ——
MEIBULL - - WMLTISTAGE

(PRESS Shift + PRSC GRAPH] / (F1) - CONTINIE or (ESC) - QUIT
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Food Safety Council (1980). The first two graphs mentioned allowed for the user
to alter the range of the axis.

Plotting. The graphing sequences allowed the user to either plot the
original data points, the Probit log,, dose vs. standard normal variate. or the
extrapolation-to-zero dose of the data. The x and y axes are automatically
scaled and plotted upon selection of any of the three plotting function options.
The selection, "Graph Low-Dose Extrapolation," features the extrapolation-to-
zero dose of the data using the estimated parameters calculated from the log-
logistic, Weibull, one-hit, and multi-stage models. Varying the x or y axis was
not programmed into this sequence, because the region of interest will be
displayed for every data set. The plot of the extrapolation-to-zero of the data
was actually a log-log plot. Risk values of 10 and 10* were used to calculate the
corresponding doses using the estimated parameters and then a line is drawn
between them. These dose-response data pairs were then converted to the log,,
and plotted. The plot of the response axis is from 10" to 10°. The user must
have gone through the parameter estimation procedure for all models for this
extrapolated region to be plotted, because the data files created from these
estimation procedures are called to calculate the dose-response data pairs. The
user was allowed to view the actual plot, and was given the option to print the

plot by using the keys Shift + PrintScrn.
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TABLE 7

DOSE-RESPONSE DATA FOR EXAMPLE 1

DOSE (mg) RESPONSE
0.1 0.05
0.3 0.10
2.0 0.20

Source: (Hallenbeck, 1988)
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Access of *.DAT Files and Creating of *.DAT and *.QUT Files

Upon execution of the aforementioned programs, the user chosen *.DAT
file is accessed by opening the data file corresponding to the chosen name. Then
the parameters used in the calculations are read from this file. The *.DAT files
that are created are ASCII type files. The *.OUT files are text files. These are
created upon completion of the parameter estimation sequence. The *.DAT files
containing the parameters for each model are "zeroed" out upon entry to Q-
RISK. This is done by erasing the *.DAT files created for each model. This is
to avoid any incosistant comparisons.

Tutorial Screens

Q-Risk was coded with help/tutorial screens that explain each model
(theory, uses, parameters, and limitations). These screens aided the user in
making decisions (i.e., multi-stage polynomial degree selection) by providing them

with this background information for these models.

Comparison Of Model OQutput To Literature Output

To test the validity of the model equations, the parameters estimation
procedures, and the graphing of the fitted data, the Q-Risk program was
executed using dose-response data points cited in different research publications.
Then the output was compared to that from the original publications.

Example 1. Table 7 lists the original dose-response data points from
Hallenbeck (1988). These data points were given as examples with Hallenbeck

(1988). Data was entered into Q-Risk by selecting the data entry option. Next,
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the parameters for the log-logistic, log-normal, and Weibull models were
estimated by parameter estimation option. The Probit, Log-Logistic, and the
Weibull models parameters were estimated with Q-Risk. Table 8 gives a
comparison of the parameter values cited in Hallenbeck (1988) and those
calculated by Q-Risk. The relative percent difference (RPD) assesses the
precision of Q-RISK’s parameter estimations. Usually, a RPD of less than 50
percent is considered acceptable between two data points. RPD is a quality
control measure used in EPA SW-846 methods to assess precision of the
analytical methods (EPA, 1986). See Appendix A for the RPD calculation. RPDs
will show how precise Q-RISK estimates the parameters of these models as
compared to literature values. This shows that Q-Risk estimates the parameters
for these models with a great degree of precision.

Example 2. The Food Safety Council (1980) performed an investigation of
the One-Hit, Multi-Hit, Weibull, Armitage-Doll, and Probit Model for use in the
low-dose extrapolation of chronic cancer bioassay data. Table 9 lists the dose-
response data for the substance DDT as described by Food Safety Council (1980).
Mice were fed the pesticide DDT at parts per million (ppm) concentration
(mg/kg) and the number exhibiting tumors was recorded. Table 10 compares
dose values corresponding to a 10”® risk generated by Q-Risk and those from the
Food Safety Council, 1980. These values were read from the extrapolated graphs
of these data (Figures 43 and 44). All data points were analyzed except the zero

dose-response data point. Recall that Q-Risk handles only incremental responses
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TABLE 8

