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CHAPTE R I 

INT RODUCTION 

Process enhancement strategies have become critical to present day operation of 

chemical industries. Since the regulatory nature of operation has become very stringent, a 

industry must anticipate changes and be prepared to upgrade its process to remain 

profitable. Regulatory compliance pressures and environmental awareness have increased 

the economic and social incentives for making processes cleaner. Redesigning existing 

processes for waste reduction is thus becoming a top priority. Therefore, it has become 

essential to develop methodologies that include environmental criteria in economic 

comparisons of improvement alternatives. The objective of this work is to develop such a 

methodology and to apply it to the sulfolane process of Phillips Petroleum Company. 

The retrofit of existing processes is a challenging task. Retrofit actions typically 

include, in order of increasing investment, ( 1 )  optimization of operating conditions, (2) 

repiping, (3) equipment modification, and (4) new equipment purchases (Gundersen, 

1 989). U sually, these efforts focus on a single aspect of a process, such as, saving 

energy, reducing wastes, increasing production or enhancing the flexibility of production. 

Under economic scenarios different from those during the inception of the process, retrofit 

measures reestablish the optimum tradeoffs between energy, raw materials, and 

environmental liabilities. Three approaches have emerged towards systematic retrofit 

design. They are the 'evolutionary' (pinch technology), 'mathematical' (non-linear integer 

programming), and the 'hierarchical' approaches. These are traditionally process synthesi� 

approaches applied to continuous processes, which have been modified to accommodate 

the retrofit scenario. 
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The methodology proposed in this work is based on a concept termed 'process 

model based engineering.' The tools of the methodology are process modeling, economic 

analysis, and optimization. Process modeling using commercial simulators is an importar 

area of computer applications in chemical engineering. Simulation models are now 

routinely being used for the synthesis, analysis, and control of processes. Useful 

economic analysis can be carried out if the costs of operation are incorporated into the 

process model. The utility of the resulting economic model is greatly enhanced if the 

environmental costs of operation are also incorporated. Specifically, tradeoffs between 

waste treatment and waste reduction approaches can be clearly studied. Optimization and 

evaluation of alternatives can then be carried out using the economic model of the process. 

Economic justification for evaluating environmental considerations in processes has been 

found to be lacking in conventional retrofit approaches. 

The sulfolane process of Phillips Petroleum Company was chosen because of its 

potential for change. Sulfolane is a highly stable, non-toxic industrial solvent. Its 

environmentally friendly characteristics make it a popular solvent for several processing 

applications. The raw materials and the wastes from the process are being regulated by the 

Environmental Protection Agency (EPA). Sulfur dioxide, a reactant, is currently being 

regulated under the Clean Air Act (CAA) and 1 ,3-butadiene, another reactant, is expected t1 

be regulated under the hazardous organic National Emission Standards for Hazardous Air 

Pollutants (NESHAP). Also, this process has features typical of many industrial 

processes, such as stoichiometric and catalytic chemical reactions, and solid, liquid, and 

gaseous wastes. Thus, there is much impetus to study the process and devise alternatives 

for increasing production while reducing the waste generation. 

The process can be broken down into three basic sections: synthesis, purification, 

and waste treatment. The synthesis consists of three steps. In the first step, excess sulfur 

dioxide and 1 ,3-butadiene react to form sulfolene. Side reactions leading to the formation 

of polybutadiene and poly sulfone are known to occur in this step. The products of the 
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sulfolene formation reaction are then sent to a flash chamber where a solvent (e.g., 

methanol, water, sulfolane, etc.) is added. This step is designed to remove as much of th 

sulfur dioxide (gaseous waste) as possible to prevent poisoning in the subsequent step. 

After the sulfur dioxide has been removed, the mixture is transferred to a reactor for 

catalytic hydrogenation to form sulfolane. Several side reactions involving the catalyst 

occur in this reactor and lead to the formation of unwanted products. After the sulfolane 

synthesis section, a series of filters and dehydrators are used to purify the product and 

remove used solvent and spent catalyst (solid waste). The sulfur dioxide and 1 ,3 -

butadiene removed in the flash chamber are treated in scrubbing towers with caustic soda 

(liquid waste) before being vented through the flares. To investigate waste reduction 

options, the synthesis section of the process was considered, as it is the source of waste 

generation . 

A batch process for the three steps of sulfolane synthesis was assumed and 

modeled. The commercial steady-state simulator ASPEN PLUS was used for this 

purpose. This package contains a batch reactor module which can be integrated into an 

otherwise steady state flowsheet structure. Additional features of ASPEN PLUS used 

include physical property estimations, sensitivity analyses, optimization routines and user­

programmed FORTRAN subroutines. In order to develop a valid process model several 

issues such as physical property approximations, incorporation of non-ideality of 

equipment, steady-state approximation of batch operations, and assumptions to overcome 

lack of data were carefully considered. The limitations of the model were analyzed. More 

than one model was developed for each step. Comparisons between them were carried out 

on the basis of complexity, accuracy, and ease of computational solution. Finally, the 

appropriate model was validated by comparing predicted values of key process parameters 

such as reactor conversions, stream compositions, and an overall material balance, with 

operating plant data. 
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Based on the overall process model, the base case economics of the process were 

calculated. The economic base case could not explicitly account for the environmental co� 

because such data were not available from Phillips Petroleum Company. These costs wer 

included into an overhead account, a breakdown for which was not available. However, 

approximate environmental costs were assumed. 

The base case provided adequate direction to pursue waste reduction studies. As 

expected, the process was found to be quite insensitive to minor changes in operating 

conditions. As with a majority of retrofit studies on batch processes, the two key issues 

were found to be de bottlenecking and rescheduling. The hydrogenation step was studied 

in detail, and a preliminary understanding of its operation and its limitations could be 

reached. By addressing the bottleneck in the sulfolane process, alternatives for improving 

the process efficiency were evaluated within the framework of the proposed methodology. 

In summary, the main objective of this work was to improve the efficiency of the 

existing sulfolane process of Phillips Petroleum Company through waste reduction. This 

was accomplished through the development and application of a general methodology for 

process retrofit. In this report the discussion of the efforts is structured into sections 

dealing with, 

1 )  Background on existing methodologies 

2) Description of the sulfolane process 

3)  Proposed methodology 

4) Application of the methodology to the sulfolane process 

a) Process modeling 

b) Economic analysis 

c) Process retrofit alternatives 

5)  Conclusions and recommendations of the study 
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CHAPTERll 

BACKGROUND 

In this chapter a background of the sulfolane process, the motivation to study it, th( 

existing methodologies available for process improvement, and concepts important to the 

development of a proposed methodology are discussed. 

Process Description 

The process can be broken down into three basic sections: synthesis, purification, 

and waste treatment. The synthesis consists of three steps : 

1. Reaction 

2. Treatment 

3 .  Hydrogenation 

The sulfolene formation reaction is limited by equilibrium and complete conversion 

is never achieved. The equilibrium mixture of sulfolene, sulfur dioxide, and butadiene is 

then sent to a treatment tank where the mixture is added to a solvent. This solvent, apart 

from being the hydrogenation solvent, stabilizes sulfolene and keeps the mixture above its 

freezing point. The unreacted sulfur dioxide and butadiene are separated from the reaction 

mixture by flashing the mixture under vacuum conditions. The gases are scrubbed with 

caustic soda before being burned in the flare. The treated mixture is then sent to the 

hydrogenation reactor where sulfolene is hydrogenated in the presence of a catalyst to form 

sulfolane. Several side reactions involving the catalyst occur in the hydrogenation step 

leading to the formation of unwanted by-products. The hydrogenation step is the time and 

the waste bottleneck of the process. 
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Motivational Background 

For the sulfolane process , existing regulations under the CAA constrain the 

emission of sulfur dioxide, a raw material, and new regulations under the NESHAP target 

1 ,3-butadiene, another raw material (Bryant, 1992) . In addition to these air pollutants, the 

process generates solid wastes in the form of spent catalyst, and liquid wastes through the 

treatment of the air pollutants. Phillips Petroleum Company is committed to improving the 

environmental, health, and safety aspects of its operation. This commitment has been 

formalized as a company policy defined 'Principles of Performance' (Environmental 

Report, PPCo, 1 993) .  All these factors contribute as justifications for looking into the 

sulfolane process critically and devising methods of reducing its environmental impact, 

while increasing its productivity and effi ciency. 

Existing Methodologies For Process Retrofit 

The redesign of processes is generally referred to as retrofit. Retrofit typically 

involves change of operating conditions, repiping, minor equipment modifications or 

purchase of new equipment. Several retrofit approaches have been reported in the literature 

in the past 8- 10  years (Gundersen, 1989) . However, most of these approaches are process 

design or synthesis approaches which have been modified for the retrofit scenario. Each of 

these methods suffers from some limitation. A brief discussion of the existing methods 

and their l imitations follows. 

The hierarchical approach suggested by James Douglas ( 1987) utilizes a short cut 

approach to narrow the range of retrofit alternatives. It combines heuristics with the use of 

cost diagrams to evaluate modifications in both the structure of the flow sheet and in 

equipment sizes for a fixed flow sheet. It is generally applicable to continuous processes. 

The main draw back in this method is the use of simple equipment models leading to 

alternatives which do not consider full use of the existing equipment. 
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The mathematical approach is probably the n1ost rigorous process synthesis n1ethoc 

that is presently used. Several investigators such as Grossn1ann ( 1 987) and Biegler ( 1 989 

have studied the use of mathematical techniques for retrofit situations. !v1ore recently. 

Reklaitis (1993) has used MINLP techniques to study retrofitting of n1ultiproduct batch 

processes. These techniques rely on optimization of an objective function subject to flow 

sheet configuration and equipment size constraints . The former consists of discrete 

variables and the latter of continuous variables. This is n1athematically converted into a 

mixed integer non-linear programming (MINLP) formulation. The non-l inearity of the 

process model equations and the magnitude of possible flow sheet configurations require 

enormous computational resources which l imits the util ity of this method. 

Pinch technology is based on a heat flow analysis of the process (Linhoff, 1 988) .  

It was developed during the energy crisis of the late 1 970s and 1 980s . By not util izing 

conventional process des ign tools such as flow sheets , i t  allows the process engineer to 

obtain a c lear understanding of the interactions within the process and its util ities . This 

technology has been successfully  appl ied to retrofit of processes (Rossiter, 1 99 1  ) .  The 

range of alternatives i s, however, l im ited to energy integration of the process .  Though this 

i s  the most practical and widely used method in  the process industries, it suffers from its 

inab i lity to couple the energy issues with the process flow issues, which for some 

processes m ight hold more incentive for improving process efficiency. 

The appl ication of these three m ethodologies to waste minimization has not been 

reported extensively in the l iterature. Fonyo ( 1 994) and others have reported the use of 

Douglas's h ierarchical method for waste m inimization under the retrofit scenario. This 

represents the most systematic effort developed by chemical engineers so far to address 

pollution prevention in  the chemical process industries. 

The logic behind this work is to address some of the l imitations inherent in the 

existing m ethods. The three basic elements in  the proposed m ethodology are process 

modeling, economic modeling, and optimization. Additional elements such as forecasting 
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are considered to enhance the utility of the methodology. The applicability and usefulness 

of the proposed methodology was evaluated by applying it to the sulfolane process .  In 

order to understand the tools of the proposed method, it is essential to review some basic 

concepts .  

Process Analysis Through Modeling 

Process analysis is fundamental ly different from process design. Analysis deals 

with existing processes and breaks it apart for study, whereas design deals with the 

creation of new processes. Process analysis is of significance during redesign. 

Process modeling is fast becoming the focal point of computer applications in 

chemical engineering . Applications such as process synthesis , analysis , control, and 

optimization derive their basis from a well formulated process model .  The use of 

commercial process flow sheet simulators for process modeling has increased dramatical ly 

in the past two decades.  Packages such as ASPEN PLUS, PRO II, HYSIM, ChemCAD, 

SPEEDUP, etc., are now routinely used for plant design, improvement of safety and 

control features, debottlenecking, and operator training (Fouhy, 199 1) .  The extensive use 

of simulation packages has been aided by the growth of computer hardware in the past five 

years (Grinthal , 1993). Most of these packages offer unit operation models ,  physical 

property databases, data regression systems, and graphical user interfaces. 

The analysis of process efficiency using models is a quick and economical 

alternative when compared to experimentation. However, both these approaches are 

essential to understanding and analyzing a process .  The trade-offs between the two are 

accuracy, effort, and investment. In current operating environments extensive 

experimentation for process improvement is not a feasible  solution. This is because 

product life cycles are short, market conditions change constantly, and capital investment is 

harder to justify. Thus, the emphasis has shifted to improving design, analysis, control, 

and optimization of a process with the aid of a simulated process model. 
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The use of process modeling for environmental applications is a relatively new 

application. Several applications of ASPEN PLUS for modeling pol lution prevention have 

been reported in the literature (Wu. 1992) .  Diverse pollution issues such as waste water 

minimization, desulfurization, etc ., have been studied using ASPEN PLUS (ASPEN 

Tech. brochure, 1993) .  In this study, a simulated process model of the sulfolane process. 

developed using ASPEN PLUS, has been used to study the environn1ental and production 

parameters of process efficiency.  

Economic Analysis 

Any retrofit measure requires economic justification. Therefore, one needs to first 

evaluate the base-case profitability of the process. Incentives of modifying the process wilJ 

be weighed against this base-case. One needs a cost model of the process to be able to 

evaluate profitability under existing or changing conditions. 

The profit levels of a process are a combination of the efficiency of the process and 

the market conditions affecting both the inputs and outputs of the process. Thus, both of 

these aspects of profitability need to be incorporated when developing a cost model for 

optimization. Such a cost model can be developed by linking the process model with 

economic data. It is essential to include the environmental costs of operation into this cost 

model in order to evaluate the environmental impact of the process. 

When looking at the benefits of pollution prevention, environmental costs will play 

an important role in determining the course of action. Purely financial analysis of the 

benefits of pollution prevention can be obtained through Total Cost Assessment (TCA) of 

processes. This concept considers the usual costs (fixed and production), the 'hidden' 

costs (e.g .,  compliance and permits), liability costs (e.g., penalties/fines), and the less 

tangible costs (e.g., consumer response and employee relations) in evaluating the long term 

costs and savings from a pollution prevention opportunity (Freeman, 1992). However, an 
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integrated process and economic modeling approach targeted towards reducing 

environmental impact has been lacking in the open literature. 

This work provides a framework in which the integrated cost n1odel will be used as 

a tool to provide direction and quantitative justification for waste minimization alternatives. 

Optimization 

Chemical process optimization is that mathematical activity that finds the values of 

process variables that maximizes or minimizes a given performance criteria. The three key 

components of optimization of a chemical process are the objective function, the equality, 

and the inequality constraints (Himmelblau, 1988). The objective function, sometin1es 

known as the 'economic model', is usually a measure of profitability; yet other criterion 

may be used. The constraints are usually defined by the process model. 

