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PREFACE

There are well-developed methods for attaining either low or high frequency singular
value agreement for general systems using LQG/LTR design techniques. For systems that
have been augmented with additional dynamics, it has been previously shown that
simultaneous low and high frequency agreement, or balancing, is possible, although
singular values at mid-range frequencies were not directly adjusted. This paper presents
two methods for obtaining simultaneous singular value agreement over all frequencies for
the target loop. The procedure requires that the augmented systems have free integrators
acting on each of the inputs. Two examples are included which illustrate the techniques
and demonstrate how to utilize preexisting free integrators within the system.

I sincerely thank my major advisor, Dr. Eduardo Misawa, for his supervision of this
project. Through his encouragement, I was able to develop a simple idea I had during
class into the thesis presented here.

This material is based upon work supported under a National Science Foundation
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CHAPTER 1

INTRODUCTION

One of the primary functions of the engineer is to use the basic principles of science
and mathematics to develop solutions to problems. The effectiveness of a solution is often
defined in terms of its shortcomings, such as excessive cost or low reliability. These
limitations identify new problems to solve, perhaps by using less expensive materials or
more rugged components. With each improvement in one area, however, there may be
trade-offs in another. For instance, more resilient materials might improve the reliability of
mechanical parts, but might also increase the overall cost.

The same can be said of control schemes: those processes which cause a system to
operate in a desired manner. For single-input/single-output (SISO) systems, a number of
control methods have been developed, including lead/lag compensators, feedback pole
placement, and optimal control. The first of these is a dynamic process, which is more
complicated than the constant gain feedback control of the latter two. The second method
allows the user to select a gain which will provide the desired rise time, overshoot, and
other time response properties. But while the behavior of the system after pole placement
may be ideal, the amount of control effort used to effect this performance may be
excessive. In this case, the final method might be the best option, as it attempts to balance

the performance of the system with the required control effort.



Background of Multivariable Control

There are similar options to consider when designing control schemes for multi-
input/multi-output (MIMO) systems. However, while techniques such as pole placement
are still available, they are considerably more difficult. This complexity is a result of the
fact that, since these systems have more than one mput and more than one output, the
input to output transfer functions are matrix quantities. For each element in the matrix.
there is likely to be a different set of poles and zeros. Additionally, the traditional concept
of zeros no longer applies, since the zeros of the scalar matrix elements have no apparent
relevance to the zeros of the complete system.

The importance of the order of the matrices in the transfer function representation
also creates difficulty, since the mathematical components of a MIMO transfer function
cannot simply be rearranged as with a scalar SISO system. Finally, and perhaps most
importantly, MIMO systems have multiple input to output amplitude ratios. Therefore,
while the Bode magnitude plot of an SISO transfer function consists of a single trace
indicating amplitude ratio as a function of frequency, MIMO systems have multiple traces,
showing at the very least the maximum and minimum amplitude ratios that could be

expected for a given mput signal frequency.

The Problem

The ability to manipulate these minimum and maximum ratios, or singular values
(since they come from the singular values of the system transfer function), leads to a

popular method for designing linear mulivariable controllers: the traditional linear-



quadratic Gaussian/loop tre;nsfer recovery (LQG/LTR) technique. This topic will be
discussed in greater detail shortly, but suffice it to say that the method reduces a
complicated sequence of matrices and loops to a simpler, single-loop equation.

Previous work in the field of LQG/LTR has shown that it is possible to obtain nearly
identical singular values over limited frequency ranges. As opposed to singular values
which are significantly different at a given frequency, identical singular values improve
system performance by ensuring that the system outputs will behave similarly for that
frequency. It would therefore be desirable to obtain identical singular values over as great

a frequency range as possible.
Objective of the Research

This research was designed to identify means of obtaining balanced singular values
over a greater frequency range than had previously been shown to be possible. Initially,
improvement was sought at those frequency locations where the difference in maximum
and minimum singular values was the greatest. It was thought that by decreasing this
maximum spread the agreement over all frequencies would generally improve. Further
investigation showed that it was possible to obtain singular value agreement over all

frequencies for certain systems.

Significance and Contribution of the Research

As a potential refinement of the existing design procedures, this paper introduces two

new ideas to the field of LQG/LTR. The first concept is that singular values of transfer



function matrices can not only be made identical (as has been previously shown) but can
be made to equal those of a desirable first-order transfer function shape. The second
concept is that, in forcing the singular value traces to a single, first-order form, the
singular values can be made identical not just for limited frequency ranges (the focus of

previous work) but for all frequencies.

Scope and Limitations

This research was based on systems which have either preexisting and/or augmented
free integrators acting on each of the inputs. It is a common specification in control
system design to have zero steady-state error, which requires the addition of free
integrators to obtain at least a type 1 system. Free integrators which are a physical
component of the system can cause problems, as the addition of too many of these
elements will cause as many problems as having too few. Therefore, the examples
included show how to isolate these preexisting poles at the origin and use them
advantageously.

This paper does not, however, directly discuss how to match singular values to
anything other than the Bode form of a free integrator, as it is unlikely that a non-zero
augmented pole location should be specified. If the need should arise however, it is
possible to adapt the equations derived in the Appendix to suit such a need. Furthermore,
the methods presented here cannot, in general, be used with non-augmented systems,
unless there are already the same number of free integrators in the system as there are

inputs.



CHAPTER I

REVIEW OF THE LITERATURE

The loop transfer recovery (LTR) theory for multivariable system control evolved
from the search for a dynamic compensator which would provide good command
following and stability robustness properties. Its development can be traced to one of the
most basic MIMO control techniques (also used frequently with SISO systems), the linear
quadratic regulator (LQR), which involves the selection of an “optimal™ control gain
matrix, K. This control method provides certain inherent benefits, including nominal
stability and stability robustness. However, while LQR ensures a stable system, it is not
designed for command following roles. Even when modified to the form of the LQ-Servo
(which permits output feedback, but requires that the gain matrix be broken into two
parts), the performance of a MIMO system to a reference input was poor.

When state estimation was added to a system, the combined dynamics of this filter
loop and the control loop were found to have an interesting structure, called the model
based compensator (MBC). This control structure was promising because it allowed for
non-zero reference inputs to the system. Furthermore, the Separation Theorem permitted
the gain matrices to be developed independently in fictitious control and filter loops. The
gain matrices could be selected using pole placement (which, if the poles had negative real
components, ensures nominal stability), linear quadratic Gaussian (LQG) techniques

(ensuring both nominal stability and stability robustness), or any other method.



