
SUPPORTING ALTRUISTIC PROTOCOL

IN MULTIDATABASE SYSTEM

BY

MAHESH M. J. RAM

Bachelor of Science

University of Madras

Madras, India.

1990

Submitted to the faculty of the
Graduate college of the

Oklahoma State University
in partial fulfilment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1994

<JKLAHOMA STATE UNIVERSITY

SUPPORTING ALTRUISTIC PROTOCOL

IN MUL TIDATABASE SYSTEM

Thesis Approved:

~ ~"(

PREFACE

The Heterogeneous Distributed DataBase Systems (HDDBS) is

an interconnection of Local Database systems which differ in data model,

concurrency control mechanisms, etc. As in any other database systems the

transaction processing system is at the heart of HDDBS. The global distributed

transaction management of Heterogeneous transactions is much complicated

than its counterpart in Distributed Database systems due to the property of local

autonomy of the component databases.

Indirect conflicts may arise between global sub transactions as

there is no way the global transaction manager knows the local conflicts in the

local databases. Researchers have come with variety of model to address the

issues of the transaction processing of HDDBS. Some of the models violate

local autonomy of the component databases or have low degree of

concurrency.

The model proposed by [JUHA91] has many desirable properties.

It uses the same protocol for distribution and serializability and hence will

reduce the cost of distributed global control. [JUHA91] improvises the 2 PC

protocol used in DDBS by adding two stricter states called source state and the

serializable state. However, this model demands that all the component

databases need to follow this strict TM protocol.

Advanced databases like CASE tools etc. do not support

serializable state due to the demand for higher degree of concurrency. Hence

these databases cannot join the federation. The global user is deprived of

accessing these sophisticated databases for their use due to this. This inspired

the idea of externally supporting the serializable state for an advanced

database so that they can participate in the federation. External support of

serializable state for altruistic protocol is done in this thesis. Likewise it can be

done for other protocols too and be benefited.

Analytical proof is done to show that this external support does

not violate the data consistency. Simulation of the project is done using Con

Sequent S81 to prove the feasibility of the idea and performance evaluation is

done in aspect of time taken for a given set of operations.

I wish to express my genuine thanks to my advisor, Dr. Huizhu

LU, for her invaluable guidance and strong motivation. I greatly appreciate her

personal attention and care towards this thesis. Also, my sincere appreciation

to the other committee members, Dr. K. M. George and Dr. Jacques LaFrance

for their advise and inspiration for this thesis. Also, special mention must be

made about Dr. G. E. Hedrick for his advise.

Sincere thanks to the computer department for excellent lab

facilities. I appreciate the library staff for their dedicated service.

Special thanks are due to my wife who was very understanding

and helpful throughout this work. Special thanks to my four month old daughter,

Kirthiga, who kept me awake most of the time and helped me finish my work.

My sincere gratitude to my Mother and Father for their great support to pursue

my degree.

TABLE OF CONTENTS

Chapter

1. INTRODUCTION

2. LITERATURE REVIEW

3.

4.

Term Definitions

Superdatabases .

Site Locking . . .

Implicit Ticket Method

Amocco Distributed Database Systems

Failure Resilient transaction mechanism in MOBS

Rigorous Transaction Scheduling .

Principle of Committment Ordering

Strong TM protocol

ANALYTICAL PROOF OF CORRECTNESS

SIMULATION ••••••••• 0 ••

Objectives of Simulation

Problem Statements . . .

Environment of the simulation

Simulation Details

Transaction Simulator .

Original Model . .

Proposed Model .

Page

1

7

7

12

13

14

15

16

18

18

19

22

26

26

27

28

28

29

34

38

Chapter Page

Results . 35

5. SUMMARY AND CONCLUSION . 53

REFERENCES . 55

APPENDIX . 59

APPENDIX A - ALTRUISTIC LOCKING 60

Table

I.

Figure

LIST OF TABLES

Example of sequence of actions that takes place
in the proposed method

LIST OF FIGURES

Page

. . 44

Page

1 . Example of possible indirect conflict among global sub transactions
(G 1 , G2) due to a local transaction (T local) at site 2 3

2. The states of transactions from user's point of view . 7

3. The states of transactions from system's point of view 8

4. A MOBS preserving control autonomy 11

5. A distributed MOBS with the control autonomy traded for reliability. 17

6. Implementation of MOBS following strong TM protocol [Model 1] . 31

7. Implementation of MOBS following strong TM protocol with
LOBS 2 following Altruistic protocol supporting
strong TM externally . 31

8. Data structure used for process array and it's private memory
and their relation . 33

9. Performance comparison between Strong TM vs Altruistic Protocol
for 2 transactions , 4 7

10. Performance comparison between Strong TM vs Altruistic Protocol
for 4 transactions . 48

Figure Page

11 . Performance comparison between Strong TM vs Altruistic Protocol
for 8 transactions. 49

12. Performance comparison between Model 1 vs Model 2
for 8 transactions

13. Performance comparison between Model 1 vs Model 2
for 16 transactions

14. Performance comparison between Model 1 vs Model 2
for 32 transactions

50

51

52

CHAPTER 1

INTRODUCTION

Information is the ultimate power, the commodity of kings, in this

information age. The concept of database systems has evolved to address the

issues of ever-growing information industry. The necessity to access

information across several databases, geographically separated but

homogeneous, led to the concept of Distributed DataBase Systems (DDBS).

Now a stage is reached where the demand is to access information or data

across the boundaries of heterogeneous databases.

Heterogeneous Distributed DataBase Systems (HDDBS) is one of the

research area subjected to intense interest of the industry in the last decade.

What is a HDDBS? A HDDBS is an interconnection of several Local DataBase

Systems (LOBS) which may differ in their data model, data manipulation

languages, concurrency control mechanisms, etc. HDDBS is variously known

as MultiDataBase Systems (MOBS) or Heterogeneous and Autonomous

Transaction Processing System (HATP) or Federated Heterogeneous

DataBase System (FDDBS) in the literature.

The property of a HDDBS is to make the heterogenieties of the system

transparent to its user. This allows the user to access data contained in various

local databases in a uniform way. A HDDBS may be classified into two

categories. One that supports only distributed queries and the other that

supports both distributed queries and distributed updates. The former type,

known as retrieval-only, is quite easy to handle. The later type of more

complicated to handle due to its support to distributed queries and distributed

updates. To ensure the correctness in the execution of these distributed

queries and distributed updates, a Global Concurrency Control (GCC) or

Transaction processing (TP) mechanism is needed in a HDDBS.

2

GCC is at the heart of a HDDBS. GCC preserves the consistency of data

despite the concurrent execution of global sub transactions, presence of local

transactions and system crashes. The Local DBS that joins the MOBS wants to

retain its authority to make its own decisions. This property is referred to as

autonomy of the LOBS. The autonomy of a LOBS is further classified into local

autonomy, control autonomy and execution autonomy (APPENDIX B).

The autonomy of the component database system of a MOBS makes the

task of GCC more complicated than its counterpart in Distributed Database

Systems. The reason is that the GCC is not aware of the presence of the local

transactions. These local transactions may cause indirect conflicts among

global sub transactions.

Let us see an example of indirect conflicts among sub transactions due to

the presence of local transactions (Figure 1). Let G1 and G2 be two distributed

transactions. Let G 1 read a data item i at site 1, performs certain operations

and then read data j at site 2. Let G2 performs certain operations and write the

result to the data item k. Now there is no direct conflict between G1 and G2.

However, the local transaction T local at site 2 performs operations and write to

j and k at site 2. This may cause indirect conflict between the global

transactions G 1 and G2.

HDDBS

LDBSI

T local

LDBS2

Figure 1. Example of possible indirect conflict among global sub

transactions (G1, G2) due to a local transaction {T local) at site 2.

3

Several attempts have been made to handle the problem of indirect

conflicts. Let us briefly see the basic principle of the various models found in

the literature and their short falls.

The model Superdatabases [PU87] uses the principle of "order vector"

which is based on a global data structure. Thus it is unsuitable for distribution.

