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CHAPTER I

INTRODUCTION

1.1 BACKGRO·UND

. The cleaning of induction air is critical to the endurance and performance of auto­

motive engines. Automotive engine air cleaners come in a variety of forms. Most com­

monly, they consist of a non-woven, cellulose (paper) fibrous mat that is pleated then

mounted in either two circular end-seals to form a cylindrical filter or a single rectangular

end-seal to form a panel filter. These filters must provide a very high dust removal effi­

ciency and dust holding capacity while introducing as little flow restriction as possible into

the induction system.. This must be accomplished with the added burdens ofvariable flow

rates, high aerosol velocities, and non-uniform particle size distnbutions and concentra­

tions.

The efficiency of a fibrous filter is a strong function of the velocity of the fluid

passing through the filter. A non-uniform velocity profile across the face ofthe filter cre­

ates areas ofvarying efficiency in the filter. The housing that the filter is mounted in is the

dominant factor determining the flow field that the filter will encounter. The testing of

automotive engine air filters is governed by the Soci:ety of Automotive Engineers' (SAE)

J726 Air Cleaner Test Code. Test code J726 specifies standard test housings for both cy­

lindrical and panel air filter cartridges. This thesis considers the pleated paper air filter in

general and the panel air filter specifically.
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1.2 THE SAE STANDARD AIR CLEANER TEST CODE (J726)

To maintain a uniformity of standards for testing the pressure drop, efficiency, and

dust holding capacity characteristics of automotive fihers, the Society of Automotive En-

gineers have produced the "Air Cleanet Test Code,·' J726. This code governs the testing

of dry and oil bath type air filters. Test equipment and procedures for the test are Speci-

fled in J726. Figure 1.1 is a diagram ofthe universal panel fiher test housing.
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Fig. 1.1 SAE J726 panel filter test housing (SAE 1987)
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1.2.1 Uniformity ofair flow in the universalpanelfilter test housing

Sabnis (1993), using laser doppler velocimetry and flow visualizations., concluded

that the universal panel fiher test housing specified in SAE J726 operates like a diffuser in

the jet flow regime, providing strongly recirculating separated flow "at the walls of the

housing. Filters tested in the housing will experience very non-uniform flow that resem­

bles that ofan impinging jet.

1.3 FmROUS FILTRATION THEORY

As descnoed by Brown (1993), fibrous filters, although performing a similar func­

tion to a net, do not work in the same fashion as a net. A net works as a sieve capturing

100% of the particles that are larger than the size of the holes in the net. Two identical

nets in series will perform no better than one net, this means that the performance ofa net

can be studied by looking at the surface alone. This process is called surface capture or

surface filtration. Capture of particles in a fibrous fiher occurs throughout the depth of

the filter, a thick fibrous filter is therefore more efficient than a thin one, but no fibrous fil­

ter is 100% efficient.

A fibrous filter can be thought ofas a large number of layers with each layer being

populated with fibers. Even ifone layer has only a very small capture efficiency, the fiher

as a whole can perform quite well. This process ofparticle capture throughout the filter is

termed depth filtration. Depth fihers are able to capture particles that are too small to be

sieved out. Particles of only a few microns in diameter are efficiently captured, as shown

in Figure 1.2, by fihers consisting of sparsely packed fibers 20 fJJJl in diameter. The fiher

structure, shown in Figure 1.3, is so open that even a 10 fJJJl particle would be very
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unlikely to touch more than one fiber at a time. The capture of a particle, therefore, in-

volves only one fiber.

Fig. 1.2 Penetration of mono-disperse particles through a simple tilter as a function of particle size
(Brown 1993)

~.

0-----

0---...

~

o_~

SOpm ~
Fig. 1.3 Section ofa filter illustrating the scale ofparticles and fibers (Brown 1993)
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Fibrous filters have been modeled in several different ways that are deSCDDed by

Davies (1973). The most common method used to descnoe the fibrous filter is the single

fiber theory. This method regards the filter as a certain length of a cylindrical obStacle to

the flow. A fibrous filter could also be modeled as an iso/atedfiber. Using the isolated

fiber method, the effects of surrounding fibers on the conection efficiency of a given fiber

are neglected; but with the single fiber method, these effects are not neglected.

1.3.1 Collection efficiency ofafibrousfilter bed

A fibrous filter, as described by Flagan & Seinfeld (1988), can be thought of as a

loosely packed assemblage of single cylinders. It is assumed that fibers surrounding an in-

dividual fiber will affect the efficiency of that fiber. To compute the efficiency of a fiber

bed, the efficiency of a single fiber can be multiplied by the number of fibers per unit vol-

ume of the bed. The solid fraction, c, or packing density, of the filter bed can be ex-

pressed in terms ofthe fiber diameter, Df) and the total length offibers in the bed, Lf) as:

1tDfLf
c=--

4
(1.1)

The gas velocity inside the filter is greater than the velocity approaching the filter

due to the volume change caused by the filter fibers. The mean velocity in the filter can be

related to the upstream velocity by:

uu ---cc-I_c

where u is the upstream velocity.

(1.2)
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The overall efficiency ofthe bed is given by:

llb = l-exp[ 4C11h ]
1t(I- C)Df

(1.3)

where 11 is the single fiber efficiency, h is the depth ofthe filter bed, and Of is the diameter

ofthe filter fiber.

If the filter is broken into many different elements all with their own velocity, Uao'

the elemental mean velocity for the given element, then Equation (1.3) can be thought of

as the elemental efficiency, in that it will be appropriate for I given element only. In that

case the elemental efficiency, lle is the same as llb. The elemental penetration can then be

given as, Sabnis (1993):

Pe=l-TJe (1.4)

The overall efficiency of the filter can be given as one minus the weighted average of the

elemental penetrations, using the particle number density above the element, the area of

the element, and the measured elemental velocity as the weighting functions.

n
L [Pe(Ce8eU ao)]
i=lTlf= I--n----
~ [Ce8 eucol
i=l

(1.5)

where Co is the particle number density, number of particles per meter cubed, over an

elemental area upstream ofthe filter, and Ie is the area ofthe element in question.
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1.3.2 Mechanisms a/collection by a singiefiber

There are three main mechanisms, as descnoed by Flagan & Seinfeld (1988) and

illustrated in Figure 1.4, by which a single fiber can act as a filter:

1. The Brownian diffusion mechanism of fibrous filtration treats particles like they

were molecules in a diffilsive concentration gradient. Due to random motion as

particles are carried past the fiber by the aerosol flow, some particles will come into

contact with the fiber through Brownian diflUsion; random motion caused by

collisions of submicron particles with surrounding molecules. By removing a few

particles from the air stream a concentration gradient is created that acts as a

driving force, increasing the rate of deposition over that which would occur without

Brownian motion. This removal mechanism is most important for very small

particles « 1 Jlnl) transported in a veiy low velocity flow field. Submicron particles

are often called diflUsive particles for this reason.

2. Interception occurs when a particle, following a stream.1ine, is large enough that it

comes into contact with the fiber. The particle's path does not deviate from the

stream.1ine. If the stream.1ine that the particle is fonowing is within one particle

radius, or D/2, of the fiber surface, the particle is collected. Thus if the particle

surface touches the fiber surface, then the particle is collected. In the analysis of

this mechanism, particles are treated as though they have size but no mass.

3. Inertial impaction occurs to a particle of significant mass that is unable to fonow a

stream.1ine as it rapidly curves around a fiber. Due to its own momentum, the
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particle deviates from the streamline and strikes the fiber. Particles are treated as

though they have mass but no size.

Fig. 1.4 Particle capture mechanisms: A. particle capture by interception~B, particle captured by inertial
impaction~ C, particle captured by diffusional deposition. (Brown 1993)

Collection could also occur by electrostatic attraction between the particle and the fiber

when either the particle or the fiber or both are electrostatically charged. This is usually

not the case, unless a charge is dehDerately introduced, and is not considered here..

Many authors analyze the mechanisms of collection separately and then combine

the individual efficiencies to get an overall efficiency. Suppose that we have two inde-

pendent collection mechanisms giving us conection efficiencies "l1 and "l2. The probability

that a particle will escape mechanism 1 is (1-11 1) ~d the probability that it will escape
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mechanism 2 is (1-112). The probability that it will escape collection from either mecha-

nism is ( 1-11 1)( 1-112). Then the probability that the particle will be collected is:

(1.6)

or

(1.7)

In many cases one conection mechanism will be dominant over another one in a particular

particle size range. In that case Equation (1.7) is often approximated as " = "1 + 112.

1.3.3 Kuwahara Flow Field around a Cylinder

One parameter that is important to the flow field is the Reynolds number, based on

cylinder (or fiber) diameter,

R
,Dfl.lcoP

ec=--
Jl

(1.8)

where p is the density ofair, and J.1 is the dynamic viscosity ofair. For typical fibrous filter

flow, the Reynolds number is usually on the order ofone or smaller.

Kuwabara (1959) proposed a flow field in which fibers are modeled as infinitely

many circular cylinders that are distnbuted at random and homogeneously in a viscous

flow at small Reynolds numbers. To simulate the condition of random and homogeneous

distribution of cylinders, Kuwabara used a model in which each cylinder is surrounded by

an imaginary coaxial cylinder, or cell, with a radius determined by requiring the ratio of

cen fluid to fiber volume to be the same ratio as the fluid to fiber ratio of the fibrous
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medium. On the surface ofthe ceIL both the normal fluid velocity and the vorticity vanish.

