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CHAPTER I 

INTRODUCTION 

The Federal Water Pollution Control Act of 1972 states as its objective to 

"restore and maintain the chemical, physical and biological integrity of the nation's 

water." In order to meet this objective it states as a national policy "that the discharge 

of toxic pollutants in toxic amounts be prohibited." Unfortunately, implementation 

provisions of the act were not designed to specifically meet this goal (Freeman 1990). 

The control of toxics in wastewater relied upon the setting and maintaining of effluent 

limitations, guidelines and standards for selected specific toxicants in the primary 

industrial point sources (Bishop 1987). These limitations and guidelines were set 

under the auspices of the National Pollution Discharge Elimination System (NPDES). 

All dischargers into United States waterways were required to hold a permit through 

the NPDES. The late 1970's brought an increase in the realization that there were far 

too many unknown chemicals and chemical interactions within a wastestream to 

properly base water quality judgements on physical and chemical criteria alone. In 

1984 the Environmental Protection Agency (EPA) began requiring the use of living 

organisms in addition to chemical assays to assess the quality of the nation's 

wastewater discharges via the NPDES program (EPA 1987). These organismal tests, 

or bioassays, employ the use of specific native species, ubiquitous within a region in 

order to provide consistency of testing procedures. These bioassays are time and 
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labor intensive lasting anywhere from 48 hours to 7 days depending upon the EPA 

region and require a complex system of sample collection over a representative time 

frame. 

Toxicity of a chemical may manifest itself in several ways. It can produce 

either lethal or sublethal effects upon an organism. Lethal effects are those that cause 

death to the organism. Sublethal effects are deleterious to the organism, affecting it 

behaviorally, physiologically, or morphologically, but will not cause death directly. 

The mechanism of action of lethal and sublethal effects may occur within a short 

(acute) or long (chronic) period of exposure. Acute effects have been defined as 

occurring in less than 96 hours of exposure. Chronic toxicity will affect the organism 

over a period of time, i.e., exposures lasting anywhere from weeks to years 

depending on the life cycle of the organism (Rand 1985). 

Methods for evaluating toxicity are as diverse as the different forms of toxicity. 

Two of the most common measures of response are the median effect concentration 

(EC50) and the no observed effect concentration (NOEC). The term "effect" used in 

both methods may be anything in which the particular researcher is interested, i.e., 

death, immobility, decreased reproduction, stunted growth, etc. When death is the 

effect studied the term LC50 (median lethal concentration) is used interchangeably 

with EC50. The important difference between the EC50 and NOEC methods is the 

point at which they indicate toxicity. The EC50 is defined as the point at which 50% 

of the population is adversely affected by treatment. The NOEC is defined as the 

level of toxicant or wastewater whose effect is not statistically significantly different 

from that of the control at the 95% level of confidence. 

As industrial and municipal dischargers became aware of impending NPDES 
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permit requirements for biomonitoring, they quickly recognized the need for 

alternative toxicity tests. The existing standard toxicity tests were time and labor 

intensive and required a cumbersome volume of wastewater sample when shipping to 

remote testing labs. In addition to the necessity of a rapid and inexpensive test for 

obtaining biomonitoring results for their NPDES permits, there was also the need for 

a screening test to locate and reduce sources of toxicity within their facilities. 

Anthony A. Bulich introduced Microtox (MTX) in 1979. The Microtox system 

consists of a self-contained photometer that quantifies the light output of the 

luminescent marine bacterium Photobacterium phosphoreum upon 5-, 15- and/or 30-

minute exposures to an aqueous sample. Traditionally MTX has used the EC50 to 

report phosphorescence inhibition. The MTX ECSO has been reported to be a reliable 

indicator of acute toxicity for specific pure chemicals and complex chemical mixtures 

that are commonly found in wastestreams (Munkittrick 1991). 

National Pollution Discharge Elimination System (NPDES) permitting in EPA 

Region 6, including Oklahoma, requires 7-day biomonitoring of whole effluents using 

Ceriodaphnia dubia and Pimephales promelas as the test organisms. The Water 

Quality Research Laboratory (WQRL) of Oklahoma State University has been 

involved in biomonitoring for over six years. The availability of effluents with proven 

histories of chronic toxicity to traditional biomonitoring organisms, and the facilities to 

perform 7-day biomonitoring provided an excellent setting to study the potential for 

Microtox as an indicator of chronic toxicity. In order to carry out this study the 

following null hypotheses were formulated and tested: 
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Ho: There is no significant correlation between MTX EC50 and P. 

promelas NOEC survival and growth. 

Ho: There is no significant correlation between MTX EC50 values and C. 

dubia NOEC survival and reproduction. 

Ho: There is no significant correlation between MTX NOEC and P. 

promelas survival and growth. 

Ho: There is no significant correlation between MTX NOEC and C. dubia 

NOEC survival and reproduction. 
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CHAPTER 2 

LITERATURE REVIEW 

The use of P. promelas in bioassays was originally recommended for standard 

toxicity tests by a joint task force established between the American Public Health 

Association and the American Waterworks Association (Burks et al. 1981). The two 

major advantages to this organism are that it is considered ubiquitous throughout the 

United States and is readily obtainable through commercial minnow dealers. In 1969, 

spurred by the questionable health of minnows obtained from bait shops, the WQRL 

established a successful breeding population of P. promelas that supplied year-round 

organisms (Burks et al. 1981). This organism is currently used in both acute and 

chronic toxicity bioassays. 

Cladocerans such as the daphnids have been widely accepted for bioassays due 

to their minimal space demands. Numerous organisms may be maintained in a small 

container and it is easy to obtain organisms of a known age. Daphnia magna was 

originally employed in acute toxicity work by Bertie Anderson in 1944 (Burks et al. 

1981). D. magna bioassays were further developed by the EPA for chronic toxicity 

work (EPA 1982). Mount and Norberg (1984) developed a bioassay using C. 

reticulata for chronic toxicity estimates noting increased reliability and decreased test 

time compared to D. magna. Mount and Norberg (EPA 1989) later used C. dubia in 

a 7-day subchronic assay citing the same benefits as C. reticulata, plus good 
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reproducibility between laboratories and relatively easy food preparation. 

The observation of bioluminescence can be dated as far back as Aristotle who 

referred to "cold light" or phosphorescence of flesh (Harvey 1952). Boyle (1672) has 

been credited with performing the first toxicity tests using luminescent bacteria. Boyle 

noted that light was produced on rotten wool (luminous fungi) and shining flesh 

(luminous bacteria) without perceptible heat and that the light was adversely affected 

by certain chemical agents. Ironically, Boyle's work never suggested that the light 

might be coming from living organisms. Baker, in 1742, was the first to suggest that 

phosphorescence on dead fish and flesh was due to living organisms (McElroy 1961). 

He identified "animicules" as the source of light. Later researchers showed that the 

luminescent organisms could be filtered and cultured on different media (Harvey 

1952). 

Despite the relatively early discovery of luminescent organisms and the many 

hypotheses suggested for their source of light, it was not until about 1920 that the 

process was characterized for bacteria (Bulich 1986). Bacterial luminescence is a 

product of the electron transport system. Light along with FMN (flavin 

mononucleotide) and acid are produced when the enzyme luciferase catalyzes the 

oxidation of FMNH2 and a long chain aldehyde (Bitton 1986). The reaction can be 

summarized as follows (Hastings 1977): 

FMNH2 + 0 2 + RCHO = > 0.1 hu + FMN + H20 + RCOOH 

This bacterialluciferase system is coupled to respiration via NADH and the 

flavin nucleotide (Hastings 1977). Thus the relative amount of light emitted is directly 

linked to the metabolic state of the cell. 

