ENVIRONMENT MAPPING AND ADAPTIVE FUZZY
LOGIC CONTROL FOR AN AUTONOMOUS
VEHICLE

By
ROBERT LOREN SHANLEY III
Bachelor of Science
Purdue University
West Lafayette, Indiana
1992

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July, 1994

OKLAHOMA STATE UNIVERSITY

ENVIRONMENT MAPPING AND ADAPTIVE FUZZY
LOGIC CONTROL FOR AN AUTONOMOUS
VEHICLE

Thesis Approved:

) PP
S s
; Thests Adviser

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

My most sincere appreciation goes to Dr. Eduardo Misawa for his advice, good influence, and
intensive courses throughout my graduate program. I also thank Dr. Young and Dr. Hoberock for serving
on my committee. Their suggestions and support were very helpful throughout this study.

To Robert Taylor and Scott McClain for their encouragement and advice concerning more than just
school work.

To Mike Arrington who saved me hours with his advice during those long brain storming sessions.
Without his assistance, this project would have taken much longer to complete.

To my parents, Robert Shanley II and Mary Ann Shanley, who kept me going through those
difficult years in college. 1 would have never made it without them. I love you very much.

And to some of the closest people in my life: Stephanie Norton, Jonathan Hynson, and A.J.

Schwidder for showing me the way to God.

iii

TABLE OF CONTENTS

Chapter Page
1. INTRODUCTIONoccoiiiiciiirieintinie et ss e st s s e s s s s s bt ses st seeens 1
2. LITERATURE REVIEWcocooiiiiiiitieniinininieic sttt es st se b ess s ss bbb sesansenns 3
Learning Control Verses Adaptive Control3
Hebbian Learning RULE..........ccocoviriiniiiiiiiccniese vt ses et sse e ebesssssnens 3
Adaptive FUZZY SYSEIMSc.veuiieieririieiser ettt st sesa e a s 4
3. AV CONFIGURATION.....c.oceitrittiininrtneeitt et esseses st sss st et ess bt ek ebesttssssesesenssensacs 5
AV Hardware ConfigUration..........ccceoverienenririeinneneeieseeree ettt ee et e sbese e e esne e 5
Computer COnTIGUIALION........ccciiiiireeiectereeieces e este b e saeteneeseesresseenebessasnas 7
INAVIZALION. ...euiiiieeiieiierece ettt e ccesteen e s sreesssas e s st easser e e bbe b neaneseeenston 7
VSIOM . ctttiteiietet et tetr et st b b e e e e b esa et e e b smsec s b s e b e b s b bR s s bbb e e e as 8
BUIMP SENSOTSveiireriiiieiercnrrre ettt bbb b e veeae s 8
SUPETVISOT ...ttt ettt bbb be re e bs e ber et e b sben et be e enenis 10
4. BIT FIELD MAP....oo oottt ettt ebesee st et b st bbb st s bbb b b as b enn s st e 11
Old Screen PIXel MAP. ... oiviieirerieiiiiceirieitrereeesis sttt sttt eb e et et e b bebasea e 11
Collection 0f SONAT DAtA.........ccociviiiiirireiccie e et e s s e b e ssr e sa e sas e beanans 11
Requirements for the Map Code..........ocooviiiiiiiiiiiii s 12
The Bit FIEIAd MADcveveviieeeneiicciciii it 13
MAD AIETALION ...ttt s 13
MaP LAMELATIONS 1...ceovevieireriisnsiesse s s ess et bbb 16
Bit Field Map SImulation ... e 17
Dynamic Mapping in the AV SIMUItion.........cconimiiii s 18
5 NEW FUZZY LOGIC CONTROLLERcoicciiiimritnitises sttt 19
Brief Introduction to FUzzy LOgIC SYSEIMS.....ccorimieiieiiinmiiiiisisii e 19
Membership FUNCHONSc..uruuuiririerimsssssssseis s e 19
RULE BASE +.voeeeveeeeereeeestsesesssesessetessasseee s s e s bR E RS SRR 20
TEIEETEIICE RULES..ovvevevereeeeesisesesessssseseseeesaesseaesas b s s E s 26
Max - Min COMPOSItION RUIES.....curivueremiemisrimmittiisisssssis st s 27
Max-Product COMPOSIION RUIE.......rwumreemiririmmiimiriissi it 27
DIEFUZZITICAION ..eeveverrvessesssseeseeresssses s 28
The Gaussian Fuzzy Logic CONrOIET. ... 28
6. ADAPTIVE FUZZY LOGIC CONTROLLER .ocovvcistisririmsisssssssins e 31
Back-Propagation Training ALZOTINIML ..t 31
Implementation of Adaptation Algorithm to AV SIMULAtION. ...t 34
7. SIMULATION RESULTS AND DISCUSSIONoviverereirieretisie it 36
NON PerfOrmance RESUILS..........cuusussismsmmiiisiss st 36
POrfOIMANCE RESUIS..vvvvsssesesineessersesssssssss 37

TIHAL # Lottt st e s sre e et essbe b e e s eabeesrsb e e s eaesssseaessnsaessnesesasnnessssnesssneessans 39

THHAL H2. oottt s ettt e st e e st e s e b e st e s s ae s bt easeesasteseeesnnesanseessseensesnseeans 42

THIALH3 ettt e e et e bt e e sebt s se bt s et re e e s bt e es e neeessantessraenaas 45

TIHAL H ottt e et e et es e e s et tesebeessesatessaeesanstesesnneesasnnnessnneanassesnans 48

THHALHS .ottt ettt aae e e s s b e s esabb e e ettt e saaeesseabtesaneeesereeseanreenareas 51

8. CONCLUSIONS AND FUTURE WORKcutiiiiiitriitieteeteeiineestesteseseessseessesssssesssessssesssesssesssessssees 54
FULUIE WOTK ..ottt ettt esib et e e s s e e aaar e e e s aaa et esssassaeseessansraeessssesanesesesssnnnnees 55
REFETEIICES .ottt ettt e et e et e et esteste e s st esatesstesabeesseesaseesstesanesestaeneesnseesantasssesaseesesteanesannen 56
APPENDIX A: MAP SIMULATION SOFTWARE CODE AND DOCUMENTATION.........co....... 57
APPENDIX B: ADAPT SIMULATION SOFTWARE CODE.......ccoooiiitiriteeireeieseeseesseeeesseesseesseees 74

LIST OF TABLES

Table page
1. Comparison of Executable Memory Requirements..........c.icvvivnnminenninnrennnnnesceeenneenns 36
2. Time Required to Compute Fuzzy Logic OQULPUL.........cccceuriirrrirriniiecnrie e 37

vi

Figure Page
1. The AUtONOMOUS VERICIE..........c.ovvureiiecieeeinieceiesi e s sse s esses s se s s eseseseesenens 5
2. Instrumentation for speed and POSItION.........covurieurrirriieiireeseces ettt 6
3. Location of Blind Zone Around the AV.........c.ccccueuiiierreiueiininsesiecesseese st ssssesssesss s ssessseseens 9
4. Schematic of the BUMP SENSOTSccveurireiieiriiriieiieieie ettt esae st 10
5. Configuration of Sonars and their OULPUL.............cccceveveieeeierereiceie et sesseseaes 12
6. Triangle Configuration Within Map...........cccoceereeniiuiieeneeeeeecee ettt et e 15
7. Clearing Horizontal THANGIES............ccceuriririreuiieieniiereinetes ettt es s sesene 16
8. Graphic Representation of the Bit Field Map..........ccccoceiriiiiniiinniesinisene s sseeeesesse e esaesens 17
9. Real NUMDEIs ClOSE 10 10ccciuiieirieirieirietnetne ettt ettt et s ss e e asasre e 19
10. Location of Waypoint Relative t0 RODOL..........ccccoiviiinnniiiicieeeenenens 22
11. Distance of Waypoint Relative to RobOt............ccccoiviiininiiiiiiicccccene 22
12. Desired Speed 0f RODOL........c.ccviiiiiiiiiiiiniiitii bbb 23
13. Desired Steering Angle 0f RODOL........ccccoeiiiiiiiiii s 23
14. Sensor Distance to Obstacle Membership FUnctions...........ccoovevvnniiiniinniniinecccceces 25
15. Speed Change Membership FUNCHONS.cvumvriiiiiiimrinn s 25
16. Steering Change Membership FUNCHONS.c.cvuuiimiiiiiiii e 26
17. Way Point Angle FUzzy RelAtiONS........ccvuuuvimmiriminiiisiriiissii e 30
18. Way Point Distance FUZzy ReIAtONS............ooirrriimmstimiiiiniii s 30
19. Network Representation of the Fuzzy LOZIC SYSIeML........ciievimiiiiiiiniiiniisinsssin e 31
20. Definition of Way POINt ANGIE........erreeesermussirrimsisiiss st 32
21. Generated Path fOr THAL ONE........iuriusiriserisiimmrii s 39
22. Way Point Angle fOr THAl A1 ..cowvveriiiisssssisessirisss s 40

LIST OF FIGURES

vii

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

3S.

36.

37.

38.

39.

40.

Steering Angle fOr THHAl #1...........cvvvuurivuecsioeceeeeeseeseeeseeeeeeeeseeessessseessoeess e seeseeseeeeeee 40
Cost FUNCHON FOr THHAl #1........cvvuurvieriierceeeceiosceeseeeseeeeese e essssesssesessesses s esees e eeeese e 41
Generated Path fOr Tl TWO...........ovevvuervirnrieeeceseesssseseeeeseeesseseessssssesssssesessessssssessssess s oee oo 42
Way Point Angle for THAl #2...........cvuuveieeienceeeeseeeeeeeeeseeeeesessres s es e s e ee e e 42
Steering Angle fOr THHAl #2.........couuvvuierieiiiiee et seeeeessessesese s esseessse e s s s s ssee e 43
Cost FUNCHON fOr THHAL #2.......covvmiriieirsseeiises st eeseseee s esseesesssessaesees s s e eses oo 43
Generated Path for TrHal TRIEE..........cooviriueiviiiiiiieiesceeeee st seesssseesesesseesseses s esees s 45
Way Point Angle for THal #3........ccoocviiiniiiieieiice et se s e e s eeseeae s seenn 45
Steering Angle fOr TTHAL #3.......cc.cviiriiieeeeeiee ettt e s sesese s e e s s s e sesens 46
Cost FUnction for THAl #3........cccccuiiiiiiiiniiceenre st ss et nanen 46
Generated Path for Trial FOUT..........ccoiiiiiiiiiecc bt 48
Way Point Angle for Trial #4 ... bbb eas 48
Steering Angle for TrHal #4.........ccovvviiiii e s e nas 49
Cost FUnction for Trail #4..........ccoviririiiiieinnete ettt ettt sbe s e et e s b s saesens 49
Generated Path fOr Trail FIVEccevieieereneiiee ettt et e s e saa e sre s e sassssssens 51
Way Point Angle for Trial #5.......ccoviiiminii s 51
Steering Angle for THal #5.........oiiiiiiiii s 52
COSt FUNCHON FOF TIHAL 5. eerviiiereereireereiree ettt bbbt b bbb bbb bbb bbbt bes 52

viii

CHAPTER I
INTRODUCTION

Autonomous vehicles (AVs) are currently used in many environments where human intervention is not
possible. These applications include toxic waist disposal, the physically disabled, manufacturing plants as
well as sea and space exploration. The problem most generally encountered is the need for AV's to know
their constantly changing environment. This requires an AV which has the ability to create and change a
map of its environment and to alter its controller for the conditions at hand.

Currently, the AV simulation program, [1] simulates two micro controllers and a supervisor. Each
micro controller will control a different aspect of the robots movement and data acquisition. For instance,
one micro controller will be used to collect data from the vision sensors, and a second micro controller may
be used for the actual control of the propulsion system. The supervisor will essentially be the brain of the
system by providing commands such as desired speed and heading angles. The supervisor must conform to
the J1939 Controller Area Network (CAN) standard [2], for communication between the modules.
Additional operations the supervisor performs are a sensor based path planner and mapped path planner
develop by [1] to provide the optimal path to the desired target location and fuzzy inference rules for
obstacle avoidance.

While the simulation works, it does have two problems: The map and the fuzzy inference rules. The
map used by [1] was a pixel based screen map. Depending on the color of the pixel, that location is either
free, occupied or has unknown obstacles. The problem is the robot will not have a computer screen to store
the map information. The other problem is the robot's fuzzy rules are unadaptive to the environment.

It is the aim of the author to implement a new map and develop two new controllers. The map concept
developed by [1] will be implemented in a bit field array. This bit field map will be stored ina
multidimensional array of integers and will resemble the pixel field map. Next, the FLC will be changed to
a different format to make adaptation easier. This new format will also save computer computation time

and memory. I will also introduce an appropriate cost function to be used in a back propagated adaptive

fuzzy controller [3,4]. This will allow the robot to adapt its fuzzy inference rules only in the path planner. I

will leave the obstacle avoidance for a separate project.

CHAPTER II
LITERATURE REVIEW

Learning Control Verses Adaptive Control

There are many reasons for why an learning control scheme might be needed in a system. According

to [10]:
"A learning control system is one that has the ability to improve its
performance in the future, based on experimental information it has

gained in the past, through closed loop interactions with the plant and its
environment."

In other words, learning control algorithms are needed when the conditions are uncertain or it is impractical
to create a controller for your system with a priori knowledge. This system is different from adaptive control
schemes in that the control law is retained as a function of the operating conditions. That is, depending on

the conditions of your system, a different control scheme is used.

Hebbian Learmning Rule

One of the main purposes of any control system is to provide robustness to the system. One of the
advantages of using fuzzy logic is the ability to apply it to systems which are extremely complex, have a
huge number of state variables, or for a system which is ill-defined or unknown.

When implementing a fuzzy logic controller (FLC), some sort of prior knowledge is needed for the
system. This could come from a human expert who is able to control the physical system or from the design
engineers. The problem is when the control rules are not well defined. Then there is the case when the
system deviates from normal operating conditions. If this deviation was unexpected, there probably won't be
any rules to compensate the system.

A solution is to apply some sort of learning rule to the system. The fuzzy Hebbian learning rule has
been introduced and applied by [11]. Based upon signal Hebbian learning, the system will predict the state

of the system forward in time. This information is then used to adjust the parameters of the FLC.

Adaptive Fuzzy Systems

Adaptive fuzzy controllers are different in that they have an additional two components in the system--a
process monitor and an adaptation mechanism. The process monitor itself is either a performance measure
or a parameter estimate. That is the monitor will either use some measurement of performance (such as
overshoot, rise time, settling time etc.) to alter the control parameters, or the monitor will estimate some
unknown states or system parameters.

There are several types of adaptation mechanisms as well. The first two types are categorized into the
self tuning category. They include routines which will either use scaling factors to change the membership
functions or will actually alter the shapes of the membership functions themselves. The other type of
adaptation mechanism is the self-organizing type which will actually change the rules of the fuzzy system.

A major question concerning fuzzy systems in general as well as adaptive fuzzy systems is their
stability. This is important because we don't want the adaptation routines to cause a stable system to go
unstable. However, stability is still an open question when related to adaptive FLC (fuzzy logic controllers)
because little work has been done in this area [12].

Li-Xin Wang [4] has shown that certain types of fuzzy logic systems work as universal approximators.
If the user is given an input - output pair (x, d), it is possible to find a fuzzy function f(x) such that the cost

function

1 e= 5 (f(x)-d)

is minimized. This is generally considered as a nonlinear function approximator as it will approximate the
nonlinear function which produced the output d.

I will introduce and show that this type of adaptive fuzzy logic controller may be used as a guidance
parameter identification system within an adaptive fuzzy logic controller. A particular cost function will be

developed along with the adaptive functions for the control parameters.

CHAPTER III
AV CONFIGURATION

AV Hardware Configuration

As was stated in the introduction, there are many uses for AV's. One such use is for the physically
disabled. Quadriplegics could use an autonomous wheelchair for getting around during their everyday
routines. This wheelchair would be able to accept commands as to where to go, and would proceed to that
location avoiding obstacles along the way.

After looking at several configurations available to the research team, it was decided the wheelchair
was the best option (see Figure 1). This was for several reasons. The first was that motorized wheelchairs
already exist and would require little alteration to be applied to our application. The other main

consideration was the demand for such wheelchairs for the physically disabled.

Figure 1: The Autonomous Vehicle

As stated, the wheelchair needed little alteration to be used as an AV. By purchasing a motorized
wheelchair, we had the motorized platform already constructed. The batteries and motors where already
attached and functioning properly. There is also a working joystick controller available to the user. The
seat was removed for convenience, but could be replaced in the future. The only alterations were the

addition of speed and position sensors and the computers to control the system (see Figure 2).

Figure 2: Instrumentation for speed and position

This allowed the research team to save a lot of construction time and will provide an AV for which
there is a definite demand in industry. In addition, any other applications would use similar computer
equipment and could be adapted to a different mobile platform if needed. For instance, a deep sea probe
could use the same computer configuration and some of the same programming while utilizing a different

mobile platform.

Computer Configuration

As stated there will be several levels to the computer system of the AV: navigation, vision, bump
sensors, and the supervisor. Each module will be connected though a CAN so communication of sensor
data and commands from the supervisor are received by the target boards.

Each of the modules, except the supervisor, will be implemented on a Motorola 68HC11 micro
controller. The HC11 was chosen because of the data acquisition capabilities built into the chip, removing
the need for data acquisition boards. In addition, the HC11 has already been implemented with the J1939
CAN by several other groups in industry and scholastic professions. The supervisor will be installed on a
486DX40 clone. This was for several reasons. The first is the memory limitations on the HC11. The map
alone will require more memory than is available on the micro controllers. The PC's today can have
megabytes of memory on the motherboards themselves, eliminating any memory restrictions. A second
reason for the PC is a hard drive may be added to provide a black box recorder. This would provide a
detailed description of the operations of the AV and could also provide storage for multiple maps of
different environments. In addition, if the AV is to become a stand alone system, it would need storage for
the source code in case a reboot is needed. The HC11's do not provide for disk storage capabilities and thus

would not make a good choice for the supervisor.

Navigation

The navigation is used for data acquisition of speed, and position as well as control of the propulsion
systems. The data for position and speed are collected through encoders and tachometers respectively. The
tachometers and encoders are connected to the shaft of each rear drive wheel of the AV through a belt
similar to the timing belts used in today's automobiles. This will provide the distance traveled and speed of

cach drive wheel which the controller will use to determine corrections to the motor inputs.

Vision

The vision is used by the supervisor for obstacle avoidance and to create the map. The vision module
is made of six Polaroid sonars: three out the front, and one out each side and the back. The three sonars on
the front will have one pointing straight out the front and two pointing out at some angle to provide a
maximum resolution in the direction of travel. The reader is directed to [5,6] for further information
concerning the vision module.

The vision module is also used as a damage control device in case the supervisor was to fail during

operation. If the vision no longer recognized the supervisor as on-line, it would park the AV in a safe

location and wait for further commands.

Bump Sensors

A new module added to the system are bump sensors. A problem was discovered during the first
simulation [1] where the sonars would not detect objects within a close proximity (40 cm) of the robot. This
is because the sonars ignore all data from 0 to 40 cm because of echo effects inherent in the design. Thus,
when an obstacle enters the 40 cm zone of the robot, it does not register the object and would proceed as
through it was not there (see Figure 3).

There are several solutions to this problem which were considered. The first was not to use sonars and
switch to infra red sensors. This would be very expensive and time consuming. The second solution is to
continue to use the sonars and add a bump sensor to the platform of the AV [7]. The bump sensors are very
similar to curb sensors on some of the luxury cars today (see Figure 4). When one of the whiskers is

deflected by an obstacle, a warning is sent to the supervisor showing the location of the obstacle.

Figure 3: Location of Blind Zone Around the AV
(7

Figure 4: Schematic of the Bump Sensors

(7]

Supervisor

It was said by Dr. Pedro Alberto, the current IFAC vice-president, the supervisory controllers usually
deal with complex systems or oversee several systems being controlled by other controllers [9]. In the AV
situation we are currently working on, it is what makes the main decisions and creates the environment
map. The module uses both memory map and sensor path planning routines to reach the desired location.
It also sends the destination data, desired speed and heading angle to the other modules using the CAN. The
fuzzy inference rules are used to avoid obstacles and possibly track moving objects when desired. The
supervisor also provides a way of communication to the outside world. Currently communication takes

place through a keyboard terminal but could be expanded into voice command or some other advanced form

of user input.

CHAPTER IV
BIT FIELD MAP

Old Screen Pixel Map

As was mentioned in the introduction, the simulation by [1] used the computer screen to introduce the
environment and store the map. The screen allowed three forms of information to be stored in the map:
occupied, free, and unknown space. It stored the information in the form of the color of the pixel at that
location. For instance, a white pixel was occupied by an obstacle, black pixels were free space, and gray
signified an area for which the robot had no information.

As the simulation progressed, the robot would place black patches over the areas the sonars said were
unoccupied. While this worked fine for the simulation, it would be unusable during implementation as there
are no monitors on the frame of the AV. It was decided by the research team, to alter the simulation's map

before we implemented the software into the actual vehicle.

Collection of Sonar Data

Before the map software could be rewritten, a complete understanding is needed of how the sonar
information is represented. The sonars return only one piece of information, the distance to the obstacle.
This distance does not mean there will always be an obstacle at this location. The sonars have a maximum
range available and when there are no obstacles within this range, that maximum distance is returned.

Of course there is other information available to the mapping routines, namely the current location of
the AV, heading angle, and the angle between the sonars and the robot frame. With this information, it is
possible to describe the area in which the sonar scanned for obstacles.

The next key item about the sonars is the shape of the scanning area. The sonars will scan a room by
sending out a pulse of sound. This sound wave will travel out in the shape of a cone with half-arc-angles of
12 or 10 degrees depending on the setting of the instrumentation. It was decided early on to make the new

map as similar to the one used previously. This meant we would use a two dimensional map similar to the

screen on the computer. A two dimensional cone becomes a triangle with the same angles as the cone

Now we know everything about the data collected by the sonars.

XX X

X
oBSTACLE kS

% XX
5K
X

R
X
3¢
XK
%4
eLe

K
5K
S

%
XX

XX

558R

I
SN

pletetelelede

o
%

K

XX

20 t0teteted

HICIHIIIISLIR

ptotetelede
%

ot
>
€
f
TR,

1J0 0 0000
RN

X
X
X
:: % :'(R q1AGLE @lg ,Q':
% & XRHXK 2
3 5 2 % S
X X 2 2
SRRy S R SR
o s,
X CRRKS " I
~~. : 8' : ‘ . D . DA
X 3 g
X 3, X CRRARANANANAN
X & tetatets 30 5952 XX
OCCUPIED SPACERSSS et s
X K)Q % : S 3 ':I' X :I"l"n' Ix"xl v‘.‘
RS R "S%:’.‘”' s
KK 00K RKREBERHRK " QR XXX &

Figure 5: Configuration of Sonars and their Output
(1]

Requirements for the Map Code

There were several major concerns about implementing a map into the memory of the robot. The first
was a need for the efficient use of memory. Even though it was decided to use a PC board for the
supervisor, we don't have unlimited memory available for map storage. There is still s limit of 640 K due to
using MS-DOS as the operating system.

The map should be able to work in all directions of the Cartesian plane. The map would not be of
much use if it could only make alterations in one direction from a given point. The AV has six sonars

mounted on its frame and they all point in different angles depending on the orientation of the robot. Please

refer to Figure 3 for an example of the sonar orientation.

The routines which altered the map should also be stand alone (or portable) code. If for some reason
the code needed to be changed, it would be nice if the entire map could be removed and replaced with the
new algorithm.

The final consideration in choosing a map configuration, is the ability to alter the map at any time.
One of the possible uses for this robot is to track and follow moving objects. If you allow moving objects
into the robot's environment, it would have to be able to replace "free" space with "occupied" space. Of
course, when the robot returns the maximum range as the distance to an obstacle, it shouldn't place an

obstacle at this location. As stated, the robot will return the maximum distance when there is no obstacle

within that sonar.

The Bit Field Map

It was decided that the best solution to the memory map would be to create memory similar to the
screen. Instead of pixels, bits will be used to store the information. The difference is that bits are either on
or off so only two conditions can be stored as compared to the three situations stored in the pixel map. The
dropped information was the unknown or gray condition. By assuming all space is occupied until the sonar
tells the AV different, the map could be represented by a set of '1' or '0' where the '1' indicates occupied

space and '0’ free space.

Map Alteration

Before discussing the map alteration, the reader must know how the map is defined. A structure
called bit was created in the C code which held the column and row bit. Column bits (which represented the
x location in the Cartesian plane) were numbered consecutively from 0 to the maximum number of bits.
The row bits (representing the y location) was defined in a similar manner. This would mean that the top

left bit of the map is defined as bit (0,0). 1t is very similar to how Cartesian coordinates are represented as

(x, y) except that the bit is defined as (column, row).

Each bit is also, as stated, part of an integer. Thus in order to change a given bit, the program must

first find the appropriate bit number using the equation,

2. a = zero.col_bit + -
resolution

where zero.col_bit is a structure containing the starting location of the robot in bits. That is it is analogous
to the location of the robot in a Cartesian plane using the units of bits. X is the current location of the robot
and resolution is the defined as the number of meters per bit. In other words, equation (2) finds the distance
between the current location and the reference location and adds this distance to the reference location
giving the current location in bits. Note that the ratio in (2) has to be converted to an integer with the proper
rounding. The y bit is found in a similar manner except we now use zero.row_bit and y. Next we must be

able to define the integers within the map array which contains that bit with the equation

3 int =(int)ﬂoor(£0—l‘“—lz£).
s_byte

for the x location where col_bit is the bit referencing the x location and s_byte is an integer referring to the
size of a byte (16 on a 32 bit machine). The floor function in BorlandC [8] returns the largest integer which
is less than the argument. The y location is much simpler as it is simply equal to the row_bit.

Once the integer containing the desired bit has been defined, we can isolate the desired bit by creating
the appropriate mask. In most cases, there is more than one bit within an integer which needs to be cleared.
Let us consider the case when a few bits within an integer need to be cleared but there are also several bits

within that integer which need to remain occupied. The mask for this situation is found with the following

loop:

for(i=1_bit.col_bit-(a*s_byte);i<=r_bit.col_bit-(c*s_byte);++i)
j=j-(int)pow(2,(s_byte-1-1));

where 1 bit refers to the left most bit and r_bit is the right most bit within the integer a (note that a equals c),

and j is the mask being created and is initial has all bits equal to 1. For the case when the row to be cleared

spans multiple integers, we first clear the left most integer with the mask:

/* clear left bit */
for (i=]_bit.col_bit-(a*s_byte);i<=(s_byte-1);++i)
J=j-(int)pow(2,(s_byte-1-1));
and then clear the integer containing the right most bit with the mask:
/* clear right bit */
for (i=0;i<=r_bit.col_bit-(c*s_byte);++i)
J=j-(int)pow(2,(s_byte-1-i));
then the whole integers are cleared in between the right and left if they exist.