The Kuwabara flow field solution is:

U co [ 2r n; ( c) 2cr2
]ur =- 1-2ln--c-- 1-- -- cose

2Ku Dr 4r2 2 0;

U [ 2r n; ( c) 6cr2
]ue =--!£... 1 - 21n - +c - - 1 - - - - sin9

2Ku Dr 4r2 2 D;

(1.9)

(1.10)

where r and 9 are the cylindrical coordinates, and Ku, the Kuwabara hydrodynamic factor

is given,by

3 c2 1Ku=c------lnc
442

The stream function for this velocity field is

llcor [ 2r n; ( c) 2cr2
]. 9'1'=- 1-2ln--c-- 1-- +- SIn

2Ku Dr 4r2 2 D;

(1.11)

(1.12)

Streamlines of the Kuwabara flow field, expressed as qJ = 'II/uooDf, are shown in

Figure 1.5.
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Fig. 1.5 The Kuwahara flow field (Flagan & Seinfeld 1988)

1.3.4 Deposition o/particles on a cylindrical collector by i.'1terception

Collection by interception occurs when the particle has a finite size. Ifthe particle

center approaches a fiber within a distance of D/2, collection occurs. Lee and Liu

. (1982b) define the single fiber efficiency due to interception as

y
llR = Dr/2 (1.13)

or 'II
llR =u co(Dr/2)

(1.14)
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where Y is the distance between the center line ofthe fiber and the streamline below which

an particles are conected. By substituting the Kuwabara flow equation for stream function

into Equation (1.13), they deduced

Where ~ is the interception parameter which is given by

I ~ Dp
p-

Dr

(I. IS)

(1.16)

By introducing the dimensionless quantities r = rlRr and \f ' = \f/uaoR" the Kuwabara

stream function can be given as

The series expansion for In r, valid for r>1/2, is

Using the first twot~ as an approximation, gives

\III ~ -'-[2(r' _1)2 _ (r'2 _1)2] · 9
T - 2Ku r'2 c 2r'2 SID.

(1.18)

(1.19)
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Note that r has been assumed to be close to unity, therefore this approximation is only

valid near the surface of the fiber. To make the expression for stream function even

simpler, Equation (1.17) can be further approximated as

I,.., rl [(rl _1)2 (r/ -I)2] .
\}I = Ku 12 -c 12 smer r

(1.20)

assuming that rl
,..., 1 and c ,..., o. The error for these approximations approaches zero as c

approaches 1/3. The velocity components can easily be obtained from the stream function.

By substituting Equation (1.19) into Equation (1.14), we can obtain an approxima-

tion for Equation (1.15) given by

(1.21)

. as presented by Lee & Liu (1982b).

1.3.5 Deposition ofparticles on a cylindrical collector by inertial impaction and

interception

The mechanism ofinertial impaction, as descnlled by Flagan & Seinfeld (1988), re-

suIts because particles with sufficient mass cannot fonow the curvilinear" motion of the

fluid as it passes around the fiber. Instead, they tend to deviate from the streamline that

they were following by taking a straighter path towards the fiber and in doing so strike the

fiber. To analyze inertial impaction, trajectories ofparticles in the flow DIIlst be analyzed

to determine from what upstream locations those particles that were conected originated.
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Figure 1.6 shows the geometry ofcollection by inertial impaction. The trajectory ofa par-

ticle initially at a distance Yl is highlighted. The streamline passing through Yl is the limit-

ing streamline. All particles below Y1 will be collected by inertial impaction, and all

particles above Yl will escape collection: The particle trajectory through Yt is the limiting

or critical trajectory.

y ---- Limiting particle trajectory

-UCD

~---'_+---------..---~x

Fig. 1.6 Geometry of collection by inertial impaction (Flagan & Seinfeld 1988)

Once y1 is determined, the collection efficiency is simply

2Yl
111=­

Dr
(1.22)

If the limiting trajectory is taken as that passing within a distance D/2 of the cylinder

surface rather than a trajectory just touching the surface, then interception is automatically

included in the analysis.
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Mathematically the trajectory of a particle can be tracked by inserting the Kuwa-

bara flow field velocities into the equation of motion of a particle. Following Flagan &

Seinfeld (1988), the trajectory ofparticles in fibrous media can be developed. Neglecting

external forces, the equation ofmotion for a particle is given by

dv-r-=u-v
dt

(1.23)

where u is the velocity of air, v is the particle velocity, and ~ is the characteristic time for

the particle to approach steady motion, and is given by

(1.24)

Here Pp is the particle density, Cc is the slip correction factor, Dp is the particl~ diameter,

and fJ is the viscosity ofair. Cc is approximated by

Cc =1+ 1.257Kn for~»A (1.25)

where Kn =.1.. is the Knudsen number, ~ is the particle radius, and A. is the mean free
. Rp

path ofair.

In cartesian coordinates Equation (1.23) becomes,

(1.26)



d2y dy
t-+-=u

dt2 dt Y

to be solved with the initial conditions

(1.27)

16

x(O) =b

y(O) =Yl

(1.28)

(1.29)

b is the x position where Ux = Uoo and is given by

b=~
2,{C

The Kuwabara flow field can be given in cartesian coordinates as

(1.30)

(1.31)

u - uco KU[ 2xy _ D;xy (1- c) _4CXY] (1.32)
y - 2 x2+y2 2(x2 +y2)2 2 D;

We can now put everything in dimensionless form by letting Zt = x1Dp ~ = yfDfJ t· = tit,

and St be the Stokes number, which is given by
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(1.33)

to obtain

to be solved subject to

Zl(O) = _1_ dz l · _ Ux(b,Yl)t
2JC dt· t*=O - Dr

Z2(O) = l!.. dz2 = 0
Df dt· t·=O

(1.34)

(1.35)

(1.36)

(1.37)

The differential equations must be solved numerically using an ordinary differential

equation solving algorithm such as the Runge-Kutta method.
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1.3.6 Empiricalformultz for inertial interception and impaction

Landahl & Herrmann (1949) derived an empirical equation for inertial interception

and impaction using the method descnlled in section 1.3.5 but with velocity data calcu-

lated by Thom (1933) for viscous flow around an isolated cylinder rather than the Kuwa-

bara flow field. This equation is thus an application of the isolated fiber theory of fibrous

filtration. The equation is given by

St3
111-

- St3 +o.77St2 +0.22

This equation was derived for Ref = 10 and Ip = o.

Suneja & Lee's (1974) equation for inertial interception is given by

1 2 Ip
111 = +--

[ ( 2) J2 3 St1+ 1.53 - O.23lnRef+O.167(lnRef) 1St

(1.38)

( 1.39)

The complete Navier-Stokes equations were solved numerically to find the flow field

aroUnd a fiber. This flow field was then used~ the trajectory method descnoe.d in

section 1.3.5 to obtain filtration efficiencies. Equation (1.34) was derived from the

calculated efficiencies. This equation represents an isolated fiber approach to the solution

offiltration efficiencies rather than the single fiber approach.
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Ptak & Jaroszczyk (1990) proposed the following empirical equation

( St - O.75Re~.2 ) 2
111=

(8t+0.4)2
(1.40)

The flow field for this equation was found by numerically solving the Navier-Stokes

equations for a circular cylinder set cross-wise to the flow. This is then another example

of isolated fiber filtration theory. To account for the effects of neighboring fibers on the

efficiency of any given fiber, Ptak & Jaroszczyk multiplied the isolated fiber efficiency by a

simple function to give the single fiber efficiency.

where

" = 11 1ftc)

ftc) = 0.9
CO.3

(1.41)

1.3.7 Independence ofinterception and impaction

The collection efficiency, as given by Equation (1.22), implies that any particle that

is released within a distance Y1 of the centerline of the fiber will be captured by the fiber

using an inertial interception and impaction model (see Figure 1.7).
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Interception plus impaction

yO

b--~~I

~ Interception alone

I' Impaction alone

Fig. 1.7 Collection of a particle by impaction and inertial interception.

By using the impaction model alone, a particle released at a distance Yl from the centerline

of the fiber would not be captured in the model. In the impaction model, particles are

treated as ifthey have mass but no size. Thus, a particle released from Y1 would not touch

the fiber at all and would have to be released closer to the centerline of the fiber to be

captured. This would lower the predicted efficiency. The interception model treats

particles as if they have no mass but do have size. This model predicts that all particles

fonow the streamlines of the flow. Ifa particle does not deviate from the flow streamline

that it has been fonowing, it will not strike the surface ofthe fiber when released from the

distance Y1. The release point would again have to be moved closer to the centerline in

order for the particle to be captured, thus lowering the predicted efficiency of the fiber.
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Only by combining the inertial impaction and interception models can you obtain a model

that includes capture ofparticles with both size and mass.

Sabnis (1993) combined Equation (1.21), developed for pure interception neglect-

ing particle momentum, with Equation (1.38), developed for pure inertial impaction ne-

glecting particle size, using Equation (1.6) to obtain this expression for the single fiber

efficiency

(1.42)

By using Equation (1.6) he assumed that collection by interception and collection by

impaction are independent of each other. Is this really the case? Probably not. By

studying the geometry of the situation in Figure 1.2, it is easy to see that interception and

impaction are not easily separated. Particles that are released close enough to the

centerline of the fiber that would be captured by either the impaction model or the

interception model are actually counted twice. This increases the predicted efficiency of

the .combined models. It is also relatively obvious that those particles that would be

captured by inertial interception are not included in this combined model A particle

whose mass and size are large enough that it would deviate from the streamline that it is

following, when that streamline curves around the fiber, and touch the fiber, even when

released from a distance from the centerline greater than Yo but less than Yl' will not be

captured in this combined model. This decreases the predicted efficiency of the model

These increases in efficiency and decreases in efficiency combined in Sabnis' model could
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possibly wash out and predict an efficiency similar to one that would be predicted by

following the trajectory of a particle with size and mass in the Kuwabara flow field.