One drawback to the MBC is that, even if stability robustness is guaranteed for the
separate controller and filter loops, the same may not be true for the combined MBC/plant
structure. However, it was found that if LQG techniques were used to select both the
gain matrices, the singular values of the overall transfer function would approach those of
a simpler target loop {(Doyle and Stein 1981). As discussed by Stein and Athans (1987).
the objective of LTR is to shape a target loop (either the filter loop. C(sI-A) 'H. or the

control loop, K(sI-A)“B, where A, B, and C are from the standard state-space form. (1)).

x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)

(h
and then attempt to recover its singular value loop shapes by properly selecting the
remaining gain matrix (K or H, respectively). Therefore, if the “targeted” filter loop is
designed as a linear Luenberger state estimator and the control gain matrix chosen so as to
recover this loop, then the complete control system will exhibit the estimator’s stability
robustness properties.

A limitation with this and any other MIMO control technique is that the singular
values of the nominal system are generally spread apart over the entire frequency range.
With SISO systems, the response of the system to inputs of different frequencies is
represented using the Bode diagram. For such systems, the Bode magnitude plot consists
of a single line representing the amplitude ratio of system output to system input as a
function of frequency.

With multi-input/multi-output systems, multiple output to input amplitude ratios

occur. Furthermore, the values of these ratios will vary for a given frequency if the

direction of the input vector changes (i.e., making only one of the inputs non-zero, making



all inputs the same magnitude, etc.). For this reason, the singular value plot is used to
describe the input/output amplitude ratio for MIMO systems. These diagrams show how
the singular values of the transfer function matrix vary with frequency and indicate (at

minimum) the upper and lower bounds of these quantities.

Balancing Singular Values of Nominal Plants

Low and High Frequency Ranges

The difference between the maximum and minimum singular values of a system can
be large near points of resonance and nearly zero at other locations. A wide spread
between upper and lower bounds can degrade system performance and limit the designer’s
ability to specify crossover frequency or other desired characteristics. However, it is
possible to obtain agreement of singular values for some frequencies when LQG/LTR is
used. For nominal (un-augmented) system plants, methods have been presented for
‘balancing’ singular values either at low or high frequencies (Birdwell et al. 1984). With
these cases, the procedure is to select the gain matrix such that the target loop transfer

function approaches the identity matrix as frequency tends to zero or infinity, respectively.

Arbitrary Frequency Location

Birdwell and Laub (1987) presented a third alternative in which singular values are
balanced at an arbitrary frequency location. This technique is similar to the low and high
frequency balancing methods except that the transfer function matrix is evaluated at a

fixed frequency location. The authors noted that being able to balance singular values at



an arbitrary frequency location provided additional design flexibility, but did not suggest

an algorithm for selecting the frequency where matching would provide the best results.

Balancing Singular Values of Augmented Plants

Previous Work

Greater flexibility in manipulating the singular values occurs when additional
dynamics are augmented to the nominal plant. A typical example is when free integrators
are added to each of the inputs such that the closed-loop system has zero steady-state
error. For such a system, it has been shown that the linear-quadratic Gaussian (LQG)
target loop can be made to exhibit balanced singular values at both low and high
frequencies, simultaneously (Martin et al. 1986). This was achieved by partitioning the
gain matrix into two components: one which was identified as dominating singular value
behavior at low frequencies, and another which dominated at high frequencies. These
submatrices were then optimized to provide balanced singular values in their frequency
range. However, while results at low and high frequencies are generally good, singular
values at mid-range frequencies (often of greater interest to the control system designer)

often show little improvement.

Present Study

This paper shows that it is possible to obtain balanced singular values over all
frequencies at the same time. The next chapter presents two methods for obtaining this,

both of which utilize the partitioning of the gain matrix suggested by Martin et al (1986).



The first method applies the suggestion by Birdwell and Laub (1987) of evaluating the
transfer function at an arbitrary frequency location, but, by introducing the concepts ot
null vectors and mapping matrices, shows that matching can be performed at several
frequency locations. If enough matches are performed, it has been determined that the
singular values will be identical for all frequencies. The second method presents an exact

solution to the matching problem in a single equation, eliminating the need for null vectors

and mapping matrices.



CHAPTER 111

LQG/LTR DESIGN FOR AUGMENTED SYSTEMS

Before introducing the methods for selection of the gain matrices, the state-space
representation of augmented systems is first developed, following the procedure by Martin
et al. (1986). The equations have been modified to initially include cases where stable

poles are augmented to the systems dynamics.

Augmented System Dynamics

Begin with the nominal plant model, which is of the standard state-space form shown
below, where A, is of dimension (n x n), B, is (n x m), C,, is (m x n), and m < n.

X, (t)=A x (t)+B u (t)

p pPoD

y(1) =C, x, (1)
Also, let Gy(s) represent the transfer function matrix of the nominal system, given by
equation (3). In (3) and subsequent equations, note that s = jw, and that ‘I’ refers to the

identity matrix.
G,(s)=C,(sI-A )"B, (3)
Now suppose that each the inputs to the nominal plant is augmented with an additional,
stable pole, resulting in (4).
a, =(-phu, +u, (4)
The transfer matrix representing these augmented dynamics is given by (5).

G,(s)=1/(s+p) (5)

10



The combined transfer matrix for the nominal and augmented plant dynamics is given
by G(s) = Gy(s)G.(s). This transfer function can be represented in the standard state-space

form C(sI-A)'B, where these matrices are defined as follows:

c=[o c,].

-pl O
A=[B A j! (0)

Also, it can be shown (Brogan 1991) that the inverse of (sI-A) is given by

(7

(1A { [/(s+p) 0 }

(sI-A,)"'B,/(s+p) (sI-A )"
In this new system, (6), C is of dimension [m x (n + m)], Ais [(n + m) x (n + m)]. and B 1s
[(m + m) x m].