One of the first practical applications of luminescent bacteria was in the study 
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of air quality. A study by Sie et. al. {1966) involved exposure of P. fischeri, grown 

on a solid medium, to toxic fumes. A photomultiplier tube within a light-tight 

container was used for monitoring light levels. Toxic vapors were introduced to the 

system then purged with clean air. In this manner the same culture could be reused 

numerous times. Bacterial test response time was 1-3 seconds with recovery time 

being dependent on the age of the culture. Serat {1965) also studied the effects of air 

pollution upon luminescent bacteria. Serat was able to determine the presence and 

relative concentration of a toxicant by monitoring the changes in light output. 

Bulich {1979) was the first to report the use of luminescent bacteria in the 

evaluation of water quality. The testing equipment was a photometer consisting of a 

rotary shutter built around a photomultiplier tube. Bulich's total study involved 17 

different species of luminescent bacteria but the responses of only five species were 

reported. Test refinement was performed with P. phosphoreum due to its stable light 

production and sensitivity to a broad range of toxicants. Initially fresh cultures from 

agar-grown cells had to be created daily. The test was made more reliable and 

repeatable when lyophilized cells were reconstituted. Testing temperatures were set at 

15 + 0.5°C when it was discovered that all toxicants tested had a different 

temperature-response curve. Good sensitivity was found with most of the 16 

chemicals tested. Comparisons made between P. phosphoreum and 4-day P. promelas 

acute toxicity tests revealed that the bacterium was more sensitive to malathion and 

phenol than the fish. In 1980 Bulich introduced the lyophilized P. phosphoreum 

along with the materials and equipment necessary for testing of aqueous samples 

marketed as Microtox {MTX) originally through Beckman Instruments, Inc., and 

currently through Microbics Corp. 
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MTX system's software calculation of the MTX EC50 follows the procedure 

described by Johnson et. al. (1974). In this procedure the percent light decrease is 

replaced by a gamma function. A gamma (G) value of one is assigned when the 

amount of light lost is equal to the amount of light remaining. The values for G were 

plotted against sample concentration on log-log graph. A best fit line is created and 

the EC50 determined by interpolation at G = 1. 

Cronin (1991) studied the toxicity of several common organic pollutants upon 

P. promelas, the cladoceran D. magna and P. phosphoreum. Data was compiled 

from the literature except for 40 experimentally determined data for MTX. The study 

found encouraging correlations between the toxicities to fish and the lower organisms. 

Bulich et. al. (1981) compared MTX assay values for pure compounds to fish LC50 

values. They also compared MTX assay values for complex effluents with 

simultaneously run fish assays. They reported good correlation between the MTX and 

fish values although no correlational values were provided. Neiheisel et al. (1983) 

used MTX, P. promelas and D. magna to quantitate the toxicity of influent and 

effluent samples from two conventional activated sludge pilot wastewater treatment 

systems. The influent and primary effluent sample8 were slightly more toxic toP. 

phosphoreum than the other two species. However, the data from all three species for 

the secondary effluents were similar indicating little or no toxicity. 

Some authors have suggested the importance of MTX as a prescreening tool in 

the hazard assessment of chemicals. DeZwart and Slooff (1983) compared MTX to 20 

other standard aquatic toxicity test species. MTX was found to yield replicable results 

which were comparable to those obtained from the standard tests. The authors 

recommended that MTX be used as a primary test to quickly determine which 
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compounds yield certain risks to the aquatic environment. The standard bioassays 

could then be used on the limited samples which warranted further analysis. Qureshi 

et. al. (1982) also found that the MTX test sensitivity was comparable to that of P. 

promelas and D. magna tests particularly for pure compounds and complex effluents. 

The study found that MTX is a poor indicator for substances such as ammonia and 

cyanide. Therefore, they recommended that MTX only be used in a battery of 

screening tests or to supplement other well-established toxicity bioassays. 

There is no one organism that can indicate all possible toxicants. What is 

lethally toxic to one species may have no detectable deleterious effects upon another 

species. This is why a battery of organisms is often used for the detection of 

toxicity. Typical I y, a battery will be composed of at least three species comprising 

various trophic levels. Since its introduction MTX has been included in numerous 

batteries with a wide variety of species. 

Hill (1987) used MTX, C. dubia, and P. promelas to evaluate the toxicity of a 

simulated in situ retorting of a western oil shale. Toxicity was also evaluated after 

three different treatments. It was found that these treatments reduced toxicity to MTX 

but not C. dubia nor P. promelas. 

Giesy et. al. (1991) used MTX, D. magna and two other species to delimit the 

extent of further sediment investigations. Since perfect predictability cannot be 

expected even with a battery, prioritization of further investigations was based on the 

screening assays and chemical analyses. 

PEEP (Potential Ecotoxic Effects Probe) introduced by Costan et. al. (1993) 

integrates the results of MTX, C. dubia and two other species. The resulting index 

9 



number (ranging from 0 to infinity but generally no more than 10) indicates the 

persistence of chemical constituents, their ability to affect multiple trophic levels and 

the level of toxic expression. 

Volterra (1992) found that MTX could be used to screen within water 

treatment facilities for cyanophyte blooms harmful to human health. Although MTX 

results did not always agree with results from high-performance liquid 

chromatography, the authors were satisfied with the high sensitivity of MTX to algal 

toxins. 

Casarini et. al (1991) used MTX to determine initial loading rates in a land 

treatment unit. Detoxification, degradation and immobilization of hazardous waste 

constituents to protect surface water, groundwater and soil rely upon the presence of 

healthy, active soil microorganisms. Test loading rates that did not impact the 

biological activities of these soil microorganisms were determined by comparing MTX 

results to the ECSO or toxic unit (TU). It was found that the loading rates in practice 

were three times above the advisable level, possibly compromising the biodegradation 

processes and causing accumulation of organic compounds. 

Researchers such as Eisman et. al. (1991) have found MTX to be a very 

effective bioassay tool for specific chemical groups. They used MTX for successfully 

assessing the toxicity of hydrocarbon fuels, fuel components and water soluble 

fractions and soil column effluents of these components. 

Research with MTX has been so extensive and correlations with traditional 

organisms so good that MTX is being used by researchers as a calibrating tool for 

relatively new screening systems. The MetPAD bioassay kit (Bitton 1992) is one such 

system. MetPAD and MTX were compared in toxicity screens of sediments 
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contaminated with heavy metals. The authors were pleased that the relative levels of 

toxicity evidenced by MetPAD were confirmed with MTX. 

Microtox is relatively simple to perform and requires much less time and 

sample volume than the traditional assays. Due to these advantages numerous 

chemicals have been documented with MTX EC50 data in the relatively short time 

MTX has been on the market (Kaiser 1991). The MTX bacteria represent the lowest 

trophic level. Understanding the impact at this level may help in understanding the 

potential a certain chemical or group of chemicals has in total impact on the 

environment. 

The MTX assay is used with two major variations (Microbics 1990). The 

"standard method" uses a maximum dilution of 45% and the "100% method" uses a 

maximum dilution of 91% or 98%. Tarkpea and Hansson (1988) found that the 

confidence intervals (CI) generated by the 100% method could be as much as 10.4 

times larger than the CI for the standard method. However, the EC50 values were not 

drastically different between the two methods. 

P. phosphoreum is a marine organism which can be adapted to test freshwater 

sources by osmotic adjustment with sodium chloride to maintain the organism. 

Hinwood (1987) has questioned the validity of such adjustment as it may compromise 

the composition of the sample tested. It would be very difficult to determine what 

interactions may take place between other chemicals present and the added sodium 

chloride. 