Figure 1.8 shows just that. The method employed by Sabnis compares quite favorably to

the trajectory and approximate methods used by Flagan & Seinfeld. Flagan & Seinfeld felt

that it was appropriate to use their approximate method because the Kuwahara flow field

is approximate in nature, and the maxiUUlm difference they found between their

approximate method and the trajectory method was less than 75%. Using their logic, Eq

(1.42) is a better approximation than Flagan & Seinfeld's; the difference between Equation

(1.42) and the trajectory method is much less than 75%. I believe that it is satisfactory to

use Equation (1.42), even though impaction and interception are not truly independent of

each other. As seen in Figure 1.9 Sabnis' method, Equation (1.42), follows the theoretical

method more closely than the empirical methods and will be used as the preferred model in

this study.
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1.3.8 Air velocity inside pleatedfilter media

As described by Brown (1993), pleating the filter media increases the available

area offiltration media within a fixed volume, reducing the filtration velocity and the pres-

sure drop. for 8 fixed volume flow rate. Considering an element ofwidth x and length y,

as shown in Figure 1.10, the surface area of the media contained in the element can be

given by

8 e = X
(2hy\ 2 2
\...p) +y (1.43)

If you assume that air flowing through the pleated filter media is uniformly distributed

within the pleat, you can obtain the velocity of the fluid inside the media by means of

continuity. Equating the total flow entering the element to the total flow entering the

media contained within that element thus gives the velocity inside the media

uooae = Uoxy

or

Uoxy
U oo =-­

8 e

where Uo is the axial velocity upstream ofthe filter.

(1.44)

(1.45)
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Fig. 1.10 Filter pleat geometry

1.3.9 Adhesion a/particles tofiber surfaces

In the previous sections, a particle that strock or somehow found its way to the

surface of a fiber was assumed to stick to the fiber and be separated from the air flow.

This may not always be the case. If a particle strikes the fiber surface with sufficient ve-

locity, it may rebound with reduced kinetic energy and be reentrained into the flow. This

bouJicing ofparticles at high air velocities will reduce the efficiency of the filter. Aerody-

namic and possible other forces are at work on a particle when it strikes a fiber. These

forces attempt to dislodge the particle from the fiber. At initial impact, the particle will

also have the energy of restitution aiding in its attempt to free itsel£ The energy of

restitution comes from the complex elastic/plastic process that occurs upon impact. Thus,
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ifa particle does not bounce upon impact with a fiber, it is very likely not to be reentrained

because this is the point in time when the combined forces attempting to dislodge the par-

ticle from the fiber are at their greatest magnitude.

Particles could also be reentrained that have previously been stuck to a fiber. This

may be unlikely due to the lack of available energy after impact, but a change in the veloc-

ity ofthe flow or direction ofthe flow will increase the chances ofa particle becoming dis-

lodged after attachment to a fiber.

There are three principle forces, as given by LOftIer (1971) and Brown (1993), at-

taching particles to fibers:

(a) van der Waals forces,

(b) electrostatic forces as a result ofexcess charging,

(c) and capillary forces in liquid bridges.

Vander Waals forces between atoms are caused by the fluctuating electric dip~le moment

, present in an atom. The dipole induces an electric field that attracts the dipole in a

neighboring atom. Normally van der Waals forces between macroscopic bodies are

expressed with the Hamaker constant, At.

F= AIR.
6z5

(1.46)

where R. is the radius of the particle surface asperity that is closest to the fiber, and Zo is

the distance between the particle and the fiber. Electrostatic forces can occur when a
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particle of radius, ~ has taken a charge, q, before making contact with the fiber. The

force ofadhesion due to electrostatic charge is given by

(1.47)

Where 0 is the depth at which the charge density falls to eel of that at the surface, Eo is the

permittivity of free space, 'Y is Euler's constant, and Zo is the distance between the particle

and the fiber. Figure 1.11 shows a sphere attached to a plane by means of a liquid bridge.

Ifthe angle ofcontact is zero, the force between them is given by

(1.48)

Where t T is the surface tension ofthe liquid bridge.

Fig. 1.11 Sphere attached to a plane by capillary forces (Brown 1993)
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LOffier (1971) and Brown (1993) both show that the van der Waals force is most

probably the most important adhesion force. The van der Waals force is ever present in

the system and is a very strong short range force. Electrostatic forces have a longer range

than that of the other adhesion forces and may induce adhesion while the van der Waals

force maintains adhesion. Electric forces may not persist ifboth the particle and the fiher

media are conducting, thus leaving the van der Waals force to maintain the adhesion of a

particle. CapillaIy forces vary with conditions and cannot be counted on to provide a

strong adhesive force below a relative humidity ofabout 80%.

As shown in Figure 1.12, adhesion forces are stronger on larger particles, but the

drag exerted on them is also greater. Large particles or agglomerates can be detached by

a lower airflow than that which will detach smaller particles. The adhesion ofparticles to

fibers is greater for particles that have been captured at a higher fihration velocity. This

higher velocity does make bounce more likely, but those particles that are captured are

more tightly bound to the fiber (Brown 1993).
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Fig. 1.12 Distribution of adhesion energies ofquartz particles deposited at a filtration velocity of 0.42 mis,
on polyamide fibers~ (1) 15.1 J.lm particles~ (2) 10.3 J.1m particles~ (3) 8.3 IJm particles~ (4) 5.1 J.1m

particles (Brown 1993)

Ptak & Jaroszczyk introduced an empirical value for the probabi1ity of adhesion,

'YO' in their 1990 paper. They fek that the collection efficiency of a fiber, 111, is related to

the co1lision efficiency, 11, of the fiber and the adhesion efficiency of the fiber as given in

Equation (1.49).

111 =1110 (1.49)

where the adhesion efficiency is dependent upon the particle density and diameter, the air

velocity and viscosity, and the diameter of the conecting fiber as illustrated in Equation

(1.50).
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Yo =f(pp, dp, Uoo, Ilo, de) (1.50)

Using dimensional analysis, two dimensionless numbers were determined as

St = ~Ppuco
18J.1odr

and (1.51 )

The adhesive probability factor should fall in a range of 0 ~ 'Yo ~ 1. The expression given

by Ptak and Jaroszczyk for the adhesive probability factor is

ao
'Yo =

(St· Rep)bO +Co
(1.52)

where 80 = Co and bo > o. The constants 80 and bo were determined experimentally, and th~

final form ofEquation (1.52) is given as Equation (1.53).

'Yo = 190
(St. Rep)oo68 + 190

(1.53)

Good correlation between experimental results and calculated values was found by Ptak

when Equation (1.53) was used with a collection efficiency relation, Equation (1.40), in

.Equation (1.49).

J.3. J0 Previous work on filtration efficiency and the J726 housing

Using laser doppler velocimetry with a transparent model of the J726 housing,

Sabnis (1993) measured the flow field within the housing in several horizontal planes for

two different sizes ofpanel filters. He found that the flow inside the housing was very tur-

hulent, recirculating, and separated from the walls of the housing using either filter. LDV
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measurements were backed up by flow visualizations in the housing that also show the

flow to be highly recirculatory and separated from the walls of the housing. Examples of

the flow field found by Sabnis in the J726 housing for the AF3192 filter can be found in

Chapter 3 of this document. The filter receives a very non-uniform flow distnDution with

much higher velocities in the center of the filter than along the sides of the filter. By ap­

plying simple filtration theories to the measured aerosol velocities found in the housing,

Sabnis was able to calculate the local initial filtration efficiencies for mono-disperse parti­

cles. His calculations predict that for larger particles the filtration efficiencies with a uni­

form flow distnoution are better than that with non-uniform flow distnDutions. For very

small particles the filtration efficiency was shown to decrease for the uniform flow

distnDution.

1.3.11 Measured particle number density in the prototype housing and the J726 housing

Liang et al. (1994) presented particle number density, or concentration, data col-

lected from above and below the filter in the prototype housing, used in this study, and the

J726 housing. With this data they were able to produce elemental particle collection effi­

ciencies for the filter. They found that the overall filtration efficiency using either housing

was higher than expected when using very small, 0.966 J.UD., particles and lower than ex-

·pected when using larger, 5.3 J.UD., particles.

Sabnis (1993) offered several suggestions for particle distnDutions in filter hous­

ings. His first was a uniform particle number density distnDution. This assumption says

that the particle flux, Np' or number ofparticles passing through a unit area per unit time,

at the filter sur&ce is related to the local particle concentration, C, by
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Np =CUo (1.54)

where, in this case, C is equal to a constant. It was also suggested that the particle

concentration may be proportional to velocity. In this case C would not be constant but

could be related to velocity as in

(1.55)

A third assumption would be to represent the product ofthe particle concentration and the

aerosol velocity as a constant. In this case C would be represented by

c =const.
uo (1.56)

Sabnis (1993) reasoned that this assumption was a less probable scenario than the other

two.

1.4 CURRENT STUDY

One objective of this project is to study the effects ofuniform airflow on the effi-

ciency of fibrous filters. To further this aim, a transparent prototype housing was built

with the thought in mind ofproviding the most uniform flow possible to an AF3192 panel

filter. The flow field in this housing was measured using Laser Doppler Velocimetry at

many different locations in several different horizontal planes ofthe housing for a constant

volumetric flow rate. Flow visualizations were also performed to corroborate the LDV

measurements. Using measurements from the LDV system, filtration efficiencies were
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calculated using a method similar to Sabnis (1993) to provide local initial efficiencies with

mono-disperse particle distnoutions. Overall efficiencies were also determined for several

different particle sizes. The calculated efficiencies for the prototype housing were com­

pared to similar efficiencies calculated for the J726 housing and a hypothetical uniform

flow.

