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CHAPTER! 

INTRODUCTION 

Wholesale production of cut flowers and greens totaled over $419 million in 1993 

for the 36 states with greatest sales (USDA, 1994). Cut greens comprised $115 million 

and major species such as gladiolus, roses, carnations, and chrysanthemums contributed 

$147 million. 'Other species', which include specialty cuts, comprised $157 million. 

While Oklahoma cut flower sales totaled $9.3 million for 1989 (Arnett, personal 

communication), only $207 thousand in sales were actually produced within the state 

(USDA, 1994), demonstrating a significant deficit. Estimates for Oklahoma produced 

specialty cut flower sales in 1993 indicate an increase to approximately $400 thousand 

(J. Dole, personal communication). In addition, Oklahoma is ideally situated close to 

several large metropolitan areas which may serve as potential consumers of Oklahoma

produced specialty cut flowers. 

Interest in the production of specialty cut flowers is gaining among producers and 

consumers. The Association of Specialty Cut Flower Growers, a national organization 

devoted to the production of unique specialty cut flowers, has observed a 40% 

membership increase in 1992 (J. Laushman, personal communication). Oklahoma's 

neighboring state of Kansas had an estimated $10-12 million of specialty cut flower 

production in 1992 (A. Stevens, personal communication). Oklahoma has the potential 

for producing a variety of field-grown specialty cut flowers (Bratcher, 1992). Species of 
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special interest are listed below: 

Echinacea purpurea (L) Moensch (coneflower), is a native, early to mid-season flowering, 

herbaceous perennial with strong 1.5 to 3 ft stems and several pink, purple, or white 

daisy-like flowers. Coneflower is currently marketed as a dried flower, but is not 

common as a fresh cut flower. Helianthus maximilliani Schrad. (Maximillian's 

sunflower), is a native, late-season flowering, herbaceous perennial with 3 to 6 ft stems 

scattered with dozens of yellow daisy-like flowers creating a large spike. Penstemon 

digitalis Nutt. (beard's tongue) is a native, early-season flowering, herbaceous perennial 

with several tubular white to purple flowers on a spike. The cultivated annual Cosmos 

bipinnatus Cav. Ann. 'Sensation' (cosmos), flowers mid to late-season with 2 to 3 ft 

stems and pink, white, red, or purple daisy-like flowers. Celosia plumosa L.(celosia) is 

a cultivated, mid to late-season flowering annual with 1.5 to 2.5 ft stems and brilliant red, 

orange, and yellow plumes of tiny flowers. Achillea filipendulina Lam. 'Coronation 

Gold' (yarrow) a perennial, flowers early to mid-season with strong 2.5 to 3 ft stems 

terminating with flat clusters of yellow flowers. Cercis canadensis L. (eastern redbud), 

is a native, early-season flowering tree with pink or white pea-shaped flowers clustered 

along the stem. An early flowering shrub, Weigela sp. Thunb. (weigela), has loose 

clusters of tubular red, white, or pink flowers on long, straight stems. For mid to late

season flowering, Buddleia davidii Franch. (butterfly bush) produces fragrant dense spikes 

of small blue, pink, red, purple, or white flowers. 

A successful cut flower species must have the ability to withstand the various 

handling procedures throughout the market chain that can decrease vase life. The 
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marketing chain begins with harvest from the field. The cut flower is sold to the 

wholesaler and then passed on to local retail markets for sale to the consumer. A number 

of independent shippers and brokers may be involved at each stage. Throughout this 

marketing chain, the flower is potentially subjected to a number of abuses such as rough 

handling, poor quality water, and high temperatures which can accelerate senescence and 

decrease the quality and sales season duration of the flower. 

Cut flowers are usually harvested during the early morning hours while the flower 

is turgid and there is time to ship it either to the wholesaler or directly to the retail 

market. Cut flowers must have the capacity to withstand packaging, temperature 

extremes, and long-distance transport. 

Low temperature is the most important factor in the successful storage of cut 

flowers. A desirable cut flower should demonstrate the ability to undergo periods of cold 

storage, modified atmosphere storage, or low pressure storage. Low storage temperatures 

allow extended storage by slowing down floral senescence through a reduction in the rate 

of metabolic processes and bacterial growth (Nowak and Rudnicki, 1990; van Doom and 

de Witte, 1991). By storing cut flowers, the grower, wholesaler, or retailer maximizes 

the sales season. Cut flower species such as peony (Paeonia officina/is), gladiolus 

(Gladiolus sp), and snapdragon (Antirrhinum majus) may be stored dry up to four weeks, 

while tulips (Tulipa gesneriana) may be stored for up to eight weeks (Nowak and 

Rudnicki, 1990). Flowers may be stored dry, such as peony, tulip, or wet, as with freesia 

(Freesia sp.) and gerbera (Gerbera sp.) (Nowak and Rudnicki, 1990). Wet storage, the 

most common practice, is normally only short term (1 to 2 days) and dry storage is for 
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more than 3 days (Halevy and Mayak, 1981). 

To further extend the postharvest life, cut flowers may be subjected to various 

presetvative treatments which may contain silver thiosulfate (STS), 8-hydroxyquinoline 

citrate (8-HQC), and/or a carbohydrate source. Pretreatment or pulsing with STS inhibits 

the action of ethylene (Beyer, 1976; Joyce, 1988; Nowak, 1981; Nowak and Mynett, 

1985; Reid et al., 1980; Staby and Reid, 1980; Tingley and Prince, 1990; Veen and van 

de Geijn, 1978). Ethylene is produced throughout the life of the plant. Ethylene may 

affect flower initiation and development, senescence, and fruit development. In some 

species, once the flower stem is removed from the plant, the synthesis of ethylene may 

be enhanced, expediting flower senescence. Extensive work has been performed to 

determine the site of ethylene synthesis, mode of action, site of accumulation and control 

methods (Bufler et al., 1980; Gob et al., 1985; Reid and Wu, 1992; Whitehead et al., 

1984). Trace amounts of ethylene are produced by Cymbidium flowers when pollinia are 

removed which causes blushing of the labellum (anthocyanin accumulation) and flower 

senescence. Small quantities of ethylene can be responsible for initiating general 

senescence of the flower (Reid and Wu, 1992). Ethylene production typically consists 

of three distinct phases: (1) an initial low steady rate, (2) an accelerated rise to maximum 

emanation, and (3) a final decline in production (Halevy and Mayak, 1981). 

Cut flower species vary in sensitivity to ethylene. Cut flower species such as 

alstroemeria (Alstroemeria spp.), carnation (Dianthus caryophyllus), and delphinium 

(Delphinium hybrids) are sensitive while species such as anthurium (Anthurium 

andreanum) and tulip are not sensitive (Nowak and Rudnicki, 1990). Cut flower species 
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that respond to low exogenous concentrations of ethylene are those in which ethylene is 

naturally involved in senescence (Reid and Wu, 1992). Ethylene sensitivity may vary 

among cultivars. Rose cultivars exhibited a variety of responses to exogenous ethylene 

such as acceleration of flower opening, abscission, distortion, and inhibition of flower 

opening (Reid et al., 1989). Cut flower species that produce ethylene may affect the 

longevity of other ethylene-sensitive species during shipping or storage. 

Silver has long been recognized as the most effective measure to control ethylene 

action and limitation of vase life. Nowak (1981) confirmed the anti-ethylene effect of 

silver by observing that florets from snapdragon spikes treated with silver did not drop, 

but wilted and dried on the stem. Historically, silver nitrate was initially applied as an 

ethylene control measure. Researchers determined that the action and mobility of silver 

nitrate within the flower was greatly enhanced with the addition of sodium thiosulfate 

(V een and van de Geijn, 1978). The combination of these two compounds led to the 

development of the STS complex. Reid et al. (1980) confirmed the efficacy of STS in 

extending carnation vase life. Staby et al. (1993) demonstrated that STS reduced or 

completely inhibited the abscission of flowers from delphinium and Penstemon spp. 

(beard's tongue). STS is recognized as the most effective measure of reducing ethylene 

sensitivity and greatly increasing vase life. 

Treatment with 8-HQC prevents the accumulation of bacterial populations in the 

vase water (van Doom et al., 1990). Microorganisms may lead to an increase in 

enzymatic damage, disruption of plant cell membranes, ethylene production, and physical 

occlusion at the base of or in the stem causing premature flower wilting (Larsen and 
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romarty, 1967; Marousky, 1971; Marousky, 1980; van Doom et al., 1990; Zagory and 

;eid, 1986). 8-HQC may also effect flower longevity by acidifying the water which has 

een attributed to decreasing enzymatic activity and degradation of the xylem while 

mhancing solution uptake (Marousky, 1971 ). 

Carbohydrates are the primary source of nutrition and energy for the flower and 

are necessary for maintaining biochemical and physiological processes. Sugars support 

processes that are fundamental in prolonging vase life by maintaining mitochondrial 

structure and functions, improving water balance by regulating transpiration, and 

increasing water uptake (Halevy and Mayak, 1979; Nowak and Rudnicki, 1990). Leaf 

blackening of three Protea species during shipping and storage has been attributed to the 

postharvest inflorescence sink demand (McConchie and Lang, 1993). Postharvest 

treatments with a carbohydrate source is the most effective means to prevent leaf 

blackening. Han ( 1992) demonstrated that pulsing with concentrations of sucrose greater 

than 10% for 20 hrs improved the postharvest life of cut Liatris spicata (L) Willd. by 

increasing the length of inflorescence showing color and by prolonging the vase life of 

the spikes. 

Alcohols have been studied as a method to reduce ethylene sensitivity (Heins, 

1980; Paull and Goo, 1982; Saltveit, 1989; Saltveit and Mencarelli, 1988; Wu et al., 

1992). Continuous treatment with 8% ethanol doubled the vase life of 'White Sim' 

standard carnation flowers and almost no ethylene was produced by ethanol-treated 

flowers (Wu et al., 1992). However, Wu et al. (1992) did not compare ethanol to STS, 

the commercially accepted control of preventing ethylene action in extending the vase life 
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;arnations. Other possible characteristics of ethanol such as gennicidal properties were 

t examined. 

Nowak and Rudnicki (1990) anticipate that all ethylene sensitive flower species 

ill require treatment prior to entering international markets. However, STS is an 

xpensive, harmful heavy-metal environmental contaminant (Altman and Solomos, 1993). 

~lcohols may provide a single preservative treatment that is environmentally safe, less 

expensive, and easily made. Alcohols may replace STS and/or 8-HQC as preservatives. 
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Objectives 

The research presented has three objectives: 

to detennine the effects of storage temperature and duration, shipping duration, and 

~servatives on the postharvest life of nine field-produced cut flower species; 

) to determine the postharvest ethylene production and sensitivity of these cut flower 

pecies; 

J) to determine the effect of ethanol on ethylene synthesis and sensitivity, microbial 

growth, and postharvest life of cut flowers. 

The information provided through this research will provide sufficient information 

to enable growers to diversify production by offering marketable, unique regionally

produced specialty cut flowers. 
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CHAPTER II 

VASE-LIFE DETERMINATION OF NINE 

SPECIALTY CUT FLOWER SPECIES 

Paul B. Redman and John M. Dole. Department of Horticulture and Landscape 

Architecture, Oklahoma State University, Stillwater, OK 74078-0511. P.L. Claypool. 

Department of Statistics, Oklahoma State University, Stillwater, OK 74078-0595. 

Additional index words. Echinacea purpurea, Helianthus maximilliani, Penstemon 

digitalis, Achillea filipendulina 'Coronation Gold', Celosia plumosa 'Forest Fire', 

Cosmos bipinnatus 'Sensation', Buddleia davidii, Cercis canadensis, Weigela sp. 

Abbreviations. STS, silver thiosulfate; 8-HQC, 8-hydroxyquinoline citrate 

Abstract. Selected postharvest attributes of flowers of three native herbacious, three 

cultivated herbaceous, and three woody species were studied. Echinacea purpurea 

(purple coneflower) had a vase life in deionized (DI) water of 9.1 days and could be 

stored for one week at 2 or 4C and shipped up to five days. Helianthus maximilliani 

(Ma:ximillian's sunflower) had a vase life of 6.0 days in DI water and could be stored 

for one week at 2C and shipped for one day. Penstemon digitalis (penstemon) had a 

vase life of 9.3 days in deionized (DI) water and could be stored at 2C up to three 
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weeks with no decrease in vase life. Achillea filipendulina 'Coronation Gold' 

(yarrow) had a vase life of 10.7 days in DI water and could be stored at 2C up to 2 

weeks and shipped for two days. Celosia plumosa 'Forest Fire' (celosia) had a vase 

life of 8.8 days in DI water and could be stored at 2, 4, or 7C for one week. Cosmos 

bippinatus 'Sensation' (cosmos) had a vase life of 6.2 days in DI water and could be 

stored at 2C up to two weeks and shipped for one day. Buddleia davidii (butterfly 

bush) had a vase life of 4.9 days and could be stored at 2C up to 2 weeks. Cercis 

canadensis (eastern redbud) had a vase life of 5.6 days in DI water and could be 

stored at 2C up to two weeks. Weigela sp. (weigela) had a vase life of 5.0 days in DI 

water and did not tolerate cold storage or shipping. Silver thiosulfate (STS) and 8-

hydroxyquinoline citrate (8-HQC) increased the vase life of Maximillian's sunflower, 

'Coronation Gold' yarrow, 'Forest Fire' Celosia, butterfly bush, and weigela. Sucrose 

increased the vase life of Maximillians sunflower, 'Coronation Gold' yarrow, butterfly 

bush, and weigela. An additional 50% of the total number of buds opened at vase life 

termination when butterfly bush and eastern redbud were harvest with 0 < 25% buds 

open. Butterfly bush and eastern redbud stems harvested with 25 .s. 50% buds open 

had 50 <. 75% buds open at vase life termination. Butterfly bush and eastern redbud 

harvested with 50< 75% and 75 < 100% had 100% of buds open at vase life 

termination. 

Introduction 

A successful cut flower species must have the ability to withstand the various 
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handling procedures throughout the market chain that decrease vase life. Low 

temperature is the most important factor in the successful storage of cut flowers. 

Storage temperatures just above freezing allow extended storage by slowing down the 

senescence process of flowers through a reduction in metabolic processes and bacterial 

growth rate (Nowak and Rudnicki, 1990; van Doom and de Witte, 1991). Cut flowers 

may also be subjected to various preservative treatments which may contain STS, 8-

HQC, and/or a carbohydrate source to extend postharvest life (Nowak and Mynett, 

1985; Reid et al., 1980; Staby and Reid, 1980; Tingley and Prince, 1990; van Doom et 

al., 1990). 

Harvest at the appropriate stage of flower development influences appearance 

and longevity. Optimal stage of flower development for harvest depends upon species, 

cultivar, season, distance to market, and consumer preference (Nowak and Rudnicki, 

1990). Cut flowers such as carnation (Dianthus caryophyllus) may be harvested at 

less advanced stages of development in summer than winter. Flowers harvested for 

direct sale may be harvested at more advanced stages than flowers shipped long 

distances. 