Optimization can be carried out on different types of models. Models can be 

generally c lassified into the following types (Himmelblau, 1988): 

Linear vs. non-linear 

Steady state vs. unsteady state 

Lumped parameter vs. distributed parameter 

Continuous vs. discrete 

In a process, equipment sizes, process flow rates, and operating conditions can be 

considered as continuous variables. The existence of a particular piece of equipment can be 

represented by discrete variables. The most common form of process models is non-linear, 

steady-state, lumped, and continuous. 

The relevance of optimization to the present study can be easily identified. If the 

objective function were defined to be waste generation, then the set of process variables 

that reduce this quantity can be determined. If profit defined as the difference between 

revenue from sales and the production cost, is considered as the objective function, then 

once again, the optimum set of process variables can be found. However, while doing so 
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one must make sure that the environmental costs are incorporated into the objective 

function. Thus, in the case of this work, optimization is a natural extens ion of the use of a 

integrated process model .  Waste minimization alternatives may typically include change in 

operating conditions, or modification of equipment, etc. By using optimizat ion techniques. 

one can determine the optimum way of call)'ing out each alternative. Then, by con1paring 

the relative incremental savings of each alternative, the best alternative can be selected for 

implementation. 

In summary, the sulfolane process offers us a typical industrial process with 

stoichiometric and catalytic reactions, as well  as sol id, l iqu id, and gas phase waste strean1s . 

The motivation for studying this process comes from waste minimization incentives . 

Several  methods exist for analyzing and retrofitting an existing process through evaluation 

of improvement alternatives . These methods were originally design procedures which have 

been modified for the retrofit case. Moreover, the appl ication of these methods for waste 

m inimization has not been reported extensively. In this work, a general methodology has 

been proposed which wi l l  address some of the l imitations from which existing methods 

suffer. The important elements of such a methodology are process modeling, economic 

analysis,  and optimization. 

The remaining chapters are devoted to a detai led description of the sulfolane 

process, the development of a general methodology for process improvements and detai ls 

of the application of such a methodology to the sulfolane process of Phil lips Petroleum 

Company . 
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CHAPTER III 

PROCESS DESCRIPTION 

Sulfolane is a colorless, water-soluble, non-toxic. bio-degradable. and highly polar 

compound. Its thermal stability, chemical inertness, and solvent properties make it a very 

popular industrial solvent. Roughly about eighteen to twenty million pounds of sulfolane 

are consumed annually for a variety of applications such as extraction of aromatics, 

removal of acidic compounds from natural gas streams, and as solutions for 

polymerization. Currently, sulfolane is produced by Phillips Petroleum Company and 

Shell Chemical Company, using processes based on chemistry first described in the early 

1900s. A brief description of the process chemistry and the patented production process is 

provided in this chapter. 

Process Chemistry 

The basic reaction scheme involves the reaction of I ,3-butadiene with sulfur 

dioxide to produce 3-sulfolene (2,5-dihydrothiophene-1, 1-dioxide), which then undergoes 

catalytic hydrogenation to yield sulfolane (2,3,4,5-tetrahydrothiophene-1, I -dioxide). 

Catalyst 
CH2=CH-CH=CH2 + S02 ... H2C -- CH2 • H7C CH2 

I \ I \ 
c\ c c\ c 

I I 
s s 

#� #� 
0 0 0 0 

sulfolene sulfolane 
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The intermediate product, 3-sulfolene, belongs to the generic group of compound� 

called 'sulfolenes' which consist of substituted or unsubstituted unsaturated compounds 

containing a sulfolene nucleus. A sulfolene nucleus is a five-membered ring with a single 

olefinic linkage between adjacent carbon atoms of the ring, and two oxygen atoms each of 

which is directly attached to the sulfur atom. Sulfolanes refer to saturated sulfolene 

compounds that may be substituted or unsubstituted. 

The yield of 3-sulfolene from the first reaction is limited by a chemical equilibrium 

between 3-sulfolene, sulfur dioxide, and 1 ,3-butadiene, as well as poorly characterized 

polymer-producing side reactions. Three types of polymers are usually formed. 

Polymerization of butadiene and sulfur dioxide (usually in the gas phase) in the presence c 

free radicals and low temperatures leads to the formation of copolymers. These may also 

link to form 'block' polymers. Polybutadiene is also formed under the conditions 

described previously. Additionally, polybutadiene may cross link to form what is 

commonly referred to as 'popcorn' polymer. The free radical initiated break up of 3-

sulfolene molecules may lead to the formation of polysulfone. Generally, these 

polymerization reactions tend to occur above a temperature of 210°F. On the other hand, 3 

sulfolene is known to crystallize at a temperature of about 150°F. This effectively sets the 

operational temperature range of 150-210°F for the reaction between sulfur dioxide and 

1 ,3-butadiene. Kinetic studies on this reaction have been reported by Drake and others 

(Drake, et al., 1946). 

In the catalytic hydrogenation reaction of 3-sulfolene to sulfolane, side reactions 

consume the metal catalyst and yield mixtures of oligomers and polymers containing metal 

ions and organic components. Decomposition of 3-sulfolene, solvent, temperature, and th 

activity of the catalyst may affect the extent of the side reactions. Mashkina et al. ( 1962) 

have reported a kinetic study of the 3-sulfolene hydrogenation reaction on a nickel­

chromium catalyst. The poisoning of the catalyst during hydrogenation was also studied 

(Mashkina et. al, 1966). 
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These side reactions are the major causes of waste generation in the sulfolane 

process. In order to achieve acceptable convers ion of reactants to products in this proce� 

one has to contend with the equilibrium consideration in the first reaction and the side 

reactions in the hydrogenation reaction. Industrially. process conditions are set accordinJ 

to these considerations. 

Production Process 

A brief description of Phill ips Petroleum Company's sulfolane process is provide 

in this  section. The details can be found in a U.S Patent which was approved in 1971 

(Willi s, 1971). 

The process can be broken up into three basic sections - synthesis, purification, a 

waste treatment (Fig. 1). Sulfolane is manufactured in the synthesis section, and is then 

purified to required specifications in the purification section. The air pollutants produced 

during synthesis and purification are treated in the waste treatment section before being 

released into the atmosphere. A batch mode of process operation has been assumed for tl 

study. The focus of our research was to study the synthesis section of the sulfolane 

process. Thus, the process description will concentrate on the synthesis section. 

Synthesis 

The synthesis section can be further broken down into three steps. These three 

steps include : 

1) Manufacture of 3-sulfolene - the reaction step, 

2) Neutralization of the reaction mixture - the treatment step, and, 

3) Hydrogenation of the 3-sulfolene - the hydrogenation step .  
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Reactor 1 : sulfur dioxide + butadiene ---------> 3-sulfolene 
Separator : sulfur dioxide/ butadiene sep. from 3-sulfolene 
Reactor 2 : 3-sulfolene ---------> sulfolane 

catalyst 
hydrogen 

R3 

Product, 
Unwanted 
By-products 
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Product 
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Figure 1 .  Schematic diagram of sulfolane process 
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These steps are carried out in batch stirred tank reactors. In the reaction step, the 

reactants, sulfur dioxide and 1 ,3-butadiene, are introduced as liquids into the reactor. The 

reaction is limited by equilibrium and complete conversion is never achieved. The mixture 

is then neutralized to remove excess sulfur dioxide and butadiene through the addition of a 

suitable solvent and application of vacuum. This is done to prevent poisoning and 

destruction of the catalyst in the subsequent step. The sulfolene-solvent mixture is then 

hydrogenated with excess hydrogen in the presence of a suitable hydrogenation catalyst to 

produce sulfolane. Each of these steps is explained in detail below. 

Reaction step The sulfur dioxide is first charged to reactor R 1. The 1 ,3-butadiene 

is then slowly added to the reactor. Both of the reactants are liquids during the charge. 

The molar ratio of sulfur dioxide to 1 ,3-butadiene is in the range of about 1: 1 to 1.5: 1. 

Polymerization inhibitors such as pyrogallol, pyrocatechol, and phenyl-b-napthylamine, ar 

added separately or with the 1 ,3-butadiene. The temperature of the reactor is allowed to 

rise slowly during the addition of 1 ,3-butadiene. Once the addition is complete the reactor 

is operated isothermally. The temperature in the reactor is maintained in the range of 150°F 

to about 300°F, and the pressure is generally in the range of about 100 to 600 psig. The 

reaction mixture is allowed to remain in the reactor for a suitable time to permit substantial 

completion of the reaction. Once the reaction is complete, the contents of the reactor, i.e., 

the unreacted sulfur dioxide, 1 ,3-butadiene, and 3-sulfolene are transferred to the next step 

i.e., the neutralization step. 

Treatment st<;<p The molten reaction mixture from R1 is transferred into treatment 

tank R2 which contains a suitable hydrogenation solvent, examples of which include water 

aqueous alkalies, and alcohols (such as methanol, ethanol, isopropanol, etc.). The 

unreacted sulfur dioxide and 1 ,3-butadiene are removed by pulling a vacuum on the 

mixture and transporting the gases to the waste treatment steps. The removal of sulfur 

dioxide from this mixture is important because it poisons the hydrogenation catalyst in the 
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next step. The temperature and pressure in R2 during the degassing is generally in the 

range of about 75°F to about 150°F and from about 2 psia to 5 psia in order to 'flash' the 

mixture. In addition to this, the removal of sulfur dioxide can be enhanced by sparging th 

mixture with nitrogen. The concentration of sulfur dioxide in the resulting mixture is 

reduced to about 0.1 weight percent. The remaining sulfur dioxide is oxidized to sulfuric 

acid by addition of hydrogen peroxide. The sulfuric acid is neutralized by addition of an 

aqueous caustic solution. The mixture is then filtered and transferred into the 

hydrogenation reactor. 

Hydro�enation step. The neutralized mixture from treatment vessel R2 is 

transferred to the hydrogenation reactor. The reactor is charged with a hydrogenation 

catalyst, one to five percent by weight based on the sulfolene charge. Commonly used 

hydrogenation catalysts include nickel, cobalt, copper, palladium, or platinum. These cru 

be unsupported or supported on kieselguhr, aluminum oxide, or diatomaceous earth. 

Raney nickel, which is a catalyst in finely divided form, is often used for hydrogenation. 

The reactor is then pressurized with hydrogen to provide sufficient hydrogenation pressu 

The temperature and pressure are maintained at 50 to 120°F and 50 to 500 psig, 

respectively. After the reaction is completed the reactor is vented to remove the excess 

gases and cooled. Next, the reaction mixture is filtered to remove the catalyst and sent to 

the downstream purification steps. 
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CHAPfERIV 

GENERAL MEfHODOLOGY 

In this chapter the development of a general methodology for process retrofit will t 

reviewed. The implementation of the general methodology requires resource investments. 

Typically, these comprise resource persons from the process plant and R&D, and a 

commercial process simulator. The general methodology can be broken down into a 

sequence of three logical steps (Figure 2). 

1 . Process modeling 

2. Economic analysis 

3 . Generation, optimization, and selection of retrofit alternatives 

Additional concepts such as forecasting have been considered for improving the 

effectiveness of the methodology (Shyamkumar, 1993). A detailed description of the 

sequence of sub-tasks for each of the three steps is provided below. 

Process Modeling 

A process model serves to emulate the actual process. Mathematical modeling of a 

process allows one to essentially perform 11 experiments 11 using simulation techniques. 

Physical experiments, on the other hand, allow one to directly observe the effects of proce: 

changes. Both of these approaches are essential to analyzing and understanding a process. 

The trade-offs between the two are accuracy, effort, and investment. For process retrofit, 

preliminary analysis using simulations is advised, because it can reduce the range of feasibl 

solutions. Physical experimentation can then confirm the most promising solutions. 

The approach proposed in this research is composed of six steps. 
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• Process categorization 
• Process compnents 

• Thermodynamics 
• Physical properties 
• Kinetics 
• Operating conditions 

• Commercial process 
simulator or user 
programmed code 

• Raw material costs 
• Utility costs 
• Environmental costs 

• Overheads 
• Administrative costs 
• Maintenance costs 

Process model 

Cost model 

Figure 2. General Methodology 

Approximations 

Implementation of the 
chosen alternative 

1 a •1 Generation of alternatives 1 z _.< 

Sensitivity analysis Optimization 
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1) Categorize process as batch, semi-batch, or continuous. 

2) List components involved in the process. This list must include wastes generated i: 

the process. Sometimes these wastes cannot be characterized accurately, in which 

case approximations should be applied. 

3) List data requirements for model development. Typically, these include, 

a) physical property data, 

b) kinetic data, 

c) thermodynamic data, and 

d) plant measurements 

i) operating conditions, 

ii) flow rates, 

iii) equipment geometry, and 

iv) operational constraints. 

4) Ascertain physical and kinetic property data availability. In case data are not 

available, check on the feasibility of either theoretical estimation or experimental 

determination of the data. Another option is to approximate the properties of a giveJ 

material with that of a chemically and structurally similar compound. 

5) Select appropriate tools for formulating the model. Two options are available for 

developing a model. One could either use a commercial process simulator or 

develop a code. Common features of simulators include databases on physical 

property of compounds and unit operation modules. Some examples of process 

simulators are ASPEN PLUS, SPEEDUP, PRO II, ASCEND II, FLOWTRAN, 

etc. 

6) Once the tool has been chosen and a rough model incorporating all the unit 

operations has been developed, the results from the model should be analyzed. On 

must decide on key process variables which would serve as criterion for validation 
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of the model and then determine the availability of data for these variables. 

Analyzing the results of the rough model will show areas in which the accuracy of 

the model needs to be improved. The reasons for discrepancy between the 

predicted and actual values should be analyzed. Methods of incorporating 

modifications into the model must be studied. An iterative procedure should be 

carried out until the criterion for validation can be satisfactorily matched. 

Economic Analysis 

Economic justification for process retrofit can be provided using a cost model for 

the process. Such a model can be developed by linking the process model with economic 

data. The costs of operating a process are typically divided into capital and total product 

costs. Generally, product costs are broken down into four categories (Peters & 

Timmerhaus, 1980). 

1) Direct production costs 

a) raw material costs 

b) utility costs 

c) maintenance costs 

d) labor costs 

2) Fixed charges 

a) depreciation 

b) taxes 

c) insur.ance 

3) Plant overhead costs 

a) safety 

b) laboratories 

c) storage 

4) Administrative and product distribution costs. 
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For many processes, the costs of waste reduction and disposal significantly 

impact the overall profitability of the process. This research proposes that environmental 

costs should be included into the total product costs as direct production costs. This is 

done to reflect the relative incentives for waste minimization or treatment. An important 

step in this general methodology is to incorporate the environmental costs into the process 

and cost models for optimization purposes. The development of a total product cost model 

for the process can be broken down into the following steps: 

1) For purposes of developing a cost model, the process model can be used to 

generate a material balance of the components in the process. 

