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CHAPrERI 

INTRODUCTION 

The following was an effort to develop a computer program that: (1) 

presented the user with a valuable dose-response assessment tool, (2) helped the 

user in the process of environmental decision making, (3) was user friendly, and 

(4) required little computer knowledge to operate. The computer program that 

was developed, called Q-Risk, could be considered a "Decision Support System" 

which is defined as "an interactive data processing and display system used to 

assist in a concurrent decision-making process, and also conforms to the following 

characteristics: 

• it is sufficiently user-friendly to be used by the decision maker(s) in 
person. 

• it displays its information in format and terminology which is familiar 
to its user(s). 

• it is selective in its provision of information and avoids exposing its 
users(s) to an information overload." (Simons, 1985). 

In the past, programs were written in less "user friendly" languages that 

did not supply the user with ample information to accurately address their 

concerns. Also, the user generally had to be extremely computer literate to 

operate these programs. Q-Risk was an attempt to bridge this barrier between 
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user and computer in the area of dose-response extrapolations. These 

extrapolations are made necessary \vhen utilizing high-dose, short duration 

animal toxicity testing to determine potency or slope factors necessary to 

determine unit health risks from environmental contaminants. As such,. this code 

is intended to be used within the Environmental Risk Assessment process. 

Q-Risk was designed to aid the scientist in the 11Toxicity Assessment" step 

by the incorporation of dose-response models for low-dose extrapolation of 

quantal bioassay data. Animal models are acting surrogates for humans 

subjected to high exposure levels to initiate a response. Then by the use of 

mathematical models the data are extrapolated to the low-dose region more 

typically found in environmental exposures. From this low-dose extrapolation a 

slope or potency factor is determined. The slope factor, in units of (mg/Kg-dayf1 

is multiplied by the dose in mg/Kg-day units to determine an incremental excess 

cancer probability. Comparison of high to low dose extrapolation for six dose

response models (Brown, 1984) is presented in Figure l. A residual exposure 

producing "Acceptable incremental risk," (i.e. one in one million) can be 

determined from this figure. Table l, the Goodness of fit statistics for the data 

used in Figure 1, presents how well the six various models fit the observed data 

where virtually safe dose is represented by VSD (Brown, 1984). The chi-square 

(~) value shows how well the model fits the data. A high x2 value corresponds to 

a "good-fit" and subsequently a low p-value (probability). 

2 



FIGURE 1 
CO~IPARISON OF HIGH TO LOW DOSE EXTRAPOLATION FOR 

6 DOSE-RESPONSE ~IODELS 
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TABLE 1 
GOODNESS OF FIT FOR FIGURE 1 

Extrapolation VSD* 
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To combine the science of low-dose extrapolation and computers, 

Microsofe Quickbasic, version 4.5, 'vas used to generate and compile code 

necessary to extrapolate laboratory toxicity data by means of several alternative 

formulae. Plots are produced comparing the unit risk (risk associated \Vith its 

corresponding dose) associated with each calculation. This programming 

approach was chosen because of the ability to generate user friendly graphical 

screens, and to calculate lengthy algorithms with Quckbasic. The resultant 

graphics allows the end user, the risk assessment engineer or scientist, the 

opportunity to easily and visually compare toxicological extrapolations with a 

range of techniques. Q-Risk was designed to allow the user to choose between 

five dose-response models: Probit, Log-Logistic, Weibull, One-Hit, and 

Multistage. The Multi-Hit model was described but was excluded from 

computational applications due to its similar extrapolation characteristics with the 

Weibull model (Brown, 1984). Help screens were generated to guide the user in 

selecting an appropriate model, and to guide the user easily through the 

program. 

Risk assessment is the process by which scientists "determine the nature 

and magnitude of risk associated with various levels and conditions of human 

exposure to a carcinogen and non-carcinogen." (Rodricks & Tardiff, 1984). The 

data could come from two separate sources: (1) epidemiological studies or (2) 

experimental data from animal studies (Fenner-Crisp, 1986). The epidemiological 

source is not practical because it either involves subjecting humans to the 
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exposure of potentially hazardous chemicals or compiling \vorker exposure data 

\Vhich generally lack statistical rigor. Figure 2 represents the four steps involved 

in determining human health risk (EPA, 1989). The data collection and 

evaluation step " ... involves gathering and analyzing the site data relevant to the 

human health evaluation and identifying the substances present at the site that 

are the focus of the risk assessment process," \vhile exposure assessment " ... is 

conducted to estimate the magnitude of actual and/or potential human exposures, 

the frequency and duration of these exposures, and the pathways by which 

humans are potentially exposed." "Toxicity Assessment for contaminants found 

at Superfund sites is generally accomplished in two steps: hazard identification 

(identifying which contaminants are hazardous) and dose-response assessment." 

Risk Characterization " ... summarizes and combines outputs of the exposure and 

toxicity assessments to characterize baseline risk, both in quantitative expressions 

and qualitative statements." (EPA, 1989). Q-Risk was prepared to address the 

dose-response component found in the Toxicity Assessment element. A typical 

dose-response curve is represented by Figure 3A plots dose (mg/Kg/day) versus 

response (which could be a death or any adverse effect) in the observable range 

(Environ Corp., 1987). Also shown is the linear extrapolation from the typically 

high dose experimental range to the near origin region where chronic, long-term 

effects are expected to occur. Figure 3B plots the observed data and the Weibull 

and Multi-stage models as fitted to the data. At a dose of 50 mg/Kg/day a 

"threshold" is observed in the Weibull plot (indicated by the sharp increase in 
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FIGURE 2 
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slope). This threshold can be used to assume a point below which greater safety 

or lowered risk is observed. The other two models linearize the data near the 

origin, thereby perfecting greater unit risks for comparable doses. The current 

administrative position of the USEPA is that thresholds do not exist for 

carcinogens. The main reason for this is to be more conservative in determining 

a dose relating to acertain risk. This allows safer protection for the population as 

a whole. To assign a threshold to a general population would be a gross mis

interpretation, because of the vast genetic variability within a population. This 

latter view is shared by most toxicologist. Also, to obtain thresholds, research 

would take enormous resources and even if found would be suspect (Rail, 1978). 

Figure 4 plots dose (mg/Kg/day) versus response (Environ Corp., 1987) 

and represents the method by which EPA extrapolates lab data to low-dose 

regions. A risk is selected by assigning a unit exposure dose of 1 mg/Kg/ day. In 

the plot the corresponding risk is 0.0228, which means that incremental cancer 

risk per unit dose of chemical is 2.28 x 10-2
• This translates to one incremental 

cancer in 44 potential exposures. In general, regulatory levels of one in one 

million exposures are considered "acceptable." The USEPA recommends either 

the linear Multistage or the One-Hit model equation to estimate the risk 

associated with high carcinogenic risk levels (EPA, 1989). 

USEPA has established computerized data bases such as the Toxic 

Substances Release Inventory, the Chemical List, Information Pointer System, 

MIXTOX, and the Integrated Risk Information System (IRIS) to provide agency 
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estimates of these slope factors and related information (Shoeny, 1991). These 

data bases provide estimates of low-dose extrapolation from single models. 

In summary, all of the models employed fit the high-dose data within 

acceptable statistical ranges. Extrapolation to low-doses, however, shows 

significant variation, as observed in Figure 1. Using one incremental incidence of 

cancer per million of population as exposed an acceptable incremental risk 

illustrates some of the uncertainties associated with model selection. While 

essentially endemic to the current state of epidemiological knowledge, this 

uncertainty reduces confidence in the resultant assessments. 

The following sections include descriptions of the assumptions inherent in 

each of the models, coding of the Q-Risk program, a report of the results from 

data analyzed with Q-Risk, a comparison and discussion of these results, and a 

conclusion stating what has been accomplished. 
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CHAPTERD 

MATHEMATICAL MODELS USED FOR DOSE-RESPONSE 
EXTRAPOLATIONS 

"Cancers are believed to be single cell in origin .... Of a large number of 

cells at risk in the individual organism, one undergoes certain changes that allow 

it to divide and grow into a tumor. Thus we can view the carcinogenic process as 

mechanistically single cell in origin even though, by the time a cancer is 

pathologically recognizable, very extensive changes may have developed. . . . If the 

individual cancers arise from an original, single, "transformed" cell, then the 

statistical nature of the carcinogenic dose-response will be governed by the 

extreme tail of the "transformation" response distribution. The effect of this is to 

make virtually any process of discrete events approximately linear at low dose." 

(Crump, Hoel, Langley, and Peto, 1976). This means it would be linear in the 

sense that the slope would be equal to one and the shape of the dose-response 

curve would be linear and not convex or concave. 

The exact mechanisms for most environmentally induced diseases are not 

fully understood. To bridge this knowledge gap, the environmental toxicologist 

employs dose-response testing where laboratory models (i.e. animals, protists, 

etc.) are subjected to the chemicals of concern at defined dosage levels and for 

specific time periods. Typically, these are high-dosage, relatively short duration 
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tests to optimize laboratory resources while providing information in a timely 

manner (Brown, 1984). 

Most human exposures are chronic rather than acute in nature. These 

involve low-doses over extended periods. As such, laboratory models can not be 

applied directly to predications on human systems. To accomplish this 

conversion from acute to chronic exposures, mathematical extrapolations from 

the testing region to the typical exposure levels are attempted. The models 

available for this are of two types: 

• mechanistic 

• tolerance distribution 

Mechanisitic models assume that for carcinogenesis to occure a normal cell must 

be exposed to a certain number of hits by a toxicant. Tolerance distribution 

models assume that each individual has a unique exposure level or tolerance to a 

toxicant. Both type has several functional forms available to make these 

extrapolations. Selection is dependant upon either the underlying biological 

mechanisms of disease initiation or with fitting data with various statistical 

distributions (i.e. normal, log-normal, or Weibull). 

Extrapolations to low-dose regions result in either low-dose linearizations, 

as indicated in the previous quote (Crumpet al, 1976), or in the formation of a 

concentration threshold below which a response (disease) will not occur. Rail 

(1978) states "Many diseases resulting from exposure to foreign chemicals are 

delayed in their onset and, to some extent at least, are irreversible. That is, if 

12 



the chemical is removed, the disease continues to progress. or at least not regress. 

Typical are the diseases called cancer." (Rail. 1978). Figure 5 presents this 

threshold theory of chronic irreversible toxic effects. Part (a) of Figure 5 

illustrates the concept of assigning a concentration above which a deleterious 

effect is observed in any animal or human and below which there is no effect 

observed (i.e. a threshold). Part (b) illustrates the uncertainty of which the 

concentration should represent a threshold. Part (c) illustrates the point that if a 

threshold is assigned to a particular person or part of a population, then the 

question is to whom and when is this threshold applied. Figure 5 illustrates the 

threshold, but does not illustrate this important question. 

There are six commonly used mathematical dose-response models for this 

high-to-low dose extrapolation in animal test subjects. These are the Probit, Log

Logistic, Wei bull, One-hit, Multi-hit, and the Multi-stage models (Brown, 1984). 

Dose-response refers to the response of a subject to various levels of a stimulus 

(dose). The response may be quantified in terms of the number of tumors, birth 

defects, deaths, etc. observed. The dose concentration may be quantified in 

terms of dietary percent or volumetric concentrations ingested, inhaled or 

dermally contacted. The source of exposure can be either by air, food, soil or 

other external stimulus. 