Bratcher (1992) identified nine specialty cut flower species which were suitable 

for cut flower production in Oklahoma due to rapid, uniform germination and rooting, 

resistance or tolerance to insect and disease damage, attractive flower color, and strong 

stems with sufficient length for cut flowers. The objectives of the research reported 

here were to determine the effects of low temperature storage, ambient temperature 

shipping, and preservative treatment on nine cut flower species and to determine the 
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appropriate developmental stage for butterfly bush and eastern redbud harvest 

Material and Methods 

Postharvest Experiments. Flower stems of three native herbaceous species: 

Echinacea purpurea (L) Moensch (coneflower), Helianthus maximil/iani Schrad. 

(Maximillian's sunflower), Penstemon digitalis Nutt. (penstemon); three cultivated 

herbaceous species: Achillea filipendu/ina Lam. 'Coronation Gold' (yarrow), Celosia 

plumosa L. 'Forest Fire' (celosia), Cosmos bipinnatus Cav. Ann. 'Sensation' (cosmos); 

and three woody species: Buddleia davidii Franch. (butterfly bush), Cercis canadensis 

L. (eastern redbud), and Weigela sp. Thunb. (weigela) were grown and harvested 

(Mar.- Oct., 1993-94) from field plots at the OSU Nursery Research Station 

(Stillwater, OK). Coneflower, Maximillian's sunflower, and cosmos were harvested 

when the first ring of disk florets were fully open. Penstemon, celosia, weigela, 

eastern redbud, and butterfly bush were harvested when approximately 50% of the 

flowers were open. Yarrow flowers were harvested when 100% of florets were newly 

opened. 

Cut flower stems were harvested no later than 11 :00 a.m. and were re-cut to 

30.0 em for all species except celosia which was re-cut to 25.0 em. Mter recutting, 

all cut flower stems were randomly assigned to one of 18 postharvest treatments that 

were grouped into the following 4 experiments: 1) storage duration treatments were 

held in deionized <Dn water in a dark cooler for 1, 2, or 3 wk at 2 + 1C; 2) storage 

16 



temperature treatments were held in DI water in a dark cooler for 1 wk at 2, 4, or 7+ 

1 C; 3) shipping duration treatments were placed in DI water in a dark room for 1, 2, 

3, 4, or 5 days at 24+2C and 4) preservative treatments included stems that were or 

were not pretreated (pulsed) in 1mM silver thiosulfate (STS) for 1 h at 2 + 1 C and 

were then held for 24 h in a dark cooler at 2+1C in 200 mg·liter-1 hydroxyquinoline+ 

300 mg·liter·1 citric acid (8-HQC) and either 0, 4, or 8% sucrose. Pre-treated stems 

were transferred to DI water and held at ambient temperature (23+2C) under 

continuous light exposure. STS was prepared and stored as recommended by Cameron 

et al. (1985). Control stems for all experiments were held in DI water at ambient 

temperature under continuous light. 

The vase life of each cut flower species was calculated as the total number of 

days from harvest to termination and as post-treatment vase life (PTVL), the number 

of days after removal from a specific treatment to termination. The vase life of the 

cut flower stems was terminated when 50% or more of the flowers exhibited visual 

senescence symptoms which included in-rolling, wilting, shattering (petal drop), 

drying, or loss of color. Penstemon and weigela were terminated when flowers 

exhibited 50% or greater in-rolling and shattering. Purple coneflower and eastern 

redbud were terminated when flowers exhibited 50% or greater wilting and loss of 

color. In addition, eastern redbud exhibited shattering as a senescence symptom. 

Yarrow, celosia, Maximillian's sunflower, cosmos, and butterfly bush were terminated 

when the flowers exhibited 50% or greater wilting. 

Ten Maximillian's sunflower and eastern redbud stems per treatment were 
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placed in a completely randomized design. Ten purple coneflower, penstemon, 

'Coronation Gold' yarrow, 'Forest Fire' celosia, 'Sensation' cosmos, butterfly bush, 

and weigela stems per treatment were blocked by harvest date and were harvested 

from different plants. Data within each experiment were analyzed by General Linear 

Model procedure with means separation by trend analysis (SAS Institue, Cary, N.C.) 

and all means were compared to the control using Dunnett's test (SAS Institute). 

Development stage study. Eastern redbud and butterfly bush were grown as in 

postharvest experiments and harvested at four developmental stages: (1) 0 >to < 25% 

of buds open, (2) >25 to ,$50% of buds open, (3) >50 to < 75% of buds open, (4) > 

75 to <100% of buds open. Mter harvest from the field, cut flower stems were re-cut 

to 30.0 em and held in DI water at ambient temperature (23+2C) under continuous 

light until termination of vase life. Developmental stage of buds open at vase life 

termination was recorded for each stem. Ten stems per development stage of each 

species were harvested, blocked by harvest date, and placed in a completely 

randomized design. 

Results 

Echinacea purpurea. In both years, storage for one week at 2 and 4C did not 

significantly decrease vase life after treatment (Table 2.1). Stems stored at 7C had a 

maximum total postharvest life of 14.0 days in 1993. Stems stored at 4C in 1994 had 
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a maximum total postharvest life of 14.6 days. In 1993, purple coneflower stems may 

be stored up to three weeks at 2C without significantly effecting vase life after 

treatment, with a total postharvest storage and vase life of up to 21 days. In 1994, 

storage of any duration decreased vase life after treatment. Simulated shipping from 

one to five days did not affect vase life in both years. Stems shipped in 1994 had a 

maximum total postharvest life of 11.4 days. Purple coneflower showed various 

responses to preservative treatments. Treatment with STS and 0% sucrose 

significantly increased total vase life and vase life after treatment in 1993 compared 

with the control, but in 1994 stems treated with 4 or 8% sucrose, but no STS, had 

decreased vase life after treatment. Within the preservative treatments, no significant 

difference was found in either year. 

Helianthis maximilliani. Storage for one week at 2C did not significantly 

decrease vase life after treatment in 1993 (Table 2.1). Storage for one week at 4 and 

7C significantly decreased vase life after treatment in 1993. PTVL of stems stored at 

2, 4, or 7C were not different from the control in 1994. Storage at 2C beyond one 

week significantly decreased vase life after treatment in both years. Maximum total 

postharvest vase life was 11.0 days for stems stored one week at 2C in 1994. Vase 

life after treatment linearly decreased as the simulated shipping duration increased, 

while total vase life was not effected in both years. STS, sucrose, and 8-HQC 

preservatives increased vase life in both years. A maximum total postharvest life of 

8.4 days occurred with stems that received STS, 8-HQC, and 4% sucrose in 1993. 

Penstemon digitalis. Storage for one week at 4C in 1993 did not significantly 
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effect vase life after treatment. Storage for one week at 4 or 7C in 1994 did not 

significantly decrease vase life after treatment (Table 2.3). Maximum total postharvest 

life was 15.1 days for stems stored at 4C in 1993 and 13.7 days in 1994. Penstemon 

stems may be stored up to three weeks at 2C without significantly decreasing vase life. 

Total postharvest storage duration life was 28.4 days in 1993 and 28.0 days in 1994. 

Vase life after treatment linearly decreased as the simulated shipping duration 

increased from one to five days. Preservative treatments did not affect the postharvest 

vase life in 1994. 

Achillea filipendulina 'Coronation Gold'. Postharvest life after treatment 

significantly decreased when stems were stored at 2, 4, or 7C in 1993 compared to the 

control, while no significant decrease in vase life after treatment was observed in 1994 

for stems stored at any temperature (Table 2.4). Maximum total postharvest life was 

14.1 days for stems stored at 4C in 1994. Storage duration of any length significantly 

decreased vase life after treatment in both years. As storage time increased, the vase 

life linearly decreased in 1994. No data was presented for three weeks storage in 

1993 due to a cooler malfunction. As simulated shipping duration increased, vase life 

after treatment decreased linearly in 1993 and curvilinearly in 1994. In 1993, stems 

treated with 4 or 8% sucrose had a significantly shorter total vase life as compared to 

the control. 

Celosia plumosa 'Forest Fire'. Storage for one week at 2, 4, or 7C did not 

significantly affect celosia vase life (Table 2.5). Stems stored at 7C in 1993 had a 

maximum total postharvest vase life of 11.3 days in 1993 and 11.5 days in 1994. As 

20 



storage duration increased, vase life after treatment decreased linearly in 1994 and 

vase life after treatment was significantly less than the control for all storage 

durations. Total postharvest vase life was not effected by simulated shipping in both 

years. As the shipping duration increased from one to five days, vase life after 

treatment linearly decreased in both years. Celosia stems showed various responses to 

preservative treatments. Total vase life for stems treated with 0% sucrose, regardless 

of STS pretreatment, was significantly increased in 1993. Vase life after treatment 

significantly decreased for stems treated with 4 or 8% sucrose in 1994, regardless of 

STS pretreatment. A significant quadratic and linear response was observed in 1993 

for sucrose treatments while a significant linear STS and sucrose interaction was 

observed in 1993. 

Cosmos bipinnatus 'Sensation'. Data are presented for 1994 only; harvestable 

stems were not available in 1993. Storage for one week at 7C significantly decreased 

vase life after treatment while storage at 2 or 4C did not affect vase life after 

treatment (fable 2.6). Stems stored at 2C had a maximum total postharvest life of 

12.5 days. As storage duration at 2C increased, vase life after treatment decreased 

linearly. Vase life responded linearly to simulated shipping duration. As shipping 

duration increased from two to five days, vase life after treatment significantly 

decreased. Preservative treatments had no significant effect on vase life. 

Buddleia davidii. Storage at 7C significantly decreased vase life after treatment 

in 1994, but no effect of storage temperature was observed in 1993 (fable 2.7). Stems 

stored at 2C had a total vase life of 10.9 days in both years. Vase life after treatment 
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for stems stored for three weeks was significantly less in both years than the control. 

Vase life decreased in 1993 and a cubic response was obseiVed in 1994 as storage 

duration increased. Vase life after treatment linearly decreased in both years with a 

cubic response in 1994 as simulated shipping duration increased. Four days of 

shipping significantly decreased vase life after treatment in 1993 while all shipping 

durations significantly decreased vase life in 1994 compared to the control. 

Pretreatment with STS significantly increased vase life in 1993 compared with the 

control. Stems not pretreated with STS and with 8-HQC and 0% sucrose had a total 

vase life of 6.5 days in 1993. Vase life after treatment responded quadratically to 

sucrose concentration and a STS/sucrose interaction existed in 1993. Butterfly bush 

stems haiVested at the 0 > to < 25 developmental stage opened significantly more 

flowers at the time of termination than the other stages (Figure 2.1A). The buds on 

cut flower stems haiVested at >75 to< 100% did not open further. 

Cercis canadensis. Vase life after treatment significantly decreased for stems 

stored for one week at 2, 4, or 7C compared to the control in 1993 while no 

significant response was obseiVed in 1994 (Table 2.8). No significant differences 

(P=0.05) were found between the storage temperatures in both years. Stems stored 

one, two, or three weeks in 1993 and stems stored for three weeks in 1994 exhibited a 

significantly shorter vase life after treatment as compared to the control. Stems stored 

for two weeks at 2C had a total vase life of 19.3 days and the vase life after treatment 

was not affected. Vase life after treatment decreased linearly as the simulated 

shipping time increased in both years. PreseiVatives did not effect vase life. Eastern 
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redbud stems harvested at the 0 > to < 25% developmental stage opened significantly 

more flowers at termination than the other stages (Figure 2.1B). Stems harvested at 

>25 to< 50, or >50 to< 75 had opened 25-50% more flowers at vase life termination. 

Eastern redbud stems harvested at >75 to< 100% did not open further. 

Weigela sp. Stems that were stored at 2, 4, or 7C showed a significant 

decrease in vase life after treatment for both years (fable 2.9). Vase life after 

treatment decreased linearly in both years with increasing storage duration. As 

simulated shipping duration increased, vase life decreased linearly in 1993 and 

curvilinearly in 1994. Cut flower vase life after treatment increased significantly with 

sucrose treatment in 1993 while no significant response to sucrose was obseiVed in 

1994. Stems receiving only 8-HQC and 0% sucrose had the greatest total vase life of 

6.0 days in 1993. STS had no effect in either year. 

Discussion 

Weigela was the only species to respond negatively to cold storage at 2, 4, or 

7C (fable 2.9). Weigela stems subjected to these temperatures exhibited visual 

symptoms of chilling injury. Mter removal from 2C, stem leaves exhibited blackening 

accompanied with abscission of individual flowers which could be due to cell 

disruption and depletion of carbohydrate reserves during storage. Protea exima 

(protea) cut flower stems exhibit leaf blackening due to depletion of leaf carbohydrate 

23 



during storage at 20C regardless of light (Bieleski et al., 1992). However, deleterious 

effects of chilling temperatures on the quality of Anthurium andraenum 'Andre' 

(anthurium) flowers could not be related directly to sugar content or to respiration 

(Pritchard et al., 1991 ). Similarly, celosia stems stored beyond one week at 2C 

exhibited blackening of the plume one to two days after removal from the cooler 

(Personal observation). Gloriosa rothschildiana O'Brien cut flowers stored at 1C 

developed chilling injury with black leaves, stems, and flowers within three days 

(Jones and Truett, 1992). 

Storage at 7C significantly decreased the vase life of butterfly bush and cosmos 

(Tables 2.7 and 2.6). Low storage temperatures just above freezing are thought to 

delay flower senescence by reducing metabolic processes and bacterial growth, making 

extended storage feasible (Nowak and Rudnicki, 1990; van Doom and de Witte, 1991). 

Increased senescence at 7C probably did not slow metabolic processes which decrease 

senescence. 

Penstemon, celosia, butterfly bush, eastern redbud, and weigela did not tolerate 

simulated shipping (Tables 2.3, 2.5, 2.7, 2.8, and 2.9). Elevated temperatures during 

shipping may increase respiration (Halevy and Mayak, 1981). Protea sp. exhibit leaf 

blackening and a decrease in vase life during shipping which may be attributed to 

postharvest inflorescence sink demand (McConchie and Lang, 1993). During the first 

24 h after harvest, 82% of starch is depleted in Protea neriifolia (protea) inflorescence, 

demonstrating a strong sink strength. Cut flowers, excluding tropical species, should 

be cooled as rapidly as possible after harvest and then shipped at the optimal low 
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temperature (Nowak and Rudnicki, 1990). Species such as penstemon, celosia, 

butterfly bush, and eastern redbud could be cooled to remove field heat and shipped at 

cooler temperatures to reach long distance markets. Also, cosmos and yarrow which 

can be shipped for one and two days, respectively, could possibly be precooled at 

optimal storage temperatures to increase shipping duration. 