The procedure for altering the map is fairly straight forward. The first step requires the definition of
the triangle produced by the sonars. Using basic geometry and knowing the height and angles of the
triangle, as well as the base point (the origin of the sonar), the other two points could be found thus defining
the lines between the three points. Please refer to Figure 6 for triangle definition.

The robot would then take each row of bits inside the triangle, find the right and left most bits for that

row, and clear (or make '0") that row of bits. The program would proceed in this manner until the top (or

bottom) of the triangle is reached, thus clearing out the entire cone of occupied space.

Sonar Triangle Triangle definitions
1111 1111 b
1111 1 a
1111 11
1111p0000A1111

1111 11111

1111b0g4 111111 /00 \mwz
1111011111111 | bit _bit
11119111111111 .
1111111111111

Figure 6: Triangle Configuration within map

The one additional step involves putting '1' on the top line of the triangle if the distance was less than
the maximum range, thus signifying an obstacle at this location. Flags within the program would indicate
on which side the object is located and whether to place the '1' or not. In all cases except vertical triangles

(when the compass heading is either 0 or 180 deg) the '1' would be placed one row at a time as that row was

15

cleared. In the case of vertical triangles, a whole row would be made occupied after the triangle was
completely cleared. This was done because in the case of non vertical triangles, only the end bits would

change in the row, were in vertical triangles, the whole row would change.

The horizontal triangles proved to be somewhat of a problem. The horizontal axis of the reference
frame cut each‘horizontal triangle into two separate half triangles. In the case when the triangle was not cut
by this plane, the routine could increment one row at a time from the sonar location to the obstacle clearing
each row as it went. If this procedure were to be used for the triangles cut by the horizontal plane, only half
the triangle would be cleared. The solution dictated that two loops be used where the tof) half of the triangle
would be cleared first, and then the bottom half, thus clearing the entire triangle. Please see Figure 7 for
example of clearing horizontal triangles. All triangles can be described and cleared in the two manner of

the two described. The only difference is in where the points are located,

Figure 7: Clearing Horizontal Triangles

Map Limitations

The main limitation of the bit field map is the resolution used to represent each bit. Each bit
represents a square area of size dictated by the size of the map to be created. Since BorlandC [8] was used
to compile the software, each array had a maximum size of 64K bytes of memory. This means that the map
can not take more than this amount of computer memory at any time. Each user of the AV will have to

indicate how much area needs to be mapped and decide on the resolution needed in the map.

16

Bit Field Map Simulation

I have included a photo of the map after alteration, Figure 8. It shows the left have of the simulated

environment after the robot has mapped the area.

Figure 8: Graphic Representation of the Bit Field Map

In appendix A, the reader will find the computer code for the map simulation and alteration. This
simulation will print a small map on the screen and then prompt the user for location, heading angle, and
object distance. The computer will then change the map and display it on the screen in a graphical manner.
The reader will also find documentation concerning how the program works. This includes brief

discussions on each function used and some of the variables.

17

Dynamic Mapping in the AV Simulation

Placing the bit field map into the robot simulation written by R. Andujar [1], involved two major steps.
The first was just to get the map working. The second step, after completion of the first, was to switch the
path planning from the pixel screen map over to the map being created in memory.

In the beginning, we only wanted to get the simulation to generate the memory map and allow the user
to view the map. This means that nothing was removed from the original simulation. This allowed me to
make any adjustments to the software while the simulation was running. The majority of the adjustments
where conflicts in variable types and file names.

Once the simulation was generating the map successfully, I removed all of the screen mapping
commands and switched the path planner to the memory map. The screen map itself was left intact because
of the need for some kind of input to the system. As a simulation, we still needed to show the environment

to the sonars. However, the path planner no longer has access to the screen.

18

CHAPTER V
NEW FUZZY LOGIC CONTROLLER

Brief Introduction to Fuzzy Logic Systems

Before we can develop an adaptive fuzzy logic controller (AFLC), we have to specify the type of
membership functions, rule base, type of inference rules, and the method of defuzzification. These are the
basis of any fuzzy logic controller. 1 would like to refer the reader to the books by Zimmerman [13] and
Driankov [12] if he/she is unfamiliar with fuzzy systems. They are good introductory books which cover

muitiple issues and applications concerning the development of such systems.

Membership Functions

The membership function defines the degree of compatibility or degree of truth given to a specified
universe, For example, the membership function shown in Figure 9 could be used to represent all real
numbers close to 10. As can be seen, all numbers less that 5 and greater than 15 have zero membership
which means they are not close to 10. On the other hand, numbers between 9.75 and 10.25 are considered

to be close to 10 and thus have a degree of truth of 1.

1

0.8

0.6

—

>

~—
=

0.4
0.2

0

5 9.75 10 10.25 15

Real numbers

Figure 9: Real Numbers Close to 10
The membership function shown in Figure 9 is of the normalized trapezoidal type. Two other popular
options are the triangular and Gaussian membership functions. While there are many reasons for using a

particular type of function, they are usually chosen by the user depending on his own liking. The advantage

19

of using one of the above mentioned functions is the ease for which they can be represented in a computer.
For instance, the trapezoidal function can be represented with only four numbers. In the case of the function
shown in Figure 9, we could represent real numbers close to 10 with the vector [5, 9.75, 10.25, 15] where
each number represents the location on the X axis for that corner of the function.

The triangular and Gaussian functions only need two numbers for representation in a computer. In the
triangular case, the user only needs to store the peak and the length of the base. In the case of Gaussian, we
only need to store the peak and the standard deviation. This is assuming that both functions are normalized
to 1. If the user wished to use unnormalized functions, he only needs to add one number to each. This

shows a clear advantage to using triangular or Gaussian over trapezoidal when the amount of memory

available is of concern.

Rule Base

The rule base is a set of rules written by the user to take a given input and determine the appropriate
output. Rules are generally written by a person who has some experience in the operation of the system
trying to be controlled. The rules, when written down, represent a set of if then rules of the form:

If A is close to 10, then output is...

I am using the rules written by [1] from the original simulation. The original simulation utilized two

separate controllers. One to keep the AV on the desired path (controller #1), and another to avoid obstacles

(Controller #2). The first controller required 12 rules to implement. The rules used are,

R1: if (Waypoint Angle ~==FRONT_OF_CAR AND
Waypoint Distance == SMALL_DISTANCE)
then

Desired Speed = ZERO;
Desired Steering Angle = STRAIGHT;

R2: if (Waypoint Angle == FRONT_OF_CAR AND
Waypoint Distance == MEDIUM_DISTANCE)
then

Desired Speed = FORWARD_SLOW;
Desired Steering Angle = STRAIGHT;

20

R3:if (Waypoint Angle == FRONT _OF CAR AND
Waypoint Distance == LONG_DISTANCE)
then
Desired Speed = FORWARD MEDIUM,;
Desired Steering Angle = STRAIGHT;

R4: if (Waypoint Angle ==BEHIND CAR AND
Waypoint Distance == SMALL _DISTANCE)
then
Desired Speed = ZERO;
Desired Steering Angle = STRAIGHT;

RS:if (Waypoint Angle == BEHIND_CAR AND
Waypoint Distance == MEDIUM_DISTANCE)
then
Desired Speed = REVERSE_SLOW;
Desired Steering Angle = STRAIGHT;

R6: if (Waypoint Angle ==BEHIND_CAR AND
Waypoint Distance == LONG_DISTANCE)
then
Desired Speed = REVERSE MEDIUM;
Desired Steering Angle = STRAIGHT

R7: if (Waypoint Angle ==RIGHT OF CAR AND
Waypoint Distance == SMALL _DISTANCE)
then

Desired Speed = ZERO;
Desired Steering Angle = HARD_RIGHT;

R8: if (Waypoint Angle ==RIGHT_OF_CAR AND
Waypoint Distance == MEDIUM_DISTANCE)
then
Desired Speed = FORWARD_SLOW;
Desired Steering Angle = HARD RIGHT;

R9: if (Waypoint Angle == RIGHT_OF_CAR AND
Waypoint Distance == LONG_DISTANCE)
then
Desired Speed = FORWARD_MEDIUM,;
Desired Steering Angle = HARD_RIGHT;

R10: if (Waypoint Angle ==LEFT_OF_CAR AND
Waypoint Distance == SMALL_DISTANCE)
then

Desired Speed = ZERO;
Desired Steering Angle = HARD_LEFT;

R11:if (Waypoint Angle ~ ==LEFT_OF_CAR AND
Waypoint Distance == MEDIUM_DISTANCE)
then

Desired Speed = FORWARD_SLOW;
Desired Steering Angle = HARD_LEFT;

21

R12: if (Waypoint Angle ~==LEFT_OF_CAR AND
Waypoint Distance == LONG_DISTANCE)
then
Desired Speed = FORWARD_MEDIUM;
Desired Steering Angle = HARD_LEFT;

Figures 10 to figure 13 show membership functions used by [1] for all the linguistic variables in the
first controller. Note that [1] used both triangular and trapezoidal membership functions.

FRONT_OF_CAR _ _ _
BEHIND_CAR
LEFT_OF CAR _____ A
RIGHT_OF_CAR __

//— T \\ 1 -

/// \\\ / \ /
/// \\\ / \ /
/, /) \
Q L | i i 1 \
-180 -90 0 90 180 Degrees
Figure 10: Location of Waypoint Relative to Robot
(1]
1 —% /\ R

SMALL_DISTANCE — — — ’ \ ,
MEDIUM_DISTANCE _ _ / \ / / \ //
LONG_DISTANCE / \ y, \

/ //\ //'/ N
\ ,

1.0 -0.5 0 05 1.0 2.0 meters
Figure 11: Distance of Waypoint Relative to Robot
(1]

22

STOP o
FORWARD_SLOW__ _ .
FORWARD_MEDIUM _ _ .
REVERSE_SLOW_ _ _ __
REVERSE_MEDIUM ____

/
TN
\
\
\
| meterslse‘cj ~
-4.0 -3.0 2.0 -1.0 -05 0 05 1.0 2.0 3.0 4.0[,
Figure 12: Desired Speed of Robot
[1]
STRAIGHT -
HARD RIGHT __ | A
HARD_LEFT __ ___
/A\ 1 Y N
//// \\\\ / \ / \
/ \ / N
//// \\\\ / \ / Al \
//// \\\ / \) / v \
a | L \/ I | B
< T
-60 -40 -20 0 20 40 60 _degreeq

Figure 13: Desired Steering Angle of Robot
(1]

The second controller contains 12 rules. The rules are,

R1: if(Steering == STRAIGHT AND..Right==VERY CLOSE)

then
Steering Change = TO_RIGHT;
Speed Change = SLOWDOWN;

R2: if(Steering == STRAIGHT AND Left==VERY_CLOSE)

then
Steering Change = TO_LEFT;

Speed Change = SLOWDOWN;

23

R3:

w

R4:

RS:

R6:

R7:

RS:

R9:

if(Steering == STRAIGHT AND Front==TOO_CLOSE)
then -
Steering Change = ZERO;
Speed Change = SLOWDOWN;

if(Steering == HARD LEFT AND Right==VERY_CLOSE)
then

Steering Change = TO_RIGHT;

Speed Change = SLOWDOWN;

if(Steering == HARD_LEFT AND Right2==VERY_CLOSE)
then

Steering Change = TO_RIGHT;

Speed Change = SLOWDOWN,;

if(Steering == HARD_LEFT AND Front==TOO_CLOSE)
then

Steering Change = TO_RIGHT,;

Speed Change = SLOWDOWN;

if(Steering == HARD RIGHT AND Left==VERY_CLOSE)
then

Steering Change = TO_LEFT;

Speed Change = SLOWDOWN;

if(Steering == HARD_RIGHT AND Left2==TOO_CLOSE)
then

Steering Change = TO_LEFT,;

Speed Change = SLOWDOWN;

if(Steering == HARD RIGHT AND Front==TOO_CLOSE)
then

Steering Change = TO_LEFT;

Speed Change = SLOWDOWN;

R10: if(Steering == STRAIGHT AND Right2==TOO_CLOSE)

then
Steering Change = TO_LEFT;
Speed Change = SLOWDOWN;

R11: if(Steering == STRAIGHT AND Left2==TOO_CLOSE)

then
Steering Change = TO_RIGHT;
Speed Change = SLOWDOWN;

R12: if(Steering == STRAIGHT AND Back==TOO_CLOSE)

then
Steering Change = ZERO;
Speed Change = SLOWDOWN;

Figures 14 through figure 16 on the next page show membership functions used by [1] for the second

controller.

24

TOO_CLOSE
VERY_CLOSE_ ______

O 0 . 5 1 . O meters
Figure 14: Sensor Distance to Obstacle Membership Functions
(1]
A
N 1 SPEED_ZERO
J SLOW_DOWN __.__ .. ___
| | A | 1 o
|
-2.0 -1.0 0 -1.0 fraction
Figure 15: Speed Change Membership Functions

(1]

25

STEERING_ZERO
TO_RIGHT ~ —------
TO_LEFT —— e

-90 -45 -225 0 22.5 45 90 degrees
Figure 16: Steering Change Membership Functions
(1]

The methods used to determine how each rule fires and thus which input to use will be determined in

the following sections.

Inference Rules

The inference rules take the output of each rule from the rule base and combine them into a fuzzy
output for the system. The inference rules used, again is mainly determined by which one the user likes
best.

Let us assume, for now, that we are using normalized, Gaussian membership functions and singleton
inputs. A singleton input is the sensor reading with a membership of 1. Then let us define a fuzzy number
A which has its peak value at a and a standard deviation of 5. With these values it is possible to determine
the membership or truth factor for a given input from the sensors using equation 4 wherex is the

measurement from the sensors.

x—a
b

4. p = exp(—()2)

26

By looking at the rules in the previous section, we can see that each rule has at least two inputs (three
in the case of Controller #2). 1 will now look at two inference rules, Max-Min and Larsen's. Instead of

going into any theory, I will explain the procedure of using each rule.

Max - Min Composition Rules

Both rules (max-min and Larsen's) will first generate the membership for each input separately. In the
case of Gaussian rules, each input will be placed into equation 4 to obtain a membershipuj, where j is the

jth input. Max - Min will then determine the final membership for a given rule i using equation 5 (where

equation 4 is already inserted).
X.—4a.
5. i, = max(exp(~(—=—")")
Jj=Lm bj

Max-Product Composition Rule

The other composition rule 1 wish to discuss, is max-product. As stated, you start out as if you are
using max-min by determining the individual rule outputs. To obtain the final output membership, we take

the product of all the inputs as shown in equation 6.

6 b, =] Tesp(-CL-22y7)

X;—4;
J

b

The Max-Min rule was used by [1]. I will use the max-prod rule for reasons to be explained in the

following sections.

27

Defuzzification

The reason for defuzzifying a number is so the computer can send a command to the actuators of the
system. Most actuators will only accept crisp or non fuzzy numbers such as a voltage or current. Thus, we
want to take the fuzzy outputs generated by the rules and defuzzify them into a single output. Again there
are many ways of defuzzifying a fuzzy number. I would like to reference the reader to [12,13] for an in-
depth discussion on the different types. I will, however, discuss the center of height and center of area
methods which were used in the two different simulations.

The center of area method (used by [1]) will numerically solve for the center of area of the final
membership function generated by either equation (5) or (6). The location on the x-axis of C.A. is the final
answer sent to the actuators of the system.

The center of height method determines the center of each peak of the final membership function and
averages their respective x-axis locations. This method is much faster computationally and generally gives

results similar to the C.O.A. method.

The Gaussian Fuzzy Logic Controller

The two controllers I developed for the robot both use the same rules developed by [1]. The difference
is that my controllers used Gaussian membership functions, Max-Product with Larsen's rule, and the height
method for defuzzification. The second controller, to be discussed in the next chapter, had in addition to the
above, adaptation routines to adjust the guidance control parameters.

The membership functions were switch to Gaussian because the exponential functions provide for nice
properties and makes for easy integration into an adaptation routine. Combining equation (6) with the

center of height method for defuzzification, we can obtain an equation for the crisp output as:

28

X u|[T ey
7. Sx) ZL[HLFXP(_(%&)Z)]

where u; is the command output. It is assumed that this is a crisp number as it can be shown that the same
results are obtained if a Gaussian membership function where used for the output. This saves some
computer memory and computation time over the rules generated by [1]. The former rules had fuzzy output
and thus required more computation.,

An additional reason for using a fuzzy system of the type shown in equation (7) is because of the
Universal Approximation Theorem developed by Li-Xin Wang [4]. The theorem states that fuzzy systems
of this type are capable of approximating any nonlinear function to an arbitrary degree of accuracy. The
reader is referred to [4] for the proof. This will be discussed further in the next chapter.

Using the Gaussian membership functions, I have tried to obtain about the same amount of area as the
original trapezoidal functions. For example, in Figures 17 and 18 I have shown the membership functions

for way point angle and way point distance which are the functions used by the path following controller.

29

o
i

Membership
o o
on fw>)

0 A VTS .
-200 -150 -100 -50 0 50 100 150 200
Degrees

Figure 17: Way Point Angle Fuzzy Relations

large

o o
~ oo

membership
©c © ©o o ©
[%) L) I vf_h o

0.1

U %5 o o5 1 15 Z 35 3
meters

Figure 18: Way Point Distance Fuzzy Relations

30

CHAPTER VI
ADAPTIVE FUZZY LOGIC CONTROLLER

Back-Propagation Training Algorithm

In Li-Xin Wang's work [3,4], he showed that by observing the functional form of the fuzzy system
shown in equation (7), it can be represented as a three-layer feed forward network shown in Figure 19. This
representation of the fuzzy logic system creates a straight forward approach to apply the back-propagation

algorithm to adjust the parameters in equation (7).

1 = expl-(x-x) %o

Figure 19: Network Representation of the Fuzzy Logic System
[4]

Please note that the notation with in Figure 19 is different from the notion which I am using in this report.

m m _ n _ X—0a;\2
In my notation, @ = 21=1 wp, b= ZH“’ and j, = Hi:l exp(—(b)

In Wang's work, he showed that given an input, output pair (x,d), the above system would approximate

a function f(x) such that the error

31

1 2
8. €=E[f(X)—d]

would be minimized. It is clear that the error is a cost function which is minimized using the gradient
descent method. In our application, the square of the error does not represent a good cost function because
we do not have a desired signal that we can compare with our output.

I chose to use a different cost function which is of the same form as equation (8) but does not compare

signals. Instead, we are comparing the way point angle and the steering angle of the robot as seen in

equation (9),
9. J=1[WPA2+SA2]2
4

where WPA is the way point angle and SA is the steering angle. Perhaps I should redefine these variables
for clarity. The way point angle is the relative angle between the robot and the desired destination point, see

Figure 20.

start

Figure 20: Definition of Way Point Angle

This makes it clear that if the way point angle and the steering angle are both zero, the cost function J in
equation (9) will be zero. This only occurs when the robot is on the path which it had generated. Once it

deviates from the desired path, equation (9) is no longer zero. In order to minimize equation (9), we must

train the parameters uj, ail, and bil.

32

To train uj we use

oJ

10. u,(k +1)= u,(k)—ot—
oy |,

where 1=1,2,...,m, k=0,1,2,..., and o is a constant which controls the speed of convergence. It is clear that

by using the chain rule, we have

aJ
1. a—=(WPA2 +54)S4 13(-3‘5/1-6‘31_(%/10/12 +SA2)SAp,%

where a and b are defined from Figure 19. We can now substitute (11) into (10) for the training algorithm

for u;:

1

Z:';l“"

12. u,(k +1)= u(k)—a(WPA® + SA4*)SA ,

where 1=1,2,....,m, and k=0,1,2,....

To train ail, we use

13. a; (k+1)—a (k)——oc—(2
oa’

ik

and again apply the chain rule to get

I
14. A _ par + 54754 BSAM _ wpa® 4 542)5 (B =54) 21,0, —a,(k))

aa,- o, 0a; ooy Hi bil2 (k)

Substituting (14) into (13) we get the adaptation algorithm for ailz

(1, —S4) 2, (x; —a; (k)
"no bR

15. aj(k+1)=aq '(k)- a(WPA* +SA*)SA

where i=1,2,...,n, I=1,2,....m, and k=0,1,2,....

We can use the same method as shown above to determine the training algorithm for bil:

-V : (1, = S4) 24, (x, —a} (K))’
6. B(k+D)=b(R)=ogr| =b{(H)=aVPd +847)S4 T

33

where i=1,2,...,n, 1=1,2,...m, and k=0,1,2,....
There is a two pass procedure to train the system shown in Figure 19. We first have to calculate
forward along the fuzzy logic system to obtain ul and SA. Then the fuzzy logic system is trained

backwards to obtain the new guidance control parameters uj, ail, and bil by using the equations (12), (15),

and (16).
Implementation of Adaptation Algorithm to AV Simulation

As was stated previously, the autonomous vehicle is intended as a test bed for new types of controllers
developed in the future. If we are to keep this in mind, the adaptation algorithm must be modular so that it
can be removed without altering the entire program. There are other considerations as well which are
relevant to the cost function.

One such concern occurs when the AV reaches a way point and picks another in the desired path. It is
possible to consider a condition where the second point is around some obstacle thus placing it on a separate
path, see Figure 29 for an example. In these situations, for a brief time the cost function would be large.
This situation is expected and we know it will happen quite often. If we were to allow the AV to run its
adaptation routines during these points, it may be possible for the membership functions to diverge from the
local minimum of the cost function surface. One possible solution is to only allow the AV to adapt if the
way point angle is within a given range. I choose a range of plus or minus 45 degrees. This should
guarantee that the AV is close to or on the desired path.

We also had to keep in mind how the way points are chosen within the program. Even if the AV does
not know the environment, it will chose a way point. In this situation, the way point becomes the desired
destination point. It is conceivable that this path would go through obstacles to which the robot is unaware.
The robot would then use its obstacle avoidance routines to achieve that destination by going around these
obstacles.

Then we must also observe how the obstacle avoidance rules coincide with the path planning routines.

By looking at the code written by [1], we can see that the AV first determines the proper steering angle and

34

road speed needed to go in the direction of the desired way point. It will then obtain the data from the
sensors and run through the obstacle avoidance rules. These rules will then alter the steering angle and
robot speed in order to avoid a collision. This sequence of controllers gives the obstacle avoidance routine a
higher priority over the path planning by overwriting the desired path.

So now we can see that even if we are operating at the local minimum of the cost function and we are
on the path, the obstacle avoidance routines can force the AV to leave the path. If we were to allow the
robot to always adapt its rules and we were forced off the path because of an obstacle, we would lose the
local minima. It is impossible to remove this problem entirely as will be shown in the results and
conclusions. However, we can make its effects less evident by only allowing the AV to adapt when it
knows the path to the desired location. By limiting the adaptation to known paths, we still have to contend
with obstacles, but the AV generally knows where it is going and where the obstacles are located (excluding
moving or new obstacles).

The final implementation consists of two conditions before the AV is allowed to adapt its membership
functions. The first is a flag is either true or false. The flag is made true any time a path is generated within
a known environment. Once the flag is made true, the AV then checks the way point angle. If it is within

the allowed plus or minus 45 degrees, the robot is allowed to adapt its rules.

35

CHAPTER VII
SIMULATION RESULTS AND DISCUSSION

Non Performance Results

There are now three different versions of the simulation program. The first was written by [1] and
contains the trapezoidal membership functions and the fuzzy logic library written by [1]. This version
(from this point on referred to as RA) was modified to the new mapping algorithm so that all three
simulations could be compared, but this is the only change. The second version (from this point on referred
to as FLC) uses the Gaussian membership functions, Larsen's rule and max-prod composition rule. This
version does however, use the same rules as written by [1] as stated previously in this report. The third and
final version of the simulation (now referred to as Adapt) uses the same rules as the FLC version with the
addition of the adaptation routines.

There are two considerations concerning nonperformance results, the size of the executable program
and the time required for the computer to run through the supervisor routines. While computer memory is
becoming less and less expensive, the required memory could still be a concern when using older CPU's.

Table 1 compares the size of each executable in bytes.

Table 1: Comparison of Executable Memory Requirements

Simulation size (bytes)
RA 156478
FLC 150055
Adapt 150729

It is clearly evident that the new fuzzy inference engine saves computer memory. This is because the

new inference engine can be reduced to one equation (7) where as the inference engine used by [1] required

36

several pages of computer code. The Adapt version required slightly more memory due to the adaptation
routines.

We can also compare the time required to run through the fuzzy logic routines themselves. Since the
only difference between the separate versions is the fuzzy logic rules, it does not make sense to time the
whole simulation at this time. By using the time function in [8], it was possible to determine the actual
computing time. Since I only want to compare the time savings between the different inference engines, the

Adapt time is irrelevant. Table 2 compares these times.

Table 2: Time Required to Compute Fuzzy Logic Output

Simulation Average Time (sec)
RA 0.0756
FLC 0.0625

The time was calculated by running through the routines one thousand times and computing the
average on a 486DX40 computer with a math coprocessor. The reader can see that the FLC version is about
17% faster than the RA version. This time savings could be important in the future if voice commands or

some other types of improvements are made.

Performance Results

The performance results will compose of four different comparisons. Since the program only adapted
in known environments, data was only collected if a known path was generated. The first comparison was
the way point angle. This measure will show how well the vehicle stayed on the path. As stated previously
in this report, a way point angle of zero signifies the robot is on the path.

The second comparison is the steering angle as commanded from the fuzzy logic rules. This will be a

good indication of the smoothness of the ride. The smoother the curve, the smoother the ride. This is an

37

important consideration for the wheelchair application. Nobody would purchase a wheelchair which had a
ride similar to that of a roller costar.

The third comparison is the cost function itself. Since the adaptation routines are trying to minimize
the cost function using a gradient descent method, we can observe how fast equation (9) goes to zero as
compared with the non adaptive fuzzy controllers. To evaluate this comparison, an extra line had to be
added to the code of the non adaptive systems to determine the cost fuﬁction. Even without the adaptive
routines, this will still give a good performance measure because it should remain zero if the car is on the
path.

The forth and final comparison is the amount of time the simulation took to reach the desired
destination. The time can be read from each of the plots on the x-axis. While a fast time is not necessarily
a good thing (we don't want a wheelchair going 30 mph) it does show how efficient the code is at providing
the proper commands.

Before I get into the different trials performed, I would like to describe how I will discuss them. Each
trial will first be shown with a photo of the screen which will show the car, the desired destination, and the
determined path. Each trail was picked in order to give a range of possible situations which the AV may
encounter. I will then show each of the three plots of way point angle, steering angle, and cost function.
The notation used for the three controllers in the last section will also be used on the plots. I will then

discuss my results for each case and provide a general result for the project in the next chapter.

38

Trial #1

Figure 21: Generated Path for Trial One

The first trial's objective is to travel a straight line to the target a few meters away. It should be noted
that there is a little distortion in all of the screen photos due to the curvature of the computer monitor and
the scanner's resolution. I would also like to note that the maze environment was created by [1] with the

white areas signifying an obstacle or wall, and the gray areas signifying free space.