The Southern California Coastal Wastewater Research Project (SCCWRP 1987) 

used MTX in a battery of tests in order to document changes in wastewater toxicity. 

In their annual report they noted that expressing MTX toxicity in terms of the NOEC 

11 



made the test much more sensitive than evaluation with the EC50. This finding 

suggests that comparisons of NOEC and EC50 values for MTX, P. promelas, and C. 

dubia bioassays should be studied. 
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CHAPTER 3 

MATERIALS A~TI METHODS 

Wastewater samples were collected by municipal and industrial dischargers 

and shipped via special overnight services to our lab in accordance with protocols 

specified in their NPDES permits (EPA 1989). The samples were mechanically 

composited over a 24 hour period at volumes proportional to the flow of the effluent. 

Samples were collected into polyethylene cubitainers, placed on ice and transported to 

the laboratory. According to EPA protocol each 7-day bioassay required three 

subsamples (EPA 1989). Figure 1. indicates a typical scenario for introduction of 

individual subsamples to the 7-day tests. The first of the three subsamples was used to 

initiate the static removal bioassay tests. Subsamples were used for daily exchanges in 

the 7-day bioassays for up to 2 or 3 days depending upon sampling and shipping 

schedules. The MTX assay was used to analyze all subsamples. 

The wastewater samples used for exposing P. promelas and C. dubia studies 

were exchanged daily. Aliquots of subsample were slowly brought to 23°C+ 1.5 in a 

water bath. Dissolved oxygen (D.O.) content of the aliquot was measured and when 

necessary purified air was bubbled through to maintain proper D.O. values (6.0-8.0 

mg/1). pH and chlorine levels were also measured. Dilutions were made using either 

receiving stream water or synthetic mineral water prepared in lab. Effluent/dilution 

water concentrations were determined by individual NPDES permits. Each dilution 

al ed ~or D o pH conductivity, hardness and alkalinity. Exposure rooms 
was an yz 1' • • , , 
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were kept at constant temperature , 25°C+ 1.5, and constant photoperiod, 16 hours 

light and 8 hours dark. 

P. promelas larval survival and growth tests were conducted according to EPA 

specifications (EPA 1989). All available larvae were collected at less than 24 hours 

old into a common container. Random samplings of ten larvae were introduced into 

bowls containing 250 ml of diluted effluent, with 4 replicates of each dilution. Daily 

dilution exchanges with identical concentrations were conducted after organisms were 

counted and the dead removed. P. promelas was fed twice daily with live brine 

shrimp cultured in laboratory. On the seventh day all living organisms were killed by 

thermal shock and dried. P. promelas weights were measured to determine significant 

differences in growth between controls and effluent exposed fish. 

C. dubia survival and reproduction tests were also conducted according to the 

EPA specifications (EPA 1989). C. dubia neonates less than 24 hours old and shed 

within 8 hours of each other were collected. One neonate was placed in 15ml of 

effluent concentration with 10 replicates of each dilution. Daily dilution exchanges 

were conducted after the general health of the original neonate was recorded and any 

new generation neonates were counted. Once the control organisms had three broods 

and approximately fifteen neonates, the test was terminated; this generally occurred on 

day 6 or 7. C. dubia was fed daily with Selenastrum capricomutum and TCY (Trout 

chow-Cerophyl-Yeast) digest, both prepared in accordance with EPA protocols. 

Four sets of data were collected from the 7-day tests: P. promelas survival 

and growth, and C. dubia survival and reproduction. Each set of data was statistically 

analyzed using TOXSTAT version 3.2 (Gulley 1990). An NOEC value for each 
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biomonitoring parameter was determined following the decision flowchart established 

by the EPA for statistical analysis of biomonitoring data (EPA 1989). 

The Microtox (MTX) assay system utilizes lyophilized marine bacteria (P. 

phosporeum) which emit light upon rehydration. All samples were osmotically 

adjusted to 2% sodium chloride with either Microtox Osmotic Adjustment Solution 

(MOAS) or solid sodium chloride to accomodate the osmotic requirements of the 

marine P. phosphoreum. Each subsample was initially screened at 91% effluent. 

Effluent dilutions were created using aliquots from each of the three subsamples. All 

samples were adjusted using MOAS for an excess of dilution at 91% or 98% effluent. 

Subsequent dilutions were made using the excess. Twenty microliters of reagent, 

which contained millions of bacterial cells, were added to 1ml of test dilution, with 

four replicates per dilution. Each cuvette was incubated at 15° C for five and 15 

minutes after exposure prior to measurement of phosphorescent light output. Raw 

light values and all pertinent information were recorded on the Microtox data sheet 

designed in the lab (Appendix). Raw light values were entered into TOXSTAT 

version 3.2 (Gulley 1990) for calculation of mean light values per dilution. 

TOXST AT was further used for analysis of MTX NOEC following the EPA decision 

flowchart (EPA 1989). Mean light values generated by TOXSTAT were also entered 

into the MTX software to establish EC50 values. 

Two different methods were explored in analyzing the MTX EC50/ MTX 

NOEC data versus the 7-day NOEC data. First we applied a binary approach of 

toxicity identification and compared the percent agreement and disagreements between 

different tests. Second we ranked and correlated the data using Pearsons's correlation 

The first approach was to designate whether the MTX endpoint indicating the 
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flowchart (EPA 1989). Mean light values generated by TOXSTAT were also entered 

into the MTX software to establish EC50 values. 

Two different methods were explored in analyzing the MTX EC50/ MTX 

NOEC data versus the 7-day NOEC data. First we applied a binary approach of 

toxicity identification and compared the percent agreement and disagreements between 

different tests. Second we ranked and correlated the data using Pearsons's correlation. 

The first approach was to designate whether the MTX endpoint indicating the 
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presence or absence of toxicity was in agreement with the presence or absence of 

toxicity as indicated by the traditional organisms. The data was further categorized as 

to the presence or absence of toxicity as indicated by the MTX endpoint. This 

provided four categories of data: Agree - Toxic, Agree - Nontoxic, Disagree - Toxic 

to MTX, Disagree- Nontoxic to MTX. This approach identified samples as toxic 

whenever the endpoint was less than 100% effluent (or the highest concentration 

tested). 

Ranking the data prior to statistical work was essential due to the different 

ranges of sensitivity expressed by the different organisms. Systat version 5.02 (Systat 

1993) was used to rank and correlate the data. The Pearson's test was chosen to 

provide a correlational value based on the organization of the ranks in respect to the 

various categories. The data were ranked in the following categories: MTX EC50 

subsample 1; 2; and 3; low MTX EC50; high MTX EC50; MTX NOEC subsample 1; 

2; and 3; low MTX NOEC; high MTX NOEC; P. promelas survival; P. promelas 

growth; C. dubia survival; C. dubia reproduction; 7-day low; and 7-day high. 
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CHAPTER 4 

MANUSCRIPT 

INTRODUCTION 

The Microtox (MTX) assay system has been used in a wide variety of aquatic 

applications to determine the concentration of a toxicant which causes a 50 percent 

reduction in phosphorescence (EC50). Microtox EC50 data for organic compounds 

have been favorably compared to acute lethality toxicity tests using fish and Daphnia 

(Qureshi et al. 1982, Cronin et al. 1991). Even better comparisons have been made 

for complex effluents and process waters tested simultaneously with standard fish or 

Daphnia toxicity tests (Kovacs and Voss 1992, Vasseur et al. 1986, Vasseur et al. 

1984, Bulich 1982, Qureshi et al. 1982, Dutka and Kwan 1981, Lebsack et al. 1981). 