STS treatments extended the vase life of 'Forest Fire' celosia (fable 2.5). 

Pretreatment with STS has been proven to inhibit the action of ethylene in Dianthus 

caryophyllus L. 'White Sim' (carnation) (Reid et al., 1980), Chamelaucium unicinatum 

Schau. (geraldton wax flower) (Joyce, 1988), anthurium (Paull and Goo, 1982), 

Antirrhinum majus L. (snapdragon) (Nowak, 1981), and Delphinium sp. (delphinium) 

(Staby et al., 1993). Species such as penstemon, yarrow, cosmos, eastern redbud, 

butterfly bush, and weigela possibly did not respond to STS because ethylene may not 

play a role in the senescence of the flowers (Reid and Wu, 1992) or the pulsing time 

and temperature may not have been appropriate for the species. 

Yarrow, celosia, butterfly bush, and weigela had various responses to sucrose 

treatments. Similarly, liatris (Liatris spicata) exhibited various responses to sucrose 

pulsing treatments which was attributed to genetic variability of the plant materials 

used in the study (Han, 1992). If the optimal pulsing time, temperature, light, and 

sucrose concentration is not used, little or no effect may be observed (Halevy and 

Mayak, 1981). Possibly, various responses to sucrose treatments among the cut 

flowers in this study were due to genetic variability, improper sucrose concentration, 

and improper pulsing temperature. 
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Penstemon, cosmos, and eastern redbud did not respond to sucrose preservative 

treatments. Carbohydrates, the primary source of nutrition and energy for the flower, 

are necessary for maintaining biochemical and physiological processes. Cut flower 

stems in this study were subjected to sucrose concentrations of 2, 4 or 8% for a 20 h 

period. Some cut flower species required greater concentrations of sucrose to 

encourage floral opening and vase life extension. Triteleia laxa Benth. (Brodiaea) 

required a 20h 10% sucrose pulse (Han et al., 1990). Generally, cut flowers treated 

for longer periods require a lower sucrose concentration while high concentrations are 

used for shorter pulsing treatments (Halevy and Mayak, 1981). Han (1992) found that 

sucrose primarily affected the vase life of liatris through opening of flower heads and, 

to a lesser extent, longevity. Also, sucrose had limited influence on the longevity of 

liatris flower heads once they were fully developed. 

Butterfly bush and eastern redbud stems harvested at 0 >to< 25 bud stage 

opened the most additional buds and reached 50-75% buds open at vase life 

termination (Figures 2.1A and 2.1B). Development of flowers after harvest depends 

upon carbohydrates and other photosynthates in plant tissues (Nowak and Rudnicki, 

1990). Han (1992) found that without sucrose in the vase solution only flower heads 

nearly fully developed reached anthesis and opened only partially. The addition of 

sucrose in the vase solution was necesssary for complete development and opening of 

all liatris flower heads. The addition of sucrose to the vase holding solution might 

have opened more butterfly bush and eastern redbud flowers. 

In conclusion, Echinacea purpurea (purple coneflower) was able to be stored 
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one week at 2 or 4C, and survived simulated shipping from one to five days. 

Preservatives did not effect the postharvest life. H elianthus maximilliani 

(Maximillian' s sunflower) could be stored for one week at 2C and tolerated one day of 

simulated shipping. STS, 8-HQC, and sucrose preservatives extended vase 

life. Penstemon digitalis (penstemon) was able to be stored at 4 or 7C for one week 

and up to three weeks at 2C. Penstemon did not tolerate simulated shipping at 24C 

from one to five days. STS, sucrose, and 8-HQC preservatives did not extend the vase 

life. Achillea filipendulina 'Coronation Gold' (yarrow) was able to be stored at 4 or 

7C for one week and up to two weeks at 2C. 'Coronation Gold' yarrow tolerated up 

to two days simulated shipping. STS, sucrose, and 8-HQC preservatives had 

inconclusive effects on the vase life. Celosia plumosa 'Forest Fire' (celosia) was able 

to be stored at 2, 4, or 7C for one week. Storage at 2C beyond one week decreased 

the vase life. 'Forest Fire' celosia did not tolerate simulated shipping at 24C for one 

to five days. Preservative treatments with STS may have extended the vase life. 

Preservative treatments that include 4 and 8% sucrose decreased the vase 

life. Cosmos bipinnatus 'Sensation' (cosmos) was able to be stored at 2 or 4C for 

one week. Storage at 2C beyond two weeks decreased vase life. Cosmos tolerated 

one day of simulated shipping. STS, sucrose, and 8-HQC preservatives did not extend 

the vase life. Buddleia davidii (butterfly bush) was able to be stored at 4C for one 

week and up to two weeks at 2C. Butterfly bush did not tolerate simulated shipping at 

24C from one to five days. STS, sucrose, and 8-HQC preservatives had variable 

effects on vase life. Butterfly bush exhibited greatest percent in bud opening when 

27 



flowers stems were harvested with 0 > to < 25% buds open. Cercis canadensis 

(eastern redbud) was able to be stored at 4 or 7C for one week and up to two weeks at 

2C. Eastern redbud did not tolerate simulated shipping. STS, sucrose, and 8-HQC 

preservatives had variable effects on vase life. Eastern redbud exhibited the greatest 

percent in bud opening when flowers stems were harvested with 0 > to < 25% buds 

open. Weigela sp. (weigela) does not tolerate storage at 2, 4, or 7C for one week. 

Stems did not tolerate simulated shipping at 24C from one to five days. STS, sucrose, 

and 8-HQC preservatives may or may not have extended the vase life. 
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Table 2.1. Total postharvest life and post-treatment vase life (PTVL) in days of 
Echinacea purpurea (purple coneflower) as affected by storage temperature, storage 
duration, simulated shipping duration and preservatives. Significance ( P< 0.05) was 
determined by comparing each treatment to the control using Dunnett's test. Means 
are an average of data from ten stems. 

1993 1994 

Total PTVL Total PTVL 
Treatment (days) (days) (days) (days) 

Control 4.6 4.6 9.1 9.1 

Storage Temperature 

2.0C 1o.o•z 3.0 12.7 5.7 
4.0C 12.1* 6.1 14.6* 7.6 
7.0C 14.0* 7.0 10.8 3.8· 

Linear • • NS NS 
Quadratic NS NS 

Storage Duration 

1-week 2.0C 12.9* 5.9 11.3 3.6* 

2-week 2.0C 18.7* 4.7 18.1* 4.1· 

3-week 2.0C 21.3* 2.5 22.9* 1.5* 
••• NS ••• NS Linear 

Quadratic NS NS NS NS 

Shipping Duration 

1-day 24.0C 9.3 8.0 9.2 8.2 

2-day 24.0C 9.1 7.1 9.7 7.5 

3-day 24.0C 7.1 4.1 8.5 5.4 

4-day 24.0C 9.9 6.7 8.7 4.7 

5-day 24.0C 9.1 4.1 11.4 6.4 

Linear NS NS NS NS 

Quadratic NS NS NS NS 

Cubic NS NS NS NS 
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Preservatives 

No STS 0% Sue B.o· 11.0* 11.4 10.4 
No STS 4% Sue 9.8 8.8 6.8 5.8· 
No STS 8% Sue 12.0* 11.0* 8.3 7.3· 

STS 0% Sue 13.4* 12.4* 10.0 9.0 
STS 4% Sue 13.4* 12.4* 9.7 8.7 
STS 8% Sue 10.2 9.2 9.2 8.2 

STS NS NS NS NS 
Sucrose (L) NS NS NS NS 
Sucrose (Q) NS NS NS NS 
STSxSuc (L) NS NS NS NS 
STSxSuc (Q) NS NS NS NS 

z*Significant at P<0.05 using Dunnett's Test 
Ns, ·, •••, Nonsignificant or significant at P< 0.05, 0.001, respectively 
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Table 2.2. Total postharvest life and post-treatment vase life (PTVL) in days of 
Helianthus maximilliani (Maximilian's sunflower) as affected by storage temperature, 
storage duration, shipping duration and preservatives. Significance ~<0.05) was 
determined by comparing each treatment to the control using Dunnett's test Means 
are an average of data from ten stems. 

1993 1994 

Total PTVL Total PTVL 
Treatment (days) (days) (days) (days) 

Control 6.0 6.0 5.0 5.0 

Storage Temperature 

2.0C 12.1* 5.1 10.9* 3.9 
4.0C 11.7* 4.7* 10.6· 3.6 
7.0C 10.3* 3.3* 10.9· 3.7 
Linear ••• ••• NS NS 
Quadratic NS NS NS NS 

Storage Duration 

1-week 2.0C 12.2* 5.2 11.0* 4.0 
2-week 2.0C 17.7* 3.7· 16.8* 2.8* 
3-week 2.0C 22.6* 1.6* 22.0* 1.0* 
Linear ••• ••• ••• ••• 

Quadratic NS NS NS NS 

Shipping Duration 

1-day 24.0C 6.3 5.3 5.4 4.4 
2-day 24.0C 6.0 4.0* 5.3 3.3* 
3-day 24.0C 6.1 3.1* 5.6 2.6· 

4-day 24.0C 6.7 2.7* 5.3 1.3* 

5-day 24.0C 7.1 2.1* 6.9 1.9* 
••• .. ••• 

Linear NS 
• • 

Quadratic NS NS 
Cubic NS NS NS NS 
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No STS 0% Sue 
No STS 4% Sue 
No STS 8% Sue 

STS 0% Sue 
STS 4% Sue 
STS 8% Sue 

STS 
Sucrose (L) 
Sucrose (Q) 
STSxSuc (L) 
STSxSuc (Q) 

7.9· 
8.2· 
7.6· 

s.o· 
8.4* 
7.7· 

NS 
NS 

• 

NS 
NS 

Preservatives 

6.9 
7.2· 
6.6 

1.o· 
7.4* 
6.7 

NS 
NS 

NS 
NS 

z"Significant at P<0.05 using Dunnett's Test 

7.6· 
7.1· 
7.1· 

7.7· 
7.3* 
6.7· 

NS 
• 

NS 
• 

NS 

6.6· 
6.1* 
6.1· 

6.7· 
6.3* 
5.7· 

NS 
• 

NS 
• 

NS 

Ns, ", "", """,Nonsignificant or significant at P$ 0.05, 0.01, 0.001, respectively 
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Table 2.3. Total postharvest life and post-treatment vase life (PTVL) in days of 
Penstemon digitalis (penstemon) as affected by storage temperature, storage duration, 
shipping duration and preservatives. Significance ~< 0.05) was determined by 
comparing each treatment to the control using Dunnett's test. Means are an average of 
data from ten stems. 

1993 1994 

Total PTVL Total PTVL 
Treatment (days) (days) (days) (days) 

Control 9.3 9.3 8.5 8.5 

Storage Temperature 

2.0C 14.5*z 7.5* 11.8* 4.8* 
4.0C 15.1* 8.1 13.7* 6.7 
7.0C -y 13.5* 6.5 
Linear NS NS 
Quadratic NS NS 

Storage Duration 

1-week 2.0C 13.0* 6.0* 13.6* 6.6 
2-week 2.0C 22.2* 8.2 21.1* 7.1 
3-week 2.0C 28.4* 7.4 28.0* 7.0 
Linear ••• NS *** NS 
Quadratic NS NS NS NS 

Shipping Duration 

1-day 24.0C 9.0 8.o· 7.9 6.9* 
2-day 24.0C 9.2 7.2* 8.5 6.5* 

3-day 24.0C 9.2 6.2* 6.5* 3.5* 

4-day 24.0C 8.8 4.8* 7.3 3.3· 

5-day 24.0C 8.8 3.8* 6.8* 2.o· 
*** • *** Linear NS 

Quadratic NS NS NS NS 

Cubic NS NS NS NS 
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No STS 0% Sue 
No STS 4% Sue 
No STS 8% Sue 

STS 0% Sue 
STS 4% Sue 
STS 8% Sue 

STS 
Sucrose (L) 
Sucrose (Q) 
STSxSuc (L) 
STSxSuc (Q) 

Preservatives 

z*Significant at P<0.05 using Dunnett's Test 

8.7* 
9.o· 
9.4* 

9.2 
8.6 
8.3 

NS 
NS 
NS 
NS 
NS 

Ns, •• •••• Nonsignificant or significant at P,$ 0.05, 0.001, respectively 
Y Data not available 
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7.7 
7.9 
7.8 

8.2 
7.6 
7.3 

NS 
NS 
NS 
NS 
NS 



Table 2.4. Total postharvest life and post-treatment vase life (PTVL) in days of 
Achillea filipendulina 'Coronation Gold' (yarrow) as affected by storage temperature, 
storage duration, shipping duration and preservatives. Significance (f'< 0.05) was 
determined by comparing each treatment to the control using Dunnett's test. Means 
are an average of data from ten stems. 

1993 1994 

Total PTVL Total PTVL 
Treatment (days) (days) (days) (days) 

Control 10.7 10.7 8.1 8.1 

Storage Temperature 

2.0C 14.4*z 7.4* 12.3* 6.3 
4.0C 14.8* 7.8· 14.1" 7.1 
7.0C 15.3* 8.3· 13.2* 6.8 
Linear NS NS NS NS 
Quadratic NS NS NS NS 

Storage Duration 

1-week 2.0C 16.4* 6.o· 13.8· 6.8· 
2-week 2.0C 19.3* 5.3· 20.1* 6.1· 
3-week 2.0C _y 24.3* 3.3* 
Linear ••• • 

Quadratic NS NS 

Shipping Duration 

1-day 24.0C 10.6 9.6 8.3 7.5 
2-day 24.0C 8.9· 6.9 8.3 5.7 
3-day 24.0C 9.1· 6.1 6.5 3.5· 
4-day 24.0C 8.9* 4.9 8.1 4.1· 

5-day 24.0C 8.6· 3.6 8.4 3.4* 
•• •• ••• 

Linear NS 
• • 

Quadratic NS NS 
Cubic NS NS NS NS 
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Preservatives 

No STS 0% Sue 10.4 9.4* 8.2 7.2 
No STS 4% Sue 8.0* 7.0* 8.2 6.9 
No STS 8% Sue 8.4* 7.4* 9.3 7.8 

STS 0% Sue 10.2 9.2* 8.9 8.2 
STS 4% Sue 9.6* 8.6* 8.5 7.8 
STS 8% Sue 11.0 10.0* 8.7 7.9 

STS • NS NS 
Sucrose (L) NS NS NS NS 
Sucrose (Q) NS NS NS NS 
STSxSuc (L) NS NS NS NS 
STSxSuc (Q) NS NS NS NS 

z*Significant at P<0.05 using Dunnett's Test 
Ns, '", •••, Nonsignificant or significant at P< 0.05, 0.001, respectively 
Y- Data not available 
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Table 2.5. Total postharvest life and post-treatment vase life (PTVL) in days of 
Celosia plumosa 'Forest Fire' (celosia) as affected by storage temperature, storage 
duration, shipping duration and preservatives. Significance (P < 0.05) was determined 
by comparing each treatment to the control using Dunnett's test. Means are an 
average of data from ten stems. 