39

v.‘

e el e e T iy Sy SN

e b e e e b e e

45

-0.8 !
-1

(peJ) sibuyiuiogdAeps

time (sec)

Figure 22: Way Point Angle for Trial #1

T T T T T T
| | | i i i
| I I | |)
| I | | i I
I i i | t i
| | | i) [
lllll gy g s
| 1 | | | "
I | i i | [
| i 1 | | |
| § | | | !
1 f 1 [1 AN
||||| | I
7 i I i I p i H
|) 1 1 | (1] .M
| f [1 T i
_ | 1 | | < |
| i 1 | i [N
11111 e N
| | | | | iy
| ! I i 1y
_ | | | | i
_ i | | | ol
| i | i | !
!!!!! S
| | | | | o
| | | | i
M _ | i I | i
, | | | i Rk
| | | I i [
11111 O ¥
1 { | i | ~
| | QO I [,
| | i = | !
I | e | Al
i I ' S
I B e B [[R
T T e —
i] 1
| | |
| |
! I

e

(peJ) 9jbuybuliesls

time (sec)

Figure 23: Steering Angle for Trial #1

40

Cost Function

time (sec)

Figure 24: Cost Function for Trial #1

Trial #1, as will be shown in trials 2 through 5, is the only case where RA has an outright advantage.
When the program is started, FLC and Adapt tend to drift around the starting point while RA holds its
position. This is due to the fact that Gaussian membership functions are always true to some degree, even if
quite small. The dynamic model used for the simulation does not include friction thus the small truth
generated will cause the AV to drift. It is believed that the friction inherent in the robot will be great
enough that the implemented system will not drift.

Note that the spike in the steering angle for the FLC case is because the obstacle avoidance routine
caused the AV to deviate slightly. This will be seen in almost every trial.

As for the conclusions for this case, RA not only has a zero cost function, steering angle, and way

point angle, it also finished the task in shorter time. The Adapt routine has the next best response because it

has a smoother ride and takes less time than the FLC routine.

41

Trial #2

Figure 25: Generated Path for Trial Two

(pei) abjuyiuiodAep

time (sec)

Figure 26: Way Point Angle for Trial #2

42

(peJ) abjuybunssig

time (sec)

Figure 27: Steering Angle for Trial #2

0

T T T T T T el
1 |] [I i
t | 1 | | i
t | 1 | | 1
i | i 1 | 1 i
1 | 1 1 | 1 !
L [R I R [e
1 | 1 1 | | NZ/
1 i] 1 | < H
| | | | I [» SR
1 1 i 1 | l ,
| C I o
b — = = - — — = — b— = = - - — - - — +-— === T><|v,‘%
t V | i | 1 \
t i | | i i _/
i 1 1 | 1 : \
§ 1 i | i i [
i 1 1 1 | ! i
i 1 | | I 1
i el [To T~ [T~ _l)«nl\qm
i | | 1 | — !
i 1 t | |
, _ ﬁ ” , “ |
' i
| i § | l i /
| 1 1 | i [1
I S o _L_____ .\\\\»p»;lifrwwwwum
| i 1 t 1 =
| 1 1 | Qe
| | | | R
| | I | A TIY
; .
1 i i | i 3ol
1 | 1 i 1 A_\A
N T [P Lo [[T U TR o
| I i | i Y Lup]
1 l 1 | 1 .
1 ! | ! ! Mﬂ,
1 1 b ! 1 I
1 t f | !
o
- - —-ftrt - —-——- - "= =-=-=-T - - - - - -+t === - = = = ==
1 ' ! i N
I t
1
i
1
i

uonoun4 1509

time (sec)

Figure 287: Cost Function for Trial #2

43

Trial #2 has the AV going through a turn to the right and proceeding through two obstacles to the
desired location as shown in Figure 25. By looking at the plots for WPA, SA, and J (cost function), we can
see that after the turn is completed, at around t=3 sec, where all three simulations begin to converge on the
path. At about 20 sec, the robots begin to encounter the obstacles which must be avoided.

In Figure 26, the way point angle is bounded within plus or minus 0.2 rad in the Adapt and FLC
simulations. This is implying that these controllers held the path with greater accuracy than that of the RA
simulation. However, Figure 27 shows that the steering angle for the Adapt and FLC cases has much
sharper changes in the steering angle. This would produce a jerky ride.

The cost function shown in Figure 28 shows that the' Adapt and FLC cases converges to zero faster but
increases around the obstacles which is expected. The unexpected result is that the RA case did not increase
as to the same levels. This is due to the smoother ride because the SA did not jump for this simulation.
However, once past the obstacles, the FLC and Adapt cases went back to zero and held a zero cost function
while the RA case jumped.

There is also a time reduction in the Adapt and FLC cases over the RA case. While not a substantial
time reduction, the Gaussian functions do achieve the desired destination at a quicker rate.

In the case of trial two, the Gaussian membership functions achieved better results. We don't see a
substantial difference between the Adapt and FLC cases, but the Adapt does hold the path slightly better

than that of the FLC simulation.

44

Trial #3

Figure 29: Generated Path for Trial Three

450

(peJ) s|buyiuiodAem

time (sec)

Figure 30: Way Point Angle for Trial #3

45

450
4 Lo

350

time (sec)

Figure 31: Steering Angle for Trial #3

250 300

time (sec)

200

Figure 32: Cost Function for Trial #3

46

50

45

400 ____
0
5

20

uonoun4 109

(pelJ) 9)buybuliaslg

Trial #3 has an interesting twist to staying on the path. At the starting time, the AV is pointing in the
wrong direction as shown in Figure 29. The programs behaved in slightly different manners through this
maneuver. For instance, the RA simulation went in reverse until it could make the turn. The Adapt and
FLC simulations both turned within the hall way. This is a very difficult maneuver and took additional time
over the RA case. However, both cases did successfully turn around within the hall way to continue on the
path. Another interesting condition in this trial is the turn back towards the north (top of the screen). All
three cases achieved this maneuver without difficulty.

Looking at Figure 30, we can identify several of the above maneuvers. The horizontal portions at the
beginning of the simulation are where the vehicles were either turning around or following the path in
reverse. At about t=200, the AV is making the turn around the wall. Another interesting observation is the
instance when the obstacle avoidance routines have corrupted the path following commands. This is seen
with the jagged edges near the end of the trail.

While the RA simulation does minimize the cost function better than the Adapt and FLC trails, the
Adapt and FLC trials produced a smoother ride. The time to complete the task is hard to compare as they
did not solve it in the same manner. It took more time to turn the AV around thus causing these trials to
take more time. However, the Adapt simulation was not considerably slower and was comparable to the
RA case.

One observation which may have been noticed by the reader is that on some of the trails, the cost
function never reaches zero or the way point angle and steering angles end at some finite value. This occurs
when the robot reaches the desired destination at a skewed angle. The simulations stop when the AV gets
within a certain distance of the destination. It does not require the way point angle to be zero to complete its

mission.

47

Trial #4

Figure 33: Generated Path for Trial Four

(pel) sjbuyuiodiepn

sec)

(

time

Way Point Angle for Trial #4

Figure 34

48

80

Q I] T T T T T T
i i | | i i
] f T I T I T [(%] v _ \ \ _ ‘ A _ L O
! _C ! ! ! ! ! ! ! b 1 [[1 | | 1 [— |
I I | | |) i | i X | A | \ , | _ T
: i A ; f ! A ! ! | | | | | | | | |
| i | I 1 I | | |
i i | | | | | | | o
| | | 1 | ! | 1 I Lot .t v v S U P
1|1J||||_|0/\|_|xl4v\44\|;_|r\r.¢>\|‘|4|»_|u||0 T T r - i i i | < T
-= \ M~ | | | | | : | I L
Lo N\ ! ! ! ! ! ! | i | | ! | | | g
[\ I N | | [1 1 1 X . X , . X X . '
(I B A | | | 1 i ' X , A , ; _ . \ \
< A 1 t i | i I , \ \ , _ , X _ \
I | [| I I i I i !
! | 1 I 1 i i ! 10O
SN VR D N O G (SO U S SR (<o | e i e e e R« i 1]
| 1 I | | [{e} (e
! ! \ X X < | | | | | | i i N
_ “ _ __ “ ; | 3= | i 1 | ' i i ! i “
! X . . | et | | 1 | | I | | N
" “ ” | . ; , = ! | | i | 1 1 1 1 _
= [[1 1 ! § i i 1 {
AR L S S S S (< S = S S O S BN, J
|||||||| T T r ! ! ! w0 O m 1 1 l 1 1 | 1 i 1 \~5
! ! ! “ ” “ (] =1 | I | i | i | i | 4
! ! ! 2 o i | | | i | i 1 |
! ! X ! ! ! = i | i | 1 1 | 1 [H
| o o o ® T S N N R
i 4 I i I i i i 1 A
- Temde ool Ill_llil.lllLllijnA.U m A !ll_\\\Vﬂtlrv&thﬂxllalllihlsll,\\\\,lwlr,VIl\xm
! ! ! g 1 | I I H] i i 7/
: : ! =] I 1 } | i i [A
I I | o= ! i ! [
b | | | | I ! | o
! ' ! % 1 | i i ' [v
i
! ! ! & I | | | i I I I
L___l. ! . S (] R R TR [R a2 __uat/ O
! N T (s8] ‘e i] t i i | i | I
I ¢ w) \
. o | i] i 1 f 1 | i \
! “ | | i i H i i ,,, 4,
" | ol I | | | | | I V\ /
=] i | i i ! 1 f
i i g . { 1
I i i U
|||||||||| S T S TR TR o B f o
11111 R e el ol e e e el I A i
| ~N 3 _ ‘ _ .4 ! _ff ~
! ! I i I i | | N
! ! ; : i i | i) | \ N
! _ | | | | ; | | y
_ ! i | | { I ' i A !
lllllllllllll oo lo 1 1 1 i ' ___ 1O
! T r S .\\\.Dm\ lllllll [R R [e T hoand
I | i | i | ; .) ; | | | |
l] i | | | .
| i | | ! 1 I .
! ! L ! ! { i | I 1 ! i 1 i
| 1 1 | i | ; , \ I 1
i | | i ! ! ! ! :
{ 1 1 ! 1 1 1 L 1 — T p | ' |
o o o = .
© © n.U nﬂ T T ' - ~

(peJ) 9|Buybuiaa)g uolouN4 380D

time (sec)

Figure 36: Cost Function for Trial #4
49

Trial number four is simulating the condition where the robot has to go down a hallway but towards
the right wall. This becomes an important simulation when the robot will probably be used inside a building
where hallwayé are encountered quite often.

Looking at Figures 34 through 36 we see a spike in the first few seconds. This is due to the offset
from not hitting ‘tﬁe pervious obstacle with zero heading aﬂgle. We:can then identify the hump as when the
AV reaches thépointf with the hole in the wall. At this point, the obstacle avoidance sends the robot to the
left in order to avoid the wall on the right. The fuzzy rules do eventually bring the robot back on track to
reach the destination_ point. Again we see the offset at the end of the simulation. This is due to the
avoidance rules mminé the AV away from the wall when it reaches the final location.

The time required to accomplish the mission is relatively the same between the RA and Adapt
simulations while the FLC case took much longer. The Adapt case minimizes J faster which means it is
able to hold the path through the task. The noticeable difference in this trial is the oscillation in the RA
simulation. This is caused by the obstacle avoidance rules trying to get away from both the right and left
walls of the hallway. This is very undesirable in an environment where people are walking down the same
hallway as the robot. The Adapt and FLC simulations were able to smooth out the ride giving a better

response.

50

Trial #5

Figure 37: Generated Path for Trial Five

60

(pei) ajbuyiulodiep

time (sec)

Figure 38: Way Point Angle for Trial #5

51

160

1
[
1"
A
|
I 1
~L i 1 | 1 1 A
~
O ! I | i | |
i T T T T)
—~ ' t i I I |
b I ! | ' i i
L N I R [] [L =)
T I T [! [[1 o0
I I I | | I I
| ; | I | I |
| 1 i | | I |
i I i I i I i
; i | ' I | |
N S B, [[I ___ 1l IR T | - |
|) | i I | | ©
| | I | ' | |
I I ! | | m I |
| i | | I | |
!) | i | 1 1
'] | I] i |
\\\\\ I e ade e B .T»»l.*xr\lsm
: ; | I I i i
' I I) 1 ;)
I I [' | I I
i I | i I | |
! | I] | | |
I R o o I b o
i i | | | | i ~N
I 1 i | | | i
i i ' i | i |
| I | | ' T i
| 1 | ! [|
ﬁ | | I T~ i 1
I I e iiontiun I 1 I o
¥ o © & ¥ © © v o
© © Q <9 < Al

(peJ) sjbuybuiiasls

time (sec)

Figure 39: Steering Angle for Trial #5

uoioun4 3s0)

time (sec)

Figure 40: Cost Function for Trial #5

52

Trial number five is another common situation which may be encountered within a building
environment. This situation is analogous to the robot moving into a room and having to go around and
obstacle near the door.

Initially, the way point angle was off quite a bit due to the location of the desired target. By looking at
Figure 38, we can see the location of the obstacle is at about 40 sec. One observation between the different
controllers is the amount of overshoot around this obstacle. The RA simulation hugged the obstacle a lot
closer than either the Adapt or FLC simulations. One unexpected result in this trial was the FLC achieving
the final destination at a much quicker pace than either of the other controllers. There was quite a bit of
adaptation going on within the Adapt routine because of the shape of the target path. This path was
generally within the plus or minus 45 degrees most of the time. This would account for the extra time in the
Adapt routine.

We can also see that time less than 115 seconds, the Adapt and FLC routines are much smoother than
the RA simulation. However, when the robot gets near the final destination, the Adapt and FLC both
oscillate their steering angels with large deflections. The most likely reason is that the robot is heading
almost straight into the wall on the left of the room. This would cause the obstacle avoidance routines to try
and turn while the path following rules are trying to go straight. This problem will always occur as long as

the obstacle avoidance routines have higher priority over the path.

53

CHAPTER VIII
CONCLUSIONS AND FUTURE WORK

This project consisted of three separate parts. The first was implementing the adaptive mapping
routines written by [1] into a format which could be used by the robot. The idea was to keep the same
format as developed by [1] but use computer memory instead of the computer's monitor. The final
functions where written in a portable manner so that in the future, if a new map is generated, all the user
will have to do is swap functions.

The second part of the project was to implement the Gaussian membership functions with fuzzy logic
max-prod and Larsen's rule for composition. This was done in order to save computer time and memory as
well as make for an easier transition into the adaptive fuzzy logic controller. In addition, the Gaussian
membership functions provide for nice exponential output which is well understood.

The third and final aspect of this thesis was to add an adaptive routine into the Gaussian membership
functions. Again we wanted to keep the routines portable so different types of controllers could be placed
within the simulation. We had to remember that the purpose of the test bed is to test new complex real time
controllers. Keeping the controllers portable makes it easier to change and try new ideas.

The author's contributions to this project are,

e Implementation of the Bit Field Map Concept developed by [1].

) Developed a second fuzzy logic controller using the same rules as [1] but with a different
inference engine.

. Developed an appropriate cost function to be used with the gradient descent algorithm for the
fuzzy logic adaptation routines.

e Implemented the third new controller composing of a back-propagated adaptation algorithm to
adapt the fuzzy logic membership functions.

The simulations were all executed on an 80486DX40 based PC. The results showed that different
controllers worked better in different situations. Generally speaking, the Adaptive and Gaussian

membership functions outperformed the original simulation written by [1]. The problem with using this

54

e 4
“

i
o
.
4

type of system is the conflict which exists between the two controllers (path following and obstacle
avoidance). As long as the two controllers work against each other, there will be inconsistencies between
the different situations. By adding more rules or even changing the architecture of the rules to one
controller, some of these problems could be eliminated. However, the idea of the obstacle avoidance

routines having a higher priority over the path following rules is desirable to avoid any accidents, especially

when the environment involves human interaction.

Future Work

At this time, the hardware for the wheelchair is being assembled and should be ready for testing by the
end of the summer. The proposed implementation [1] using the CAN standard is being used with 68HC11
micro controllers and one 486DX40 PC board. The use of the PC Board will provide the team with a lot of
space for expansion of the robot's abilities. In the future, human interaction will have to be developed as we
are currently using keyboards. A voice command interface would provide for good interaction with the
user. As stated by [1], path planning for multiple targets will be devised and implemented. The possibility
also exists for trying different types of vision such as inferred or pattern recognition. The autonomous

vehicle will be used as a test bed for new control methodologies for distributed real time control problems.

55

References

[1] Andujar, R. "dutonomous Vehicle Control Using Fuzzy Inference and a Fast Path
Planning Algorithm.” M.S. Thesis, Department of Mechanical and Aerospace
Engineering, Oklahoma State University, 1991.

[2] The Truck & Bus Control and Communications Network Subcommittee of the Truck &
Bus Electrical & Electronics Committee, Society of Agricultural Engineers. Recommended
Practice for Serial Control and Communications Network (Class C) for Truck and Bus
Applications. In SAE J1939, SAE Publications, 1993.

[3] Wang, Li-Xin, "Analysis and Design of Fuzzy Systems," USC SIPI Report, No. 206, 1992.

[4] Wang, Li-Xin, "Adaptive Fuzzy Systems and Control, Design, and Stability Analysis,"
Prentice-Hall, Inc., 1994.

[5] Lee, Chun - Lin, "Ultrasonic Ranging System of an Obstacle - Avoidance Robot,"
M.S. Thesis, Department of Mechanical and Aerospace Engineering, Oklahoma
State University, 1993.

[6] Newton, John, Correspondence concerning current research. Department of Mechanical
and Aerospace Engineering, Oklahoma State University, 1994.

(71 D'Offay, Philippe, MAE 4010 report, Oklahoma State University, Spring 1994.

[8] Borland C++ reference manuals v. 3.1, copyright by Borland International, INC. Scotts
Valley CA 95067-0001.

[9] Alberto, Pedro, "Fuzzy Logic Controllers, A design Methodology," Notes from
presentation made at Oklahoma State University, 1993.

[10] Farrell, J.A., and Baker, W.L. "An Introduction to Learning Control Systems." 8th IEEE
Int. Symp. on Intelligent Control, 25 Aug. 1993.

[11] Wang, B.H. and Vachtsevanos, G. "Learning Fuzzy Logic Control: An Indirect Control
Approach," 1EEE Int. Conference on Fuzzy Systems, March 1992.

[12] Driankov, Dimiter, "An Introduction to Fuzzy Control, "Springer-Verlag, 1994.

[13] Zimmermann, H. "Fuzzy Set Theory and its Applications," Kluwer Academic Publishers,

Norwell, Massachusetts, 2 ed. 1991.

56

APPENDIX A: MAP SIMULATION SOFTWARE CODE AND DOCUMENTATION

57

GLOBAL VARIABLES

Variable Description Units
theta The half arc angle of the sonars. radians
map[][] Array containing the environmental bit field map. integers
ZEro x=0, y=0 in the Cartesian plane of the map. bits
resolution The resolution of the map. m/bit
s_byte The size of a byte. bits
max_dist The maximum distance of the sonar. meters
ones The equivalent of having an integer with all bits a '1'

STRUCTURES

The only structure in this program is called bit. It creates a variable which stores the row and column bit of

any location in the map. For instance, bit zero{320,240} says that the zero location in the map is at column
bit 320 and row bit 240.

FUNCTIONS
int main(void)

This is the main function of the map simulation. The first thing it does is initialize the
graphics using int_graphics(). It then clears the map making all space occupied and prints it
to the screen using print_map().

The function then accepts the foilowing data from the user in the following order:
current location of robot x y in Cartesian coordinates.
the distance return by the sonar (distance to obstacle) in meters.
the heading angle of the sonar in radians.

Note that the simulation will not prompt the user for this information, he just types it in.

Once the data has been entered, the triangle is defined by finding the three points of the
triangle and the slope and y-intercept of each line between the three points. Note, the units
of all these variables is still in the Cartesian plane in SI units,

The function then runs a loop for each row of bits in the triangle by finding the left and right
bits for that row. This is done usingxy_to_bit(x,y). Once a row of bits has been defined, it
clears that row using clear_row(l_bit,r_bit,...) then proceeds to the next row. After the
triangle has been cleared, it makes corrections for any obstacles which may have moved into

the area and then prints out the map.

58

/***
* Simulation program to test bit map creation and alteration

*R. Shanley ITI

*

* last modified: 16Mar94

*

**/

#include<stdio.h>
#include<math.h>
#include <graphics.h>
#include <stdlib.h>
#include <conio.h>

/* Structure defines a bit as an integer which
* provides an x-y location in a multi-

* dimensional field of bits

*/

typedef struct
{
int col_bit;
int row_bit;
}bit;

void init_graphics(void);

void print_map(void);

bit xy_to_bit(float, float);
void clear_row(bit, bit,int,int);

double theta=.209440;

unsigned int map[480][40];

bit zero={320,240},

double resolution=.1524;

int s_byte=sizeof(unsigned int)*8;

float max_dist=10.0;

int maxx,maxy,ones;

int main()
{
int row,column,r,i;
double x=0.0,y=0.0,d=0.0,phi=0.0;
double w,a,b,p,q,m1,m2,m3,t1,t2,t3,tmp_y,tmp_X;
bit 1_bit,r_bit,tmp_bit,top_bit,botm_bit;

/* initialize the graphics. For simulation only */

init_graphics();

60

/* arc of sensor in radians */

/* map[row][column] -- the actual map*/
/* (x,y) origin in the bit field*/

/* map resolution in m/bit */

/* the size of a byte in bits */

/*maximum distance of sonar in meters */

/* clear_ the bit field (i.e. fill all bits with '1")
*a '1.' in the !Jit field represents occupied space
:/whlle a'0' in the bit field is unoccupied space
for(i=0;i<s_byte;++i)
ones += pow(2,i);

for(row=0;r0w<=maxy— 1;++row)
for(column=0;column<=maxx- 1;++column)
map[row][column]=ones;

/* print out the map to the screen

* --used only in this simulation
*/

print_map();

/* start the simulation forever--used only in
* simulation as the supervisor will replace
* this section of code. The idea is to have
* stand alone functions which will alter the
* map.

*/

for(;;)
{

/* enter the sensor data--will be replaced
* with data delivered from the CAN
*/

/* r is the flag which represents the maximum
* distance of the sensor. r=0 places '1's at
* distance d which signifies an obstacle. Works
* even if that space has been previously cleared
* to signify a moving obstacle. r=1 means the
* sensor was maxed out and don't place a'l'
* at distance d.
*/
r=0;
scanf("%lIf %lIf %lf %lf",&x,&y,&d,&phi);
if (d >= max_dist)
r=1;

/* Make sure that the heading angle of the sensor
* is in the correct clockwise format between
* 0 and 2pi. Starting at this point, all code
* must be included in the robot simulation.
*/
if (phi <0.0)
phi=6.28318+phi;

61

else if (phi > 6.28318)
phi=phi-6.28318;

if (phi > 4.71 && phi <4.72)
phi=4.710;

w=d/cos(theta);

/* If heading angle is in the top half of the
* plane, define the triangle as following:

*/

if ((phi >= 0 && phi <= 1.57) || (phi > 4.71))

{

a=x+w*cos(1.57-theta-phi);

b=y+w*sin(1.57-theta-phi);

if(b>-.01 && b<.01)
b=y;

p=x+w*sin(phi-theta);

g=y+w*cos(phi-theta);

if(q>-0.01 && q <.01)
q=0.0;

m1=(b-y)/(a-x);

if(m1 > -0.01 && m1 <0.01)
m1=0.0;

m2=(q-y)/(p-X);

if(m2 > -0.01 && m2 < 0.01)
m2=0.0;

m3=(q-b)/(p-a);

if(m3 > -0.01 && m3 <0.01)
m3=0.0;

tl=y-x*ml;

t2=y-x*m2;

t3=q-p*m3;

}

/* If heading angle is in the bottom half of the
* plane, define the triangle as following:

*/

else if (phi > 1.57 && phi <= 4.71)

{
a=x+w*sin(phi-theta),
b=y+w*cos(phi-theta);
if(b<.01 && b>-.01)
b=y;
p=x-+w*cos(1.57-theta-phi);
q=y+w*sin(1 .57-theta-phi);
if(q <.01 && q>-.01)
q=0.0;
m1=(b-y)/(a-x);
if(m1 > -0.01 && m1 <0.01)
m1=0.0;
m2=(q-y)/(p-X);
if(m2 > -0.01 && m2 <0.01)

62

/* w is length of triangle sides */

/* (a,b) are coordinates of */
/* right point on triangle */
/* round to zero if small */

/* (p,q) are coordinates of */
/* left point on triangle */
/* round to zero if small*/

/* slope of line 1 (x,y) (a,b) */
/* round to zero if small*/

/* slope of line 2 (x,y) (p,q) */
/* round to zero if small*/

/* slope of line 3 (a,b) (p,q) */
/* round to zero if small*/

/* y-intercept for line 1 */
/* y-intercept for line 2 */
/* y-intercept for line 3 */

m2=0.0;

m3=(g-b)/(p-a);

if(m3 >-0.01 && m3 <0.01)
m3=0.0;

tl=y-x*m1;

t2=y-x*m2;

13=q-p*m3;

}

/* Because the output of the sonar is a cone, each
* case in the cartesian plane must be accounted for.
* The following clears the cones in the top half
* of the plane.
*/
if ((phi >= 0 && phi <= 1.57-theta) || (phi > 4.71+theta))
{

/* The following are when the cone has one
* side horizontal or slope of zero.
*/

if (y==b)
{
1 bit=xy to_bit(x,y); /* Coordinates of left and */
r_bit=xy to_bit(a,b); /* right most bits for that */
clear_row(l bitr bit,1,r); /* row */
}

else if (y ==q)
{
1_bit=xy_to_bit(p,q);
r_bit=xy_to_bit(x,y);
clear_row(l_bitr_bit,2,r);

tmp_bit=xy_to_bit(x,y); /* generate the incremental bit */
tmp_bit.row_bit-=1; /* increment the incremental bit */
if(b>=q) /* determine the top bit of the
triangle™/

top_bit=xy_to_bit(a,b);
else

top_bit=xy_to_bit(p,q); .
tmp_y=y; /*the line of bits currently correcting */
tmp_X=X;

/* The map is defined by bits in the following way:
* row 01234...

* column

* 0
* 1
* 2

* and so forth. This means to clear a triangle from bott9m
* 10 top, the top bit has a lower value than the bottom bit.
*/

while(top_bit.row_bit <= tmp_bit.row_bit)

{

63

/* tis the flag which determines which side to place
* the '1's when an obstical is pressent. t=0 signifies
* 10 '1's or reset, t=1 signifies '1's on the right side,

* and t=2 signifies '1's on the left side of the triangle.