2) Cost data for the raw materials and waste treatment should be gathered. This data 

can then be incorporated into the process model. This essentially means 

multiplication of the material stream quantities by the stream costs. A good estimat1 

of the direct production costs can then be obtained using the process model. 

3) The remaining costs including fixed charges, plant overheads and administrative 

costs can be obtained from company records. It is sufficient to use rough estimates 

of these costs for preliminary optimization. All these costs can then be combined 

into an aggregate fixed charge. 

4) The sum of the direct production costs and the aggregate fixed charges will then 

give the total product cost, i.e., 

where, 

Total product costs = direct production costs + aggregate fixed charges 

direct production costs = f (raw material costs, utility costs, environmental 
costs) 

aggregate fixed charges = f (overheads and administrative costs). 

The profit can then be calculated, given the selling price of the product. The profit 

on an annualized basis can be written as, 

Annual profit = production rate (lb./yr.) x selling price ($/lb.) -

total product cost($/yr.). 
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This represents the base-case profitability . Thus, using a valid process model. we 

can develop a reasonably accurate cost model for the process. 

Generation, Optimization, and Selection of Retrofit Alternatives 

The fir st step in optimization is to target key variables which can be manipulated to 

maximize the profitability of the process. The economic base case gives a good idea of the 

signi ficant costs of operation. A sensitivity analysis provides, by elimination, specific 

process variables for manipulation. In the next step, one uses engineering creativity and 

judgment to develop alternatives based on changes in the significant variables . Using this 

methodology, the incentives of vary ing either one or a combination of the significant 

variables can be compared with the base-case profitability. For each alternative, the 

additional constraints imposed on the system due to the changes should be incorporated 

into the process model. The main steps in generating, optimizing, and selecting retrofit 

alternatives can be summarized as follows : 

1 )  Analyze function for its sensitivity to process variables. 

2) Target the significant process variables. 

3) Develop alternatives for process improvements based on these significant variables 

4) Incorporate additional constraints corresponding to the alternatives into the process 

model. 

5) Use mathematical techniques to optimize the process model. 

6) Compare optimized profitability of alternatives with the base-case profitability. 

So far the discussion has pertained to optimizing the current process conditions. 

This was essential, because the operating conditions of the original plant design are 

different than the present conditions. Extending the argument, future conditions may 

change the profitability of the process drastically. Such a scenario is very plausible 

considering the impact of regulatory compliance. Thus, there is impetus for anticipating 

chan ges and being prepared to take appropriate action. This methodology proposes that 
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CHAPTER V 

PROCESS MODEL 

A process model is usually developed to predict the response and sensitivity of 

exi sting equipment to changes in operating configuration or conditions. Through these 

applications the profitability of a chemical process is to be controlled and optimized. In thi� 

work, a model of the synthesis section of the sulfolane process has been developed for 

retrofit applications. The synthesis section has been considered because it is the source of 

waste generation in the process. 

Process Characterization 

A batch mode of operation for the sulfolane process has been assumed and 

modeled. The main components in the process are sulfur dioxide, 1 ,3-butadiene, 3-

sulfolene, sulfolane, hydrogenation solvent, and a hydrogenation catalyst. 

The physical properties for most of these compounds are available and accessible in 

the open literature. Data does not exist for either the pure component or mixture properties 

of the intermediate compound, 3-su1folene. Data for sulfolane are available in the Design 

Institute of Physical Property Research (DIPPR) database; however, most of these 

properties are estimated. In this work, properties of 3-sulfolene have been estimated for 

use in simulations. 

Some kinetic data are available for both of the reactions in the synthesis step. Drake 

et al. ( 1 946) have published data for the reaction of sulfur dioxide with 1 ,3-butadiene to 

form 3-su1fo1ene. These data have been found to be inapplicable to the reaction occurring 

in reactor Rl (Jayagopal, 1 994). Proprietary kinetic data provided by Phillips Petroleum 
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Company was used to simulate this reactor. Mashkina et al. ( 1966) have studied the 

hydrogenation of 3-sulfolene over nickel-chromium catalyst and the effect of poisoning on 

the activity of the catalyst. These data were not used for the sin1ulation of reactor R3. 

because they are inaccurate and not reproducible. 

Proprietary operating conditions and equipment geometry data were provided by 

Phil l ips Petroleum Company. These data included typical ranges of reactor temperatures. 

pressures, batch sizes, and waste material balances. In addition. Phillips experin1ental dat:: 

were made available. These helped substantially in confirming, discarding, or revis ing 

some of the conclusions derived from the process model .  

In summary, apart from the physical properties of 3-sulfolene and kinetic data for 

the hydrogenation reaction, all other data requirements for modeling the process were 

satisfactorily met. 

Process Modeling Tool 

In this work, the steady state simulator ASPEN PLUS released by Aspen 

Technology has been used. ASPEN PLUS has several features that make it user friendly 

and powerful. The graphical user interface ModelManager is an expert system gu idance 

tool that allows complete specification of the flowsheet at every stage of model 

development. The package has an extensive database for pure component properties. 

Almost forty equation-of-state models provide for thermodynamic properties required in tht 

simulations. Additional features include property estimation system, sensitivity blocks, 

optimization routines and flowsheet sectioning. It contains an ideal batch reactor module 

which can be integrated into a continuous process flowsheet, through the use of 

accumulation tanks . It also contains models of typical pollution control equipment such as 

cyclones, scrubbers, etc. 

Although ASPEN PLUS is probably the most popular flowsheet simulator at the 

current time its applications to solving practical industrial problems have not been widely 
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reported in the literature. Some investigators report the use of ASPEN PLUS for 

environmental applications (Wu, 1992). Others have reported the use of ASPEN PLUS 

for innovative applications such as determining the effect of process parameter uncertainty 

on the outcome of a simulation (Diwekar, 1992). In this work, ASPEN PLUS has been 

used to simulate the sulfolane process. 

Physical Property Estimation For 3-sulfolene 

There is little experimental data on 3-sulfolene. ASPEN PLUS does not contain th� 

pure component physical properties of 3-sulfolene. In this study these properties have 

been estimated using group contribution methods. The selection of these methods was 

based on their use for sulfolane. Since the structure of these two compounds is very 

similar it is a reasonable approximation to use the same group contribution methods for the 

estimation of pure component physical properties. The properties of 3-sulfolene were 

either estimated manually or using ASPEN PLUS. The details of these estimations are 

provided below. 

1)  The molecular weight of 3-sulfolene is equal to the sum of the molecular weights oJ 

sulfur dioxide and 1 ,3-butadiene. For this study, the molecular weight of 3-

sulfolene has been assumed to be 1 1 8 . 1 56. 

54.092 + 

sulfur dioxide 

64.063 

1 ,3-butadiene 

= 1 1 8 . 1 56 

sulfolene 

2) 3-sulfolene is known to decompose at temperatures close to its normal boiling 

point. Therefore, there are no experimental data on the normal boiling point. 

Through extrapolation of a plot of boiling point as a function of the normal boiling 

point has been estimated to be 304 F. 

3) The critical temperature and pressure of 3-sulfolene can be determined using the 

Lyderson group contribution method. This method was selected because it has 

been used to estimate the critical properties of sulfolane (DIPPR). Due to similarity 
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in chemical structure this approximation may be justifiable. The values used for th( 

critical properties are (Jayagopal, 1994) : 

a) Critical temperature, Tc : 707 .68 F 

b) Critical pressure, Pc : 774.92 psia. 

4) The heat of formation of 3-sulfolene and the ideal gas heat capacity can be 

determined using the Benson group contribution method. This method generally 

provides quite accurate results for sulfur containing compounds. This is because 

group contribution factors for ring compounds containing sulfur are available in thi 

method (Reid et al . ,  1987) . The heat of formation and the ideal gas heat capacity 

polynomial as estimated using the Property Constant Estimation System (PCES) in 

ASPEN PLUS, are (Appendix A) : 

a) Heat of formation Ml0f,298 = 

b) Ideal gas heat capacity polynomial 

-2.586 x 108 J/kmol. 

Cpo = -8 1 388 .0 + 775 .27·T - 0.72205·T2 + 0.26086x 10-3 ·T3 

for 280 < T < 1 1 00 (temperatures in Kelvin) . 

Experimental verification for the heat of formation can be found in literature. 

However, these values fall in a range, the average of which is quite close to the 

estimated value. Therefore, we shall go with the estimated value. 

5) The vapor pressure data were estimated using the Reidel method (Jayagopal, 1 994) 

Using these data the Antoine parameters for the vapor pressure of 3-sulfolene were 

estimated with the PCES module in ASPEN PLUS. The estimated Antoine's 

polynomial is shown below (Appendix A) : 

767 1. 3 
ln psat 

= 67. 87 - + 0. 483x 1o-3 • T - 6. 358 • lnT 
T 

The value of the vapor pressure calculated using this polynomial provides for 

interesting results. It is found that the vapor pressure of 3-sulfolene is three orders 

of magnitude greater than the vapor pressure of sulfolane at the same temperature. 
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This could be due to errors introduced into the estimation through the use of 

approximate normal boiling point and estimated critical properties . 

Comparison with sulfolane properties 

The use of good physical properties is essential to any simulation. Approximations 

have to be often applied to overcome lack of data. For instance, the properties for 3-

sulfolene were approximated with those of sulfolane. The simulated process model was 

run with both estimated and approximated 3-sulfolene properties. It was found that the use 

of sulfolane properties for 3-sulfolene gives more accurate results than using the estimated 

3-sulfolene properties . Therefore, in this work, the properties of 3-sulfolene have been 

approximated with those of sulfolane. A brief summary and comparison of physical 

properties of both compounds is shown in Table 1 .  

TABLE 1 

COMPARISON OF ESTIMATED PHYSICAL 
PROPERTIES OF 3-SULFOLENE AND SULFOLANE 

ProEert� 3-Sulfolene Sulfolane 

Molecular weight 1 1 8 . 1 56 1 20. 1 72 

Normal boiling point (NBP) 303.8  F 548 .3  F 

Critical temperature, T c 707.7 F 1075 .8  F 

Critical pressure, P c 774.92 psia. 728 .33 psia. 

Heat of formation, MI0J,298 -2.59 x 1 os Jlkmol -3.9 x 108 J/kmol 

Ideal gas heat capacity @ 1 70 F, Cp o 1 . 1 3 x 1 05 J/kmol K 1 .33 x 1 05 Jlkmol K 

Vapor pressure @ 1 70 F, psat 1 .04 psia. 0.005 psia. 
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Process Model Of The Sulfolane Process 

The discussion of the individual equipment models has been structured in the 

following format. The discussion will consist of : 

1 )  Operating procedure and conditions 

2) Physical and kinetic property data 

3) Assumptions 

4) Model development 

5) Results 

Since most of this information is proprietary, details of the assumptions and model 

development will be provided in this chapter. A discussion of the actual operating 

conditions and the results of the models are provided elsewhere (Technical Report, 1994) . 

Reaction step - Reactor R 1 

R 1 Operational procedure and conditions 

Reactor R1  is a semi-batch reactor in which the reactants sulfur dioxide and 1 ,3-

butadiene react to form 3-sulfolene. Fresh feed is introduced into the reactor over a period 

of approximately two hours. At the end of the batch cycle only a part of the reaction 

mixture is removed from the reactor. The portion of the reaction mixture remaining in the 

reactor shall be referred to as the 'heel'. The heel acts as a heat source to maintain the 

temperature of the reaction mixture at the desired value. The operation of the reactor is 

isothermal and the temperature is controlled by means of an external cooling jacket and 

internal cooling coils. A schematic diagram of the reactor and the operating conditions can 

be found in Fig .3.  
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Physical property and kinetic data for R 1 

1 )  Simulations were performed with both estimated 3-sulfolene and sulfolane 

properties. 

2) Kinetic data provided by Phillips Petroleum Company were used. These data can 

be found in the Technical Report ( 1994). 

3) The Peng-Robinson equation of state (EOS) was found to be the most accurate for 

the simulation of R 1 .  Even though the components of the mixture are highly polar 

this EOS seems to give better results than others models. The other EOS that is 

appropriate for this system is the Redlich-UNIF AC EOS developed by Aspen 

Technology. This EOS model uses binary interaction parameters of mixtures for 

which data is available in the databases. This model is usually used when the liquid 

mixture is polar and non-ideal. 

R 1 Modelinf: Assumptions 

1 )  Both the reactants are charged into the reactor at the same tentperature and pressure. 

2) The reactor is operated isothermally. 

3)  The pressure relief valve of the reactor is set at a constant value. 

4) The only reaction occurring in the reactor is the reversible and exothermic formation 

of 3-sulfolene. 

5) The extent of the reaction is measured in terms of the percent conversion of 1 ,3-

butadiene charged. 

6) The heel is at equilibrium composition of sulfur dioxide, 1 ,3-butadiene, and 3-

sulfolene. 

9) The liquid phase is homogenous, i.e., there are no immiscible liquid phases of a 

particular component. 

1 0) The reactor can be represented by a series of two ideal batch reactors. 
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R 1  Model development 

Based on the assumptions outlined above, R l  was modeled using the RBATCH, 

MIXER, and FSPLIT modules in ASPEN PLUS (ASPEN PLUS , Users guide) . The 

model of this reactor has been iteratively improved as more information on its 

configuration could be obtained. 

The refinement of the model from the initial to the final form results from a better 

understanding of the mixing occurring inside the reactor. The evolution of the model is du 

to the work done on this reactor by Jayagopal ( 1 994). The difference in the final results, 

i .e . ,  the prediction of the exit composition is not significant from one model to another. 

However, the final form of the model can be considered predictive as opposed to the 

correlative nature of the initial model. 

In the fmal model (Fig. 4) the reactor operation is represented by a series of three 

batch reactors. The first reactor, block B 1 ,  is used to produce the heel that is present in the 

beginning of the batch cycle. This heel is then split into two equal portions in block B2. 

Block B3 and B4 represent the top zone of the reactor to which fresh feed is added. A 

portion of the product from B4 is removed and added to the second zone of the reactor 

represented by block B7. A part of the product is removed from block B7. This represent 

the product removal from reactor R 1  (fechnical Report, 1994). 

R 1  Results 

A comparison of the results showed that the conversions and molar volume of 

reaction mixture predicted using 3-sulfolene properties were higher than those predicted 

using sulfolane properties. The criterion for validating the model were the exit 

compositions of the reactor stream. The variable with the most impact on the exit 

composition was found to be the batch cycle time. 
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Treatment step - Vessel R2 

R2 Operational procedure and conditions 

R2 is a agitated flash vessel in which the reaction mixture from R I is added to a 

solvent and then treated to remove the unreacted sulfur dioxide and the butadiene. This is 

done through a combination of flashing the mixture and sparging it with an inert gas such 

as nitrogen (Fig. 5) .  The process is kept isothermal . The unreacted sulfur dioxide and 

butadiene gases are swept along with the solvent vapors to the waste treatment section of 

the process where they are treated with caustic before being sent to the flare. See Technica] 

Report ( 1 994) for actual operating conditions. 