1993 1994 

Total PTVL Total PTVL 
Treatment (days) (days) (days) (days) 

Control 5.6 5.6 8.8 8.8 

Storage Temperature 

2.0C 7.8 0.8 11.5 7.8 
4.0C 10.0 3.0 10.3 3.0 
7.0C 11.3 4.3 11.5 4.5 
Linear NS NS NS NS 
Quadratic NS NS NS NS 

Storage Duration 

1-week 2.0C 7.0 o.oz· 9.3 2.3* 
2-week 2.0C 14.0* o.o· 14.2* 0.2* 
3-week 2.0C 21.0* o.o· 21.0* o.o· 
Linear ••• NS 

... • 

Quadratic NS NS NS NS 

Shipping Duration 

1-day 24.0C 7.2 6.2* 6.5 5.5* 
2-day 24.0C 8.5 6.5* 7.5 5.4* 

3-day 24.0C 6.0 3.o· 8.3 5.3· 

4-day 24.0C 6.8 2.8· 6.6 2.6· 

5-day 24.0C 7.2 2.2· 7.2 2.3· 
•• •• 

Linear NS NS 
Quadratic NS NS NS NS 
Cubic NS NS NS NS 
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Preservatives 

No STS 0% Sue 7.8· 6.8 8.6 7.6 
No STS 4% Sue 5.9 4.9 6.7 5.7* 
No STS 8% Sue 5.8· 4.8 6.5 5.5· 

STS 0% Sue 8.2* 7.2 9.2 8.2 
STS 4% Sue 6.8 5.8 8.3 7.3 
STS 8% Sue 5.9 4.9 7.8 6.8 

STS NS NS NS NS 
Sucrose (L) ••• ••• • • 
Sucrose (Q) • NS NS 
STSxSuc (L) ••• ••• NS NS 
STSxSuc (Q) NS NS NS NS 

z*Significant at P<0.05 using Dunnett's Test 
Ns, ·, ··, ***,Nonsignificant or significant at P.:s. 0.05, 0.01, 0.001, respectively 
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Table 2.6. Total postharvest life and post-treatment vase life (PTVL) in days of 
Cosmos bipinnatus 'Sensation' (cosmos) as affected by storage temperature, storage 
duration, shipping duration and preservatives. Significane (P < 0.05) was determined 
by comparing each treatment to the control using Dunnett's test. Means are an 
average of data from ten stems. 

1994 

Total PTVL 
Treatment (days) (days) 

Control 6.2 6.2 

Storage Temperature 

2.0C 12.5*z 5.5 
4.0C 12.0* 4.8 
7.0C 10.1* 3.1* 
Linear •• .. 
Quadratic NS NS 

Storage Duration 

1-week 2.0C 11.8* 4.2 
2-week 2.0C 16.1* 2.7* 
3-week 2.0C 21.7* 0.7* 
Linear ••• • •• 

Quadratic NS NS 

Shipping Duration 

1-day 24.0C 6.9 5.9 
2-day 24.0C 5.3 3.4* 
3-day 24.0C 7.0 4.1* 
4-day 24.0C 6.3 2.3* 
5-day 24.0C 6.8 1.3* 
Linear NS ••• 

Quadratic NS NS 
Cubic NS NS 
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No STS 0% Sue 
No STS 4% Sue 
No STS 8% Sue 

STS 0% Sue 
STS 4% Sue 
STS 8% Sue 

STS 
Sucrose (L) 
Sucrose (Q) 
STSxSuc (L) 
STSxSuc (Q) 

Preservatives 

6.9 
7.1 
7.5 

7.8 
7.5 
7.9 

NS 
NS 
NS 
NS 
NS 

5.8 
6.1 
6.5 

6.3 
6.5 
6.9 

NS 
NS 
NS 
NS 
NS 

z*Significant at P<0.05 using Dunnett's Test 
Ns, ••, ···,Nonsignificant or significant at P< 0.01, 0.001, respectively 
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Table 2.7. Total postharvest life and post-treatment vase life (PTVL) in days of 
Buddleia davidii (butterfly bush) as affected by storage temperature, storage duration, 
shipping duration and preservatives. Significance (P .$. 0.05) was determined by 
comparing each treatment to the control using Dunnett's test. Means are an average of 
data from ten stems. 

1993 1994 

Total PTVL Total PTVL 
Treatment (days) (days) (days) (days) 

Control 3.8 3.8 4.9 4.9 

Storage Temperature 

2.0C 10.9*z 3.9 10.9· 3.9 
4.0C 10.3* 3.3 10.8· 3.8 
7.0C 9.6· 2.6 10.2* 3.2· 
Linear NS NS NS NS 
Quadratic NS NS NS NS 

Storage Duration 

1-week 2.0C 11.0* 4.0 11.5· 4.3 
2-week 2.0C 17.5. 3.5 19.3. 5.1 
3-week 2.0C 21.0. o.o· 23.0* 2.o· 
Linear ••• ••• ••• • • 

Quadratic ••• NS •• •• 

Shipping Duration 

1-day 24.0C 4.4 3.4 4.5 3.5· 
2-day 24.0C 5.2 3.2 4.o· 2.o· 
3-day 24.0C 4.6 1.6 4.4 1.7* 
4-day 24.0C 5.2 1.2* 5.2 1.9* 
5-day 24.0C 7.0 2.0 5.0 o.o· 

•• • •• ••• 
Linear 
Quadratic NS NS NS NS 

• •• 
Cubic NS NS 
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Preservatives 

No STS 0% Sue 6.5· 5.5· 5.6 4.6 
No STS 4% Sue 6.4· 5.4* 5.4 4.4 
No STS 8% Sue 6.3· 5.3· 5.7· 4.7 

STS 0% Sue 5.9· 4.9· 6.0* 5.0 
STS 4% Sue 6.3· 5.3* 5.8· 4.8 
STS 8% Sue 5.4* 4.4 5.8· 4.8 

STS •• •• NS NS 
Sucrose (L) NS NS NS NS 
Sucrose (Q) NS ••• NS NS 
STSxSuc (L) NS NS NS NS 
STSxSuc (Q) NS ••• NS NS 

z*Significant at P<0.05 using Dunnett's Test 
Ns, ·, ••, ···,Nonsignificant or significant at P.$, 0.05, 0.01, 0.001, respectively 

45 



Table 2.8. Total postharvest life and post-treatment vase life (PTVL) in days of 
Cercis canadensis (eastern redbud) as affected by storage temperature, storage 
duration, shipping duration and preservatives. Significance (P < 0.05) was determined 
by comparing each treatment to the control using Dunnett's test. Means are an 
average of data from ten stems. 

1993 1994 

Total PTVL Total PTVL 
Treatment (days) (days) (days) (days) 

Control 9.0 9.0 5.6 5.6 

Storage Temperature 

2.0C 13.4*z 6.4* 12.0 5.0 
4.0C 13.2* 6.2* 12.7 5.7 
7.0C 13.4* 6.4* 12.5 5.5 
Linear NS NS NS NS 
Quadratic NS NS NS NS 

Storage Duration 

1-week 2.0C 13.8 6.8* 12.5* 5.5 
2-week 2.0C 20.4* 6.4* 19.3* 5.3 
3-week 2.0C 19.4* 2.0* 25.0* 4.0* 
Linear 

.. ••• • •• .. 
Quadratic •• •• NS NS 

Shipping Duration 

1-day 24.0C 8.6 7.8* 4.6 3.6* 
2-day 24.0C 8.2 6.2* 5.6 3.6* 
3-day 24.0C 7.8* 4.8* 4.7 1.7* 
4-day 24.0C 7.3* 3.3* 5.9 1.9* 

5-day 24.0C 7.2* 2.2* 5.4 0.4* 

Linear 
.. •• NS ••• 

Quadratic NS NS NS NS 
Cubic NS NS NS NS 
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No STS 0% Sue 
No STS 4% Sue 
No STS 8% Sue 

STS 0% Sue 
STS 4% Sue 
STS 8% Sue 

STS 
Sucrose (L) 
Sucrose (Q) 
STSxSuc (L) 
STSxSuc (Q) 

9.9 
9.4 

10.3 

10.1 
9.4 
9.8 

NS 
NS 
NS 
NS 
NS 

8.9 
8.4 
9.3 

9.1 
8.4 
8.8 

NS 
NS 
NS 
NS 
NS 

Preservatives 

z*Significant at P<0.05 using Dunnett's Test 

6.1 
5.6 
5.8 

5.7 
6.2 
6.1 

NS 
NS 
NS 
NS 
NS 

Ns, ··, ···, Nonsignificant or significant at P.::;, 0.01, 0.001, respectively 
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5.1 
4.6 
4.8 

4.7 
5.2 
5.1 

NS 
NS 
NS 
NS 
NS 



Table 2.9. Total postharvest life and post-treatment vase life (PTVL) in days of 
Weigela sp. (weigela) as affected by storage temperature, storage duration, shipping 
duration and preservatives. Significance (P < 0.05) was determined by comparing 
each treatment to the control using Dunnett's test. Means are an average of data from 
ten stems. 

1993 1994 

Total PTVL Total PTVL 
Treatment (days) (days) (days) (days) 

Control 3.0 3.0 5.0 5.0 

Storage Temperature 

2.0C 9.o•z 2.0" 8.8" 1.8" 
4.0C 8.9" 1.9" 9.1" 2.1· 
7.0C 8.6" 1.6" 8.7" 1.7* 
Linear NS NS NS NS 
Quadratic NS NS NS NS 

Storage Duration 

1-week 2.0C 9.4" 2.5 8.8* 1.8* 
2-week 2.0C 15.6* 1.6* 15.1* 1.1" 
3-week 2.0C 21.9* 0.9" 21.0" 0.1* 
Linear ••• ••• ••• *** 

Quadratic NS NS NS NS 

Shipping Duration 

1-day 24.0C 2.7 1.7" 4.3 3.3" 
2-day 24.0C 3.6 1.6" 4.3 2.3* 
3-day 24.0C 3.4 0.6" 3.9 0.9" 
4-day 24.0C 3.4 0.4* 4.2 0.2* 
5-day 24.0C 3.3 0.1" 5.1 0.1" 
Linear • ••• NS ••• 

Quadratic NS NS 
Cubic NS NS NS NS 
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No STS 0% Sue 
No STS 4% Sue 
No STS 8% Sue 

STS 0% Sue 
STS 4% Sue 
STS 8% Sue 

STS 
Sucrose (L) 
Sucrose (Q) 
STSxSuc (L) 
STSxSuc (Q) 

6.0* 
4.3" 
5.0* 

5.4" 
4.9" 
4.6* 

NS 
•• 
•• 
•• 
•• 

Preservatives 

5.0* 
3.3 
4.0* 

4.4* 
3.9" 
3.6 

NS 
•• 
•• 
•• 
•• 

z*Significant at P<0.05 using Dunnett's Test 

4.8 
5.3 
5.4 

5.4 
6.0 
5.6 

• 

NS 
NS 
NS 
NS 

3.8 
4.3 
4.4 

4.4 
5.0 
4.6 

NS 
NS 
NS 
NS 
NS 

Ns. ", ··.···,Nonsignificant or significant at P.::; 0.05, 0.01, 0.001, respectively 
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Figure 2.1 Effect of developmental stage on fmal number of open flowers at vase life 
termination for eastern redbud (A) and butterfly bush (B). Developmental 

stages were determined as bud opening percentage: (1) 0 >to< 25%, (2) 
>25 to.:s 50%, (3) >50 to < 75%, and (4) >75 to < 100% of buds open. 
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Figure 2.1 
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Chapter ill 

Postharvest Ethylene Production 

and Sensitivity of Eight Specialty Cut Flower Species 

Paul B. Redman, John M. Dole, Niels 0. Maness, and Jeffrey A. Anderson. 

Department of Horticulture and Landscape Architecture, Oklahoma State University, 

Stillwater, OK 74078-0511. 

Additional index words. Achillea filipendulina 'Coronation Gold', Buddleia davidii, 

Celosia plumosa 'Forest Fire', Cercis canadensis, Cosmos bipinnatus 'Sensation', 

Echinacea purpurea, Helianthus maximilliani, Penstemon digitalis, Weigela species. 

Abbreviations. A VG, aminoethoxyvinylglycine; AOA, aminooxyacetic acid; STS, silver 

thiosulfate. 

Abstract. Ethylene and C02 evolution was measured in headspace gases at 0, 12, 24, and 

48 h after harvest and the effects of exogenous applications of 0.0, 0.2, or 1.0 uHiter·1 

ethylene for 20 h on vase life was observed in eight specialty cut flower species. 
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Helianthus maximilliani (Maximillian's sunflower), Penstemon digitalis (penstemon), 

Achilleafilipendulina 'Coronation Gold' (yarrow), Celosia plumosa 'Forest Fire', Cosmos 

bippinatus 'Sensation', Buddleia davidii (butterfly bush), and Weigela sp. (weigela) 

produced a small ethylene peak attributed to wound ethylene followed by a steady rise 

in C02• Buddleia davidii (butterfly bush) and Weigela sp. (weigela) exhibited a 

climacteric-like pattern of ethylene evolution followed by a steady rise in C02 production. 

Echinacea purpurea (purple coneflower) ethylene biosynthesis was not significant during 

the 48 h period after harvest. Vase life of purple coneflower, yarrow, celosia, cosmos, 

and butterfly bush was not affected by exogenous ethylene. Exogenous ethylene 

application to Maximillian's sunflower, penstemon and weigela resulted in flower 

abscission and decreased vase life indicating that Maximillian' s sunflower, penstemon and 

weigela were ethylene-sensitive cut flower species. 

Introduction 

Ethylene and C02 biosynthesis have been observed on numerous cut flower 

species such as Gladiolus sp. (gladiolus) (Serek et al., 1994), Dianthus caryophyllus 

'Elliot's White' (carnation) (Altman and Solomos, 1994), and Lathyrus odoratus (sweet 

pea) (Moret al., 1984). Tingley and Prince (1990) characterized ethylene production and 

sensitivity of 16 evergreen species. Jones and Truett (1992) observed that ethylene within 

sealed bags containing Gloriosa rothschildiana O'Brien (gloriosa lily) increased from 0.02 
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to 0.3 ug·liter-1• Trace amounts of ethylene are produced by Cymbidium flowers when 

pollinia are removed, causing blushing of the labellum (anthocyanin accumulation) and 

initiating general senescence of the flower (Reid and Wu, 1992). 

The biosynthetic pathway of ethylene synthesis, methionine-4S-adneosyl 

methionine--4 1-aminocyclopropane-1-carboxylic acid (ACC)-4ethylene, has been 

determined (Yang, 1980). Conversion of ACC into ethylene is inhibited by anaerobiosis, 

elevated C02 concentrations, and temperatures greater than 35 C (Yang, 1980). 