With the state-space representation thus defined, the method for selecting the gain
matrix of the target loop can now be described. This paper uses the filter loop as the
target loop of the system, as opposed to the method where the compensator loop is the
target. However, since the two methods are duals, the process should be adaptable to the
latter case. Once the filter loop is determined, the control gain matrix must be computed
using the following form of the Control Analytical Ricatti Equation (CARE) (9), a
requirement for loop transfer recovery

K=(1/p)B'S (8)
0=A'S+SA+C'C—(1/p)SBB'S (9)
where p is a free parameter. Note that the filter matrix, H, does not influence the value of

the controller gain matrix, K.
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Filter Loop Transfer Function

At this point, the scope has been limited to the case where free integrators are added
to the system, and the equations that follow are derived for that specific case. As
indicated earlier, this common problem results from the specification of zero steady-state
error. The equations that follow could likely be adapted to fit a more general pole
location, -p. However, the formula would be considerably more involved than that
presented here and would not be as useful, since it is uncommon to specify a non-zero
augmented pole location. It is therefore left to the reader to adapt the equations included
in the Appendix to a more general pole location should the need arise.

With the filter loop chosen as the target loop for the system, the gam matrix, H. is
selected using the Kalman Filter method. The procedure first requires the introduction of

fictitious white noise terms into system (6),

x(t) = Ax(t)+LL(t)
y(t) = Cx(t)+06(t)

(10)
where C(t) has covariance 1, and 0(t) has covariance . Since the noise terms do not
represent real disturbances, the matrix L and the constant i are not fixed but act as free
parameters that may be selected to meet design criteria.

The actual values of L and pt are therefore not as important as the effect they have on
H, the filter gain matrix. With the constant gain Kalman Filter method, the relationship
between the filter gain and the free parameters is given by the solution to the Filter

Algebraic Ricatti Equation (FARE) (12).

H=1/p)zC (1)

12



0=AZ+ZA'+LL'—(1/n)ZC'CE (12)
Beginning with equation (12), it has been shown (Kwakernaak and Sivan 1972) that the

singular values of the Kalman Filter loop, C(sI-A)'H, are given by

6,1+ Gy (jo)] = V1+(1/ )0 [C(jol - A) " L] (13)
which, for p <<1, reduces to

6.[Gy (jo )l = (1/ J)o,[C(jol -A) ' L] (14)
If the filter open loop transfer function matrix, C(sI-A)'L (henceforth referred to as
Gioi(s)), approaches some multiple of the identity matrix for a given frequency. then its
singular values will become equal for that frequency.
From (14), it can been seen that identical singular values of Gy (s) imply identical
smgular values of Gg(s), as well. The problem, then, lies m finding the gain matrix, L,

which will result in identical singular values for the filter open loop transfer matrix, shown

in (15).

(6 C I/s 0 L s
Gra (=10 C,] (sI-A,)'B, /s (sI-A,)" ()

Applying the suggestion by Martin et al (1986) to partition L into low and high frequency
submatrices results in (16), where L; is (m x m) and L;; is (n x m).

Gio (8)=C (sI-A )"B L /s+C (sl-A, )L, (16)
As frequency tends to zero, the extra free integrator in the first, or ‘low frequency,’ term
of (16) means that this part of the equation will dominate. As frequency tends to infinity,

this same free integrator causes the first term to die out faster than the second, allowing

the ‘high frequency’ term to dominate.



Standard Solution Method

Since free integrators were augmented to the system inputs. singular values will be
balanced if the matrix L is selected so that Gyoi(s) approaches 1,/s, where the subscript
“m” denotes the dimension of the identity matrix as (m x m). (Ifpoles at -p were added.
then L./(s+p) would be used, although L, would not dominate at low frequencies, and the
equations would need to be adjusted accordingly.) Assuming that A, contains no free
integrators (or they have somehow been moved out, as in the example which follows),

then for low frequencies, (16) becomes

1,/s=-CA, 'BPLL/s—CpAP 'L, (17)

m

Since, as stated earlier, the low frequency term will dominate as s approaches j0, then (17)

reduces to
I,/s=-CA BL, /s (18)
The solution for L;, is a unique, (m x m) matrix and is given by
L, =-[CA, B’ (19)
For high frequencies, (16) becomes
I,/s=CBL, /s+CL,/s (20)
Since, as s approaches joo, 1/s >> 1/s°, (20) reduces to
I,/s=CL, /s (21)
Because C, is not square, a unique solution does not exist for Ly. In fact, since C; is (m x

n). and m < n, then an infinite number of solutions exist. The typical method for finding

Ly has been to compute the minimum norm solution of (21), as shown in (22).

14



L,=C(CC )" (22)

Improved Method 1: Null Vectors and Mapping Matnces

From linear algebra, it is known that null vectors will accompany any nunmum norm
solution. Letting the columns of a matrix N, represent the null vectors of C,,. then by
definition

C.N, = 0 (23)

This, in turn, implies that

C(L,+NM)=CL, (24)
where M is an arbitrary mapping matrix representing any linear combination of the
columns of N,. Also, recall that N, will not affect L; due to the partitioning of the L
matrix. The point of this is that adding null vectors of C, to the high frequency
component of L will not degrade singular value agreement at either low or high
frequencies. They may therefore be used to augment the high frequency component of L.
to obtain more balanced singular values at mid-range frequencies.

The first step in the process of improving agreement is to select a frequency at which
the singular values are to be balanced. Typically, the best way to do this 1s to first
compute H from (11) and (12) using L, and L as the L matrix. Then, plot the smgular
values of Gy(s) and locate the frequency of maximum spread, o, which 1s generally near
a resonant frequency (jo; may not , however, be one of the poles of Ay, since (sl-A,) must

remain invertible.) The next step is to determine which linear combination of the null

13



vectors, represented by a mapping matrix, M,, results in the best match. This is given by
the solution of M, in the following equation

1/jo,=C,(jo,I-A)"'B.L, /jo, +C (jol -A ) (L, +NM) (25)
which may be rewritten as

C,(jo,I-A)"NM, =1/jo,-C,(joI-A )'B,L, /jo,-C (jo,1-A )"L,(206)
(In practice, this generally yields a complex L matrix. However, the LQG process will
return a real H matrix.)

The method for finding M, will vary depending on the number of rows and columns
of the matrix coefficient of M,, and whether or not they are linearly independent. To
account for all the possibilities that might occur, it is recommended that the Moore-
Penrose generalized inverse be used for computing all mapping matrices. This
pseudoinverse effectively computes the unique inverse of a matrix if it is square and
nonsingular, the minimum norm solution if its rows are linearly independent, or the least
squares solution if its columns are linearly independent. The method also accommodates
cases where the matrix may not be full rank (neither the set of columns nor the set of rows
are linearly independent). A number of numerical procedures exist for computing this
pseudoinverse, including singular value decomposition (SVD), Gramm-Schmidt
orthogonalization, and Gauss-Jordan elimination. The reader is referred to Arthur (1972)
for a more detailed discussion of the pseudoinverse and the methods available for
computing it.