Another objective was to study the effects of adhesion and bounce on the overall

efficiency of fibrous fihers. By using Equation (1.49) and Equation (1.50), the effect of

adhesion and bounce has been compared to the efficiencies calculated for perfect adhesion.
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CHAPTER II

EXPERIMENTAL SETUP FOR VELOCITY MEASUREMENTS

AND FLOW VISUALIZATIONS

The prototype shallow angle diffilser type panel filter test housing shown in Figure

2.1 was built to provide a more uniform flow to the filter being tested. This housing re­

tains the exit, or section downstream ofthe filter, from the panel filter universal test hous­

ing specified by SAE J726 and shown in Figure 1.1. The housing was built from 1/4"

clear acrylic sheet to facilitate velocity measurements by laser Doppler velocimetry. This

housing was specifically built for the Purolator AF3192 panel air filter cartridge. Flow

separation from the walls of the housing was not expected due to the very shallow angles

ofthe diffilser section, 2.8° and 0.6°. Velocity measurements by laser Doppler velocimetry

and flow visualizations using tufts and laser sheet lighting of water droplets were per­

formed to analyze the flow characteristics ofthe housing.
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Fig. 2.1 Shallow angle prototype panel filter test housing.



36

2.1 VELOCITY MEASURErvrnNTS

Velocity measurements were performed in three separate horizontal planes of the

test housing using a laser Doppler velocimeter (LDV) system.

2.1.1 Laser Doppler velocimeter basics

A laser Doppler velocimeter makes use of the fringe pattern of light and dark

bands created by the crossing oftwo like-colored beams of light to determine the velocity

of a particle that passes through the fringe pattern. When two beams oflight intersect at a

given angle, they produce interference fringes in a volume of space called the probe vol­

ume where in some areas the light is increased by wave addition producing a light band.

and in some areas waves cancel each other out producing a dark band. The distance be­

tween the light or dark bands, d, is known from the angle at which the two beams cross

and the frequency ofthe light in the beams.

As a seed parti~le passes through the probe volume, it scatters light in all direc­

tions. The scattered light signal is called the Doppler burst signal and consists of intensity

maxima and minima that correspond to the light and dark band~ ofthe probe volume. The

Doppler signal is collected by a lens and is transmitted through fiber optics to a photode­

.tector that converts the optical signal to an analog electrical one and passes it on to the

Doppler Signal Analyzer (DSA). The Aerometrics DSA hardware and software take the

raw Doppler burst signal, which may be considered as a sine wave superimposed on a

Gaussian envelope or pedestal, as shown in Figure 2.2, and removes the pedestal compo­

nent to produce a symmetric signal. An analog to digital converter (ADC) then produces
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a square wave with the same frequency as the original signal A discrete Fourier transform

(DFf) is performed on the converted signal to determine its frequency.

Ime

Fig. 2.2 Example of a Doppler burst signal

The DFT is given by

f(n) =.1 }:1 X(k)[COS 21tnk - i(sin 21tnk) ] (2.1)
N k=O N N

where n is the discrete frequency, N is the total number of samples, x(k) is the complex,

filtered, sampled data from the ADC, and i is the imaginary number. The DFT has the

.effect of multiplying the sampled wave by sine waves of N different frequencies. When

the sampled signal and the sine wave have similar frequencies, the product will be large

which appears as a maximum power in the frequency domain. The power is given by the

sum of the squares of the products of the sine and cosine with the sampled data. A

schematic of the discrete Fourier transform method applied to a one bit sample is given in

Fig 2.3.
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Fig. 2.3 Schematic of the discrete Fourier transform method applied to a one bit sample
(Aerometrics 1992)
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By knowing the frequency,/, and the distance between fringes, d, the velocity, v, is easily

obtained with the relation

v=fd (2.2)

By shifting the frequency ofone of the two beams a certain amount the fringe pat­

tern will move through the probe volume with a certain known velocity. This allows the

LDV system to detect particles with a velocity of zero and to determine the direction of

the particle motion. A second pair of beams of a different color, crossing at the same

point, is used to measure a perpendicular component ofthe velocity.

When making velocity measurements, the transceiver, which both emits the laser

beams and receives the scattered signal, was rotated in such a manner that the horizontal

and vertical velocities were measured directly. It is easily seen from Figure 2..4, which il­

lustrates a particle passing through a portion of the probe volume, that the seed particle

will pass through many horizontal bands but only a few vertical bands. This in tum pro­

duces a very nice looking signal for the vertical velocity, Figure 2.5 (a), but a rather poor,

looking one for the horizontal velocity as shown in Figure 2.5 (b). Because the vertical

velocity is the dominant one in our case, this pOSSlole problem was neglected. If it were

desired to know the small horizontal velocity very accurately, it would be possible to ro­

tate the fringe pattern through 4S degrees and then perform a vector analysis on the resul­

tant measured velocities to obtain velocities in the original coordinate system. The

moving fringes created by the Bragg cen frequency shift improve low velocity
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measurements. With the moving fringes, the particle wiD cross many more fringes than it

would ifthe fringes were stationary.

As pointed out by Gould & Loseke (1993), the probability of a seed particle enter­

ing the probe volume, and thus the probability ofa measurement being made, is higher for

particles with a velocity greater than the average velocity. The probability of a particle

with a velocity slower than the average flow velocity passing through the probe volume at

any given time is lower. By measuring more high velocity particles than low velocity par­

ticles, the data becomes biased toward the higher velocities. This biasing problem has

been found to be relatively insignificant for low turbulence levels. Multiple realizations, or

more than one measurement from the same particle, are most often caused by frequency~

shifting. This has been called Bragg cell bias. Slow particles may stay in the probe vol­

ume long enough for the processor to count them more than once. Over-counting slow

particles tends to reduce the effect of velocity bias. There are several. different ways to

.counter the velocity bias problem, but no velocity bias correction of the collected LDV

sigilals was performed on the data.

2.!.2 Laser Doppler velocimeter setup parameters

When using the LDV system, it is required that several parameters in the software

be set in order to obtain accurate data. Several tests were ron using different values of

samples per data point to determine what the most accurate yet least time consuming

value would be. This number was found to be 1000 samples per data point. A S1Jrnmary

ofthe data obtained in these tests can be found in Appendix A
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Fig 2.4 Diagram of a particle passing through probe volume

(b)

time

Fig. 2.5 (a) an example of a vertical Doppler burst signal with pedestal removed
and (b) a horizontal Doppler burst signal with pedestal removed
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2.1.3 Equipment List

1. PSL particles: Duke Scientific Corporation Uniform Polystyrene Latex (PSL)

Microspheres 0.966 tJ.Dl in diameter were used as seed particles for the LDV

system.. The particles are packaged in a 10% by volume suspension; 90% being

distilled water and 10% being PSL particles. By mixing 2 parts PSL suspension

with 1000 parts distilled water, a 200 parts per million suspension was created. It

was found that with this mixture the LDV system required 2 to 3 minutes per

measurement point. PSL particles were chosen for seed particles by comparing the

repeatability of data points measured with PSL particles dispersed with an atomizer

to points measured with water droplets produced with a humidifier, as used by

Sabnis. A Sllmmary of data obtained in these tests can be found in Appendix B.

2. Atomizer: A TSI Incorporated Model 9306 6-Jet Atomizer was used to generate

the PSL aerosol The atomizer was operated using all six jets at a regulated air

pressure of25 psig.

3. Shallow Angle Test Housing: A transparent test housing was constructed of ~ m.m

clear acrylic sheet by myself of a design by my colleague F. Liang. Liang had

previously made a simjlar housing. Acrylic sheet, or Plexiglas, was chosen because

of its uniform optical qualities, cost, and ease of construction. The test housing

dimensions are shown in Figure 2.1. The use of a very shallow angle diffuser

section prior to the flat walled test section was expected to produce a very uniform

non-separating flow. The test section dimensions were specifically made to fit the

AF3192 filter. This housing would not be suitable for other filters. The exit or



43

discharge plenum ofthe housing is based on that ofthe universal test housing from

SAE J726. All joints were glued with an acrylic solvent type cement and then

tested with soapy water to find any leaks. The test housing was then mounted

upside down, as compared to the J726 standar~ for test purposes.

4. Filter: Purolator AF3192 panel air filters were used in the velocity measurement

tests. The filters have a projected surface area of 120.65 mm by 190.5 mm. Other

specifications for these filters can be found in Appendix D. They are made from a

resin impregnated cellulose fiber paper mat that is first embossed and scored, glue is

then applied to the edges of the paper and the paper is folded, creating' the pleats

and sealing the ends. After folding, the pleats are counted and a paper pack is cut;

pleate~ and end sealed, then mounted in a rubber holder or gasket. The filter pack

is then heated to cure the resin so that the pleats will hold their shape. Cured paper

packs can then be placed into molds containing a liquid endseal material. Most

manufacturers place a screen into the endseal material then position a paper pack

over the screen. This screen helps the filter maintain its structural integrity in the

event of engine backfire or if the filter paper should become wetted. After curing

of the endseal material, the finished filter is released from the mol~ marked, date~

and packed.

5. Centrifugal Blower: A 1.5 hp centrifugal blower capable ofproducing a maximum

flow rate of225 SCFM through the test housing and flow meter assembly was used

for velocity field measurements.
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6. Mass Flow Sensor: A TSI Incorporated Series 2010 Mass Flowmeter was used to

measure the flow rate through the test housing. The flow sensor has a maximum

measurable flow rate of 500 SCFM. Cahoration with a 76 mm ASME flow nozzle

was performed before using the flow sensor in the velocity field measurement tests.

7. Laser: A Coherent 4 Watt (optical) laser consisting of an argon ion plasma tube

powered by an 1Dn0va 70-A power supply. The intensity of the beam was

controlled by a remote controner.