The model proposed by [ALON87] uses site locking technique. Ou and

Elmagarmid [BRIE91] have shown that local conflicts may cause this scheme to

allow globally non-serializable schedules. The concept of assuming the

existence of conflicts between sub transactions (even if there is no actual

conflict) is used in the Implicit Ticket Method (ITM) proposed by Geogak Opulus

and Rusinkiewiez [BRIE91]. Amoco's Distributed DataBase System (ADDS)

[THOM90] uses site graph method. This results in low degree of concurrency

due to the reason that only one global transaction can be active at a particular

LOBS at a given time. The strong-TM protocol proposed by [JUHA91]

improvises the standard 2 PC protocol for DDBMS to support two more states

called the "source state" and the "serializable state". This method ensures

4

global serialization and supports higher degree of concurrency. This method

requires that all the LOBS to support the above mentioned states. The LOBMS

following non-2 PC protocols do not support these states and hence they

cannot participate in the MOBS.

The existing solutions in the literature for GCC of HOOBS either

compromises the property of local autonomy or has very low degree of

concurrency. Effort need to be made to come up with a MOBS model that will

make sure of correct global serialization, provide higher degree of concurrency

and guarantees local autonomy.

The strong TM protocol proposed by [JUHA91] satisfies the first two

requirements. The local autonomy of the LOBS is violated in that they have to

give up their locking methods and change to that of strict 2 PC protocol. This is

not only agreeable for the LOBS but also affects the performance in advanced

database applications. If the strong TM protocol can be supported externally,

i.e. by supporting the source and serializable state externally, the local

autonomy of the system can be preserved and at the same time the global

serialization order can be maintained. The need to support a non 2 PC protocol

in the federation has arisen because of the increasing demand for use of non

traditional protocols to achieve higher performance in advanced database

applications.

There are four objectives for this thesis. They are

1. To externally support the "source state" and "serializable state"

[JUHA91] to enable a LOBS following Altruistic protocol, a non 2 PC protocol,

compatible with the HOOBS mode of [JUHA91].

The fundamental difference between these two protocols is that in an

Altruistic protocol a transaction is required to pre declare all the data items it

needs to access in its life-time. Only if all these data items are available the

5

transaction is allowed to proceed. In a 2 PC protocol, no such pre declaration

is needed.

The goal is to not disturb the site following Altruistic protocol but to

support externally the source state and serializable state for that site.

2. To analytically prove that the proposed external support does not

affect the global data consistency.

This analytical proof is based on the assumption that the LDBMS is

responsible for the correct execution of the transactions under its control. The

proof will be based on the line of proof for data consistency done for databases

by Papadimoutri.

3. To prove the feasibility of the external support of the source state and

the serilzable state for Altruistic protocol and its participation in the original

federation by simulation.

The simulation project is proposed to be done on Sequent using C

language. A federation of HDDBS with two sites, one following strict 2 PC

protocol and other following Altruistic protocol is to be simulated. The Altruistic

protocol will be externally support the source state and the serializable state.

4. To do performance comparison between the original model and the

one with the proposed external support in aspect of time taken for a given set of

operations.

The main advantage of the proposed external support is that the

participating component LDBS with Altruistic protocol need not give up its local

autonomy and change its protocol to a strict 2 PC protocol. The effort needed to

make this conversion and the subsequent effect of this change on the local

user can be avoided.

In chapter 2, the various existing popular models and their

implementation techniques that are found in the literature for addressing the

issues of GCC for MOBS are discussed.

6

In chapter 3, analytical proof of correctness is given to show that the

external support does not violate global data consistency. In chapter 4, the

simulation of the federation with a component following Altruistic protocol with

the proposed external support is done to show the feasibility of the thesis is

given. The performance comparison between this model and the original

model [JUHA91] is also done. In chapter 5, the summary and conclusion of this

thesis effort is listed.

CHAPTER 2

LITERATURE REVIEW

TERM DEFINITIONS

Let us see the relevant term definitions which we will be using

throughout this report. A transaction is a unit of system's work. In a HDDBS, a

transaction might be initiated due to either the request of the local user or global

user. The former is called the Local transactions and the latter is termed as

Global transactions. The global transactions are decomposed into units that

operate on one site. These units are called sub transactions or distributed

transactions of the given global transaction.

fig l.: The states of transactions from the
user's point of view.

8

Figure 3. States of transaction from the system point of view.

The different state of transactions from the user's point of view and from

the system's point of view is given in Figure 2 and Figure 3, respectively. A

transaction is said to be aborted if the system terminates a transaction. The

effect of the aborted transaction, if any, is undone to ensure the consistency of

the database. A transaction is said to be recoverable if it has not read a data

written by an uncommitted transaction. A transaction is terminated if its run to

completion successfully. A transaction is said to be in the prepared state if it

has terminated successfully and can be committed from the atomicity point of

view, recoverability point of view and the serializability point of view. The

effects of the terminated transaction or prepared transaction is not reflected by

the permanent memory. The effect of a committed transaction is shown by the

database even in the event of system failure.

9

The atomicity property of a transaction means that the effect of the

transaction is either reflected wholly or not at all by the permanent memory. The

concept of serializability means that the result of the concurrent execution of

transactions on the database is equivalent to some serial execution of the

transactions.

The transactions that are initiated by the local user are called the local

transactions. The transactions that are initiated by the global user are called the

global transactions. The global transactions are decomposed by the

transaction processing system into parts that act on one LOBS. Each of these

parts is called the sub transaction or distributed transaction. After submission of

the sub transactions, the local transaction processing system has absolute

control over the execution of them.

Transactions are said to be in direct conflict if they access common data

objects. Direct conflicts occur in traditional databases. The problems due to

direct conflicts are well studied and various effective solutions are available in

the literature. Conflicts between transactions are represented using conflict

graph. The conflict may be read-write, write-read or write-write. For a pair of

conflicting operations, relative order of execution is important. If the order is the

same for each pair of conflicting operations from the two transactions, the

transactions can be regarded as having executed in the serial order.

The notion of conflict serializability is captured in the serializability graph

(SG) that consists of a node for each committed transaction and an edge from a

node T to a node T' if and only if an operation of T conflicts with and is executed

before, an operation in T'. It can be shown that the acyclicity of the SG is a

necessary and sufficient condition to guarantee conflict serializability since a

topological sort of the graph provides an ordering that corresponds to an

equivalent serial execution.

1 0

To ensure that unexpected executions do not occur when a transaction

aborts, a transaction must always maintain its isolation properties. To do this

serializable executions are often further restricted to prevent uncommitted data

from becoming visible to other transactions. In the event of system failure the

result of all committed transactions should be reflected by the database and

also any partial results of all uncommitted transactions must be undone. This

action ensures the properties of atomicity and durability.

The unique problem faced by HDDBS is indirect conflicts. Due to the

property of local autonomy the GCC is not aware of local transactions. The

presence of local transactions might result in an indirect conflict among global

sub transactions. Indirect conflicts arises due to the property of autonomy of the

component databases. The three types of autonomy are execution, control and

local autonomy.

Execution Autonomy. The right of the local DBMS to delay or reject

any operations of the local transactions or the global sub transaction is called

the execution autonomy. Similarly the LDBMS has the right to abort the

execution prior to a successful committment. Infringement of the execution

autonomy is not advisable because it needs major changes to the underlying

connote mechanisms.

Control Autonomy. The right of the local user to submit local

transactions to the LDBMS directly without any knowledge of the presence of

the MOBS. The control autonomy of a LDBMS refers to the degree that the

MOBS does not control the local transactions executing at the site. So control

autonomy is preserved for a LDBMS if the MOBS can neither abort the

execution of a local transaction nor delay its operations.

1 1

Global Transactions

Local transactions

DBMS

Figure 4. A MOBS system preserving control autonomy [NAN091].

The local autonomy requirement implies that the OBMSs being

integrated into an MOBS environment cannot participate in the execution of the

Global Atomic Committment (GAC) protocol. The reason is LOBMS has to

relinquish its right to either abort or commit a sub transaction until it receives a

final decision from the GAC protocol.

In the following section, we are going to discuss the various solutions

that are available in the literature to address the problem posed by these

indirect conflicts and their drawbacks.

1 2

Superdatabases [PU87]

The basic concept of Superdatabases is "order vector" [PU87]

which is based on a global data structure. The idea here is to rely on local

concurrency control mechanisms to guarantee local serialization order and then

add a global check to provide global serialization. This is done using a global

data structure called order-elements which forms the order vector.