Referring again to (26), it can be seen that a new, more limited set of null vectors

exists, and is given by

16



N, =mull{C,(jo,I-A,)"N, } (27)

The matrix N, represents the linear combination of the columns of N, which was not used
to improve singular value agreement at ©,. The set of vectors given by the columns of
NiN; can therefore be used to balance singular values at another frequency without
degrading agreement at low frequencies, high frequencies, or near ;. The procedure for
selecting the new frequency, o,, is the same as before, except that a new L matrix. given
by the submatrices L;. and (Liy+N,M,), is used to compute the new H. The mapping. M.
which gives the best singular value agreement at the new frequency location is given by
the solution to the following equation.

I,/jo,=C, (jo,J=A )'BL /jo,+C, (jo,J=A )" (L, +N,(M, +N,M,))28)

This process of finding mapping matrices and remaining null vectors continues until
all null vectors are used. At this point, it is necessary to include a word of caution
regarding the calculation of the null vectors. The matrix coefficient of M; is ofien poorly
conditioned. However, it may not be so bad that a computer program will recognize all
the null vectors. It is therefore up to the user to recognize these additional null vectors, in
many cases made easier by rounding the matrix’s elements off to, say, the fourth or fifth
decimal place, and include them in the calculation of the next mapping matrix.

The final result of this sequential process is an L matrix of the form shown in equation

(29).

L,
L= (29)
[LH +N1(M1 +N2(Mz +N3(M3+"'+Nk—1(Mk—1 +N.M, ))))jt

17



Improved Method 2. Exact Solution

Initially, Method 1 was used to improve singular value agreement at specific
frequencies. It was later determined that if enough steps were performed such that all null
vectors were used, identical singular values occurred at all frequencies. In fact. this result

is readily obtained by selecting the L;; submatrix using (30).
-1 -1 -1 A
L,=A;B(CA;B,) (30)
The derivation of (30) and proof that Gy (s) will equal Us for all frequencies is mcluded
in the Appendix.
With either method, the resulting L matrix provides the basic form of the loop shape.
The other free parameter, the scalar , can now be selected to provide the desired

crossover frequency of Gg(s), as with standard LQG/LTR design methodology.
Summary of Design Procedure

The design procedure for an LQG/LTR controller can be summarized in the following
steps:

1. Develop a linearized state-space representation of the system (the A, B, C, and D

matrices).

2. Ifnecessary, augment the system with additional dynamics such that only one free
integrator is acting on each of the mputs.

3. Choose L (using either Method 1 or Method 2) to give the desirable loop shape

(i.e.. obtain singular value matching).

18



4. Choose p to give the proper crossover frequency and to ensure good agreement
between the real C(sI-A)'H and fictional C(sI-A)'L loops.
5. Choose p small enough so that the combined controller/plant transfer function

approaches that of the target filter loop, C(sI-A)'H (i.e.. obtain loop transter

recovery.)

There are no real guidelines for selecting the free parameters in steps 4 and 3.
However, it should be noted from (13) that, so long as the singular values of Gy (s) are
identical, the singular values of Gg;(s) will be as well, regardless of the choice of 1. So.
the only real issue is the desired crossover pomt of the transfer function, which effectively
specifies the system’s speed of response.

As for the selection of p, a smaller value will increase the upper limit of the trequency
range where loop transfer recovery occurs, but will also create large elements in the K
matrix, resulting in greater control effort. As noted previously, the crossover frequency of’
the open loop transfer function affects many of the closed-loop time response
characteristics, so it is important that singular value agreement be maintained to this point.
However, it is unlikely that one would design a control system with a crossover point
lower than the frequency of any expected reference signals (trying to force a system to
respond faster than it is designed for would create inherent steady-state error), so it might
not be necessary to try to maintain match in this high-frequency region. A good rule-of-
thumb. therefore, might be to select p small enough to obtain a good match just beyond
the crossover frequency, but no further. In other words, choosing p as large as possible

while still maintaining match at crossover should provide good transient response while

19



minimizing the control effort. The following section contains two examples that
demonstrate this procedure and the two techniques presented for obtaining uniform

singular values.

20



CHAPTER IV
EXAMPLES
Example 1: Translational Mass-Spring System

Consider a system consisting of three masses and two springs. with force inputs F,
acting on mass 1 and F; acting on mass 3, as shown in Figure 1, which might be a lumped
parameter model of a more complicated physical system. An LQG/LTR servo is to be
designed for this system which will meet the following specifications:

¢ Zero steady-state error for arbitrary constant command (reference) inputs and
disturbances,
e Target loop singular values should be identical,
e Cross-over frequency should be about 10 rad/sec.
The first specification can be met by applying a free integrator to each of the control
inputs, the second by applying the technique for selecting the filter gain matrix as
described earlier, and the third by manipulating the free parameter, p, from (12).

Before proceeding with the design, the system shown m Figure | must be described

mathematically. Assuming that the damping is proportional to velocity, then a linear

differential equation may be written for each mass, using Newton’s second law of motion.

F =bx, -k, (x,-x;)=mX,
—b,ox, K, (%, = x; ) -k (X, = x5) =myX, (31)

F,-b.x, +k:3(x2 —X;) = myX,

Suppose that the physical constants have the following numerical values:
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m, =1lkg
kijle!m (3’))
b,=01IN-s/m

The set of equations, (31), may be rewritten as:

F, - 0.1%, - x, +x, = ¥,

-0.1x, = 2x, +x, +X, = X, (33)

F—-01x; - x; +x, =X,
At this pomt, it might be necessary to normalize the equations as with standard LQG/L. TR

procedure, although the system used here does not necessitate this.

X, X X

2

m VWA~ m, WA m

tb, tbz tbﬁ

Figure 1. Diagram of Mass-Spring System

Let the variables z, through z, represent the state variables of the system according to

(34), where v; is the velocity of mass 1.