8. Bragg Cell & Driver: An IntraAction Bragg cell driver model ME-40H controlled

the Bragg cell mounted inside the fiber drive. The light beam from the plasma tube

was directed by steering mirrors into the fiber drive and through the Bragg cell.·

The Bragg cell split the beam into two beams, with one ofthem shifted by 40 MIU

9. Fiber Drive: An Aerometrics model FBD.1240 fiber drive used beam splitting

prisms to split the shifted and unshifted beams into a green and a blue shifted and a

green and a blue unsbjfted beam giving a total of 4 beams. Mirrors direct each of

the four beams into its own fiber coupler that used a lens to focus the beam onto an

optical fiber.

10. Transceiver: The Aerometrics model XRV.1212 transceiver received the four

beams from the fiber drive through fiber optic cables. The pair of blue beams and

the pair of green beams are projected in mutually exclusive perpendicular planes

through a lens with a focal length of500 mm. The beams are focused by the lens at

its focal point producing the interference fringe probe volume. Particles passing

through the light and dark fringes of the probe volume create Doppler bursts by
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scattering light from the interference fringes in all directions. The Doppler bursts

are received by the transceiver lens and are focused on another optical fiber that

transmits the light to the photodetector.

11. Photodetector Unit: The Aerometrics photodetector unit model ROM.2200.L

contains two photoJDJlltipliers, one for each light wavelength (green and blue). The

photoJDIJltipliers convert the optical signal to an analog electrical signal and pass it

onto the DSA

12. Doppler Signal Analyzer (DSA): The Doppler burst signal is analyzed by the

Aerometrics Doppler Signal Analyzer model DSA3220. The signal is first high

pass filtered to remove the pedestal from the Doppler burst signal then low pass·

filtered to remove noise. A peak detector in conjunction with a burst detector

locates the center ofthe signal Programmable mixers are used to reduce the signal

frequency before it is presented to the analog to digital converter. The ADC

converts the complex, filtered, sampled signal to a square wave of the same

frequency as the input signal A Digital Signal Processor (DSP) is used in the

computer to perform the discrete Fourier transform (DFf) Using the fast Fourier

transform (FFT) algorithm. The DSP is a dedicated processor that is programmed

to compute the Fourier transforms at a high rate and pass the resuhs to the system

software for statistical analysis and presentation of the velocity information of the

particles in histogram form.

13. Personal Computer: An Intel 486 DX/2 compatible personal computer nmning at

66 MHz is used to' control the entire DSA system. Aerometrics DSA software
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takes the velocity information from the DSA hardware and performs statistical

analysis on the information to provide the velocity information in histogram form.

The mean velocity, rms velocity, angle of the flow, and the mean total velocity for

each run are also presented, along with other statistical data such as run time and

turbulence intensity. The data from each run can be stored on disk. This stored

data can then be reduced to provide the user with data that is needed, in tabular

form, with a separate program.

14. Automated Traverse Table: The transceiver is mounted on a Daedal two

component traverse table system. This allows the user to move the transceiver in

very precise (0.001 inch) steps, in two perpendicular directions. The table has been·

automated by attaching stepper motors to each lead screw. The stepper motors are

controned through computer software written by myself: The software is written

so that a user can move the traverse in either direction by steps or to an absolute

location. The program uses a graphical user interface and each location can be

saved in tabular (x,y) form to a file.

The LDV system consists ofitems 7 through 13 and is shown in schematic form in Figure

2.6.

2.1.4 Experimental setup andprocedure

Figure 2.7 pictures a schematic of the system used to regulate and seed the flow

through the test housing. Air is drawn through the housing by the blower which exhausts

through a 6 meter length of straight 152 mm PVC pipe into the TSI flowmeter. A valve

on the exhaust side ofthe blower is used to regulate the flow. Seed particles are produced
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with the atomizer and are introduced into the system along with the air. Measurements

were taken in three different horizontal planes of the test housing; 13 IDID, 51 IDID, and

102 mm upstream of the filter surface, the peaks of the filter pleats, as shown in Figure

2.8. In each plane measurements were taken using the grid shown in Figure 2.9. Figure

2.10 shows the coordinate system that was used for measurements. A particle with a posi­

tive axial velocity will tend to be moving in the downward direction through the housing.

A particle with a positive transverse velocity will tend to be moving to the right as it

passes through the housing.
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Figure 2.11 shows the relative alignment of the test housing to the transceiver.

The test housing was aligned longitudinally with the transceiver by marking vertical ceIl­

terlines on two opposing sides ofthe test housing with removable ink, thus establishing the

center of the housing in the x-direction. The housing was then moved until both vertical

laser beams passed through both lines at the same time. This procedure was also used to

align the housing in the horizontal plane by drawing horizontal lines on two opposing sides

ofthe housing, again in removable ink, and moving the housing up or down until the two

horizontal beams passed through both lines at the same time. The use of two beams for

each alignment procedure ensured that measurement plane was level as well as aligned

with the transceiver.

Traversing Table

Fitter

Transceiver

Fi&- 2.11 Diagram of relative positions of filter housing and transceiver during tests

To find the approximate center of the housing, the LDV system was used. Air

flow was seeded and induced through the housing to provide a signal to the LDV system.

Then by moving the traverse so that the probe volume was situated in a position close to
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the near perpendicular wall, it was easy to find a position very close to the wall. This was

accomplished by moving the probe volume, in very small steps, closer to the wall until the

LDV system no longer picked up Doppler burst signals. When this point was reached, it

was assumed that the probe volume was situated on the inside surfilce of the wall. By

then moving the traverse -60.325 mm (-2.375 inches) in the y-direction, the approximate

center of the housing is found. The center of the housing in the x-direction was already

defined by the centerline marks used to align the housing. This approximate center of the

housing was given the coordinates (x,y) = (0, 0). I estimate that this approximate center

was accurate to (x,y) ±(0.8 IDDl, 0.0254 mm).

2.2 FLOW VISUALIZATIONS

Flow visualizations have long been used as a very effective method of qualitatively

analyzing flow fields. A flow visualization technique using laser sheet lighting of water

particles mixed into the ~ow was used on the housing. Tufts were also used. Black and

white along with color still photography was used to document the laser sheet tests. The

laser sheet flow visualization was also captured on video tape.

2.2.1 Laser sheet lighting ofwater particles

A sheet of laser light was produced by projecting a very powerful beam of laser

light, 3 to 4 optical watts, through a cylindrical lens. This creates a sheet oflaser light that

fans out from the lens in a plane that may be a horizontal, vertical, or some angle between

horizontal and vertical depending upon how the lens is oriented. When this sheet passes

through the housing, whi~ is made from clear acrylic sheet, it illuminates a two-
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dimensional slice ofthe flow field. Great care must be used when performing a flow visu­

alization in this manner to avoid reflecting powerful laser light into one's eyes.

2.2.2 Tufts

Tufts ofyam and thread were attached to the housing at regular intervals in an at­

tempt to prove that the flow was not separating from the walls of the housing. The tufts

were first oriented so that the end ofthe each tuft was facing downstream. This, however,

did not produce very good results. The shear stress exerted on the tufts by the flow was

so low that the tufts would wiggle a small amount but do little else, giving very little infor­

mation about flow. A few of the tufts were then turned so that the free end pointed up­

stream, or into the flow. With the tufts oriented in this manner it was fairly obvious that

there was a shear stress at the wall in the positive axial direction because the ends of the

tufts pointed downstream when the flow was present.
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CHAPTER ill

RESULTS AND DISCUSSION OF LASER DOPPLER

VELOCITY MEASUREMENTS AND FLOW

VISUALIZATIONS

3.1 LASER DOPPLER VELOCIMETER MEASUREMENTS

The flow field velocity measurements will be represented here in the form oftwo­

dimensional (2-D) plots and three-dimensional (3-D) plots. Each of the two measured

components of the velocity are represented separately. The 2-D plots offer more detail

than the 3-D plots but only for a slice of the flow field; whereas, the 3-D plots offer a bet-"

ter overall picture of the flow. In all of the plots presented here, the edges of the X or Y

axes represent the edges of the filter. So in a 2-D plot, the right edge of the plot repre­

sents the right edge ofthe filter and the left edge ofthe plot represents the left edge ofthe

filter and for 3-D plots, the bottom surface of the plot represents the surface area of the

filter. Data taken in this study when plotted represents the full width, front to back, ofthe

filter. Data taken by Sabnis (1993) represents only the front half ofthe filter and is plotted

in the same manner as the current data with the rear halfofthe plot mjssing.

After all the measurements were taken a major air leak was found in the blower.

1bis caused the measured flow rate to be offby about 10%. 1bis corresponds to an actual

flow rate of around 3.14 m3/minute (111 scfin) rather than the 3.54 m3/minute (125 scfin)

as measured by the TSI flowmeter. The flowmeter has subsequently been moved to a
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position upstream ofthe blower. This should not make major difference to the results pre­

sented here. The measured velocities should scale for different flow rates.

3.1.1 Two-dimensional representations ofvelocity measurements

Fig. 3.1 illustrates the axial and transverse velocity profiles through a center-line

slice ofthe flow, y = 0, at the three measured planes. The figure shows that all the profiles

are quite similar even though the 13 mm profile was measured several weeks after the

other two with a different filter and different atmospheric conditions. The 51 mm and the

102 mm profiles were taken on sequential days with the same filter and provide nearly

identical results. This leads one to believe that this flow field is very near to a fully devel­

oped duet flow state.

The humidity was quite low when the 51 mm and 102 mm profiles were measured,

so there were very few water particles ~ed with the PSL particles. With the 13 mm

profile, however, the humidity was very high and many ofthe Doppler bursts could be at­

tributed to water droplets rather than PSL particles. The water particles can be more mas­

sive than the PSL particles. The more massive water particles may reduce. turbulence

measurements, or the velocity fluctuations about the mean velocity, in the flow by not fol~

lowing swift changes in the flow field. This may be part ofthe reason for the variance ob­

served when comparing the 13 mm profile to the 51 mm and 102 mm profiles. The 13

mm profile's proximity to the filter is probably the most important reason for its differ­

ences from the other two. As the flow approaches the filter, the flow will try to spread

out, making the axial component ofthe velocity more uniform.