Wounding of plant tissue induces the synthesis of ACC synthase, leading to ACC 

accumulation and ethylene production. 

Cut flower species vary in sensitivity to ethylene. Alstroemeria sp. (alstroemeria), 

carnation, and Delphinium hybrids (delphinium) are sensitive while Anthurium andreanum 

(anthurium) and Tulipa sp. (tulip) are not sensitive to ethylene (Nowak and Rudnicki, 

1990). Placing flowers in an atmosphere enriched with ethylene accelerates the 

autocatalytic production of ethylene in wilted petals, growing ovaries and whole flowers. 

Autocatalytic ethylene production develops gradually with advancement of senescence 

(Nowak and Rudnicki, 1990). Cut flower species that produce ethylene may effect the 

longevity of other ethylene-sensitive species during shipping or storage. The objective 

of this research was to determine postharvest ethylene evolution and sensitivity of eight 

cut flower species. 
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Materials and Methods 

Cut flower stems of Echinacea purpurea (L) Moensch (coneflower), Helianthus 

maximilliani Schrad. (Maximillian's sunflower), Penstemon digitalis Nutt. (penstemon), 

Cosmos bipinnatus Cav. Ann. 'Sensation' (cosmos), Celosia plumosa L. 'Forest Fire' 

(celosia), Achillea filipendulina Lam. 'Coronation Gold' (yarrow), Buddleia davidii 

Franch. (butterfly bush), and Weigela sp. Thunb. (weigela) were grown and harvested 

from field plots at the OSU Nursery Research Station (Stillwater, Okla). Maximillian's 

sunflower, and cosmos were harvested when the first ring of disk florets was fully open. 

Penstemon, celosia, weigela, and butterfly bush were harvested when approximately 50% 

of the flowers were open. Yarrow flowers were harvested when 100% of florets were 

open. Additional, untreated coneflower cut flower stems were purchased and shipped 

overnight from a commercial supplier (Dos Osos Multiflora, Watsonville, Calif). 

Cut flower stems were harvested no later than 11:00 a.m. and were re-cut to 20.0 

em in length for all species. Mter recutting, one stem of each species was placed in a 

150-ml glass beaker containing 100-rnl deionized (Dn water and sealed in a 3-liter glass 

jar equipped with flushing and sampling ports. Jars were flushed with ethylene-free air 

for approximately 3 min. before being sealed. Jars were held at 21 + 3C for 48 h under 

continuous light exposure. Two 1-rnl head-space gas samples were taken from each jar 

after 1, 12, 24, and 48 h for C02 and ethylene determination. C02 analysis was 

conducted by injecting 1-rnl head-space gas into an infrared gas analyzer (IRGA)(Horiba 

PIR-2000) connected to a chart recorder. Lamp grade nitrogen was used as the carrier 
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gas. A C02 response curve was linearly established by running 2045 and 5000 ul·liter·1 

C02 standards (Scott Specialty Gases, Plumsteadville, Pa). Ethylene analysis was 

conducted using a gas-tight syringe to inject 1-ml head-space gas into a gas 

chromatograph (GC) (model 540, Tracor Instruments, Austin, Texas). The GC was 

equipped with a 30-m x 0.53-mm column (GS-Q Megabore, J & W Scientific, Folsom, 

Calif.) and flame ionization detector. Helium carrier gas flowed at 93 cm-s·1• An 

isothermal run was conducted to determine ethylene gas concentration with an oven 

temperature of 60C. Injector and detector temperatures were 180 and 200 C, respectively. 

Mean production rates were calculated from response factors derived from gaseous 

ethylene standards (Scott Specialty Gases, Plumsteadville, Pa). The experimental design 

was a completely randomized design with one to three replicates of ten stems blocked by 

harvest date and randomly harvested from different plants. 

The response of coneflower, Maximillian's sunflower, penstemon, cosmos, celosia, 

yarrow, butterfly bush, and weigela to exogenous applications of ethylene was observed 

in a flow-through system. Mter harvest from the field, one cut flower stem was sealed 

in a 3-liter glass jar and subjected to exogenous ethylene concentrations of 0.0, 0.2, or 1.0 

ul·liter1 at a flow rate of approximately 30 liter-h-1 for 20 h. Flow-through ethylene gas 

concentrations were achieved by ten-fold dilution of 2.0 and 10.0 ul·liter1 ethylene 

standards (Scott Specialty Gases, Plumsteadville, Pa). Controls of 0.0 ul·liter1 contained 

approximately 50g of Ethysorb (StayFresh Ltd, London, England) in the bottom of the 

3-liter glass container to oxidize ethylene produced by the cut stems. Stems were 

subjected to exogenous ethylene under continuous light exposure at 21.0 + 3 C. After 
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treatment, each stem was removed from the sealed container and held at 21 + 3 C under 

continuous light exposure. The response of the cut flower stems to exogenous 

applications of ethylene was observed as the vase life in days after harvest The vase life 

of the cut flower stems was tenninated when the flowers visually exhibited 50% or 

greater senescence symptoms. Penstemon and weigela were terminated when flowers 

exhibited 50% or greater in-rolling and flower abscission. Purple coneflower was 

terminated when flowers exhibited 50% or greater wilting and loss of color. Yarrow, 

celosia, Maximillian's sunflower, cosmos, and butterfly bush were tenninated when the 

flowers exhibited 50% or greater wilting. The experimental design was a completely 

randomized design with one to three replicates of ten stems per treatment blocked by 

harvest date and randomly harvested from different plants for each treatment One 

replicate was harvested of Echinacea purpurea (purple coneflower), Helianthus 

maximilliani (Maximillian's sunflower), Penstemon digitalis (penstemon), and Weigela 

sp. (weigela). Three replicates were harvest of Achilleafilipendulina 'Coronation Gold' 

(yarrow), Celosia p/umosa 'Forest Fire' (celosia), Cosmos bipinnatus 'Sensation', and 

Buddleia davidii (butterfly bush). 

Results 

Echinacea purpurea. The rate of ethylene production from purple coneflower did 

not vary during the 48 h accumulation period (Table 3.1, Fig. 3.1A). The 1 h 

57 



accumulation of C02 was significantly lower than at 12, 24 and 48. Vase life of purple 

coneflower was not affected by exposure to exogenous ethylene (fable 3.2). 

Helianthus maximilliani. Rate of ethylene production varied during the 48 h 

accumulation period (Table 3.1, Fig. 3.1B). The 1 h accumulation of ethylene and C02 

was significantly lower than at 12, 24, and 48 h. Vase life of Maximillian's sunflower 

decreased significantly when exposed to 1.0 ul·liter·1 ethylene (fable 3.2). 

Penstemon digitalis. Rate of ethylene produced did not vary during the 48 h 

accumulation period (Table 3.1, Fig. 3.1C). C02 accumulation increased from 1 h to 24 

h and then remained steady. Vase life of penstemon decreased significantly when 

exposed to 1.0 ul·liter1 ethylene for 20 hrs compared to the control treated with 0.0 

ul·liter1 ethylene (fable 3.2). 

Achilleafilipendulina 'Coronation Gold'. Rate of ethylene produced did not vary 

during the 48 h accumulation period (fable 3.1, Fig. 3.1D). The 1 h accumulation of C02 

was significantly lower than at 12, 24, and 48 hrs. Means C02 production rate was 

significantly different from 1 to 12 hrs and 48 h was significantly different from 1, 12, 

and 24 h. C02 production rates were not different between 12 and 24 hrs. Vase life of 

yarrow was not affected by exposure to exogenous ethylene (fable 3.2). 

Celosia plumosa 'Forest Fire'. Rate of ethylene production did not vary during 

the 48 h accumulation period (fable 3.1, Fig. 3.1E). The 1 h accumulation of C02 was 

significantly lower than at 12, 24, and 48 h. C02 production peaked at 12 hrs and slowly 

decreased to hour 48. Vase life of celosia was not affected by exposure to exogenous 

applications of ethylene (fable 3.2). 
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Cosmos bipinnatus 'Sensation'. Rate of ethylene production did not vary during 

the 48 h period (Table 3.1, Fig. 3.1F). The 12, 24, and 48 hr accumulation of C02 was 

significantly higher than at 1 h of accumulation. Vase life of cosmos was not affected 

by exposure to exogenous applications of ethylene (Table 3.2). 

Buddleia davidii. The 1 h accumulation of ethylene was significantly higher than 

at 48 h (Table 3.1, Fig. 3.10). Ethylene production was greatest at 1 h and declined. 

The 1 h accumulation of C02 was significantly lower than at 12, 24, and 48 h (Table 3.1, 

Fig. 3.10). C02 production peaked at 24 hand declined. Vase life of butterfly bush was 

not affected by exposure to exogenous applications of ethylene (Table 3.2). 

Weigela species. The rate of ethylene produced during the 48 hr accumulation 

period was significantly different (Table 3.1, Fig. 3.1H). Ethylene production was 

greatest at 1 h and declined. The 1 h accumulation of C02 was significantly lower than 

at 12, 24, and 48 h. Vase life of weigela significantly decreased when exposed to 0.2 and 

1.0 uBiter·1 ethylene for 20 h compared to the control treated with 0.0 ul-liter-1 ethylene 

(Table 3.2). 

Discussion 

Ethylene production from cut celosia, cosmos, buddleia, and weigela stems was 

higher one hour after harvest than at 12, 24, and 48 h accumulation periods and was 

followed by a rise in C02 by hour 12 after harvest. Maximillian's sunflower, penstemon 

and yarrow demonstrated an ethylene peak at 12 h with a concomitant rise in C02 

followed by a decrease in ethylene and C02 production after 12 h. At the time of the rise 
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in C02 ethylene production decreased, which is in agreement with previous findings that 

elevated levels of C02 inhibit ethylene production (Yang, 1980). Comparing the time 

course of ethylene production to the vase life of celosia (7.2 days), cosmos (6.2 days), 

Maximillian's sunflower (6.0 days), penstemon (8.9 days) and yarrow (9.7 days) when 

held in DI water (Redman and Dole, unpublished data), indicates that the initial ethylene 

produced may be wound ethylene and not climacteric ethylene. Upon cutting or bruising 

young Ipomea transcendentia cut flower stems, ethylene production rose then decreased 

without development of typical senescence symptoms (Halevy and Mayak, 1981). 

Mechanical wounding such as cutting or abrasion causes orange, banana, tomato, apple 

and other fruit tissues to produce large amounts of ethylene which in turn accelerates 

ripening and may cause loss of fruit quality during storage (Yu and Yang, 1980). 

Standard 'White Sim' carnation flowers typically reach a peak in ethylene production six 

days after harvest when senescence symptoms are visible followed by a concomitant rise 

in C02 (Whitehead et al., 1984). The C02 and ethylene biosynthesis measurement 

period for celosia, cosmos, Maximillian' s sunflower, penstemon, and yarrow may not 

have been long enough to identify ethylene production associated with senescence. After 

48 h, celosia, cosmos, penstemon, and yarrow exhibited no visual senescence symptoms. 

Comparing the time course of ethylene and C02 production with the vase life of 

the relatively short-lived butterfly bush (4.4 days) and weigela (3.5 days) (Redman and 

Dole, unpublished data), the pattern of ethylene and C02 biosynthesis resemble the 

climacteric production of ethylene and C02 found in carnation (Brandt and Woodson, 

1992). Carnation flowers begin to exhibit a peak in ethylene production at the onset of 
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visual senescence symptoms which is characterized by an in-rolling or sleepiness of the 

outer-whorl of petals (Reid and Wu, 1992). Ethylene production from Lathyrus odoratus 

L. (sweet pea) followed a typical climacteric pattern 80 h after harvest with flowers 

visibly wilting and abscising one day after the peak (19 nl/flower/h) (Moret al., 1984). 

Both butterfly bush and weigela flowers had begun to abscise at the time of the 48 h 

head-space gas sample. 

Applications of three levels of exogenous ethylene for a 20 h period had no affect 

on the vase life of purple coneflower, yarrow, celosia, and cosmos. Ethylene may not 

play a role in reducing vase life of these flowers. Butterfly bush exhibited a climacteric

like peak in ethylene production followed by a rise in respiration, but was insensitive to 

exogenous ethylene. Gladiolus sp. (gladiolus) also exhibit a modest climacteric-like peak 

in ethylene production, but individual florets were insensitive to exogenous ethylene 

(Serek et al., 1994). Serek et al., (1994) concluded that gladiolus was an ethylene

insensitive flower and ethylene was not a factor in floret senescence. 

Exogenous applications of 0.2 or 1.0 ul·liter-1 ethylene decreased the vase life of 

weigela while 1.0 ul-liter-1 ethylene decreased the vase life of penstemon. The 

senescence symptoms of weigela and penstemon upon 20 h exposure to these ethylene 

concentrations were flower in-rolling and abscission. Species sensitive to exogenous 

ethylene typically show petal abscission as the initial senescence symptom (Reid and Wu, 

1992). Ethylene is probably naturally involved in development of senescence symptoms 

of species sensitive to low concentrations of ethylene (Reid and Wu, 1992). During the 

48 h biosynthesis study, penstemon did not exhibit a climacteric-like peak of ethylene 
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production. Considering that penstemon vase life was decreased by exogenous ethylene, 

increased levels of ethylene may have been detected if the biosynthesis study extended 

for the duration of the penstemon vase life. In previous studies, weigela and penstemon 

did not respond to pretreatment with STS (Redman and Dole, unpublished data). 

However, Staby et al., (1993) found that STS reduced or completely inhibited the 

abscission of flowers from Penstemon hartwegii x P. cobaea 'Firebird' (beard's tongue) 

indicating that some penstemon species may be ethylene sensitive species. 

In conclusion, purple coneflower, celosia, cosmos, and yarrow were ethylene

insensitive cut flower species. Maximillians' s sunflower did not produce a climacteric

like pattern of ethylene and C02 production and was sensitive to exogenous ethylene. 

Even though butterfly bush exhibited a modest climacteric-like pattern of ethylene and 

C02 production, it was insensitive to exogenous applications of ethylene and was probably 

an ethylene-insensitive species also. Weigela exhibited an climacteric-like pattern of 

ethylene and C02 production and was sensitive to exogenous ethylene which accelerated 

flower abscission. Penstemon did not exhibit a climacteric pattern of ethylene and C02 

production, but was sensitive to exogenous ethylene and accelerated flower abscission. 

Maximillian's sunflower, penstemon and weigela were considered ethylene-sensitive cut 

flower species. However, to determine the true nature of ethylene biosynthesis and 

sensitivity, further research on ACC synthase activity, and ACC content and the effects 

of ethylene inhibitors such as aminoethoxyvinylglycine (A VG), aminooxyacetic acid 

(AOA), and STS on flowers would be required. Postharvest recommendations for 

Maximillian' s sunflower, penstemon and weigela would include treatment with an 
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inhibitor of ethylene biosynthesis and action, plus avoiding shipping and storage near 

flowers or produce that may produce ethylene. 
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Table 3.1. Analysis of variance for 1-ml ethylene and C02 head-space gas samples taken 
at 1, 12, 24, and 48 h after harvest. Means are an average of data from 10-30 
stems/species. 