An order-element (o-element) is defined to be a

representation of the serialization order of sub transactions in a component

database: If T1 A-> T2A, then o-element(T1 A)<= o-element(T2A). An example

of an o-element is an integer representing the serial order of the corresponding

transaction in the local TP system.

An order-vector(o-vector) is the concatenation of a

elements from the component databases. For example, o-vector(T 1) is (o

element(T1 A),o-element(T1 B)).The order induced on o-vectors by the a

elements is defined strictly: o-vector(T 1) <= o-vector(T2) if and only if for all

component databases X, o-element(T1 X) <= o-element(T2x). According to this

definition, if o-vector(T 1) <= o-vector(T2), then all sub transactions are serialized

in the same order. The global serializability is ensured by checking its o-vector

against the o-vectors from previously committed supertransactions.

The global concurrency control mechanism can be either centralized or

distributed. In a centralized scheme all the global control resides on one site. If

that system crashes, the entire system is inaccessible. On the other hand, in a

distributed GCC mechanism, each site plays an identical role in performing the

1 3

decisions related to global concurrency correctness. Hence, even if one site

crashes the remaining system is still accessible.

The drawback of the superdatabase model is that it is primarily based on

a global data structure order-vector. This fact makes it suitable only for

centralized GCC and not for a distributed GCC of a HOOBS.

Site Locking [ALON81].

This model is based on the concept of controlling the submission and the

execution order of global sub transaction. The method it uses to employ this

technique is site locking. When a global sub transaction needs to access a data

item belonging to a LOBS, that particular LOBS is locked by this global sub

transaction and is not available to any other global sub transaction.

In Altruistic protocol, all the data items needed by a transaction are

requested before the transaction is initiated. If all the resources are available it

locks them all and then only proceeds. At the end, either successful

termination or aborted by the concurrency mechanism, it releases all its locks.

[ALON87] has extended this altruistic locking protocol principle for HODBS as

follows. He proposed to use site locking in the altruistic protocol to avoid

undesirable conflicts between global transactions.

A global transaction pre-declares the different component databases it

needs. These sites, if all of them are available, are locked and the global

transaction runs to completion. Only then it releases all its locks. Any other

global transaction can proceed only when there is no other active predecessor

to it. So at any given instance only one global transaction is allowed to access

a LOBS. In other words, given two global transaction G 1 and G2, this protocol

1 4

allows their concurrent execution only if they access different LOBS. If there is a

LOBS that both G 1 and G2 need to access, G2 cannot access it before G 1 has

finished its execution there. Ou and Elmagarmid have shown that local

conflicts, which are neglected by this model, may cause this scheme to allow

globally non-serializable schedules.

Implicit Ticket Method (ITM)

The basic assumption of the ITM, proposed by Georgak Opulus and

Rusinkiewiez, is that there exists conflicts among sub transactions, even if

there is no actual conflict. Conflicts are forced between global transactions by

the system to ensure global serialization.

The conflicts between global transactions are forced as follows. With

each LOBMS a unique ticket is associated. For example the LOBMSi as a

unique ticket Ti associated with it. Any sub transaction which acts on this

LOBMS, should first access this ticket. Only if this ticket is free, the sub

transaction can lock it and proceeds its execution in that LOBMS. At the end of

successful termination, the ticket is unlocked so that the next global sub

transaction can access the LOBMS. So, at any instance, only one global sub

transaction can be active in a given LOBMS.

This scheme is basically another way of implementation of the method

proposed by [ALON87] and so it has all the drawbacks of that method. This

method totally disregards the conflicts among the global sub transactions due to

the presence of local transactions. Hence the correctness of the transactions is

not ensured. The resulting degree of concurrency among global transactions is

also very low.

1 5

Amocco Distributed DataBase Systems (ADDS) [LITW90].

ADDS uses site graph method for its GCC mechanism. The method

does not rule out the conflicts between global transaction whenever they access

the same local database.

The implementation of the site graph is done as follows. The nodes of a

site graph correspond to the LOBS which stores the referred data objects. The

edges of the global site graph are the global sub transactions. When a global

sub transaction request access to a data at a LOBS, the LOBS is included as a

node in the global site graph. An appropriate edge is added to the global site

graph to represent the global sub transaction accessing that data object. If this

addition does not create a cycle in the global site graph, the multidatabase

consistency is preserved and hence that sub transaction is allowed to proceed.

If the addition of this edge creates a cycle in the global site graph, this

operation may result in the data inconsistency and so this operation is denied

permission. The appropriate node and edges are then removed from the global

site graph to reflect the correct picture of the situation.

The advantage of this method is it detects conflicts among the global sub

transactions and ensures local autonomy. The drawback of this scheme is low

degree of concurrency among the global sub transactions. Also no discussion

was provided as to when the edges can be safely removed from the global site

graph [BRIE91).

1 6

Failure resilient transaction mechanism in MOBS [NAND91]

[NAND91] combines various existing techniques available in the

literature. It infringes on the control autonomy to provide reliability for

distributed MOBS.

The system structure is given in figure 5. Each LDBMS is assumed to

provide local recovery from failure and deadlocks and to provide Atomicity,

Committment, Isolation and Durability (ACID) properties.

The MDBSi engages in the GAG protocol when a sub transaction T have

been successfully executed (except for the final commit). MDBSi saves the set

of changes ,say ch(T), made by Tin stable storage before it declares that the T

is in the prepared state to the coordinator. No further operations from any other

transactions is submitted at site DBMSi till a decision is reached. When a

decision is reached, either commit or abort, MDBSi passes it to the LDBSi

which performs the actual operation. If the decision is to commit and if it is

successfully executed then ch(T) can be discarded and the site process the next

transaction.

However, if the commit request forT is not carried by the DBMSi, the

MDBSi performs the following actions. All active transactions directly following

T are aborted forcibly to isolate T. The set ch(T) is converted to a write-only

transaction which is repeatedly resubmitted to DBMSi until successfully

committed.

1 7

Communication network

MDBSi

MDBS1 ~
MDBS2 D

- - - D
/

MDBSno

-o

Figure 5.

DBMS1 DBMS2 DBMSn

A distributed MOBS with the control autonomy traded for

reliability [NAN091].

The method violates control autonomy and local autonomy of the LOBS.

M 0 B S i has the right to abort all the local transactions which violates the

execution autonomy too. Further this action may lead to poor performance of

the system.

1 8

Rigorous Transaction Scheduling [BRIE91].

[BRIE91] defines Strictness, rigorousness and commit-differed properties

for the transaction mechanisms. [BRIE91] shows that if the MOBS is commit

deferred and all the LOBMS are rigorous than global serialization is ensured.

A schedule produced by a transaction mechanism is said to be strict if no

data item may be read or written until the transaction that previously wrote it

either commits or aborts. A transaction mechanism guarantees rigorousness if

it guarantees strictness and no data item may be written until the transaction

which previously read it either commits or aborts. A global transaction is said to

be commit-deferred if its commit operation is submitted by the MOBS to the

various local OBMSs at which it was executed, only after all the read/write

operations of the transaction have been executed by the appropriate LOBMS.

[BRIE91] shows that Altruistic locking [ALOn90], the site-graph method,

ITM and the 2 PC agent scheme guarantees global serializability if each global

transaction has at most one sub transaction at each LOBS and all LOBMS are

rigorous.

This method requires all LOBMS to be rigorous which violates local

autonomy and has low degree of concurrency.

Principle of Committment Ordering [YOAV91].

In a 2 PC protocol if the write locks issued on behalf of a transaction are

not released until its end it is said to be a Strict-2 PC (S-2 PC) [BRIE91]. If all

1 9

the locks are not released before the transaction ends (either commit or

aborted) it is called Strong-S 2 PC (S-S 2 PC) [BRIE91].

[YOAV91] generalizes S-S 2 PC using Committment Ordering (CO)

which is a property of the histories that guarantees serializability. In a history if

the order of any 2 conflicting operations in any two committed transactions

matches the order of the respective commit event then it is said to be CO. CO

can be implemented in a non blocking manner, which is deadlock free.

However, there is the possibility of cascading aborts when recoverability is

applied. This method is useful for LOBS which follows S-S 2 PC.