Munkittrick et al. (1991) provide a good summary of over 70 comparative studies 

performed with MTX EC50 and Daphnia, Oncorhynchus myldss, and/or Pimephales 

promelas acute lethality bioassays. The studies found MTX to be more or as sensitive 

to pure organic chemicals as the higher organisms. Microtox was found to be less 

sensitive than the higher organisms to most inorganics. Overall, MTX correlation 

with other organismal tests and its sensitivity appeared to improve as the complexity 

and toxicity of industrial effluents increased. These comparative studies suggested that 

the MTX assay might be useful as an exploratory screening tool in the hazard 

assessment of chemicals or effluents (De Zwart and Slooff 1983, Firth and Backman 
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1990). Researchers (Vasseur et al. 1986, Casseri et al. 1983) have expounded upon 

the potential for MTX in evaluating the toxicity of, and treatment techniques for, 

complex industrial wastewaters. This substantial work supported Bulich and Isenberg 

(1980) who stated that MTX was a useful bioassay when applied in the analysis of 

acute toxicity. 

Some investigators have found that the MTX EC50 does not work for some 

applications (Mazidji 1990). However, little work has been done with MTX and 

chronic or sublethal toxicity. The Southern California Coastal Water Research Project 

(SCCWRP) in their 1987 annual report noted that expressing MTX toxicity in terms of 

the "no observed effect concentration" (NOEC) made the test much more sensitive to 

toxicants than evaluation with the EC50. This apparent increase in sensitivity was the 

result of using the endpoint of the first treatment that was not significantly greater in 

light inhibition than that of the control (NOEC) rather than the conventional 50% light 

inhibition (EC50). While no one organism can effectively indicate all possible 

toxicants, the benefits of a rapid screening system such as Microtox cannot be 

overlooked and, when possible, its potential should be explored. 

The Water Quality Research Laboratory (WQRL) of Oklahoma State 

University has been conducting acute toxicity tests for over 20 years and the seven-day 

toxicity tests involving Ceriodaphnia dubia and P. promelas for the past six years. In 

these tests NOEC values were generated as an endpoint which could be statistically 

tested for significance. These seven-day tests were designed to provide chronic and 

sublethal toxicity estimates by evaluating C. dubia survival and reproduction and P. 

promelas survival and growth. Many of the effluents tested by the WQRL staff did 

not produce significant effects upon the higher organisms until day 6 or 7. It was our 
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desire to determine the potential of the MTX assay for rapidly predicting trends in 

toxicity of these effluents. 

Preliminary work led us to believe that the MTX NOEC would be more 

useful than the MTX EC50 as a surrogate index of potential chronic toxicity and 

sublethal toxicity to the higher organisms. This work suggested that the MTX EC50 

might be the best method for evaluating potential acute toxicity. Based upon these 

observations our aim was to evaluate whether the MTX NOEC endpoint would be an 

improvement over the MTX EC50 endpoint for predicting toxicity of wastewater 

samples. Chronic/acute toxicity was evaluated by comparing MTX results with C. 

dubia and P. promelas survival. Sublethal toxicity was evaluated by comparing MTX 

results with C. dubia reproduction and P. promelas growth. We analyzed the MTX 

data by running statistical tests for significant reductions in light output of treatments 

when compared to a control, analogous to the procedure used in calculating NOEC 

values for C. dubia and P. promelas. Organismal mortality may not exceed 50% in 

conventional toxicity tests. However, there may still be a statistically significant 

reduction in survival when compared to the control. We suspected MTX EC50 was 

not adequate since values greater than 100% effluent (considered non-toxic) had been 

measured on several wastewater samples, yet survival of C. dubia and P. promelas 

was affected in the seven-day tests. In many of these cases, a trend of increased light 

inhibition with increased effluent concentration was observed with the bacteria. We 

chose to modify Microbics' Microtox 100% assay slightly (increased the number of 

replicates to 4) and analyze the data for a NOEC endpoint according to the protocol 

outlined in EPA/600/4-811001 for P. promelas survival. We made comparisons 
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between MTX EC50, MTX NOEC and NOECs of the traditional organisms. A total 

of 53 wastewaters were tested representing 34 oil refinery effluents, 14 municipal 

effluents, two industrial effluents, and three cooling tower effluents. 

METHODS AND MATERIALS 

Microtox Assay 

The MTX bacteria, Photobacterium phosphoreum, is a marine organism which 

would be osmotically stressed by exposure to freshwater. All of the wastewater 

samples were derived from freshwater sources and were osmotically adjusted to 2% 

sodium chloride. This was performed using either Microtox Osmotic Adjustment 

Solution (MOAS), allowing a maximum dilution of 91%, or solid sodium chloride, 

allowing a maximum dilution of 98%. 

Generally, once effluent samples had been warmed and the dissolved oxygen 

(D.O.) adjusted for the 7-day tests, an aliquot was collected for MTX analysis. 

Before subjecting a sample to the complete MTX test, it was osmotically adjusted to 

91 % in duplicate then screened for toxicity. This procedure is described in the 

Microtox manual as the 90% screen protocol (Microbics 1992a). Light values were 

compared to the screening reference table (Table 1) constructed at WQRL for aid in 

choosing the appropriate dilution scheme. When the initial concentration was very 

low(..$. 22%), a stock dilution of 91% was created and subsequent dilutions were 

made from the stock. Dilutions and controls were then prepared using Microtox 

diluent and following the Microbics 100% assay with the exceptions of dilution 

concentrations prepared and test dilutions were performed in quadruplicate. The raw 
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light values to be used for statistical analysis were collected at 5 minutes of exposure 

using a Microtox Model #500. 

Microtox Data Analysis 

The raw light values generated by the MTX 500 were entered into Toxstat 

software, Version 3.2 (Gulley 1990) to determine mean values and data distribution. 

Toxstat was further used to calculate a MTX NOEC by testing for significant 

differences between treatments and controls following the decision flowchart 

established by the EPA for statistical analysis of biomonitoring data (EPA, 1989). 

Mean light values generated by Toxstat were also entered into the MTX software to 

establish EC50 values. 

Conventional C. dubia and P. promelas Assays 

Seven-day static renewal biomonitoring was conducted on C. dubia and P. 

promelas according to procedures outlined by the EPA (EPA 1989). Test dilutions 

were created based upon requirements for individual National Pollutant Discharge 

Elimination Systems (NPDES) permits. Most dilution schemes for a particular 

effluent were identical for both C. dubia and P. promelas. Both organisms were 

cultured in laboratory, collected and exposed to dilutions at < 24 hours old with an 

eight hour span for collecting C. dubia. Organisms were kept in constant temperature 

rooms of 25°C + 1.5. P. promelas was fed twice daily with live brine shrimp 

cultured in laboratory. C. dubia was fed once daily with Selenastrum capricomutum 

and TCY (Trout chow-Cerophyl-Yeast) digest, both prepared in laboratory. C. dubia 
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tests were terminated once controls had 3 broods and an average of 15 neonates, this 

usually occurred by day 6 or 7. P. promelas tests were terminated on day 7, when 

the surviving fish were killed by thermal shock in an ice bath, removed, dried and 

weighed. NOECs were calculated for P. promelas survival and growth and C. dubia 

survival and reproduction and tested for significance at p=0.05. Acute 48 hour 

toxicity was determined for each sample by graphing percent survival vs. log-percent 

effluent volume for interpolation of median lethal concentration (LC50) values. 

Final Data Analysis 

Each seven-day test required three sub-samples of composite effluent. Each of 

these sub-samples was subjected to the Microtox assay. This resulted in the 

generation of three response values for each Microtox endpoint and only one from 

each of the four biomonitoring parameters. Samples were considered toxic to an 

organism when the NOEC or EC50 value was lower than 100% or the highest dilution 

tested. 