Once the data have been extrapolated to the low-dose region an 

"acceptable incremental risk" can be calculated corresponding to a specific low 

level of response. Typically, for carcinogens, 95% upper bound confidence level 

13 
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or percentile is determined about the unit response (USEPA, l\1eans, 1989). This 

value, termed a slope or potency factor is used in conjunction \Vith chemical 

exposure levels to calculate probabilities of incurring excess cancers. 

The first three models are considered tolerance distribution models, while 

the last models are mechanistic based models. 

Tolerance distribution models 

Tolerance distribution models assume that each individual in an exposed 

group has a unique level of tolerance to a toxicant, the level of dose below which 

the toxicant is ineffective in producing an effect (i.e. the threshold). The only 

difference among the three tolerance distribution models is the assumption 

regarding the mathematical character of the distribution of response frequency. 

These models (Probit, Log-Logistic, and Weibull) possess a common assumption 

that there is a specific dose at which a subject will produce a quantal response 

(Brown, 1984). Above this concentration, a response is certain; below it there is 

no response. This is considered the subject's tolerance (Brown, 1984). 

Equation 1 gives a mathematical expression of the frequency distribution of 

tolerances, f(D) (Brown, 1984). This frequency distribution can be thought of as 

the range of tolerances for a population 

where: 

f(D) = aP(D)/ an 

aP(D) = Partial derivative as a function of dose (D) 
aD = Partial derivative in terms of dose (D) 

15 

(1) 



and an (the difference bet\veen the doses corresponding to each subjects tolerance 

level \vithin the population) is small. This represents the proportion of subjects 

whose tolerances lie bet\veen D and D + an. If all the subjects ha,·e a tolerance 

below or equal to an exposure dose, D0 , then all of them \Viii produce a 

response. The proportion, P(D0), that represents the total population responding 

is represented by equation 2, 

(2) 

where the integral is evaluated in the range 0 s D s D0• If it is assumed that 

all the subjects would respond to a considerably large dose level, then equation 2 

becomes: 

P(oo) = )f(D)aD = 1, (3) 

where the integral is evaluated in the range 0 s D s oo. Figure 6 compares a 

tolerance frequency distribution, f(D), with its similar cumulative distribution, 

P(D). This shows that the dose-response can be viewed as being represented by 

the function P(D) for a whole population or a randomly selected individual 

(Brown, 1984). 

Most often the frequency distribution of tolerances is skewed to one side as 

seen in Figure 7. This figure illustrates the frequency of response versus the 

concentration for the tolerance concentrations of a population (Finney, 1971). 

When a common logarithm transformation is applied to the scale of measurement 

(i.e., expressing the tolerances in terms of the common logarithm of 

concentrations), the distribution can resemble the Gaussian or normal 
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distribution as seen in Figure 8 (Finney, 1971). Figure 8 plots the logarithm of 

the concentration versus the frequency of response to produce a normal 

distribution curve. The significance is that they illustrate the use of log 

transformation to fit data to a symmetrical tolerance distribution. 

Probit (Loa-Normal) Model. Equation 4 presents the probit or log-normal 

model for the tolerance frequency distribution (Finney, 1971). "Gaddum 

proposed to measure the probability of response on a transformed scale, the 

normal equivalent deviate (or N.E.D)" (Finney, 1971). N.E.D is represented by 

the dose corresponding to probability in a norma distribution with mean zero and 

variance one (N.E.D = y). 

where: 

P(D) = (1/ u(21r)0
·
5)exp-(log10D -Jt)2/2u2)8D, 

u = standard population deviations 
~' =mean 
an = partial derivative in respect to dose 
P(D) = probability of a response as a function of dose 
-oo < log10(D) < + oo (Finney, 1971). 

(4) 

The dose-response function, P(D), is represented by equation 5 (Food Safety 

Council, 1980). Equation 5 is a result of the integration of equation 4. Y 

represents the response metameter which is a result of the probability log 

transformation and Y + 5 is the probit of P. (Food Safety Council, 1980) 

Y = P(D) = <l>[(log(D) - Jt)/u] = <l>(cx + Plog(D)) = ex + Plog(D) 

y = <&>·1 (P(D)) = ex + Plog(D) 

19 
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where: 

_,(x) = Standard normal integral from -oo to x 
a = -p.la (referred to as y-intercept) 
6 = 1/a (referred to as slope) 

The final equality in Equation 5 replaces the parameters p. and a with a and fJ. 

The idea of incorporating population statistics to determine tolerance 

distributions or dose response functions was first introduced by Gaddum (1933) 

and then by Bliss (1934) (Brown, 1984). Bliss (1934) looked at the effectiveness 

of a poison to kill Aphis rumicis L. Bliss observed an asymmetrical S-shaped 

curve when dosage was plotted directly against response, and stated that a 

common logarithmic plot of the dosage versus response in "probits" might have to 

be done to show a uniform dose-response distribution. Bliss suggested that the 

response interval be from 0.01% to 99.99%. This interval would then be 

transformed into a range of probits from 0 to 10, with 50% equaling 5 probits. 

Probit transformation originated with psychophysical investigators. Their 

problem was quantifying the effect of stimulus on human subjects whose 

statements were measured as "right or wrong" or "greater than or lesser than" 

answers. 

As indicated in Figure 9 the rate of increase of response per unit of dose is 

minimal in the zero and 100 percent ranges, but is sharp between the lower and 

upper responses. This produces a sigmoid curve as seen in Figure 9, which is 

derived from the skewed frequency tolerance distribution presented in Figure 7 

(Ymney, 1971). Figure 9 is an example of a plot of percentage responding against 
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dose. When the doses were transformed to the common logarithms, the 

tolerances became normally distributed as seen in Figure 10, which plots the 

logarithm of concentration versus percentage of insects affected (Finney, 1971). 

This shows that dose approaches zero at infinitely small values, but is limited at 

infinitely high doses. It is limited at infinitely high doses because all subjects 

will produce a response (shown by the uper "flat" portion of the s-curve. 

Gaddum proposed the transformation of response to the normal equivalent 

deviate (N.E.D.). This is represented by Y where Y + 5 equals the probit of the 

response (Food Safety Council, 1980). Figure 11 shows the effect on the 

frequency of response by this probit transformation (Finney, 1971) while Table 2 

gives the resulting probit corresponding to each percent mortality (Bliss, 1935). 

This table is useful in transforming a percent response into the corresponding 

probit. For example for a percent response of 10 the corresponding probit is 

3. 7184 (Bliss, 1935). 

This model was originally incorporated in the area of drug 

standardization, where the responses in the 5 to 95% range were of most interest 

in assessing the potency of drugs. Therefore no threshold was assumed for the 

individual tolerances (Food Safety Council, 1980). When measuring the response 

directly, when a delay between the time of exposure and a response was 

observed, the tolerance dose could be overestimated (Finney, 1971). Historically 

this model was used for dose-response interpolation (observable range) instead of 

extrapolation (outside observable range) (Brown, 1984). Mantel and Bryan 
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(1961) however, proposed a method for obtaining a "virtual safety" dose of 

carcinogenic compounds by low-dose extrapolation using the probit model. In 

this method, every agent was considered carcinogenic. A 1/100 million response 

for calculating a "virtually safe" dose was suggested. It \vas stated that 

extrapolation to low-dose levels based on various dose-response data could lead to 

overestimation of risk, because the tumor occurrence and dose relationship in the 

low-dose region might be different than that in the observed region. To avoid 

this overestimation the use of a low slope (i.e. equal to one) value from the 

observed data was suggested. They suggested that a slope of one probit per 

common logarithm be used. The statistical assurance level was set at 99 percent. 

Control data to check for spontaneously occurring responses were also employed. 

When spontaneous rates are rather low, the "safe" dose determined would not be 

considerably affected. It was also suggested that responses be observed over wide 

ranges of stimulus and that statistical variations in large sampling sizes be 

considered negligible. 

Mantel and Bryan et al. (1975) proposed an improved method to that 

investigated in 1961. An attempt was made to improve procedures to allow for 

spontaneous response rates, combining data from wide dose ranges, and 

calculating a combined "safe" dose from various data sets. The results from 

hypothetical experimental data sets revealed that the combined "safe" doses were 

considerably higher than those of the independent data sets. 
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Schneiderman and Mantel (1975) observed that experiments with large 

data sets with few responses produced a higher "safe" dose than those from 

similar smaller data sets. One major disadvantage of the Mantei .. Bryan method 

is that it lacked biological credibility. A zero dose did not correspond to zero 

response. Brown (1984) did not propose this method for valid estimates of 

lowdose risk. Therefore, the dose--response curve did not have any biological 

support (Guess and Crump, 1976). The Mantel and Bryan dose-response 

function is represented by Equation 6. 

P(d) = P(O) + (1 - P(O)) «<> (a + b log10 d), 

Where: 

P(O) = response due to background (Guess and Crump, 1976). 
d = dose 
P = dose-response function to be estimated 
«<> = standard normal distribution function 
a = curve fitting parameter 
b = curve fitting parameter (referred to as the slope) 

assumed to be one 
(Guess & Crump, 1976). 

(6) 

Although overestimation of the parameters a, b, P(O) were chosen in the high-

dose range for this method, the increased risk over background approached zero 

at a rapidly decreasing rate in the extrapolated region (Guess and Crump, 1976). 

When the probit model was applied to low-dose extrapolations of vinyl chloride 

fed rats, a "safe" dose of approximately 500 times that of the one--hit model 

(described below) was produced (Guess and Crump, 1976). Guess and Crump 

(1978) analyzed data from animals exposed to vinyl chloride, DDT, 

dimethylnitrosamine, and ionizing radiation. They observed that in low-dose 
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extrapolations of four sets of data the extremely flat (probit-like) dose-response 

curves in the low-dose region fit the data \vorse than those linear curves (one-hit 

and Multi-stage) in the same region. Guess and Crump (1976) proposed that 

large animal experimental data could produce ". . . valid lower confidence 

curves on dose that decrease with decreasing dose at a faster than linear rate.". 

Presently the use of confidence intervals with the linear multi-stange and one-hit 

models is being used in place of the conservative estimates of the Mantel and 

Bryan parameters and slope of 1 (Hanes and Wedel, 1985). This results in the 

production of "safe" dose levels which could be met by industries as opposed to 

those practically near zero (Guess & Crump, 1976). 

Loe-f..oaistic Model. The log-logistic model is also called the growth 

function, autocatalytic curve, or the logit function as it was developed from 

chemical kinetic theory (Brown, 1984). The resulting curve is sigmoidal in shape 

(Berkson, 1944) and has been used to assess the potency of drugs (i.e. the L.D. 

50; dose at which 50% of subjects will die) as compared to the probit model 

(Wilson and Worcester, 1943). Berkson (1944) stated that the term logistic was 

developed in 1920 by Pearl and Reed, who used the model for the description of 

population growth. The function itself is similar to the normal distribution, but 

fits the data from physicochemical phenomena better (Berkson, 1944). Equation 

7 represents the logistic function. 

P(D) = 1/[1 + exp-(a + b log10(D))], (7) 

28 



where b > 0 (Brown, 1984). The logistic function has an advantage of giving a 

better fit with large data sets over the log-normal model (Berkson, 1944). Table 

3 summarizes Berkson's comparison between the logit and the probit models. 

This shows on the basis of chi-square results, that either the results are the same 

or the logistic appears to have a slight advantage. The only result showing a 

distinct advantage (large difference between chi-square values) of the logistic is 

the Murray data. This may indicate that with a large sampling group the logistic 

is favorable. 