All the axial plots have basically the same shape. The axial velocity is low near the

walls and reaches a peak near the center. The velocities all have a positive magnitude
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indicating that the flow is completely directed into the filter and there is no recirculation.

The transverse velocity profiles also show trends of similarity when compared with each

other. Transverse velocities on the left side ofthe filter tend to be negative while those on

the right side ofthe filter tend to be positive. This shows that as the flow nears the filter it

fans out, like an impinging jet. However the flow cannot go very far in the transverse di­

rection, but this increase in transverse flow can make the axial component more uniform.
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3.1.2 Comparison of prototype housing data with J726 housing data in a
two-dimensionalformat

Fig. 3.2 illustrates a comparison of the current axial velocity data collected for the

shallow angle diffilser test housing and the axial velocity data collected by Sabnis (1993)

for the J726 housing along the y centerline. The data has been non-dimensionalized by di-

viding each data point by the average of all the axial velocity measurements in the given

plane. It is easily seen from this comparison that the prototype housing provides a much

more uniform flow upstream of the fiher. The prototype axial mean velocity profile is

very flat, with the velocity peak at the center of the velocity profile being much less pro-

nounced than the velocity peak at the center ofthe J726 housing profile.

Fig. 3.3 illustrates a comparison of the transverse y-centerline velocity profile of

the prototype housing with that of the J726 housing, both measured in the plane 13 mrD

upstream of the fiher. The data has been non-dimensionalized by dividing each data point

by the average of all the transverse velocity measurements in the given plane.. This com-

parison also shows a much more uniform flow field upstream of the fiher. Some of the

transverse mean velocity magnitudes in the J726 velocity profile approach 75% ofthe av-

.erage axial mean velocity, whereas no transverse mean velocity magnitude in the prote)-

type housing profile is greater than 25% of the average axial mean velocity. Both the

prototype housing profile and the J726 housing profile are similar in shape being generally

negative in magnitude on the left side of the fiher and positive in magnitude on the right

side of the fiher. Both the prototype housing and the J726 housing are providing a flow

field that is similar to an impinging jet but the divergence observed in the prototype hollS-

ing is much more mild than that found in the J726 housing.
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3.1.3 Three-dimensional representations o/velocity measurements

The collected velocity data can also be represented in a three-dimensional (3-0)

form. This form is more readily visualized than a collection of two-dimensional (2-D)

plots. The axial and transverse velocity measurements will be presented in separate plots.

Fig. 3.4 is a 3-0 plot of the axial mean velocities in the prototype housing 102 mm up­

stream ofthe fiher. The X and Y axes represent the location in the housing with the (0,0)

location being the center of the housing. This location is also the center of the fiher. The

surface representing the axial velocity distribution across the plane is shaped like a shallow

dome with the maxinnlm velocity located near the center of the housing. The velocity

near the center is 2.9 mls which tapers offto a minilD11m measured velocity of 1.2 mls near.

the wall of the housing. Ifwe could measure closer to the wall, the velocities should b~

come even lower as the no-slip condition must exist on the wall.

Fig. 3.5 represents a plot of the transverse mean velocities measured in the proto­

type housing in the same plane, 102 mm upstream of the fiher surface. The divergent na­

ture of the flow is easily seen here with the transverse velocities being mostly negative on

the left side ofthe housing and mostly positive on the right side of the housing. The mag­

nitudes of the transverse velocities are very low, with a maximum of0.10 mls and a mini­

mum of -0.11 mls. This indicates that the flow is almost totally axial, but does tend to

diverge towards the walls ofthe housing as it approaches the fiher.

Fig. 3.6 and Fig. 3.7 represent the axial and transverse components ofthe flow in a

plane 51 mm upstream ofthe fiher. The axial and transverse plots for the 51 mm plane are

almost identical to their respective counterparts in the 102 mm plane. The axial distribu­

tion surface plot is shaped like a shallow dome with a maximum velocity near the center of
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2.9 mls and a mininnlm velocity near the wall of 1.1 mls. The transverse velocity distnDu­

tion surface plot for 51 mm has a general trend of very low magnitude velocities with

negative velocity values on the left side ofthe housing and positive velocity values on the

right side ofthe housing, much like the l02 mm velocity distnDution. The similarity ofthe

51 mm velocity distnoution surface plots to the 102 mm velocity distribution surface plots

provides further evidence that the flow is similar to a fully developed or developing duct

flow. The flow cannot be considered truly fully developed because of the relative short­

ness of the duct, 11 hydraulic diameters based on the straight section dimensions, and the

fact that the housing duet is undergoing an area change over most ofits length.

The axial velocity distribution for the plane nearest the filter, 13 mm, is represented"

in Fig. 3.8. It is also quite similar to the other two axial surface plots with the peak veloc:­

ity coming in at 3.0 mls and the minimum at 0.88 mls. Measurements were taken nearer

to the wall with this plane and only one half of the plane was measured at one time. The

housing had to be rotated 1800 to measure the other side without clipping a LDV beam.

The two measured halves were then mated to provide this overall view ofthe velocity dis­

~"ution. There are subtle differences between this plane and the two previously dis-­

cussed planes. The velocities appear to drop off much more quickly on the right side of

the housing than on the left, and the lowest velocities are lower than those in the S1 mm or

102 mm planes. The lower velocities could be due to some measurements being taken

closer to the walls ofthe housing, and the sharp drop offcould be caused by misalignment

of the center point of the housing with the LDV system. These discrepancies are more

probably due to another factor such as non-symmetty of the exit housing. The sharp
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drop-offofvelocity magnitude is on the exit side ofthe housing. The manner in which the

filter is installed in the housing also affects the velocity measurements. The AF3192 filter

pleats always had a curvature to them. The effect of the curvature of the filter pleats on

the flow near the filter was studied before the velocity mapping took place. A short dis­

cussion on this topic can be found in the Appendix B. The filter itself may cause some

changes in the measured velocities. The same filter was used for the first two tests but

was not the same one used for the 13 mm test. The atmospheric conditions could also

have played a role in creating the subtle differences between this plane and the others.

Relative humidity was much higher on the day the 13 mm test was ron. ~oximity of the

plane to the filter was probably the most important factor in causing the flow field'

changes. As the flow approaches the filter, it will tend to redistnDute itseU: creating a

more uniform axial velocity profile. This should, and does, show up in the transverse ve­

locity profiles that illustrate the flow tending to move toward the edges ofthe housing.

While the differences between the 13 mm axial velocity distnDution and the other

two planes' axial velocity distnllutions were quite subtle, the differences between the 13

~ transverse velocity distnoution and the 51 mm or 102 mm transverse velocity distoDU·­

tion are immediately obvious. The surface plot ofthe 13 mm, shown in Fig. 3.9, does re­

tain the same shape as the other two transverse velocity surface plots with the left half

velocities being mostly negative in magnitude and the right half velocities being mostly

positive in magnitude. However, the surface reveals a much greater range of velocities

and is not as smooth. This variation is probably due to the proximity of this plane to the

filter. As the flow approaches the filter, it will obviously try to diverge from its mostly
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axial nature as ifit is impinging upon a wall This walL however, is porous and does allow

the flow to pass through so the divergence is reduced, offering a transverse velocity maxi­

mum of 0.5 mls or less than 25% ofthe average axial velocity. The flow may be more un­

steady near the filter. This unsteadiness wiD create problems with the DSA settings that

were made for the steady flow further upstream. Each 1000 sample data point may not

contain enough sample measurements to provide as accurate an average for the flow ve­

locity at that point. This would cause the collected data to look rougher when plotted in a

3-D fashion such as Fig. 3.9. Averaging the collected data over more than 1000 samples

this near to the filter might cause the very rough looking plot of Fig. 3.9 to become more

smooth. The difference between this surface and the other two could also be related to'

other reasons stated before: non-symmetry of exit housing, pleat curvature direction, filter

change or atmospheric conditions. The transverse velocities, while higher in the 13 mm

plane than in the 51 mm or 102 mm planes, are still rather low, with ilie highest transverse

velocity magnitude being less than 25% ofthe axial velocity average.
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3.1.4 Comparison of prototype housing data with J726 housing data in Q

three-dimensionalformat

By comparing Ftg. 3.10 to Fig. 3.11 it is obvious that the prototype housing pro-

vides a much more uniform axial velocity distn"bution to the filter. Fig. 3.10 illustrates the

current data collected from the prototype housing in a plane 13 mm upstream ofthe filter

surface, and Fig. 3.11 illustrates data collected by Sabnis (1993) from the J726 housing 13

mm upstream of the filter surface. Sabnis' data only includes points for the front half of

the housing, the other half can be assumed to be similar due to symmetry. Only the veloc-

ity measurements that are actually over the filter are presented in Fig. 3.11. The velocity

distn1>ution surface plot for the J726 housing can be descnoed as a very steeply pitched

dome, whereas the similar plot for the prototype housing is quite flat when both are plot-

ted on the same scales.

Fig. 3.12 and Fig. 3.13 illustrate the differences between the transverse velocity

distnoutions in the prototype housing and the J726 housing. Fig. 3.12 offers a look at the

transverse velocity distn"bution 13 mm upstream ofthe filter surface in the prototype hallS-

ing. This distnDution is obviously quite flat when compared to a sinrilar representation of

.the transverse velocity distnoution in the same plane but in the J726 housing as pictured in

Fig. 3.13. However, both distn"butions are somewhat similar in shape, if not magnitude,

with the right side ofthe distn1>ution offering mostly negative velocities and the left side of

the distn"bution showing generally positive velocities. This illustrates, as noted before, that

the flow is attempting to diverge as it strikes the filter. In the J726 housing the filter only

comprises a fraction of the exit plane. The flow approaching the filter does not have to
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proceed through the filter but can diverge from its path with high transverse velocity mag­

nitudes into the recirculating zonesn~ the walls ofthe J726 housing.