Initial analysis of the data was done using a binary system: Toxic, non-toxic. 

We compared the percent agreement between the toxic response of MTX and the 

7-day parameters. Samples were considered in agreement when the presence/absence 

of toxicity was confirmed by the MTX endpoint and the 7-day parameters. If the 

MTX endpoint indicated no toxicity was present and even one of the 7-day parameters 

indicated a toxic response, then the two tests were considered to disagree. If the 

MTX endpoint indicated toxicity, only one of the parameters needed to indicate 

toxicity in order for the tests to be considered in agreement. 

Statistical anaylsis of data was performed using Systat version 5.02 (Systat 
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1993). Data were ranked by SYSTAT in the following categories: MTX EC50 

subsample 1, 2, and 3; MTX EC50 low; MTX EC50 high; MTX NOEC subsample 1, 

2, and 3; MTX NOEC low; MTX NOEC high; P. promelas survival; P. promelas 

growth; C. dubia survival; C. dubia reproduction; traditional organism low; and 

traditional organism high. Systat was then used to perform a Pearson correlation. 

Each reported correlation coefficient is significant at p _$_ 0.05. When a NOEC value 

was reported as "less than", the value following the symbol was used for data analysis 

(e.g. < 10 was analyzed as 10). 

RESULTS AND DISCUSSION 

Percent Agreement/Disagreements 

A total of 53 wastewater samples were analyzed using all three toxicity tests 

(Table 2). When analyzing the tests strictly for the presence of toxicity the results for 

MTX NOEC are encouraging and reflect values from the literature. The MTX NOEC 

percent agreements are very similar to those found by Bulich (1982) and Dutka and 

Kwan (1981) when studying MTX EC50 and acute toxicity of complex wastes. Bulich 

found a 78% agreement between fish and MTX and a 63% agreement between 

Daphnia and MTX. Dutka and Kwan reported MTX agreed to toxicity found in 81% 

of effluents toxic to P. promelas and agreed 62% with Daphnia. 

Figure 1 represents comparisons between the two MTX endpoints and the 

higher organismal parameters. MTX EC50 agreed to the presence of toxicity in only 

30% of the tests when compared simultaneously to C. dubia and P. promelas 

parameters. Individual comparisons between MTX EC50 and C. dubia or P. 
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promelas data yielded better agreements (43% and 50%, respectively). When the 

MTX NOEC was compared to that for the higher organisms, 79% of the tests agreed 

(62% vs. C. dubia and 79% vs. P. promelas). This large increase in agreement can 

be linked directly to the apparent increase in sensitivity of MTX as a result of using 

the NOEC. 

The samples with which MTX EC50 disagreed were all nontoxic according to 

MTX EC50. However, all of these samples were toxic in some degree to at least one 

of the 7-day parameters. MTX EC50 was not sufficiently sensitive to predict toxicity 

for these effluents. 

When MTX EC50 indicated a sample was toxic, toxicity was also observed 

with at least one of the 7-day parameters. When MTX EC50 indicated toxicity was 

present in the first of three subsamples, 48 hour toxicity (LC50 < 100%) was also 

observed with the C. dubia and/or P. promelas survival. However, not all acute 

toxicity observed with C. dubia and P. promelas corresponded with MTX EC50 

toxicity. Therefore in several tests MTX EC50 was not sensitive enough, even to 

acute toxicity, to detect effects deleterious to the higher organisms. 

Statistics 

One major drawback to the use of the NOEC method is the limitation imposed 

on the results by the dilution /concentration scheme chosen. The EC50 allows for an 

extrapolation to the concentration at which 50% inhibition occurred. Since the NOEC 

simply compares each concentration to the control, it can only reflect values from the 

chosen concentrations. The tighter the dilution scheme chosen, the more closely the 

NOEC represents the concentration at which no significant adverse biological effects 
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occur. 

Consistently, analysis of P. promelas survival and growth vs. MTX NOEC, 

second subsample (MTX NOEC2), generated the highest correlations of all statistical 

comparisons (Table III). When all tested samples were ranked, the correlations 

between MTX NOEC2 and P. promelas survival and growth were at their lowest 

(0. 773 and 0. 754, respectively). We were not satisfied that the dilution schemes 

chosen represented the most refined case possible. Therefore, we eliminated all 

samples with a MTX NOEC of 45% and a dilution scheme represented by a dilution 

factor of 2 resulting in dilutions of 91, 45, 22 and 11%. This indicated a potentially 

large gap between the derived NOEC and the concentration at which no significant 

adverse biological effects would occur in nature. The correlations between the MTX 

NOEC2 and P. promelas survival and P. promelas growth increased to 0. 799 and 

0.795, respectively. Finally, we ranked only the tests from ID # 91044 to 91090 for 

which dilution schemes were specifically designed to be tight and got correlations of 

0.848 and 0.845 (Table IV). This last step eliminated 7 of the 12 samples in which 

MTX NOEC and P. promelas did not agree concerning the presence of toxicity. The 

final total of 21 samples represented 15 refinery effluents, four municipal effluents, 

and two cooling tower waters. It is obvious from these statistics that the concentration 

scheme chosen plays a significant role in the utility of the NOEC method. Since no 

correlations were found between the municipal MTX EC50/MTX NOEC vs. 

municipal 7-day parameters, and the number of cooling tower effluents tested was 

insignificant, the high correlations were considered unique for refinery effluents. 

There was an increased representation of refinery effluents in the final 

comparisons, the correlation coefficients for refinery samples alone were 0. 757 and 
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0.733 for MTX NOEC2 vs. P. promelas survival and growth (Table V). When the 

tighter dilution schemes were chosen within the refinery samples, the correlation 

values increased to 0.837 for both MTX NOEC2 vs. P. promelas survival and vs. 

growth (Table VI). The WQRL has identified the major contaminants in these 

effluents as non-polar organics which can either be eliminated or significantly reduced 

by non-polar adsorbents such as activated carbon treatment (Helems 1993). 

The MTX vs. P. promelas values were somewhat lower than the correlation 

value of 0.97 reported by Lebsack et al. (1981) for MTX EC50 versus 24-hour static 

P. promelas tests. However, Lebsack worked with oil shale retort waters that are 

generally more toxic than a final effluent from a secondary wastewater treatment 

system so that the decreased correlation would be expected, according to Munkittrick 

et al. (1991). 

MTX NOEC indicated the correct toxic response of C. dubia in 62% of the 

samples; however, the degree of response within these samples was not strongly 

correlated. A total of 35 MTX NOEC test results compared with C. dubia 

parameters agreed with respect to the presence/absence of toxicity. When these 35 

tests were analyzed, the highest correlation (0.614) was generated between MTX 

NOEC third subsample and C. dubia reproduction. Based on other statistical analyses 

very few correlations were found between MTX NOEC and C. dubia parameters and 

most of those were weak correlates (Tables III and IV). 

When comparing MTX to the 7-day test results, it became evident that the 

relationship between MTX and P. promelas was more reliable for these samples than 

that between MTX and C. dubia. P. promelas parameters were found to be the most 
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sensitive measures of toxicity in this collection of samples. When all 53 samples were 

considered, P. promelas survival and growth correlated strongly (0.868 and 0.897, 

respectively) with the lowest values generated from all 7-day parameters. 