Weibull Model. The assumption of this model is that the distribution of 

response as a function of dose follows the Weibull distribution (Hallenbeck, 

1988), which previously has been utilized for the modeling of time to failure of 

electrical and mechanical devices (Hanes and Wedel, 1985). The model assumes 

a tolerance of the dose of a carcinogen for each subject (Hanes and Wedel, 1985) 

and is represented by equation 8 (Hallenbeck, 1988). 

where: 

P(D) = 1 - exp-a(D)b 

P(D) = probability of response as function of dose (D) 
a = curve fitting parameter (y-intercept) -when linearized 
D =dose 
b = curve fitting parameter (slope) -when linearized 

(8) 

This model does have biological credibility because the probability of response at 

zero dose equals zero (Hallenbeck, 1988). In the low-dose region the curve is 

linear forb = 1, concave forb < 1, and convex forb > 1 (Food Safety Council, 

1980). 
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Another general formula for the \Veibull model is given by equation 9. 

where: 

P = 1 - exp-(a + Jjxm), 

x = dose 
P = probability of response 
m = estimated parameter 
a = estimated parameter 
13 = estimated parameter (Carlborg, 1980). 

(9) 

Parameter a represents the background incidence rate, and the excess risk over 

background in the low-dose range can be given by Jjxm (Carlborg, 1980). The 

Virtually Safe Dose (VSD) at a 1/1,000,000 risk over background can be 

calculated by equation 10 (Carlborg, 1980). 

(10) 

Weighted least squares are used to estimate the parameters by linearizing the 

model (Carlborg, 1980). 

Y = -ln(1-P) = a + Jjxm, (11) 

The weight (W) for an observed value of Y is given by equation 12. 

W = nQ/P, (12) 

where Q = 1 - P and n represents the number of subjects at risk. A trial-and-

error would need to be performed on the parameter m (Carlborg, 1980) if a 

linear weighted least-squares program was used. The Weibull model parameters 

given in equation 8 can be estimated by linear regression of data sets of three 

points or greater (Hallenbeck, 1988). 
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Carlborg (1980) calculated VSDs for varying values of m. These are 

presented in Table 4 and Figure 12. Figure 12 plots the dose versus tumor rate 

for varying values of the parameter m. Carlborg (1980) proposed that it is the 

parameter m that determines the VSD in the low-dose range. Table 4 and Figure 

12 both show that the parameter m determines the VSD at low concentrations. 

The sharp increase in VSD resulting from an increase in the parameter m 

supports this observation. 

The tolerance distribution models are based on the assumption that when 

the response is quantal the frequency will depend on the concentration of the 

toxicant. The tolerance varies among subjects within the population due to the 

biological variability. Therefore, it is convenient to consider frequency of 

distribution of tolerances throughout the population (Brown, 1984). 

Mechanistic Models 

Mechanistic models are based on the assumption that for a normal cell to 

become cancerous a certain number of "hits" by a toxicant is required. These 

models, unlike the tolerance distribution models, do not have biological credibility 

(this means that at zero dose a zero response is obtained). 

Brown (1984) states, "A number of dose-response models have been 

suggested on the basis of assumptions regarding the mechanism of action of the 

toxic agent upon its target site. The "hit" or mechanism of action is the basis of 

the mechanistic theory. The "hit theory" rests upon the suggestion that a 

response is produced by the cell after being exposed to certain number of hits by 
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the toxic substance or by a certain number of stages of change (Hallenbeck .. 

1988). Four postulates upon \vhich the "hit theory" is based are (Bro\vn .. 1984): 

"(1) the organism has some number l\1 of "critical targets" (usually 
assumed to be infinitely large): 

"(2) the organism responds if m or more of these critical targets are 
"destroyed"; 

"(3) a critical target is destroyed if it is "hit" by k or more toxic particles; 

" ( 4) the probability of a hit in the low dose region is proportional to the 
dose level of the toxic agent .. i.e., Prob(hit) = Ad, A> 0." 

One-hit Model. Iverson and Arley produced one of the first quantitative 

theories of carcinogenesis, which became known as the "one-hit" model (Brown, 

1976). Equation 13 represents the one-hit model (Food Safety Council, 1980). 

where: 

P(D) = I - exp(-AD), 

(13) 

P(D) = probability of response as a function of dose (D) 
D =dose 
A = curve fitting parameter (slope) -when linearized 

and A> 0. AD represents the number of effective hits of an offending chemical 

and is taken to follow a Poisson distribution as a function of dose (Rai and Van 

Ryzin, 1979). This means that the model assumes a toxic effect occurs after a 

single effective hit is received (Rai and Van Ryzin, 1979). The parameter A, is 

considered the slope of the curve at the origin (Refer to equation 14) (Rai and 

Van Ryzin, 1979). 
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lim (d-a-0) (P(d)/d) = A (14) 

This sho\vs that as the limit of dose-response function approaches a dose of zero 

the parameter A equals the slope of the dose-response curve. The EPA currently 

uses the one-hit model for risk evaluation and disregards the concept of threshold 

(Wardlaw, 1985). "Radiation experience has been cited as the best evidence for 

the one-hit model, even though the action of genotoxic carcinogens differs from 

that of radiation. The pattern of responses seen in the induction of genetic 

mutation, which are likely involved in the cancer process, also suggests that the 

one-hit model may be valid ... This model is the most conservative in terms of 

setting the VSD" (Wardlaw, 1985). 

The Food and Drug Administration (FDA) also uses the one-hit model for 

risk evaluation of toxic chemicals (Maxim and Harrington, 1984). The FDA used 

the one-hit model with a 99 percent confidence interval as a safety factor for 

calculation of the VSD for polychlorinated biphenyls (PCB) concentrations in fish 

(Maxim and Harrington, 1984). 

In a report by a subcommittee on estimation of risks of irreversible, 

delayed toxicity to the Department of Health, Education, and Welfare Committee 

(DHEW), the one-hit model was recommended for low-dose extrapolation of 

incidence data (Hoel, et al., 1975). The one-hit model was also recommended for 

risk assessment by the BEIR Report (Hoel, et al. 1975). They found that the " ... 

use of the linear extrapolation from data obtained at high doses and dose rates 

may be justified on pragmatic grounds as a basis for risk estimation" (Hoel, et 
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al., 1975). The one-hit and multistage models become approximately linear at 

low dose levels. This linearity is important that these are conservative models 

(Brown, 1984). this means that the linearity in the low dose region produces a 

higher risk at a particular dose than does the convex curve. 

Multi-Hit Model. Rai and Van Ryzin ( 1979) proposed a generalized multi-

hit model based on a stochastic biological basis. This model assumes that a 

response (i.e., cancer) will be induced by series of "k" hits over a fixed period of 

time. Equation 15 represents the probability estimate of the toxic response 

occurring given a multi-hit mechanistic assumption of cancer initiation and 

propagation (Rai and Van Ryzin, 1979). This equation represents the probability 

of a response occurring if the number of fixed hits over a period of time follows a 

Poisson distribution with expectation Od for dosed (Rai and Van Ryzin, 1979). 

where: 

P(d)= P{X> = k}= E {(Od)iexp(~d>ti!} = 

I (tk-1exp<-t> /(k-1) !)dt, 

P( d) = probability of response 
k = number of hits 
t =time 
Od = expectation of number of hits 
d =dose 
0 ~ t ~ Od (Rai and Van Ryzin, 1979). 

(15) 

The last equality is a result of "... repeated integration by parts." (Rai and Van 

Ryzin, 1979). Equation 15 is rewritten to form equation 16 (Rai and Van Ryzin, 

1979). 

P(d) = P(d;k,O) = I g(t)at, (16) 
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where 0 ::;; t ::;; d. Equation 17 represents the function g(t) (Rai and Van Ryzin .. 

1979). 

where: 

g(t) = 8k tk·lexp(-9t) /r(k), 0 < t < 00' 

8 = scale parameter 
k = shape parameter 
t = time 

(17) 

The gamma function r(k) is represented by equation 18 (Rai and Van Ryzin, 

1978). 

(18) 

where 0::;; t::;; oo and u > 0. This produces a statistical interpretation of the model. 

The scale parameter represented by 8.1 and the shape parameter by k (k > 0) are 

used to fit data to the dose-response model. Equation 19 represents the response 

in the low dose region (Rai and Van Ryzin, 1979). 

where: 

k = curve fitting parameter (referred to as "number of hits") 
P( d) = probability of response 
8 = scale parameter 
r = gamma function 

(19) 

At low dose (near zero), response is represented by equation 20 (Rye and Van 

Ryzin, 1979). 

P(d) = cdt (20) 
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At k = 1 the model becomes the one-hit model. At k < 1 the curve is concave 

(gives higher estimate of risk) and at k > 1 convex (gives lower estimate of risk) 

(Rai and Van Ryzin, 1979). This means that the risk estimate is dependant on 

the number of hits required for carcinogenesis. At low doses the logit rnodel and 

multi-hit model are similar, and at high doses the multi-hit model is similar to the 

probit model (Food Safety Council, 1980). The Weibull model, a tolerance 

distribution model, also has similar extrapolation characteristics to the multi-hit 

model in which the tolerance distribution is gamma (Brown, 1984). 

Rai and Van Ryzin (1987) also proposed a multi-hit dose response model 

that incorporated non-linear kinetics. The incidence of spontaneous background 

response, when incorporated into the model, produced four parameters. They 

used maximum likelihood estimation to estimate these four parameters. They 

investigated three animal carcinogenicity bioassays that produce, respectively, 

concave, linear, and convex dose-response curves in the observed region (Rai and 

Van Ryzin, 1987). Figure 13 reveals the model from a compartmental point of 

view. This figure shows that a dose (D1(t)) administered at time t in 

compartment one is transformed by an outgoing process, T 1, to an internal toxic 

dose (D2(t)) at the target organ in the second compartment. Next this toxic dose 

is converted into a nontoxic dose by another outgoing process, T 2, into 

compartment three. Rai and Van Ryzin stated that the transformation process 

for any single compartment "... is said to follow dose-dependent Michaelis 

Menten nonlinear kinetics if 
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D'(t) =- [(bD(t))/(c+D(t))], b>O, c>O (21a) 

where D(t) is the dose concentration at timet in the single compartment and D'(t) 

is the first derivative of D(t) with respect to t. The constant b is the maximum 

rate of change and cis the Michaelis-Menten constant, i.e., the dose 

concentration in the compartment at which the rate of change is 1/2(b)" (Rai and 

Van Ryzin, 1987). The dose response model proposed by Rai and Van Ryzin 

(1987) based on nonlinear kinetics is represented by equation 21b. 

where: 

f(D) = 1 - exp-(a + XD8
) 

f(D) = probability of response 
a = curve fitting parameter 
X = curve fitting parameter 
{J = curve fitting parameter 

Multi-staee fArmita&e-DoiD Model. The processes involved in 

(21b) 

carcinogenesis are transformation and growth. One or more changes in a normal 

cell that enable it to form a tumor is called transformation. When the cell 

duplicates into multiple cells and produces a family of cells called clones, it is 

termed growth (Whittemore and Keller, 1978). The onset of carcinogenesis is 

caused by carcinogens (i.e. chemicals or viruses) (Whittemore and Keller, 1978). 