3.1.5 Turbulence intensities near the filter

The axial turbulence intensity can be found by dividing the local rms value of the

axial component ofvelocity about the local mean axial velocity by the mean axial velocity

at the center of the filter. It can be seen from Fig. 3.14 that the J726 housing presents a

turbulence intensity profile indicative of a jet, with low turbulence far from the center of

the housing increasing to a ringed peak ofhigh turbulence surrounding a central region of

somewhat lower turbulence. The prototype housing turbulence intensity profile presented

in Fig. 3.15 shows none of these characteristics. For this housing turbulence intensities·

are quite low all across the housing. This is comparable to duet, or pipe, flow as reported

by Hinze (1975) who shows that for duct flow turbulence intensity profiles are quite flat.
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Fig. 3.15 Axial Turbulence Intensity 13 mm upstream of filter in prototype housing
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3.2 FLOW VISUALIZATIONS

3.2.1 Laser sheet flow visualization

Fig. 3.16 illustrates a vertical slice ofthe flow illuminated with laser sheet lighting.

The photograph reveals that the flow is very uniform across this cross section ofthe hous­

ing with no separation or zones of recirculation visible. All across the housing the flow

fonowed a similar pattern, or lack of pattern, with uniformity of particle density through

the duet and lack of separation at the walls.

Fig. 3.16 Laser sheet lighting of water particles in prototype housing
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3.2.2 Flow visualization with tufts

The upstream oriented tufts show that there is a shear stress at the wall and that it

points downstream. This suggests that there is no flow separation from the wall or flow

recirculation near the wall.

3.3 SUMMARY OF RESULTS

LDV measurements show that the flow in the straight section of the prototype

housing near the filter is much like a developed duet flow. The velocity distnbution in this

section ofthe housing is shaped like a shallow dome. When compared to the velocity dis­

tnoution over the filter in the J726 housing, the velocity distribution in the prototype hous-­

ing can be said to be quite uniform. The peak measured axial velocity of the prototype'

housing is 104% of its mean axial velocity while the peak axial velocity of the J726 hous;.

ing is 204% of its mean axial velocity. Flow visualizations revealed no separation at the

walls of the prototype housing and no zones of recirculation. The jet flow of the J726

housing, with separation 'regions between the jet and the walls, is not evident here.



80

CHAPTER IV

~TRATION EFFICIENCIES

4.1 EFFICIENCIES OF PLEATED AIR FILTERS

The aerosol velocity inside fibrous filter media is a significant factor in determining

the filtration efficiency of that media. Fiber diameters, packing density and particle size

are also factors effecting the filtration efficiency. To model the efficiency ofour filter me­

dia, the fluid velocities of the flow field entering the filter discussed in Chapter mhave

been used in a computer program to calculate the elemental efficiencies associated with

the measured velocities in the area where they were measured, along with the overall em-'

ciency ofthe filter.

4.1.1 Assumptions

The following assumptions were used in the efficiency calculations:

1. perfect adhesion, Yo = 1;

2. no re-entrainment ofparticles, 'Yo = 1;

3. diffusive filtration mechanisms are not present;

4. particle concentration at filter inlet is uniform, Np =Cuoo;

s. the aerosol particles are mono-disperse, dp = const.;

6. the filter media is packed uniformly, c = const.;

7. the air velocity distnbution is uniform through the media, Vip = const.;

8. the filter media contain fibers ofa uniform diameter and that diameter is taken to be

the weighted average ofthe fiber diameters found in actual~ dr = const.; and
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9. only init~ clean fiher, efficiencies are calculated.

4.1.2 Singlejiber efficiencies within pleatedjibrousjilter media

The single fiber elemental efficiencies calculated for 5 J.1D1 particles and 19 J.1D1 fiber

radii from the velocity distnoutions measured on the prototype housing are shown in Fig­

ure 4.1. The efficiencies are plotted in a 3-D fashion much as the velocity distnoutions

were plotted in Chapter 3, with the borders of the x-v plane indicating the borders ofthe

fiher. The figure shows that single fiber efficiencies are highest near the center ofthe filter

where the velocities are highest and lowest along the edges where the velocities are the

lowest. Single fiber efficiencies, even though they vary, can still be considered quite uni­

form across the fiher. This can be compared to the single fiber efficiencies calculated for

the J726 housing shown in Figure 4.2. Single fiber efficiencies in the J726 housing fall off

quite dramatically on the edges ofthe filter, but the efficiency peak in the center is greater

than 0.7 with the prototype housing never besting 0.6.
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4.1.3 Bed efficiencies across pieatedfibrousfi/ter media

Elemental filter efficiencies for the AF3 192 filter mounted in the prototype housing

have been obtained by using Equation ( 1.3) and Equation (1.41). Graphical representation

ofthis data is presented in Fig.'s 4.3 to 4.6.

Figure 4.3 shows that for very small particles, 1 IlIIl in diameter, the filter is very

inefficient. The filter's maximum elemental filtration efficiency is only 2.20/0 with an over-

all filter efficiency, as obtained from Equation (1.5), of2.0%. When subjected to 2.5 IlIIl

particles, as shown in Figure 4.4, the filter does a much better job offiltration. The effect

of fluid velocity on filtration efficiency is clearly visible here with the highest efficiencies in

the center of the filter where the velocities are higher. The overall filter efficiency for 2.5

Jlm particles is 36%. Figure 4.5 illustrates the elemental efficiency profile for a mono­

disperse aerosol of 5 fJ.Dl particles and shows the depth type filter coming into its own with

the elemental efficiencies averaging 94.5%. The maximum calculated efficiency was 98%

and the minimum was 68%. Clearly most of the filter is operating in an efficiency range

greater than 95% giving an overall filter efficiency of 96%. Figure 4.6 provides a view of

. particle capture efficiency using the prototype housing and the smallest particle, 9.2 J.1Dl,

that would produce a calculated efficiency ofover 990/0 in each element.
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4.1.4 Comparison ofelemental bed efficiencies in the prototype housing to those in the

J726 housing

As discussed previously in Section 4. l.3, the elemental efficiencies for 1 J.lID. pam.

cles are quite low. This is quite evident in Figs. 4.7 and 4.8. Neither the prototype hous­

ing nor the J726 housing can produce an elemental efficiency of greater that 4.5% when

using 1 fJ.Dl particles. The J726 housing has a pronounced efficiency peak in the center of

the filter, as compared to the prototype housing, which is quite uniform throughout and

never reaches an elemental efficiency of greater than 2.20/0. This peak results in the J726

housing having a greater overall efficiency than that of the prototype housing at 2.50/0 ver­

sus 2.0%.

Figure 4.9 and Figure 4.10 compare elemental efficiencies obtained with 2.5 J.lID.

particles in the prototype and J726 housing·. As with the 1 J.lIll particles, the J726 housing

has a pronounced efficiency peak in the center of the fiher. Higher efficiencies than the

prototype housing are observed in the center of the fiher, but lower efficiencies than the

prototype housing can be found along the edges of the fiher. The aerosol velocity profile

provided by the J726 housing creates a significantly better overall fiher efficiency at S1%

as compared to the prototype housing's 36%.

Beginning with Figs. 4.11 and 4.12, the prototype housing begins to show the

benefits of a more uniform velocity profile. The J726 housing still shows an efficiency

peak in the center ofthe filter with sharp drop-offs in efficiency near the edges ofthe fiher.

This results in an overall efficiency of 95% for the J726 housing. The more uniform effi­

ciency profile ofthe prototype housing yields an overall fiher efficiency of96%.
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Figure 4.13 and Figure 4. 14 compare the elemental efficiency profiles ofthe proto­

type housing to that ofthe J726 housing for the smallest particle, 9.2 J1ID., in which all the

elemental efficiencies calculated for the prototype housing are above 99%. The J726

housing requires a particle size ofnearly 20 J.UIl for the elemental efficiencies across the fil­

ter to be uniformly above 99%. The overall efficiency of the prototype housing is 99.7%

at this particle size compared to the 99.5% efficiency of the J726 housing. This small dif­

ference in efficiency means that the J726 housing would allow 67% more of these poten­

tially damaging particles through the filter than would be allowed by the prototype

housing.
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4.1.5 Overallfilter efficiency comparisons

Table 4.1 compares the calculated overall filter efficiencies for the measured veloc-

ity distributions found in the prototype housing and the J726 housing to filter efficiencies

calculated for a hypothetical uniform velocity distribution. The efficiencies for very small

particles are shown to be very low no matter which velocity distn"bution is chosen, with

the efficiency being slightly lower for the more uniform velocity distributions. For all ve-

locity distnoutions, the efficiency is nearly 100% for particles 20 J.I.Dl in diameter or larger.

It can be seen that the prototype housing creates filtration efficiencies very sinUJar to those

forecast for a perfectly uniform velocity profile.