Physical property and kinetic data for R2 

1 )  For the simulation of this step the properties of sulfolene were approximated with 

those of sulfolane. 

2) The kinetic data for this step pertains to the decomposition of sulfolene is the 

solvent-sulfolene mixture. These data have been obtained through experimental 

measurements made by Phillips. 

3) The Redlich-UNIFAC EOS was found to be suitable for the simulation of this step. 

R2 Modelin� Assumptions 

1 )  Decomposition of sulfolene has been neglected for the steady state model . 

2) A pressure profile exists during the evacuation of R2. This profile starts with 

atmospheric pressure and ends with a pressure of about 2 psia. 

3) The liquid mixture inside R2 is well-mixed, homogeneous, and no immiscible 

liquid phases exist. 

4) Nitrogen is used to sparge the mixture and is fed continuously into the vessel. 
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R2 Model development 

Three models were constructed for the simulation of this step. They were: 

1 )  Batch reactor model (Model 1)  

2) Steady state flash vessels in series (Model 2) 

3)  Batch reactor and flash vessel in series (Model 3) 

The decomposition of sulfolene was neglected in the steady state model (model 2) 

because simultaneous phase and chemical equilibrium could not be incorporated. The 

ASPEN PLUS module which allows this -REQUIL is known to have convergence 

problems, and this was experienced during the simulation of R2. The assumption 

regarding pressure profile was made because it represents the transient response of the 

system to the evacuation of the treatment vessel. Though this transience cannot be 

incorporated per se into the steady state model, it can serve as an approximation of the 

batch process through the series representation. 

If we assume that the pressure inside the vessel varies with time, then the 

progression of the pressure can be represented by a set of discrete points. Steady state 

vessels can then be used to simulate each discrete pressure condition (keeping the 

temperature constant). The assumption regarding perfect mixing is justifiable considering 

the small volume of the mixture. This assumption simplifies the thermodynamic aspects of 

the flash calculations for R2. 

The nitrogen sparging is an important step in the treatment in R2 because it reduces 

the mass-transfer limitations of sulfur dioxide removal from the liquid mixture. Nitrogen 

gas can strip solvent vapors. This should to be avoided, because the solvent concentration 

in the liquid must be maintained at a certain level to prevent freezing of the sulfolene. The 

incorporation of nitrogen sparging into the model is thus very important. The details of the 

three models are provided below. 

Model 1 The batch reactor model consists of the RBATCH and MIXER modules 

(Fig. 6). The reaction mixture from Rl and the solvent are first mixed in the MIXER 
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model. The product from this module is then sent to the RBA TCH n1odel. Decomposition 

kinetics of sulfolene are provided for this module. The product from the RBA TCH modult 

is considered equivalent to the R2 output. 

Model 2 The steady state model of R2 consists of a series of FLASH2 n1odules 

(Fig . 6). The reaction mixture from R1 is mixed with the solvent in the first stage. The 

liquid from each stage is fed into the next stage. The vapor streams fron1 each stage are 

taken out as product streams .  In the last stage, in addition to the liquid feed from the 

previous stage, an additional stream simulating the nitrogen sparge is incorporated. The 

liquid stream from the last stage is considered equivalent to the R2 output. 

Model 3 The third model consists of a batch reactor and a flash vessel in series 

(Fig . 6). The model consists of RBA TCH, FLASH2 and MIXER modules. The reaction 

mixture from R 1 is added to the solvent in the MIXER module. The product is then 

transferred to the batch reactor and the product of this reactor is then sent to the flash vessel 

where the mixture is sparged with nitrogen. The product of this FLASH2 module is 

considered equivalent to the R2 output. 

R2 Results 

Several trade-offs were applied in selecting the appropriate model. The batch model 

(Model 1 ) allows us to study the transient response of the system including the changes in 

the composition of the vapor and the liquid. It also al lows us to incorporate the 

decomposition kinetics of the sulfolene. However, the nitrogen sparge cannot be added to 

this model. An attempt was made to include the nitrogen sparge in a FLASH2 module 

connected to the outlet of the batch reactor (Model 3). However, this model predicts a 

lower sulfur dioxide concentration in the liquid than measured experimentally. The results 

from the steady state model (Model 2) were found to match with the pilot plant data quite 

closely. Since this model allows incorporation of nitrogen sparging and provides 

reasonable results, it was chosen as the representative model (Technical Report, 1 994) . 
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The simulation results for this step were found to be very sensitive to the properties 

of sulfolene and the EOS used. The improper selection of these quantities led to gross 

errors in the prediction of vapor-liquid equilibrium in this step. 

Hydrogenation step (R3) 

R3 - Operational procedure and conditions 

R3 is a stirred reactor in which the sulfolene-solvent mixture is catalytically 

hydrogenated to produce sulfolane (Fig. 7). The catalyst is charged at the beginning of the 

batch and pressurized hydrogen is fed continuously into the reactor throughout the batch 

cycle. The reactor is operated isothermally. The heat of the reaction is removed through a 

cooling jacket and internal cooling coils. The completion of the reaction is determined by 

monitoring the heat removal from the reactor. At the end of the reaction cycle the reactor is 

vented to remove excess gases and the sulfolane is transferred to a set of downstream 

processes for purification. 

Physical property and kinetic data for R3 

1)  For the simulation of  this step, the sulfolene properties were approximated with 

those of sulfolane. This was necessary because transport properties of the 

hydrogenation mixture were needed. 

2) No data are available on the intrinsic kinetics of the hydrogenation reaction of 

sulfolene. An effort was made to regress kinetic data based on the heat removal 

data obtained from the plant. However, the assumptions regarding the mechanism 

of the reaction were not justifiable. A discussion of the conventional mechanism of 

heterogeneous reactions is provided in the next section. 

3) The Redlich-UNIFAC equation of state was used to simulate the properties for this 

step. 
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R3 Modelin� assumptions 

Reactors Liquid phase hydrogenation reactions are usually carried out in either 

slurry reactors or fluidized bed reactors. In a slurry reactor, the solid catalyst is suspendec 

in a liquid which contains the material to be hydrogenated. Gas is bubbled through this 

slurry and the hydrogenation occurs on the catalyst particle surface. The slurry reactor 

which is common in specialty chemical manufacture can be usually operated in batch, semi 

batch or continuous mode. The advantages of this type of reactor are good temperature 

control and easy heat recovery. 

Mechanism There are classically two approaches to determining the kinetics of a 

heterogeneous reaction. 

1)  Power law kinetics 

2) Langmuir-Hinshelwood kinetics 

The latter is a mechanistic representation of the reaction. The power law kinetics on the 

other hand are a representation of the kinetics in terms of component concentrations which 

affect the rate of a reaction significantly. A comprehensive discussion of the advantages 

and pitfalls of each approach is available by Welier ( 1956) . 

The most conventional interpretation of the mechanism of a heterogeneous reaction 

is represented by the following general sequence of steps: 

1 )  absorption from gas phase into liquid phase at the bubble surface, 

2) diffusion in the liquid phase from bubble surface to bulk liquid, 

3) diffusion from bulk liquid to external surface of the catalyst, 

4) internal diffusion of reactant in the porous catalyst, 

5) reaction within the porous catalyst. 

The products then follow similar steps in the reverse order. Each step is a resistanc( 

to the overall rate of the reaction. Following these set of steps, the overall rate of reaction 

can be expressed as, 
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where, the first term on the right hand side represents the resistance to gas absorption, the 

second term the resistance to transport to the surface of the catalyst particle, and the third 

term the diffusion to (internal) and reaction within the catalyst particle. These resistances 

act in series as can be recognized by the equation. 

There is, however, another proposed mechanism in which the resistances of gas 

absorption and external diffusion act in parallel. This mechanism is described as the 

"shuttle" mechanism (Alper, 1 98 1  ) . This occurs when the catalyst particles are very fine 

and leads to enhanced gas absorption rates. Usually the enhancement reaches a limit when 

the diameter of the catalyst particle is roughly equal to the thickness of the liquid film 

surrounding the catalyst particle. Under these conditions the well established design 

equation mentioned above does not apply. However, quantitative representation of this 

concept is still lacking in the literature. 

In this study, we will assume that the standard Langmuir-Hinshelwood kinetic 

mechanism applies. Apart from this, the following assumptions are made: 

1 )  The conversion of sulfolene to sulfolane is assumed to be 98% . 

2) The hydrogen is assumed to be at ambient temperature. 

3) The side reactions occurring in this step have been neglected. 

R3 Model development 

This step has been simulated with a RSTOIC module (Technical Report, 1994 ) . 

The sulfolene-solvent mixture from R2 is provided as feed for this block. The conversion 

for sulfolene is specified. The products of the RSTOIC block (vapor and liquid streams) 

are assumed to represent the R3 output. The property set facility of ASPEN PLUS was 

used to estimate the mixture properties of the hydrogenation mixture. 
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R3 - Results 

The results of this block were mainly the property estimations that were required to 

determine the rate limiting step in the process (fable 4, Chapter 7). The amount of 

sulfolane produced per batch cycle was chosen as the variable for validating the model. 

The results indicated that the overall material balance for the process could be satisfied 

through the use of the RSTOIC module. 

Overall Process Model 

The most appropriate model for each step was selected. These were then combined 

into one flow sheet to form the overall process model. Thus, a complete material and 

energy balance for the first three steps of the process could be generated using ASPEN 

PLUS. This shall be referred to as the 'base-case' .  The particulars for the overall model 

are: 

1 )  Reaction step - Refined two-zone batch reactor model 

2) Treatment step - Steady state flash vessels in series model 

3) Hydrogenation step - Stoichiometric reactor model 

These selections were based on accuracy of results, computational ease, and ease of 

interface with each other. Some important process variables were selected to validate the 

overall process model. These variables were: 

1 )  Reaction step - Outlet composition of reaction mixture 

2) Treatment step - Sulfur dioxide concentration in the exit liquid stream 

3) Hydrogenation step - Sulfolane production per batch. 

The input file for the ASPEN PLUS simulation of the overall process model and the 

detailed material and energy balances are available in the Technical Report ( 1 994). A 

synopsis of the results is shown in Table 2. 

In this chapter we have reviewed, a) process characterization, b) physical property 

estimation for 3-sulfolene, c) operational details of equipment, d) development of ASPEN 
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PLUS models to simulate each piece of equipment, e) analysis and selection of appropriate 

models for each piece of equipment, and, f) the results from the base case simulation of the 

overall process. In summary, the work presented in this chapter represents the application 

of the first step of the general methodology to the sulfolane process, namely, process 

modeling. 

Using this overall process model as the base case material and energy balance the 

economics of the current operation will be evaluated. This discussion is presented in the 

next chapter. 

TABLE 2 

BASE CASE RESULTS 

Outlet composition of the reaction mixture from R1 (in terms of mole fractions) 

sulfolene 0. 763 
sulfur dioxide 0. 1 40 
butadiene 0. 097 

Concentration of liquid product from R2 (in terms of mass fraction) 

sulfur dioxide 7 10 ppm 

butadiene 5 1 5  ppm 

sulfolene 0.684 
solvent 0.3 1 4 

Sulfolane production per batch (in terms of lb. sulfolane/ lb. sulfur dioxide feed) 

lb. sulfolane 
= 0.746 

lb . butadiene 
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CHAPTER VI 

ECONOMIC ANALYSIS 

Process retrofit requires economic justification. Today, most of the economic 

incentive for modifying a process comes from reducing its environmental impact. In order 

to look at the incentives for improving the sulfolane process , an economic analysis of the 

existing process needs to be performed. In this chapter, a base case economic analysis will 

be reviewed. 

Review Of Approach For Economic Analysis 

A cost model for the process can be developed by linking the process model with 

economic data. The costs of operating a process are typically divided into capital and total 

product costs . Generally, product costs are broken down into four categories. 

1 )  Direct production costs 

2) Fixed charges 

3) Plant overhead costs 

4) Administrative and product distribution costs 

For many processes, the costs of waste reduction and disposal significantly impact 

the overall profitability of the process. This research proposes that environmental costs 

should be included into the total product costs as direct production costs. However, 

industrially these costs are assigned to an overhead account (Freeman, 1992) .  This is one 

of the main obstacles in determining the incentives for waste minimization. The 

development of a total product cost model for the sulfolane process is discussed in the next 

section. 
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Base Case Economics of Sulfolane Process 

A total product cost model has been developed for the sulfolane process. The majo1 

components of the total products costs are : 

1 ) raw material costs 

2) utility costs 

3) maintenance costs 

4) plant overhead costs 

5) waste treatment /disposal costs 

Based on these costs annualized profit can be expressed as, 

Profit = production rate x selling price - total product costs 

The total product costs term can be expanded to the following form, 

Product costs = 

Data availability 

raw material usage x raw material costs + utility usage x 

utility costs + waste generation x waste treatment/ disposal 

costs + plant overhead costs + maintenance costs 

In this analysis, approximate values for treatment and disposal of wastes will be 

assumed since accurate figures for the environmental costs are not available. Then, using 

these costs, the annualized waste treatment and disposal costs will be calculated. This 

amount will be subtracted from the plant overhead account to which it is presently being 

charged. The utility and maintenance costs for individual sections of the process are not 

available. Thus, these costs will be assumed to vary linearly with production levels. In 

summary, the main assumptions are, 

1 ) Waste treatment and disposal costs assumed 

2) Maintenance and overhead costs vary linearly with production levels 

3) Process equipment is fully depreciated 
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Cost data 

The cost data used for this economic analysis have been summarized below. These 

values are estimates and have been obtained from Chemical Marketing Reporter. 

1 ) Raw materials 

Butadiene 

Sulfur dioxide 

Catalyst 

Nitrogen 

Hydrogen 

NaOH 

2) Utilities 

Steam 

Electricity 

$0.20 I lb. 

$0. 1 1 5 I lb . 

$7. 1 5  I lb . 

$0.70 / MSCF 

$0. 1 3 1  I lb. 

$0. 1 65 I lb . 

$3.08 I Mlb. 

$0.0345 I kWhr 

3) Waste treatment I disposal costs 

Spent liquid absorbent disposal costs 

Solid waste reclamation (disposal) costs 

Gaseous waste treatment costs 

$0.0 11  gallon. 

$750 I ton. 

$ 0. 1 65 /lb .  

Since the overhead and maintenance cost figures are proprietary, these values can 

be found in the Technical Report ( 1994) along with the results of the base case economics. 

Economic analysis 

The material balance generated using the overall process model was used to 

calculate the annual costs of sulfolane production. The break down of the calculated costs 

is available in the Technical Report ( 1994) . The catalyst and sodium hydroxide usage 

figures are based on plant data and are not based on the predictions of the overall process 

model. 
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Based on the material balance generated by the process model, the economics of the 

base case process were calculated. The results of such an analysis indicates that the 

process costs are dominated by raw material costs. The catalyst cost is the most significant 

among the raw material costs. This was found to be nearly 20% of the overall costs of the 

process.  The catalyst use figure is, however, uncertain and due to this, the costs could 

vary from 20 to 35% of the overall costs of the process. 