Strong-TM protocol [JUHA91]

[JUHA91] proposed the strong-TM protocol for global distributed control

of HDDBS. In this method, [JUHA91] has increased the semantics of the 2

phase commit protocol used in Distributed DataBase Systems (DDBS) by

replacing the prepared state by more restrictive states called the source state

and the serializable state.

The primary assumption of this model is that the atomicity of the

distributed transaction is ensured by the 2 PC protocol. The global coordinator

of a 2 PC protocol of a DDBS decides to commit the distributed transaction if all

its sub transactions are in a state called the "prepared state". However, for the

GCC of a HDDBS, this prepared state is not good enough to ensure the global

serializability. Let us see an example to explain this point. Consider the

situation where all the sub transactions of a global transaction in a HDDBS are

20

in the prepared state. At this point the GCC coordinator can commit the

distributed transaction from both the atomicity point of view and the recovery

point of view. However, from the serializability point of view the coordinator is

not in a position to commit the distributed transaction.

Consider the execution of the distributed transactions T 1 and T2 with

history hA at site A and hB at site B.

hA = r1 [a]w1 [b]w2[a)

hB = r2[c]w2[d]w1 [c)

Since neither T1 has read a value written be T2 nor T2 has read a value

written by T 1, the sub transactions T 1 and T2 can be in the prepared state at

the same time. However the execution is not serializable because T 1 and T2

have accessed conflicting data item in a different order. The GCC is not aware

of this and this may lead to globally non-serailizable schedules.

Source State and Serializable State. [JUHA91] improvises the 2

PC protocol be defining two more restrictive states to handle this problem. If a

sub transaction is in the prepared state and no other active transaction has

accessed a data item before T wrote it, then it is said to be in the source state.

The source state ensures that the execution of the committed distributed

transactions is not only atomic but also serializable. It also ensures that the

distributed transactions cannot interfere with other distributed transactions even

though the local transactions are taken into account.

[JUHA91] proves that this source state is not enough to produce globally

serializable schedule. [JUHA91] defines another state called the serializable

schedule to take care of this problem. A sub transaction T is in the serializable

state if it is in the prepared state and none of its predecessor is an active

2 1

transaction. The intuition behind the serializable state is that the sub

transaction in each site is in the serializable state according to its local

serialization order.

The desirable properties of this model are it is distributed and it follows

the same protocol for atomic committment and global concurrency control which

decreases communication cost.

The drawback of the model proposed by [JUHA91] is that it requires each

of the participating LOBS to support the source state and the serializable state.

The motivation of this thesis is to support externally these states for a non 2 PC

protocol. The same principle can be applied to any other non 2 PC protocol to

achieve global serializability and local autonomy in HDDBS.

CHAPTER 3

ANALYTICAL PROOF OF CORRECTNESS

In this chapter, we are going to theoretically prove that the proposed

external support of the serializable state for a local database not supporting

serializable state will not lead to inconsistent database.

A database is said to be consistent if it reflects the effect of a committed

transaction wholly or not at all. The transaction manager should ensure that the

concurrent execution of several transactions is equivalent to some serial

execution to maintain the data consistency. In our proposed external support,

the global transaction manager gets a different picture about the states of

transactions of its component database from what actually happens there.

In the original model, all the component databases follow the strict TM

protocol. In this case, the global transaction management is sure of committing

a global transaction from the serializable point of view due to the fact that the

local database will commit a transaction only if it is in the serializable state.

[JUHA91] shows that if all the local databases support this serializable state and

the global transaction mechanism also support it, then the correctness of global

transactions is ensured. In our case, a component database is not supporting

the serializable state. Instead an external layer presents as though the LOBS

supports serializable state. The global transaction management makes it

decisions based on the picture presented by this external layer. Hence the

need to prove that this external support does not violate data consistency.

23

[PAPA86] states an elegant and simple way of showing data consistency

of a database. The approach is adopted here for our analytical proof. [PAPA86]

states that a database is consistent if each transaction that operates on its data

sees a consistent state and if the resultant data after the operations of set of

transactions is consistent. In our external support model, the global

transaction mechanism submits the distributed transactions to the component

databases. The local transaction mechanism has absolute control over the

transaction that are submitted to it and the global transaction manager does not

have any say in it. Hence clearly the local transaction manager is solely

responsible for the correct execution of all local transactions and the global

transaction manager should take care of the distributed global transactions.

The basic assumption of the model is that each LDBMS ensures the

atomicity and the serializability of transactions under its territory. It is upto the

global transaction manager to take care of the atomicity and the serializability of

its distributed transactions. Since the global transaction manager commits its

transactions only when they are in the serializable state, according to [JUHA91]

it automatically ensures correct execution. When a component database does

not support serializable state, we have to make sure that the local transaction

manager does not violate its data consistency inspite of the presence of the

global sub transactions. So it will be enough to show that the LOBS maintains

its data consistency while participating in the HDDBS to prove that the data

consistency of the overall system is not violated.

The external support also does not lead to globally non serializable

schedule. The global transaction manager follows strict TM protocol [JUHA91]

and [JUHA91] have shown that this assures correct execution of global

transactions. The external support layer shows that a transaction is in

24

serializable state only when it actually is in serializable state. So the global

transaction manager's decision is in no way affected by the external support.

The analytical proof of correctness to show that external support does not

violate data consistency is to be done by contradiction. The formal proof with

the basis and assumption made is given below.

Analytical proof of correctness

To prove that the proposed external support does not violate data

consistency.

[PAPA86] states that to show that data consistency of a system is not

violated it is sufficient to show that

(I) each transaction sees the consistent state of the database and

(ii) the database is consistent after the execution of the transactions.

Assumption:

The LDBMS is responsible for the correct execution of transactions under

its control.

Theorem:

To prove external support of serializability does not violate the data

consistency of the HDDBS.

Proof:

(I) By contradiction assume that a sub transaction sees an inconsistent

state of the database. It might be because of either a local transaction (say

Tlocal) or another sub transaction (say T) left the database in an inconsistent

state.

The LDBMS of the site ensures that the execution of Tlocal or T is

equivalent to the serial execution. So Tlocal or Tis executed correctly and the

execution of it left the database in an inconsistent state, the transaction must be

incorrect, a contradiction.

25

(ii) Assume that the state of the database is inconsistent after the

execution of a set of transactions. So, there must be a sub transaction or local

transaction that left the database in an inconsistent state. Since the LDBMS of

the site ensures that the transaction is executed correctly, the transaction must

be incorrectly executed, a contradiction.

CHAPTER 4

IMPLEMENTATION

OBJECTIVES OF THE SIMULATION

The primary objective of this simulation project is to show that the idea of

externally supporting the source and serializable state for a local database

system not supporting those states is feasible.

The external support is to be implemented for the underlying site

following Altruistic locking. Altruistic locking has been selected for the

simulation because it is a non 2 PC protocol and it is widely used in modern

advanced applications. The first step will be to study the altruistic locking in

depth and find out its similarities and differences with that of 2 PC protocol. This

information can be used to support externally the required states for the

altruistic protocol. This will enable it to participate in the federation of MOBS

[JUHA91].

The other objective of the simulation is to study the effect of the external

support on the performance of the system. For the performance comparison,

two models of HODBS is to be implemented. The first model of MOBS will

follow the requirements of the strong TM protocol. The second model of MOBS

will consists of a distributed global transaction manager and with all but one

component databases following strong TM protocol with the LOBS (say the xth

27

component) following altruistic locking. The performance comparison between

the models is to be done with throughput as the criterion.

Consider the original locking protocol of the xth component to be

Altruistic locking. This locking has higher degree of concurrency in supporting

long transactions. If this LDBS as such wants to join in the model 1 [JUHA91], it

has to modify its protocol to that of strong TM protocol. So the comparisons of

performance of this LDBS under similar conditions need to be done for model 1

Vs model 2 to find the effect of the external support on the LDBS.

Another factor is the effect of the external layer on the performance of the

federation. So the performance comparison of the HDDBS of model 1 Vs

model2 need to be done under similar conditions. The external support

preserves local autonomy and if it does not affect the overall performance of the

system then it will play a major role.

The performance comparison is done in aspect of time taken for a given

set of operations. Histogram is to be used to represent the result graphically.

Problem Statements for the simulation project

1. To simulate a Heterogeneous Distributed Database [HDDBS]

environment which follows the model proposed by [JUHA91).