As stated in Whittemore and Keller (1978) Iverrsen and Arley (1952) proposed 

the earliest quantitative theory of carcinogenesis, which suggested that the normal 

cells were transformed to cancer cells in one stage. Equations 22 and 23 describe 

this theory. 

Po(O) = 1 (22) 
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where: 

p0(t) = probability that a cell is normal at timet 
p1(t) = the probability that the cell is transformed at timet 
A(t) = the transition probability rate 

(23) 

The multi-stage theory proposed by Muller and Nordling suggests that a 

cell can produce a tumor only after passing through k number of mutations 

(Whittemore and Keller, 1978). Figure 14 is a schematic of the k-stage theory of 

transformation where cells start as normal cells at stage zero and are transformed 

at the kth stage (Whittemore and Keller, 1978). A cell has the probability q of 

having one mutation in any year, but it cannot have more than one. (Whittemore 

and Keller, 1978). Equation 24 represents this assumption and resembles a 

binomial distribution (Whittemore and Keller, 1978). 

where: 

qk-1(1-q)a-k(a-1) ... (a-k + 1)/ (k-1)! (24) 

q = probability of having one mutation in any year (carcinogen studies 
are performed over a 70 year period) 

k = number of mutations 
a = year of mutation 

This equation produces the transformation probability rate per cell in the ~ 

year. 

As stated in Whiittemore and Keller (1978) Armitage and Doll (1954) in 

light of the work of Muller and Nordling (1953) proposed that ". . . k changes 

have different transition rates Xi(t), i = 0, ... ,k-1, •.. and they must occur in the 
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order O, ... ,k-1." Armitage and Doll further assumed that the effect of the agent 

at some of the stages was additive to effects induced by external stimuli at those 

stages. This caused a lower power thank (stages) forD (dose)." (Food Safety 

Council, 1980). Equation 25 presents the formula for this latest set of 

assumptions from Crump, Hoel, Langley and Peto (1976). This equation assumes 

additivity at all stages (Food Safety Council, 1980), 

where: 

P(D) = probability of response 
a = estimated parameter 
D =Dose 
i = number of stages 
0 :S i :S oo and ai is nonnegative. 

(25) 

Guess and Crump (1976) proposed a method of estimating the parameters 

in the Armitage and Doll Model by maximum likelihood estimation. They found 

that the lower order coefficients of the k = 4 curve were similar to those of the k 

= oo and k = 9 (Guess and Crump, 1976). Figure 15 illustrates these findings, 

where the observed frequencies of the various kth stages in the extrapolated 

region match almost exactly. Dose is parts per million of DDT fed to femal and 

male mice and resonse is the percentage of mice exhibiting tumors. The observed 

frequencies of the various kth stages vary only in the high dose region. 

Two methods are commonly employed to correct for background response 

at zero dose. That is, there is a base level of disease incidence associated with 
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any population. Toxicity testing focuses upon incremental increases in cancer or 

other effects. These background-response-correction methods offer alternatives 

to make null these non-specific effects. The first method, termed "Abbott's 

correction," assumes an independent action between the stimulus and the 

background (Brown, 1984). Equation 26 represents this assumption, 

where: 

P(D) = P0 + (1-P0)P*(D), 

P*(D) = dose-induced probability of response 
P(D) = probability of response 
P 0(D) = probability of response due to background 
(Brown, 1984). 

(26) 

This equation corrects the probability of response based on the independent 

background assumption. The second method proposes that the 

stimulus/background relationship is always additive and the overall probability of 

response will be a linear combination of the experimental and background 

chemical doses. This is illustrated by equation 27, 

P(D) = P*(D+ D0) (27) 

where: 

D0 = some unknown background dose 

Brown reports that "... both assumptions lead to identical mathematical models 

for overall response rates when the assumed dose-induced model is either the 

single-hit or multistage" (Brown, 1984). Figure 16 graphically shows the 

difference between the additive and independent assumption of background 

response using the log-logistic model by plotting dose versus response probability 
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(Brown, 1984). This figure shows both correction assumptions describe data 

equally well. Table 5 presents data showing the vast difference between the two 

assumptions in the low-dose region using the log .. normal model at various doses 

(Brown, 1984). Hoel found that " ... low dose linearity prevails except when the 

background mechanism is totally independent of the dose .. induced mechanism." 

(Brown, 1984). 

Each of these correction methods will introduce specific biases. In order 

to standardize this approach a decision was made to remove this background 

before the dose-response data was modeled. 

Summary 

As shown in Figure 1 and discussed in the preceding information, these 

five dose-response models can generate vastly different results. Professional 

scientists and engineers require techniques which allow comparisons between 

alternative formulations whenever environmentally critical decisions are to be 

made. Similarly, students can benefit from techniques which allow quantification 

and subsequent comparisons among often arcane theoretical material. Q-Risk is 

an attempt to aid all of these audiences with these problems. 
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CHAPrERm 

MATERIALS AND METHODS 
Q-Risk Computer Program 

Development of Pro&ram 

This program was developed to aid the scientist in extending dose response 

data. The main focus of the program was to provide a "user-friendly" computer 

code to aid in risk calculations and serve as a tutorial in some of the areas of 

environmental decision making. The program incorporated the Probit, Weibull, 

Log-logistic, One-hit, and Multi-stage dose-response models and was structured to 

allow users with minimal computer knowledge to spend more time completing 

data analysis than learning how to operate a computer or specific, more complex 

codes. 

To accomplish this, Microsoft <t QuickBasic, version 4.5, was used to 

generate the basic code. This complex language was chosen due to its graphic 

capabilities and abilities to do reiterative calculations. Version 4.5 is also 

equipped with its own compiler so that "stand-alone" executable files could be 

made. These "stand-alone" executable files allow the user to be able to run the 

code under Microsoft <t or related DOS without having to use interpretive 

QuickBasic, allowing easier, quicker and more universal operation on practically 

any mM<t -compatible home computer. 
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The program was designed with tutorial screens explaining the various 

dose-response models, calculations, and graphing. Menus are generated to allow 

easy access to any part of the program. Data files and output files (containing 

estimated parameter values and model information) are written during execution 

for future use. Graphs of the original data and extrapolated data are generated 

for the user to do dose-response determination. Axis ranges of the graphs can be 

chosen by the user to allow some flexibility in plotting. Parameters for each 

model are calculated instantly by simple, directed keystrokes. The program will 

analyze a minimum of 3 and a maximum of 30 dose-response data points. 

Code For Model Parameter Calculations 

Method Of Estimation. The method chosen to estimate the curve fitting 

parameters for the tolerance distribution models was linear regression. This was 

chosen over maximum likelihood estimation because of the ease of calculation, 

coding of the program sequence, and processing time. The following equations, 

28 through 30, were used for the linear regression calculations. 

A (y-intercept) = Iy - B*Ix/n 

B (slope) = n*Ixy - Ix*Iy/(n*Ix2 
- (Ix)2

) 

r (correlation coeft) = 

n*(Ixy - Ixiy)/(..J[n*Ir .. (Ix)2][n*Iy2 
- (Iy)2

]), 

where: 

n = number of data points. 

y = represents response data point 
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x = represents dose data point 

These equations were used to calculate the curve-fitting parameters for the 

tolerance distribution models by linear regression using the equation of the line (y 

= mX + b). The A and B parameters would correspond to the curve fitting 

parameters in the linearized tolerance distribution equations as described below. 

The One-Hit and Multi-stage model parameters were estimated using 

Gauss-Jordan elimination instead of the alternative method maximum likelihood 

estimation, because of the the ease of calculation, coding of the program 

sequence, and processing time. Although linear regression could have been used 

on the One-Hit model, Gauss-Jordan elimination was used because of the need to 

normalize the parameter estimation for the mechanistic models. That is, to apply 

the same method of parameter estimation for each of the mechanistic models. 

For a detailed description of the Gauss-Jordan elimination method see Appendix 

A (Equations 38-43). 

Probit Model. The probit model parameters were estimated using the 

equation found in Hallenbeck (1988) (Equation 32). This equation is in the linear 

form and is derived from Equation 31 after log transformation and linearization 

as discussed by Hallenbeck (1988). 

(31) 

z = b log10 D + a (32) 

where: 

z = standard normal variate 
a = -p.l u (p. = population mean of log10 D 
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u = population standard deviation of log10 D) 
b = 1/u. 

The standard normal variate was calculated using a probit data file similar 

to that previously presented in Table 2 (Finney, 1971) that related pro bits to their 

corresponding percent response. The standard normal variate was calculated 

using equation 33 (Food and Safety Council, 1980). 

z = Probit- 5 (33) 

Once the probability of response was converted and the common logarithm of 

dose calculated, the curve parameters a and band the regression coefficient were 

calculated. 

Lo&-Ioaisfic Model. Equation 34 was transformed into a linear form 

(equation 35), and linear regression was used for calculating the curve 

parameters (Hallenbeck, 1988). See Appendix A for linear transformation. 

where: 

- In [(1-P JIP J = a + b*log D 

Pe = probability of response 
a = curve fitting parameter (y-intercept) 
b = curve fitting parameter (slope) 
D =dose 

Weibull Model. The original model equation (equation 36) was 

(34) 

(35) 

transformed into a linear form (equation 37), and linear regression was used for 

calculating the curve parameters (Hallenbeck, 1988). See Appendix A for linear 

transformation. 
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Pe = 1 - exp-(aDb) 

ln[-ln(l-Pe)] = In a + b*ln D 

One-Hit Model. The one-hit model is represented by equation 44 

(36) 

(37) 

(Hallenbeck, 1988). Parameter A was calculated using Gauss-Jordian elimination 

to solve a least-squares polynomial fit of n data pairs. The polynomial is set to 

the first degree (p = 1), thereby assuming that "cancer" was produced in one 

stage. 

P(D) = 1 - e-<>.D> (44) 

The linear equation (equation 45) used for estimation of the parameter, A1 was a 

transformation of equation 44. Y in equation 38 is represented by -In (1-Pe), and 

only the first two coefficients are determined as the degree of the polynomial was 

set equal to one in conjunction with the one-hit assumptions. 

(45) 

Multi-Hit Model. The multi-hit model was not included in the Q-Risk 

program because of its similarity of extrapolation characteristics to the Weibull 

model (Brown, 1984). 

Multi-Stge Model. The multi-stage model parameters were estimated by 

the Gauss-Jordan code sequence. The user was given a choice of choosing up to 

a fifth degree polynomial. The limit was based on two reasons: (1) Guess and 

Crump (1976) found that the low-order coefficients of a polynomial curve of 

degree 4 (K = 4) were the same as those for a polynomial curve of degree oo up 

to 9 significant figures, and (2) Whittemore and Keller (1978) stated that there 
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" ... there is a lack of any direct experimental evidence that cancer occurs in n1ore 

than two stages." The linear equation (equation 47) used for estilnation of the 

polynomial coefficients \vas transformed from the original ntodel equation 

(equation 46). 

P(D) = l - exp-(}: ex iDi) (46) 

(47) 

where ex i ~ 0 and 0 ~ i ~ k (Food and Safety Council~ 1980). See Appendix A 

for the linear transformation. 

Codin& Of 0-RISK'S Proerams 

Q-Risk \vas divided into ten separate programs. The entire code \Vas 

divided into ten separate programs. This was done to facilitate compiling. The 

ten separate programs together occupy approximately 500~000 bytes of memory. 