The environmental costs were found to be nearly 2 %  of the overall costs of the 

process. This cost is very uncertain due to lack of data on sodium hydroxide usage. For 

this economic analysis it has been assumed that for every pound of sulfur dioxide to be 

scrubbed, one pound of sodium hydroxide is needed. If the use of sodium hydroxide is 

closer to 1 0  pounds per pound of sulfur dioxide then this amounts to nearly 20% of the 

overall costs. This is mainly due to the high raw material costs associated with sodium 

hydroxide. The costs of treating and disposing the liquid discharges were found to be 

insignificant compared to the overall process costs. The reclamation costs associated with 

the solid sludge were recovered through the value of the reclaimed catalyst. 

The environmental costs discussed in this section pertain solely to the treatment and 

or disposal of wastes. While measuring the incentives of waste reduction, one needs to 

consider the hidden incentives such as retroactive liability imposed by EPA, customer 

response to environmentally friendly technology, a more efficient raw material utilization 

etc. 

In summary, based on the economic analysis it can be concluded that there exists 

much incentive ( 1 0- 1 5 %  savings on the product costs) for implementing waste reduction 

measures through more efficient utilization of the raw materials in the process. In the next 

chapter the generation, selection and optimization of improvement alternatives will be 

considered. 
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Chapter VII 

PROCESS RETROFIT ALTERNATNES 

In the previous two chapters the development of an overall process model and its 

use to perform an economic analysis has been reviewed. In this chapter the use of these 

two steps for generating and selecting alternatives will be discussed. 

Sensitivity Analysis 

The sensitivity of the annual profit to a particular process variable is a useful way of 

targeting the key optimization variables. The economics dictate the magnitude of impact 

each process variable has on the overall profitability. Therefore, even though the process 

model might be extremely sensitive to some parameter such as temperature or pressure of a 

reactor, changes in that parameter may not affect the profit levels of the process. Thus, a 

sensitivity analysis is important not only for the development of the process model but also 

for the optimization of the process. In this chapter, the sensitivity of the economic model 

will be discussed. 

Sensitivity of process economics 

From the base case economics the following conclusions can be drawn about the 

relative magnitudes of costs. The process is dominated by raw material costs. The variable 

costs with the next highest impact are the waste treatment/ disposal costs, followed by plant 

overhead, maintenance and utility costs. Plant overhead costs tend to be a significant 

portion of the total product costs when a variety of miscellaneous costs are combined under 

it. In order to avoid this in this work, the waste treatment and disposal costs have been 
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separated from the overhead, leaving the remaining portion to account for costs associated 

with administrative and product distribution activities. Specifically, the following 

inferences can be drawn from the economic analysis. 

1 ) The catalyst cost is the most important variable. The catalyst is very expensive. It 

gets poisoned in the hydrogenation step and cannot be recovered for reuse. The 

poisoning of the catalyst also leads to the formation of unwanted by-products 

(solids sludge) the disposal of which is an additional economic burden. The 

poisoning of the catalyst reduces its activity thus affecting the rate of the reaction 

and consequently the batch cycle times. Also, the quality of catalyst is not 

consistent from one batch to another. All these factors lead to the hydrogenation 

step being the time and waste bottleneck of the process. The improvement and 

optimization of this step holds the maximum environmental and economic incentive. 

2) Next to the catalyst costs, the important variables are the raw material costs of the 

reactants sulfur dioxide and butadiene. A more efficient utilization of the raw 

materials either through better conversion or recycle holds incentive not only from a 

regulatory point of view but also from a raw material conversion efficiency point of 

view. 

3) The utility costs are not significant for this particular process. However, in case 

retrofit involves addition of new equipment or change of an existing equipment for 

which the energy consumption is increased (e.g., increase in steam consumption to 

effect better separation) then these costs may become more significant. 

In the following section possible scenarios which highlight the importance of the 

above mentioned variables will be discussed. 
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Forecasting Future Scenarios 

Consider the following scenarios which further highlight the incentive for efficient 

raw material utilization. 

1)  Butadiene emission levels are regulated 

2) Allowable sulfur dioxide emission levels are lowered 

3) Demand for sulfolane increases 

4) Catalyst reclaimer is subjected to new environmental regulations 

5) Raw material prices increase 

6) Reduction of emissions from one facility qualifies as a trade-off for another facility 

Scenario 1 :  

The process plant usually operates under permitted levels of gaseous emissions and 

waste water discharges. Currently, the amount of butadiene is not regulated, and 

prevention of butadiene from entering either the gaseous emissions or the waste water is 

not an important consideration. By 1995 the levels of butadiene will be regulated, and 

process modifications will have to be made to reduce the butadiene in the gaseous 

emissions and the waste water to allowed (permitted) levels. 

Scenario 2: 

The allowable levels of sulfur dioxide emissions from a plant are subject to 

revision. These emission requirements may become more stringent. With existing 

equipment it might be infeasible to reduce sulfur dioxide levels to the permissible levels. In 

this case the only alternative would be to reduce at the source, i .e., through better raw 

material utilization. 

5 1  



Scenario 3 :  

The demand for sulfolane may increase in the future. This would require an 

increase in the production levels of the process. This will affect the amount of wastes 

generated and consequently the economics of the process. It would be worthwhile to 

investigate the case of increased production and determine ways in which this can be 

achieved without adversely affecting the profit levels of the process. 

Scenario 4: 

The catalyst reclaimer may increase the price of reclaiming the catalyst. This could 

be due to increased environmental regulations that the reclaimer may face in the future. 

This would affect the amount of solid waste that the process can dispose. If the costs of 

reclamation are not offset by the value of the disposed solid waste, then it would be 

beneficial to reduce the generation of these wastes. 

Scenario 5 :  

The price of raw material may increase i n  the future. Raw materials such as sulfur 

dioxide and butadiene may become more expensive. This would increase the incentives for 

better raw material utilization. 

Scenario 6: 

Reduction in emissions from one part of the plant may qualify as a trade-off for 

emission levels from another part of the plant or from another facility. In fact this 

provision is already in place. This is additional incentive for reducing emissions from any 

plant. 

Under all these scenarios, waste minimization through better raw material utilization 

will carry high incentives. Thus, it can be seen that incentives for waste minimization exist 

not only for the current operating scenario but more so for the future, considering the trend 
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of environmental regulations. The following sections will be devoted to the application of 

the proposed methodology for generating, optimizing and selecting alternatives for 

improving the sulfolane process. 

Generation, Selection, and, Optimization of Alternatives 

Based on the sensitivity of the economics of the process, catalyst cost and raw 

material costs have been identified to be the significant costs of operation. Following these 

are the environmental costs, which have been calculated by assuming approximate values 

of waste treatment of solid, liquid, and, gaseous emissions from the process. Based on 

these indicators, the following alternatives are worth investigating. 

1 )  Conservation and optimization of raw material usage in the reactor R 1 .  

2) Improvement of sulfur dioxide removal in treatment tank R2. 

3) Change of hydrogenation solvent in treatment tank R2. 

4) Mitigation of rate limitation in the hydrogenation reactor R3. 

Each of these alternatives is discussed in detail below. 

Conservation and optimization of raw material usa�e in reactor R 1 

This alternative is important to ensure that there is no raw material loss through the 

vent of the reactor. When fresh feed is added at the beginning of the batch, the 

composition of the top zone of the reactor changes. The concentration of the more volatile 

components, i.e., sulfur dioxide and butadiene is high. The heat of the reaction causes 

some of the reactants to vaporize. This leads to the accumulation of the gaseous reactants 

in the head space of the reactor. As the vapor in the head space of the reactor builds up the 

operating pressure of the reactor increases till it reaches vent pressure. Once this pressure 

is achieved the reactor vents. In actual operation the reactor is found to vent at the 

beginning of the batch and then stabilize to equilibrium pressure as the batch cycle 

proceeds. This is because as the reaction proceeds the composition of the reaction mixture 
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changes and more of the non-volatile component, i.e. , sulfolene is present at the end of the 

batch than at the beginning. This aspect of Rl  operation has consequences on not only raw 

material utilization, but also on waste formation. High build up of butadiene in the gaseous 

phase can lead to the formation of polybutadiene polymers. Also, the reactor vent stream 

would contain sulfur dioxide and butadiene which are transported to the waste treatment 

steps of the process. Therefore, any alternative that reduces the emissions from the reactor 

vent and conserves raw material within the reactor without leading to polymer formation 

would be beneficial. 

To understand the vaporization taking place at the beginning of the batch cycle the 

bubble point of the mixture needs to be considered. The change of bubble point with 

composition also needs to be considered. Simulations of the P-T envelope can be carried 

out in ASPEN PLUS. The bubble points of the mixture are estimated as a function of the 

reaction rate. The main assumption in this analysis is that the temperature of the reactor is 

kept constant at the operating temperature. This can be verified by a study of the heat 

transfer occurring in the reactor through cooling coils and the external jacket. It has been 

theoretically determined that sufficient heat transfer capacity exists in the R 1 cooling system 

to maintain the temperature of the top half of the reactor at the operating temperature 

(Jayagopal, 1 994) . The variation of the bubble point with batch time are shown in Table 3 .  

At the beginning of  the batch assuming that the reactor contents are considered 

saturated liquids (i.e. , at saturated pressure of 65 psia) at or close to equilibrium 

composition, the addition of fresh feed would be followed by immediate vaporization of 

reactants because the system pressure is lower than the bubble point of the mixture ( - 125 

psia) .  Therefore as an operating policy it would be helpful to maintain the reactor vent 

pressure above this pressure so that even with rapid vaporization, the build up in the head 

space is never sufficient to cause the reactor to vent. 
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Time 

Beginning of cycle 

2 hrs 

4 hrs 

6 hrs 

TABLE 3 

REACTION :MIXTURE 
COMPOSITION AND BUBBLE POINTS 

Composition (mole fraction) Bubble point pressure 

S02 I C4 H6 I C4 H6 S02 

0.27 I 0.231 0.50 1 25 psia 

0.201 0. 1 61 0.64 100 psia 

0. 1 71 0. 1 31 0.70 80 psia 

0. 1 61 0. 1 21 0.72 75 psia 

Equilibrium composition 0. 1 41 0.091 0.77 65 psia 

There are two issues to consider in optimizing the R 1 reactor with respect to 

utilization of the raw materials. One is to ensure that the products removed from the reactor 

are at equilibrium conversion and secondly to produce sufficient moles of sulfolene per 

batch. Since the reactants are charged over a period of time it would be worthwhile to 

investigate the effect of the feed charge times on the extent of the reaction (in terms of 

percent conversion of butadiene charged). This can be studied by utilizing the optional 

continuous stream available as input to RBATCH module in ASPEN PLUS. 

The effect of butadiene charge times on the extent of reaction was studied. For this 

study the top zone of the reactor was considered. It is assumed that the fresh feed is well 

mixed with the heel present in the top half of the reactor. The feed charge time was varied 

between 1 and 6 hours. 

It was observed that the conversion of fresh feed to sulfolene in the heel decreases 

with increasing feed times (Fig.8) .  Correspondingly, the number of moles of sulfolene in 

the product decreases. Therefore, it is advisable to charge the fresh feed in as small a time 

as possible. However, the optimum feed time is constrained by the heat transfer capacity 
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of the reactor cooling system. Charging the reactor too quickly would lead to a temperature 

runaway and vaporization of the reaction mixture, both of which are detrimental to 

achieving equilibrium conversion. Since a feed time of 2 hrs. is found to cause venting of 

R l  in process plant operation, it is suggested that the feed time be increased. To make up 

for the reduced conversion, as quantified in Fig.8, the feed should be introduced 

continuously while allowing the reaction mixture to stay in the reactor for a longer time 

(i .e. ,  increasing the residence time). This can be done by reducing the mixing within the 

reactor and operating it in a plug flow type of configuration (Jayagopal, 1 994) . 

Improvement of sulfur dioxide removal from reaction mixture 

The unreacted sulfur dioxide and butadiene are separated from the reaction products 

of reactor R 1 in this step. The sulfur dioxide poisons the catalyst in the hydrogenation 

step. Thus, apart from changing the hydrogenation solvent, reducing the sulfur dioxide 

levels in the R3 feed is potentially an alternative to reduce the waste generation in the 

hydrogenation step. The main consideration in R2 is maintain the sulfolene mixture above 

its freezing point. The other consideration is to avoid high temperatures at which the 

decomposition rates of sulfolene would be significant. Subject to these two constraints the 

removal of sulfur dioxide from the reaction mixture can be improved it would reduce the 

poisoning in the hydrogenation step. 

The main constraint in the removal of sulfur dioxide is the mass-transfer limitation 

that dominates after a major part of the removal has been accomplished. To overcome this, 

the mixture is sparged with nitrogen. The nitrogen sparging can enhance the removal of 

sulfur dioxide, but nitrogen strips solvent. The change in the liquid composition increases 

the likelihood of the sulfolene mixture freezing. An increase of nitrogen sparging rate may 

therefore not be a feasible alternative. Through a sensitivity analysis carried out on the R2 

model, it is found that the removal of sulfur dioxide is 
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sensitive to the temperature of operation. In this work, an increase in the operating 

temperature of R2 has been considered as an alternative for improving the removal of sulfur 

dioxide from the reaction mixture. An optimization block was incorporated along with the 

simulated ASPEN PLUS process model. The range of temperature was restricted to the 

limits set by the decomposition characteristics of sulfolene. Based on the results of the 

optimization block it was found that an increase in the temperature of R2 operation by 

roughly about 1 0°F can reduce the sulfur dioxide levels to almost 100 ppm. There is 

increased solvent vaporization at the optimized conditions; however, not sufficient to 

adversely affect the freezing point of the mixture. Therefore, an increase in temperature can 

reduce the sulfur dioxide concentrations from the present 800 ppm to roughly 100 ppm. 

From an operability point of view, the increased solvent vaporization may affect the 

vacuum and the condensing system attached to R2. Through an analysis of the condenser 

and the vacuum system capacities, the feasibility of this alternative can be confirmed. A 

comparison of the unoptimized and optimized runs for the R2 is shown in Fig 9.  
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Figure 9. Effect of temperature on sulfur dioxide removal 
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In the base case simulation the freezing point of the sulfolene mixture was 20°F 

below the operating temperature. In the optimized case, the temperature difference between 

the operating temperature and the freezing point is about 30°F. Thus, the optimized 

temperature is safe from an operating standpoint. In summary, the major benefits of 

increasing temperature of R2 operation are: 

1 ) Reducing sulfur dioxide levels in the outlet to - 1 20 ppm. 

2) Reducing solvent content in the outlet (roughly 22 % compared to 30% )  

3) Increasing the temperature difference between the sulfolene mixture freezing 

point and the operating temperature of R2. 