In all statistical analyses of MTX and P. promelas parameters the MTX 

NOEC correlations were much higher than the MTX EC50. The highest value 

demonstrated by MTX EC50 (0.521) represents a comparison between MTX EC501 

and P. promelas growth when all samples with MTX NOEC dilution schemes of 91, 

45, 22 and 11% were removed from ranking. However, this would not be a 

legitimate statistical consideration for MTX EC50 since a refined dilution scheme 

would only directly affect MTX NOEC. When all data were considered (fable III), 

the highest MTX EC50 correlation (0.476) was a comparison between MTX EC50, of 

the first subsample, and P. promelas growth. Thus the MTX NOEC increased the 

apparent sensitivity of the system. 

Despite the low correlations between MTX EC50 and the higher organismal 

parameters, they were still higher than correlations calculated for C. dubia and P. 

promelas parameters. When all samples were considered, a comparison of survival 

between the two species yielded a correlation of 0.305, and the comparison between 

the sublethal effects of reproduction and growth yielded a correlation of 0.410. 

These values did not alter significantly when samples were regrouped for statistical 

purposes. 

MTX NOEC second subsample results consistently correlated most strongly 

with P. promelas parameters. Although these values did not tend to be much higher 

than the correlations with sub sample 1, the correlations with subsample 3 were always 
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the lowest values. Perhaps P. promelas, at a vulnerable stage, became sensitized by 

the first subsample so that the effect of the second subsample was intensified. The 

lower correlations with the third subsample simply show that the quality of this 

subsample was not as significant to the health of the organism as the second 

subsample. This relationship was not seen between MTX EC50 and 7-day parameters. 

It is noteworthy that in several tests, MTX indicated toxicity in only one of the 

three sub-samples for an effluent that resulted in toxicity in the 7-day parameters. 

Seven-day test results have very little power to discriminate between the individual 

toxic effects of subsamples. 

CONCLUSIONS 

The binary system of toxicity analysis resulted in mostly consistent comparisons 

between MTX NOEC and P. promelas parameters (79% of samples in agreement) and 

C. dubia parameters (62% of samples in agreement). These numbers are adequate if 

the only concern is the existence of toxicity for further consideration. However, the 

binary system did not allow exploration as to the degree of toxicity present. This was 

done by statistical analysis at a significance level of p ~ 0.05. 

C. dubia and P. promelas do not respond with the same sensitivity to all 

complex mixtures. Likewise, Microtox does not respond with the same sensitivity as 

other organisms to all complex mixtures. When MTX EC50 values were used, the 

highest correlation between MTX and the 7-day test results, represented by P. 

promelas growth, was 0.476. However, when MTX NOEC values were used, the 

highest correlation between MTX and the 7-day NOEC values, represented by P. 
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promelas survival, was 0.848. MTX NOEC increased the apparent sensitivity of the 

assay while retaining all the benefits of the traditional Microtox assay. Only minor 

changes in assay procedure were necessary and the data could be analyzed by the 

same statistical procedure currently used with the C. dubia and P. promelas 7-day 

tests. 

The addition of the NOEC method to the MTX system increases the utility of 

the assay. This method may minimize the need to concentrate toxicants in order to 

initiate bioluminescent inhibition as has been suggested by previous research (Dutka et 

al. 1986, 1988a, b, and Ribo et al. 1985). However, the dilution scheme must be 

chosen carefully in order to get as accurate a biological NOEC as possible. We 

recommend the WQRL screening chart (fable I ) for initial work, which may be 

further tailored to individual needs. 

Our data confirm the importance of multi-species tests as no one species can 

predict all possible toxicants. Therefore, MTX NOEC can be a valuable complement 

to standard biomonitoring. The rapid, easy, cost efficient assay can be used to screen 

effluents prior to more lengthy and costly tests, as well as allowing analysis of samples 

which otherwise could not be run due to number or volume constraints. 

The MTX NOEC method used by WQRL requires stringent pipetting practices 

and may be unsuitable for some laboratories. Microbics has recently developed a 

MTX NOEC protocol (Microbics 1992b) that is appropriate for technicians 

uncomfortable with the rigorous demands of small volume pipettors. 
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TABLE I 

MICROTOX SCREENING REFERENCE TABLEa 

Avg. Light Value 
of91% 

80- > woe 
58 -79 
46-57 
34- 45 
21- 33 
8-20 
0-7 

Initial 
Concentration 

98 
91 
98 
91 
45 
22 

Screen at 1.8% 

Number of 
Dilutionsb 

3 
4 
6 
8 
4 
6 

iLfhis table is designed to obtain EC50 and NOEC values concurrently. 

Dilution 
Factor 

1.5 
1.5 
2 
2 
2 
2 

bEffluents with slopes > 1 may not require as many dilutions. Effluents with slopes < 1 may require 
more dilutions. 

cEC50 values will be > 100% effluent. 
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Type ID# 

R 90131 
N 90135 
R 90139 
E 90140 
N 90141 
R 90142 
R 91006 
R 91007 
M 91012 
M 91013 
M 91014 
R 91016 
R 91017 
R 91020 
R 91021 
M 91023 
M 91024 
M 91025 
R 91026 
R 91027 
R 91028 
R 91030 
R 91031 

TABLE II 

ORGANISMAL RESPONSE TO COMPLEX EFFLUENT SAMPLES MONITORED 
FROM NOVEMBER 1990 TO OCTOBER 1991 

Microtox EC50 (%) Microtox NOEC (%) Bioassay NOEC (%) 
#1 #2 #3 #1 #2 #3 FHS FHG cs 

>100 >100 >100 11 <30 12 43 43 95 
>100 >100 >100 11 22 22 73 30 100 
>100 >100 >100 22 11 45 43 43 95 
>100 >100 >100 <11 11 22 100 100 100 
>100 >100 >100 45 45 45 85 73 100 
68 45 37 5.5 <3.8 2.8 12.5 <12.5 48 

>100 >100 >100 91 91 91 100 100 100 
8.4 11 12 <2.8 <2.8 <2.8 10 <10 <10 

>100 >100 >100 91 91 91 100 100 100 
>100 >100 9.7 91 91 <2.8 100 100 10 
>100 >100 >100 91 91 91 100 100 74 
>100 >100 >100 22 45 45 43 <43 95* 
33 >100 >100 91 91 91 100 100 100 
75 61 71 2.8 2.8 <2.8 <10 <10 48 

>100 >100 >100 91 91 91 100 25 100 
>100 >100 >100 91 91 91 100 100 100 
>100 >100 >100 91 91 91 100 100 100 
>100 >100 >100 91 91 91 100 100 50 
>100 I >100 22 45 11 40 40 100 
>100 >100 >100 22 45 22 52 43 95* 
>100 >100 >100 91 91 91 100 100 100 

92 91 >100 5.6 2.8 11 12.5 <10 48 
>100 I >100 91 91 91 100 100 65 

R=Refinery, M=Municipality, E=Eiectric generating facility cooling tower, N=lndustry, !=Insufficient data. 