PARAMETER COMPARISONS FOR EXAMPLE 1

PROBIT MODEL

PARAMETERS Q-RISK | LITERATURE Relative Percent
RESULTS RESULTS Difference (RPD)
A (Y-intercept) -1.010 -1.010 0
B (slope) 0.606 0.609 0.49
r (correlation co- 0.995 0.995 0
efficient)
LOG-LOGISTIC MODEL
PARAMETERS Q-RISK LITERATURE | Relative Percent
RESULTS RESULTS Difference (RPD)
A (Y-intercept) -1.700 -1.700 0
B (slope) 1.170 1.170 0
r (correlation co- 0.992 0.992 0
efficient)
WEIBULL MODEL
PARAMETERS Q-RISK LITERATURE Relative Percent
RESULTS RESULTS Difference (RPD)
A (Y-intercept) 0.167 0.167 0
B (slope) 0.480 0.480 0
r (correlation co- 0.990 0.990 0
efficient)
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TABLE 9

DDT DOSE RESPONSE DATA FOR EXAMPLE 2

DOSE (ppm) % RESPONSE (Tumors)
2 0.0381
10 0.0887
50 0.1250
250 0.6667

Source: (Food and Safety Council, 1980)




TABLE 10

DOSE COMPARISON DATA FOR EXAMPLE 2 AT A 10® RISK

MODEL Q-RISK RESULTS | LITERATURE | Relative Percent
RESULTS Difference
(RPD)
One-Hit 6E-05 6E-05 0
Multi-stage <1E-20 SE-05 200
Weibull 7.E-09 2.0E-03 200

Source: (Food Safety Council, 1980)

TABLE 11

POLYNOMIAL COEFFICIENT COMPARISONS FOR EXAMPLE 2

PROBIT MODEL

COEFFICIENTS Q-RISK RESULTS | LITERATURE | Relative Percent
RESULTS Difference
(RPD)
o 2.346E-02 4.483E-02 63
a, 7.422E-03 2.038E-03 114
a, -1.989E-05 OR 0' 0 0
o -2.122E-06 OR 0' 0 0
oy, 8.605E-09 1.39E-09 144
otes:

1 - If the coefficient value is negative it is considered to be zero.

Source: (Guess and Crump, 1976)
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above background. The multi-stage and Weibull low-dose extrapolation lines
differed significantly from those generated by the Food Safety Council (1980).
There is clearly a significant difference (a large RPD) in the Weibull and multi-
stage models. Figure 43 and Figure 44 clearly show these differences. This
appeared to be due to the Food Safety Council using a correction for background
response of another variation to the Armitage-Doll model equation that was not
made evident to the reader. All other model plots from Q-Risk seem to match
those from the literature in example 2. Table 10, which compares the dose read
from the extrapolated graphs corresponding to a risk of 10® for the Weibull and
one-hit models, shows almost an exact match for the one-hit model values but a
vast difference for the Weibull and multi-stage models values. Therefore, Q-Risk
produces a lower dose estimate (more conservative) when using the Weibull and
multi-stage models, but is exactly similar with respect to the one-hit model.

Example 3. Guess and Crump (1976) developed a maximum likelihood
estimation procedure to calculated the polynomial coefficients for the Armitage-
Doll multi-stage model. Table 11 compares the cocfficients calculated by Q-Risk
to those from Guess and Crump (1976) for a fourth degree polynomial.

It is evident from Table 11 (large RPD), which compares the polynomial
coefficients calculated for the multi-stage model by Q-Risk and by Guess and
Crump, that some of the differences in the coefficients between Guess and Crump
(1976) values and the value generated by Q-Risk were significant. However, due

to the exrtemely small (10°) value of these coefficients these differences could be
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FIGURE 44
FOOD AND SAFETY COUNCIL OF DDT DATA

O'_!