Z, =X,

z, =X, =V,

Z; = X,
S (34)
Z, =X, =V,
Z, =X,
Z, =X; =V,
Also, let y; and y» represent the system outputs, defined by (33).
Yi =X =% e
Y. =X X, = 4,2, <
The state equations may now be written in matrix form, given by (36).
2z, o 1 0o o o0 0 7z] [o 0
Zy| |-1 =01 1 0 0 0 |lz]| |1 O
zZy |0 0 0 1 0 0 z3+0 0{1’«‘,}
zZ, 1 0 -2 -01 1 0 |z 0 0K
zl [0 0 o0 0 0 1 fz| |0 o0
2] Lo 0 1 0o -1 -01]z]| [0 1]
o (30)
Zy
Z,
Y, I 0 0 0 0 0}z
[yj:[—l 00 0 I 0] 7,
Zs
7o

As will be seen in a moment, these equations are not yet in a usable form. Therefore, the
A, B, and C matrices will be designated with the subscript, “n”, for nominal plant, to
distinguish them from the plant matrices (subscript “p””) which will actually be used in the
design.

The poles of (36). given by the eigenvalues of A,, are

N
(99}



~0.05+j1.7313

~0.05+ j0.9987 )
~0.1 7

0.0

Transmission zeros of the system were computed to be

-0.05+j1.4133 (38)
and correspond to the case where mass 2 (the position of which is not measured) acts as a
vibrational damper for the rest of the system. The effects of these poles and transmission
zeros on the behavior of the system are shown in Figure 2, the singular value plot of (30).
The two complex pole pairs create resonant peaks near 1.0 and 1.7 rad/sec. The complex
transmission zero pair causes a trough in the lower singular value plot at 1.4 rad/sec.
These distortions increase the spread between upper and lower singular values. Additional
disparity is created by the presence of the pole at the origin, which is seen as the -20db/dec

slope of the upper bound at low frequencies.
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Figure 2. Singular Values of Original System

With most systems, the state-space representation of the augmented system could
now be written using (5), with p = 0. However, the existence of the pole at the origin in
this system means that some matrix manipulation must first be performed. Due to this free
integrator, the present A, matrix is not invertible, such that low frequency singular value
matching cannot be performed via (19), nor could high frequency matching using (30). In
terms of Figure 2, the upper bound tends to infinity as frequency tends to zero, while the
lower bound tends to a finite quantity, meaning that a gain of infinity on the lower would
be necessary to match singular values. This effect relates to the suggestion that identical,

first order poles must be acting on each of the inputs to obtain identical singular values

over all frequencies.



Since the upper bound already has a pole at zero, it is reasonable to attempt to add
just one more free integrator which will operate on the lower bound. providing zero
steady-state error. To do this, the existing free integrator must be isolated from the
original system to determine which of the mputs (or linear combination thercof) it operates
on. The new free integrator could then be applied to the remaining input (or linearly
independent combination of inputs) to obtain the desired resul.

By the definition of a free integrator, one of the states (or. again. a linear combination
of them) is simply the integral of a combination of the inputs. Therefore, there should be
some combination of z;’s that will result in a zero row in the A, matrix. This is guaranteed
by the fact that a zero eigenvalue implies that the rows of A, are not linearly independent.
It can be shown that the temporary state variables given by (39) isolate the free integrator

in this manner.

z] [o1 1 01 1 01 1]e
z, I 0 0 0 0 Ofz
zZ, 0 1 0 0 0 0}z,
|= | (39)
z, 0 0 0 1 0 0}z,
zZ 0 0 0 1 0}z
(zg| |0 0 O 0 1]z,]

Notice that z, is not a unique element in the z’ coordinates. The selection of which state
variable to eliminate was somewhat arbitrary, although an attempt was made to maintain
z; and zs in their original form, since these are measured outputs.

Designating the above mapping matrix from z to z’ as G,, system (36) in the new

coordinates is given by
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2 =GA G;'Z+G,B,u

(40)
y:CnGl—lZ!
which results in the state-space representation
00 0 o o o ] [t 1]
0 0 1 0 0 0 6 0
., 1100 =20 -101 =10 -1 -10 10
z' = 7'+ F
-20 3 20 19.9 3 20 0 0
0 0 0 0 0 1 0 0 @1
(10 -1 -10 -10 -2 -101] |0 1

0 1 0000
y= z’
0 -1 0 01 0
Now, the first state variable is the integral of the combination of inputs F, and F;.
However, there are three distinct combination of inputs used in the equation: Fy+F:, Fy.
and F;. This number must be reduced to two input combinations in order to know where

the new integrator is to be applied. By defining a mapping G in which row 1 1s subtracted

from row 2, as shown in (42),

'zl [1 00 0 0 0fz]
;| [0 1 0 0 0z
24 -1 01 0 0 0fz
o |= : (42)
z 00 1 0 0}z
zy 0001 0}z
z/| [0 0 0 0 0 1]z ]

the representation given by (43) results,
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0 0 0 0 0 0 1 01
i 0 1 0 0 0 0 0
101 =2 -101 -10 -1 -10 0 -1
7" = 7"+ P
0 3 20 199 3 20 0 0 ,
0 0 0 0 0 1 0 (43)
L0 -1 -10 -10 -2 -10.1] 0 1

0 1 0 0 0 0 .
y= z
0 -1 0 0 1 0

where P is a vector representing the linear combination of inputs F, and F; given by (44).

Now, the first state variable may be treated as an input to the rest of the states. as

given by (495).
zZ] [o I o o o Jz][ 1t o]
zZi| |=2 =100 -10 -1 =10 jzy| |-0.1 -1}
Z
Z)|={3 20 199 3 20 |z/|+] © O[P']
zZy 10 0 0o 0 1 |zl | o0o o~
z7| -1 -10 -10 -2 -10.1)lz/| | O 1|
2
L 000 0]%
oo z} (45)
y.] |[-1 00 1 o}
Zs
20 ]
z/=P

The block diagram of (45) is shown in Figure 3, designating w, as the vector of state-

space variables, v, as the input vector, and the A, B, and C matrices with the subscript

T
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Figure 3. Block Diagram of Un-Augmented System

The free integrator may now be applied in the linear combination shown in Figure 4 to

obtain the desired form of v,.

1 1-1/s
; 0 l/s]

R I g
y

1/s1/s
0 1/ v
p

Figure 4. Block Diagram of Free Integrators

The design model, (46), is now defined as i (5).