CR 

63 
85 
95 
100 
100 
12.5 
100 
<10 
100 
10 
74 
52 
77 
10 
25 
100 
100 
50 
100 
77 
100 
25 
48 



TABLE II CONTINUED 

Microtox EC50(%) Mtx NOEC (%) Bioassay NOEC (%) 
Type 10# #1 #2 #3 #1 #2 #3 FHS FHG cs CR 

M 91032 >100 >100 >100 91 45 45 100 100 50 50 
M 91035 >100 >100 >100 91 91 91 100 100 69 69 
M 91036 >100 >100 >100 91 22 91 100 100 75 75 
M 91037 >100 >100 >100 91 91 91 100 100 100 100 
R 91038 86 72 >100 11 2.8 22 10 10 63 43 
R 91039 >100 >100 >100 91 45 91 2.4 2.4 50 25 
R 91040 >100 >100 >100 91 91 91 50 50 25 25 
R 91042 I I >100 22 45 22 25 12.5 65 25 
R 91044 >100 >100 >100 45 45 60 40 40 100 100 
R 91048 >100 >100 >100 11 22 22 12.5 12.5 48 25 
R 91049 87 71 71 7.9 7.9 <5.3 10 10 100 100 
R 91054 >100 >100 >100 27 40 27 55 40 100 70 
E 91055 >100 >100 >100 98 98 90 100 100 100 30 
R 91057 >100 >100 >100 27 <27 27 10 10 100 100 
E 91058 >100 >100 >100 98 98 65 100 100 100 100 
M 91059 >100 >100 >100 44 98 98 100 100 75 75 
R 91061 >100 >100 >100 27 60 18 25 25 65 65 
M 91063 >100 >100 >100 98 98 98 60 41 60 60 
R 91064 96 I 82 1.4 11 2.8 10 10 100 63 
M 91065 >100 >100 >100 98 98 67 100 100 50 50 
R 91067 >100 99 64 11 11 2.8 <40 <40 100 55 
R 91073 >100 >100 >100 13 11 27 25 25 65 25 
R 91074 >100 >100 >100 11 2.8 5.6 10 10 95 77 
R 91075 >100 >100 >100 5.6 5.6 2.8 10 10 <10 <10 
R 91077 >100 >100 >100 27 40 27 12.5 12.5 65 25 
M 91079 >100 >100 >100 98 65 98 100 100 75 75 
R 91082 >100 >100 >100 27 5.6 27 10 10 95 43 
R 91086 >100 >100 >100 19 29 19 25 25 48 25 
R 91089 >100 >100 >100 27 27 27 10 10 95 95 
R 91090 >100 >100 >100 18 27 27 12.5 12.5 65 48 

. . .. R=Refinery, M=Mumcrpality, E=Eiectnc generatrng facrhty cooling tower, N=lndustry, l=lnsufficrent data. 



MTXECSO MTXNOEC 

7-day parameters* 7-day parameters* 

C. dubia c. dubia 

P. promelas P. promelas 

•Agree- Toxic 
• Agree - Nontoxic 
D Disagree- Toxic to MTX 
~ Disagree - Nontoxic to MT X 

Figure 2. Percent agreement/disagreement between Microtox endpoints and 7-day 
parameters. *Includes both C. dubia and P. promelas tests. 
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TABLE III 

PEARSON'S R VALUES FOR CORRELATIONS* OF MICROTOX ENDPOINTS 
VERSUS 7-DAY PARAMETERS USING ALL SAMPLES 

7-DAY PARAMETER Subsamp1e MTX EC50 MTXNOEC 

P. promelas survival 1 0.463 0.734 
2 0.461 0.773 
3 # 0.668 

P. promelas growth 1 0.476 0.715 
2 0.465 0.754 
3 # 0.641 

C. dubia survival 1 0.337 # 
2 # # 
3 # # 

C. dubia reproduction 1 0.337 0.271 
2 0.328 0.273 
3 0.338 0.344 

#No correlation found 
*All correlation coefficients are significant (p ..S. 0. 05) 

38 



TABLE IV 

PEARSON'S R VALUES FOR CORRELATIONS* OF MICROTOX NOEC 
VERSUS P. promelas PARAMETERS USING SAMPLES 

REPRESENTING TIGHT DILUTION SCHEMES 

7-DAY PARAMETER 

P. promelas survival 

P. promelas growth 

Subsamp1e 

1 
2 
3 

1 
2 
3 

MTX NOEC 

0.748 
0.848 
0.713 

0.746 
0.845 
0.710 

*All correlation coefficients are significant (p ~ 0.05). No correlations were found between MTX 
ECSO and the 7-day parameters nor MTX NOEC vs. C. dubia parameters. 
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TABLE V 

PEARSON'S R VALUES FOR CORRELATIONS* OF MICROTOX ENDPOINTS 
VERSUS 7-DAY PARAMETERS USING ALL REFINERY SAMPLES 

7-DAY PARAMETER Subsample MTX EC50 MTX NOEC 

P. promelas survival 1 0.431 0.587 
2 0.392 0.757 
3 # 0.576 

P. promelas growth 1 0.460 0.556 
2 0.410 0.733 
3 # 0.550 

C. dubia survival 1 0.395 0.342 
2 # 0.355 
3 # # 

C. dubia reproduction 1 0.373 0.386 
2 # 0.349 
3 # # 

#No correlation found 
*All correlation coefficients are significant (p..::;,. 0.05) 
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TABLE VI 

PEARSON'S R VALUES FOR CORRELATIONS* OF MICROTOX ENDPOINTS 
VERSUS 7-DAY PARAMETERS USING REFINERY SAMPLES 

WITH TIGHT DILUTION SCHEMES 

7-DAY PARAMETER Subsample MTX EC50 MTXNOEC 

P. promelas survival 1 0.469 0.731 
2 0.421 0.837 
3 # 0.689 

P. promelas growth 1 0.506 0.721 
2 0.444 0.837 
3 # 0.662 

C. dubia survival 1 0.412 0.393 
2 # 0.408 
3 # # 

C. dubia reproduction 1 0.389 0.468 
2 0.364 0.419 
3 # 0.409 

#No correlation found 
*All correlation coefficients are significant (p ..S. 0. 05) 
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CHAPTER 5 

RESULTS AND DISCUSSION 

Munkittrick et al. (1991) expressed concern over the number of studies whose 

sole analysis was based on a binary system of toxic/nontoxic comparisons. However, 

a binary approach does offer important information in the initial screening or 

prescreening of samples. Therefore, we chose to use the binary approach in 

conjunction with statistical analysis. The results of this study have shown that no 

correlaton exists between MTX NOEC and C. dubia NOEC. This does not negate 

the objective of the study as C. dubia was less sensitive than P. promelas to this 

particular group of effluents. 

When MTX EC50 values were used for evaluation, the highest correlation 

between MTX and the 7-day test results, represented by P. promelas growth, was 

0.476. Therefore MTX EC50 could not be considered an adequate measure of 

toxicity for these effluents. When MTX NOEC values were used, the highest 

correlation between MTX and the 7-day NOEC values, represented by P. promelas 

survival, was 0. 848. MTX NOEC increased the apparent sensitivity of the assay 

while retaining all the benefits of the traditional MTX assay. 

Disadvantages 

It was noted during our study that when mean values generated by Toxstat 
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were used to calculate the MTX EC50 the Cis were slightly larger than when the raw 

light values were directly entered into the MTX software. This coupled with an 

increased CI due to the use of the 100% method (Tarkpea and Hansson 1988) may 

prove to weaken the value of the EC50 generated from the proposed testing. 

Microbics (1992a) stresses that a tight CI may be maintained with strict attention to 

pipetting practices. The 100% method relies upon pipetting of very small volumes 

(lOul) which might account for the loss of confidence between the two methods. 

Microbics has recently developed a MTX NOEC protocol (Microbics 1992b) that is 

appropriate for technicians uncomfortable with the rigorous demands of small volume 

pipettors. Unfortunately, the increased number of pipette transfers involved in the 

Microbics NOEC method may prove to introduce just as much error as the small 

volume WQRL NOEC method. 

Advantages 

It is noteworthy that in several tests, MTX indicated toxicity in only one of the 

three sub-samples for an effluent that resulted in toxicity in the 7-day parameters. 

Seven-day test results have very little power to discriminate between the individual 

toxic effects of subsamples. 