2O =Pun |
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|
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Source: (Food and Safety Council, 1980)
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to the exrtemely small (10°) value of these coefficients these differences could be
due to rounding or significant figure differences between the two methods of
estimation. The data used for the parameter estimation in Q-Risk may vary with
that used by Guess and Crump (1976). For example Guess and Crump (1976)
could have included a zero dose data point that produced a response when
example 2 did not (i.e. background correction). The data used by Guess and
Crump were taken from a mouse DDT study. The interpretation of dose-
response data from the literature could have been significantly different than that
of Guess and Crump. That is, extracting the dose-response data required
interpreting instructions from the author as to which data to use (i.e. female or
male). That is, numerous tables of dose and response data were given.
Percentage of mice with tumors had to be calculated for both the female and
male mouse data. Guess and Crump (1976) did not state which sex they used in
their study. Also, when calculating the response was not apparent which
numbers were to be used (i.e. the number of mice exhibiting).

By graphing the low-dose extrapolation region, the user can select a risk
level that corresponds to a VSD by just selecting a point from the graph. A
safety factor should be used in estimating a VSD. The EPA uses a 95 percent
confidence level and the FDA uses a 99 percent confidence level to estimate risk.
At present, the model does not complete these calculations.

The selection of some near-zero lifetime risk, either 10* (proposed by

Mantel and Bryan) or 10 (proposed by the FDA) is a decision made by the user
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for determination of VSD (Food Safety Council, 1980). The Food Safety Council

(1980) suggests that the decision should be left up to the regulatory authorities.
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CHAPTER V
CONCLUSIONS

Q-Risk was designed to aid the user in the process of performing risk
assessments for carcinogens or toxic chemicals that pose a health risk to the
human population. The code specifically addresses the dose-response portion of
the Risk Assessment process by applying five commonly employed models to
extrapolate from the high-dose, short duration testing typically completed in
toxicity testing to the low dose, long term patterns thought typical of chronic
disease propagation. The goal was to combine the power of Quickbasic, a
modern, graphics-based complex computer programming language, with the
mathematics of the various dose-response models. This provided the user with a
program that requires little computer knowledge to operate. "Help screens" were
added to aid the user in decision making. Although not all mathematical models
that exist are made available to the user, the ones most frequently used in the
scientific community for low-dose extrapolation were incorporated. The models
included in the program were:

® Probit

® Log-Logistic

® Weibull

® One-Hit
® Multi-Stage



The multi-hit model was described in Q-Risk but was not included in the low-
dose extrapolation performed by Q-Risk. This was done because of the similarity
of the multi-hit model with the Weibull model (Brown, 1984).

The Probit, Weibull, and Log-Logistic model parameters were estimated
using a linear regression sequence as opposed to maximum likelihood estimation.
This was done to simplify coding and was considered appropriate given previous
work by others. Based on the results from chapter IV, there was no significant
difference between the two methods of estimation (i.e., example 3). The
parameters estimated for these models by Q-Risk matched those cited in
literature exactly in at least one example. The parameters for the One-Hit and
Multi-Stage models were also estimated using a Gauss-Jordan elimination
sequence instead of a maximum likelihood estimation procedure. This was done
because of the need to normalize the method of estimation within the mechanistic
models. The number of k-stages, of disease initiation and propagation, which
equals the degree of the polynomial, were limited to five in the program, to be
consistent with previous observations relative to physical evidence that cancer
does not occur in more than two stages (Whittemore and Keller, 1978).

Some of the problems in the past with environmental decision-making
processes include the lack of user friendly computer programs for those who are
not computer literate. This limited the ability of the scientist to make valid risk
decisions. Q-Risk was an attempt to lower the barrier between the scientist with

little computer knowledge and his/her data while also supplying the scientist with
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an aid in the area of risk assessment of toxic or carcinogenic compounds that
pose a human health hazard. The complexity and time necessary to manually
compute the parameters for the dose-response models and plotting of the results
are greatly shortened.

The use of Microsoft” Quickbasic to generate the code allowed the
production of user friendly screens and, powerful graphics, while incorporating
powerful mathematic functions. The program was structured so that the user
could easily view results with output files generated in a form that could be
viewed or printed under any appropriate text editor. The code was compiled as
"stand-alone execute files" it does not require BASIC files to run the program) so
that the user could run the program from any IBM’-DOS based computer.

This program allows even the least-computer-knowledgeable scientist to
precisely assess the incremental risk above background response of toxic
chemicals or carcinogens that may pose a human health risk.

The following conclusions can be made:

® A user-friendly, graphics-based computer code was developed to allow
comparison between dose-response models

® A powerful mathematical tool was developed to aid the user in calculating
unit risk above incremental cancers by performing low-dose extrapolation.