Change of hydrogenation solvent in treatment tank R2 

One of the alternatives for improving process efficiency is change of the 

hydrogenation solvent. By using a solvent that reduces the poisoning of the hydrogenation 

catalyst, a significant reduction in the generation of the wastes can be affected. Preliminary 

calculations can be performed to evaluate alternative solvents. In order to make a 

comparison between solvents the important or critical qualities of a solvent must be listed. 

For sulfolane hydrogenation, the following characteristics are desirable. 

1 )  Highly polar 

2) Non-volatile 

3) High solubility of hydrogen 

4) High heat capacity 

5) Chemically inert under hydrogenation conditions 

The solvent should be polar because it should be able to dissolve sulfolene and 

sulfur dioxide, both of which are polar. The non-volatility ensures that under vacuum 

conditions appreciable vaporization doe not take place. This is important to maintain the 

sulfolene solution above its freezing point. The solvent should be able to dissolve 

hydrogen so that the hydrogenation reaction is not limited by the rate of hydrogen 
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absorption and diffusion. Finally, the solvent should not be involved in competing 
reactions with the catalyst which could lead to unwanted by-product formation. On the 
basis of these criteria, three solvents have been chosen for evaluation: 

1 ) isopropyl alcohol 

2) sulfolane 

3) water 

The solvent properties have mostly been estimated through ASPEN PLUS simulations. 

Polarity Accentric factor (omega) is usually defmed as a measure of the 

nonsphericity of a molecule (Reid et al. ,  1987) . Usually, the accentric factor is a parameter 

which reflects the geometry and polarity of molecules. High omega implies high polarity 

of the molecule. Isopropy 1 alcohol may be considered to be the most polar among the 

three choices (Table 4) . 

Volatility Vapor pressure of a pure substance is a suitable measure of its volatility. 

The uncertainty in the values for sulfolane is the highest because there are no experimental 

data . However, the vapor pressure parameters for isopropyl alcohol and water are well 

documented. The vapor pressures for the pure solvents at a temperature of 140°F have 

been compared in Table 4. Based on these calculations it can be observed that sulfolane is 

the most non-volatile solvent followed by water and lastly by isopropyl alcohol. 

Solubility of hydro�:en in the solvent This criterion is important to ensure that the 

hydrogenation reaction is not rate limited by the solubility and thus absorption of hydrogen 

A rough comparison of the solubilities based on thermodynamic predictions or 

experimental data can be carried out. Experimental data is available for the solubility of 

hydrogen in pure water. The remaining solubilities can be estimated through 

thermodynamic predictions using ASPEN PLUS. These calculations have been done for a 

temperature of 1 40 F and a pressure of 500 psig, both of which are typical conditions for 

hydrogenation. For these conditions the solubilities have been tabulated in Table 4. 
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6 1  

TABLE 4 

PHYSICAL PROPERTIES OF ALTERNATIVE SOLVENTS 

Property Isopropyl alcohol Sulfolane Water 

Molecular wt. 60. 1 1 20. 1 7  1 8 .0 1 

Freezing point (F) - 1 27.2 80.3 32 .0 

Boiling point (F) 1 80.0 548 .3 2 1 2  

Critical temperature 455 .3  1 075 .8  705 .5 
(F) 

Critical pressure 690.4 728 .3 3205 .3  
(psia) 

Accentric factor 0.665 0.378 0. 344 

Vapor pressure @ 5 .63 2 .89 0.002 
1 40°F (psia) 

Solubilities of 1 .37x 1 0-2 6.5x 1 0-3 4.57x 1 0-4 
hydrogen (reported 
in mole fraction) 

Heat capacity 43 .75 42 .95 1 9 .43 
(Btu/lbmol R) 

Latent heat of 1 .54x l04 2.58x i04 1 .68xl04 
vaporization 
(Btullbmol) 



From the results it can be inferred that hydrogen is most soluble in isopropyl alcohol when 

compared to other solvents . Hydrogen is found to be least soluble in water. 

Heat capacity of the solvent The heat capacity of the solvent is an important 

variable for consideration because if the hydrogenation is carried out in a s lurry reactor typ( 

of operation the advantage of good temperature control of reactor can be derived from the 

high heat capacity of the s lurry which includes the solvent. A comparison of the heat 

capacities and the latent heats of vaporization for the three solvents are shown in Table 4. 

The heat capacities of both sulfolane and isopropyl alcohol are very high. 

Chemical inertness under hydrol:enation conditions This is probably the most 

important consideration. The primary reason for changing solvents was to avoid the 

generation of unwanted by-products during the hydrogenation reaction. The kinetics or 

mechanism of sulfolene hydrogenation and the side reactions occurring with use of the 

current solvent are not fully understood. It is quite difficult to predict the effect of a new 

solvent on the selectivity of the reaction. It is expected that isopropy 1 alcohol and sulfolane 

wil l  not promote unwanted side reactions because of their chemical reactivity . 

Comparison and selection of alternative solvent Based on the comparison of the 

three different solvents, isopropyl alcohol can be selected as a suitable alternative solvent. I 

is highly polar, has a high heat capacity, and is expected to be chemically inert under 

hydrogenation conditions. 

Overcomin� Rate Limitation in the Hydrol:enation Step 

The hydrogenation reactor represents the time and waste bottleneck of the process. 

The mechanism and the kinetics of the sulfolene hydrogenation are presently not known. 

Results of previous studies (Mashkina et al . ,  1967) are not applicable for use in modeling 

the R3 reactor. Additionally, the unwanted by-products produced in this step have not 

been characterized, nor has the reaction mechanism been understood. The only alternative 
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for improving this reactor is to estimate the relative resistances of gas absorption and 

external diffusion and to devise ways of overcoming the rate limitation. 

In Chapter 5, the mechanism of catalytic three-phase hydrogenation was briefly 

discussed. Assuming that the sulfolene hydrogenation reaction follows a conventional 

Langmuir-Hinshelwood type of mechanism, the sequence of steps involved in the 

heterogeneous reaction may be summarized by the following equations (Fogler, 1986) : 

Rate of gas absorption, 

(7 . 1 )  

Rate of transport to catalyst, 

RA = kc · ac · ( Cb - C A,s) gmol/ cm3•sec (7 .2) 

Rate of diffusion and reaction in catalyst pellet, 

gmol/ cm3•sec (7 . 3) 

Rate law for the reaction on the surface of catalyst, 

- r A,s = k . CA,s n (7 .4) 

Based on these rates the overall rate of reaction can be expressed as, 

(7 .5)  

where, 

kb = mass-transfer coefficient for bubbles, em/ sec 

kc = mass-transfer coefficient for catalyst particles, em/ sec 

k = specific reaction rate constant 

3b = bubble surface area (interfacial area), cm2f cm3 

ac = specific surface area, cm2f gm 

m = mass concentration of catalyst, gm/ cm3 slurry 

.., = effectiveness factor 

- rA,s = specific reaction rate if entire catalyst is exposed to surface 

concentration of the adsorbed gas, gmoV gm. catalyst • sec 
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concentration of gas at the bubble interface, gmoV cm3 

concentration of gas in the bulk liquid, gmoV cm3 

concentration of gas at the external surface of catalyst, gmoV cm3 

n = reaction order 

The basic assumptions involved in carrying out this analysis are: 

1 ) liquid phase is well mixed, 

2) catalyst particles are uniformly distributed, 

3) gas phase is in plug flow, 

4) during the initial reaction, the concentration of the liquid remains practically 

constant, and, 

5) reaction conditions are isothermal. 

From this form of the design equation it can be seen that the resistances of gas absorption, 

external diffusion, and, surface reaction act in series. RA represents the overall or 

'observed' rate of reaction whereas the term k 11 represents the intrinsic or 'actual ' rate of 

reaction. Usually, experiments are performed to measure the intrinsic kinetic parameters of 

a reaction by minimizing the absorption and diffusional resistances so that the 'observed' 

rate of reaction represents the 'actual ' or the intrinsic rate of reaction. 

For the sulfolene hydrogenation reaction, the following data is available. 

1 ) The reactor heat removal profile 

2) Feed material balance 

The physical properties required for carrying out the rate limitation analysis were obtained 

through a combination of manual estimations and using the PROP-SET option in ASPEN 

PLUS. A summary of the properties estimated is presented in Table 5 .  These values have 

been reported in SI units because the correlations used to calculate the mass transfer 

coefficients have been written for SI units. 
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Since the intrinsic kinetics of the sulfolene hydrogenation reaction are not available 

we cannot predict the magnitude of the intrinsic reaction rate given by equation 7 .4. We 

can however attempt to calculate the remaining three terms in the equation. 

TABLE S. 

HYDROGENATION MIXTURE 
EST�TED PROPER� 

Solubility of hydrogen in hydrogenation mixture 
Diffusivity of hydrogen in the reaction mixture, DH2 . 

, miX 

Density of hydrogen, Pg 
Viscosity of mixture, Jlr 

Surface tension of mixture, ST 
Density of mixture, Pr 
Specific heat of mixture, C p,mix 

Diameter of catalyst particle, d P 
Density of catalyst particle, p P 

1 . 1 8x 1 o-5 cm3 slurry 

4.6x 1 o-5 cm2f sec . 

2. 1 9x l 0-2 gm/ cm3 

1 . 1  cP 

5 1  dyne/ em 

1 .392 gm/ cm3 

2 .79 Kj/ kg .K 

60 micron 

4.0 gm/ cm3 

Rate of external diffusion In a book on mass transfer in heterogeneous catalysis 

Satterfield ( 1 970) discusses an example in which quantitative justification has been 

provided to prove the absence of diffusion effects in a slurry reactor. This method has 

been applied to investigate diffusion effects in R3. The data used for the calculation is 

shown in Table 6. 

First, the terminal velocity of the settling catalyst particles is calculated. Satterfield 

( 1 970) suggests in his example the use of Stokes law for calculating the terminal velocity. 

However, Stokes law can be used only when the particles are 1 0-20 micron in size. Since 

the assumed particle size is 60 micron applying Stokes law would lead to considerable 

error. The Theodore and Buonicore correlation (Alley, 1986) can be used for particles 
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TABLE 6 

DATA FOR EXTERNAL DIFFUSION RATE CALCULATION 

Concentration of hydrogen at bubble interface, CH, . 
- . 1  

Diffusivity of hydrogen in the reaction mixture, DH, . - . nux 

Viscosity of mixture, flr 

Density of mixture, Pr 

Diameter of catalyst particle, d P 

Density of catalyst particle, p P 

Catalyst loading, m 

1 . 1 8x 1 o-5 gmol/ cm3 slurry 

4.6x 1 o-5 cm2f sec . 

1 . 1  cP 

1 .392 gm/ cm3 

60 micron 

4.0 gm/ cm3 

0.0 14 gm/ cm3 slurry 

larger than 20 micron. The correlation has the following form: 

0. 1 53 d� l 4p� · 7 1 g0.7 1 
U t = 

Jl�.43 p�·29 (7 .6) 

where g is the acceleration due to gravity (em/sec) . Substituting the values, the terminal 

velocity U t is calculated to be 1 .01  em/sec. Based on this terminal velocity, the Peclet 

number can be calculated as, 

* d p U t  
Npe = 

DH2,mix 
= 

60x104 x 1. 0 1  
_ 1 32 

4.6x10-5 (7 .7) 

The Peclet number can then be related to the Sherwood number through a correlation 

proposed by Brian and Hales and represented graphically in Fig 2.4 of Satterfield ( 1 970) . 

The Sherwood number is given by, 

kc dp  2 3 11 2 
N sh = = (4.0 + 1.2 1NPe 1 ) 

�2,mix 

or, kc = 0. 0456 em I sec 

(7 . 8) 
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The turbulence that results from the agitation of the reaction slurry enhances this mass 
transfer coefficient. In reality, the mass transfer coefficients are roughly two to four times 
the calculated values. Taking twice the calculated value we obtain, 

kc = 0. 09 1 2  em I sec 

The rate of mass transfer from the bulk liquid to the external catalyst surface is given by 

(Satterfield, 1970) : 

N = kc d
6m

p ( CH2,i - CH2,s) gmol I sec • cm3 
p p 

(7 .9) 

where, CH2,s is the concentration of hydrogen on the catalyst surface. If we assume that 

the reaction rate is controlled by the mass-transfer rate, i.e., the rate at which the hydrogen 

is transported from the bulk liquid to the catalyst surface, then we can assume that the 

surface concentration of hydrogen on the catalyst surface is zero. Applying equation 7.9, 

we can then calculate the maximum rate of external diffusion rate. 

N = 
0. 09 1 2  x 6 x 0. 0 14  x 1. 1 8x10-5 

= 3. 76x10-7 gmol 1 sec •cm3 
60x1 0-4 X 4. 0 

Rate of �as absomtion In a comprehensive review of three phase catalytic reactors 

Chaudhari and Ramachandran ( 1980) have presented correlations for predicting the gas­

liquid mass transfer coefficient. Calderbank and Moo-Young ( 196 1 )  suggested the 

following correlation for liquid side mass transfer coefficient. 

where, Pg is the density of the gas, and other terms are defined above. 

The value for kL can be calculated as follows, 

]113[ ]11 2 
_ [

(1.392-0.022) X 0.0 1 1 X 98 1 4.6x10-S X 1.392 
kL - 0. 42 2 (1.392) 0.0 1 1 

= 0. 063 em I sec 

(7 . 1 0) 
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The gas-liquid interfacial area was related by Calderbank ( 1958) as follows: 

ab = 1 . 44 ( �r4p�
2

(
U
g

)

O.S 

s�·6 u. 

ab = effective gas-liquid interfacial area per unit volume of slurry, 

cm2fcm3 

p = power consumption for agitation, gm/ cm2f sec3 

VL = total volume of slurry, cm3 

ST = surface tension of the liquid, gm/ sec2 

Ut = terminal gas bubble velocity, em/ sec 

Ug = superficial velocity of gas in reactor, em/ sec 

(7 . 1 1 ) 

The power consumption per unit volume is given by Prasher and Williams ( 1 973) as: 

where, 

N 

di 

dT 

= 

= 

= 

speed of agitation of slurry, sec-1 

diameter of impeller, em 

diameter of slurry reactor, em 

(7 . 1 2) 

L = total height of slurry above the entrance of the gas bubbles, em, 

and the correction factor \Jf is given as, 

\Jf = 1 .  0 - 1 .  26[ Q 3] , for Q 3 < 3. 5 X 1 o-2 N d1 N d1 

'V = 0. 62 - 1 . 85[ Q 3 ] , for Q 3 > 3. 5 x 1 0-2 
N d1 N d1 

Where, Q is the volumetric flow rate of the gas (cm3f sec) .  