Each compiled program was accessed from a central code responsible for 

displaying the user menus and graphing the results. The ten basic programs are 

listed in Table 6, which lists the function/ description of each of these executable 

files. Figures 17 A and 17B, Q-Risk flow charts, present program flow charts for 

the total code. The QRA.EXE program is the main program from which all 

subroutines and subprograms are called upon response from the user. QRA.EXE 

is executed by typing QRA at the disk drive prompt. The user has the option of 

exiting to DOS throughout the program. Information screens describing what the 

program does and models included are presented after the subroutines are called. 
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TABLE 6 

FILES INCORPORATED INTO Q-RISK 

FILENAME Jil.JNCTIONIDESCRIPI10N 

QRA.EXE Main Program. Contains Main Menu and all subsequent menus, 
model descriptions, model limitations, model data requirements and 
graphing routine. 

Subroutine O~'U Draws the letters "O~'U." Called from QRA.EXE. Draws initial 
screens 

INTRO.EXE Lists models and brief introduction. Called from QRA.EXE. 

Subroutine SCPDR Sets the screen coordinates and resolution for graphing. Called from 
QRA.EXE. 

ENTRY.EXE Called from QRA.EXE. User is allowed to either input new data or 
use an existing data file. Creates DRI.DAT. Produces output file 
containing input data. 

PROB.EXE Called from QRA.EXE. Uses linear regression to estimate curve 
fitting parameters for Probit .Model. Calls a PROB.DAT file for 
transformation of percent response. Produces output flle 
PROBIT.OUf and data file PROBIT.DAT. 

WEIL.EXE Called from QRA.EXE. Uses linear regression to calculate curve 
fitting parameters for the Weibull model. Produces output file 
WEIL.OUf and data me WEIL.DAT. 

LOGCAL.EXE Called from QRA.EXE. Uses linear regression to calculate curve 
fitting parameters for the Log-logistic model. Produces output file 
LOGLOG.OUf and data me LOGCAL.DAT. 

ONEHIT.EXE Called from QRA.EXE. Uses Gauss-Jordan elimination sequence to 
calculate curve fitting parameter for One-Hit model. Produces 
output flle ONEHIT.OUf and data me ONEHIT.DAT. 

MUL TSTG.EXE Called from QRA.EXE. Uses Gauss-Jordan elimination sequence to 
calculate coefficients of the kth degree polynomial for the .Multi-Stage 
.Model. Produces output me .MUL TSTG .our and data me 
.MULSTG.DAT. 

Subroutine WELSR Draws screen that displays author and program version. 

Subroutine WELC3 Draws second welcome screen. 

DA T ALIM.EXE Program for displaying model information. 

DATAREQ.EXE Program for displaying model requirements for program. 
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Fig. 178. - Q-RISK FLOWCHART PART 2 
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Next, the main menu is displayed giving the user a list of functions to perform by 

pressing a function key. 

The following are the functions available to the user: 

• Model Information/Description 
• Data Required For Each Model 
• Data Entry 
• Parameter Estimation 
• Output Of Results 

The "Model Information/Description" function provides a description of each 

model's assumption and general information. The "Data Required For Each 

Model" function explains what parameters are required for each model. The 

"Parameter Estimation" function estimates the parameters for each model after 

selecting the desired model. The "Output Of Results" function produces graphs 

of the original and extrapolated data after parameter estimation. Before the user 

can perform parameter estimations data must be entered or a data file selected 

by the user. The user must also perform the parameter estimation before 

selecting the "Output Of Results" option. After performing each option the user 

is given the choice of returning to the main menu or exiting to DOS. A Shift + 

Printscrn option is given to the user to allow them to print the plot. 

ORA.EXE fro&ram. Three subroutines are incorporated_ into the main 

program (see Table 6). This main program also includes routines for the "Main 

Menu" (from which all functions of the program are called), information screens, 

help screens, and graphing sequences. 
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Introductory Screens. Upon entry to QRA.EXE the user can go to the 

main menu or choose to vie\v the introductory information screens that tell about 

Q-Risk. The program INTRO.EXE is executed upon selection of the latter option 

which displays these information screens. 

Model Info/Data Requirements. The subprogram DATALil\1.EXE is 

executed upon selection of the model description/information option from the 

main menu. This code sequence gives the user a list of models to choose from for 

information. The subprogram DATAREQ.EXE presents the user \Vith screens 

explaining the data required for each model. 

ENTRY .EXE Proamun. This option presented a help screen named "Data 

Limitations." This screen explains the limitations of the model in terms of the 

degree of the polynomial for the Gauss-Jordan elimination (see Appendix A for 

explanation of this method). The user could either input new data or use a 

previously created data file. The user was allowed to enter up to 30 dose

response data points. Since the models used in the program do not compensate 

for background response, the user was not allowed to input a response greater 

than zero for a corresponding dose of zero. Once the data are entered a screen 

was created to review and correct, if necessary, the input data. A data file is 

created once the user inputs the name they wish to call the file, called 

"NAME.DAT". This * .DAT file contains the original data points, number of 

data points, and the dose-response units of measurement and is named by the 

user. This file can be called for future use. Recall that this program must have 
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been executed by the user before any parameter estimation or plotting could be 

performed. 

PROB.EXE Proeram. By selecting the parameter estintation option front 

the main menu and then the Probit 1\lodel option. PROB.EXE is executed. This 

program opens the previously created data file PROB.DAT. which contains the 

corresponding Probit values for the percent responses. The percent response \Vas 

transformed into a standard normal variate, and then the curve fitting 

parameters were estimated using linear regression. Once the paranteters are 

estimated, the viewer is given a screen displaying the parameters, the model 

equation, and the correlation coefficient. This saves to two output files nanted 

"PROBIT.OUT"and "PROBIT.DAT" containing the identical information as the 

screen as well as the estimated parameters. These files consisting of the input. 

output and parameter files can be subsequently manipulated by DOS editors or 

appropriate word processors. 

LOGCAL.EXE Prop-am. This program also called from the main 

program's menu through selection of the parameter estimation option generates 

the Log-Logistic Model option. The curve fitting parameters for the Log-Logistic 

Model are calculated using linear regression. Two output files are created called 

"LOGCAL.DAT" and "LOGLOG.OUT." The latter file contains the estimated 

parameters, the equation of the model, the estimated parameters, and the 

correlation coefficient. The * .DAT file contains only the estimated parameters. 
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WEIL.EXE Proeram. The \VEIBULL :\lodel option is called front the 

main program. The curve fitting panmteters for the \Veihull rnodel were 

calculated using linear regression. A data file called "\VEIL.DAT" is created 

\Vhich contains the estimated parameters_ and an output file called "\VEIL.()UT" 

containing the equation of the ntodel~ the estimated paranteters. and the 

correlation coefficient is produced. 

ONEIDT .EXE Proa:ram. The coefficients of the first degree polynornial 

for the One-Hit model were calculated using the Gauss-Jordan elintination 

sequence. The estimated coefficients for the first degree polynornial and the chi

square value for the model were written to a data file called "ONEIIIT. DA T". 

The chi-square value gives a quantitative description of how well the rnodel fits 

the data (i.e. the higher the value the better the model fits the data). The 

estimated coefficients for the first degree polynomial, the chi-square value, and 

the equation of the model were written to an output file called "()NEIIIT .OUT". 

MULTSTG.EXE Prrnroun. Prior to parameter estimation the viewer was 

given a help screen explaining the polynomial equation used and the selection of 

the kth (kth refers to the stage of cancer) degree of the polynomial. These 

parameter values, the chi-square value, and the model equation were written to 

an output file called "MULSTG.OUT". The parameters were written to a data 

file called "MULSTG.DAT". 
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CHAPTER IV 

RESULTS AND DISCUSSION 
Q-RISK BASIC CODE SEQUENCE 

Q-RISK Input AND Output 

Figure 18 is the first screen that appears once Q-Risk is started. This 

screen is an emblem for the Oklahoma State University ({)SU). Figures 19 

through 30 represent welcome and information screens throughout the Q-Risk 

program. Figures 31 through 35 are examples of the selection n1enus found in 

the program. Figure 31 is the main menu from which all other functions are 

accessed. The model was programmed to allow the user to use a data file 

previously generated or to input original data. The user was allo\ved to name the 

file also with a *. dat file extension for later manipulation or review. Figures 36 

through 40 are the screens which display the parameter estimate results for each 

of the models. These screens are produced by selecting the "Parameter 

Estimation" function and subsequently the function key for the corresponding 

model whose parameters are to be estimated. Figures 36, 37, 38, 39, and 40 are 

screens which lists the results of the linear regression for each model and the 

equation for that model. The parameter A is the y-intercept and B is the slope. 

The "Log Dose (#)" values represent X values and the "Transformed Response" 
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FIGCRE IS 
OSC E.\IBLE.\1 SCREE.Y 

_ .. ---------

' ~ I 
~.. ..·' · ... _ .. · 

------------· 
(P,ess any key to continue o~ <ESC> to QUIT) 
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FIGURE 19 
FIRST lVELCO.liE SCREE~V 

y(TODAYS DATE~====-=--

1 

07-06-1994 

Q-RISK 

Welcome to Oklahoma State Univers~ty 

ouant1tat1ve Dose-Response Compar1son Program 

Written by: Bryce K. Smith 
William f. McTernan 

Programmed by: Bryce K. Sm1th 

OSU - Department of Civil/EnvLronmental Enq1neer1nq 
(c) COPYRIGHT - l994 

(Press any key to continue or <ESC> to QUIT) 

FIGURE 20 
SECOND lVELCOME SCREEN 

rTODAYS DATE] 

07-06-1994 

Q-RISK 

QUANTITATIVE RISK ASSESSMENT PROGRAM 

VIRSIOlf - 1. 0 

osu - oepartmen~ of Civil/Environmental Engineering 

(C) COPYRIGHT - 1994 

(Preas (Fl)- cantinue,<ESC> - QUIT, or FlO - Main Menu) 
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FIGVRE 21 
FIRST I.VTRODUCTORY I.VFORJl.4TlOiV SCREE~\' 

Q-RISK)===--------=----------------------------------------------~ 

1 

Q-RISK, Quantitative Risk Assessment Program, incorporates 6 
commonly used math models for quant1tative dose-response 
compar1sons of the results of exper1mental assays. These models 
extrapolate the results from high-dose to low-dose levels. 
This is done to address the long term, chron1c effects that 
result from low-dosages of crltical chemicals. These tests, 
called dose-response evaluations, are commonly completed Wlth 
high concentrations of critical chemlcals, for relatively short 
periods of time with an1mal subjects. From this extrapolation 
a risk factor can be calculated. This risk factor serves as a 
quantitative measurement of the human health risk from the 
exposure to tox1c substances at low-dose levels. 

Selection of a particular model often results in widely di!!er
ing r1sk estimates. Work reported in Brown (1984) shows a s1x 
order 1ncrease in daily pesticide dose for a given r1sk level 
depending upon model selection. This model uncertainty, therefore, 
can have s1gn1ficant public health, environmental or econom1c 
impact. 

(<PGON>- continue, or <ESC>- Quit.] 