The environment will consists of two separate Local database systems

each having its own transaction processing systems and a global transaction

processing system for the HDDBS. Both the local transaction processing

systems and the global transaction processing systems follows the strong-TM

protocol [JUHA91].

2. To simulate a HDDBS environment with the proposed external

support for the heterogeneous local database following Altruistic protocol.

28

The environment will consists of two separate local databases, one

following the strict 2 PC protocol and the other following the Altruistic protocol.

The global HDDBS will be the same as that of [JUHA91]. In order to make the

altruistic protocol compatible with the global transaction mechanism, the

proposed external support of the serializable state will be implemented.

3. To compare the performance of the two models simulated in aspect of

time taken for a given set of operations ..

In order to make the performance comparison, throughputs of both

the model 1 and the model 2 are to be calculated under exactly similar

conditions. This will be repeated by varying the length of the transactions and

also the number of the transactions to do the comparison study under different

situations. These results will be used to plot the histogram for easy comparison

of performance between the two models.

Environment of the simulation.

Platform

Language

Sequent.

c.

Special command used : Fork

29

Implementation details.

The simulated environment will consists of two separate local database

systems each having its own transaction processing system and database and

a global transaction processing system for the distributed global control of

MOBS.

We need to create a practical environment where several transactions,

both user initiated and system initiated, are executed parallely by the

transaction manager. Each transaction may differ in duration, operations, etc.

Some transactions run to completion successfully and are committed by the

system and some transactions are aborted before completion and have to be

started all over again. Some transactions may be blocked by the system from

proceeding in order to maintain the data consistency inspite of the concurrent

execution of transactions. The various modules implemented, their function,

operations and all the other details of their implementation are presented

below.

Transaction Simulator. A transaction simulator is made to

simulate the real life simultaneous generation of transactions. These

transactions will represent the situation where the local users of both the LOBS

and the distributed global user make transaction request. The transactions

generated by the appropriate transaction simulator are then submitted to the

respective transaction processing system. The transaction simulator uses a

random number generator to fix the various characteristics of a transaction

30

namely duration and operations. Let us first see about the random generator

implemented.

Random number generator.[PARK89) It uses a variable seed to

calculate the random number. The value of the seed is initialized to one. Each

time the routine is invoked it calculates the new value of seed using a formula

and returns a floating point value for seed.

The following values are used every time in the calculation.

a= 16807.0

m = 2147483647.0

q = 127773.0

r = 2836.0

The formula used for the random number generator is

hi= seed/q

lo = seed - q * hi

test= a* lo- r * hi

if (test > 0.0) seed = test

else

seed = test + m

Return (seed/m)

3 1

Transaction
GTM

Simulator

Transaction Transaction

I ~1 ~
Simulator ..._ D

LDBSl LDBS 2

Figure 6. Implementation of MOBS following strict TM protocol [Model 1]

Transaction
GTM

Simulator

Transaction Transaction

I ~1 ~
Simulator ..._D

LDBSl LDBS 2

Figure 7. Implementation of MOBS following strong TM protocol with

LOBS 2 following Altruistic protocol supporting strong TM externally [Model 2].

The transaction simulator module consists of four modules. They are the

transaction initiator (tran_init), local transaction simulator (loc1_tra_sim and

loc2_tra_sim) and global transaction simulator (Gio_tra_sim).

32

Transaction initiator. The transaction initiator initiates the

concurrent transactions (32 in total) using fork command. For every fork

command 2 child transactions are generated. Using a loop construct the

required numbers of transactions are generated. The parent transaction is used

to initialize all the shared memory structures that will be used.

First a process id array is build by using a shared variable as index to a

shared memory array. The index to the array is set to zero. Each transaction's

process identification number (process id #) can be obtained using the system

function called getpid(). One by one, each transaction id #is obtained and

stored in the process id array incrementing the array pointer. S_lock() and

s_unlock() functions are used to make sure that only one transaction can

access a shared memory variable at a given time. This array is build to facilitate

easy identification of all the transactions. In effect, we are building a tree of

transactions.

To identify a transaction, we need to get its process id #and make a

match against the process id array. The corresponding index number of the

array is our transaction number. This enables us to identify any transaction of

interest easily.

The transaction simulator after initiating the transactions classifies them

into three sets: Local 1 transactions, Local 2 transactions and Global

transactions. The transaction sets that form the array positions zero to 15 are

assigned to be the distributed global transactions. These transactions are

classified to form 8 groups of two transactions each. Each group forms the two

components of a single distributed transaction. The idea is to simulate the

presence of eight global transactions which are processed and decomposed

into 16 distributed sub transactions. So that each simulated global transaction

33

accesses both the local databases and each of them is decomposed into two

sub transactions which accesses only one of the LOBS.

Next step is to fix the details of the transactions. A similar shared memory

array is formed to be used as the transactions private memory. By this, the

transaction details associated with its number and hence can be easily

obtained. The information stored are status of transaction (Local 1, Local 2 or

Global), Modes of transaction (Active, Inactive, terminated, committed,

aborted, source and serializable), #of operations to be performed and the kind

of operation (Add, Subtract, Multiplication or addition) and operands for each

operation. The data structure used to implement is the array of structure of

structures.

Process id array Transaction's private memory

n n

Figure 8. Data structure used for process array and it's private memory

and their relation.

The initial modes of all transactions are set to be inactive. All the other

details like the duration of transaction, operation and operands are decided

using the random number generator. For each of these data an integer is

multiplied to the random number to fix the range for that data. The initial

duration of the transaction was fixed to be 10 * the random number. Then it is

varied to 20, 30, 40, 50 and 60. The transaction with the lowest number is the

shortest transaction and the one with the highest number is the longest

34

transaction. The four operations implemented are addition, subtraction,

multiplication and division. Each of these operations is assumed to require the

same amount of time. This is calculated by multiplying the random number with

4. The number zero represents addition, one represent subtraction, two

represent multiplication and three represent division.

For the local transactions, the operands for these operations are

selected randomly out of the 2000 data of the database. For the global

transaction, for each operation the database from which the data need to be

taken is also randomly selected. To simplify the implementation for the global

transaction its operands are made to be from the same database instead of

across the two local databases. This transaction simulator is common for both

the models.

The Original Model. The simulated original model consists of two

local sites following the strict TM protocol proposed by [JUHA91] and a Global

Transaction Manager following the strict TM protocol.

First two local database sites are implemented. Each local site has a

local database consisting of 2000 data items and a local transaction scheduler.

Each local database is an array of 2000 integer items and these data are

integer values created using the same random number generator with 5000 as

the limiting factor.

Local scheduler. The local scheduler acts as a controller for the

set of transactions submitted to it. It ensures the atomic and serializable

execution of all the transactions according to the model of strict TM protocol by

[JUHA91].

35

The transaction simulator is made to generate the desired set of

transactions. These transactions are then submitted to the appropriate

scheduler. This can be easily done since we have the information about which

transaction belongs to which database.

The local scheduler concurrently executes all the transactions submitted

to it. All the data items needed for operation of a transaction is checked for

availability. If available, the transaction puts appropriate lock on the data and

accesses it. These locks are released only after the completion of the

transaction. If the data is not available, the scheduler blocks the transaction

and puts the appropriate edges in the conflict site graph.

For example if transaction T1 is using a data while T2 request the same

data, then the request of T2 is denied. A conflict edge T1--> T2 is put in the

conflict graph. The conflict graph was implemented using the adjacency matrix.

In the implementation, the transaction's number is obtained using

getpid() function. If the transaction belongs to the LOBS then only it is allowed

to proceed. If not it is routed out of the scheduler. The transactions which

belong to the scheduler 1 of site 1 are the local transaction set from 16 to 23

and sub transactions one, three, five, seven, nine, eleven, thirteen and

fifteen. The transactions that belong to the local scheduler 2 of site 2 are the

local transaction set 24 to 31 and the global sub transactions zero, two, four,

six, eight, ten, twelve and fourteen.

The scheduler is implemented to make sure that a transaction does not

acquire any partial data. Check is made to make sure that partially acquired

data are released promptly. A shared memory variable status is used to check

whether all the data items requested were allotted to the requesting transaction

are not. A transaction that gets all its data is made to be an active transaction by

the scheduler.