Source of Variation 

Stem C;zH4 

Hour C;zH4 

Stem C02 

Hour C02 

Stem C;zH4 

Hour C;zH4 

Rep x Hr C;zH4 

Stem C02 

Hour C02 

Rep x Hr C02 

Stem C;zH4 

Hour ~H4 
Stem C02 

Hour C02 

Rep ~H4 
Stem C;zH4 

Hour ~H4 
Rep x Hr C;zH4 

Rep C02 

Stem C02 

df Mean squares 

Echinacea purpurea 

9 
3 
9 
3 

Helianthus maximilliani 

9 
3 
3 

9 
3 
3 

Penstemon digitalis 

9 
3 
9 
3 

0.Q07NS 
0.027* 
2.87x106Ns 
4.39xl07*** 

0.Ql8NS 
0.032* 
0.001NS 

2.2lxlQ8NS 
3.73x10SNs 
1.75x1QBNS 

1.2ifS 
1.4<fS 
5.72x1<f*** 
2.20x107*** 

Achillea filipendulina 'Coronation Gold' 

1 
9 
3 
3 

1 
9 
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0.017NS 
3.23ifS 
3.252NS 
1.497NS 

7.08xl06••• 

3.08xl06 ... 



Hour C02 

Rep x Hr C02 

Rep ~H4 
Stem ~H4 
Hour ~H4 
Rep x Hr ~H4 

Rep C02 

Stem C02 

Hour C02 

Rep x Hr C02 

Rep ~H4 
Stem ~H4 
Hour ~H4 
Rep x Hr ~H4 

Rep C02 

Stem C02 

Hour C02 

Rep x Hr C02 

Rep ~H4 
Stem ~H4 
Hour ~H4 
Rep x Hr ~H4 

Rep C02 

Stem C02 

Hour C02 

Rep x Hr C02 

3 
3 

2.93xl07••• 

5.35xl()"NS 

Celosia plumosa 'Forest Fire' 

2 
9 
3 
6 

2 
9 
3 
6 

33.53NS 
1Q.9gNS 
31.53NS 

s.gNs 

2.41xtos··· 
2.14xl07••• 

2.38xl08 ... 

2.32x10"••• 

Cosmos bippinatus 'Sensation' 

2 25.92NS 
9 18.71NS 
3 11.43NS 
6 14.17NS 

2 1.02xl06••• 

9 3.24xtos··· 
3 8.18xl06••• 

6 7.06x10S••• 

Buddleia davidii 

2 10.81NS 
9 7.63NS 
3 Is.sgNs 
6 5.58NS 

2 1.48x10ms 
9 4.96xl~5 

3 6.71xl07••• 

6 7.49xlQ6NS 
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Weigela sp. 

Rep ~H4 2 46.87NS 
Stem ~H4 9 29.77NS 
Hour ~H4 3 80.2<fS 
Rep x Hr ~H4 6 lQ.67NS 

Rep C02 2 9.44xlo7••• 

Stem C02 9 3.31xl06** 

Hour C02 3 8.61xlo7••• 

Rep x Hr C02 6 9.27xl06••• 

Ns, ·, ••• Nonsignificant or significant at P.$. 0.05, 0.001, respectively. 
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Table 3.2. The effect of 0.0, 0.2, and 1.0 ul-li.ter·1 exogenous ethylene applied for 20 h 
at 30-litersil-1 on vase life (days) of cut flowers. Means are an average of data from 10-
30 stems/species + SE. 

Stem Number 

10 
10 
10 

10 
10 
10 

10 
10 
10 

20 
20 
20 

0.0 
0.2 
1.0 

Treatment 
(ul·liter"1) 

Treament 

Echinacea purpurea 

Helianthus maximilliani 

0.0 
0.2 
1.0 

Treatment 

0.0 
0.2 
1.0 

Treatment 

Penstemon digitalis 

Vase life 
(days) 

3.1 ± 0.7 
2.6 ± 1.1 
1.1±1.3 

NS 

5.4± 0.8 
5.5 ± 0.7 
4.5*z± 1.3 

NS 

6.5 ± 2.5 
4.6±2.4 
4.6*+ 1.0 

• 

Achillea filipendulina 'Coronation Gold' 

0.0 
0.2 
1.0 

Treatment 
Rep 
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8.4+2.4 
7.9 + 2.4 
7.7 ± 2.8 

NS 

NS 



30 
30 
30 

30 
30 
30 

30 
30 
30 

Treatment x Rep 

Celosia plumosa 'Forest Fire' 

0.0 
0.2 
1.0 

Treatment 
Rep 
Treatment x Rep 

Cosmos bipinnatus 'Sensation' 

0.0 
0.2 
1.0 

Treatment 
Rep 
Treatment x Rep 

0.0 
0.2 
1.0 

Treatment 
Rep 
Treatment x Rep 

Buddleia davidii 

70 

NS 

5.3 + 2.5 
4.6 + 1.8 
4.5 + 1.6 

NS 

NS 

NS 

6.3 + 2.2 
6.3 + 2.1 
5.9 ± 1.8 

NS 

NS 

NS 

3.1 ± 1.0 
3.1 + 1.2 
3.1 + 1.4 

NS 

NS 

NS 



30 
30 
30 

0.0 
0.2 
1.0 

Treatment 

z• Significant using Dunnett's t-tests 

Weigela sp. 

3.9 + 1.2 
2.2*+ 0.6 
1.2*± 0.5 

••• 

Ns, ·, ••• Nonsignificant or significant at Pgl.05 or 0.001, respectively. 
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Figure 3.1. 

List of Figures 

Ethylene (-•-) (nmol ethylene/liter/hr) and C02 (-• -) (umol CO:/liter/hr) 

production as measured with 1-rnl ethylene and C02 head-space 

gas samples taken at 1, 12, 24, and 48 h after harvest for Echinacea 

purpurea (A), Helianthus maximilliani (B), Penstemon digitalis (C), 

Achilleafilipendulina 'Coronation Gold' (D), Celosia plumosa 'Forest 

Fire' (E), Cosmos bipinnatus 'Sensation' (F), Buddleia davidii (G), and 

Weigela species (H). Means are an average of data from 10-30 stems. 

Bars represent + SE. 
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Figure 3.1. 
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Chapter IV 

Comparison of Ethanol as a Aoral Preservative with Silver Thiosulfate 

and 8-Hydroxyquinoline Citrate 

Paul B. Redman, John M. Dole, Niels 0. Maness, Jeffrey A. Anderson. Department of 

Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 

74078-0511. Janette Jacobs. Department of Plant Pathology, Oklahoma State University, 

Stillwater, OK 74078-0511. 

Additional index words. Dianthus caryophyllus 'Atlantis', D. caryophyllus 'White Sim', 

Rosa hybrida, R. hybrida 'Better Times', silver thiosulfate (STS), 8-hydroxyquinoline 

citrate (8-HQC). 

Abbreviations. ACC, 1-amino-cyclopropane-1-carboxylic acid; AA, acetaldehyde; ADH, 

alcohol dehydrogenase; CFU, colony forming unit; EFE, ethylene forming enzyme; 8-

HQC, 8-hydroxyquinoline citrate; NA, nutrient agar; NB, nutrient broth; SDW, sterile 

deionized water; STS, silver thiosulfate. 
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Abstract. The postharvest evolution of ethylene and C02 measured from headspace gas 

samples was not different in Dianthus caryophyllus 'Atlantis' cut flower stems continually 

treated with 8% ethanol or silver thiosulfate (STS). The respiration peak was suppressed 

in ethanol and STS treated stems. Ethanol and STS treated stems did not provide 

protection from the action of ethylene when exposed to 1.0 ul·liter·1 ethylene. Exposure 

to 0.0 or 0.2 ul·liter-1 ethylene did not affect the vase life of ethanol or STS treated 

sterns. STS significantly increased the vase life of carnation flowers as compared to 

ethanol treated stems. Flowers continually treated in 8% ethanol exhibited the greatest 

number of bacterial colony forming units (cfu) in the vase solution but had the longest 

postharvest life which was attributed to the inhibitory effect upon ethylene action. Five 

bacteria isolates were identified as carnation isolate (CI) 10, CI 11, CI 12, CI 13 and CI 

14. The isolates CI 11, CI 12, and CI 13 decreased the vase life of 'Atlantis' carnations. 

The isolates CI 10 and CI 14 did not affect the vase life of' Atlanatis' carnation flowers. 

Growth of all five isolates was inhibited in nutrient broth (NB) supplemented with 8% 

ethanol, 8-HQC, or a combination of 8% ethanol+ 8-HQC. Three of the five bacteria 

isolates were identified as Xanthomonas maltophila (CI 10), Flavomonas oryzihabitans 

(CI 12), and Xanthomonas species (CI 14). The isolates CI 11 and CI 13 have not been 

identified. 
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Introduction 

Alcohols have been studied as a method to reduce ethylene sensitivity in carnation 

and tomato (Heins, 1980; Paull and Goo, 1982; Saltveit, 1989; Saltveit and Mencarelli, 

1988; Wu et al., 1992). Continuous treatment with 8% ethanol doubled the vase life of 

'White Sim' carnation flowers (Dianthus caryophyllus 'White Sim') (Wu et al., 1992). 

Silver thiosulfate (STS) also doubles the vase life of 'White Sim' carnation cut flowers 

when pulsed for 10 minutes (Reid et al., 1980). STS is the commercially accepted control 

of ethylene action. Nowak and Rudnicki (1990) anticipate that all ethylene sensitive 

flower species will require treatment with STS prior to entering international markets. 

However, STS is an expensive and harmful heavy metal environmental contaminant 

(Altman and Solomos, 1993). Alcohols may provide an alternative preservative treatment 

that is environmentally safe, less expensive, and readily available from renewable natural 

resources. 

Vase solution bacteria may decrease the postharvest life of cut flowers by 

increasing enzymatic damage, disrupting plant cell membranes, stimulating plant wound 

ethylene, and causing physical occlusion at the base of or in the stem (Larsen and 

Cromarty, 1967; Marousky, 1971; Marousky, 1980; van Doom et al., 1990; Zagory and 

Reid, 1986). Ethanol inhibits bacterial growth and is often used as a sterilant (Ingram, 

1990). Ethanol in the vase solution of cut flowers may exhibit germicidal properties that 

contribute to vase life. Treatment with 8-HQC, a commercially accepted control of 

bacterial growth, prevents the accumulation of bacterial populations in the vase water (van 
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Doom et al., 1990). Ethanol will be compared to 8-HQC in terms of germicidal 

properties. The objectives of this research were to determine the effects of ethanol on 

ethylene synthesis and sensitivity, microbial growth, and postharvest life of carnation. 

Materials and Methods 

Untreated standard white carnations (Dianthus caryophyllus L. 'Atlantis') stems 

were purchased from a commercial grower (Matsui Wholesale Flowers, Salinas, Calif.), 

shipped dry and recut to 20.0 em. 

Ethanol vs. STS - Exogenous Ethylene Sensitivity. Carnation stems were either 

pulsed or continually treated with 8% ethanol or 1 mM STS, then exposed to exogenous 

ethylene in a flow-through system. The carnation stems were continually treated or 

pulsed for 1 h in 8% ethanol or 1 mM STS, then transferred to deionized water (Dn. 

Individual cut flower stems were sealed in a 3-liter glass jar and subjected to ethylene 

concentrations of 0.0, 0.2, or 1.0 ul·liter·1 at a flow rate of 30-litersi1·1 for 20 h. A 

control of 0.0 ul·liter·1 ethylene contained 50.0 g Ethysorb (StayFresh Ltd., London 

England) inside the jar to oxidize ethylene produced by the cut flower. 

Mter ethylene treatment, flowers were removed from the containers and held at 

room temperature until no longer commercially acceptable. Senescence date for each cut 

flower was recorded and the vase life was calculated in days from the start of the 

ethylene treatment. The experimental design was a 3 x 2 x 2 factorial with 10 stems 

79 



randomly assigned to each treatment as in a completly randomized design. Data within 

each experiments were analyzed by general linear model procedure with means separation 

by trend analysis (SAS Institute, Cary, N.C.) and all means were compared by least 

significant difference (LSD) (SAS Institute). 

Ethanol vs. Sf'S- Endogenous Ethylene Production. Carnation stems were placed 

in 8% ethanol or 1 mM STS and sealed in 3-liter glass jars equipped with flushing and 

sampling ports. Jars were flushed with ethylene-free air for approximately 3 min before 

being sealed. Jars were held at 21 + 3C for twelve days under continuous light exposure. 

Two 1-ml head-space gas samples were taken each day for C02 and ethylene 

accumulation until the carnation flowers were no longer commercially acceptable. Jars 

were sealed 2 h prior to each head-space gas sample. C02 analysis was conducted by 

injecting 1-ml head-space gas into an infrared gas analyzer (IRGA)(Horiba PIR-2000). 

Lamp grade nitrogen was used as carrier gas. A linear C02 response curve was 

established with gaseous standards of 5000 ul·liter"1 C02 standard (Scott Specialty Gases, 

Plumsteadville, Pa). Ethylene analysis was conducted using a gas-tight syringe to inject 

1-ml head-space gas into a gas chromatograph (GC) (Model 540, Tracor Instruments, 

Austin, Texas). The GC was equipped with a 30-m x 0.53-mm column (GS-Q Megabore, 

J & W Scientific, Folsom, Calif.) and flame ionization detector. Helium was used as 

carrier gas. Runs were conducted isothermally with an oven temperature of 60C. 

Injection and detection termperatures were 180 and 200 C, respectively. Mean production 

rates were calculated from response factors derived from gaseous standards (Scott 

Specialty Gases, Plumsteadville, Pa). The experimental design was a completely 
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randomized design with 5 stems randomly assigned to each treatment. Data were 

analyzed by General Linear Model procedure with means seperation by trend analysis 

(SAS Institute, Cary, N.C.) and mean production rates were compared by least significant 

difference (SAS Institute). 

Ethanol vs. 8-HQC - Bacterial Population and Vase Life Determination. 

Carnation flowers were either pulsed or continuously incubated in sterile vases containing 

200 m1 of 8% ethanol or 200 mg·liter-1 hydroxyquinoline + 300 mg·liter·1 citric acid 

(Sigma Chemical Co.; St. Louis, MO) or 8% ethanol + 200 mg·liter-1 hydroxyquinoline 

+ 300 mg·liter·1 citric acid. Pulsed stems were treated with chemical solution for 24 h 

in a dark cooler at 2 ± 1C, transferred to sterile DI water (SOW), and incubated at 21 + 

2C under continuous light exposure. Continually treated and control stems were 

incubated in solution or SDW, respectively, at room temperature under continuous light 

exposure. 