® A program was developed for users with little computer knowledge, and
addressed the problem of toxicity assessment of human health risks.

® A code was developed that was user friendly and aids the user in
environmental decision making.
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APPENDIX A
LINEAR TRANSFORMATIONS

GAUSS-JORDAN Elimination
The Gauss-Jordan elimination method involves eliminating all the variables except
for one, then substituting it back into the equation and systematically solving for
the other variables. Equation 38 represents the nth degree polynomial that was
used in the Gauss-Jordan elimination estimation method (Sime, 1988).

Y= A+ AX + ML+ A + .+ AXE (38)
Where y equals the response, x the dose, and A, is the coefficient of the k,, stage
of the cell. The following equations (39a-c) represent an example taken from

Sime, 1988 of the Gauss-Jordan elimination method.

2x, + 3x, + 8x, = 84 (39a)
X, + 7x, - 3x, = 65 (39b)
5x, - 2x, + x, =41 (39¢)

By multiplying the second equation by -2, adding the product to the first
equation, and replacing the second equation by the sum the following equations
are produced.
2x, + 3x, + 8x, =84
-11x, + 14x, = -46

5x,-2x, +x,, =41



This eliminates x, from the second equation. By muitiplying the third equation

by -2.5, "... adding the quotient to the first equation, and replacing the third

equation by the sum." (Sime, 1988).
2x, + 3x, + 8x, = 84
-11x, + 14x, = -46
3.8x, + 7.7x, = 67.6
Now by muitiplying the third equation by 2.8947 (11/3.8), "adding the resuit to
the second equation, and replacing the third equation by the sum." (Sime, 1988).
2x, + 3x, + 8x, =84
-11x, + 14x, = -46
36x, = 149.6782
Next backward substitution starting with the value of x, in the second equation
the values for the other two parameters can be calculated.

The parameters for equation 38 are solved for in the same manner as
mentioned above. A first degree polynomial the derivatives produce two
equations with two unknowns, A\, and A\,. The derivatives give riseto p + 1
equations in p + 1 unknowns, namely, A, A;, ;. To evaluate these constants it
is necessary to solve a system of p + 1 simuitaneous linear equations.

Aol + A Ixp + A Ix2 + .o + A IX

+ ..+ A, Ixp-Ly, =0 (40)

Mo IX, A Ix2 + A Ixp + ..o + A Ixp

# eee + ), Ixp+t - Ixy, = 0 “n
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Ao IXFyk + A Ixk+l + N, Ixk+2 + .., + \, Dxkek
oo+ X, Ixprh - Dxky, = 0 (42)
Ag IXP + A Ixp+! + X, Ixp+2 + ... + A, Lxp+k
+ oo+ A, EAPre - Ixpy, = 0 43)
The solution to this system of simultaneous linear equations is the set of values of
the coefficients A,. The augmented matrix is written
nox x2 xk ... xp ... Yy
X X2 X2 xMULo oxprtlL Xy,
X, xkrt xke2z xkek o xprk XKy,
XP Xl oxpt2 oxperk o xpre ... XPY,
The x; (i.e. dose) and y, (i.e. response) are the experimental points we wish to fit
to a polynomial of degree p. "The number of x,, y, pairs equals n, so the
summations are from i = 1 to n. The number of pairs must be greater than the
degree of the polynomial and is often much greater." (Sime, 1988).

LOGISTIC Model

Equation 34 is transformed into a form of the linear equation y = mX +

P, = 1/(1 + et *t2D) 34)
This is done by first rearranging the equation algebraically and taking the

1/P, = 1 + e+ oDy

-1(1/P) = e+ *xD)

natural logarithm of both sides. This resuits in the following equation.
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-In [(1-P)/P] = a + b*log D (35
WEIBULL Model

Equation 36 for the Weibull model is transformed in the same manner,
except that the natural logarithm of both sides is taken twice to produce the
double natural logarithm in equation 37.
RPD Calculations

Equation 43a represents the method by which RPDs are calcuated as
described in EPA (1986). The x, and x, values represent the first and second
values for which the RPD is being calculated for. For example the first value
would be the Q-RISK value and the second the value from Guess and Crump
(1976).

RPD = (x, - x,)/((x, + X;)/2) * 100 (43a)
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