FIGURE 22 
SECOND INTRODUCTORY INFORMATION SCREEN 

(Q-RISK]=-------------------------------------------------------~---

The models that are included in this program are: 

(1) Log-normal (probit) 
(2) Log-logistic (legit) 
(3) Weibull 
(4) one-hit _ 
(5) Multi-hit (*Description only*) 
(6) Multi-stage 

(<PGDN>- continua, <PGUP>- previous page, or <ESC> to quit.} 
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FIGFRE ~3 
THIRD 1.\'TRODUCTORY I.VFOR.\IATIO.V SCREE.\' 

rr(O-RISK1=-----------------------------------------------------~ 11 ,The s~ngle-h~t and the multi-stage models a~e the moat conserv-
;1 at~ve 1n the sense that they produce near-or~g~n linear estimatea. 
!I In l~eu of actual cause-effect data, EPA recommend• that these 

more conservat~ve est~mators be used. These &lX models can be 
:

1

1 divided up ~nto two general groups. The first three listed 
! (log-normal, log-loglstic, and Weibull) are considered Tolerance 
11 Distrlbu~ion Models. These models bas~cally assume that there 1 s 
l a speclflc dose at which a subJect Wlll produce a quanta! response. 
~ There are set dose levels above which there 1s a probab~lity that 1 

' a response will occur, below this level there is reduced probability 
of a response occurring. The event of a quanta! response for any , 
particular subject is mainly dependant on the dose of the tox1cant. 
E~ch of these models also assumes that the data fit a frequency 
d~strlbution of tolerances. The dose below which there is no 
~esponse produced and above which is a probability ot a response, 
1s termed the concentration threshold. 

~--------(<PGDN>-continue OR <FlO>-MENU.J----------------------------• 

FIGURE 24 
FOURTH INTRODUCTORY INFORMATION SCREEN 

(0-RISKl=---------------------------------------------------~ The last three above listed models (One-hit, Multi-hit, & 
Multi-hit) are mechanistic models. Thea• models asaume that 
a quantal response is generated from a certain number of hita 
on a single critical target. AD example would be the exposure of 
a particular gene to a spec1fic toxicant or radiation required for 
mutation (i.e. cancer). 

Krewaki and Van Ryzin (1981) showed that the log-normal (probit) 
model produces an est~te of the VSD (virtually safe dose) that 
ia larger than that of the Weibull, log-logistic, and multi-
hit, and single-hit models. 

since moat human exposures are chronic rather than accute in 
in nature. The exposure period can be an extended period of time. 
Tbeae models attempt to extrapolate animal quantal bio-assay data 
from the observed region to the typical exposure levels. Thia is 
due to the snort-exposure periods involved, and because subjecting 
humans to high doses of toxicant would not be prac~ical. 

~--------•(<FlO>- Menu OR <PGUP> - previous screen)--------------------• 
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FIG'CRE 25 
PRE-~\IA.LV .\1£;.\'U SCREEi.\' 

Q-RISK 

To rev1ew the prev1ous 1nfo~a~1on 
press ~PGUP>, ~o con~~nue to tne ma1n 
menu press <PGDN>. 

CAP LOCK KEY MUST BE CN!! 

FIGURE 26 
EXAMPLE SCREEN OF MODEL INFORMATION 

(PROBIT MODELJ=---------------------------------------------------~ 
This model assumes that logar~thma of the ~olerance concantra-

ions follow a normal frequency distr~ution. This modal 
was first used by psychophysical investigators, who were faced 
with the problem of quantifying the maqnituda of the effect 
of a stimulus on their patients baaed on statmants from their 
patients. 

In 1933 Gaddum suggaatad the use of converting 
each percentage to ita normal equivalent deviation (N.E.D). 
This resembles Fechnars transformation in 1860. This modal waa 
used by Mantel-Bryan in 1961 for deriving virtual safe doaea of 
carcinogenic agents. The Mantel-Bryan procedure was later reYiaed 
in 1975. They defined the virtual safe dose to be 1/100 million. 
This modal however does lack complete biological credibility, 
because tha~robality of a response at 0 dose doaan•t equal 0. 

(<PGDN>- continua, or <FlO>- RETURN TO MENU.] 
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FIGURE 27 
E .. YA.JIPLE OF DAI:-\ REQUIREJIE1VT SCREE1V 

~[DATA REQUIREMENTS]------------------------------------------------~ 
!I 

il 
I 

II 
li 

II 

il 
:I 

il 

i' 

GENERAL: 

This program supports a minimum of J and a max~mum of 
of JO Dose/Response data po~nts. The response should be in the 
form of \ of population hav~ng a response to a spec~fic dose. 
The est1mates of the parameters for these models do not include a I 
correction for background induced response. That 1s, these models 
are intended to calculate the probability of incremental rather than. 
total effect. Numerous correct1ons are available to remove I 
these background effects. These include various additive and 
independant assumptions, which mean that the background incidence i 
rate acts either 1n addition to or indapendant of the tox~cant. \ 
Each of these correction methods will introduce specific biases. 
In order to standardize this approach a dac~s~on was made to 
remove this background before the dose-response data ware modeled. 
The user may find data in the open literature (Food Safety counc1l, 
1980) where this background correction was made. Because ot the 
lack of background corrections, these models Wlll not reproduce 
these data wall. 

[<PGDN>-continue, or <FlO>-RETURN TO MAIN MENU.) 

FIGURE 28 
EXAMPLE OF DATA UMITATION SCREEN 

DATA LIMITATIONS: 

The one-hit and multi-stage modal parameters are solved by 
Guaas-Jordan el~ation. In the subrout~naa for each of theae 
models there e~sts a statement in which dose is to the nth power. 
The nth power is the degree of tha polynomial plus one. If the 
value of dose is extremely large, the limits of O-Bas~c are 
exceeded and the program will lock-up. 

Therefore the degree of the polynomial is limited to s. Thia 
is suppo~ed by the lack of strong evidence to suggest that 
requires more than 2 stages for a cancerous call to be generated. 
Alae, the lower order coefficients are quite sLmilar to those of 
the i = m lower order coefficients 
(Guess & Crump,l976). 

[<PGDN> - EXAMPLE, <Fl> - USE EXISTING DATA FILE, <FlO> - ENTER DATA] 
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FIGURE 29 
DATA ENTRl" E .. YAJ.\lPLE SCREE1V 

E~TRY EXAMPLE: 

ENTER COSE L~ITS: ngjkg;day 
ENTER RESPONSE u~ITS: \ KILL or \ WITH TUMORS 

DOSE (ppm) (ENTER IN THE CONCENTRATION VALUE;i.e. 50) 

RESPONSE (\KILL) (ENTER CORRESPONDING RESPONSE, i.e. 0.1 ( 2 10\} 

(<PGDN> - cont~nue) 
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FIGURE 30 
PLOTIING HEU' SCREEN 

rr(Q-RISKJ----------------------------------------------------~ The follow~ng plots the dose and response values 
extraoolated to zero. 7he dose values are asas~qned from lOA-1 
t~ 10A·8. The plot ~Sa log-log plot. ~ecall zero ~s the 
t:le log of ::... 

::1 most 1nstances the linear1zed multl·stage model should track 
t:le one-h~t model, and both are suggested by the EPA. 
The multl·stage g1ves a cons1derably more conservat1ve est1mate due 
to the dom1nance of the zero-oder coeffic1ent 1n the polynom1al 
equat1on. The zero order coeffic1ent ~s cons1dered the 1nc1dence 
rate due to background (recall this model doea not 1nclude 
background correct1on) . 

The follow1nq reference discusaes the use of background correct1on 
w1th the multi-stage model: 

Whittemore. Alice, Keller, Joseon B. (1978). ouant1tat1ve 
Theor1es Of carc1noqenes1s. SIAM Rev1ew, 20, No.l. pages 1-30. 

I 

(<PGDN> to continue, or <ESC>-to quit.) 

FIGURE 31 
MAIN MENU SCREEN 

Q-RISX 

(MAIN MERUJ--------------------------------~ 

(1'1) - MODEL DESCRIPTION/INFORMATION 
( 1'2) - DATA REOtfiJW) FOR EACH MODEL 
(1'3) - DATA EliTRY 
(1'4) - MODEL CURVE - FITTING 

PARAMETER ESTIMATION 
( 1'!5) 01l'l'PUT OF RESULTS (VIEW GRAPHS ) 
(FlO) - RETURN TO DOS 
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FIGURE 32 
MODEL INFORMATION MENU SCREEN 

Q-RISK 

-[HODEL INFORMATIONl-------------.. 

I (Fll - LOG-NORMAL !PROBlTl 
I (F2) - LOG-LOGISTIC (LOGIT) I (Fl) - WEIBULL 
t ( F4) - ONE-HIT 
I (FS) - MULTI-HIT 
1 (F6) - MULTI-STAGE 

(FlO) - RETURN TO MAIN MENU 

FIGURE33 
PARAMETER ESTIMATION MENU SCREEN 

Q-RIU I 

(PARAMETER ESIMATIOHJ-----------.._. 

(Pl) - LOG-NORMAL (PROBIT) 
(P2) - LOG-LOGISTIC (LOGIT) 
( P3) - W'IIBULL 
CF4) - OR-BIT 
(F5) - MULTI-STAGE 
(FlO) - Rft'UtUf TO MAIN MDU 
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FIGURE 34 
RESULTS AIENU SCREEN 

Q-RISK 

(G~HS1------------------------------------------~ 

(Fll - PLOT LOG-NORMAL CPROBIT) MODEL 
(F2) - PLOT EXTRAPOLATION-TO-ZERO REGION OF DOSE-

RESPONSE DATA USING THE FOLLOWING FOUR MODELSl 

- LOG-LOGISTIC (LOGIT1 
- WEIBULL 
- ONE-HIT 
- MULTI-STAGE 

(FS) - PLOT OBSERVED REGION OF DOSE-RESPONSE DATA 
(FlO) - RETURN TO MAIN MENU 

FIGURE35 
EX.TRAPOLA.TED PLOT MENU SCREEN 

' ' (J:X'%'1tAPOLATED Rl!:C%011 GRUIIl------------, 

(n) - PLOT EX'22APQLA'l'I01f-'r0-ZDG JUI:Gl:OII 
( n) - RftUR1I TO R.ESO'LTS MDU 
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FIGURE 36 

Q-RISK SCREEN FOR LOG-NORMAL PARAMETER ESTIMATE RESULTS 

LOG-NORMAL (FROBIT) PARAMETERS 

LINEAR REGRESSION RESULSTS 

A (y-intercept) = -2.25400 

B (slope) = 0.97001 
r (correlation coefficient) = 0.913136661 

LINEARIZED LOG-NORMAL (PROBIT) EQUATION: 

z = B*LOG*(D) + A 

(Press any key to continue or <ESC> to QUIT) 

FIGURE 37 

Q-RISK SCREEN LOT-LOGISTIC PARAMETER ESTIMATE RESULTS 

LOG-LOGISTIC PARAMETERS 

LINEAR REGRESSION RESULTS 

A (Y-INTERCEPT) = -4.04844 

B (SLOPE) = 1.73824 
r (correlation coefficient) = 0.930654407 

LOG-LOGISTIC LINEARIZED EQUATION: 

P(D) = 1/(l+EXPA-(A + B*LOG*(D))] 

(Press any key to continue or <ESC> to QUIT) 
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FIGURE 38 
Q-RISK SCREE~V FOR \VEIBULL PARAAIETER ESTL.\lATE RESULTS 

WEIBULL PARAMETERS 

LINEAR REGRESSION RESULTS 

A = 0.02041 
ln A (y-intercept) = -3.8919 
B (slope) = 0.64556 
r (correlation coefficient) = 0.945852816 

WEIBULL LINEAR EQUATION: 