Bacterial populations of the vase solutions were determined by dilution plating at 

48 h intervals from the initiation of the experiment until the carnation flowers were no 

longer commercially acceptable. Aliquots (0.1 ml) from serial dilutions of the vase 

solutions were plated on nutrient agar (NA) (Difco, Detroit, MO plates containing 100 

ugml-1 cyclohexamide (NAc) to inhibit fungal growth. Bacterial counts were recorded 

following incubation for 5 days at 25C. Fifteen bacterial isolates, representing the most 

common colony morphology types among the treatments, were purified and stored in 15% 

glycerol at -70 C for subsequent analysis. Senescence date for each cut flower was 

recorded and the vase life was calcUlated in days from the start of treatment. The 
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experimental design was a 2 x 4 factorial arrangement Ten stems were placed in a 

completely randomized design and blocked by harvest date. Data was analyzed by 

General Linear Model procedure with means seperation by least significant difference 

(SAS Institute). 

Ethanol vs. 8-HQC - Bacteria Identification and Inoculation. Five isolates, 

designated carnation isolate (CI) CI3, CllO, CI11, CI12, and CI14, were utilized in further 

studies. The Gram reaction of the isolates was determined using a stain procedure, and 

three of the isolates were tentatively identified using Biolog GN microplates (Biolog Inc., 

Hayward, CA). Bacterial isolates were grown on Trypticase soy agar for 24-48 h. 

Bacterial cells were removed with a sterile cotton swab, suspended in sterile 0.85% NaCl 

to an 00600 of 0.15. 150 ul of the bacterial suspension was loaded into each well of the 

GN microplates. The plates were incubated for 24-48 h at 28 C in the dark. Two 

replicate GN microplates were utilized for each isolate. Plates were read at 24, 48 and 

72 h with a 590 nm filter on a microplate reader. Results were analyzed with Biolog GN 

database version 3.50 to determine the identity of each isolate. The growth and survival 

of the bacterial isolates in the germicidal solutions was monitored in nutrient broth (NB) 

and NB amended with 8% ethanol, 8-HQC, or 8% ethanol+ 8-HQC. Following a 24-48 

h incubation at 25 C on NA, the bacteria were suspended in 0.85% NaCl to an 00600 of 

0.15 using a Bausch and Lomb Spectronic 20 spectrophotometer. Five pl of the bacterial 

suspension was inoculated into NB or amended NB in standard culture tubes. The tubes 

were incubated at 280 rpm on a rotary shaker for 24-48 h at 28 C. The experimental 

design was a 5 X 4 factorial arrangement in a completely ransomized design. Four 
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replicate tubes were utilized for each experiment, and the experiment was repeated once. 

Bacterial counts from each tube were detennined by dilution plating on NA. 

The bacterial isolates CI3, CllO, CI11, CI12, and CI14 were then examined to 

detennine their effect on vase life of 'Atlantis' carnation flowers incubated in SDW. Five 

carnation stems were placed in a completely randomized design and individually assigned 

to each treatment. Bacterial suspensions in SDW were prepared as described above. 

Two-ml of inoculum was diluted into 198 m1 SDW. One carnation flower was incubated 

in each vase; the top of each vase was covered with Parafllm (American Can Co., 

Greenwich, CT) to reduce bacterial contamination. The experiments were performed 

under continuous light exposure at 25C, and were tenninated when individual flowers 

were no longer commercially acceptable. At tennination, bacterial counts from vase 

solutions and flower vase life were detennined as described above. 

Results 

Ethanol vs. STS. Rate of ethylene production was not different between 'Atlantis' 

carnation stems held in STS or ethanol (Table 4.1, Fig. 4.1). A peak in ethylene 

production of 26.0 nmol-g. fr. wt-1-h-1 was reached by day nine for ethanol-treated stems 

while a smaller peak of 13.4 nmol·g. fr. wt-1 -h-1 was exhibited by day eight for STS

treated stems (Table 4.1, Fig 4.1). Respiration rate decreased significantly as incubation 

period increased. STS-treated stems had a significantly higher C02 production rate as 

83 



compared to ethanol-treated stems (Table 4.1, Fig. 4.2). Vase life of' Atlantis' carnation 

stems continually treated in STS was significantly higher than ethanol-treated stems when 

exposed to exogenous ethylene (Table 4.2). Vase life of carnation stems decreased 

significantly when exposed to 1.0 uHiter-1 ethylene (Table 4.2). Exposure to 0.2 uHitef 

1 exogenous ethylene did not affect the vase life as compared to the control of STS or 

ethanol-treated stems. 

Ethanol vs. 8-HQC. Carnation stems continually treated with 8% ethanol had the 

highest bacterial count at vase life termination (1.15 x 107 cfuml-1 vase solution) and 

vase life (10.4 days) (Tables 4.4 and 4.5, respectively). Stems continually treated with 

8-HQC or a combination of 8% ethanol + 8-HQC exhibited the least number of bacteria 

and a vase life of 8.7 and 7.3 days, respectively (Tables 4.4 and 4.5). Stems held in DI 

water had a significantly lower mean bacterial count than stems continually held in 8% 

ethanol after day 4. Vase life of carnation stems was not different between control stems 

or stems continuously held or pulsed in 8% ethanol, 8-HQC, or 8% ethanol + 8-HQC 

(Table 4.3). 

Growth and survival of CI 10 was significantly higher in tubes containing NB only 

than tubes amended with germicide (Table 4.6). Bacterial growth in NB treated with 8% 

ethanol, 8-HQC, or a combination of 8% ethanol+ 8-HQC was less than the untreated 

control (Table 4.6). CI 11 and CI 12 growth was completely inhibited in NB treated with 

a combination of 8% ethanol + 8-HQC (Table 4.5). CI 13 growth was not inhibited in 

NB treated with 8% ethanol, 8-HQC, or a combination of 8% ethanol + 8-HQC, but was 

significantly lower than the control. CI 14 growth and survival in NB was 8.2 log 
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cfuml-1 which was significantly higher than in tubes containing 8% ethanol, 8-HQC, or 

a combination of 8% ethanol + 8-HQC. Following the inoculation of a SOW vase 

solution with the five isolates, CI 11, CI 12, and CI 14 resulted in a significantly shorter 

carnation vase life as compared to the control (Table 4. 7). The vase life of flowers 

inoculated with CI 10 and CI 14 were not different from the control (Table 4.7). Three 

of the isolates were tentatively identified using Biolog GN microplates (Biolog Inc., 

Hayward, CA) as Xanthomonas maltophila (CI 10), Flavomonas oryzihabitans (CI 12), 

and Xanthomonas species (CI 14). The remaining isolates were not identifiable by use 

of the Biolog GN microplates. 

Discussion 

Carnation stems continuously held in 8% ethanol or STS produced less than 50 

nmol-g fr. wt:1·h-1 ethylene (Figure 4.1). 8% ethanol and STS treated 'Atlantis' stems 

did not exhibit a respiratory peak. Standard 'White Sim' carnation stems had a peak in 

ethylene production of 230 nl/flower/h (Heins, 1980). Similar to findings by Wu et al. 

(1992) and Heins (1980), ethylene production of 'Atlantis' carnation stems was strongly 

suppressed by continuous treatment in 8% ethanol. Ethylene peak reached by continually

treated STS stems was one-half that of the ethylene peak produced by continually-treated 

ethanol stems. 

Wu et al. (1992) suggested that the primary effect of ethanol is preventing the 
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induction of increased ethylene biosynthesis. Treatment with ethanol vapor inhibited 

lycopene and ethylene synthesis in ripening tomato fruit (Saltveit and Mencarelli, 1988). 

Pulse treatment as short as 10 min with 1.0 mM STS increased the vase life of 'White 

Sim' carnation (Dianthus caryophyllus 'White Sim') cut flowers (Reid, et al., 1980). STS 

inhibites ethylene action by binding to the physiological receptor (Reid and Wu, 1992). 

Wu et al. (1992) suggested that ethanol interferes with ethylene action other than 

competing with the ethylene binding site. Once ethylene production begins, ethanol was 

not effective in inhibiting ethylene synthesis (Heins, 1980). Continuous treatment with 

ethanol reduced the accumulation of the immediate precursor of ethylene, 1-

arninocyclopropane-1-carboxylic acid (ACC), and completely inhibited the activity of the 

ethylene forming enzyme (EFE). Treatment of grape berries (Vitis vinifera L. cv. 

Sultanina) with acetaldehyde (AA) caused a reduction in ethylene evolution (Pesis and 

Marinansky, 1992). Pesis and Marinansky (1992) suggested that AA is the reactive 

compound in the inhibition of ethylene biosynthesis of carnation flowers because ethanol 

is converted into AA by alcohol dehydrogenase which is present in carnations. 

Exposure to exogenous applications of 1.0 ul·liter-1 ethylene significantly 

decreased the vase life of Atlantis carnation cut flowers (Table 4.2, Fig. 4.3). Treatment 

of 'White Sim' carnation cut flowers treated with 8% ethanol reduced the senescence

promoting effects of exogenous ethylene at concentrations less than 0.6 ul·liter-1 (Wu et 

al., 1992). Inhibition of ethylene action in carnation by ethanol was noncompetitive. 

Application of STS to 'White Sim' carnation flowers reduced ethylene binding activity 

suggesting that silver competitively inhibits ethylene action (Reid and Wu, 1992). Mean 
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vase life of 'Atlantis' stems exposed to exogenous applications of 0.0, 0.2, or 1.0 ul·liter·1 

ethylene and treated with STS was significantly longer (6.5 days) than ethanol-treated 

stems (5.3 days) (Table 4.2, Fig. 4.3). 'Atlantis' stems exposed to 0.2 ul·liter·1 ethylene 

and continually-treated with STS had a significantly longer vase life than continual and 

pulsed ethanol-treated stems. 

Continuous treatment with 8% ethanol caused phytotoxicity along the stem which 

appeared as white to brown streaks. In addition, continual treatment with 8% ethanol 

caused stem topple of 'Atlantis' carnation cut flowers. Similar to findings by Heins 

(1980) and Wu et al. (1992), the stem collapsed at the node immediately above the vase 

solution. 

The vase life of 'Atlantis' carnation stems continually treated with 8% ethanol was 

significantly longer than stems continually treated with 8-HQC or 8-HQC + 8% ethanol 

(Table 4.3). However, the bacterial count of continually ethanol-treated stems was 

significantly higher than 8-HQC or 8-HQC + ethanol. High molar concentrations of 

ethanol were required to inhibit growth, kill cells, or block metabolism of bacteria 

(Ingram, 1990). Some bacteria were sensitive to ethanol while others are not. Escheria 

coli was sensitive to ethanol concentrations above 6% while Lactobacillus heterohiochii 

and L. homohiohnii were capable of growth in ethanol concentrations above 18% by 

volume (Ingram, 1990). Addition of ethanol to growing cultures of E. coli caused a 

change in fatty acid composition with the replacement of 16:0 with 18:1 fatty acid. The 

change is immediate, dose dependent, and reversible (Ingram, 1990). When E. coli cells 

were grown in the presence of 16:0 fatty acid, the result was a change in membrane fatty 
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acid composition which was accompanied by death in the presence of ethanol. The 

importance of fatty acid composition was not within the degree of saturation, but the 

length of the chain. The adaptive response of E. coli to increase fatty acid chain length 

by shifting from 16 to 18 carbon fatty acids increased the number of CH2 units that 

interact and strengthen the primary membrane barrier which determines permeability 

(Ingram, 1990). The bacteria present in the ethanol-treated carnation stems may have 

been ethanol-tolerant bacteria. 

Bacteria may produce ethylene in the vase solution (Zagory and Reid, 1986) and 

bacteria may cause xylem blockage (van Doom et al., 1989). Silver nitrate reduced the 

number of bacteria and prevents xylem blockage but STS did not reduce bacteria number 

or affect hydraulic conductance (van Doom et al., 1989). When two thirds of rose xylem 

vessels were occluded with a razor blade water uptake was not reduced because the loss 

of vessels was counteracted by an increased flow rate in the remaining non-occluded 

vessels (van Doom et al., 1989). A mean bacterial count of 1.2 x 107 cfum.1"1 was 

observed in continually ethanol-treated stems terminated at day 16 (Table 4.4). Stems 

terminated at days 6, 8, and 10 exhibited bacterial counts of 106 cfu '1111"1 which was 

sufficient to decrease hydraulic conductance as reported by van Doom et al. (1989). 

However, the vase life of continually ethanol-treated stems was not decreased. 8-HQC 

inhibited ethylene production in rose (Rosa hybrida) (van Doom et al., 1989) and reduced 

vascular blockage in 'Better Times' rose (R. hybrida 'Better Times') (Marousky, 1971). 

8-HQC and the 8-HQC + ethanol continually-treated stems demonstrated a significantly 

lower mean bacterial count. However, the vase life of both treatments was significantly 
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lower than the continually ethanol-treated stems which demonstrates the primary 

importance in extending the postharvest life of carnation cut flowers by inhibiting the 

production and action of ethylene. 

Vase life of 'Atlantis' carnation stems held in SDW inoculated with carnation 

isolate (Cn 11, CI 12, and CI 13 was significantly shorter as compared to the control 

(Table 4.7). CI 12 was identified as Flavomonas oryzihabitans which has not been 

reported in previous bacteria evaluations of cut flower vase solutions. CI 10 and CI 14 

were identified as Xanthomonas sp. which have also not been reported in previous 

research. Bacteria have been isolated and identified as Pseudomonas sp., Flavobacterium 

lutescens, and Alcaligenes faecalis from vase solutions containing 'Sonia' rose (Rosa 

hybrida 'Sonia') which were not inhibited by 600 mg·liter-1 hydroxyquinoline citrate (van 

Doom and de Witte, 1990). Pseudomonas sp. has been the most widely used to observe 

the effect of bacteria in the vase solution on the postharvest life of cut flowers (Jones and 

Hill, 1993; van Doom and de Witte, 1990; van Doom and de Witte, 1994). Both 

Flavobacterium sp. and Alcaligenes sp. were present for identification in the Biolog data 

base indicating that the isolates CI 11 and CI 13 are bacteria species that have not been 

identified previously or are not available in the Biolog data base. Vase life of 'Atlantis' 

carnation stems inoculated with CI 12 (Flavomonas oryzihabitans) was significantly 

shorter than the control. CI 12 should possibly be included in future studies to observe 

the effect of bacteria on the postharvest life of cut flowers. Growth of CI 13 in NB 

treated with 8% ethanol, 8-HQC, or 8% ethanol+ 8-HQC was less than the control but 

exceeded lOS cfuml-1 and decreased the vase life of 'Atlantis' carnations demonstrating 
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a deleterious effect on the vase life of carnation flowers. 