(7 . 1 3) 

(7 . 1 4) 
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For our case, 

Q 
= 

N di 
1. 8x 104 

= 0. 1 55 2. 1 X (38.0)3 

The correction factor is then calculated to be: 

'V = 0. 62 - 1 . 85(0. 1 55) = 0. 33 

The power consumption per unit volume is further calculated to be: 

p 8 X (2. 1)3 X (38.0) 5 X 0. 33 X 1. 392 
= = 1037 

V L (1 37.2)2 { 140. 0) 

To account for the multiple impeller in the process reactor, an enhancement factor of three 

is considered. Therefore, the actual power consumption is calculated to be 3 1 1 0. Based 

on this power consumption, the superficial gas velocity, and the surface tension of the 
liquid, the gas hold-up, Eg , can be calculated by the following equation . 

[ 
p 

]
0.4 P0.2 1 / 2  - L 1 / 2  

Eg = [ UgEg ] + 0. 02 1 6  VL 0.6 
[ Ug ] 

Ut ST Ut 

For our case, this equation reduces to, 

(7 . 1 5 ) 

= [ 1 .22Eg]l/
2 

+ 0. 02 1 6 (3 1 10)
0.4 (1.392)0.2 [ 1. 22 ]1 1 2 = 0. 07 Eg 26.0 (5 1.0)0·6 26.0 => Eg 

where, the superficial gas velocity has been calculated as, 

Gas flow rate 
Cross - sectional area of the reactor 

1 8000 cm3 I sec 
= = 1. 22 em I sec 

1 4775. 6 cm 2 

The terminal bubble velocity has been approximated to be 26 em/sec (Chaudhari, 1 980) . 

The value of the gas hold-up was calculated to be 0.07, implying that the amount of gas 

available to diffuse to the catalyst surface is roughly 7% of the total volume of the liquid. 
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This value is considerably low. The average bubble diameter ds can be calculated using tht: 

gas hold-up by the following equation: 

so.6 
ds = 4.15 � 4  Eg 1 1 2  + 0. 09 

[ :J PE 2 (7 .  1 6) 

Substituting values we get ds to be 0.52 em. The usual values are in the range of 0.2-0.5 

em. These values are directly related to the gas hold-up. The higher the gas hold-up (due 

to higher power input per unit volume), the smaller the bubble diameter. Using the 

calculated bubble diameter, the following criterion needs to be evaluated before the 

interfacial area can be calculated. 

[ ') ]0.7 [ ]0.3 
df::L NU�B < 2Q,

{)()() 
(7 . 1 7 ) 

For our case, the value of this parameter is less than 20,000. The value of the interfacial 

area is calculated as follows: 

a = 1 . 44 (3 1 10)
0.4 (1 .392)0·2 ( 1 . 22 )O.S 

b (5 1.0)0.6 26.0 
= 0. 8 cm 2 I cm3 

Using the calculated value of the gas liquid mass transfer coefficient, kL, and the interfacial 

area, ab, the rate of gas absorption can be calculated. If gas absorption is the controlling 

mechanism then the bulk concentration of hydrogen in the liquid can be considered to be 

zero . The driving force for the absorption process is provided by the concentration 

gradient across the bubble interface and the bulk liquid. The concentration of hydrogen at 

the bubble-liquid interface is essentially the equilibrium concentration of hydrogen. 

Therefore, the hydrogen absorption rate is given by equation 7 . I  as, 

where, CH2 b is the bulk liquid concentration of hydrogen. Substituting the calculated 

values we obtain, 
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N = 0. 063 x 0. 8 x ( I. 1 8x 10-5 - 0) = 5.9x 10-7 gmol / sec •cm3 

Overall rate of reaction The overall rate of reaction is the • observed ' rate of 
reaction. The overall rate of reaction is dependent on the magnitudes of the resistances of 
each of the heterogeneous processes, i .e . , gas absorption, external diffusion, and, internal 
diffusion and reaction (intrinsic kinetics). 

In the case of the sulfolene hydrogenation reaction, data are not available for the 

intrinsic kinetics of the reaction. At the present time an experimental apparatus for 

measuring the reaction rates is being set up by the Department of Chemistry, OSU. 

Similarly, data on the observed rate of reaction (at conditions under which the reaction is 

carried out in the process plant) are not available either in literature or from Phillips 

experimental measurements. 

The objective of this analysis is obtain an approximate value for the maximum 

observed 'process' rate from plant data . This has been done using the heat removal data 

for the process hydrogenation reactor. The assumptions involved in carrying out this 

analysis are, 

1 )  The heat removal profile is representative of the heat evolution due to the heat of 

reaction, i .e. , the nature of the curve for both the heat removal and the evolution of 

the heat of reaction are the same. 

2) The only reaction with a significant heat of reaction is the sulfolene hydrogenation 

reaction. Side reactions leading to unwanted by-products are known to occur in 

this reactor. Neither the mechanism nor the thermo-kinetics of these reactions are 

known. Therefore, this assumption is necessary. 

The use of reaction calorimetry to measure the overall rate of reaction is an extreme 

approximation. Hernandez et al. ( 1993) have developed a mathematical model for the 

analysis and optimization of batch reactors for heterogeneous liquid-liquid reactions. They 

have predicted kinetic parameters for the toluene mononitration reaction through an 
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experimental apparatus which measures heat ren1oval by recording reactor temperatures. 

Their approach is rigorous and presumes certain data avai labil ity . S ince data availabi l ity i� 

scarce in the case of sulfolene hydrogenation react ion. it is justifiable to retain the basic 

premise of Hernandez and others ( 1 993) work. !\1easuring the rate of reaction through 

reaction calorimetry must be considered only a prediction of 'process rate' trends rather 

than a quantitative description of the reaction rates . 

Heat of reaction : The heat of reaction for sulfolene hydrogenation can he calculatt 

from the heats of formation of the reactants and the products. The reaction stoichiometry i! 

C4 H6 S02 � C4 Hs S02 
H2 

Catalyst 

The heat of formation of the components involved are, 

MI;@298K ,s le = - 2. 59x 1 08 J I Kmol 

MI;@298K ,sla = - 3. 90x 1 0 8 1 I Kmol 

MI;@298K , hyd = 0 (s ince it is  an elemental compound ) 

Based on a simulation carried out using the RSTOIC module in ASPEN PLUS, tht 

heat of the sulfolene hydrogenation reaction at 1 00°F can be calculated to be 63,275 Btu/ 

lbmol .  

Reactor heat removal data : The heat removal in the reactor by the cooling water is 

monitored by computer control based on inlet and outlet temperature of cooling water, 

flowrate of cooling water, and the reactor temperature. The temperature and flow sensors 

record measurements at regular intervals, and the data are used to control the reactor. The 

reaction is assumed to be complete when no more heat is being removed by the cool ing 

water. 

Analvsis If we assume that, 1 )  the heat removed during a batch is proportional to 

the heat evolved during the batch due to the reaction, and 2) the average moles of sulfolane 

produced in a batch are known, then the heat of reaction per mole of sulfolane formed can 
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be found by dividing the total heat evolved over a batch by the average nun1ber of sulfolane 

moles produced per batch. The average heat of reaction calculated in this way is - 540 BtuJ 

lbmol . This is roughly 1% of the actual heat of reaction. The cooling water system cannot 

remove just 1% of the total heat. This would mean that the temperature of the reactor would 

rise to very high levels. Since in process plant operation the temperatures are not found to 

increase beyond a few degrees of the desired reaction temperature this explanation is not 

justifiable. A further analysis reveals the following points : 

1) Some of the heat is carried away by the hydrogen which is kept in high circulation 

during the batch. Since the heat required to bring the temperature of hydrogen from 

ambient conditions to the reaction conditions is roughly about 4% of the total heat 

evolved this cannot account for a large part of the total heat evolution. 

2) Some of the heat is accumulated in the reactor walls and some of it is dissipated as 

radiation losses . However, once again the magnitudes of these losses cannot be 

more than 5% of the total heat of the reaction. 

Therefore, the only other explanation is that calibration of the flow meters measuring the 

cooling water rate is faulty. Even though this might be the case the present control system 

for the reactor is adequate because it is more important to know the profile of heat removal 

than the actual values of heat removed. 

By normalizing the heat removal in each time period by the total heat removed 

during that batch, the number of moles sulfolane moles formed in that time period can be 

calculated. S ince the volume of the slurry is known and the time period is known, the heat 

data can be converted into a 'process rate' data. This 'process rate' data is plotted against 

time for six batches for which plant data is available. The data is shown in Fig. 10. 

Results. Sensitivity. and. Comparisons The following is a comparison of the 

observed reaction rate, the gas absorption rate and the external diffusion rates. 
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Observed reaction rate 

External diffusion rate 

Gas absorption rate 

1 .68x 1 o-6 gn1ol/sec ·cn1J 

3. 76x 1 Q-6 gn1oVsec•cmJ 

5 .9x 1 0-7 gn1oVsec•cmJ 

Considering that the ' shuttle ' mechanism of gas absorpt ion (see chapter 5 )  is very 

l ikely (since the assumed catalyst particle size is very small) there could he considerable 

enhancement of the gas absorption rates . Therefore, the actual value 1nay be significantly 

higher than the calculated value. As mentioned earl ier the enhancen1ent factor cannot he 

accurately quantified. However a factor of 1 0- 1 00 might be appropriate . In which case it 

is most l ikely that the gas absorption does not present the major resistance to the rate of the 

reaction. 

The maximum calculated value of the 'observed ' rate of reaction or 'process ' rate is 

equal to the rate of external diffusion. From this analysis it can be conc luded that the 

external diffusion rate is the limiting step under the process conditions . It is important to 

study the sensitivity of the calculated external diffusion rate to the input parameters . A 

quantitative sensitivity analysis of the absorption rate cannot be carried out because there 

are several variables involved. However, qualitatively it is found that the calculations are 

sensitive the estimation of the gas hold-up. An additional issue is the use of the single 

impeller correlations for estimating the power consumption per unit volume in multiple 

impeller configurations. 

S ince many parameters in both the absorption and diffusion calculations are highly 

uncertain, a sensitivity analysis would indicate which parameter affects the calculated value 

the most. This would be a valuable guide for setting up experimental studies during the 

measurement of intrinsic kinetics. 
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Sensitivity of external diffusion rate calculations : The physical property inputs for 

these calculations are: 

1 )  Diameter of catalyst particle 

2) Density of catalyst particle 

3) Viscosity of reaction slurry 

4) Density of reaction slurry 

5)  Diffusivity of  hydrogen in  reaction slurry 

The results of the sensitivity analysis indicates that the diffusivity of hydrogen in the 

reaction slurry affects this calculation the most. The rest of the parameters do not affect the 

order of magnitude of the calculated external diffusion rate . The range of values considered 

for the different variables are shown in Table 7 .  

TABLE 7 

RANGE OF INPUT VARIABLES FOR EXTERNAL 
DIFFUSION RATE CALCULATION 

Density of catalyst particle 

Diameter of catalyst particle 

Viscosity of slurry 

Density of slurry 

Diffusivity of hydrogen 

2-7 gm/cm3 

60- 1 00 11 

300- 1 000 em/ gm•sec 

0.8 1 75- 1 .5 gm/cm3 

2x i0-5 - 2x i 0-3 cm2fsec 

Alternatives The alternatives that are available to overcome or reduce the effect of 

external diffusion limitation of the hydrogenation reaction have been discussed by 

Chaudhari and Ramachandran ( 1 980). These alternatives can be divided into categories 

depending upon their impact. They are shown in Table 8. 
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TABLE S 

EFFECT OF PARAMETERS ON OVERCOMING 
EXTERNAL DIFFUSION UMITATION. 

Major influence Minor influence 

Amount of catalyst Temperature 

Catalyst particle size Stirring rate 

Concentration of reactant in Reactor design 
gaseous phase (i .e . ,  
hydrogen) Viscosity 

Relative densities 

Let us consider the variables with the major influence. 

Insignificant influence 

Concentration of liquid 
phase reactant (i.e. , 
sulfolene) 

Concentration of active 
component( s) on catalyst 

1 )  Amount of catalyst: Since many reactions involving the catalyst are known to 

occur in this step, addition of more catalyst will increase the rate of the reaction and 

increase the amount of unwanted by-products formed during the batch. Therefore 

the trade-offs are increased production versus the costs of waste disposal (sludge 

disposal) . This alternative will have to be looked at in more detail, if the scenario of 

increased production becomes important or possible. For the current operation of 

the process, this alternative is not very attractive because the incentive for increasing 

production does not exist. 

2) Catalyst particle size: The catalyst particle size used presently is quite small. 

Further decrease in particle size may not be feasible. The cost of a smaller catalyst 

may be significantly higher, and the effect on the rate of sulfolene hydrogenation 

and by-product formation is not known. Therefore, once again this alternative is 

not feasible in most of the scenarios. 
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3) Concentration of hydro�en: This alternative seems to be the most attractive. By 
increasing the concentration of hydrogen in the liquid it can be ensured that the 
diffusivity of the hydrogen in the liquid is increased and that more hydrogen is 
available on the surface of the catalyst for reaction. There are a variety of ways in 
which this can be achieved. 

a) Increase the pressure of the reactor : This will affect the solubility of 

hydrogen in the liquid, and increase the concentration in the liquid (as long 

as gas absotption is not limiting). 

b) Change the solvent for the hydrogenation step : As discussed earlier, a 

comparison of alternative solvents reveals that the solubility of hydrogen in 

some solvents is better than others. For example, the solubility of hydrogen 

in isopropyl alcohol is twice that in sulfolane. Therefore, this is potentially 

a way of overcoming diffusion limitations in the liquid mixture. The change 

in solvent will also affect the by-product formation. Through experimental 

verification it can be determined whether an alternative solvent reduces by­

product formation. Through change of solvent both the rate limitation and 

waste generation bottleneck of the hydrogenation reactor can be overcome. 

In summary, four different alternatives for process improvement were investigated. 

1 )  Conservation and optimization of raw material usage in the reactor R 1 .  

2) Improvement of sulfur dioxide removal in treatment tank R2. 

3) Change of hydrogenation solvent in treatment tank R2. 

4) Mitigation of rate limitation in the hydrogenation reactor R3. 

With further experimentation and data availability, economic justification for the alternatives 

can be put forward. This concludes the chapter on the process retrofit alternatives. 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

The sulfolane process of Phillips Petroleum Company was analyzed for process 

improvements. The focus of the study was on investigating alternatives for reducing the 

wastes in the process and increasing production. An approach involving process 

modeling , economic analysis, and selection and evaluation of retrofit alternatives was 

utilized to accomplish the objective. A general methodology involving these elements was 

formulated. 

Using the general methodology, the following tasks were accomplished. An 

overall process model for the sulfolane process was developed. The development of the 

model involved estimation of physical properties for an intermediate compound in the 

process, 3-sulfolene, incorporation of non-ideality of process equipment, approximation of 

batch processing with steady-state analyses, and use of stoichiometric model to overcome 

lack of data. Based on the process model, a material balance for the synthesis step of the 

sulfolane process was generated. 