36

The blocked transaction becomes active when the data on which it was

blocked becomes available. An active transaction invokes the routine

active_tra(). It executes all the operations of the transaction. To simulate

concurrent environment, time slice technique is used. Each active transaction

is allotted a certain equal amount of time period by the scheduler. A transaction

can execute its operations only within this time period. If the transaction is

completed executing within its time slot, it proceeds to check whether it is in the

prepared state. The long transactions will require more number of time slots.

No priority was implemented. The transactions were served on first come first

serve basis.

When a transaction completes all its operation, the scheduler checks

whether it can be committed from serializability point of view (supports

serilaizable state). If so, it commits the transaction. A terminated transaction

having a predecessor in the conflict graph cannot be committed.

To simulate a real environment abort of transactions by scheduler is

done using the random number. A transaction can be aborted at any stage of

its lifetime. In real life it may be user initiated or system initiated abort. To

simulate this, transaction is made to perform an abort check routine before

performing each operation. These abort check is done using the random

number generator. When number zero is generated, an abort routine is

invoked which aborts the transaction.

When a transaction is aborted, the recoverability routine is invoked to

make the appropriate modifications in the database so as to erase all the effects

of the aborted transaction on the permanent memory. This is done using the

history file which registers each and every action of the operations of a

transaction. For each write operation, the previous data values before the write

is written in the history file along with the transaction that wrote it. History file

37

was implemented as a shared structured array. It has the same relation with the

process id array as that of the transactions private memory array.

Global scheduler. The global scheduler process the global

transactions and decomposes them into sub transactions that acts on different

databases. After the successful completion of all its sub transaction a global

transaction can commit successfully. In the simulation, all odd sub transactions

are submitted to the site 1 and all the even sub transactions are submitted to the

site 2.

Using the conflict graph supplied by the sites the global controller forms

the union of conflict graph called the global site graph. The global scheduler

checks if all the component sub transactions of a global transaction have

reached the serializable state. If that transaction does not have an active

transaction as its predecessor in the global site graph then it is in the

serializable state. In that case the global scheduler decides to commit the

transaction. It passes this information to the appropriate local scheduler that

does the actual work. When the sub transaction in its control is successfully

committed, it passes that information to the global scheduler. After receiving

this message the global scheduler commits the global transaction. In case the

sub transaction that was in the serializable state is aborted this message is

conveyed to the global scheduler. Then the global scheduler has to resubmit

the sub transaction to that local scheduler.

A global universal graph is maintained which is the union of all the local

conflict graph to check for any indirect conflicts among the sub transactions and

wrong order among sub transaction. This is done by maintaining the union of

all the site adjacency matrix as the global adjacency matrix. This matrix

38

represents the global site graph. In case of a direct conflict between the sub

transactions, the global scheduler submits them one by one to the sites.

For this model, the throughput of the system and that of the site 2

was calculated in milliseconds. Several readings were done by varying the

duration of the transactions (from 20 to 50), number of transactions (from 8 to

32). These values were used for the performance comparison study.

Model 2. The model 2 consists of a LDBMS supporting

serializable state, a LDBMS supporting altruistic locking, the software external

support layer and Global transaction manager. The scheduler for the site

supporting serializable state is the same as that of model 1 .

Local Scheduler 2. In an altruistic locking [APPENDIX A] negative

access information and early releasing of locks are done to improve the

performance of the system. To simulate this situation we need to maintain

information about whether a transaction is done with a data item or not. This

was implemented using a count down counter. The scheduler process the

transaction and finds out the information how many times that transaction will

access each data in the database. Each time the transaction accesses the

same data item the counter is incremented. The final value of the counter will

give the number of times that data is needed by the transaction. This value is

stored in the private memory of the scheduler.

The first time a data item is used by the data item the counter is

decremented by one. A data item is used by a transaction whenever that data

item is an operand for the operation performed by the transaction. Next time

when the same transaction access the data, the associated counter is

decremented. A counter value becomes zero means that the transaction in

progress is done with the data. As soon as a transaction is done with a

particular data item all locks on the data item are released and it is made

available for the next transaction.

39

The local scheduler maintains the conflict graph for the active

transactions. It passes this information to the external software support layer.

Since in the altruistic protocol a transaction can commit even if it not in the

serializable state the global serialization may be incorrect. To make this

protocol compatible with the HDDBS this heterogeneity must be avoided.

External Support of serializable state. The external software

layer takes as input the conflict graph of the site and use it to maintain its own

conflict graph which will present a serializable view to the global transaction

manager.

To understand how the external support of the required states is to be

achieved, we should firsts understand the principles of Altruistic protocol

clearly. Then we can identify the basic similarities and differences this protocol

has with that of 2 PC protocols. Using this information and by getting the

information about the states of the transactions in the underlying site, we can

support the desired external states for it.

Let us see an example to understand the principle of Altruistic protocol

used for advanced applications. More details about the protocol is given in

APPENDIX A. Consider a software development environment in which a

programming team consists of X andY. Let Z be a new member who wants to

join the programming team. To start with Z wants to familiarize himself with the

code of all the procedures of the project. To do this, Z initiates a long

40

transaction (L T), Tz, that accesses all of the procedures, one procedure at a

time. He needs to access each procedure only once to read it and add

Some comments about the code; as he finishes accessing each procedure he

releases it.

In the meantime, let X start a short transaction (ST), Tx, that accesses

only two procedures p1 and p2, in that order, from module A. Assume Tz has

already accessed p2 and released it and is currently reading p1. Tx has to wait

until Tz is finished with p1 and releases it. At this point Tx can start accessing

p1 by entering the wake of Tz. After finishing with p1, Tx can start accessing p2

without delay since it has already been released by Tz. Now let Y starts another

ST Ty, that needs to access both p2 and a third procedure p3. Ty can access

p2 after Tx terminates but then it must wait until either p3 has been accessed by

Tz or until Tz terminates. If Tz never accesses p3 Ty is forced to wait until Tz

terminates.

Under 2 PC protocol, the transactions Tx and Ty cannot proceed until

Tz runs to completion. Since Tz is a L T both these transactions have to wait for

a long time. This is not acceptable in advanced applications.

Under altruistic protocol for advanced applications, using the negative

access information and early release of read locks, more concurrency is

attained. Continuing the example, the mechanism would add p3 to the wake of

Tz by issuing a relief on p3 even if it had not locked it. This allows Ty to access

p3 and thus continue executing without delay.

Assume that an advanced application supporting an altruistic protocol as

the one given above wants to participate in the federation of HDDBS. Since

this concurrency control does not follow the strict 2 PC protocol which is shown

to be the necessary one in order to achieve the global serialization of the

HDDBS [JUHA91], the protocol must be modified to that of a strict 2 PC

protocol to support the "source state" and "serializable state".

4 1

On the surface these two protocols look lot different. Let us study the

similarities and differences between these two protocols. In the above example,

if Tz does not run to completion successfully and is aborted by the system,

externally by the user or by the system due to system crashes, in order to

ensure the database consistency the system has to undo all the operations of

Tx, Ty and Tz. This is because Tx and Ty have used data written by an

uncommitted transaction. In a strict 2 PC protocol this situation is avoided by

making sure that a transaction read only data read or written by committed

transactions. In the Altruistic protocol, in order to achieve higher concurrency

this is allowed. The price paid in this protocol is relatively high in the case of

system crashes or user initiated abort of the long transactions. However the

demand for the higher efficiency outweighs this disadvantage. So the final

result of a given set of transactions on a database for both the protocol its the

same. In other words, both the protocols preserve data consistency.

In the given example Tx and Ty enter the wake of the L T Tz. As soon as

they are done with their work they commit without waiting for Tz to commit. But

under [JUHA91] scheme, the requirement of the strong-TM protocol demands

that a transaction can commit only if it is in the serializable state (no transaction

can commit unless it does not have any active transaction as its predecessor).

But in the example for Altruistic protocol, Tx and Ty are allowed to commit even

though they are not in the serializable state.

This heterogeneity in its protocol mechanism prevents it from its

participation in the federation [JUHA91]. Our goal is to make it appear to the

GCC of the federation as though the altruistic protocol site follows the

restrictions of the federation.