In summary, STS was a more effective postharvest treatment as compared to 

continual treatment with 8% ethanol by reducing the production of ethylene and 

suppressing the climacteric respiratory peale. STS and 8% ethanol did not prevent the 

senescence promoting effects upon exposure to 1.0 ul·liter-1 ethylene. STS extended the 

vase life and prevented the action of 0.2 ul·liter-1 ethylene as compared to stems 

continually treated with ethanol. Continual treatment with 8% ethanol inhibited ethylene 

production and action and did not provide germicidal properties. 

Ethanol is desirable as a floral preservative because it is environmentally safe. 

The practical value of ethanol as a single postharvest preservative treatment is limited by 

the need to continually treat flowers (Wu et al., 1992). In addition, the effects of high 

ethanol levels (phytotoxicity and stem topple) are not desirable to the cut flower industry. 

The film processing industry safely uses and disposes of more silver than the floral 

industry each year (Staby et al., 1993). Handlers of cut flowers should be able to safely 

use STS by implementing proper silver recovery procedures (Staby et al., 1993). 

Research efforts to identify other environmentally safe postharvest floral preservatives is 

encouraged. 
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Table 4.1. Analysis of variance for ethylene and C02 biosynthesis of standard white 
'Atlantis' carnations continually treated in 1 mM STS or 8% ethanol. 

Source of Variation 

Treatment 
Day 
Stem 
Treatment x day 

Treatment 
Day 
Stem 
Treatment x day 

df 

Ethylene 

1 
11 
9 

11 

1 
11 
9 

11 

Mean square 

164.77NS 
155.87NS 
92.57NS 
212.61* 

1.23xl06••• 

6.20x106••• 

3.57xl06••• 

9.72x1ifNS 

Ns, ·, ••• Nonsignificant or significant at P<0.05, or 0.001, respectively. 
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Table 4.2. Analysis of variance for the effects of exogenous ethylene on the vase life of 
standard white 'Atlantis' carnations continuously held or pulsed (treatment) in 8% ethanol 
or 1mM STS (chemical). 

Source of Variation df Mean Square 

Chemical 1 37.93··· 
Treatment 1 286.74··· 
Chemical x Treatment 1 l.llNS 
Ethylene 2 515.95··· 
Chemical x Ethylene 2 15.73 •• 
Treatment x Ethylene 2 38.46··· 
Chemical x Trmt x Ethylene 2 2.23NS 

Ns, ··, •••, Nonsignificant or significant at P~ 0.01, or 0.001, respectively 
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Table 4.3. Analysis of variance for the effects of pulse or continual treatment of 
'Atlantis' carnation stems in 8% ethanol, 200 mg·liter·1 + 300 mg·liter"1 citric acid (8-
HQC), a combination of 8% ethanol + 8-HQC, or deionized water on mean bacteria 
colony fonning units per m1 (cfu-ml-1). 

Source of Variation df Mean square 

Treatment 6 88.82··· 
Rep 9 4.68NS 
Day 8 155.96··· 
Treatment x Day 34 11.38 ... 

Ns, ••• Nonsignificant or significant at P< 0.001, respectively. 
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Table 4.4. Mean bacterial colony forming units (cfu) per 1-ml vase solution samples 
taken every two days until termination of vase life. Control stems were continuously held 
in sterilized deionized water (SDW) at 21 +2C. 

Treatment Day Number of Stems Bacterial Count 
(cfu/ml vase solution) 

Control 0 10 0.0 
Control 2 10 5.15 X 101 

Control 4 9 8.45 X 1if 
Control 6 8 1.58 X lOS 
Control 8 4 1.34 X 105 

Pulse 8% Ethanol 0 10 0.0 
Pulse 8% Ethanol 2 10 1.77 X 10 
Pulse 8% Ethanol 4 10 1.82 X 103 

Pulse 8% Ethanol 6 10 2.81 X 105 

Pulse 8% Ethanol 8 8 5.38 X 105 

Pulse 8% Ethanol 10 1 1.10 X 106 

Pulse 8-HQC 0 10 0.0 
Pulse 8-HQC 2 10 0.0 
Pulse 8-HQC 4 10 2.14 X 1W 
Pulse 8-HQC 6 10 1.75 X 105 

Pulse 8-HQC 8 6 2.89 X 105 

Pulse Ethanol + 8-HQC 0 10 0.0 
Pulse Ethanol + 8-HQC 2 10 3.16 X 10 
Pulse Ethanol + 8-HQC 4 10 5.94 X 103 

Pulse Ethanol + 8-HQC 6 8 9.23 X 1if 
Pulse Ethanol + 8-HQC 8 6 9.3 X 105 

Pulse Ethanol + 8-HQC 10 3 1.48 X 106 

Continuous 8% Ethanol 0 10 0.0 

Continuous 8% Ethanol 2 10 0.0 

Continuous 8% Ethanol 4 10 4.17 X l<f 

Continuous 8% Ethanol 6 10 2.55 X 106 

Continuous 8% Ethanol 8 9 3.20 X 106 

Continuous 8% Ethanol 10 6 5.45 X 106 

Continuous 8% Ethanol 12 3 5.41 X 106 

Continuous 8% Ethanol 14 3 2.03 X 107 
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Continuous 8% Ethanol 16 1 1.15 X 107 

Continuous 8-HQC 0 10 0.0 
Continuous 8-HQC 2 10 1.26 X 10 
Continuous 8-HQC 4 9 2.44 X 10 
Continuous 8-HQC 6 9 1.91 X 101 

Continuous 8-HQC 8 5 1.55 X 101 

Continuous 8-HQC 10 3 1.17 X 102 

Continuous 8-HQC 12 2 0.0 
Continuous 8-HQC 14 2 0.0 
Continuous 8-HQC 16 2 0.0 

Continuous ETOH+8-HQC 0 10 0.0 
Continuous ETOH+8-HQC 2 10 1.70 X 10 
Continuous ETOH+8-HQC 4 7 0.0 
Continuous ETOH+8-HQC 6 6 2.82 X 10 
Continuous ETOH+8-HQC 8 4 0.0 
Continuous ETOH+8-HQC 10 3 0.0 
Continuous ETOH+8-HQC 12 1 0.0 
Continuous ETOH+8-HQC 14 1 0.0 
Continuous ETOH+8-HQC 16 1 1.50 X 102 
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Table 4.5. Mean vase life of 'Atlantis' carnation stems pulsed or continually treated in 
8% ethanol, 200 mg·liter-1 hydroxyquinoline + 300 mg·liter-1citric acid (8-HQC), or a 
combination of 8% ethanol+ 8-HQC. Control stems were continuously held in sterile 
deionized water at 21 + 2C. Means are an average of data from 10 stems/trmt 

Treatment 

Control 

Pulse 8% Ethanol 
Pulse 8-HQC 
Pulse Ethanol + 8-HQC 

Continuous 8% Ethanol 
Continuous 8-HQC 
Continuous ETOH + 8-HQC 

Vase life 
(days) 

6.6 

10.4··· 
8.7NS 
7.3NS 

Ns, ••• Nonsignificant or significant as compared to the control at P~ 0.001, respectively. 
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Table 4.6. Mean log colony forming units (log cfu ml-1 vase solution) of carnation 
bacteria isolates (CI) CI 10, CI 11, CI 12, CI 13, and CI 14 incubated for 24-48 hr on a 
rotary shaker in sterilized, deionized water (SDW), 8% ethanol, 200 mg·liter-1 

hydroxyquinoline+ 300 mg·liter-1 citric acid (8-HQC), or a combination of 8% ethanol 
+ 8-HQC. Means are an average of 8 samples/treatment. 

Treatment 

SDW 
8% ethanol 
8-HQC 

CliO 

8% ethanol+8-HQC 

LSD 

SDW 
8% ethanol 
8-HQC 

CI 11 

8% ethanol+8-HQC 

LSD 

SDW 
8% ethanol 
8-HQC 

CI12 

8% ethanol+8-HQC 

LSD 

100 

log cfu/ml 

10.6 
5.74 
5.78 
5.60 

0.44 

6.86 
0.09 
0.09 
0.0 

0.29 

9.94 
0.38 
5.21 
0.0 

0.31 



sow 
8% ethanol 
8-HQC 

CI 13 

8% ethanol+8-HQC 

LSD 

sow 
8% ethanol 
8-HQC 

CI14 

8% ethanol+8-HQC 

LSD 

101 

7.94 
4.98 
5.15 
4.98 

0.65 

8.20 
1.24 
1.10 
1.15 

1.09 



Table 4.7. Mean vase life of 'Atlantis' carnation stems held in 200-ml sterilized 
deionized water (SDW) or SDW inoculated with carnation isolates (CI), 10, CI 11, CI 12, 
CI 13, or CI 14. Means are an average of five stems{moculum tteatement 

Treatment 

Control 

CI 10 
CI 11 
CI 12 
CI 13 
CI 14 

Vase life 
(days) 

6.0 

6.2NS 
5.o·· 
5.2** 
5.4** 
6.if5 

Ns, •• Nonsignificant or significant at P< 0.01, respectively. 
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List of Figures 

Figure 4.1. Ethylene biosynthesis of 'Atlantis' carnation stems continually treated with 
8% ethanol (-•-) or STS (-•-). Head-space gas samples were taken daily until the flower 
was no longer commercially acceptable. Means are an average of data from 5 
stems/treatment. Bars represent ± SE. 

Figure 4.2. C02 production of 'Atlantis' carnation stems continually treated with 8% 
ethanol (-•-) or STS ( -•-). Head-space gas samples were taken daily until the flower was 
no longer commercially acceptable. Means are an average of data from 5 
stems/treatment. Bars represent+ SE. 

Figure 4.3. Vase life in days of 'Atlantis' carnation stems pulsed in 8% ethanol(-+-) or 
STS ( -•-), or continually treated in 8% ethanol ( _._ ), or STS ( -•-). Means are an average 
of 10 stems/treatment. 

Figure 4.4. Mean number of bacterial colony forming units/ml vase solution (cfu/ml) for 
'Atlantis' carnation stems pulsed in 8% ethanol ( -•-), 200 mg·liter-1 hydroxyquinoline 
+ 300 mg·liter-1 citric acid (8-HQC) (---), or a combination of 8% ethanol + 8-HQC 
(-+-). Continually-treated stems were held in 8% ethanol (-•-), 8-HQC (-0-), or a 
combination of 8% ethanol+ 8-HQC (-A-). Control stems (-•-) were continuously held 
in sterilized deionized water (SDW) at 21 + 2C. 
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Chapter V 

Summary 

Interest in the production of specialty cut flowers is gaining among producers and 

consumers. The quest to find a unique cut flower that is easily produced, having 

attractive flower color with strong stems that are of sufficient length is demanding. A cut 

flower must also exhibit an extended postharvest life to be able to withstand the handling 

during marketing and meet consumer expectations for longevity after purchase. 

Purple coneflower, Maximillian's sunflower, penstemon, 'Coronation Gold' 

yarrow, 'Forest Fire' celosia, 'Sensation' cosmos, eastern redbud, butterfly bush, and 

weigela exhibit suitable production characteristics for the cut flower market. Postharvest 

attributes of these species were examined. 

Purple coneflower could be stored for one week at 2 or 4C and shipped up to five 

days. Maximillian' s sunflower can be stored for one week at 2C and shipped up to one 

day and STS, sucrose, and 8-HQC preservatives extend the vase life. Penstemon could 

be stored at 4 or 7C for one week and up to three weeks at 2C. Coronation Gold yarrow 

could be stored at 2C up to two weeks and shipped for two days and STS, sucrose, and 

8-HQC preservatives extend the vase life. Forest Fire celosia could be stored at 2, 4, or 

7C for one week and STS and 8-HQC preservatives extend the vase life. Sensation 

cosmos could be stored at 2C up to two weeks and shipped for one day. Butterfly bush 
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could be stored at 2C up to 2 weeks and STS, sucrose, and 8-HQC preservatives extend 

vase life. Eastern redbud could be stored at 2C up to two weeks. Weigela did not 

tolerate cold storage or shipping and STS, sucrose, and 8-HQC preservatives may extend 

the vase life. 

During shipping or handling, the postharvest life of cut flowers may decrease upon 

exposure to ethylene. Cut flowers that are ethylene sensitive should not be shipped or 

stored near other cut flowers or produce that evolve ethylene. Yarrow, celosia, cosmos, 

and butterfly bush produced a small ethylene peak attributed to wound ethylene and did 

not respond to exogenous ethylene. Purple coneflower did not produce ethylene and did 

not respond to exogenous ethylene. Maximillian 's sunflower did not produce an ethylene 

peak and was sensitive to exogenous ethylene. Penstemon and weigela produced a small 

ethylene peak attributed to wound ethylene and responded to exogenous ethylene by 

exhibiting severe flower abscission and decreased vase life. Maximillian's sunflower, 

penstemon and weigela should not be shipped or stored near ethylene producing plant 

material and should be treated with anti-ethylene preservatives. 

Ethanol was confirmed as a postharvest floral treatment that can inhibit ethylene 

biosynthesis and action. Ethanol is a desirable postharvest treatment because it is readily 

available, easily made, and environmentally safe. Current commercial practices to prevent 

ethylene sensitivity include the use of STS which contains the heavy metal, silver, and 

is not environmentally safe. STS-treated carnation cut flowers produced less ethylene and 

lasted longer than ethanol-treated flowers. 

Additional postharvest attributes such as germicide properties were investigated 
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by comparing ethanol to 8-hydroxyquinoline citrate (8-HQC). Ethanol treated stems had 

the greatest number of bacterial colony fonning units (cfu) and longer vase life than 8-

HQC-treated stems. The anti-ethylene properties of ethanol were of greater importance 

to the postharvest life of carnation flowers than its germicidal properties. 

Five bacteria isolates were identified as carnation isolate (CD 10, CI 11, CI 12, 

CI 13, and CI 14. The isolates CI 11, CI 12, and CI 13 decreased the vase life of 

'Atlantis' carnations. Isolates CI 10 and CI 14 did not affect the vase life of 'Atlantis' 

carnation flowers. Growth of all five isolates were inhibited in nutrient broth (NB) 

amended with 8% ethanol, 8-HQC, or a combination of 8% ethanol + 8-HQC. Three of 

the five bacteria isolates were identified as Xanthomonas maltophila (CI 10), Flavomonas 

oryzihabitans (CI 12), and Xanthomonas species (CI 14). The isolates CI 11 and CI 13 

have not been identified. 

The continued search for new cut flower species that have an extended 

postharvest life should be continued to diversify cut flower production and to maintain 

consumer interest. Even though current postharvest practices include compounds that are 

not environmentally safe, these compounds were the most effective in extending the vase 

life of cut flowers. Attention to proper use and disposal of used floral preservatives 

should be a common practice of cut flower handlers. Further research to discover 

environmentally safe floral preservatives is recommended. 
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