The process model gave more consistent results with substituted sulfolene 

properties (sulfolane properties) than with the estimated sulfolene properties. The 

estimation of the sulfolene properties were based on group contribution methods used for 

sulfolane in the DIPPR database. In this study, sulfolene properties were approximated 

with sulfolane properties since no uncertainty limits could be established for the estimated 

sulfolene properties. The property approximations were validated by comparing the results 

of the simulated model with process plant data. 
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In the simulation of both Rl and R2 the most important sulfolene property was the 

vapor pressure. The vapor pressure input did not affect R 1 simulation very drastically 

because the operating pressures are quite high and the reaction mixture remains as liquid for 

most of the batch cycle. However, in the case of R2, the operation is under vacuum 

conditions and vapor pressure parameters affect the simulation results drastically. This is 

the reason for substituting sulfolene properties with sulfolane properties. This has a direct 

effect on process economics because R2 simulation calculates the vaporization losses of 

sulfolene if any, which in tum affects the batch charge for hydrogenation. 

Apart from vapor pressure the other significant variable is the density of pure 

sulfolene and sulfolene mixtures. The density parameter affects the estimation of batch 

charge and product volumes which becomes important while considering alternatives for 

increasing production or determining equipment bottlenecks. 

For the simulation of R3, the most important properties pertained to the transport 

characteristics (e.g. , viscosity, diffusivity, etc.) of the sulfolene-solvent mixture. Equally 

important was the solubility of hydrogen in sulfolene mixtures. As discussed earlier 

solubility and diffusivity of hydrogen in the sulfolene-solvent mixture were found to affect 

the external diffusion rate calculation the most. In terms of economics, a better knowledge 

of these variables along with the mechanism and rate data for the hydrogenation reaction 

would help overcome the rate limitation of the present operation. 

In summary, from a point of improving model accuracy and selecting economically 

significant physical property variables for sulfolene, the following properties are important: 

vapor pressure and density of pure sulfolene and sulfolene mixtures, transport properties of 

sulfolene mixtures, and solubility of hydrogen in sulfolene mixtures. The above 

information may be used for future estimation and experimentation work on sulfolene 

properties. 

An economic analysis was performed on the basis of the material balance. It was 

found that the raw material costs dominated the overall costs of the process. The catalyst 
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costs were found to account for nearly 20% of the overall costs of the process. fol lowed b 

raw material and the overhead costs for the process. The waste treatment and disposal 

costs were found to account for 2-20% of the overall costs . Such a wide range exists for 

these costs because they are highly uncertain. These costs are based on an assumed use o1 

sodium hydroxide. S ince this use is not taken into account explicitly in the process model 

and had to be assumed, the uncertainty was unresolved. Based on the economic analysis, 

it was found that the profit levels of the process were highly sensitive to the catalyst and 

other raw material costs. There is a high incentive ( 1 0- 1 5 %  of the total product costs) for 

better utilization of raw materials and reduction of wastes in the process. 

Incentive for waste reduction is further highlighted by the expected regulation of 

butadiene under NESHAP. By 1 995 , the levels of butadiene discharges either in the 

gaseous form or through waste water are going to be regulated. Also, since the catalyst is 

heavy metal, spent catalyst sludge will continue to be regulated. From a regulatory point o 

view, this process will be further regulated. The incentives for pro-active modifications 

should consider not only compliance benefits but also intangible benefits such as 

environmental stewardship, avoidance of retroactive l iability, and positive consumer 

response. 

On the basis of the economic analysis and its sensitivity, four alternatives for 

improving the process were investigated. These were, 

1 )  Conservation and optimization of raw material usage in the reactor R 1 .  

2) Improvement of sulfur dioxide removal in treatment tank R2. 

3) Change of hydrogenation solvent in treatment tank R2. 

4) Mitigation of rate l imitation in the hydrogenation reactor R3. 

From the process model and economic analysis i t  was determined that the 

hydrogenation step is the time and waste bottleneck of the process.  The processes 

upstream of the hydrogenation step are held up due to the batch cycle times of the 

hydrogenation step. Also, this step produces unwanted by-products through side reaction: 

8 1  



involving poisoning of the catalyst. Since the catalyst costs account for nearly 20% of the 

total costs, the improvement and optimization of the hydrogenation reactor, R3. provides 

maximum environmental and economic benefits . 

A conclusive economic comparison of the alternatives could not be carried out 

because of lack of data regarding the mechanism and kinetics of the hydrogenation reaction. 

The causes and extent of side reactions due to the use of the present hydrogenation solvent 

are not fully understood. Thus, it is very difficult to analyze alternatives for improving this 

step. Two alternatives were considered. The first one was evaluating the feasibil ity of 

using alternative solvents such as sulfolane and isopropyl alcohol . The second wa� a study 

of ways to overcome the rate l imitation of the hydrogenation step. The major assumption 

with the latter analysis was that the reaction calorimetry is an approximate measure of the 

reaction rate. Approximate values for the rates of the other heterogeneous process, i .e . ,  

gas absorption and external diffusion were calculated. The sensitivity of these calculations 

were studied because the input variables were found to be quite uncertain.  

Based on a comparison of the alternatives in the long term, the best alternative is to 

change the hydrogenation solvent. This will affect catalyst usage and by-product formation 

in the hydrogenation step. In the short term, alternatives such as conserving raw materials 

in the reaction step, improving the removal of sulfur dioxide in the treatment step, and 

overcoming the rate limitation in the hydrogenation step should be considered. Conclusive 

economic justification for these alternatives can be provided once kinetic data for the 

hydrogenation can be obtained. 

The optimization of the sulfolane process was not carried out because the 

hydrogenation reactor R3 could not be adequately modeled due to lack of information on 

kinetic mechanism and rates. The development of a hydrogenation model is especially 

important because the R3 reactor is the time and waste bottleneck of the process. Another 

l imitation was the use of ASPEN PLUS to model a time-dependent process. Though 

ASPEN PLUS has strong optimization capabilities, it cannot be fully utilized for batch 
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processing. On the other hand, dynamic simulation packages such as BA TCHCAD and 

SPEEDUP are suitable for developing predictive process models but do not contain 

optimization modules. A brief discussion of ASPEN PLUS limitations follows. 

The limitations of ASPEN PLUS were mainly with the RBATCH module, 

REQUIL module convergence, and accessibility of the physical properties. On the other 

hand the optimization and property estimation features available in ASPEN PLUS were 

found to be useful. 

The RBATCH module in ASPEN PLUS can be used to simulate isothermal, 

adiabatic, temperature or duty specified batch reactors . A batch charge stream and a reactor 

product stream is required, whereas a continuous feed stream and vent product streams are 

optional. The continuous feed stream allows the simulation of semi-batch reactors in which 

one of the reactants is continuously introduced into the reactor throughout the batch cycle. 

As the RBATCH module is to be interfaced with a flowsheet which is steady-state, ASPEN 

PLUS accepts batch charge inputs and computes reactor products based on continuous 

streams. It uses the concepts of feed times and cycle times to compute actual batch charge. 

The main limitation with the use of RBA TCH is that one cannot sequence periodic feed 

additions or limit addition from a continuous stream to a fraction of the total cycle time. 

This makes it difficult to simulate industrial operation of batch reactors which often involve 

feed addition over a fraction of the total batch time and also alternate and periodic addition 

of the reactants. 

The other limitation of the RBATCH module is that one cannot generate the heat 

profile of the reactor over the batch time. This has to be accomplished by creating a 

property set which records the enthalpy profile of the reaction mixture over the batch time. 

Then one needs to consider the enthalpy difference over a time interval to determine the 
' 

heat release in that interval. This amounts to a tedious procedure. Conventional batch 

simulation software such as BATCHCAD contain in-built functions for generating heat 

profiles and tuning controller parameters to achieve stable temperature control . 
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REQUIL is an equilibrium reactor module which can be used to calculate 

simultaneous phase and chemical equilibrium. An attempt was made to use this module for 

simulating R2 operation where the relevant reaction was the decon1position of sulfolene. 

Further, this model was used to optimize the steady-state operating parameters for R2 

operation. However, there were severe convergence problems with the mass balance for 

the system. This is most probably due to faulty development of the REQUIL module. It is 

not advisable to use this module for optimization purposes . 

In the production of specialty chemicals, it is quite difficult to obtain accurate 

physical property data because it is not feasible or economical to perform extensive 

experimentation. In such cases, one has to use estimated properties . While using 

estimated properties in a process model, it is worthwhile to investigate the sensitivity of the 

results to physical property parameters. Additionally, when the process model is combined 

to an economic model, the effect of physical property estimations on economic predictions 

can provide directions for physical property research. ASPEN PLUS contains sensitivity 

modules which allows users to access stream or block variables and study the effect of 

these on the simulation results . However, ASPEN PLUS lacks the facility whereby the 

physical property inputs can be accessed. This has to be accomplished by a user­

programmed FORTRAN subroutine. 

In summary, ASPEN PLUS was found to be a powerful simulation tool with 

useful features such as property estimation, sensitivity, case study, and optimization 

modules. It contains extensive databases on pure component and mixture properties. The 

RBA TCH module in ASPEN PLUS can be used to simulate a batch reactor and interface it 

with an othetwise steady-state flowsheet. However, there exist some limitations with the 

use of RBA TCH, primary among which are lack of feed sequencing and heat profile 

generation capabilities. Some of these limitations can be overcome with batch reactor 

software such as BATCHCAD. The following discussion pertains to an optimization 

strategy which can be used once data and appropriate modeling tools are available. 
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The optimization of batch processes involves the prediction of optin1al profiles for 

the operating variables . The feasibility of optimizing a process can be detem1ined by the 

availabi lity of robust and predictive process n1odels. experimental data and verification. and 

powerful and flexible computational tools.  

Specifically for the sulfolane process. the three main steps of the synthesis section 

should be modeled individual ly. Once a sufficient degree of accuracy can be achieved these 

individual models should be l inked. The use of dynamic simulation in in1proving the 

predictive capabi lities of the process model should be investigated. Operational constraints 

and environmental cost data should be gathered. The feasibil ity of optimizing the overall 

process model should then be determined. If it is found that optimizing the entire process 

model is  not possible, the equipment models should be optimized individually while 

carefully considering the effect on downstream variables. 

The optimization of each of three synthesis steps is discussed below. R I operat ion 

can be optimized by considering variables such as feed charge time. cycle time, feed rat io, 

and alternative configurations. This requires a reactor model which can predict heat 

transfer characteristics. The physical property and kinetic data presently avai lable are 

sufficient for optimization purposes. The vapor pressure of sulfolene is critical to the 

simulation and the optimization of this reactor because it affects the prediction of the 

vaporization of the reaction mixture. 

Optimizing R3 requires information regarding the mechanism of the main and waste 

forming reactions. This should be supplemented with quantitative data on the rates of the 

heterogeneous process occurring during the reaction . This can be obtained through 

experimentation on a laboratory and process scale. A thorough knowledge of the reactor 

configuration and its cooling system is also essential. Since changing the hydrogenation 

solvent is an attractive option in terms of waste minimization, experimental study of solvent 

characteristics would help in choosing an 'optimal' alternative solvent. Based on these data 

the catalyst loading, alternative solvent operation, and cycle times for R3 can be optimized. 
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The operation of R2 can be optimized for alternative solvents . The optirnal 

temperature, pressure, and solvent amount and its effect on the decomposition and freezing 

characteristics of the reaction mixture can be investigated through experimentation and 

thermodynamic model ing. 

If  the optimization is carried out using ASPEN PLUS .  one would need to define an 

objective function and the applicable constraints . This is accomplished quite easily with the 

i nput language for ASPEN PLUS .  Thus, in sun1mary full optim ization of the sulfolane 

process requires a combination of dynamic simulation. experimental data. and flexible 

optimization tools .  The optimization of dynamic models is an extren1ely difficult task.  

However, this obstacle can be overcome by the use of a case study approach where the 

significant variables are varied manually within spec ific l imits. 

The fol lowing recommendations can be put forward on the basis of this study . 

1 )  Vent relief pressure of the first reactor (R 1 )  should be increased. 

2) R 1  should be operated with a butadiene charge time greater than 2 hours . 

3) Continuous operation of the first reactor (R 1 )  should be considered along with a 

reduction of the mixing in the reactor. 

4) Improved sulfur dioxide removal in the treatment step should be accompl ished by 

increasing the temperature of operation by about 1 0°F. 

5)  The operating pressure of the hydrogenation reactor should be increased to  increase 

the solubi li ty of hydrogen. 

6) Change of the hydrogenation solvent should be considered. Suitable alternative 

solvents are sulfolane and isopropyl alcohol .  

The primary recommendations for future study are: 

1 )  To develop a quantitative understanding of the hydrogenation kinetics of sulfolene. 

2) To perform experimental analysis of the effect of solvent, catalyst activity,  and side 

reactions on the poisoning of the catalyst. 
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3) To study the possibility of recycling of sulfur dioxide and butadiene from the 

separation step (R2) to the frrst reactor (Rl ), and to identify the potential future 

scenarios in which this would be economically feasible. 

4) To develop a dynamic model of the process using either SPEEDUP or 

BATCHCAD. Use the dynamic model to study the transient behavior of the first 

reactor (Rl ) . Also, use the dynamic model to improve the predictive capabilities of 

the existing equipment models. 

5) To perform a sensitivity analysis on the process model to determine the effect of 

uncertainty of property estimations and input variables on the model results. 

6) To investigate how the uncertainty in process model inputs affects the predictions of 

the economics of the process, especially the environmental costs. 

7) To formulate a general approach to forecast possible future scenarios and quantify 

the uncertainties involved in these scenarios. 

8) Design alternative processes either with the existing process chemistry or with 

better and improved chemistries. 
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TITLE " ESTIMATION OF ANTOINE'S CONSTANTS FOR 
SULFOLENE" 

PCBS 

COMPONENTS SULFOLEN 

ESTIMATE ONLY 
PL SULFOLEN DATA 

PCBS-PROP-DATA 
IN-UNITS SI 
PL SULFOLEN 3 10 900.9 I 320 1604.3 I 330 2743.2 I 

340 452 1 .5 I 350 7207.8 I 360 1 1 145.51 
370 1676 1 .6 I 380 24574.3 I 390 35 197.51 
400 49344. 1 I 410 67825 .9 I 420 9 1552.4/ 
430 1 2 1 526.6 
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TITLE "ESTIMATION OF HEAT OF FORMATION & SPECIFIC HEAT 
OF SULFOLENE" 

PCES 

IN-UNITS ENG 

DATABANKS ASPENPCD 

PROP-SOURCES ASPENPCD 

COMPONENTS 
C4 * C4 

PROP-DATA C4 
IN-UNITS ENG TEMPERATURE=C 
PROP-LIST TB 
PVAL C4 1 5 1 

ESTIMATE ALL 

STRUCTURES 
STRUCTURES C4 C l  C2 S I C2 C3 D I C3 C4 S I C4 S5 & 

S I S5 C 1 S I S5 06 D I S5 07 D 

PROPERTY -REP PCES PROP-DATA 
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