(46)
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Note that the upper submatrix of B is not the identity matrix as in (5) due to the initial free
integrator. However, this has no effect on the selection of H since B is not included in the
derivation of either Ggy or Gy

Also, notice that the inputs and outputs of this state-space representation are the
same as those for the original system. Furthermore, these inputs and outputs are the only
connection between the MBC and the plant. This is important, since it means that the gamn
matrices to be developed later do not need to be “mapped back™ to get them m a form that
can be used with the physical system. In other words, so long as the extra free integrator
is placed in the right location in the plant (acting on the sum of F, and F3). then the state-
space representation, (46), can be used for the MBC, since the inputs and outputs remain
consistent for both the MBC and plant.

The procedure for selecting the L matrix begins with the previously described low
and high frequency components. From (19), the low frequency component of L is found

to be

y 0.3 0.15 )
1o 05

For comparison, compute the nominal high frequency component as given by (22):

H.nom

1
0
0 (48)
]

O - O O O

10

The complete L. matrix is given by



Selecting an initial value of 1 =

holds) with the FARE, (10), yields

nom

nom

D e OO —= O

2.5009
-1.3129
10.8728

6.6090

—14.9701

10.9061

N

| 77674

N
l\.)

35
4.8246
0.033
-0.2000
-1.5980
0.6822

1.5265 |

(49)

0.01 (to ensure that the approximation given by (12) still

(50)

Using (50), along with A and C from (46), the singular values of Gy, were computed and

are shown in Figure 5. The crossover frequency is already about 10 rad/sec, so no further

modifications are needed. If this were not the case, it would simply be a matter of

changing 1t (shifting the plot up or down) until the desired crossover frequency was

achieved.
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Figure 5. Singular Values of Filter Loop using Nominal H

Now, compute the improved high frequency component of the L matrix using (30).

1 0
-0.3 -0.15
imp =| 0 0 (51)
!
L 0 0 .

The complete L matrix is thus given by (52)

F 0.3 015 ]
0 0.5
1 0
L, =| 0.3 —0.15 (52)
0 0
1
L 0 O =
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and the resulting H matrix by (53).

315
0 3
10 0
H, =|-3 -15 (33)
0 0
10 10
L 0 O .

The singular values of the loop transfer function for this filter gain matrix. shown in Figure
6, exhibit the behavior of a first order Bode plot of I/s. As with H,,. the singular value

plot using Hi,,, already has the desired crossover frequency. so no changes are needed.
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Figure 6. Singular Values of Filter Loop using Improved H

(93]
W



In any case, when the K matrix is selected as per LQG/LTR methodology, the time
responses of the system exhibit a much faster, much smoother response with the improved
H than with the nominal H. This is illustrated by the time responses to the reference
command input [1 1]” shown in Figures 7 and 8, where the free parameter in computing K

was chosen to be 10,
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Figure 7. Transient Response of System using Improved H
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Figure 8. Transient Response of System using Nominal H

It is interesting to note that the control forces needed with the improved H (Figure 9)
were actually about 5% smaller than those used with the nominal H (Figure 10). Perhaps
this is explained by recognizing the fact that the K matrix for both cases is identical (usmg
the same value for the free parameter), since its calculation is independent of the value of
H. The improved H matrix is effectively performing pole/zero cancellation (which will be
shown momentarily), thus minimizing the effects of the resonant frequencies. Therefore.
the disturbances which must be controlled are minimized as well, such that the control

signal leaving K will be smaller.
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Before proceeding to the next example. consider how the filter gain matrix is driving
the system to a 1/s form. Ifthe filter loop, Gy, is computed symbolically and without

canceling terms, the transfer function matrix elements shown in (54) result.

10s(s+0.1)(s* +0.1s+3)(s* +0.15+1)

GKF“(S) i ' (s+0.1)(s* +0.1s+ 3‘)(52 +0.1s+1)

G ()= (6.2:107)(s+29.5)(s— 0.32)(s+0.14)(s+5.1-10™)
#ls+0) ( ‘S+3)(sz £01s+1)

Gy, (s)= (1.2 4)(“7 3)(s+3.8)(s* +0.0245+0.96)(s* +0. 0185+0.0037) (54)
2 0.1)(s* +0.15+3)(s* +0.1s+1)

Gy, (s)= 10s(s+ 0.1)(s" +0.15+ 3)(s2 +0.1s+1)

s*(s+0.1)(s* +0.1s +3)(s* +0.1s+ 1)

The diagonal elements of the matrix (subscripts “11" and *22’) reduce to 10/s through pole
zero cancellation. Recall that the procedure did not attempt to achieve the free integrator
form through pole/zero cancellation directly, but that this effect resulted from the L.QG
filter gain matrix selection process (as did the gain of 10 for proper crossover frequency.)
In contrast, the poles and zeros of the off-diagonal elements show no correlation at all.
Instead, the design process combines the elements of the C(sI-A)' matrix in such a way as
to drive the sum to a very small number. It can be seen that this also effectively reduces
the MIMO system to a set of SISO systems. Thus, SISO design tools such as root locus
can be used to predict rise time and other parameters for these individual loops.

The presence of modeling errors. however, would create mismatch between the poles
of the system and the cancelling zeros. The Kalman Filter process of selecting the H
matrix does provide some stability robustness guarantees for both the nominal and

improved methods. A more relevant issue is how the time response of a system is affected



by such modeling errors. Specifically, will the modeling errors create such a degree of
pole/zero mismatch that the improved H shows no better performance than the nominal
H?

To help address this question, modeling errors were introduced in the previous
system. Specifically, mass 1 was treated as if it were actually 1.25 kg (i.c.. the model
value underestimated the actual value by 25%). Simulations were run to compare the
performance of both the nominal and improved controllers to a [ 1 -1]° reference input

Using the nominal H, the time responses using the accurate model were plotted in Figure

11, and the time responses for the faulty model are shown in Figure 12.
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Figure 11. Transient Response using Nominal H with Accurate Model
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Figure 12. Transient Response using Nominal H with Faulty Model

Similarly, the time responses using the improved H are shown in Figures 13 and 14.
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Figure 14. Transient Response using Improved H with Faulty Model
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As can be seen from Figures 11 and 13, the improved H shows marked improvement
over the nominal H when the model is accurate. When the controllers are designed using
the faulty model, both show a relatively fast oscillation on the lower trace (relative
position of mass 3 to mass 1), while the upper trace (absolute position of mass 1) shows
what appears to be a steady-state error, but is actually a slowly decaving oscillation.
However, the improved H response still shows less overshoot and smaller oscillations
about the set point than the nominal H response.