*/
int t=0;
tmp_y+=resolution;

/* Determine the xy location of the right bit
* and convert it to a bit map location
*/
if (tmp_y > b && m3 !=0)

{
t=1;
tmp_x=(tmp_y-t3)/m3;
}

else if (m1 == 0.0)
tmp_x=tmp_x-+tresolution;
else
tmp_x=(tmp_y-t1)/m1;
r_bit=xy_to_bit(tmp_x,tmp_y);

/* Determine the xy location of the left bit
* and convert it to a bit map location.
*/
if (tmp_y >q && m3 !=0)

{
t=2;
tmp_x=(tmp_y-t3)/m3;
}

else if (m2 == 0.0)
tmp_x=tmp x-resolution;
else
tmp_x=(tmp_y-t2)/m2;
1 bit=xy_to_bit(tmp_x,tmp_y);
/* clear that row of bits
*/
clear_row(l_bit,r bit,t,r);
/* Increment the temporary bit to check posistion
* comparred to the top bit
*/

tmp_bit=xy_to_bit(tmp_x,tmp_y-+resolution);

}

/* place '1's along top row of triangle if
* the heading angle is O rad.

*/
if (m3 == 0 && r ==0)
{
int d,e,f,i;

1_bit=xy_to_bit(p,q);
r_bit=xy_to_bit(a,b);
d=floor((I_bit.col_bit)/s_byte);
e=1_bit.row_bit;

64

/*increment to next line of bits */

f=floor((r_bit.col_bit)/s_byte);
for (i=d;i<=f}++i)
map[e][i]=ones;

}

/* This section is the same as the above except
* we are now concerned with changing the bits
* if the triangle is in the bottom plane. The
* difference between the two are sign and line

* changes.
*/
else if ((phi > 1.57+theta) && (phi <= 4.71-theta))
{
if (y==")
{
1 bit=xy to_bit(x,y);
r_bit=xy_to_bit(a,b);
clear_row(l_bit,r_bit,1,r);
}
else if (y ==q)
{

1 bit=xy to_bit(p,q);
r_bit=xy to_bit(x,y);
clear_row(l bit,r bit,2,r);
}
tmp_bit=xy_to_bit(x,y);
tmp_bit.row_bit+=1;
if (b <=q)
botm_bit=xy_to_bit(a,b);
else
botm_bit=xy_to_bit(p,q);
tmp_y=y;
tmp_Xx=X;
while(botm_bit.row_bit >= tmp_bit.row_bit)
{
int t=0;
tmp_y-=resolution;
if (tmp_y <b && m3 !=0)
{
t=1;
tmp_x=(tmp_y-t3)/m3;
}
else if (m1 == 0.0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t1)/ml;
r_bit=xy to_bit(tmp_x,tmp_y);
if (tmp_y < q && m3 !=0)
{
t=2;
tmp_x:(tmp_y-ﬁ))/ m3;
}

65

tmp_y=y;

/* Clear the top half of the triangle.
*/
while(top_bit.row_bit <= tmp_bit.row_bit)
{
int t=1;
1 bit=tmp _bit;
tmp_x=(tmp_y-t3)/m3;
r_bit=xy to bit(tmp_x,tmp_y);
clear_row(l_bit,r_bit,t,r);
tmp_y+=resolution;

/* The following block of code determines
* the orrientation of the triangle and

* specifies the line to which the next

* row originates.

*/
if (phi > 1.57)
{
if (m1 ==0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-tl)/m1l;
}
else
{
if (m2 == 0)
tmp_x=tmp_x-+resolution,
else
tmp_x=(tmp_y-t2)/m2;
}
tmp_bit=xy_to_bit(tmp_x,tmp_y);
}

/* Go to next row */
tmp_y=y-resolution;
if (phi > 1.57)
{
if (m2 ==0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t2)/m2;
}

{
if((m1 =20)
tmp_x=tmp_x-+tresolution;
else
tmp_x=(tmp_y-t1)/m1;

else

}

/* Repeat the above for the bottom half of the triangle

67

/*the line of bits currently correcting */

/*determine the left most bit*/

/*the right most bit*/
/*clear the row*/
/*increment to next line of bits */

*/
tmp_bit=xy_to_bit(tmp_x,tmp_y);
while(botm_bit.row_bit >= tmp_bit.row_bit)
{
int t=1;
1_bit=tmp_bit;
tmp_x=(tmp_y-t3)/m3;
r_bit=xy_to_bit(tmp_x,tmp y);
clear_row(l_bit,r_bit,t,r);
tmp_y-=resolution;
if (phi > 1.57)
{
if (m2 == 0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t2)/m2;
}
else
{
if (m1 ==0)
tmp_x=tmp_x-tresolution;
else
tmp_x=(tmp_y-t1)/ml;
}

tmp_bit=xy to_bit(tmp_x,tmp y);

}

/* This block of code is for the cases when the
* horizontal triangle is in the negative x
* direction.
*/
if (phi > 3.14159)
{

tmp_y=y;
while(top bitrow bit <=tmp bit.row_bit)
{
int t=2;
r_bit=tmp_bit;
tmp_x=(tmp_y-t3)/m3;
1 bit=xy_to_bit(tmp_x,tmp_y);
clear_row(l bit,r bitt,r);
tmp_y+=resolution;
if (phi < 4.72)
{
if (m2 ==0)
tmp_x=tmp_x-+resolution;
else

}

else

tmp_x=(tmp_y-t2)/m2;

68

{
if (m1 == 0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t1)/ml;
}
tmp_bit=xy_to_bit(tmp_x,tmp_y);
}
tmp_y=y-resolution;
if (phi > 4.71)
{
if (m2 == 0)
tmp_x=tmp x+resolution;
else
tmp_x=(tmp_y-t2)/m2;
}
else
{
if (m1 == 0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t1)/ml;
}

tmp_bit=xy_to_bit(tmp_x,tmp_y);
while(botm_bit.row_bit >= tmp_bit.row_bit)
{
int t=2;
r_bit=tmp_bit;
tmp_x=(tmp_y-t3)/m3;
1 bit=xy to bit(tmp x,tmp_y);
clear row(l bit,r bit,tr);
tmp_y-=resolution;
if (phi > 4.71)
{
if (m2 == 0)
tmp_x=tmp x+resolution;
else
tmp_x=(tmp_y-t2)/m2;
}

{
if (m1 ==0)
tmp_x=tmp_x+resolution;
else
tmp_x=(tmp_y-t1)/ml;

else

}
tmp_bit=xy_to_bit(tmp_x,tmp_y);

}
}

/* print map out -- simulation only */
print_map();

69

}

/* initializes the graphics routines */
void init_graphics(void)
int gdriver = DETECT, gmode, errorcode;

initgraph(&gdriver,&gmode,"");
errorcode=graphresult();
if (errorcode != grOk)
{
printf("\nGraphics error %s",grapherrormsg(errorcode));
printf("\nPress any key to halt:");
getch();
exit(1);
}
maxx=getmaxx() + 1;
maxy=getmaxy() + 1;
graphdefaults();
cleardevice();
return;
}

/***

* prints the map out on the screen
***/

void print_map()

{
int i,mask=1,row,column;
unsigned int tmp;
for (row=140;row<=340;++row)
{
for (column=15;column<=25;++column)
{
tmp=map[row][column];
for (i=0;i<s_byte;++i)
{
if(tmp & mask)
putpixel(column*s_byte+s_byte-1-i,row,2);
else
putpixel(column*s_byte+s_byte-1-i,row,15);
tmp=tmp >> 1;
}
}
}
return;
}

/**************#**

* converts from x,y coordinates to bit coordinates

70

* x and y must both be in meters *
**/

bitxy_to_bit(float x, float y)

{

double f,i;

int a,b;

bit tmp;

f=modf((double)(x/resolution),&i); /* Find the column bit */

if(f>=0 && £<0.5) /* because of the resolution, the*/
a=zero.col bit + (int)i; /* rounding becomes a significant*/

else if (f> 0 && £>=10.5) /* issue */

a=zero.col_bit + (int)i + 1;
else if (f< 0 && > -0.5)

a=zero.col bit + (int)i;
else

a=zero.col_bit + (int)i - 1;

f=modf((double)(y/resolution),&i); /* find row bit */
if(f>=0 && £<0.5)
=zero.row_bit - (int)i;

else if (f> 0 && £>=0.5)

b=zero.row_bit - (int})i - 1;
else if (f <0 && £>-0.5)

b=zero.row_bit - (int)i;
else

b=zero.row_bit - (int)i + 1;

tmp.col bit=a;
tmp.row_bit=b;
return(tmp);

}

/***

* Clears one row of bits from the map i.e. make every bit in the row 0 *
**/

void clear_row(bit 1_bit,bit r_bit,int t,int r)
{
int a,b,c,i;
int j=ones,k=0;

/* a is an integer which signifies which column array element in the
* map has the column bit for the left bit.
*/
a=floor((1_bit.col_bit)/s_byte),

/* b is an integer which signifies which row array element in the
* map has the row bits.
*/

b=1_bit.row_bit;

71

/* a is an integer which signifies which column array element in the
* map has the column bit for the right bit.
*/

c=floor((r_bit.col_bit)/s_byte);

/* if an entire integer (16 consecutive bits) needs to be
* cleared--go through loop.
*/

for(i=a+1;i <c; ++)
map([b][i]=0;

/* If single bits of an integer need to be cleared */

/* when the row to be cleared is intirely within one integer */
if(a==c)
{
for(i=1_bit.col_bit-(a*s_byte);i<=r_bit.col_bit-(c*s_byte);++i)
j=i-(int)pow(2,(s_byte-1-i));
/* if there is an obstacal to the right and we are not at
* maximum sensor distance, place a '1' at the right edge.
*/
if(t==1&&r==0)
k=(int)pow(2,(c*s_byte+s_byte-1)-r_bit.col_bit);
/* if there is an obstacal to the left and we are not at
* maximum sensor distance, place a'1' at the left edge.
*/
else if t==2 && r==0)
k=(int)pow(2,(a*s_byte+s_byte-1)-1_bit.col_bit);
map([b][a]=(map[b][a] & j) | k;
return;

}

/* when the row to clear is several integers.*/
else
{

int i,j=ones,
/* clear left bit */
for (i=1_bit.col_bit-(a* s_byte);i<=(s_byte-1);++i)
j=i-(int)pow(2,(s_byte-1-1));
if(t==2&&r==0)
k=(int)pow(2,(a*s_byte+s_byte- 1)-1_bit.col_bit);

map[b][a]=(map[b][a] & j) | k;

j=ones;
/* clear right bit */
for (i=0;i<=r_bit.col_bit-(c*s_byte);++i)
j=j-(int)pow(2,(s_byte-1-i));
if (t==1&& r=="0)
k=(int)pow(2,(c*s_byte+s_byte-1)-r_bit.col_bit);

72

I}nap[b][C]=(map[b][CI &)k

73

APPENDIX B: ADAPT SIMULATION SOFTWARE CODE

74

/***

FILE :ZZ_CAN.C

DESCRIPTION : CONTROLLER AREA NETWORK FUNCTIONS
FOR AUTONOMOUS VEHICLE

This file contains code for CAN COMMUNICATIONS

by : Ricardo Andujar

LAST UPDATE :MARCH 22, 1993

**/

#include "ZZ_CAN.H"
#define TERMINALMAX 255

/**

* *
* INITIALIZING MEMORY SPACE FOR CAN TERMINALS *
* *

ok sk ok ok sk sk s ok sk ok o ok ke ok ok ok ok ok ok ok sk sk ok ok sk sk sk ok sk ok ok ok ok ok sk sk ok s ok sk ok ok ke ok sk ok ok ok sk sk sk sk ok ok ok ok ok sk ok ok ok Kok ok /

static void (*ZZ_Terminal[TERMINALMAX])(byte SourceAddress,
int *DataContent,double *data,byte *datanum);

/**

* *
* INSTALLS TERMINAL ON CAN *
* *

KR ok ok ok ok ok K o s ok o ok ok ok ok ok o ok oK o ok o R ok sk s R koK sk o ko o o o ok ok ok o o Kk ok ok o K K ks ok /

int ZZ CAN InstallServer(byte SourceAddress,
void (*TempName)(byte SourceAddress,int *DataContent,
double *data,byte *datanum))

{
if (ZZ_Terminal[SourceAddress]==0L)
{
ZZ_Terminal[SourceAddress] = TempName;
return(TERMINALINSTALLED);
}
return(OCCUPIED);
}

/**

* *
* COMMUNICATION REQUEST THROUGH NETWORK *
* *

75

**/
void ZZ_CAN_Request(byte Priority,byte SourceAddress,
byte DestinationAddress,int *DataContent,
double *data,byte *datanum)

{
*DataContent = REQUEST;
if (ZZ_Terminal[DestinationAddress])
ZZ_Terminal[DestinationAddress)(SourceAddress,
DataContent,data,datanum);
3

/**

* *
* SEND A REFERENCE COMMAND SIGNAL THROUGH CAN *
* *

**/
void ZZ CAN_Command(byte Priority,byte SourceAddress,
byte DestinationAddress,int *DataContent,
double *data,byte *datanum)

{
*DataContent = COMMAND;
ZZ_Terminal[DestinationAddress](SourceAddress,
DataContent,data,datanum);
}

76

/*ZZ_Canh ¥/

#define OCCUPIED 252
#define TERMINALINSTALLED 251

* PRIORITIES */
#define HIGHPRIORITY 6
#define MEDIUMPRIORITY 3
#define LOWPRIORITY 1

[r¥* ADDRESSES ***/
#define VISION 3

#define NAVIGATION 2

#define SUPERVISOR 1

#define BROADCAST 4
#define NOTALLOWED 127
#define REQUEST 128
#define COMMAND 129
#define SUCCESS 130

#define RS_SA X Y _COMP B 1

#define SIXSENSORS_2CROSSED 2

#define RS XPOSITION 1.2
#define RS_YPOSITION 1.2
#define RS XCOMPASS 1.2
#define RS ROADSPEED 1.2
#define RS STEERANGLE 1.2
#define RS ROADRANGECI 1.2
#define RS ROADRANGEC2 1.2
#define ON 1

#define OFF 0

typedef unsigned short byte;
static int DataContent;
static double Data[20];

staticbyte DataNum;

void ZZ_CAN_Request(byte Priority,byte SourceAddress,
byte DestinationAddress,int *DataContent,
double *data,byte *datanum);
void ZZ_CAN_Command(byte Priority,byte SourceAddress,
byte DestinationAddress,int * DataContent,
double *data,byte *datanum);
int ZZ CAN InstallServer(byte SourceAddress,
- void“(*TempName)(byte SourceAddress,int *DataContent,
double *data,byte *datanum));

77

/* ZZ_Carsp.h */

static double

/7 3% ok s sk s s ok ok ok s ok sk ke ok s ok ok ke ok sk ke ok sk Sk 3K ke ok ook ok ke sk ok ok ok ok o sk sk sk ok ok ke ok ok ek ok okok ok k ok

*

* Sensor angle relative to forward direction

* Positive angles correspond to clockwise direction
*

***/

NominalAngle[]= {O,M_PLM_PI 4*1.5-M PI 4*1.5,-1.*M_PI 2,1.*M_PI 2},

/**
*

* Sensor position in meters relative to center

* of front axis
*

**/
Xr[1={0,0,-.2,.2,-.25,.25},
Yr[1={0,.5,0,0,.45,.45},

/**
*

* Car edges in meters relative to center

* of front axis
*

**/
CarEdgeX[}={-.2,-.2,.2,.2},
CarEdgeY[]={.5,0,0,.5},

AxleToAxleLength=.5,

MotorInertia=.5,
MotorViscosity=.05;

78

/***

FILE 1 ZZ_CONSL.C
DESCRIPTION : CONSOLE MODULE FOR AUTONOMOUS VEHICLE

This file contains code for KEYBOARD PROCESSING

by : Ricardo Andujar

LASTUPDATE :MARCH 22, 1993

ok o ke ok ok ok ke ok ok ke ok ok sk ok ok ok ok ok o ok ok ok ok ek sk sk ok sk ok ok ok ok ok ke sk ke sk ke ok skok ok ke sk sk ok sk ok sk ok ok sk ok ok ok ok ok sk ke ok ok ke sk sk ok skok ok /

/***

INCLUDE FILES FOR CONSOLE MODULE

ok 3k ok s ok ok ok e 3 3k e ok s ok s e ok ok s o ok ok ok ok sk Ok ok ke ok s ok ok sk ok e ok ok ok sk ke ok k ok ke ok ok ok sk ok sk ok ok ok sk sk ok ke ok sk ok ke ok ok ok sk ok ok

#include<conio.h>

#include<graphics.h>

#include<stdlib.h>

#include <stdio.h>

#include <bios.h> /* Microsoft specific */
#define FIRST_TIME 2

#define TRUE 1

extern int graph;

extern double ZZ Circle;

double *WayX,*WayY,
static int *NewTarget;
int keypress,col=0,row=0;

/*CBUF *keybuf,*keybuf2;
*/

void ZZ_DrawCursor(void);

/*****#**

* x*

* OBTAINS MEMORY ADDRESSES FOR WAYPOINT LOCATION VARIABLES *
* *
**/

void ZZ_SupertoConsl(double *one,double *two, int *three)

{
WayX = one;

79

WayY =two;
NewTarget = three;

/**

* *
* KEYBOARD INTERRUPT *
* *

**/
#define MASKPORT 1
void kbsig(void)

int imask; /* 8259 interrupt mask */

imask = inportb(MASKPORT); /* read current mask status */
outportb(MASKPORT, 0xFF); /* mask out all external interrupts */

if (kbhit()) /* ASCII key available ? */
{
/* putcbuf(getch(),keybuf); */ /* get SCANCODE:ASCII */
/* disable(); */ /* disable since bios enables interrupts */

outportb(MASKPORT, imask); /* restore 8259 interrupt mask */

}
outportb(MASKPORT, imask); /* restore 8259 mask */

/***

* *
* RETURN KEY HANDLER *
* *

***/

static void return_handler(void)

{

/* col=0;
putcbuf(\0',keybuf2);
setcolor(BLACK);
outtextxy((col+1)*8,row*8 keybuf2->cb_front+ 1);
setcolor(LIGHTGREEN);
outtextxy(random(640),random(48 0),keybuf2->cb_front+1);
resetcbuf(keybuf2);

*/}

80

3 3 ok 3 e ok ok ok sl sk ok ko ok ok ok sk Sk ok sk ke sk s 3 sk k3 ok ok e 3k ok ke ok sk ok ok ok ok ok sk ok sk ok ok ok sk ke sk ke ok o ok ok ok sk ke ok ok ok ok ok ok ok

* *
* PRINT CHARACTER HANDLER *
* *

***/

static void printchar_handler(void)

{
/* int cc[2]={0,0};

cc[0] = getcbuf(keybuf);

if(++col>29)
{
unputcbuf(keybuf2);
col=29;
}
else
{
setcolor(LIGHTGREEN);
outtextxy(col*8,row*8,cc);
}
*/}
/***
* *
* BACKSPACE HANDLER *
* *

***/

static void backspace_handler(void)

{

/* setcolor(BLACK);
outtextxy(col*8,row*8 keybuf2->cb_rear);
unputcbuf(keybuf2);
if(~-col<0)

col=0;
*/

}

/***

* *
* ESCAPE KEY HANDLER: Quits program *
* *

***/

static void escape_handler()

{
ZZ7_EraseSuper();
ZZ EraseVision();
ZZ_EraseNav();
exit(1);

}

81

/***

* *

* UP ARROW KEY HANDLER *
* *
***/
void up_handler(void)
{
ZZ DrawCursor();
*WayY+=.5;
ZZ_DrawCursor();
}

/***

* *
* DOWN ARROW KEY HANDLER *
* *

***/
void down_handler(void)
22 DrawCursor();
*WayY-=.5;
ZZ_DrawCursor();

/***

* *
* LEFT ARROW KEY HANDLER *
* *

***/
void left_handler(void)
77 DrawCursor();
*WayX-=.5;
Z7._DrawCursor();

/***

* *
* RIGHT ARROW KEY HANDLER *
* *

***/
void right_handler(void)

ZZ._DrawCursor();

*WayX+=.5;

ZZ_DrawCursor();

/***

* *
* DRAW CROSS HAIR CURSOR *
* *

***/
void ZZ_DrawCursor(void)

int wayx,wayy;

82

ZZ_Real2Screen(*WayX,*WayY,&wayx,&wayy);
setwritemode(1);

setcolor(LIGHTMAGENTA);
line(wayx-5,wayy,wayx+5,wayy);
line(wayx,wayy-5,wayx,wayy+5);

ko ko sk ks ok sk koK ok oo o ok sk oo o K ok R o K sk o sk ok ok sk ok sk ok ok ok ok o sk ko ok ok o ok
* *
* KEYPRESS MAIN HANDLER *

* *

8 ok sk ok ok ke ok ok o sk ok o ke ok ok ke ok sk sk ok sk sk ke ok ok ok ok sk ok sk sk sk sk k ok ok ok sk ok sk ok ok ok ok ok ok skok sk ok ok ok sk ok ok ok ok /

void keypress_handler(void)

{
static cc;
if(kbhit())
{
cc = getch();
switch(cc)
{
case 0: switch(getch())
{
case 72: up_handler();
break;
case 80: down_handler();
break;
case 75: left_handler();
break;
case 77: right handler();
break;
}
break;
case'@" ZZ_Circle=1-ZZ_Circle;
break;
case 27: escape_handler();
break;
case 'M": print_map_handler();
break;
case 'T": *NewTarget = FIRST_TIME;
break;
/* case 8: backspace_handler();
break;
case 13: return_handler();
break;
default: putcbuf(cc,keybuf2);
ungetcbuf(cc,keybuf);
printchar_handler();
break;
*/
}
}
}

83

/* conslLh */

void keypress_handler(void);
extern void print map_handler(void);
void kbsig(void);

84

/***

FILE :ZZ_GRAPH.C

DESCRIPTION : SUPERVISOR MODULE FOR AUTONOMOUS VEHICLE

This file contains a graphics initialization and

closing functions, conversion functions used to change
between real and environment map coordinates, and
functions to change from polar to cartesian coordinates
and vice-versa.

by : Ricardo Andujar

LASTUPDATE :MARCH 22, 1993

ok 3 e ke ok ok ke ok s ok ok s sk sk ok ok ok sk ok ok e ok e ke ok e sk ke ok ok sk ok sk ok ok sk ok ok sk sk sk kol ok ok ok ok sk o ok ok sk ok ook ok skok sk keok ok sk ok k /

/***

INCLUDE FILES FOR GRAPHIC FUNCTIONS FILE : SUPERVISOR MODULE

***/
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<graphics.h>
#include"ZZ CAN.H"
#include"ZZ MISC.H"
#include"ZZ SUPR2.H"
#include"ZZ GRAPH.H"

/**

* *
* GRAPHIC INITIALIZATION FUNCTION *
* *

**/
void ZZ InitGraph(void)

/* request auto detection */
int gdriver = DETECT, gmode, errorcode;

/* register a driver that was added into graphics.lib */
errorcode = registerbgidriver(EGAVGA_driver);

/* report any registration errors */
if (errorcode < 0)

printf("Graphics error: %s\n", grapherrormsg(errorcode));
exit(1); /* terminate with an error code */

}

85

/* initialize graphics mode */
initgraph(&gdriver, &gmode, "");

/* read result
of initialization */
errorcode = graphresult();

if (errorcode != grOk) /* an error occurred */
{
printf("Graphics error: %s\n", grapherrormsg(errorcode));
exit(1); /* return with error code */
}
}

[/ 3k sk ok sk ok ok ok ok ok Sk sk ok ok ok ok sk ke sk ok K sk ok ok ok ok sk of ok ke sk ke sk ok ok e ke s ke ok e ok ok ke ok ok ok ok ok Sk ke ok sk ok ke ok sk ok sk ok sk ok ok ok sk ok ok ok

* *
* GRAPHIC CLOSING FUNCTION *
* *

**/
void ZZ_CloseGraph(void)

}

closegraph();

/**

* *

* CHANGES FROM GRAPHIC TO REAL COORDINATES *
* CARTESIAN COORDINATES *

* *

**/

void ZZ Screen2Real(int xc,int yc,double *x, double *y)

{
*x = xc/SCREENCONVERT;

*y = (BOTTOMLIMIT-yc)/SCREENCONVERT;

/**

* *

* CHANGES FROM REAL TO GRAPHIC COORDINATES *
* CARTESIAN COORDINATES *

* *

**/
void ZZ_Real2Screen(double x,double y,int *xc, int *yc)

{
*xc = x*SCREENCONVERT,;

*ye = BOTTOMLIMIT-y*SCREENCONVERT;

86

/******************************#***************************************
*

%
* CHANGES FROM CARTESIAN TO POLAR COORDINATES *
* *

**/

void ZZ_Cart2Polar(double x,double y,double *ang,double *r)
{

*ang = ZZ Atan2(y,x);

*r=ZZ Range(y,x);
}

/**

* *
* CHANGES FROM POLAR TO CARTESIAN COORDINATES *
* *

ok ok ok ok K sk ok ok o ks ok ok ok ok ol ok ok ksl sk sk ok ks sk ok sk o ok stk ko ok ks ok ks ok ok ok ok ok ok ok /

void ZZ_Polar2Cart(double ang,double r,double *x,double *y)
{

*x =r*cos(ang);

*y =r*sin(ang);

87

/% e 3 ek 3k ok ok ok s ke ok ok ok ok o ok o sk ok e sk ok e ok ok ok sk ke ok ok ok sk ok s ke sk ke sk e ok ok ok sk ok ok ok ok ke sk ke ok ok ok sk ok sk ok ok ok ok ok ok ok ko ok ok ok oK

FILE :ZZ_MAN.C

DESCRIPTION : MAIN LOOP SIMULATION FOR AUTONOMOUS VEHICLE

This file contains main loop for simulation.

by : Ricardo Andujar

LAST UPDATE : MARCH 22, 1993

**/

/***
INCLUDE FILES FOR MAN
***/

#include<graphics.h>

#include<stdio.h>

#include<conio.h>

#include<math.h>

#include<alloc.h>

#include"ZZ CAN.H"

#include"ZZ SUPR2.H"

#include"ZZ VSION.H"

#include"ZZ NAV H"

#include"ZZ OBIJCT.H"

#include"ZZ CONSL.H"

extern int keypress;
int super,navigation,vision,graph;

void main(void)

{

int i;

Jekxkxiok* [nstalls Communication Servers for Each Module, *** ¥kt
ZZ__CAN_InstallServer(SUPERVISOR,ZZ“_SuperServer);
ZZ CAN_InstallServer(N. AVIGATION,ZZ NavServer),
ZZ_CAN_InstallServer(VISION,ZZFVisionServer);

[RHEEE KKK Initializes Each Module okok koo ok
ZZ _InitSuper();
ZZ InitVision();
ZZ InitNav();
/* ZZ _CreateCircle(320,200);
ZZ_DrawCircle();
*/ 7Z DrawCursor();

/**

*kkkkkxxk Main Program Loop
sk ok % ok ok % 3k ok %

x#xkkxerx When finally impleneted, each module will have it's own

88

ook ok 2k ok ok ok ok 3k

separate loop on different processors.