MTX has been widely used because it is a rapid, cost-efficient biomonitoring 

assay that requires only small volumes of sample. The organism on which MTX 

depends is lyophilized so that there is no maintenance of living organisms between 

testing periods. The addition of the MTX NOEC method increases the usefulness and 

therefore, benefits of the assay. 
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Recommendations for Future Research 

Before the MTX NOEC can be used in decision making, comparisons need to 

be performed between MTX NOEC and the NOECs of P. promelas and C. dubia of a 

particular effluent. Since MTX relies on a marine bacterium, a relationship must be 

documented between MTX sensitivity and the sensitivity of standard biomonitoring 

organisms before decisions can be made based upon MTX response to freshwater 

effluents. There is no way of knowing how the addition of ionic substances are going 

to affect the toxicity of chemicals present in the effluent. Therefore, we do not 

recommend that MTX be considered as a substitute for the standard organismal 

bioassays. We do recommend that it be used as a complement to the standard 

bioassays or for screening when further work is hindered by time or sample numbers 

(as in Toxicity Reduction Evaluation (TRE) work). 

We recommend that future MTX NOEC work concentrate on defining tight 

dilution schemes for all organisms. Software programs should be used independently 

of each other unless Microbics develops software for analysis of EC50 and NOEC 

jointly. 
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APPENDIX A 

MICROTOX DATA COLLECTION SHEET 

MICROTOX DATA SHEET 

Microtox File Name. ________ _ 
Toxstat File Name ________ __ 

sample I.D. Company~-----------------
Sample I 
Replicat~i-o_n_s ____________ ___ Date Sample~R7e7c7eT~v~e~d~---------

Date Sample Run ______________ _ 

PARAMETERS: 
Number of Dilutions: Units: 
Initial Concentratio-n_: ____ _ Ionic ~A~d~J~u7st~m~e~n~t~=--------------

Dilution Factor: ________ __ Procedure: __________________ __ 

It 

Oil. Blank 

Rep. 1 2 3 4 5 6 7 8 

A 

B 

c 
D 

It 

Oil. Blank 

Rep. 1 2 3 4 5 6 7 8 

A 

B 

c 
D 

It 

Oil. Blank 

Rep. 1 2 3 4 5 6 7 8 

A 

B 

c 
D 
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APPENDIX B 

ACUTE ORGANISMAL RESPONSE TO COMPLEX EFFLUENT SAMPLES 
MONITORED FROM NOVEMBER 1990 TO OCTOBER 1991 

45tlrLC:'lO 24nrLC:'lO 
Type 10# ID# FS cs FS cs 

R 90131 >100 >100 >100 >100 
N 90135 86 >100 >100 >100 
R 90139 >100 >100 >100 >100 
E 90140 >100 >100 >100 >100 
N 90141 >100 >100 >100 >100 
R 90142 35 55 64 58 
R 91006 >100 >100 >100 >100 
R 91007 32 <10 34 16 
M 91012 >100 >100 >100 >100 
M 91013 >100 >100 >100 >100 
M 91014 >100 >100 >100 >100 
R 91016 >100 >100 >100 >100 
R 91017 >100 >100 >100 >100 
R 91020 56 S7 74 >100 
R 91021 >100 >100 >100 >100 
M 91023 >100 >100 >100 >100 
M 91024 >100 >100 >100 >100 
M 91025 >100 82 >100 >100 
R 91026 >100 >100 >100 >100 
R 91027 86 >100 >100 >100 
R 91028 >100 >100 >100 >100 
R 91030 66 56 76 56 
R 91031 >100 82 >100 82 
M 91032 >100 75 >100 92 
M 91035 >100 >100 >100 >100 
M 91036 >100 >100 >100 >100 
M 91037 >100 >100 >100 >100 
R 91038 40 80 54 >100 
R 91039 >100 74 >100 >100 
R 91040 94 35 >100 35 
R 91042 76 70 80 70 
R 91044 >100 >100 >100 >100 
R 91048 54 62 60 62 
R 91049 60 >100 62 >100 
R 91054 >100 >100 >100 >100 
E 91055 >100 >100 >100 >100 
R 91057 >100 >100 >100 >100 
E 91058 >100 >100 >100 >100 
M 91059 >100 >100 >100 >100 
R 91061 76 86 94 94 
M 91063 >100 >100 >100 >100 
R 91064 58 >100 64 >100 
M 91065 >100 84 >100 100 
R 91067 >100 >100 >100 >100 
R 91073 >100 90 >100 >100 
R 91074 >100 >100 >100 >100 
R 91075 93 82 >100 >100 
R 91on >100 82 >100 >100 
M 91079 >100 >100 >100 >100 
R 91082 95 >100 >100 >100 
R 91086 80 60 86 70 
R 91089 >100 >100 >100 >100 
R 91090 >100 80 >100 80 .. -R=Refinery, M=Munlcipality, E=Eiectric generating facility cooling tower, N-industry, 

l=in&ufficlent data. 
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APPENDIX C 

PEARSON'S R VALUES FOR CORRELATIONS* OF MICROTOX ENDPOINTS 
VERSUS 7-DAY PARAMETERS USING SAMPLES WITHOUT 

DILUTION FACTOR OF 2 AND NOEC OF 45% 

7-DAY PARAMETER Subsample MTX EC50 MTX NOEC 

P. promelas survival 1 0.504 0.789 
2 0.500 0.799 
3 # 0.715 

P. promelas growth 1 0.521 0.781 
2 0.504 0.795 
3 # 0.692 

C. dubia survival 1 0.354 # 
2 # # 
3 # # 

C. dubia reproduction 1 0.349 0.334 
2 0.341 0.317 
3 0.356 0.436 

#No correlation found 
*All correlation coefficients are significant (p ~ 0.05) 
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APPENDIX D 

PEARSON'S R VALUES FOR CORRELATIONS* OF MICROTOX NOEC 
VERSUS P. promelas PARAMETERS THAT AGREE TO 

PRESENCE/ ABSCENCE OF TOXICITY 

7-DAY PARAMETER 

P. promelas survival 

P. promelas growth 

#No correlation found 

Subsample 

1 
2 
3 

1 
2 
3 

•All correlation coefficients are significant (p ..$.. 0.05) 
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MTX NOEC 

0.728 
0.835 
0.718 

0.732 
0.841 
0.732 



APPENDIX E 

PEARSON'S R VALUES FOR CORRELATIONS* OF MICROTOX NOEC 
VERSUS C. dubia PARAMETERS THAT AGREE TO 

PRESENCE/ ABSCENCE OF TOXICITY 

7-DAY PARAMETER 

C. dubia survival 

C. dubia reproduction 

#No correlation found 

Subsample 

1 
2 
3 

1 
2 
3 

*All correlation coefficients are significant (p .$_ 0.05) 
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MTX NOEC 

# 
0.364 
0.444 

0.501 
0.542 
0.614 



APPENDIX F 

PEARSON'S R VALUES FOR CORRELATIONS* OF MICROTOX ENDPOINTS 
VERSUS 7-DAY PARAMETERS THAT AGREE TO PRESENCE/ 

ABSCENCE OF TOXICITY 

7-DAY PARAMETER Subsample MTX EC50 MTX NOEC 

P. promelas survival 1 0.458 0.695 
2 0.440 0.762 
3 # 0.602 

P. promelas growth 1 0.479 0.707 
2 0.454 0.774 
3 # 0.608 

C. dubia survival 1 0.370 # 
2 # 0.309 
3 # 0.353 

C. dubia reproduction 1 0.368 0.446 
2 0.360 0.448 
3 0.376 0.519 

#No correlation found 
*All correlation coefficients are significant (p ~ 0.05) 
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