While this simple comparison cannot answer all questions about the robustness of the
new H, is does seem to indicate that its desirable properties of rise time, settling time, and
overshoot are not completely lost in the presence of modeling errors. A more thorough
analysis would need to be taken on a case by case basis, as eventually there will be some
magnitude of modeling error which will drive both controllers unstable. In any case. it

appears that for reasonable errors the improved H still provides a better response.
Example 2: Lightly-Damped Rotating Arm

The previous example illustrated the use of Method 2. This example will show how
to use Method 1. Consider a lightly damped rotating arm driven by an electric motor, as
might be found in a high-density disk drive, in which the voltage supplied to the motor is
the input to the system and the position of the arm is the output (SISO). Assume it has
been determined through experimentation that the system has four distinct poles: the first

being a free integrator, the second a first order pole at -0.1. and the third a lightly-damped,
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second-order pole with a natural frequency of 8000 rad:sec and a damping ratio of 0.1.

The transfer function of the system, with unity gain, is given by (35).

i
th
—

G(s)=1/s{s+1)[(s* 8000°)+(0.25 8000) +1] (¢

The control canonical form of the state-space representation of (55) is shown i (50). with

the singular value plot (Bode diagram) is displayed in Figure 15.

[-1601 -6.40016-10" -6.4-10° 0]
1 0 0 0
An:
0 | 0 0
0 0 I 0]
1
(50)
Bn:
K

C,=[0 0 0 64-107]
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Suppose that a LQG/LTR control scheme is to be developed for this system. and that
the requirements are as follows:
e zero steady-state error,
e crossover frequency of 600 to 1300 Hz.
The first requirement will be met if the target loop transfer function is at least type one,
and the second can be achieved by adjusting the free parameter, . Since this is a SISO
system, then only one free integrator will be required to make the system type 1. As was

indicated earlier, one free integrator already exists, so the only thing left to do is to isolate

it as in Example 1.



The mapping shown in (57) will separate the free integrator so that it may be

removed.
z,] [1 1601 6.40016-10° 6.4-10° | x,
Z | _ 0 1 0 0 X, (57)
Z, 0 0 1 0 X;
z,] |10 0 0 X,

This mapping essentially replaces x; with a combination of the rows so that the first row of
the new A matrix will be zero. Ifthe above mapping matrix is labeled as Gy then the
modified plant matrices are given by (58).

z=GA G'z+GB,u

(58)
y=C,G'z
These new plant matrices are
0 0 0 0
A 1 —1601 —-6.40016-10"7 —6.4-10
"o 1 0 0
K 0 I 0
! 59
.10 (59)
Bll:
0
0
=[o 0 0 64-107]
D, =[0]

As with the previous example, the first state variable could be pulled out to leave a
third order system with a separate free integrator. However, it is easier to simple notice

that these matrices are already of the form of (6), where
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-1601 -6.40016-10° —-6.4-10

A=l 1 0 0
0 ] 0
1
B, =i0 (00)
0
C,=[0 0 64:107]
First, apply the standard method of computing the L. matrix. using (19) and (22).
This results in (61)
i I
0
L= 0 {ol)
| 1.5625-107
where the first element is L; and the last three form L;;. Using a value for it of 0,01
results in the following value for H.
1
3.3382-107"
= - 17 (()2)
-L7156-10

1.5625-1077

Now, the gain matrix will be computed using Method 1. The first step is to compute
the null vectors of Cp, which are the columns of the following matrix, N
(63)

Next, the matching frequency must be selected. Arbitrarily, the resonant frequency of
8000 is chosen for ;. Applying this frequency, plus the nominal value of L; and L;; from

(60) to (26), then computing the pseudoinverse yields the following value for M.
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(o4)

52()27 . e AL -2
M, { 3 107 —j1.6464-10
—2.0580-10™" +32.5725
Generally, the elements of the mapping matrix will not be this small. The reason for the

answer shown here will become clear momentarily. First. though. continue with the

procedure by computing the new null vector, N-. using (27).

2.4052-107° - j1.2019-107"
NZ = . S¢ ((’5)
1.000+j1.8771-107
Next, arbitrarily select 100 rad/sec to serve as .. Using (28) to solve for M gives
M, =[-1.7607-107" +J3.31541077] (66)
Fially, (29) gives the “improved” value for L
1.000
1.7607-107" - j3.3154-107"
L = ] . - .7() (()7)
~2.5023-10™ +2.1959-10
1.5625-107

which, for all practical purposes, is the same as equation (61). In this case, then. the null
vectors did not provide any additional improvement to the solution, resulting in the small
values of the mapping matrices’ elements. It should be noted that this does not appear to
be a general result for all SISO systems, but that some feature of the matrix structure of

this system caused this unexpected result. In any case, the singular values of the target

loop transfer function are shown in Figure 16.

46



120

100 ™

®©
<

N

(=]

£
4

H
o

o
(]

Singular Values (dB)

1E-02 1E-01 E+00 1E+01 1E+02 E+03 1E+04 1124 058
Frequency (rad/sec)

Figure 16. Singular Values of Target Loop Transfer Function

In this plot, the H matrix was computed using a value of 2*10™ for 1t to obtain a crossover

frequency in the desired range (1130 Hz):

[ 7.0711-10°

-2.4374-107" ,
H= , (68)
82129.107"

1.1049.107*

Notice that in (68), the first element of the matrix is seven orders of magnitude larger
than any of the others. Since it is most likely impractical to have such comparatively small
gains, then it might be interesting to see what effect zeroing these out has on the loop

shape. The singular values under this condition is shown m Figure 17.
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The singular values shown in Figure 17 are not that different than those of Figure 15.
except that they have been shifted up due to the gain effect of . This result leads to the
question of how the transient response of the system varies with different “accuracy’s” of
the filter gain matrix. Figure 18 shows the transient response of the system to a unit step

reference input using (68) as the filter matrix.
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Figure 18. Transient Response of System using Exact Filter Matrix

Figure 19 shows the time response to the same input if all but the first element in the H
matrix is zeroed out. In both figures, the control gain matrix, K, was selected using

equations 8 and 9, with a value of 10 for the free parameter, p:

K=[140.44 9861.2 1.5748-10" 6.3101-10"] (69)
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Notice that the effects of the resonant pole are clearly present in Figure 19. while the
response in Figure 18 is very smooth and settles out to the steady-state value quickly.
Therefore, it is seen that even small gains can be extremely important to the resulting
behavior of the system (although the degree of sensitivity will vary). However, this is
more of a limitation of the hardware and software used to effect the control scheme than

of the LQG/LTR process, itself.
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CHAPTER V
CONCLUSIONS

The technique for computing the Kalman Filter matrix presented in this paper offers a
significant improvement over the previous method. The time responses to reference
inputs are faster and smoother than with the nominal Kalman Filter gain matrix. while at
the same time using less control effort. As mentioned earlier. the improved H is actually
attempting to perform pole/zero cancellation on the original system dynamics. It would
therefore be interesting to see how modeling errors might affect the transient response of
the system. Regardless of the magnitude of these errors, however. it is reasonable to
assume that better results will be obtained by attempting to minimize their effects using the

improved H than by leaving them untouched using the standard method.
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APPENDIX

Derivation of Formula

Substituting (17) into (15) and multiplying through by s yields (70).

1=-C(s1-A,) B (cA7B,) " +sC (s1-A ) 'L, (70)
The inverse of any matrix is given by its adjoint divided by its determinant. as shown for
the matrix (sI - A)in (71).
(sI-A)" = Adj(sI - A)/det(sl - A) (71)
Kailath (1980, 656-7) gives the following formulas for this adjoint and determinant:

det(sI~A) =" +a,s"" +a,8" 7+ +a__ s+a (72)
Adj(s-A) = [Is“'1 +(A+a, s+ +(A"'”1 +a, A 4 +aﬂ»_,l)] (73)

Substituting (71), (72), and (73) into (70) then multiplying through by the determinant

results in (74).

n-2

(s"+a,s"" +a,8" ++a,_s+a,)l =

n-1
-, [15 (A, +a Q) AT +a AL 4, 1) [B(CA B (74
+Cp[Is“ +(Ap +a]I)s"_1 +---+(A;§“ +a,A)" +---+an_,i)s]L”

For (74) to hold, the coefficients of the powers of s must match for a given L;; matrix.

[s]: 1=C,L, (75)
[¢]: al=-C,B,(C,A;'B,) +C (A, +a 1)L, (76)

Expanding (76):



_ -1
al=-CB,(CA'B ) +CA L, +aC,L, (77)

pH

Substituting (75) into (77) then canceling like terms gives (78)
. o 3
(b:(:p{ApLH —BP(CPApng) } (78)

Thus, the term in braces is identity zero (and so is the right hand side) if L), 1s chosen to be

~1

L,=A'B (CA.B,) (79)

Proof of Exact Solution

Equation (79) can be shown to be a solution to (74) by matching coeflicients of
powers of s individually. Altematively, (79) can be substituted directly into (74).

(s“ +a,8"" +a,8" 4+ +a,_ s+ an)l =

n-1

~c, 1+ +(A, +al)s A va A DB (CAB )T (80)

i = al o -
+C,[18 +(A, +a )5 H{AT ra AT 4 ta,l)s]A B(c,AB,)
Collecting coefficients of the powers of s...

(s"+a,8"" +a,s" 2+ +a, s+ a )=

c,[Ays +(A,A) +a AL -1)s H{ATAT ta A A Fa A - A, - al)s?

81
+...+(A::”‘A;’ +a,A;“2A;‘ R +an_lA;‘ —A;:_z - a,A;‘3~...—;1 A, A, 2i)s( )
H-Ar g Av—a A - a“ﬁ,I)]Bp(CPA;‘BD)q

Simplifying. ..
(s"+a,s"" +a,s"” +ota_s+a,)l=
CP[A;‘S“ +a,A7s" +a,Als" ++a,_Als (82)

AT @ AT A - a,‘_ll)]Bp(CpA “B,)"

55



. { . . ;
The coeflicient of s’ may be rewritten as in (83).

-1 -2 |
(s"+a, +a,8" " +--+a,_s+a )l =
-1 n -1_u-1 -1 _n-2 -1 2
CP{AP SHAA ST +a AT AT (83)

n n- 2 - ~ - -1
Ha,I-(A7+aAr 4 e, A2 42, A +a“l)]Ap‘}Bp(( A'B)
Kailath (1980, 658) shows that by the Cayley-Hamilton theorem.

Al +a1A;"+-~+au_2Ai +a, A +a,l=0 (84)

This reduces (83) to

(s" +a,8"" +a,8" 4+ +a s+a“)1 =

n-1
O (85)

-1.n -1 -1 -1 ,0-2 , “1 N (¢ A
Cp(/‘-\p s +a AT Fa,Als e a, ATs+Ha A )Bp((p/\p Bp)
The mverse of Ap is a common term in the coefficients of the powers of s, such that it may

be pulled out to leave a scalar quantity in the parenthesis.

(s“ +a,8"" +a,8"’ +--~+a"_,s+a”)l =
) , (86)

n n-1 n-2 2 ~1 ~ -1 !
(s +a,s" +a,s" T +--+a s+an)CpAp BP(CPAp Bl,)

n-1
This simplifies to (87), completing the proof.

(S“ +a,8" " +a,8" T 4 +a“_,s+an)l = (s“ +2,8" " a8 4 4a, s+ a”)l (87)



VITA
Brian Dwayne O Dell
Candidate for the Degree of

Master of Science

Thesis: OBTAINING UNIFORM SINGULAR VALUES OF AUGMENTED
SYSTEMS USING LQG/LTR

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Fort Smith, Arkansas, on August 30, 1971, the son of
Danny and Melanie O Dell.

Education: Graduated from Roland High School, Roland, Oklahoma in May 1989:
received Bachelor of Science degree in Mechanical Engineering from
Oklahoma State University, Stillwater, Oklahoma in May 1993, Will complete
the requirements for the Master of Science degree with a major in Mechanical
Engineering at Oklahoma State University in December 1994.

Experience: Worked as an engineering intern at AES Shady Point, a power plant
near Panama, Oklahoma, during summer of 1992.

Professional Memberships: American Society of Mechanical Engineers.



	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	006.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif
	055.tif
	056.tif
	057.tif
	058.tif
	059.tif
	060.tif
	061.tif
	062.tif
	063.tif
	064.tif