**/

while(1)
{

[k ok ok ok ok
o 2k 3k sk ok ok ok ok ok
30k ok ok ke ok ok
3k ok ok ok o ok ok ok
% 3K o 3k ok 3k e ok ok

*********/

Propulsion Loop

For every Supervisor Loop, the Propulsion
Module Loops Four Times with 0.05 sample period
for the actuator controls.

for(i=0;i<4;i++)
ZZ_NavLoop();

/********* Vision LOOp *********/
for(i=0;i<1;i++)
ZZ VisionLoop();

/********* Supervisor Loop *********/
for(i=0;i<1;i++)
2Z_SuperLoop();

/*********

Handles Keyboard Presses ***#ixx/

keypress_handler();

89

/3R oo ok ok ok S ko o o ek o ok ok ok o o o ko ok o ko ok ook s ok o ko ok ko ok s ok ok o ok ke o ok ok ok ok o o

FILE 1ZZ_MAP2.C

DESCRIPTION : ADAPTIVE MAPPING FILE FOR AUTONOMOUS VEHICLE

This file contains code for the ADAPTIVE MAPPING,
and functions used for simulating environment.

NOTE: When implementing the adaaptive mapping,
only one color needs to be verified, since
only a binary map is needed. The other colors
are used only during simulation.

by : Ricardo Andujar

LAST UPDATE :MARCH 22, 1993

e ke ko ok e ok ok ok ok ok ok ok 3 3K o ok ok ok ok sk ke ok ok sk ok sk ok sk ok ok ok 3k ok ok ok ok o o ok e ok ok s ke ok sk ko ok ok ok ok ok ok ke ko sk ok ok oK sk ok K K ke ok K KK

Updates after 22 March1993 by Robert L. Shanley 111

LAST UPDATE : 18March94,22March94,23March94,28March94

**/

/***

INCLUDE FILES FOR MAPPING FILE : SUPERVISOR MODULE
***/
#include<graphics.h>
#include<time.h>
#include<stdlib.h>
#include<math.h>
#include <conio.h>
#include"ZZ CAN.H"
#include"ZZ SUPR2.H"
#include"ZZ CARSP.H"
#include"ZZ_MAP.H"

extern int
graph;

staticdouble
*CarXc,
*CarYc,
Xc, /¥%% X SENSOR POSITIONS (pixels) ****/
Ye, /%%* Y SENSOR POSITIONS (pixels) ****/
*Range,
*Compass,
*RoadSpeed,
*Xposition,
*Yposition;

static int

90

*Xconvert,
*Yconvert,
Crash;

int s_byte=sizeof(unsigned int)*8; /* the size of a byte in bits */

unsigned int map([480][40],0nes; /* map[row][column] -- the actual map*/
double theta=.17444; /* arc of sensor in radians (10 deg) */

bit zero={0,480}; * (x,y) origin in the bit field*/

float resolution=0.0250; /* map resolution in m/bit */

float max_dist=0.250; /*maximum distance of sonar in meters */
int maxx,maxy;

/***
* *

* GET MAIN SUPERVISOR PRIVATE VARIABLE ADDRESSES USED BY *
* MAPPING FUNCTIONS AND ASSIGN THEM TO LOCAL PRIVATE ~ *

* VARIABLES. *

E3 *

***/

void ZZ_SupertoMap(double *one, double *two,double *three,
double *four,double *five,double *six,
double *seven,int *eight,int *nine,double *ten,
double *eleven)

CarXc = one;
CarYc = two;

Xc = three;

Yc = four;

Range = five;
Compass = six;
RoadSpeed = seven;
Xconvert = eight;
Yconvert = nine;
Xposition=ten;
Yposition=eleven;

/***

* *

* INITIALIZE MAP TO ALL OCCUPIED SPACE. *
*

*

* NOTE: ZZ_DrawRoom is used only for simulation purposes. *

* ZZ_DrawCar is not necessary, it is used to locate *

* the robot on the screen. *

% *

***/

void ZZ _InitMap(void)
{

int row,column,i;

91

/* clear the bit field (i.e. fill all bits with ')
*a'l" in the bit field represents occupied space
* while a'0' in the bit field is unoccupied space

*/

for(i=0;i<s_byte;++i)
ones += pow(2,i);

maxx=getmaxx() + 1;
maxy=getmaxy() + 1;

for(row=0;row<=479;++row)
for(column=0;column<=39;++column)
map[row][column]=ones;

ZZ_DrawRoom();
ZZ DrawCar();

/***

*

* K X X X *

%*

ADAPTIVE MAPPING DONE HERE. *

Note the use of different colors. Again this only *
applies to simulation. When implemented, only one color *

should be used. *
E3

AR KKK KRR Kok KKK kR AR KR Sk ok ok ok ko ook

void ZZ_UpdateMap(void)

{

int row,column,r,i,ii;

double x=0.0,y=0.0,d=0.0,phi=0.0;

double w,a,b,p,q,m1,m2,m3,t1,t2,t3,tmp_y,tmp_Xx;
bit |_bit,r_bit,tmp_bit,top_bit,botm_bit;

for(ii=0;ii<NUM_SENSORS;ii++)
{

/* 1 is the flag which represents the maximum
* distance of the sensor. r=0 places 'l's at
* distance d which signifies an obstacle. Works
* even if that space has been previously cleared
* to signify a moving obstacle. r=1 means the
* sensor was maxed out and don't place a 'l'
* at distance d.

*/

x = Xc[ii] + *Xconvert;
y = Yc[ii] + *Yconvert;

92

ZZ_Screen2Real((int)x,(int)y,&x,&y);
d=Rangel[ii];
r=0;
if (d >=max_dist)

r=1;
phi=*Compass+NominalAngle[ii];

/* Make sure that the heading angle of the sensor
* is in the correct clockwise format between
* 0 and 2pi. Starting at this point, all code
* must be included in the robot simulation.
*/

if (phi >=-0.01 && phi <=0.01)
phi=0;

else if (phi < 0.0)
phi=6.28318+phi;

else if (phi > 6.28318)
phi=phi-6.28318;

if (phi > 4.71 && phi <4.72)
phi=4.710;

w=d/cos(theta); /* w is length of triangle sides */

/* If heading angle is in the top half of the
* plane, define the triangle as following:
*/

if ((phi >= 0 && phi <= 1.57) || (phi > 4.71))

a=x+w*cos(1.57-theta-phi); /* (a,b) are coordinates of */
b=y+w*sin(1.57-theta-phi); /* right point on triangle */
if(b>-.01 && b <.01) /* round to zero if small */
b=y;
p=x+w*sin(phi-theta); /* (p,q) are coordinates of */
=y+w*cos(phi-theta); /* left point on triangle */
if(q>-0.01 && q <.01) /* round to zero if small*/

q=0.0;
m1=(b-y)/(a-x); /* slope of line 1 (x,y) (a,b) */
if(m1 > -0.01 && m1 <0.01) /* round to zero if small*/
m1=0.0;
m2=(q-y)/(p-Xx); /* slope of line 2 (x,y) (p,q) */
if(m2 > -0.01 && m2 <0.01) /* round to zero if small*/
m2=0.0;
m3=(q-b)/(p-a); /* slope of line 3 (a,b) (p,q) */
if(m3 > -0.01 && m3 <0.01) /* round to zero if small*/
m3=0.0; .
tl=y-x*ml; /* y-intercept for line 1 */
t2=y-x*m2; /* y-intercept for line 2 */
t3=q-p*m3; /* y-intercept for line 3 */

}

/* If heading angle is in the bottom half of the
* plane, define the triangle as following:
*/

93

else if (phi > 1.57 && phi <=4.71)

{

a=x+w*sin(phi-theta);

b=y+w*cos(phi-theta);

if (b <.01 && b>-.01)
b=y;

p=xt+w*cos(1.57-theta-phi);

g=y+w*sin(1.57-theta-phi);

if(q <.01 && q>-.01)
q=0.0;

ml=(b-y)/(a-x);

if(m1 > -0.01 && m1 < 0.01)
m1=0.0;

m2=(q-y)/(p-x);

if(m2 > -0.01 && m2 < 0.01)
m2=0.0;

m3=(q-b)/(p-a);

if(m3 > -0.01 && m3 < 0.01)
m3=0.0;

tl=y-x*ml;

2=y-x*m2;

t3=g-p*m3;

}

/* Because the output of the sonar is a cone, each
* case in the cartesian plane must be accounted for.
* The following clears the cones in the top half
* of the plane.

*/
if ((phi >= 0 && phi <= 1.57-theta) || (phi > 4.71+theta))
{

/* The following are when the cone has one
* side horizontal or slope of zero.
*/
if (y ==b)
{

1 bit=xy to_bit(x,y); /* Coordinates of left and */
r_bit=xy to_bit(a,b); /* right most bits for that */
clear_row(l_bit,r_bit,1,r); /* row */
}
else if (y ==q)
{
1_bit=xy_to_bit(p,q);
r_bit=xy_to_bit(x,y);
clear_row(l_bit,r_bit,2,r);

tmp_bit=xy_to_bit(x,y); /* generate the incremental bit */
tmp_bit.row_bit-=1; /* increment the incremental bit */
if(b>=q) /* determine the top bit of the triangle*/
top_bit=xy_to_bit(a,b);
else
top_bit=xy_to_bit(p,q);
tmp_y=y; /*the line of bits currently correcting */

94

tmp_x=x;

/* The map is defined by bits in the following way:
* row 01234..

* column

* 0
* 1
* 2

* and so forth. This means to clear a triangle from bottom
* to top, the top bit has a lower value than the bottom bit.
*/

while(top_bit.row_bit <= tmp_bit.row_bit)

{

/* tis the flag which determines which side to place
* the '1's when an obstical is pressent. t=0 signifies
*no 'l's or reset, t=1 signifies '1's on the right side,
* and t=2 signifies 'l's on the left side of the triangle.
*/
int t=0;
tmp_y-+=resolution; /*increment to next line of bits */

/* Determine the xy location of the right bit
* and convert it to a bit map location

*/
if tmp_y>b && m3 !=0)
{
t=1;
tmp_x=(tmp_y-t3)/m3;
}

else if (m1 ==0.0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t1)/ml;
r_bit=xy_to_bit(tmp_x,tmp_y);

/* Determine the xy location of the left bit
* and convert it to a bit map location.
*/
if (tmp_y >q && m3 !=0)
{
t=2;
tmp_x=(tmp_y-t3)/m3;

}
else if (m2 == 0.0)
tmp_x=tmp_x-resolution;
else
tmp_x=(tmp_y-t2)/m2;
1_bit=xy_to_bit(tmp_x,tmp ' Y);
/* clear that row of bits
*/
clear_row(l_bit,r_bit,t,'r);.
/* Increment the temporary bit to check posistion
* comparred to the top bit

95

*/
tmp_bit=xy_to__bit(tmp_x,tmp _y+resolution);
}

/* place '1's along top row of triangle if
* the heading angle is 0 rad.
*/
if (m3 == 0 && r==0)

int d,e,fi;
L_bit=xy_to_bit(p,q);
r_bit=xy to_bit(a,b);
d=(int)floor((1_bit.col_bit)/s_byte);
e=l_bit.row_bit;
£=(int)floor((r_bit.col_bit)/ s_byte);
for (i=d;i<=f;++i)

map|e][i]=ones;

}

/* This section is the same as the above except
* we are now concerned with changing the bits
* if the triangle is in the bottom plane. The
* difference between the two are sign and line

* changes.
*/
else if ((phi > 1.57+theta) && (phi <= 4.71-theta))
{
if (y==b)
{
1 bit=xy_to_bit(x,y);
r_bit=xy_to_bit(a,b);
clear_row(l bit,r bit,1,r);
}
else if (y ==q)
{

1_bit=xy to_bit(p,q);
r_bit=xy_to_bit(x,y);
clear_row(l_bit,r bit,2,r);
}
tmp_bit=xy_to_bit(x,y);
tmp bit.row_bit+=1;
if(b<=q)
botm_bit=xy_to_bit(a,b);
else
botm_bit=xy_to_bit(p,q);
tmp_y=y;
tmp_X=X; ' .
while(botm_bit.row_bit >= tmp_bit.row_bit)
{
int t=0;
tmp_y-=resolution;
if (tmp_y <b && m3 !=0)
{

96

t=1;
tmp_x=(tmp_y-t3)/m3;
}

else if (m1 == 0.0)

tmp_x=tmp_x-+resolution;
else

tmp_x=(tmp_y-t1)/ml;
r_bit=xy_to_bit(tmp_x,tmp _y);
if (tmp_y <q && m3 !=0)

{

t=2;

tmp_x=(tmp_y-t3)/m3;

}

else if (m2 == 0.0)

tmp_x=tmp_x-resolution;
else

tmp_x=(tmp_y-t2)/m2;
L bit=xy_to_bit(tmp_x,tmp_y):
clear_row(l_bit,r_bit,t,r);
tmp_bit=xy_to_bit(tmp_x,tmp_y-resolution);

}

if (m3 == 0 && r==0)
{
int d,e,fi;

1_bit=xy to_bit(p,q);
r_bit=xy_to_bit(a,b);
d=(int)floor((1_bit.col bit)/s byte);
e=]_bit.row_bit;

=(int)floor((r_bit.col_bit)/s_byte);
for (i=d;i<=f;++i)

map[e][i]=ones;
}
}

/* This section of code clears triangles which
* are split by the horizontal plane.
*/
else if ((phi > 1.57-theta && phi < 1.57+theta) ||
(phi > 4.71-theta && phi < 4.71+theta))

{
tmp_bit=xy_to_bit(x,y); /* generate the incremental bit */
if (b>=q) /* Find top and botm corners */
{ /* of the triangle */
top_bit=xy_to_bit(a,b);
botm_bit=xy_to_bit(p,q);
}
else
{

top_bit=xy_to_bit(p,q);
botm_bit=xy_to_bit(a,b);
}

97

/* This block of code clears the horizontal
* triangle in the right (positive x) plane.
* Clearing horizontal triangles means clearing
* the top half of the triangle first and then

* going back and clearing the bottom half of
* the triangle.
*/

if (phi < 3.14159)
{

tmp_y=y; /*the line of bits currently correcting */

/* Clear the top half of the triangle.
*/
while(top_bit.row_bit <= tmp_bit.row_bit)
{
int t=1;
|_bit=tmp_bit; /*determine the left most bit*/
tmp_x=(tmp_y-t3)/m3;
r_bit=xy_to_bit(tmp_x,tmp_y);/*the right most bit*/
clear_row(l_bit,r_bit,t,r); /*clear the row*/
tmp_y+=resolution; /*increment to next line of bits */

/* The following block of code determines
* the orrientation of the triangle and
* specifies the line to which the next
* row originates.
*/
if (phi > 1.57)
{
if (m1 ==0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-tl)/mi;
}
else
{
if (m2 ==0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-12)/m2;
}
tmp_bit=xy_to_bit(tmp_x,tmp_vy);
}

/* Go to next row */
tmp_y=y-resolution;
if (phi > 1.57)

{

if (m2 ==0)
tmp_x=tmp_x-+resolution;

else

98

tmp_x=(tmp_y-t2)/m2;
}

{
if (m1 == 0)
tmp x=tmp_ x+resolution;

else

else
tmp_x=(tmp_y-t1)/ml;
}

/* Repeat the above for the bottom half of the triangle
*/
tmp_bit=xy to_bit(tmp_x,tmp y);
while(botm_bit.row_bit >=tmp_bit.row_bit)
{
int t=1;
1 bit=tmp bit;
tmp_x=(tmp_y-t3)/m3;
r_bit=xy_to_bit(tmp x,tmp y);
clear_row(l bit,r_bit,t,r);
tmp_y-=resolution;
if (phi > 1.57)
{
if (m2 == 0)
tmp_x=tmp_x+resolution;
else
tmp_x=(tmp_y-t2)/m2;
3
else
{
if (m1 ==0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t1)/ml;
}

tmp_bit=xy to_bit(tmp_x,tmp_y);
}

/* This block of code is for the cases when the
* horizontal triangle is in the negative x
* direction.
*/
if (phi > 3.14159)
{

tmp_y=y; _ _ .
while(top_bit.row_bit <= tmp_bit.row_bit)
{
int t=2;
r_bit=tmp_bit;

99

tmp_x=(tmp_y-t3)/m3;
1_bit=xy_to_bit(tmp_x,tmp_v);
clear_row(l_bitr bitt,r);
tmp_y+=resolution;
if (phi <4.72)
{
if (m2 == 0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t2)/m2;
}

{
if (m1 == 0)
tmp_Xx=tmp_x+resolution;
else
tmp_x=(tmp_y-t1)/mi;

else

}
tmp_bit=xy_to_bit(tmp_x,tmp_y);
}
tmp_y=y-resolution;
if (phi > 4.71)
{
if (m2 ==0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t2)/m2;
}
else
{
if (m1 ==0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t1)/ml;
}

tmp_bit=xy to_bit(tmp x,tmp_y);
while(botm_bit.row_bit >= tmp_bit.row_bit)
{
int t=2;
r_bit=tmp_bit;
tmp_x=(tmp_y-t3)/m3;
1 bit=xy_to_bit(tmp_x,tmp_y);
clear_row(l bit,r_bitt,r);
tmp_y-=resolution;
if (phi > 4.71)
{
if (m2 == 0)
tmp_x=tmp_x-+resolution;
else
tmp_x=(tmp_y-t2)/m2;
}

{

else

100

if (m1==0)
tmp_x=tmp_x-+resolution;

else
tmp_x=(tmp_y-tl)/m1;
}
tmp_bit=xy to_bit(tmp_x,tmp _y);
}
}
}
}
}
/***
* converts from X,y coordinates to bit coordinates *
* x and y must both be in inches *

***/

bit xy_to_bit(float x, float y)
{
double fi;
int a,b;
bit tmp;

f=modf((double)(x/resolution),&i); /* Find the column bit */
if(f >=0 && £<0.5) /* because of the resolution, the*/
a=zero.col_bit + (int)i; /* rounding becomes a significant*/
else if (f> 0 && £>=0.5) /* issue */
a=zero.col_bit + (int)i + 1;
else if (f<0 && £>-0.5)
a=zero.col_bit + (int)i;
else
a=zero.col_bit + (int)i - 1;

f=modf((double)(y/resolution),&i); /* find row bit */
if(f>=0 && £<0.5)
b=zero.row_bit - (int)i;
else if (f> 0 && £>=0.5)
b=zero.row_bit - (int)i - 1,
else if (f<0 && £>-0.5)
b=zero.row_bit - (int)i;
else
b=zero.row_bit - (int)i + 1;

tmp.col_bit=a;
tmp.row_bit=b;
return(tmp);

}

/***

* Clears one row of bits from the map i.e. make every bitin therow 0 *
***/

101

/* clear left bit */
for (i=l_bit.col_bit-(a*s_byte) ;1<=(s_byte-1);++i)
J=i-(int)pow(2,(s_byte-1-i));
if (t==2 && r == ()
k=(int)pow(2,(a*s_byte+s_byte-1)-1_bit.col_bit);

map[b][a]=(map{b][a] & j) | k;

J=ones;
/* clear right bit */
for (i=0 sI<=r_bit.col_bit-(c*s_byte);++i)
J=i-(int)pow(2,(s_byte-1-i));
if(t==1&&r==0)
k=(int)pow(2,(c* s_byte+s_byte-1)-r_bit.col_bit);

l}nap[b][01=(map[b][0] &) 1k;

}

/***

* Getbit will return the value of the bit X,y (either '0' or '1' *
**/

int getbit(int x,int y)

{
int a,b,tmp,mask=1;

a=(int)floor(x/s_byte); /* column integer holding x bit */
b=y; /* row integer holding y bit */
tmp=map[b][a] >> (int)(s_byte-1-(x-a*s_byte)); /* shift bit to bit #0*/
if(mask & tmp)

return(1);
else

return(0);
}

/***
*

* print map handler
***/

void print_map handler(void)
{
int i,mask=1,row,column;
unsigned int tmp;

/I cleardevice();
for (row=0;row<maxy;++row)

{

for (column=0;column<maxx;++column)

tmp=map[row] [colur.nn];
for (i=0;i<s_byte;++i)

103

void clear_row(bit 1_bit,bit r_bit,int t,int r)
{ _
int a,b,c,i;
int j=ones,k=0;

/* a is an integer which signifies which column array element in the
* map has the column bit for the left bit.
*/
a=(int)floor((1_bit.col_bit)/s_byte);

/* b is an integer which signifies which row array element in the
* map has the row bits.
*/

b=l_bit.row_bit;

/* a is an integer which signifies which column array element in the
* map has the column bit for the right bit.
*/

c=(int)floor((r_bit.col_bit)/s_byte);

/* if an entire integer (8 consecutive bits) needs to be
* cleared--go through loop.
*/

for(i=a+1;i < c; ++i)
map(b][i]=0;

/* If single bits of an integer need to be cleared */

/* when the row to be cleared is intirely within one integer */
if(a==c)
{
for(i=1_bit.col_bit-(a*s_byte);i<=r_bit.col_bit-(c*s_byte);++i)
j=j-(int)pow(2,(s_byte-1-1));
/* if there is an obstacal to the right and we are not at
* maximum sensor distance, place a '1' at the right edge.
*/
if(t=1&&r==0)
k=(int)pow(2,(c*s_byte+s_byte-1)-r_bit.col_bit);
/* if there is an obstacal to the left and we are not at
* maximum sensor distance, place a '1' at the left edge.
*/
else if (t==2 && r==0)
k=(int)pow(2,(a*s_byte+s_byte-1)-1_bit.col_bit);
mapl[b][a]=(map[b][a] & j) | k;
return;

}

/* when the row to clear is several integers.*/
else

{

int i,j=ones;

102

/* clear left bit */
for (i=1_bit.col_bit-(a* s_byte);i<=(s_byte-1);++i)
J=j-(int)pow(2,(s_byte-1-1));
if (t==2 && r==0)
k=(int)pow(2,(a*s_byte+s_byte-1)-1_bit.col_bit);

map(b]{a}=(map(b][a] & j) | k;

j=ones;
/* clear right bit */
for (i=0;i<=r_bit.col_bit-(c*s_byte);++i)
j=j-(nt)pow(2,(s_byte-1-i));
if(t==1&&r==0)
k=(int)pow(2,(c*s_byte+s _byte-1)-r_bit.col_bit);

map(b][c]=(map[b][c] & j) | k;

/***
* Getbit will return the value of the bit x,y (either '0' or '1' *

#*/

int getbit(int x,int y)
{

int a,b,tmp,mask=1;

a=(int)floor(x/s_byte); /* column integer holding x bit */
b=y; /* row integer holding y bit */
tmp=map[b][a] >> (int)(s_byte-1-(x-a*s_byte)); /* shift bit to bit #0*/
if(mask & tmp)

return(1);
else

return(0);
}

/***

*

* print map handler
***/

void print_map_handler(void)
{
int i,mask=1,row,column;
unsigned int tmp;

// cleardevice();
for (row=0;row<maxy;++row)

{

for (column=0;column<maxx;++column)

tmp=map[row] [colur.nn] ;
for (i=0;i<s_byte;++i)

103

{
if(tmp & mask)
putpixel(column*s_byte+s_byte-1-i,row,2);

else
putpixel(column*s_byte+s_byte-1-i,row,15);
tmp=tmp >> 1;
}
}
}
getch();
cleardevice();

ZZ_DrawRoom();
ZZ_DrawCar();

/***

* *
* DRAW ROBOT EDGES. *
* *

***/

void ZZ DrawCar(void)

{ .
int i,
setwritemode(1);
setcolor(LIGHTMAGENTA);
moveto(*Xconvert+CarXc[0],*Yconvert+CarYc[0]);
for(i=1;i<NUM_EDGES;i++)
{

}

lineto(* Xconvert+CarXc[i],* Yconvert+CarYc[i]);

int ZZ_ Uncovered(int TX, int TY,int res)
int sum=0;

sum += getbit(TX+res, TY+res);
sum += getbit(TX+res, TY-res);
sum += getbit(TX-res,TY+res);
sum += getbit(TX-res, TY-res);
if(sum > 3)

return(0);
return(1);

sk ok ok ok ok ok ok ok ok ok K K ok K sk K ok KoK ok ok ok
/***
* *

* DRAW ROOM FUNCTION. ONLY FOR SIMULATION !! *

104

*

%*

***/

void ZZ_DrawRoom(void)

{

/*

*/

int i,j;

setwritemode(0);

setcolor(WHITE);

setfillstyle(SOLID_FILL,WHITE);
setlinestyle(SOLID‘LINE,O,THICK_WIDTH);
bar(LEFTLIMIT,TOPLIMIT,RIGHTLIMIT,BOTTOMLIMIT);
setfillstyle(SOLID_FILL,LIGHTGRAY);

bar(LEFTLIMIT+10, TOPLIMIT+10,RIGHTLIMIT-10,BOTTOMLIMIT-1 0);
setfillstyle(SOLID_FILL, WHITE);

{ int X,y,bx=55,by=55;

x = 100; y = 100;
bar(LEFTLIMIT+x,TOPLIMIT+y,LEFTLIMIT+x+bx,TOPLIMIT+y+by);
x =100; y =300;
bar(LEFTLIMIT+x,TOPLIMIT+y,LEFTLIMIT+x+bx,TOPLIMIT+y+by);
X =400; y = 100;

bar(LEFTLIMIT+x, TOPLIMIT+y,LEFTLIMIT-+x+bx, TOPLIMIT+y+by);
X =400; y = 300;

bar(LEFTLIMIT+x, TOPLIMIT+y,LEFTLIMIT+x+bx, TOPLIMIT+y-+by);
x = 100; by = 20;y = (100+300-+bx-by)/2.0;bx = 300-+bx;
bar(LEFTLIMIT+x, TOPLIMIT+y,LEFTLIMIT+x+bx, TOPLIMIT+y-+by);
x = (100+400+55-20)/2.; y = 100;by = 55;bx = 20;by = 200+by;

bar(LEFTLIMIT+x, TOPLIMIT+y,LEFTLIMIT+x+bx, TOPLIMIT+y+by);
}

THREE
bar(LEFTLIMIT+x, TOPLIMIT+y, LEFTLIMIT+x+bx, TOPLIMIT+y-+by);
x = 100; y =230;
bar(LEFTLIMIT+x, TOPLIMIT+y, LEFTLIMIT+x+bx, TOPLIMIT+y+by);
x =225;y="170;
bar(LEFTLIMIT+x, TOPLIMIT+y, LEFTLIMIT+x+bx, TOPLIMIT+y+by);
x=225;y=170;
bar(LEFTLIMIT+x, TOPLIMIT+y, LEFTLIMIT+x+bx, TOPLIMIT+y+by);
x =225;y =270;

bar(LEFTLIMIT-+x, TOPLIMIT+y,LEFTLIMIT+x+bx, TOPLIMIT+y+by);
x =350; y =110;

bar(LEFTLIMIT+x, TOPLIMIT+y,LEFTLIMIT+x+bx, TOPLIMIT+y+by);
x = 350; y = 230;
bar(LEFTLIMIT+x, TOPLIMIT+y, LEFTLIMIT+x+bx, TOPLIMIT+y-+by);
x=475;y =10,

bar(LEFTLIMIT+x, TOPLIMIT+y,LEFTLIMIT+x+bx, TOPLIMIT+y+by);
x =475;y=170;

bar(LEFTLIMIT+x, TOPLIMIT+y,LEFTLIMIT+x+bx, TOPLIMIT+y-+by);
x =475,y =270;

bar(LEFTLIMIT+x, TOPLIMIT+y,LEFTLIMIT+x+bx,TOPLIMIT+y+by);