42

The external support layer present to the global transaction manager that

the underlying site to be supporting the serializable state. In order to perform

this function, the software layer need the conflict graph of the underlying site. In

the strong TM protocol [JUHA91] each site needs to maintain a conflict graph

and pass this on to the GCC. The GCC maintains a global conflict graph which

is the union of all the site graphs of the federation. So we do not need any more

information than required by the original model.

The software layer uses the information in the conflict graph and present

it to the GCC. Clearly for the external support for Altruistic protocol we have

only two cases to consider. First a transaction with no predecessors commits.

Second a transaction with an active predecessor commits. There is no problem

with the first case. The second case need to be handled differently. We will see

now how the external layer can handle both the cases.

When the first active transaction (which has conflicting transactions as

successors) or transactions without any predecessors commits, the software

layer passes this information immediately to GCC. This is because the

transaction is in the serializable state (has no active predecessor and is in

prepared state). And appropriate changes are made in the conflict graph of the

software layer. If a transaction which has other active transactions as

predecessor commits, the software layer stores this information (the

implementation details are given in the simulation chapter) and does not pass

on this to the GCC. This is so because this violates the serializability state.

Whenever an active transaction with no predecessors commits, the software

layer check its private memory to see whether its immediate successor have

already committed in the underlying site. In that case, appropriate edges are

modified in the conflict graph of the software layer to reflect this situation. This

will make the commitment of the transactions appear to the GCC as that of

43

following the serializable state. At any stage, the GCC sees only the conflict

graph presented by the software layer. The software layer uses the conflict

graph of the underlying site, updates the graph when transactions in

serializable state commits and stores the transactions which commit when not in

serializable state and makes it appear that it commits only when it is in the

serializable state. The information about the non conflicting transactions are

presented as usual.

Table 1 gives the sequence of action the external software support will

follow to present a serializable picture of our example transaction set Tx, Ty

and Tz.

This intermediate layer is simple and helps to preserve the local

autonomy of the site following altruistic protocol. The GTM does not have to

care about the heterogeneity of the local concurrency control by this scheme.

The function of the global scheduler is the same as that of model 1. For

this model also, the throughput of the system and that of the site 2 was

calculated in milliseconds. Several values were calculated by varying the

duration of the transactions (from 20 to 50), number of transactions (from 8 to

32). These values were used for the performance comparison study.

45

Result. The two set of values obtained for the amonut of time taken

for completion of the set of operations in both the models by varying the

duration of the transaction and the numbers of transactions present in the

system were used to plot the histograms.

Performance comparison for site 2. From the Histograms

(pages 47, 48 & 49), it is clear that for more longer transactions in the site the

model in which the site following Altruistic protocol is better than when the same

site followed strong TM protocol. To do the comparison the data were taken at

similar conditions. This is because of the advantage of using the altruistic

locking scheme for long transactions.

In the original model, this site has to change its protocol to strict TM to

participate in the federation. In that case its performance for the local user is

affected. We should also consider the number of man-hours needed to change

this protocol. The external support eliminates this unnecessary conversion.

From the histogram for local site 2, it is also clear that more the number

of longer transactions better the performance of the altruistic protocol. This is

the reason for its popularity in the advanced databases.

performance comparison of the MOBS. The histograms

(pages 50, 51 & 52) for the overall MDBS shows that the external support for

Altruistic protocol resulted in a slight improvement of performance for the overall

system. Higher the number of transactions and longer their duration, better is

the performance of model 2.

46

So the introduction of the external support for the altruistic protocol to

make it participate in the MOBS did not have any negative effect. However,

further reasearch needs to be done before coming to a conclusion.

Feasibility of the proJect. The feasibility of the simulation project

was proved by the successful and correct implementation of the MOBS with a

non 2 PC protocol supported externally. The global transactions were executed

correctly. The serializability state was correctly supported externally.

Local autonomy of site 2. Furthermore, the simulation result shows

that the modified model maintains local autonomy of Altruistic protocol site.

Performance Comparison Strong TM Vs Altruistic Protocol

Time in miliseconds

120
'

'

100

80

60

40

20

0

I

- --~--~- _____________ !.__._ ___________ "-------------------

20 30 40 50

of transactions = 2

DStrong TM

•Al truistic

Number of operations

Performance Comparison Strong TM Vs Altruistic Protocol

Time in miliseconds
~~---- -~~- ---~ ·- ~--~---~~-~-~--~~~-~-~-

160 ,/ I
I ~ ~. . t

140 f ••

120

100

80

60 l

40 ~-- .
t ..

20 t /
0 l:~·~-- - -·-- ------------~-----------~~· ------~-------~----"

20 30 40 50

of transactions = 4

: c: Strang TM

•Al truistic

Number of operations

Performance Comparison Strong TM Vs Altruistic Protocol

Time in miliseconds
~---~----~--------~~~-~-------------------------------- ---

350·

300 j DStrong TM '
I

250 I_IIIAlt ru ist ic

200

150

100

50

0 L - --------~ ----'---~----~-~--~~-~----------'--~--~~

20 30 40 50
Number of operations

of transactions = 8

Performance Comparison MDBS [JUHA91) Vs MDBS with Proposed
external software support

Time in miliseconds
/1 /I

500 (~1
: ~ , I
l " , ~ - I

400 ~ "t

300 f ·1

f

200 r·
~ ' '

100f

I,
0 ~/ ''

20 30 40 50

of transactions = 8

j
i

D [JUHA91]

•Proposed

Number of operations

Performance Comparison MDBS [JUHA91] V s MDBS with Proposed
external software support

Time in miliseconds

600

400

200 ~

0
20 30 40

of transactions = 16

50

D [JUHA91]

•Proposed

Number of operations

Performance Comparison MDBS [JUHA91] Vs MDBS with Proposed
external software support

Time in miliseconds /l····· -~ ~.. ~~~~--~-~--~---~~~-~~- . ··-· -----~-~-----~
1 600 1- ~ ~' ~ J - -- ----------- ------ -

1400 1 · J
1200~~~ .. ~~I

' t
1000 > j.

800 ~./~·J_
• ~ I

6QQ ·~ / I

400

200
I

at~
20

of transactions = 32

---- i

I

CJ [JUHA91]

•Proposed

CHAPTER 5

SUMMARY AND CONCLUSION

The advanced databases are widely used nowadays. The participation

of an advanced database, without any compromise to its local autonomy, will

greatly increase the usability of the HDDBS. In the literature review chapter we

saw several models for distributed control of HDDBS. Their implementation

techniques and drawbacks were discussed.

The desirable properties of the strong TM protocol [JUHA91] makes it

one of the best choice for distributed global management of HDDBS. However

its restriction on the protocol of the component database compromises local

autonomy. The proposed external support of the serializable state for an

advanced application overcomes this restriction.

The analytical proof clearly shows that the proposed external

support does not violate data consistency of the system. A software external

layer to make a site following Altruistic protocol compatible with the federation of

HDDBS was successfully implemented. Likewise we believe that the

intermediate layer for any other non 2 PC protocol can be implemented

externally. This will help to have the advantages of the model proposed by

[JUHA91] and the same time for any non 2 PC protocols serializable state can

be supported externally.

54

The external support will play a vital role in an advanced

environment where non 2 PC protocols are commonly used. The feasibility of

external support for the altruistic protocol was proved. The performance

comparison done clearly shows the performance gain of both the local site and

that of the HDDBS for higher number of long transactions.

If effort is made to externally support other non 2 PC protocols they

too can join the federation of the HDDBS. The external support makes any new

addition to the federation can be easily implemented. If the new member

supports serializable state it poses no problem and if it does not support it also,

it can be done externally. There is no need to make any changes in the global

distributed control mechanism.

REFERENCES

1. [ALON87] Alonso, R., Gracia-Malina, H., Salem. K., "Concurrency

control and recovery for global procedures in Federated DataBase system",

Data Engineering Bulletin, 10:3 (1987), 5-11.

2. [ASER91] Aser S. Barghouti & Gail E. Kaiser., "Concurrency control in

Advanced data base applications", ACM Computing surveys, vol 2, 3, (Sept,

1991), pp. 269-317.

3. [BERN81] Bernstein, P. A. Goodman, N., "concurrency control in

distributed database systems", ACM Computing surveys, vol13, 2, (1981),

pp.185-221.