P(D) 1 - EXP~-A*DAB 

(Press any key to continue or <ESC> to QUIT) 

FIGURE 39 
(};-RISK SCREEN FOR ONE-HIT PARAMETER ESTIMATE RESULTS 

ONE-HIT PARAMETERS 

A( O) = +4.31296229362E-03 
A( 1) = +4.3164095841JE-03 

x~2 (CHI-SQUARE) • 0.1770 
DEGREES OF FREEDOM • l 

A(O) = RESPONSE DUE TO BACKGROUND 
A(l) = COEFFICIENT USED IN THE ONE-HIT EQUATION 

ONE-HIT EQUATION: 

P(D) • 1 - EXP~(A(l)*DJ 
(Press any key to continue or <ESC> to QUIT) 
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FIGURE 40 
Q-RISK SCREEN FOR !tlULTI-STAGE PARAAIETER ESTI!tlATE RESULTS 

MULTI-STAGE PARAMET~RS 

COEFFICIENT VALUES OF THE (i)+l DEGREE POLYNOMIAL 

~7-~;-:-:;~;~;~;;;;;~;;:~~-----------------------
a( 1) • +7.42176035419E-OJ 
a( 2) • -1.98967845790E-05 
a( 3) • -2.12154918700E-06 
a( 4) = +8.604817J0314E-09 

a(O) corresponas to the response due to backqround 
a(i) corresponas to the coefficient of the (i)th staqa. 
a(i) is the coefficient in the equation below. 
i • staqe of the call : i + 1 • daqrea ot polyno•ial 

MULTI-STAGE EQUATION: 

P(D) • l- EXP-~[-a(i)*D-(1)) , 0 < i < • 

(Prasa any kay to continua or <ESC> to QUIT) 
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represents Y in the linear equation. Y = 111X + b. In Figures 39 and ..SO 11 a(#)" 

represents coefficients of the polynontial equation. Figures ..& l through ..&3 

represent each of the three plots Q-Risk generates. 

Output Of Model 

Output Files. The program automatically generates output files that can 

be viewed and printed under the DOS 5.0 or 6.x editors. These files contain the 

estimated parameters and the equations for each ntodel. These output files are 

named corresponding to the name of the model with the file extension *.out (i.e. 

Weibuii.OUT). 

Graphs. Three graphs are generated for each simulation. The first plots 

the original data points while the second plots the log10 of each dose versus the 

standard normal variate. Figure 41 is an example of the first type of graph. 

This graph is obtained after estimating the parameters and selecting the "Output 

Of Results" function from the main menu. Figure 42 is an example of the second 

type of graph. This graph is produced by following the same steps as listed for 

Figure 41. The third graph plots the "extrapolated to zero" portion of the dose 

versus response curve as in Brown (1984) for the log-logistic, one-hit, Weibull, 

and multi-stage models. The response axis ranges from 1 o-t to 1 o-9
• This allows 

the user to determine dose that corresponds to a certain unit risk. This would 

depend on what the user views as a VSD. Figure 43 represents this third type of 

graph and is produced from the main menu in the same manner as Figures 41 

and 42. These three figures were created using the DDT exposure data given in 
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FIGURE41 
Q-RISK PLOT OF DOSE VS. RESPONSE lJ.V OBSERVED REGION 

OBSERVED DATA PLOT (DOSE vs. RESPONSE) 

t 

• p 
E 0.60 
R 
c o.so 
E 
N 0.40 
T 

0.30 
R 
E 
s 0.20 
p • 
0 0.10 
N • s o.oo 
E 

0 .s 1 1.5 2 2.5 

DOSE (ppm)X 10*2 
(PRESS Shift + PRSC PRINT GRAPH/ (Fl) - CONTINUE or <ESC> - QtTIT] 

FIGURE 42 
EXAMPLE OF Q-RISK PLOT FOR mE PROBIT MODEL 

Loq Normal Observed Data Plot (LOG DOSE va. Std •. Noraa~ Variate) 

+l.O 

• 
-1.0 -o.5 o.o +0.5 +1.0 +1.5 +2.0 

• • • 
-3.0 

LOC DOSI: (ppaJ 

(PRESS Shift + PRSC GRAPH] I (Fl) - COBTrNOE or <ESC> - QGrr 
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FIGURE 43 
Q-RISK PLOT OF DDT DATA 

EXTRAPOLATED DOSE vs. RESPONSE 
19A..1 ~~-1 __ 1 ---r; __ l _1;,_....;..1_~~~-

I········ .. L ......... ~ .......... i··· ....... ~ .......... ~ ......... .. 

R I lh.,.. I/ 
E I .N'·t . f 
s I A···· 1 / I 
~ I k' I 1 ! 

~ 19A-8r-l--~----~1 ·.::,_:.Y~··I __ I.__ • ...-~I ~~-
E ~~~~----~~~~~~--~~--~~ ~~--

LOG-LOGISTIC 

~I BULL 

DOSE (pPM) 

ott!-HIT 

tiiLti-STAGE 

[PRESS Shift + PRSC GRAPH1 I (fl) - COHrUIIE ol' <ESC> - QUit 
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Food Safety Council (1980). The first two graphs ntentioned allowed for the user 

to alter the range of the axis. 

Plottinz:. The graphing sequences allowed the user to either plot the 

original data points~ the Probit log10 dose vs. standard norntal variate. or the 

extrapolation-to-zero dose of the data. The x and y axes are autontatically 

scaled and plotted upon selection of any of the three plotting function options. 

The selection, "Graph Low-Dose Extrapolation." features the extrapolation-to

zero dose of the data using the estimated parameters calculated front the log

logistic~ \Veibull, one-hit, and multi-stage models. Varying the x or y axis was 

not programmed into this sequence~ because the region of interest will be 

displayed for every data set. The plot of the extrapolation-to-zero of the data 

was actually a log-log plot. Risk values of 1 o-2 and 1 o-" were used to calculate the 

corresponding doses using the estimated parameters and then a line is drawn 

between them. These dose-response data pairs were then converted to the log10 

and plotted. The plot of the response axis is from 10-1 to 10-9
• The user must 

have gone through the parameter estimation procedure for all models for this 

extrapolated region to be plotted, because the data files created from these 

estimation procedures are called to calculate the dose-response data pairs. The 

user was allowed to view the actual plot, and was given the option to print the 

plot by using the keys Shift + PrintScrn. 
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TABLE7 

DOSE-RESPONSE DATA FOR EXAMPLE 1 

DOSE (mg) RESPONSE 

0.1 0.05 

0.3 0.10 

2.0 0.20 

Source: (Hallenbeck, 1988) 
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Access of * .DAT Files and Creatine of * .DAT and • .OUT Files 

Upon execution of the aforementioned programs, the user chosen *.DAT 

file is accessed by opening the data file corresponding to the chosen name. Then 

the parameters used in the calculations are read from this file. The * .DAT files 

that are created are ASCII type files. The* .OUT files are text files. These are 

created upon completion of the parameter estimation sequence. The *. DA T files 

containing the parameters for each model are "zeroed" out upon entry to Q· 

RISK. This is done by erasing the * .DAT files created for each model. This is 

to avoid any incosistant comparisons. 

Tutorial Screens 

Q· Risk was coded with help/tutorial screens that explain each model 

(theory, uses, parameters, and limitations). These screens aided the user in 

making decisions (i.e., multi-stage polynomial degree selection) by providing them 

with this background information for these models. 

Comparison Of Model Output To Literature Output 

To test the validity of the model equations, the parameters estimation 

procedures, and the graphing of the fitted data, the Q· Risk program was 

executed using dose-response data points cited in different research publications. 

Then the output was compared to that from the original publications. 

Example 1. Table 7 lists the original dose-response data points from 

Hallenbeck (1988). These data points were given as examples with Hallenbeck 

(1988). Data was entered into Q-Risk by selecting the data entry option. Next, 
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the parameters for the log-logistic, log-nonnal. and \\'eibull rnodels were 

estimated b~· paranteter estintation option. The Probit, Log-Logistic. and the 

\\reibull models paran1eters were estintated with Q-Risk. Table 8 gh·cs a 

comparison of the parameter values cited in Hallenbeck ( 1988) and those 

calculated by Q-Risk. The relative percent difference (RPD) assesses the 

precision of Q-RISK's paran1eter estirnations. Usually, a RPD of less than 50 

percent is considered acceptable between two data points. RPD is a quality 

control measure used in EPA S\V -846 n1ethods to assess pr·ecision of the 

analytical methods (EPA, 1986). See Appendix A for the RPD calculation. RPDs 

will show how precise Q-RISK estirnates the parmnctea·s of these anodels as 

compared to liter·ature \·alues. This shows that Q-Risk t•stirnatcs the parmnctcr·s 

for these models with a great degree of precision. 

Example 2. The Food Safety Council (1980) perfonned an investigation of 

the One-Hit, 1\'lulti-Hit, \Veibull, Annitage-Doll, and Probit ~lodel for use in the 

low-dose extrapolation of chronic cancer bioassay data. Table 9 lists the dose

response data for the substance DDT as described h.Y Food Safety Council (1980). 

~lice were fed the pesticide DDT at parts per ntillion (ppm) concentration 

(mg/kg) and the number exhibiting tumors was recorded. Table 10 corn pares 

dose values corresponding to a 1 o..s risk generated by Q-Risk and those from the 

Food Safety Council, 1980. These values were read from the extrapolated graphs 

of these data (Figures 43 and 44). All data points were analyzed except the zero 

dose-response data point. Recall that Q-Risk handles only incremental responses 
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TABLE 8 

PARAI\IETER COI\IPARISONS FOR EXAl\IPLE 1 

PROBIT l\IODEL 

PARAMETERS Q-RISK LITERATURE Relative Percent 
RESULTS RESULTS Difference (RPD) 

A (Y -intercept) -1.010 -1.010 0 

B (slope) 0.606 0.609 0.49 

r (correlation co- 0.995 0.995 0 
efficient) 

LOG-LOGISTIC l\IODEL 

PARAMETERS Q-RISK LITERATURE Relative Percent 
RESULTS RESULTS Difference (RPD) 

A (Y -intercept) -1.700 -1.700 0 

B (slope) 1.170 1.170 0 

r (correlation co- 0.992 0.992 0 
efficient) 

WEIBULL MODEL 

PARAMETERS Q-RISK LITERATURE Relative Percent 
RESULTS RESULTS Difference (RPD) 

A (Y -intercept) 0.167 0.167 0 

B (slope) 0.480 0.480 0 

r (correlation co- 0.990 0.990 0 
efficient) 
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TABLE 9 

DDT DOSE RESPONSE DATA FOR EXAMPLE 2 

DOSE (ppm) 'IJ RESPONSE (Tumors) 

2 0.0381 

10 0.0887 

50 0.1250 

250 0.6667 

Source: (Food and Safety Council, 1980) 
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TABLE 10 

DOSE COMPARISON DATA FOR EXAl\1PLE 2 AT A 10..s RISK 

MODEL Q-RISK RESULTS LITERATURE Relative Percent 
RESULTS DitTerence 

(RPD) 

One-Hit 6E-05 6E-05 0 

Multi-stage < 1E-20 SE-05 200 

Weibull 7.E-09 2.0E-03 200 

Source: (Food Safety Council, 1980) 

TABLE 11 

POLYNOMIAL COEFFICIENT COMPARISONS FOR EXAMPLE 2 

PROBIT MODEL 

COEFFICIENTS Q-RISK RESULTS LITERATURE Relative Percent 
RESULTS Difference 

(RPD) 

ao 2.346E-02 4.483E-02 63 

Ctt 7.422E-03 2.038E-03 114 

Ctz -1.989E-05 OR 01 0 0 

a3 -2.122E-06 OR 01 0 0 

Ct4 8.605E-09 1.39E-09 144 

Notes: 

1 - If the coefficient value is negative it is considered to be zero. 