}

NUMBER FOUR
bar(LEFTLIMIT+45+3 0,TOPLIMIT+45+30,LEFTLIMIT+100+30, TOPLIMIT+100+30);

bar(LEFTLIMIT-+45+40, TOPLIMIT+45+190,LEF TLIMIT+100+40, TOPLIMIT+100+190);

105

bar(LEFTLIMIT+45+100, TOPLIMIT+45+130,LEFTLIMIT-+100+100, TOPLIMIT+100+130);
bar(LEFTLIMIT-+45+100, TOPLIMIT+45+260,LEFTLIMIT+100+100, TOPLIMIT+100+260);

bar(LEFTLIMIT+30+100,BOTTOMLIMIT-100,LEFTLIMIT+100+100,BOTTOMLIMIT-1 0);
bart (LEFTLIMIT+250,TOPLIMIT+60,LEFTLIMIT+270,BOTTOMLIMIT-60);
bar(LEFTLIMIT+320, TOPLIMIT,LEFTLIMIT-+340,BOTTOMLIMIT-250);
bar(LEFTLIMIT+320, TOPLIMIT+250,LEFTLIMIT+340,BOTTOMLIMIT);
bar(LEFTLIMIT+270,BOTTOMLIMIT-270,LEFTLIMIT+320,BOTTOMLIMIT-250);
bar(LEFTLIMIT+390,BOTTOMLIMIT-300,LEFTLIMIT+450,BOTTOMLIMIT-180);

bar(LEFTLIMIT+390,BOTTOMLIMIT-160, LEFTLIMIT+410,BOTTOMLIMIT-60);
bar(LEFTLIMIT+390,BOTTOMLIMIT-80,LEFTLIMIT+510,BOTTOMLIMIT-60);

bar(LEFTLIMIT+340,TOPLIMIT+80,LEFTLIMIT+530, TOPLIMIT+100);
bar(LEFTLIMIT+510,TOPLIMIT+100,LEFTLIMIT+530,TOPLIMIT+280);

bar(LEFTLIMIT+550, TOPLIMIT+330,LEFTLIMIT+570, TOPLIMIT+400);

106

/* ZZ_map.h */

void ZZ_DrawRoom(void);

void ZZ__DrawGrayArea(void);

void ZZ_DrawBlackBox(void);

void ZZ_DrawCar(void);

void ZZ_UpdateMap(void);

int ZZ_Uncovered(int TX, int TY,int res);
void ZZ_InitMap(void);

void print_map_handler(void);

/* Structure defines a bit as an integer which
* provides an x-y location in a multi-
* dimensional field of bits

*/
typedef struct
{
int col_bit;
int row_bit;
}bit;

int getbit(int x,int y);
bit xy_to_bit(float, float);
void clear_row(bit, bit,int,int);

107

/***

FILE 1 2Z_MISC.C

DESCRIPTION : MISCELLANEOUS FUNCTION'S FILE FOR AUTONOMOUS VEHICLE

This file contains code for assorted functions
used througth out the program.

by : Ricardo Andujar

LASTUPDATE : MARCH 22, 1993

**/

/***

INCLUDE FILES FOR miscellaneous file

***/
#include<math.h>

/3 3 3k 3k Sk ok ok ok ok sk ok o ke ok sk ok s ok sk sk ok ok ok ok sk ok ok K sk ok ok 0k ok ok ook ok ok Kk ok ok ok o sk ke Sk K e ok ok o K ko ok oK 3 oK ok ok

* *
* SWAPS TWO NUMBERS *
* *

**/
void ZZ_Swap(double *one,double *two)

{
double temp;

temp = *one;

*one = *two;
*two = temp;

/**

* *
* LIMIT'S ANGLE TO -180<pi<180 (DEGREES) *
* *

**/
void ZZ_LimitAngle(double *Angle)
{
if(* Angle>M_PI)
*Angle -=2*M_PI;
else
if(* Angle<-M_PI)
*Angle +=2*M_PI;

108

/**
*

*
: ERROR PROOF TANGENT FUNCTION : Avoids divide by zero *
*

**/
double ZZ_Atan2(double y, double x)
{
if(x!=0.0)
return(atan2(y,x));
else if(y>0)
return(M_PI 2);
else
return(-M_PI_2);
}

/**

* *
* RETURNS DISTANCE FROM ZERO COORDINATE *
* *

**/
double ZZ_ Range(double x,double y)

{
return(sqri(*x+y*y));

109

/* ZZ_misc.h */

void ZZ_Swap(double *one,double *two);
double ZZ_Range(double x,double y);

double ZZ_Atan2(double y, double X);

void ZZ_LimitAngle(double *Angle);

110

4ok ok ok ok
/ **

FILE 1ZZ NAV.C

DESCRIPTION * MAIN FILE FOR PROPULSION MODULE OF AUTONOMOUS VEHICLE

by : Ricardo Andujar

LASTUPDATE : MARCH 22, 1993

****’k***/

/***
INCLUDE FILES FOR MAN
*******************’k***/

#include<math.h>

#include<graphics.h>

#include "ZZ CAN.H"

#include"ZZ MISC.H"

#include"ZZ_GRAPH.H"

#include "ZZ_CARSP.H"

#include "ZZ_SUPR2.H"

#include "ZZ NAV.H"

/*********************** GLOBAL DEFINITIONS ***********************/
extern int graph;

/************************ PRIVATE DEFINITIONS **********************/

staticvoid ZZ_UpdateSensorMeas(void);
staticvoid ZZ_CarSim(void);
staticvoid ZZ_ UpdateA ctuators(void);

#define ON 1
static unsigned short Brake=ON;

staticdouble ~ TimeStep=0.050, /**** SAMPLE PERIOD (seconds) ****/
RoadSpeed=0,
Compass=0.0,
Xposition=1.0,
Yposition=4.0,
RoadSpeed2=0,
Xposition2=1.0,
Yposition2=4.0,
Compass2=0,
CruiseSpeed=0,
MotorTorque=0,
k1=0,

111

k2=0,
k3=0
k4=0

b

AR Kk ko
ok sk s ok ok ok ok ok
Kok ok ok K ok ok e K

PI-CONTROL PARAMETERS FOR DC-Motor
This is only for simulation purposes

Actual Control of vehicle may change
*********/

MKP=4,
MKI=0.004,
SpeedError=0,
SpeedSum=0,

ASteeringAngle=0,
ASteeringAngle2=0,
DSteeringAngle=0,
CarXc[NUM_EDGES],
CarYc[NUM_EDGES],
CarR[NUM_EDGES],
CarAng[NUM_EDGES];

/***

% *
* Information needed for Vision Simulation. *
E 3

This function is only needed for simulation purposes ~ *
* *

***/

void ZZ NavToVision(long *one,long *two,long *three)

{
*one = &Xposition2;
*two = &Yposition2;
*three = & Compass2;
}

/***

* *
* PROPULSION LOOP *
* *

***/

void ZZ_NavLoop(void)

{
ZZ_UpdateSensorMeas();

ZZ_UpdateActuators();

/*************#***
* *

112

* UPDATES ALL ACTUATORS, POSITION AND BEARING *
* INFORMATION *
%*

*

***/
void ZZ_UpdateSensorMeas(void)
{ [% K %k k
YRXAXKIZZ, CarSim' is for Simulation Purposes Only.
***xx* Function used TO OBTAIN SENSOR INFO Goes Here

******/

ZZ_CarSim();

/KK ok sk o o s o o sk o s o ok sk ok ok ok koo ok ks s ok ks ok o ko sk o ok ok ok o ok ok o ks sk ok o ok sk sk o o ok ok

* *

* HANDLES ALL NETWORK REQUESTS FROM SUPERVISOR *
* AND VISION MODULES. *

* *

***/

void ZZ_NavServer(byte SourceAddress,int *DataContent,
double *Data, byte *DataNum)
{

switch(*DataContent)

{

case REQUEST:
*DataContent =RS_SA X Y COMP_B;
Data[1] = RoadSpeed2;
Data[2] = Compass2;
Data[3] = Xposition2;
Data[4] = Yposition2;
Data[5] = ASteeringAngle2;
Data[6] = Brake;
*DataNum = 6;

break;

case COMMAND:
*DataContent = SUCCESS;
CruiseSpeed = Data[1];
DSteeringAngle = Data[2];
Brake = (int)Data[3];
*DataNum = 0;

break;

}

/***********#********************#**********************************

*
*
* ALL THE CONTROLS FOR THE ACTUATORS GO HERE *
*
*

***/

113

(G e

void ZZ_UpdateActuators(void)
{

/***

¥x¥% Following instructions are to be replaced with data acquisition

ok ok ok ok

¥¥xk% MotorTorque is the input to the DC-Motor

* %k % XKk

:*:** Input to Steering is to be determined based on Steering Control
ok ok o %k

Mechanism. Simulation is just assuming instantaneous control.
**/
SpeedError = CruiseSpeed-RoadSpeed;
SpeedSum += SpeedEtrror;
if (SpeedSum>1)
SpeedSum= 1;
else
if (SpeedSum<-1)
SpeedSum=-1;
MotorTorque = MKP*SpeedError +MKI*SpeedSum,;
ASteeringAngle = DSteeringAngle;

/***

* *
* CAR SIMULATION ONLY *
* *

***/
void ZZ_CarSim(void)

/***

#%kk Following instructions are to be replaced with data acquisition
*ok ok ok ok

*oRAkR MotorTorque is the input to the DC-Motor
sk ok ok ok ok

**xkx Input to Steering is to be determined based on Steering Control
okokkk Mechanism. Simulation is just assuming instantaneous control.
**/

void ZZ_CheckCrash(void);

Compass2=Compass;

Xposition2 = Xposition,

Yposition2 = Yposition;
RoadSpeed2 = RoadSpeed;
ASteeringAngle2 = ASteeringAngle;

Compass+=TimeStep*RoadSpeed* sin(ASteeringAngle)/AxleToAxleLength;
ZZ_LimitAngle(&Compass);

Xposition+=TimeStep*RoadSpeed* sin(Compass+ASteeripgAngle);
Yposition+=TimeStep*RoadSpeed*cos(Compass+ASteerlngAngle);

if(Brake)

114

k1 = (MotorTorque-Motor Viscosity*RoadSpeed)/MotorInertia;

k2 = (MotorTorque-MotorViscosity*(RoadSpeed+.5*k1))/MotorInertia;
k3 = (MotorTorque-MotorViscosity*(RoadSpeed+.5*k2))/MotorInertia;
k4 = (MotorTorque-MotorViscosity*(RoadSpeed+k3))/MotorInertia;

}

else

{
kl= (MotorTorque-Brake*RoadSpeed)/MotorInertia;
k2 = (MotorTorque-Brake*(RoadSpeed+.5*k1))/MotorInertia;
k3 = (MotorTorque-Brake*(RoadSpeed+.5*k2))/MotorInertia;
k4 = (MotorTorque-Brake*(RoadSpeed-+k3))/MotorInertia;

}

RoadSpeed+=TimeStep/6.0* (k1+k4+2.0* (k2-+k3));
/¥ ZZ_CheckCrash();
*/}

/**
* *
* CALL THIS FUNCTION WHEN INITIALIZING PROPULSION MODULE *
* *
**/
void ZZ InitNav(void)
{

int i;

for(i=0;i<NUM_EDGES;i++)

ZZ_Cart2Polar(CarEdgeX[i],CarEdgeY[i],&CarAng][i],&CarR[i]);

/***

* *
* CALL THIS FUNCTION WHEN QUITING PROGRAM *
* *

***/

void ZZ_EraseNav(void)

{
}

/**

* *

* SIMULATION TO CHECK FOR CRASHES *
*¢

*

**/

void ZZ_CheckCrash(void)
{

static int Crash;

int i,color,Xconvert,Y convert;

77 RealZScreen(Xposition,Yposition,&Xconvert,&Yconvert);
for(i=0;i<NUM_EDGES;i++)

115

ZZ_Polar2Cart(CarAng][i]+Compass,CarR[i]*SCREENCONVERT,
&CarXc[i},&CarYc[i]);

color = getpixel(Xconvert+CarXc[i], Yconvert+CarYc[i]);
if ((--Crash)<0 &&(color == WHITE || color == BLUE
|| color ==LIGHTRED || color == GREEN))

{
RoadSpeed = -RoadSpeed*1;
Crash = 0;
return;

}

116

/* ZZ nav.h */

void ZZ _NavLoop(void);

void ZZ NavServer(byte SourceAddress,int *DataContent,
double *Data, byte *DataNum);

117

/***

FILE :ZZ_OBICT.C

DESCRIPTION : MOVING OBJECT SIMULATION FILE FOR AUTONOMOUS VEHICLE

This file contains code to display moving objects.

by : Ricardo Andujar

LASTUPDATE :MARCH 22, 1993

**/

/***

INCLUDE FILES FOR MOVING OBJECT FILE :SUPERVISOR MODULE

***/
#include <graphics.h>

#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

#include <alloc.h>

extern int graph;

int CircleX=320,
CircleY=250,
Flag=0;

void far *bitcir;

unsigned size;

/***

* *

* DRAWS CIRCLE ON SCREEN *
*

*

***/

void ZZ_ DrawCircle(void)

{ getimage(CircleX-25,CircleY-25,CircleX+25,CircleY+25,bitcir);
setwritemode(1);
setcolor(BLACK);
setﬁllstyle(SOLID‘FILL,LIGHTRED);
ﬁllellipse(CircleX,CircleY,25,25);

}

118

/***
*

%
*

*
ERASES CIRCLE FROM SCREEN *

*
***/
void ZZ_EraseCircle(void)

{
while(Flag);

putimage(CircleX-25 ,CircleY-235 bitcir,0);

/***
*

*
* ALLOCATES MEMORY FOR CIRCLE ON SCREEN
* *

***/
void ZZ_CreateCircle(int x,int y)

{
CircleX =x;
CircleY =y;
size = imagesize(0, 0, 50, 50); /* get byte size of image */
bitcir = farmalloc(size);

/***

* *
* DEALLOCATES MEMORY FOR CIRCLE ON SCREEN
* *

***/

void ZZ_DestroyCircle(void)

{
farfree(bitcir);

119

/* ZZ objcth */

void ZZ_CreateCircle(int X,int y);
void ZZ_DestroyCircle(void);
void ZZ__EraseCircle(void);

void ZZ_DrawCircle(void);

120

/* ZZ planr.c */

#include<graphics.h>
#include<alloc.h>

#include"ZZ_QUEUE.H"

#define LEAVE_LIMIT 15
#define box 15

#define LMAX 400
#define LMAX?2 1000
#define ON 1

#define precision 3 /*SEARCH RESOLUTION */
#define precision2 15 /* FINAL TARGET DISTANCE ALLOWANCE */

typedef struct
{)
int x,
Y, ; !
north, o
northeast, o
east, -
southeast,
south,
southwest,
west,
northwest;
} ZZ_ExtendedPoint;

int j,x=30,
y=385,
x=560,
ty=236,
numcw=0,numccw=0,result,Lx,Ly,Hx,Hy;

extern int Adapt;

Z7_ExtendedPoint Cw,Ccw,

ZZ Point PCw,PCcw,PTarget;

QUEUE QMain={0,0},QCw={0,0},QCcw={0,0};
void ZZ_FollowWallClockwise(ZZ_ExtendedPoint *p); .
void ZZ FollowWallCounterClockwise(ZZ_ExtendedPoint *p);

int ZZ_Planner(int x, int y,int tx,int ty,QUEUE *PATH)
{

int stat=0,Cwu=0,chu=0,]imith=0,limitccw=0;

121

[R ¥ ¥

*** Set Target as final destination

***/

PTarget.x = tx;

PTarget.y = ty;

/***
*** Set current position as initial point
***/

Ccw.north = 1;

Ccew.south = 1;
Cew.west = 1;
Ccw.east = 1;
Ccw.northeast = 1;
Ccw.southeast =1;
Ccw.northwest = 1;
Ccw.southwest = 0;

Cw.north = 1;
Cw.south = 1;
Cw.west = 1;
Cw.east=1;

Cw.northeast = 1;
Cw.southeast = 1;
Cw.northwest = 1;
Cw.southwest = 0;

PCw.x =x;

PCw.y=y;

enqueue(&QMain,&PCw);

while(1)
/**
* %k k * %k %k
ok BASIC PLANNER * Ak
* ok % %k sk %k %k k

**/

result = lineofsight(&QMain,&PTarget, & Hx,&Hy,&Lx,&Ly);
if(result == 0 || result == 2)
{
PCcw.x = Hx;
PCcw.y = Hy;
Cw.x = Hx;
Cw.y = Hy;
Cew.x = Hx;
Ccw.y = Hy;
enqueue(&QMain,&Pch);
enqueue(&QCw,&PCew);
enqueue(&Qch,&Pch);
}
else
break;

/**

122

* %K X %k

:::: GO AROUND OBSTACLE COUNTERCLOCKWISE AND Fhhk ,‘
e CLOCKWISE UNTIL REACHING LEAVE POINT. Khkk |

**/ . |
if(result == 0 || result == 2)
while(1)
ZZ_FollowWallClockwise(&Cw);

ZZ_FollowWallCounterClockwise(&Cew);
PCw.x =Cwx;

PCw.y = Cw.y;
PCew.x = Cew.x;
PCcw.y = Cew.y;
enqueue(&QCw,&PCw);
enqueue(&QCcw,&PCcw);
if(result == 2)
if(++limitCw >LMAX)
{
if(endtotarget(&QCw,&PTarget)<
endtotarget(&QCcw,&PTarget))

while(!isempty(&QCw))

{
dequeue(&QCw,&PCw);
enqueue(&QMain,&PCw);

}

else

{
while(!isempty(&QCcw))
{
dequeue(&QCcw,&PCcw); J,
enqueue(&QMain,&PCcw);
} “

E)Cw.front = QCw.rear = NULL; i
resetqueue(&QCw); |
QCcw.front = QCcw.rear = NULL;

resetqueue(&QCcw);

Cwu=1;

break;

}
if(result == 0)

if(++limitccw >LMAX2)

{
if(endtotarget(& QCw,&PTarget)<

endtotarget(&QCcw,&PTarget))

while(!lisempty(&QCw))
{

123

dequeue(&QCw,&PCw);
enqueue(&QMain,&PCw);

else
while(lisempty(&QCcw))
{

dequeue(&QCcw,&PCcw);
enqueue(&QMain,&PCcw);
}

}

QCw.front = QCw.rear = NULL,;

resetqueue(&QCw);

QCcw.front = QCcw.rear = NULL;

resetqueue(&QCcw);

Cwu=1;

break;

}

if(abs(Lx-Cw.X)<LEAVE_LIMIT && abs(Ly-Cw.y)<LEAVE_LIMIT)
{
while(lisempty(&QCw))
{
dequeue(&QCw,&PCw);
enqueue(&QMain,&PCw);
}
QCw.front = QCw.rear = NULL;
resetqueue(&QCw);
QCcw.front = QCcw.rear = NULL,;
resetqueue(&QCcw);
break;

}
if(abs(Lx-Ccw.x)<LEAVE_LIMIT && abs(Ly-Cew.y)<LEAVE_LIMIT)

{
while(!isempty(&QCcw))

dequeue(&QCcw,&PCcw);
enqueue(&QMain,&PCew);
}
QCw.front = QCw.rear = NULL;

resetqueue(&QCw);
QCcw.front = QCcw.rear = NULL;

resetqueue(&QCcw);
break;

}
}
} /#* END OF WHILE LOOP **/
/***

*** Either reached target or stop after specified iterations
* %k /

if(Cwu)

124

/***

break;

*** If condition is true than target was
*** not reached

***/

if(Cwu)

{

}

/***

setcolor(YELLOW);
qplot(&QMain);
stat=1;

*¥** Optimize path

***/

if(!stat)

{

}

/***

while(optimize(&QMain));
setcolor(LIGHTMAGENTA);
qplot(&QMain);
gotoxy(1,1);printf("T");
getch();

gplot(&QMain);

Adapt=1;

*** Plot optimized path.

***/

PATH->front = QMain.front;
PATH->rear = QMain.rear;
QMain.front = QMain.rear = NULL;
return(stat);

void ZZ_FollowWallClockwise(ZZ_ExtendedPoint *p)

/**
if('p->north)
while(1)

p->X -= precision;

p->y -= precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x-j,p->y-j) == ON |
getbit(p->x-jap'>}’) ==ON|

******/

125

getbit(p->x,p->y-j) == ON)

{
p->north =1;
p->northwest = 0;
p->X += precision;
p->y += precision;
return;

}

p->y -= precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x,p->y-j) == ON ||
getbit(p->x+j,p->y-j) == ON ||
getbit(p->x-j,p->y-j) == ON)
p->y += precision;

else

{
p->north = 1;
p->northeast = 0;
return;

}

}

/**/
if(!p->northwest)
while(1)
{
p->x-=precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x-j,p->y) == ON ||
getbit(p->x-j,p->y+j) == ON |
getbit(p->x-j,p->y-j) == ON)

{
p->x-+=precision,
p->northwest = 1;
p->west =0,
return;

}

p->X -= precision;

p->y -= precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x-j,p->y-j) == ON |
getbit(p->x-j,p->y) == ON ||
getbit(p->x,p->y-j) == ON)

{ p->X += precision;
p->y += precision;

}

else

{
p->northwest = 1;
p->north = 0;
return;

}

126

/**/
if(!p->west)
while(1)
{
p->y+=precision;
P->X-=precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x-j ,p->y+j) == ON I
getbit(p->x-j,p->y) == ON|
getbit(p->x,p->y+j) == ON)

{
p-~>west = 1;
p->southwest = 0;
p->y -= precision;
p->X += precision;
return;

}

p->X -= precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x-j,p->y) == ON ||
getbit(p->x-j,p->y+j) == ON ||
getbit(p->x-j,p->y-j) == ON)
p->x += precision;

else

{
p->west = 1;
p->northwest = 0;
return;

}

}

/**/

if(!p->southwest)
while(1)
{
p->y += precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x,p->y+j) == ON ||
getbit(p->x+j,p->y+j) == ON ||
getbit(p->x-j,p->y+j) == ON)

{
p->southwest = 1;
p->south = 0;
p->y -= precision,
return;

}

p->X -= precision;

p->y += precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x-j,p->y+j) == ON |
getbit(p->x-j,p->y) == ON |
getbit(p->x,p->y+i) == ON)

127

P->X += precision;
P->Y -= precision;

else

{
p->southwest = 1;
p->west = 0;
return,

}

R A A A AR KA KK A KK K Kk

if(!p->south)
while(1)
{
p->x+=precision;
p->y-+=precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x-+j,p->y+j) == ON ||
getbit(p->x+j,p->y) == ON ||
getbit(p->x,p->y+j) == ON))

{
p->south = 1;
p->southeast = 0;
p->X -= precision;
p->y -= precision;
return;

}

p->y-+=precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x,p->y+) = ON ||
getbit(p->x-+j,p->y+j) == ON ||
getbit(p->x-j,p->y+j) == ON)
p->y-=precision;

else

{
p->south = 1;
p->southwest = 0;
return;

}

}

/**/

if(!p->southeast)
while(1)
{
p->x += precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x+j,p->y) == ON ||
getbit(p->x+j,p->y-)) == ON ||
getbit(p->x+,p->y+j) == ON)

p->X -= precision;
p->southeast = 1;

128

p->east=0;
return;
}
p->X += precision;
p->y += precision;
for(j=0;j<=box;j+=4)
if(getbit(p“>x+j,p->y+j) ==ON ||
getbit(p->x+j,p_>y) == ON ||
getbit(p->x’p_>y+j) ==ON)

{
p->x -= precision;
p->y -= precision;

}

else

{
p->southeast = 1;
p->south = 0;
return;

}

}

/**/
if(!p->east)
while(1)
{
p->X += precision;
p->Yy -= precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x+j,p->y-j) = ON |
getbit(p->x,p->y-j) == ON |
getbit(p->x+j,p->y) == ON)

{ p->X -= precision;
p->y += precision;
p->east =1;
p->northeast = 0;
return;

}

p->x+=precision;

for(i=0;j<=box;j+=4)

if(getbit(p->x+j,p->y) == ON |
getbit(p->x+j,p->y-j) == ON ||
getbit(p->x+j,p->y+j) == ON)
p->X -= precision,;

else

{
p->east=1;
p->southeast = 0;
return;

}

}

/*******************************

if(!p->northeast)
while(1)

***************/

129

i

p->y -= precision;
for(j=0;j<=box;j+=4)
1f(getbit(p->x,p->y_j) ==ON||

}

getbit(p->x+j,p->y_j) ==ON ||

p->y += precision;
p->northeast = 1;
p->north = 0;
return;

p->X += precision;

p->y -= precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x-+j,p->y-j) == ON ||

else

getbit(p->x+j,p->y) == ON ||
getbit(p->X,p->y-j) == ON)

p->X -= precision;
p->Yy += precision;

p->northeast = 1;
p->east=0;
return;

void ZZ_FollowWaIICounterClockwise(ZZ_ExtendedPoint *n)

{

/**/

if(!p->east)
while(1)

{

p->y-+=precision;
p->x+=precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x+j,p->y*)) == ON ||

getbit(p->x,p->y+j) ==ON ||
getbit(p->x+j,p->y) == ON)

130

p->east=1;
p->southeast = 0;
P->X -= precisjon;
p->Y -= precision;
return;
}
p->x+=precision;
for(j=0 ;j<=box i +=4)
if(getbit(p->x+,p->y) == ON [
getbit(p->x-+j,p->y-j) == ON ||
getbit(p->x+j,p->y+j) == ON)
pP->X -= precision;

else

{
p->east = 1;
p->northeast = 0;
return;

}

}

/**/
if(!p->southeast)
while(1)
{
p->y-+=precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x,p->y+j) == ON |
getbit(p->x+j,p->y+j) == ON ||
getbit(p->x-j,p->y+j) == ON))

{ p->southeast = 1;
p->south = 0;
p->y -= precision;
return;

}

p->x-+=precision;
p->y+=precisi0n;
for(j=0;j<=box;j+=4)
if(getbit(p->x+j,p->y+j) == ON |
getbit(p->x,p->y+j) == ON l
getbit(p->x+j,p->y) == ON)

{
p->x -= precision;
p->y = precision;

}

else

{
p->southeast = 1;
p->east = 0;
return;

}

131

/**/
if('p->south)
while(1)
{
P->X -= precision;
p->y += precision;
fOl'(j =0 ;J <=box ;j+=4)
if(getbit(p->x-j,p->y+j) == ON I
getbit(p->x,p->y+j) == ON ||
getbit(p->x-j,p->y) == ON)