4. [BERN87] P. Bernstein, V. Hadzilacos, N. Goodman, Concurrency

control and Recoverability in Database Systems, Addision-Wesley, 1987.

5. [BHAR87] Bharat K. Bhargava, Concurrency control & Reliability in

Distributed systems, (1987}, Van Nostrad Reinhold company Inc.

6. [BRIE87] Brietbart, Y., Silberschatz, A., Thompson, G., "An update

mechanism for Multidatabase systems", Data Engineering Bulletin, 10:3

(1987), pp. 12-18.

7. [BRIE88] Breitbart, Y., Silberschatz, A, "Multidatabase update issues",

Proceedings of ACM-SIGMOD International conference on management of

Data, (1988), pp. 135-142.

8. [BRIE91] Brietbart, Y., Georgakapoulas. D, Ruiskieuricz. M,

Silberschatz. A., "On Rigorous Transaction Scheduling", IEEE Transactions on

Software Engineering, (Sept, 1991), pp. 954-960.

56

9. [CALT91] Calton Pu, Avaaraham Left, and Shu-Wie F. Chen,

"Heterogeneous and Autonomous Transaction Processing", IEEE computer,

(1991), pp. 64-72.

10. [CATR88] Catriel Beeri, Philip A. Bernstein, & Nathan Goodman, "A

model for concurrency in nested transaction systems", Journal of ACM, vol30,

#2, (April 1989), pp. 230-269.

11. [ESWA76] Eswaran, K., Gray, J., Lorie, R., and Traiger, 1., "The

notions of consistency and predicate locks in a database systems", COMM. Of

ACM, vol19, 11 (Nov, 1976), pp. 624-632.

12. [ELI085] J. Eliot B. Moss., Nested Transactions: An application to

reliable Distributed computing, Research reports & notes on Information

systems", (1985), MIT press.

13. [ELNA90] A. Elmagarmid, W. Du, "A paradifm for Concurrency control

in HDDBS", Procc. of the Sixth Int. Conference on Data Engineering, Los

Angeles, California, (Feb, 1990).

14. [DOND92] Don D. Fisher, Data Structures II: Course notes, Oklahoma

State University, (Fall, 1992).

15. [JUHA91] Juha Puustjarvi, "Distributed Management of Transactions in

Heterogeneous Distributed Database systems", BIT 31 (1991), pp. 406-420.

16. [KUNG81] Kung H. T., Robinson J. T., "On optimistic methods for

concurrency control", ACM Transactions on Database Systems, vol 6, 2 (June,

1981), pp. 213-226.

17. [NAND91] Nandit Soparkar, Henry F.Korth, & Abraham Silberschatz.,

"Failure-Resilient Transaction Management in Multidatabases", IEEE computer,

(1991), pp. 28-35.

18. [LEFF90] Left A. and Pu. C., "A classification of transaction Processing

systems", IEEE computer, vol24, 6 (June, 1992),. pp. 63-76.

57

19. [LITW90) Litwin. W., Mark. L., and Roussopoulas. N., "lnteroperability of

Multiple Autonomous Databases", ACM computing Surveys, vol 22, 3 (Sept,

1990), pp. 267-293.

20. [PAPA86) Papadimoutri C. H., The theory of Concurrency control,

Computer science press, 1986.

21. [PRAD86] Pradel, U., Sclageter, G., & Unland. R., "Redesign of

optimistic methods:lmproving performance and availability", In the proceedings

of the second International conference on Data Engineering, (Feb, 1986), pp.

466-473.

22. Pu. C., "Superdatabases for composition of local databases",

Proceedings of the fourth International conference on Data Engineering,

(1987), pp. 267-274.

23. [SHET90] Sheth A. P., and Larson J. A., "Federated database System

for managing distributed, Heterogeneous and Autonomous database", ACM

Computing Surveys, vol. 22, 3(Sept, 1990), 183-236.

24. [SILB91) A vi Silberschatz, Michael Stonebraker, Jeff Ullman, "Database

Systems: Achievements and oppurtunities", COMM. of ACM, vol 34, 10 (Oct,

1991).

25. [THOM79] Thomas R. H., "A majority consensus approach to

concurrency control for multiple copy databases", ACM Transactions on

database systems, 4:2 (1979), pp. 180-209.

26. [THOM90] Thomas et. al., "Heterogeneous Distributed Database System

for production use", ACM Computing surveys, vol. 22, 3(1990), pp. 237-266.

27. [THOM87] Thompson, Glen Ray., Multidatabase concurrency control,

Thesis1987D T471m, Oklahoma State University.

58

28. [WEIH89] William E. Weihl, "Local atomicity properties: Modular

concurrency control for Abstract data Type", ACM Transactions on

Programming Languages and Systems, vol11, 2 (Apr, 1989), pp. 249-282.

29. [YEH91] Yeh, Song-Shen., A concurrency control with the BANG file for

distributed database systems, M.S Thesis 1991, Oklahoma State University.

30. [YOAV92] Yoav Raz., "The principle of Committment Ordering",

Proceedings of the 1a1h VLDB Conf., Vancouver, British Columbia, Canada

1992.

APPENDIX

APPENDIX A

ALTRUISTIC LOCKING

Altruistic locking is one of the popular concurrency control

mechanism for advanced applications. It is an extension of the basic 2 phase

locking algorithm [SALE87]. It makes use of information about access patterns

of a transaction to decide which resources it can release. The technique, in

particular, makes use of two types of information to meet the demands of

advanced applications:

1. Negative access pattern information, which describes objects

that will not be accessed by the transaction and

2. Positive access pattern information, which describes which

and in what order objects will be accessed by the transaction.

The combination of these 2 informations allow long transactions

to release their resources as soon as they are done with them. The wake of the

transaction is used to describe the set of all data items that have been locked

and then released by a Long Transaction (L T). Releasing of the resource is an

conditional unlock operation as it allows other transactions to access the

released resource as long as they abide by the following restrictions stated in

the protocol below to ensure serializability.

Restriction 1 . No two transactions can hold locks on the same

data item at the same time unless one of them has locked and released the

6 l

object before the other locks it. The latter lock holder is said to be in the wake of

the releasing transaction.

Restriction 2. If a transaction is in the wake of another transaction,

it must be completely in the wake of that transaction.

The basic advantage of altruistic locking is its ability to use the

knowledge that a transaction no longer needs access to a data object it has

locked and it maintains serializability. Furthermore, if access information is not

available, any transaction at any time can run under conventional 2PL protocol.

Thesis:

VITA

Mahesh Ram

Candidate for the Degree of

Master of Science

SUPPORTING ALTRUISTIC PROTOCOL IN
MUL TIDATABASE SYSTEM

Major Field: Computer Science

Biographical:

Personal Data: Born in Madras, India, August 8, 1968.

Education: Graduated from D. R. Higher Secondary School,
Madras, India, in May 1986; received Bachelor of
Science in Computer Science and Engineering from
University of Madras, India, in May 1990; completed
requirements for the Master of Science degree at
Oklahoma State University in May, 1994.

Professional Experience: Programmer/Analyst, APEX
Computers, India, May, 1989 to August, 1991.

	001.tiff
	002.tiff
	003.tiff
	004.tiff
	005.tiff
	006.tiff
	007.tiff
	008.tiff
	009.tiff
	010.tiff
	011.tiff
	012.tiff
	013.tiff
	014.tiff
	015.tiff
	016.tiff
	017.tiff
	018.tiff
	019.tiff
	020.tiff
	021.tiff
	022.tiff
	023.tiff
	024.tiff
	025.tiff
	026.tiff
	027.tiff
	028.tiff
	029.tiff
	030.tiff
	031.tiff
	032.tiff
	033.tiff
	034.tiff
	035.tiff
	036.tiff
	037.tiff
	038.tiff
	039.tiff
	040.tiff
	041.tiff
	042.tiff
	043.tiff
	044.tiff
	045.tiff
	046.tiff
	047.tiff
	048.tiff
	049.tiff
	050.tiff
	051.tiff
	052.tiff
	053.tiff
	054.tiff
	055.tiff
	056.tiff
	057.tiff
	058.tiff
	059.tiff
	060.tiff
	061.tiff
	062.tiff
	063.tiff
	064.tiff
	065.tiff
	066.tiff
	067.tiff
	068.tiff
	069.tiff