Source: (Guess and Crump, 1976) 
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above background. The ntulti-stage and \Veibull low-dose ex1rapolation lines 

differed significantly from those generated b)' the Food Safety Council (1980). 

There is clearly a significant difference (a large RPD) in the \Veibull and multi

stage models. Figure 43 and Figure 44 clearly show these differences. This 

appeared to be due to the Food Safety Council using a correction for background 

response of another variation to the Annitage-Doll model equation that was not 

made evident to the reader. All other ntodel plots front Q-Risk seent to ntatch 

those from the literature in example 2. Table 10, which compares the dose read 

from the extrapolated graphs corresponding to a risk of 1 O-S for the Wei bull and 

one-hit models, shows almost an exact match for the one-hit model values but a 

vast difference for the Weibull and multi-stage ntodels values. Therefore, Q-Risk 

produces a lower dose estimate (more conservative) when using the Weibull and 

multi-stage models, but is exactly similar with respect to the one-hit model. 

Example 3. Guess and Crump (1976) developed a maximum likelihood 

estimation procedure to calculated the polynomial coefficients for the Armitage

Doll multi-stage model. Table 11 compares the coefficients calculated by Q-Risk 

to those from Guess and Crump (1976) for a fourth degree polynomial. 

It is evident from Table 11 (large RPD), which compares the polynomial 

coefficients calculated for the multi-stage model by Q-Risk and by Guess and 

Crump, that some of the differences in the coefficients between Guess and Crump 

(1976) values and the value generated by Q-Risk were significant. However, due 

to the exrtemely small (10"9
) value of these coefficients these differences could be 
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FIGURE 44 
FOOD AND SAFEIT COUNCIL OF DDT DATA 
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to the exrtemely small (10"9
) \'alue of these coefficients these differences could be 

due to rounding or significant figure differences between the two rnethods of 

estimation. The data used for the pararneter estirnation in Q-Risk rna)· ,·ary with 

that used by Guess and Crun1p (1976). For exarnple (;uess and Cnnnp (1976) 

could haYe included a zero dose data point that produced a response when 

example 2 did not (i.e. background correction). The data used by (;uess and 

Crump were taken fron1 a mouse DDT study. The interpretation of dose

response data fron1 the literature could ha,·e been significantl}· different than that 

of Guess and Crump. That is, extracting the dose-response data required 

interpreting instructions frorn the author as to which data to use (i.e. fernale or· 

n1ale). That is, numerous tables of dose and response data were given. 

Percentage of n1ice with tun1ors had to be calculated for both the fen1ale and 

n1ale mouse data. Guess and Crun1p (1976) did not state which sex they used in 

their study. Also, when calculating the response was not apparent which 

numbers were to be used (i.e. the nurnber of n1ice exhibiting). 

By graphing the low-dose extrapolation region, the user can select a risk 

le,,el that corresponds to a VSD by just selecting a point from the graph. A 

safety factor should be used in estimating a VSD. The EPA uses a 95 percent 

confidence leYel and the FDA uses a 99 percent confidence level to estilnate risk. 

At present, the model does not complete these calculations. 

The selection of some near-zero lifetime risk, either I o-s (proposed by 

l\1antel and Bryan) or 10·6 (proposed by the FDA) is a decision made by the user 
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for determination of VSD (Food Safety Council, 1980). The Food Safety Council 

(1980) suggests that the decision should be left up to the regulatory authorities. 
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CIIAYI'ER V 

CONCLUSIONS 

Q-Risk was designed to aid the user in the process of performing risk 

assessments for carcinogens or toxic chemicals that pose a health risk to the 

human population. The code specifically addresses the dose-response portion of 

the Risk Assessment process by applying five commonly employed models to 

extrapolate from the high-dose, short duration testing typically completed in 

toxicity testing to the low dose, long term patterns thought typical of chronic 

disease propagation. The goal was to combine the power of Quickbasic, a 

modern, graphics-based complex computer programming language, with the 

mathematics of the various dose-response models. This provided the user with a 

program that requires little computer knowledge to operate. "Help screens" were 

added to aid the user in decision making. Although not all mathematical models 

that exist are made available to the user, the ones most frequently used in the 

scientific community for low-dose extrapolation were incorporated. The models 

included in the program were: 

• Probit 
• Log-Logistic 
• Weibull 
• One-Hit 
• Multi-Stage 
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The multi-hit model was described in Q-Risk but \Vas not included in the low

dose extrapolation performed by Q-Risk. This was done because of the similarit~· 

of the multi-hit model with the \Veibull model (Bro,vn. 1984). 

The Probit, Weibull. and Log-Logistic ntodel parameters were estintated 

using a linear regression sequence as opposed to maximum likelihood estimation. 

This was done to simplify coding and was considered appropriate given previous 

work by others. Based on the results from chapter IV, there 'vas no significant 

difference between the two methods of estimation (i.e., example 3). The 

parameters estimated for these models by Q-Risk matched those cited in 

literature exactly in at least one example. The parameters for the One-Hit and 

Multi-Stage models were also estimated using a Gauss-Jordan elimination 

sequence instead of a maximum likelihood estimation procedure. This was done 

because of the need to normalize the method of estimation within the mechanistic 

models. The number of k-stages, of disease initiation and propagation, which 

equals the degree of the polynomial, were limited to five in the program, to be 

consistent with previous observations relative to physical evidence that cancer 

does not occur in more than two stages (Whittemore and Keller, 1978). 

Some of the problems in the past with environmental decision-making 

processes include the lack of user friendly computer programs for those who are 

not computer literate. This limited the ability of the scientist to make valid risk 

decisions. Q-Risk was an attempt to lower the barrier between the scientist with 

little computer knowledge and his/her data while also supplying the scientist with 
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an aid in the area of risk assessment of toxic or carcinogenic contpounds that 

pose a human health hazard. The complexity and time necessar~r to manually 

compute the parameters for the dose-response models and plotting of the results 

are greatly shortened. 

The use of Microsofe Quickbasic to generate the code allowed the 

production of user friendly screens and. powerful graphics, while incorporating 

powerful mathematic functions. The program was structured so that the user 

could easily view results with output files generated in a form that could be 

viewed or printed under any appropriate text editor. The code was compiled as 

"stand-alone execute files" it does not require BASIC files to run the program) so 

that the user could run the program from any IBM:.-DOS based computer. 

This program allows even the least-computer-knowledgeable scientist to 

precisely assess the incremental risk above background response of toxic 

chemicals or carcinogens that may pose a human health risk. 

The following conclusions can be made: 

• A user-friendly, graphics-based computer code was developed to allow 
comparison between dose-response models 

• A powerful mathematical tool was developed to aid the user in calculating 
unit risk above incremental cancers by performing low-dose extrapolation. 

• A program was developed for users with little computer knowledge, and 
addressed the problem of toxicity assessment of human health risks. 

• A code was developed that was user friendly and aids the user in 
environmental decision making. 
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APPENDIX A 

LINEAR TRANSFORMATIONS 

GAUSS-JORDAN Elimination 

The Gauss-Jordan elimination method involves eliminating all the variables except 

for one, then substituting it back into the equation and systematically solving for 

the other variables. Equation 38 represents the nth degree polynomial that was 

used in the Gauss-Jordan elimination estimation method (Sime. 1988). 

y = A0 + A1X + A2r + X3r + ... + Xkxk (38) 

Where y equals the response. x the dose, and Ak is the coefficient of the~ stage 

of the ceU. The following equations (39a-c) represent an example taken from 

Sime, 1988 of the Gauss-Jordan elimination method. 

2:x1 + 3x1 + 8x3 = 84 

x1 + 7x1 - 3x3 = 65 

Sx1 - 2Xz + x3 = 41 

(398) 

(39b) 

(39c) 

By multiplying the second equation by -2, adding the product to the first 

equation, and replacing the second equation by the sum the foUowing equatloos 

are produced. 

2x1 + 3Xz + 8x3 = 84 

-1l.xz + 14x3 = -46 

Sx1 - 2~ + x3 = 41 
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This eliminates X1 from the second equation. By multiplying the third equation 

by -2.5, " ... adding the quotient to the first equation. and replacing the third 

equation by the sum." (Sime. 1988). 

2x1 + 3x2 + 8x3 = 84 

-11x2 + 14x3 = -46 

3.8x2 + 7.7x3 = 67.6 

Now by multiplying the third equation by 2.8947 (11/3.8), "adding the result to 

the second equation, and replacing the third equation by the sum." (Sime, 1988). 

2x1 + 3x2 + 8x3 = 84 

-11x2 + 14x3 = -46 

36x3 = 149.6782 

Next backward substitution starting with the value of x3 in the second equation 

the values for the other two parameters can be calculated. 

The parameters for equation 38 are solved for in the same manner as 

mentioned above. A r.rst degree polynomial the derivatives produce two 

equations with two unknowns, A., and At. The derivatives give rise to p + 1 

equations in p + 1 unknowns, namely, A.,, At, A:u. To evaluate these constants it 

is necessary to solve a system of p + 1 simultaneous linear equations. 

Aoo + At Ex. + ~ tx( + · ·· + At tx.t 

+ . .. + A, t:1iP - Ey1 = 0 (40) 

Ao tXt At tXt1 + ~ txw3 + · · · + At tx.t+ 1 

+ ... + A, I:x.P+l - tx.Y. = 0 (41) 
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(42) 

(43) 

The solution to this system of simultaneous linear equations is the set of values of 

the coefficients Xi. The augmented matrix is written 

n X. xiz x,k ... X1P . .. Yi 

XI xiz x,J xik+t ••• XIP+ l ••• XJt 

xttt. xtt.+t 
i 

x.k+z 
I 

x 1k+k ••• x,p+k ••• x,kyi 

x 1P xtp+t xip+z x.p+k ••• x.p+p ••• Xt'Yi 

The x1 (i.e. dose) and Yi (i.e. response) are the experimental points we wish to fit 

to a polynomial of degree p. "The number of x1, y1 pairs equals n, so the 

summations are from i = 1 to n. The number of pairs must be greater tban the 

degree of the polynomial and is often much greater." (Sime, 1988). 

LOGISTIC Model 

Equation 34 is transformed into a form of the linear equation y = mX + 

b. 

(34) 

This is done by f"U"St rearranging the equation algebraically and taking the 

-1-(1/P J = e.(• + b..._ 0~ 

natural logarithm. of both sides. This results in the foUowing equation. 

100 



- In [(1-P J!P J = a + b*log D 

WEmULL Model 

(35) 

Equation 36 for the Wei bull model is transfonned in the same manner, 

except that the natural logarithm of both sides is taken twice to produce the 

double natural logarithm in equation 37. 

RPD Calculations 

Equation 43a represents the method by which RPDs are calcuated as 

described in EPA (1986). The x1 and x2 values represent the first and second 

values for which the RPD is being calculated for. For example the first value 

would be the Q-RISK value and the second the value from Guess and Crump 

(1976). 

RPD = (x1 - x2)/((x1 + x2)/2) * 100 (43a) 
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