{
p->south = 1;
p->southwest = 0;
p->Xx += precision;
p->y -= precision;
return;

}

p->y-+=precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x,p->y+j) == ON ||
getbit(p->x-+j,p->y+j) == ON ||
getbit(p->x-j,p->y+j) == ON)
p->y-=precision;

else

{
p->south = 1;
p->southeast = 0;
return;

}

/**/
if(!p->southwest)
while(1)
{
p->X -= precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x-j,p->y) = ON |
getbit(p->x-j,p->y+j) == ON|
getbit(p->x-j,p->y-j) == ON)

{
p->southwest = 1;
p->west = 0;
p->X += precision;
return;

}

p->X -= precision;

p->y += precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x-j,p->y+j) == ON |
getbit(p—>x,p->y+j) ==ON ||
getbit(p->X-j,p->y) == ON)

132

P->X += precision;
p->y -= precision;

else

{
p->southwest = 1;
p->south = 0;
return;

}

/**/
if(p->west)
while(1)
{
p->X -= precision;
p->y -= precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x-j,p->y-j) == ON ||
getbit(p->x-j,p->y) == ON ||
getbit(p->x,p->y-j) == ON)

{
p->west=1;
p->northwest = 0;
p->X += precision;
p->y += precision;
return;

}

p->X -= precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x-j,p->y) == ON ||
getbit(p->x-j,p->y+)) == ON |
getbit(p->x-j,p->y-j) == ON)
p->X += precision;

else

{
p->west = 1;
p->southwest = 0;
return,

}

/**/

if(!p->northwest)

while(1)

{ p->y -= precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x,p->y-) == ON

getbit(p->x-+j,p->y-i) == ON ||
getbit(p->x-j,p->y-) == ON)

133

P->Y += precision;
p->northwest = |;
p->north = Q;
return;
}
pP->X -= precision;
p->y -= precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x-j,p->y-j) == ON ||
getbit(p->x,p->y-j) == ON ||
getbit(p->x-j,p->y) == ON)

{
p->x +=precision;
p->y += precision;

}

else

{
p->northwest = 1;
p->west = 0;
return;

}

/**/

if(!p->north)
while(1)
{
p->x+=precision;
p->y-=precision;
for(j=0;j<=box;j+=4)
if(getbit(p->x-+j,p->y-j) == ON ||
getbit(p->x+j,p->y) == ON ||
getbit(p—>x,p->y-j ==0N)

{
p->north = 1;
p->northeast = 0;
p->Xx -= precision;
p->y += precision;
return;

}

p->y -= precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x,p->y-j) == ON ||
getbit(p->x+j,p->Y'j) ==ON||
getbit(p->x-j,p->y=J) == ON)
p->y += precision;

else

{
p->north = 1;
p->northwest = 0;
return;

134

/**/
if(!p->northeast)
while(1)

{

p->X += precision;

for(j=0 ;j<=box i +=4)

if(getbit(p->x+j,p->y) == ON ||
getbit(p->x+j,p->y-j) == ON ||
getbit(p->x-+j,p->y+j) == ON))

{
p->X -= precision;
p->east = 0;
p->northeast = 1;
return,;

}

p->X += precision,

p->y -= precision;

for(j=0;j<=box;j+=4)

if(getbit(p->x+j,p->y-j) == ON ||
getbit(p->x,p->y-j) == ON ||
getbit(p->x+j,p->y) == ON)

{
p->X -= precision;
p->y += precision;

}

else

{
p->northeast = 1;
p->north = 0;
return;

}

135

o s ok ok ok o ok ok ok Kok ok K K ok
/ KK ook o ok oo ok ok e ok ok o ok ks ok ok sk ok ok ok sk o sk sk ok sk oo ok o ok ok ko ook o ok K ok o ok ok

FILE :ZZ_QUEUE.C

DESCRIPTION : CONTAINS ALL QUEUE RELATED FUNCTIONS USED BY
THE PATH PLANNER.
by : Ricardo Andujar

LASTUPDATE : MARCH 22, 1993

ke ok ok o oo oo ok ok sk kb Kk KKK oK ok o R K s oo o ok ok ok ok sk sk o o kK ks o R ok Kok ok sk sk o ok sk sk ko ok Rk Kk koK sk sk ok ok /

/**************#**
INCLUDE FILES FOR QUEUE
***/

#include<stdlib.h>

#include<alloc.h>

#include<conio.h>

#include<graphics.h>

#include<stdio.h>
#include<math.h>
#include "zz_queue.h"

/*************
ook ook ook ook % This variable can be modified to change
kKKK Kk path search precision
*************/

#define precision2 1

#define NULL 0
#define ON 1
extern int getbit(int,int);

/***

* *
* RETURNS A 1 IF QEUEU IS EMPTY, OTHERWISE RETURNS 0. *
* *

***/

int isempty(QUEUE *q)
{

}

return(q->front == NULL);

/***

*
*

* RETURNS THE FIRST ELEMENT H\i THE QUEUE WITHOUT UNQUEUEING *

*
***/

DATA vfront(QUEUE *q)
{

136

return (q->front -> d);

o K ok ok ok K ok oK
/ AR 3o o sk sk ookl o sk ok s ok ok ok ok ok ok R sk Rl o K sk K sk oo s ok ok ook ok ok ok o Kok o
*

*
*

*

RETURNS 1 IF FINDS VALUE EQUAL TO SESARCH ARGUMENT *
*

***/
i{nt gsearch(QUEUE *q, DATA *x)

LINK temp = q -> rear;

if(temp->previous == q->front ||
temp->previous->previous == q->front)

return(0);

temp = temp->previous->previous;

while(temp -> previous != NULL)

{
if(temp->d.x == x->x && temp->d.y == x->y)

return(1);

temp = temp -> previous;

}

return(0);

/***

* *
* PLOTS ENTIRE PATH GENERATED *
* *

S e ok o o oo R ok K o K R s KRR Sk sk ko ks s koo ok kokokokok /

void gqplot(QUEUE *q)

{
LINK temp = q -> front;

gotoxy(1,1);printf("p");
moveto(temp->d.x,temp->d.y);
while(temp !=NULL)

lineto(temp—>d.x,temp—>d.y);
temp = temp -> next;

}
}
/***
* *
* EMPTIES QUEUE \ *
:*************************#**/
void resetqueue(QUEUE *q@)
{

137

LINK temp = q -> front;
gotoxy(1,1);printf("r"),
while(lisempty(q))

{

q -> front = temp -> next;

q -> front -> previous = NULL;
farfree(temp);

temp = q-> front;

}
}
AR oo R ok ook koo K o o R kK R ko ko oo K oo K o o K Kk ook e
* *
* RETURNS NUMBER OF ELEMENTS IN QUEUE *
* *

***/
int numqueue(QUEUE *q)
{
int num=0;
LINK temp;
temp = q->front;
while(temp !=NULL)
{
num-++t;
temp = temp->next;
}

return(num);

/***

* *

* RETURNS THE SUM OF THE DISTANCES BETWEEN ALL *
* ADJACENT WAYPOINTS *

* *

***/

int sumqueue(QUEUE *q)
{
int num=0;
LINK temp;
temp = q->front;
while(temp->next != NULL)
{
num += Sqft(pOW(temp'>d-X - temp->next->d.X,2.0L)+
pow(temp->d.y - temp->next->d.y,2.0L)); temp = temp->next;
}

return(num);

/***

*
*

+ ENQUEUS *X LOCATION IF LINE OF SIGHT 1S POSSIBLE *

138

* BETWEEN LAST WAYPOINT IN QUEUE AND *X *
*

*

'****:lf****f***/
l{nt lineofsight(QUEUE *q, DATA *x, int *x3, int *y3, int *x4, int *y4)
ﬂoat r,drx,dry,x1,y1,x2,y2;
int dr=1,r2,res=0,j,one_not_done = 1,obstacle = 0;
LINK templ = q ->rear;
if(templ !=NULL)
{
x1 = templ->d.x;
yl =templ->d.y;
X2 = X->X;
y2 = X->Y;
r = sqri((x2-x1)*(x2-x)+H(y2-y1)*(y2-y1));
12=0;
if(r!=0)
{
drx = dr*(x2-x1)/(float)r;
dry = dr*(y2-y1)/(float)r;

while(1)
{
for(j=1;j<=precision2;j++)
if(getbit((int)(x1+j),(int)(y1+j)) == ON ||
getbit((int)(x14j),(int)(y1-))) == ON ||
getbit((int)(x1-j),(int)(y1+j)) == ON ||
getbit((int)(x1-)),(int)(y1-))) == ON)

if(one_not_done)

{
*x3 = (int)(x1-drx);
*y3 = (int)(y1-dry);
one_not_done =0;
12 +=dr;
x1 +=drx;
yl +=dry;

obstacle = 1;

}
if(r2>1)

if(!obstacle)
enqueue(q,x);
return(1-+obstacle);

if('one_not_done && !obstacle)

*x4 = (int)x1;
*y4 = (int)y1;
return(0);

}

obstacle = 0;

139

int

12 += dr;
X1 +=drx;
yl+=dry;
}
}
return(0);

endtotarget(QUEUE *q, DATA *X)

float r,drx,dry,x1,y1,x2,y2;
LINK templ = q ->rear;
if(temp1 !=NULL)

{
x1 =templ->d.x;
y1l =templi->d.y;
X2 = X->X;
y2 =x->y;
return((int)(sqrt((x2-x1)*(x2-x)+(y2-y 1)*(y2-y1))));
3
return(0);

/***

*
*
*
*

*
OPTIMIZES GENERATED PATH BY ELIMINATING UNNECESARY *
WAYPOINTS. *
*

***/

int

{

optimize(QUEUE *q)

float drx,dry,r,x1,y1,x2,y2;

int dr=4,r2,res=0;

LINK templ = q->front;
LINK temp2 = temp1->n€Xt;

gotoxy(1,1);printf("o");
temp2 = temp2->next;
if(temp1 = NULL && templ |= g->rear && templ->next != q->rear)
{
x1 =templ ->d.x;
yl =templ ->d.y;
X2 = temp2 ->d.X;
y2 = temp2 ->d.y;
r= sqrt((xz-xl)*(x2-x1)+(y2-y1)*(y2-y1));
r2=0;
if(r!=0)

drx = dr*(x2-x1)/1;
dry = dr*(y2-y1)/r§

140

}
while(1)
{
%nt J=precision2;
1f(getbit((int)(x1+j),(int)(y1+j)) ==ON ||
getbit(int)(x1+j),(int)(y1-j)) == ON ||
getbit((int)(x 1-j),(int)(y1+j)) == ON |
getbit((int)(x1-j),(int)(y1-j)) == ON)

templ = temp1->next;

temp2 = temp2->next;

if(temp2 == NULL)
return(res);

x1 = templ ->d'x;

yl =templ ->d.y;

X2 = temp2 ->d.x;

y2 =temp2 ->d.y;

r2= sc(l)rt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));

12 =0;

if(r!=0)

{
drx = dr*(x2-x1)/r;
dry = dr*(y2-yl)r;

}

r2 +=dr;

x1 +=drx;

yl +=dry;

if(r2>1)

{
farfree(temp1->next);
temp1->next = temp2;
temp2->previous = templ,
temp2 = temp2->next;
res=1;
if(temp2 == NULL)

return(res);
x1 = templ ->d.x;
yl = templ ->d.y;
x2 = temp2 ->d.X;
y2 = temp2 ->d.y;
r = sqri((x2-x)*(x2-x)H(y2-y)*(y2-y1));
12 =0;
if(r!=0)
{ drx = dr*(x2-x1)/1;
dry = dr*(y2-y)/r;

}

else
return(res);

141

kKK kKKK
/ o ke sk koo oo koo ook ok ol ok o o R ok o o KK 3K K ok o Kk Kk K o o Ko R R K ok o K o o K

*
*

RETURNS THE FIRST ELEMENT IN QUEUE IN *x AND ERASES *
* 1T FROM THE QUEUE.

*

*

*
A oo ok o ook okt ok o ok ok o s ok ok ok kR ks ok sk ok o ok ok ok ok R HOR ook 8k Ok kR ok ook sk ko ok ok ok sk ok sk ok ok ok ok ok ok
void dequeue(QUEUE *q, DATA *x)

{
LINK temp = q -> front;

if (lisempty(q))
{
*x = temp -> d;
q -> front = temp -> next;
q -> front -> previous = NULL;
farfree(temp);
}
else
printf("Empty queue.\n");

/***

* *

* RETURNS THE LAST ELEMENT IN QUEUE IN *x AND ERASES *
* 1T FROM THE QUEUE.

* *

mmm———————ee P UL LLEL L AL LLE L Lk

void unqueue(QUEUE *q,DATA *x)

{
LINK temp = q -> rear;
if (Yisempty(q))
{
g->rear = temp -> previous;
g->rear->next = NULL;
*x = g->rear->d;
farfree(temp);
}
else
printf("Empty queue.\n");
}
/***
*
*
* ADDES *x TO THE END OF THE Q[,;TEUE. *
*

142

330 o o S ok K ok o Rk R oK s s ok ok ok s o sk ok ok ok ok ok o o o o K koK s R ok Kk ok o ok ok sk sk ok o K ok ok ok ok /
void enqueue(QUEUE *q, DATA *x)
LINK temp;

gotoxy(1,1);printf("e");
temp = farmalloc(sizeof(ELEMENT));
if(temp == NULL)
{
printf("NOT ENOUGH MEMORY!");
exit(1);
}
temp -> d = *x;
temp -> next = NULL;
if (isempty(q))
{
temp -> previous = NULL;
q -> front = ¢ -> rear = temp;
}
else
if(abs(temp->d.x-q->rear->d.x)>0 || abs(temp->d.y-q->rear->d.y)>0)
{
temp -> previous = ¢ -> rear;
q -> rear -> next = temp,;
q -> rear = temp;
3
else
farfree(temp);

143

/* ZZ,_queue.h */

typedef struct
{
int x,
Y;
} ZZ Point;

typedef ZZ Point DATA;

struct Linked_list
{
DATA d;
struct Linked list *next, *previous;

|5

typedef struct Linked list =~ ELEMENT;
typedef ELEMENT *LINK;

struct queue
{
LINK front,
rear;

b

typedef struct queue QUEUE;

int gsearch(QUEUE *q, DATA *x);

int isempty(QUEUE *q);

DATA vfront(QUEUE *q);

void dequeue(QUEUE *q, DATA *x);
void enqueue(QUEUE *q, DATA *x);
void qplot(QUEUE *q);

int optimize(QUEUE *q);

int sumqueue(QUEUE *q);

i UEUE *q);

1111; ;lii::)(i}sliegu};((%UEUE *(31), DATA *x, int *¥x3, int *y3, int *x4, int *y4);
int endtotarget(QUEUE *q, DATA *X);
void unqueue(QUEUE *q, DATA *X);
void resetqueue(QUEUE *q);

144

* 4 ok
ok ok ook ok sk o e ok o e e ook ke sk o sk sk s s s ok s s ok ok ok KK 6k s o ok o ok ok R sk o ok ok ok ok Kok ok ok o o ok ok ok sk ok o o ok o K

FILE :ZZ _SUPR2.C

DESCRIPTION : SUPERVISOR MODULE FOR AUTONOMOUS VEHICLE

This file contains code for the fuzzy controller,
and high level reasoning.

by : Ricardo Andujar

LAST UPDATE : MARCH 22, 1993

ke sk ok ok ok ok ok 3k ok ok ok ok ke sk ok ok ok sk ok sk ok ok ok ok ok 3k ok ok ok ok ok ok sk ok ok ok ok ok sk ok 3 ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ke ke sk kol ke sk Kok koK
Updates after 22Mar93
by: Robert Shanley 111

LAST UPDATE : 10May94,11May%4

**/

/***

INCLUDE FILES FOR SUPERVISOR MODULE
***/
#include<alloc.h>
#include<math.h>
#include<stdlib.h>
#include<graphics.h>
#include<stdio.h> /*need only for fprintf*/
#include"ZZ_CAN.H"
#include"ZZ_CARSP.H"
#include"ZZ_MISC.H"
#include"ZZ_MAP.H"
#include"ZZ_GRAPH.H"
#include"ZZ_SUPR2.H"
#include"ZZ_QUEUE.H"

#define FALSE 0

#define FIRST_TIME 2

#define TRUE 1

#define LEFTY 1

#define RIGHTY 0

#define TRESHOLDT 0.50 /* meters */
#define TRESHOLD 0.50 /* meters */
#define MAXTRIES 2

#define GET_OUT_WAIT 15

#define FUZZY 0

#define PLANNER 1

#define MAX _tries 4

extern int graph;
FILE *ofp;

145

double ZZ_Max(double,double);
double ZZ_Min(double,double);
extern void
ZZ_SupertoMap(double *, double *,double *,
double *,double *,double *,double *,int * int *,
double *,double *),
ZZ_SupertoConsl(double * double *, int *);

staticdouble WayX=1.0,WayY=4.0;
static double TargetX=1.0,TargetY=4.0;
int NewTarget=FALSE,Adapt=FALSE;

[**xxxxxx INPUT LINGUISTIC VARIABLE (MEMBERSHIP FUNCTION DEF.) ****%x*
* ILV=[left straight right behind small med long]
*/
static float
ILV[]={270,0,90,180,0,1,2,56.4,25.2,56.4,12.6,.315,.63,.63},

/* ILV2=[forward backward straight left right too_close very close close]
*/
ILV2[]={.25,-.25,0,-.25,.25,0,.2,0,.05,.05,25.2,.05,.05,.4,.7,.8},

frx®xxxxkx QUTPUT LINGUISTIC VARIABLES (MEMBERSHIP FUNCTION DEF.) ****%x*
* OLV=[hardleft straight hardright straight stop slow med]
*/

OLV[]={-60,0,60,0,0,.7,1.5}, .
/* OLV2 = [stop reverse slow_down go_forward hardright hardleft to_right
to_left hardright2 hardleft2 slow_a_bit]
*/
OLV2[]={0,-1.6,-.9,-1.6,60,-60,60,-40,40,-60,-.7};

taticdouble
T C(:rlXC[NUM EDGES], /¥**¥* ROBOT EDGES RELATIVE X-POSITION

FROM REFERENCE POINT (pixels)****/

CarYc[NUM_EDGES], /**** ROBOT EDGES RELATIVE Y-POSITION
- FROM REFERENCE POINT (pixels)****/

CarR[NUM_EDGES], k% ROBOT EDGES RELATIVE RADIUS
- FROM REFERENCE POINT (meters)****/

GES RELATIVE ANGLE
UM EDGES], /****ROBOTED :
CarAng[NUM FROM FRONT OF ROBOT (radians)****/

Xc[NUM_SENSORS] jex#* SENSOR X-POSITIONS (pixels) ****/
c = ,

Yc[NUM SENSORS] /x**% SENSOR Y-POSITIONS (pixels) ****/
C - s

146

Rx M_S
y[NUM _ ENSORS], /**** SENSOR RADIUS FROM REFERENCE ****/

~ Angl
ngleXY[NUM_SENSORS], /**** SENSOR ANGLE FROM REF. POINT ****/

Range[NUM_SENSORS],

/**** SONAR RANGE INFORMATION ~ **%%/

Compass=0.0, [¥**%% ROBOT BEARING *k ko /
Xposition=1.0, [¥%*%% GLOBAL X-POSITION *okkk/
Yposition=4.0, [¥%k% GTOBAL Y-POSITION *okokk f

RoadSpeed=0.0, /**** DESIRED ROBOT SPEED (m/sec) ****/

SteeringAngle, f**** DESIRED STEERING (radians) ****/
ARoadSpeed, /**x% ACTUAL ROBOT SPEED (m/sec) ****/
ASteeringAngle, /*¥*¥* ACTUAL STEERING (radians) ****/

WayPointDist, /**** CURRENT WAYPOINT DISTANCE
RELATIVE TO ROBOT (meters) ****/

WayPointAngle, /**** CURRENT WAYPOINT ANGLE RELATIVE
TO FRONT OF ROBOT (radians) ****/

ABrake, /*¥**x ACTUAL BRAKE STATUS (ON/OFF) ****/

Front,

FrontR,

Back,

BackR,

Right,

RightR,

Left,

LeftR,

Right2,

RightR2,

Lefi2,

LeftR2,
CurrentWaypointX=1 .0,
CurrentWaypointY=4.0,
OLDXposition,
OLDYposition,
RefCompass;

staticint
Xconvert,
Yconvert,
tries=0,
NOT_REACHED,
GET_OUT=OFF,
GSTEER,

147

METHOD;
static double timee = 0;

unsigned timer2=0,

timer1=0;
ZZ_Point Point;
QUEUE PQueue;

void ZZ_GetSensorData(void);

void ZZ_SendToNav(void);

void ZZ ReachTarget(void);

void ZZ_ReachWayPoint(void);

void ZZ_CollisionAvoidance(void);

int ZZ_Planner(int x, int y,int tx,int ty, QUEUE *PATH);

/***

* *

* This Function must be called when starting *
* program execution *

% *

***/
void ZZ_InitSuper(void)

int i;
ZZ_Real2Screen(Xposition,Yposition,&Xconvert,& Y convert);

for(i=0;i<NUM_EDGES;i++) . _ '
ZZ_Cart2Polar(CarEdgeX[i],CarEdgeY[i],&CarAng[i],&CarR{[i]);

for(i=0;i<NUM_SENSORS;i++) . _
ZZ_Cart2Polar(Xr[i], Yr[i], & AngleXY[i], &Rxy[i]);

for(i=0;i<NUM_SENSORS;i++)
ZzZ PolarZCart(AngleXY[1]+Comp.ass, .
Rxy[i]*SCREENCONVERT.&Xcli].&Yc[i]);

for(i=0;i<NUM_EDGES;i++) _
7Z Polar2Cart(CarAng[i]+Compass,CarR[i]*SCREENCONVERT,
- &CarXc[i],&CarYc[i]);

/*******

sxxkx%x PASS MEMORY ADDRESSES OF VARIABLES USED BY SUPERVISOR SUB-MODULES

148

Aok ook e

ZZ_SupertoMap(CarXc,CarYc.X
. , -Xc,Yc,Range,&Compass,&RoadS
&Yconvert,&Xposition,&Yposition); P peedXcomvert
ZZ_SupertoConsl(&WayX,&WayY,&NewTarget);

ZZ _InitGraph();
ZZ InitMap();

Front=Range[0];
FrontR=0;
Back=Range[1];
BackR=0;
Right=Range[3];
RightR=0;

Left = Range[2];
LeftR=0;

Right2 = Range[5]=0;
RightR2 = 0;

Left2 = Range[4];
LeftR2 = 0;
ofp=fopen("output","w");

/***

* *

* This Function should be called when terminating *
* program execution *

* *

m———————————erer PP T LEEEEL EEE L EL L L LR bbb bbb b

void ZZ_EraseSuper(void)
{

}

ZZ_CloseGraph();

149

/***

*
*
*

MAIN SUPERVISOR LOOP

*

%*

*

* The supervisor tasks are divided by function names *

*

*

***/
#define start 1
void ZZ_SuperLoop(void)

{

/****

*

E I R

static int FLAG = start;

ZZ_DrawCar();
ZZ_DrawCursor();
ZZ_GetSensorData();
if(--FLAG<0)
{
ZZ_UpdateMap();
FLAG = start;
}
ZZ_DrawCursor();
ZZ DrawCar();
ZZ ReachTarget();
ZZ_ReachWayPoint();
ZZ_CollisionAvoidance();
{ .
int secq;
double ming;

secq =60.01*modf(timee/60.01,&minqg);
gotoxy(1,1);printf("TIME : %4.01f minutes, %2d seconds",ming,secq);

}
timee += 0.21;
ZZ_SendToNav();

*

THIS FUNCTION OBTAINS SENSOR INFORMATION FROM , *
THE PROPULSION MODULE AND VISION MODULE

THROUGH THE CONTROLLER

AREA NETWORK REQUEST COMMAND
*

150

*

*
Currently, The CAN is simulated in software. Functions *

used to access the CAN are subject to change when the CAN is *
acually implemented *

*

* X X ¥ X X

*
***/
void ZZ_GetSensorData(void)
{
int i=1;
ZZ_CAN_Request(HIGHPRIORITY,SUPERVISOR, VISION,&DataContent,
Range,&DataNum);

ZZ_CAN_Request(HIGHPRIORITY,SUPERVISOR,NAVIGATION,&DataContent,
Data,&DataNum);

i=1;

ARoadSpeed = Data[i++];

Compass = Datafi++];

Xposition = Data[i++];

Yposition = Data[i++];

ASteeringAngle = Datali++];

ABrake = Data[i++];

77 Real2Screen(Xposition, Yposition,&Xconvert,& Y convert);

for(i=0;i<NUM_SENSORS;i++)
ZZ7._Polar2Cart(AngleXY[i]+Compass,
Rxy[i]*SCREENCONVERT,&Xc[i],&Y¢[i]);

for(i=0;i<NUM_EDGES;i++)
ZZ_Polar2Cart(CarAng[i]+Compass,CarR[i]*SCREENCONVERT,
&CarXc[i],&CarYcli]);

/***
* SEND ACTUATOR REFERENCE INPUTS TO PROPULSION MODULES. SIGNALS
* SENT ARE: *

* DESIRED STEERING ANGLE . *

* DESIRED SPEED]

, :

* When implementing the actuator controls 1n the **

* ropulsion module, note that fast response times are
i Jperati bile robot. *

* critical for proper operation of the mo 1*e robot.

%

***/

void ZZ_SendToNav(void)

151

int i=1;

Data[i++] = RoadSpeed;
Data[i++] = SteeringAngle;
Data[i++] = OFF;
DataNum = 2;

ZZ_CANWCommand(HIGHPRIORITY,SUPERVISOR,NAVIGATION,&DataContent,
Data,&DataNum);

/***

* THIS FUNCTION DECIDES WHERE MOVING TARGETS ARE LOCATED AND *
* CHOOSES APPROPRIATE WAYPOINT FOR FUZZY CONTROLLER *

* *

* NOTE: This function is not yet implemented *

* *

***/
void ZZ_SearchMoving(void)

{
}

/***

* THIS FUNCTION DECIDES WHEN TO GENERATE A PATH AND *
x SELECTS THE CURRENT WAYPOINT TO BE USED BY THE *
* FUZZY CONTROLLERS. WHEN TARGET REACHED, IT WAITS UNTIL NEW *
* TARGET HAS BEEN SELECTED. \ *
. ;
% *
*
*®

***/

void ZZ_ReachTarget(void)

int TX,TY;

152

J¥ k%

*** If current position of car is close to current waypoint
*** get new waypoint.

***/
if(fabs(CurrentWaypointX-Xposition)<TRESHOLD &&

fabs(CurrentWaypointY-Yposition)<TRESHOLD)
{

/***
*** If there are other waypoints in path
*** get the next point as set as the current
*** waypoint .
***/
if(!isempty(&PQueue))
{
dequeue(&PQueue,&Point);
ZZ_Screen2Real(Point.x,Point.y,
& CurrentWaypointX,&CurrentWaypointY);
}

else
/***

*** If close to target do nothing.

***/

if(fabs(TargetX-CurrentWaypointX)<TRESHOLDT &&

fabs(TargetY-CurrentWaypointY)<TRESHOLDT)

{
CurrentWaypointX = Xposition;
CurrentWaypointY = Yposition;
RoadSpeed=0.0;
SteeringAngle=0.0;
Adapt=FALSE;

}

Tkl

**%* Otherwise, generate a new path
**% and use the first point as the current

*** waypoint.
***/

else
NewTarget = TRUE;

}

/***

% New Path has been generated or new target has been selected
***/

if(NewTarget)

/*** Generate new path and set current waypoint as first point

% in new path
***/

if(NewTarget == FIRST TIME)
gotoxy(1,1);

printf("TIME : 9%4.01f minutes, %2d seconds",0.01,0);
TargetX = WayX;

153

TargetY = WayY;
timee = 0;
timer1 = 0;
METHOD = PLANNER;
Adapt=FALSE;
}
ZZ_RealZScreen(TargetX,TargetY,&TX,&TY);
if(!ZZ_Uncovered(TX,TY,4))
{
if(METHOD == FUZZY)
METHOD = PLANNER;
else
METHOD = FUZZY;
}

if(METHOD == PLANNER)

{

resetqueue(&PQueue);

NOT_REACHED = ZZ _Planner(Xconvert,Yconvert, TX,TY,&PQueue);

dequeue(&PQueue,&Point);

727 _Screen2Real(Point.x,Point.y,
&CurrentWaypointX,&CurrentWaypointY);

}
else
{
CurrentWaypointX = TargetX;
CurrentWaypointY = TargetY;
NOT_REACHED =0;
}
NewTarget = FALSE;
}
/***

*** If target is visible within sonar range, then
*** jonore path and go directly to target location.
*** This only applies when path was not found.
***/
ifNOT _REACHED)
{
77 _Real2Screen(TargetX, TargetY,
&TX,&TY);
if(ZZ_Uncovered(TX,TY.,7))
{
CurrentWaypointX = TargetX;
CurrentWaypointY = TargetY;

}

* % %

/*** Change Waypoint coordinates from stationary cartesian
#x* coordinates to polar coordinates relative to front of car
** */ . e
WayPointAngle = ZZ“AtanZ(Cu.rrentWaypomtX—Xposmon,

CurrentWaypointY-Yposition);

WayPointAngle -= Compass;

77 LimitAngle(&WayPointAngle);

154

WayPointDist = ZZ_Range(CurrentWaypointX-Xposition,
CurrentWaypointY-Yposition);

/3% % b e s s e ke ok ke ok ok s ke ke ok ok s ke ok ok sk ke ok s ke o ok sk ok ok ke ok o ook sk ke ok s ke ok ook sk ok ok o ke sk o ok sk sk ok sk ok ok sk ok ok ok ok ok sk ok

*

* ¥ X X X *

*
CONTROLLER # 1 *
*
TRACK CURRENT WAYPOINT *
*
FUZZY INFERENCE RULES *

*

***/

void ZZ_ ReachWayPoint(void)

{

float A,B,SumAA=0.0,SumSA=0.0,SumB=0.0,mui,muj,mu;
int i,j;

Jxxxxx6k CONVERT Waypointangle from radians to degrees ok okok /

WayPointAngle *= 180.0/M_PI;

if(WayPointAngle<0)
WayPointAngle += 360.0;

for(j=03j<4;++)

{ . :
muj=(ﬂ0at)exp(—pow(((WayPointAngle-ILV[]])/ILV[7+J]),2));
for(i=0;i<3;++i)

{ . .
mui=(ﬂoat)exp(-pow(((WayPointDist-ILV[4+1])/ILV[1 1+i]),2));
ifi==2)

{

if(WayPointDist > ILV[6])

mui=1;

} .
mu=muj*mui;
SumAA +=mu*OLV[j];

155

SumB += mu;
if G ==3)
SumSA += -mu*OLV[4+i];
else
SumSA += mu*OLV[4+i];
}
}

/**
% 3% 3k ok 3k %k %k k ok

::::*::** DEFUZZIFICATION OF OUTPUT VARIABLES USING LARSEN'S RULE
* %%k
**/
if(SumB >=-.05 && SumB <= .05)
SumB=1;
SteeringAngle = (double)(SumAA/SumB)*M_P1/180.0;
RoadSpeed = (double)SumSA/SumB;

/**
ok 3% ok %k ok ok ok kK

*kxxxxxxx Adaption routines using back propagation

sk ok ok ok Kk Kk Xk k
**/

if(Adapt)
{
intk;
float mu,A,S,alpha=0.00008,tmp,J;
if(WayPointAngle > 180.0)
A=(WayPointAngle-360)*M_PI/180;
else
A=WayPointAngle*M_P1/180;
S=(float)SteeringAngle;
if(A > -.780 && A <.780)
{
ILV[0]=-90;
for (k=0;k<4;++k)

{
ILV[K]=ILV[K]*M_PI/180;
OLV[k]=OLV[k]*M_P1/180;

}
for (k=0;k<4;++k)

i1u=(ﬂoat)exp(-pow(((A-ILV[k])/ILV[7+k]),2));
tmp=alpha* (ﬂoat)(pow(A,2)+pow(S,2))*S;
OLV [k]=OLV[k]-tmp*mu/ SumB;
ILV[k]=ILV[k]-tmp*(OLV [k]-S)*2*mu*(A-

ILV[7+k],2));
ILV[k])/(S“mB*(ﬂoa;f\%gkk[lw[7+k]-tmp*(mu—S)*2*mu*(ﬂOat)P"W(A’

ILV[k],2)/(SumB* (float)pow(ILV[7+k].3));
}

156

/"

for (k=0;k<4;++k)
{
ILVIK}=ILV[k]*180/M_PI;
}OLV[k]=OLV[k] *180/M_PI,

ILV[0]=ILV[0]+360;
}

J=.§*(ﬂoat)pow(((ﬂoat)pow(A,2)+(ﬂoat)pow(S,2)),2);
fprintf(ofp, "\n%f %f %f %f %f",A,S,J, TargetX, TargetY);

gotoxy(10,5);

printf("OLV= %f %f %f %f",0LV[0],0LV[1],0LV[2],0LV[3]);
gotoxy(10,10);

printf("ILV= %f %f %f %f{",ILV[0],ILV[1],ILV[2]ILV[3]);
gotoxy(10,2);printf("J=%f",J);

/***

*

*
*
*
*
*
*
%

*

This Function handles communication requests from *
*
other Modules through *
*
Controller Area Network *
:

5k ok e ok ok 3k s e s ke ok oK ok ok ok ok oK 3K ok K ok ok s ok ok ok ok ok ok ok ok ok ok ok ok ke ok e sk sk sk ok ok ok sk sk ok sk ke ok sk ok ok ok sk sk ok ok ok k ko /

void ZZ_SuperServer(byte SourceAddress,int * DataContent,

{
}

double *Data, byte *DataNum)

*DataContent = NOTALLOWED,;

/***

*

® X K X * ¥

*

CONTROLLER # 2 *
*
COLLISION AVOIDANCE AND *
*
GET OUT OF TIGHT SPOTS *

157

*
*

FUZZY INFERENCE RULES *

*

****************************FORWARD************************************/
void ZZ_CollisionAvoidance(void)
{

int USP[]={]- ’ I s 1 92y252;2,292y33272} ’

uST[]={0,5,4,6,7,6,6,7,7,0,8,9}.i;
double max,min,SteeringChange=0,SpeedChange=0;
float muj,sumSA=0,sumB=0,sumSPA=0,A,R,mu[12],£b,r,];

JERR

*** (Clear fuzzy output variables
* k% /

for (i=0;i<12;++i)
mu[i]=0.0;
FrontR = Range[0] - Front;
BackR = Range[1] - Back;
LeftR = Range[2] - Left;
RightR = Range[3] - Right;
LeftR2 = Range[4] - Left2;
RightR2= Range[5] - Right2;
min = Front = Range[0];
Back = Rangel[l];
min = ZZ_Min(min,Back);
Left = Range[2];
min = ZZ_ Min(min,Left);
Right = Range[3];
min = ZZ_Max(min,Right);
Left2 = Range[4];
min = ZZ_Min(min,Left2);
Right2 = Range[5];
min = ZZ_Min(min,Right2);
/ 4k %k
% Fuzzy Rule to slow down vehicle in the vicinity of obstacles
% %k % /
muj=(ﬂoat)exp(—pow(((min-ILV2 [7D/ILV2{15]),2));
sumB+=muj;
sumSPA+=muj*OLV2[10];

/***

*** Change from radians to degrees
* ¥ */

SteeringAngle *= 180.0/M_PIL;

* kX
/** * GET OUT OF TIGHT SPOTS USING A HEURISTIC METH%D
*ork IN COMBINATION WITH THE REVERSE FUZZY RULES T
*ok K AVOID COLLISION
Ak ok /
if(timerl++>GET_OUT_WAIT)
{
timerl = 0; N
OLDXposition = Xp051.t{on;
OLDYposition = Yposition;

158

/*

}

if(GET_OUT == OFF &&
(fabs(Xposition-OLDXposition)<.1 &&
fabs(Yposition-OLDYposition)<.1 &&
timer1==GET_OUT WAIT &&
(fabs(TargetX-Xposition)>TRESHOLDT ||
fabs(TargetY-Yposition)>TRESHOLDT)
)
)
{
if(WayPointAngle >= 0.0)
{
GSTEER = LEFTY;
RefCompass = Compass + M_PI*.6;
}
else
{
GSTEER = RIGHTY;
RefCompass = Compass - M_PI*.6;
}
ZZ_LimitAngle(&RefCompass);
GET_OUT = ON;
if(++tries>MAX_tries && METHOD ==FUZZY)
{
tries = 0;
GET_OUT = OFF;
NewTarget = TRUE;

}

if(GET_OUT == ON)
{
if(fabs(RefCompass - Compass) < 0.1
|| fabs(RefCompass - Compass) >2*M_PI-.1
|| Back <.2 || Right2<.1 || Left2 <.1 .
| (Left<.4 && Left>3) || (Right<4 && Right>.3))
&& (fabs(RefCompass - Compass) <M_PI*.5 ||
fabs(RefCompass - Compass) > 1.5*M_PI)))

timerl = 0;
GET_OUT = OFF;
}
if(GSTEER == LEFTY)
SteeringAngle = -45.0;
else
SteeringAngle = 45.0;
RoadSpeed = -0.2;
ZZ AddMax(l,&STOP,&FSpeedChange);

SpeedChange=0.0; */

159

JE%

*** FUZZY RULES USED TO AVOID COLLISIONS

***/

if(GET_OUT == OFF)

{

A=SteeringAngle;
R=RoadSpeed;
if(R > ILV2[0))
=1,
else
f=(float)exp(-pow(((R-ILV2[0])/ILV2[8]),2));
ifiR <ILV2[1])
b=1;
else
b=(float)exp(-pow(((R-ILV2[1])/ILV2[9]),2));
if(A > ILV2[4])
r=1;
else
r=(float)exp(-pow(((A-ILV2[4])/ILV2[12]),2));
if(A <ILV2[3])
I=1;
else
I=(float)exp(-pow({(A-ILV2[3])/ILV2[11]),2));

mu[0]=(float)exp(-pow(((A-ILV2[2])/ILV2[10]),2))*

*

(float)exp(-pow(((Front-ILV2[S])/ILV2[13]),2));
mu[1]=1*

f*

(float)exp(-pow(((Front-ILV2[S])/ILV2[13]),2));
muf2]=r*

*

(float)exp(-pow(((Front-ILV2[5 D/ILV2[13]),2));
mu[3]=1*

*

(float)exp(-pow(((Left2-ILV2 [ST/ILV2[13]),2));
mu[4]=r*

*

(ﬂoat)exp(-pow(((RightZ-ILV2[5])/ 1LV2[13]),2));
mu[5]=(ﬂoat)exp(-pow(((A—ILV2 [2])/ILV2[10]),2))*

*

(ﬂoat)exp(-pow(((Rjght-ILV2 [61)/ILV2[14]),2));
mu[6]=1*

(ﬂoat)exp(-pow(((Right-ILV2 [6])/ILV2[14]),2));

mu[7]=r*

160

ig
(float)exp(-pow(((Left-ILV?2 [6])/ILV2[14]),2));

mu[8]=(ﬂo;f)exp(-pow(((A-ILV2 [2])/ILV2[10]),2))*
(float)exp(-pow(((Left-ILV2 [6])/ILV2[14]),2));
mu[9]=(ﬂo§i)exp(-pow(((A-ILV2 [2])/ILV2[10]),2))*

(float)exp(-pow(((Back-ILV2 [5]/ILV2[13)),2));

mu[10]=1*
b*
(float)exp(-pow((Left2-ILV2[S]Y/ILV2[13]),2));

mu[l1]=r*
b*
(float)exp(-pow(((Right2-ILV2[5])/ILV2[13]),2));

for(i=0;i<12;++i)
{
sumSA+=mu[i]*OLV2[uST[i]];
sumB-+=mu[i];
sumSPA+=mu[i]*OLV2[uSP[i]];

ks e ok ko ok ok ko ook ook ok ok ko ook ok s o ook ok o
*** DEFUZZIFY OUTPUTS kK

***/

if(sumB >=-.05 && sumB <= .05)

sumB=1;
SteeringAngle*=M_PI/180.0;
SteeringChange = (double)(sumSA/sumB)*M_PI/180.0;
SpeedChange = (double)sumSPA/sumB;
SteeringAngle += 2*SteeringChange;
if(SteeringAngle<-45.0*M_PI1/180.0)

SteeringAngle = -45.0*M_P1/180.0;
if(SteeringAngle>45.0*M_P1/180.0)

SteeringAngle = 45.0*M_P1/180.0;
RoadSpeed = RoadSpeed*(1+SpeedChange);

}

}
/**
* *

* Returns Maximum Value Between Two Values *

* *
**/

double ZZ Max(double valuel, double value2)
if(value1>value2)

return(valuel);
return(value2);

161

/**
*

*
* Returns Minimum Value Between Two Values *
* *

st ke ok ok ok o sk e e ke ok 3k ok ke ok ok 3k ok b ok sk sk ok ok ok sk ok ok sk ok sk s ok sk sk ok sk sk ok ok ok ok sk ok ok s ok sk ok ok sk ok sk ok sk ok ok ok ok ok sk kok sk ok ok ok ok /

double ZZ Min(double valuel, double value2)
{
if(valuel<value2)
return(valuel);
return(value2);

162

/* ZZ_supr2.h */

#define SCREENCONVERT 40.0
#define BOTTOMLIMIT 479
#define TOPLIMIT 25

#define RIGHTLIMIT 639
#define LEFTLIMIT 1

#define SMAXRANGE 400
#define HALFSPREADANGLE 10.0/180.0*M_PI /* 10 Degrees */
#define NUM_SENSORS 6

#define NUM_EDGES 4

/* (pixels/meter) */

void ZZ _InitSuper(void);

void ZZ_EraseSuper(void);

void ZZ_SuperLoop(void);

void ZZ_SuperServer(byte SourceAddress,int *DataContent,
double *Data, byte *DataNum);

163

/***

FILE :ZZ _VSION.C

DESCRIPTION : VISION MODULE FOR AUTONOMOUS VEHICLE

This file contains code for SONAR SIMULATION,
CAN COMMUNICATIONS, high level reasoning.

by : Ricardo Andujar

LASTUPDATE :MARCH 22, 1993

**/

/***
INCLUDE FILES FOR VISION MODULE
***/

#include<alloc.h>

#include<graphics.h>

#include<stdiib.h>

#include<math.h>

#include"ZZ GRAPH.H"

#include"ZZ_OBJCT.H"

#include"ZZ_CARSP.H"

#include"ZZ, CAN.H"

#include"ZZ VSION.H"

/**

* kK
x#% The following external declaration is needed for the
x#% sonar simulation only. It should be eliminated when

x#% simulation is no longer needed !
* k%

extern ZZ_NavToVision(long * long *,Jong *);

e T T LS L L L L L bbbl

extern int graph;

int ZZ Circle=0;

164

/****************** PRIVATE DECLARATIONS ***************************/

static double

Xc[NUM_SENSORS], [**** X SENSOR POSITIONS (pixels) ****/
Yc[NUM_SENSORS], [¥*¥*%Y SENSOR POSITIONS (pixels) ****/
Rxy[NUM_SENSORS], [¥*** SENSOR RADIUS FROM REFERENCE **%*%*/
AngleXY[NUM_SENSORS], /**** SENSOR ANGLE FROM REF. POINT ****/
Range[NUM_SENSORS],

Range2[NUM_SENSORS],

Compeass,

*Compass2,

*Xposition,

*Yposition,

RoadSpeed,

SteerAngle;

staticint EMERGENCY,
Xconvert,
Yconvert;

staticvoid ZZ_UpdateSensorMeas(void);
staticvoid ZZ_SonarSim(void);
staticvoid ZZ _TransmitSensorMeas(void);

/***
* *

* CALL THIS FUNCTION WHEN INITIALIZING THE VISION MODULE *
* *
memmr——————————p T T PLTLELLE L L ELE L bbbk bk

void ZZ_InitVision(void)

int i
/**
* % %

x%% THE FOLLOWING STATEMENTS IS FOR SONAR SIMULATION
*rx PURPOSES ONLY. WHEN FINALLY IMPLEMENTED THE FOLLOWING

x STATEMENT SHOULD BE ERASED !

¥ Kk

**/

for(i=0;i<NUM__SENSORS;i++) - .
7 CartZPolar(Xr[i],Yr[i],&AngleXY[l],&ny[l]);
77 Nav-’l_‘oVision(&Xposition,&Yposition,&CompassZ);

165

/***

* *

* MAIN VISION LOOP *
* *
AR KR KRR KRR SR KKK KKK R /

void ZZ_VisionLoop(void)
{

}

ZZ UpdateSensorMeas();

/***
*

SONAR SIMULATION *

*

Sonar Range Information is received with a delay proportional *

to the measured distance. *
¥

* ¥ ¥ X * *

**/
void ZZ_SonarSim(void)

int i,Rangep[NUM_SENSORS],radius;

double j,Delta;

ZZ_Rea12Screen(*Xposition,*Yposition,&Xconvert,&Yconveﬂ);

for(i=0;i<NUM_SENSORS;i++)
ZZ_Polar2Cart(AngleXY[i]+* Compass2,
ny[i]*SCREENCONVERT,&Xc[i],&Yc[i]);

for(i=0;i<NUM_SENSORS;i++)
{ float anglesinl = sin(-*Compass2-NominalAngle[i]
+HALFSPREADANGLE),
anglecosl = cos(-*CompassZ-NominalAngle[i]
+HALFSPREADANGLE),
deltasin=(sin(-*Compass2-NominalAngle[i]
-HALFSPREADANGLE)-anglesin1)/5.0,
deltacos=(cos(-*CompassZ-NominalAngle[i]
-HALFSPREADANGLE)-anglecosl)/S.O;

int

Js
xtemp=Xc[i]+Xconvert,
ytemp:Yc [i]+YCOnVert;

166

radius = 0;
Rangepl[i] = 0;

if(ZZ_Circle) ZZ_DrawCircle();

while(1)

{
for(j=0;j<=5,j++)
{

Rangepli] = getpixel(
xtemp-radius*(anglesin1+j*deltasin),
ytemp-radius*(anglecos1+j*deltacos));

if(Rangep[i]==WHITE || Rangep[i]==LIGHTRED
|| radius > SMAXRANGE)
break;

}

radius +=3;

/**
*

*
*

Limit Sensor Range

***/
if(radius>SMAXRANGE)
{
radius = SMAXRANGE;
Range[i] = radius/SCREENCONVERT;
if(ZZ_Circle) ZZ_EFEraseCircle();
break;

/**
*®

* Limit Sensor Range

%*
***/

if(Rangep[i]==WHITE || Rangep[i]==LIGHTRED)

{
radius -=7;
if(radius<O)radius = 2;
Rangel[i] = radius/SCREENCONVERT;
if(ZZ_Circle) ZZ_EraseCircle();
break;
}

}

} .
for(i=0;i<NUM_SENSORS;1++)
Range?2[i] = Rangel[il;

167

/***
*

*
* SONAR SENSOR MEASUREMENT GOES HERE *
* *

***/
void ZZ_UpdateSensorMeas(void)

/**
*
%*

Following function to be replaced with data acquisition
*

***/

ZZ SonarSim();

/**
*

* IF Emergency is enabled, monitor range information for

* Emergency Collision Avoidance
*

s ke ok 4 o ok 3 oK 3K sk s ke e ok ok ok b ok ok ok oKk sk sk s oK e s ok ok ok ok ke ok ke sk e ok sk sk ok ok ok ook ok sk ok ok ook ok sk ok sk ok kol ok k ke ok ok /

if(EMERGENCY)

/***
*
* Request Sonar Sensor Range Information
:***/
ZZ CAN_Request(HIGHPRIORITY,VISION,NAVIGATION,&DataContent,
B Data,&DataNum);
RoadSpeed = Data[1];
SteerAngle = Data[2];

**

/*********

X

x INSTINCT BEHAVIOR
X

**/

if ((Range[1]<RoadSpeed* ROADRANGEC!) ||

168

(Range[2] <RoadSpeed* ROADRANGEC2))

Dataf1] = 0;

Data[2] = 0;

Data[3] = ON;

2Z_CAN_Command(HIGHPRIORITY,VISION,NAVIGATION,
&DataContent,Data,&DataNum);

/***

% ¥
* VISION COMMUNICATION NETWORK HANDLER *
% *

***/

void ZZ_VisionServer(byte SourceAddress,int *DataContent,
double *Data, byte *DataNum)
{ . .
nt 1,
switch(*DataContent)
{
case REQUEST:
*DataContent = SIXSENSORS_2CROSSED;
for(i=0;i<NUM_SENSORS;i++)
Data[i] = Range2[i];
*DataNum = NUM_SENSORS;
break;

case COMMAND:
*DataContent = SUCCESS;
EMERGENCY = Data[1];
*DataNum = 0;

break;

}

/***

*
*

* CALL THIS FUNCTION WHEN QUITTING PROGRAM *
*

*
***/

void ZZ_EraseVision(void)

{
}

169

/*ZZ_vision.h */

#define ON 1

#define ROADRANGECI 14

#define ROADRANGEC2 3.2

#define SPEED_SOUND 343.0 /* (meters/sec) */
#define SCREENCONVERT 40.0 /* (pixel/meter) */
#define SMAXRANGE 400

#define HALFSPREADANGLE 10.0/ 180.0*M_PI /*10 Degrees*/
#define NUM_SENSORS 6

void ZZ_VisionServer(byte SourceAddress,int *DataContent,
double *Data, byte *DataNum);

void ZZ_VisionLoop(void);

170

o

VITA
Robert L. Shanley 111
Candidate for the Degree of

Master of Science

Thesis: ENVIRONMENT MAPPING AND ADAPTIVE FUZZY LOGIC CONTROL
FOR AN AUTONOMOUS VEHICLE

Major Field: Mechanical Engineering
Biographical:

Personal Data: Born in West Lafayette Indiana, April 20, 1969, the son of Robert
L. Shanley II and Mary Ann Shanley.

Education: Graduated from North Central High School, Indianapolis, Indiana, in
May 1987, received Bachelor of Science Degree in Aerospace Engineering
from Purdue University at West Lafayette Indiana in December 1992;
completed requirements for the Master of Science degree at Oklahoma
State University in July, 1994.

Professional Experience: Teaching Assistant, Department of Mechanical and
Aerospace Engineering, Oklahoma State University, January, 1993, to
May, 1994.

Cooperative education program at the Phillips Laboratory, Edwards AFB,
January 1989, to December 1990.

	001.tiff
	002.tiff
	003.tiff
	004.tiff
	005.tiff
	006.tiff
	007.tiff
	008.tiff
	009.tiff
	010.tiff
	011.tiff
	012.tiff
	013.tiff
	014.tiff
	015.tiff
	016.tiff
	017.tiff
	018.tiff
	019.tiff
	020.tiff
	021.tiff
	022.tiff
	023.tiff
	024.tiff
	025.tiff
	026.tiff
	027.tiff
	028.tiff
	029.tiff
	030.tiff
	031.tiff
	032.tiff
	033.tiff
	034.tiff
	035.tiff
	036.tiff
	037.tiff
	038.tiff
	039.tiff
	040.tiff
	041.tiff
	042.tiff
	043.tiff
	044.tiff
	045.tiff
	046.tiff
	047.tiff
	048.tiff
	049.tiff
	050.tiff
	051.tiff
	052.tiff
	053.tiff
	054.tiff
	055.tiff
	056.tiff
	057.tiff
	058.tiff
	059.tiff
	060.tiff
	061.tiff
	062.tiff
	063.tiff
	064.tiff
	065.tiff
	066.tiff
	067.tiff
	068.tiff
	069.tiff
	070.tiff
	071.tiff
	072.tiff
	073.tiff
	074.tiff
	075.tiff
	076.tiff
	077.tiff
	078.tiff
	079.tiff
	080.tiff
	081.tiff
	082.tiff
	083.tiff
	084.tiff
	085.tiff
	086.tiff
	087.tiff
	088.tiff
	089.tiff
	090.tiff
	091.tiff
	092.tiff
	093.tiff
	094.tiff
	095.tiff
	096.tiff
	097.tiff
	098.tiff
	099.tiff
	100.tiff
	101.tiff
	102.tiff
	103.tiff
	104.tiff
	105.tiff
	106.tiff
	107.tiff
	108.tiff
	109.tiff
	110.tiff
	111.tiff
	112.tiff
	113.tiff
	114.tiff
	115.tiff
	116.tiff
	117.tiff
	118.tiff
	119.tiff
	120.tiff
	121.tiff
	122.tiff
	123.tiff
	124.tiff
	125.tiff
	126.tiff
	127.tiff
	128.tiff
	129.tiff
	130.tiff
	131.tiff
	132.tiff
	133.tiff
	134.tiff
	135.tiff
	136.tiff
	137.tiff
	138.tiff
	139.tiff
	140.tiff
	141.tiff
	142.tiff
	143.tiff
	144.tiff
	145.tiff
	146.tiff
	147.tiff
	148.tiff
	149.tiff
	150.tiff
	151.tiff
	152.tiff
	153.tiff
	154.tiff
	155.tiff
	156.tiff
	157.tiff
	158.tiff
	159.tiff
	160.tiff
	161.tiff
	162.tiff
	163.tiff
	164.tiff
	165.tiff
	166.tiff
	167.tiff
	168.tiff
	169.tiff
	170.tiff
	171.tiff
	172.tiff
	173.tiff
	174.tiff
	175.tiff
	176.tiff
	177.tiff
	178.tiff
	179.tiff
	180.tiff
	181.tiff