Table 4.1 Overall filter efficiencies calculated for the prototype and J726 housing velocity disttibutions ­
and a uniform velocity disttibutio~ particle number disttibution assumed constant

Overall filter effICiency, "

Particle diameter Prototype housing J726 housing Uniform velocity
distribution

1.0~ 0.020 0.025 0.020

2.5~ 0.356 0.511 0.304

5.0~ 0.961 0.951 0.961

9.2~· 0.997 0.995 0.997

20.0~ 0.999 0.999 0.999

Overall finer penetration, 1.",

1.0~ 0.980 0.975 0.981

2.5~ 0.644 0.489 0.696

5.0~ 0.039 0.049 0.039

9.2 J1Dl 0.003 0.005 0.003

20.0 J1Dl 0.001 0.001 0.001
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Where my ca1cuJations given in Chapter 4 indicate that the overall efficiency for I

J.1Dl particles in the prototype housing should be uound 2% at a 80w rate of III sefiD.

their measurements indicate an overall efficiency ofuound 40%. FIVe micron particles by

my calculations give an overall fiher efficiency of 96% but measurements by Liang et at.

give the fiher an efficiency of only 70% with 5.3 J.1Dl particles. Reasons for these discrep­

ancies are unclear, but could involve the effects of diffusional filtration for small particles

and bounce and reentrainment ofparticles into the airstream for large particles.

4.1.6 Adhesion considerations

Up to now all efficiency calculations were made assuming that there was no parti­

cle bounce upon striking a fiber and no reentrainment of particles into the airstream., ie.,

any particle once captured by a fiber is concretely bound to it and cannot be recaptured by

the airstream. In practice this is not always the case. At sufficiently high aerosol veloci­

ties, particles may bounce away from a fiber due to rebound forces being greater than ad­

hesion forces, and the drag force acting on a particle already stuck to a fiber may become

strong enough to overcome the adhesive force that holds the particle to a fiber. Either of

these actions would result in reentrainment of the particle into the airstream. Equation

(1.49) was used to combine the adhesive probability factor, 'YO' developed by Ptak &

Juoszczyk (1990), Equation (1.52), with Sabnis' (1993) inertial impaction Equation

(1.42). Elemental conection efficiencies along with overall fiher conection efficiencies

were calculated for both the J726 housing data and the prototype housing data using sev-

eral different particle sizes.
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Table 4.2 .Overall fil~ ~~encies calculated for the prototype and J726 housing velocity disttibuticms
and a uniform velOCIty distn~on. accounting for non-perfec:t adhesion ofpanicles to fiber surfaces.

partlcle number distribution assumed constant

Overall filter effICiency. accounting for adhesive probability

Particle diameter Prototype housing J726 housing Uniform velocity
distribution

1.0 JlDl 0.019 0.022 0.019

2.5 JlDl 0.333 0.480 0.285

5.0 JlDl 0.944 0.937 0.944

9.2 JlDl 0.992 0.990 0.992

20.0 J.lm 0.994 0.992 0.994

Percent more dust penetrating filter using the assumption of
non-perfed adhesion versus the assumption of perfect adhesion,

oAt

1.0 JlDl 0.1 0.3 0.0

2.5 JlDl 3.6 6.3 2.7

5.0 JlDl 43.6 28.6 43.6

9.2 JlDl 166.7 100.0 166.7

20.0 JlDl 500.0 700.0 500.0

Table 4.2 illustrates the calculated overall filter efficiency and difference in the

amount of penetrating dust, when accounting for the effects of particle bounce and reen-

trainment, ofthe AF3192 filter mounted in either the prototype housing or the J726 hoDS-

ing along with a uniform velocity distn"bution. For all particle sizes the overall filter

efficiency dropped when the effect of non-perfect adhesion was taken into account with

the smaller particles showing a more dramatic change than larger ones. With the small

particles havin.g such a low collision efficiency, any change in the adhesive probability

could have a significant effect upon the overall efficiency ofthe filter. Changes in the ele-

mental efficiency were too small to be seen in the 3-D representations of filtration
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efficiency ash· ·s own m sectlon 4.1.3, but Figure 4.15 compares the changes on a slice of

the fiher in a 2-D form. The differences are obvious yet small and increase with velocity,

being most significant in the center of the fiher where the velocities are highest and least

significant along the edges of the fihm; where the aerosol velocities are at their lowest

magnitude.

1.00 •• . ..

adhesion conlt~irt.

w/o w

6 ... 5JUT1
0 • 2.5 JII"
0 • 1~

......,

I
j

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

X location (mm)

Fig. 4.15 Comparison of elemental efficiencies with consideration and without consideration of the effects
ofadhesion along the y-centerline of the prototype housing for several different particle sizes

4. J. 7 Particle number distribution considerations

By using data gathered by Liang et at (1994), Figure 4.16, I have produced a second

order polynomial function relating the particle number density to the upstream velocity,

Equation (4.1). The particle number density at a zero aerosol velocity condition was

assumed to be equal to the particle number density measured at the lowest velocity.

C=2.796x 108 -3.443 x 106uo +7.986x I03u~ (4.1)
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Fig. 4.16 Particle concentration upstream of filter (prototype housing. 0.966 IJ.m particles)

Using Equation (4.1), which is basically a constant, as the weighting function for

particle number density in the overall efficiency calculations, I was able to obtain Table

4.3. It should be noted that Equation (4. 1) is a curve fit ofnumber density versus velocity

data for 1 IJ.D1 particles. Equation (4.1) is approximate in nature and may not apply to

other size particles, as they may have more marked dependencies on aerosol velocity.
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Table 4.3 ~eral1 filter ~~e~es .calculated for the prototype and J726 housing velocity distributions
and a uniform velOCIty distnbut1~ using Equation (4.1) for particle number distribution values

Overall filter efficiency. 11

Particle diameter Prototype housing J726 housing Uniform velocity
distribution

1.0 flD1 0.020 0.025 0.020

2.5 flD1 0.356 0.510 0.304

5.0 Ilm 0.961 0.951 0.961

9.2 Jlm 0.997 0.995 0.997

Obviously the inclusion of Equation (4.1) into the calculation of overall fiher em-

ciencies made little difference to the outcome ofthe calculations. The only difference that

can be seen in Table 4.3 when comparing it to Table 4.1 is the entry for 2.S tJ.D1 particles in

the J726 housing. Table 4.1 lists the entry as 0.511 and Table 4.3 lists the same entry as

0.510. This difference is insignificant, suggesting that the assumption of constant particle

number density distribution may be valid or, at least, that the particle number density dis-

. tribution is not a function ofthe measured aerosol velocities.

4.2 SilldMARY

Single fiber elemental efficiencies calculated for the prototype housing flow field

and the J726 housing flow field indicate that the efficiencies in the prototype housing are

quite uniform, but the J726 housing efficiencies have a definite peak of high efficiency in

the center ofthe fiher with lower efficiencies found along the edges ofthe fiher. Elemen­

tal bed efficiencies ofthe fiher in both housings iDdicate similar findings with the prototype

housing offering a very uniform efficiency profile with an particle diameter sizes, when

compared with the J726 housing's corresponding efficiency profiles which aD exhibit very
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strong peaks of fihration efficiency in the center of the filter with very low efficiencies

along the filter edges. This peakiness tends to help the J726 housing with overall filtration

efficiency with small particle~ but hurts it with large particles. The smallest particle that

will be filtered with more than 99% efficiency in all elements ofthe )726 housing is 25 J.UIl

in diameter. The similar particle in the prototype housing is 9.2 J.UIl in diameter.

The effects of adhesive probability appeared to be almost universal. The J726

housing did not really fare much worse than the prototype housing, except for the very

small particle size (1 J.1D1), where the J726 housing was affected more profoundly than the

prototype housing and the uniform velocity distribution. This decrease in efficiency would

probably not be too noticeable in practice using a polydisperse dust because the filtration

efficiency for 1 fJJJl particles is very low.

Study of the particle density distnDution effects on the overall filter efficiency sug­

gests that the actual particle density distnoution in the housing is not dependent upon ve­

locity and is sufficiently uniform to consider it as uniform.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The following conclusions can be drawn from this work:

1. The flow field inside the prototype housing is much like a developed duet flow and

is not separated from the housing walls.

2. When compared to the J726 housing's jet like flow, the prototype housing provides

a very uniform flow pattern to the filter.

3. It is satisfactory to treat the interception and inertial impaction models of particle­

collection efficiency as independent of each other to model the inertial interceptioB

and impaction collection efficiency of a single fiber, even though inertial

interception and impaction are not independent ofeach other.

4. Initial particle collection efficiencies are strongly dependent upon both aerosol

velocity and particle size. Higher velocities and larger particles generate higher

efficiencies than lower velocities and small particles.

5. Fibrous filters offer very low fihration efficiencies for particles 1 J.1D1 in diameter or

smaller. For these small particles, the J726 housing has a higher, yet still very poor,

initial overall filtration efficiency than the prototype housing.

6. Large particles, 5 J.1D1 and larger, are filtered more efficiently by the prototype

housing. The J726 housing would allow 67% more 9.2 J.1D1 particles to pass

through the filter than the prototype housing would.
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7. For most particle sizes., the effect of adhesive probability on the initial filtration

efficiency of the filter is very small, showing less than a 2% difference from the

perfect adhesion model, with only very smaD particles., which are filtered very

. inefficiently anyway, showing a large difference.

8. Particle number density distn"bution in the flow field upstream of the filter is not

dependent upon velocity. The assumption of uniform particle number density

distribution in the calculation ofoverall fiher efficiency may be a valid one.

5.2 RECOMMENDATIONS FOR FUTURE WORK

Further study offibrous depth filter efficiency could be done in the following areas:

1. Adhesion effects should be studied experimentally using liquid particles, which

should have an adhesive probability of 'Yo = 1, and test dust, which will have an

adhesive probability less than one, to more accurately model the effects ofadhesion

in typical automotive air filtration applications.

2. Experimental values of initial filtration efficiencies should be determined using both

the J726 test housing and the prototype test housing for comparison with values

presented in this paper.

3. Models could be developed that include the effects of dust loading in the filtration

analysis providing a view offihration efficiency over the life ofthe filter rather than

just the initial efficiency.

4. The effects of non-uniform filter elemeDt fiber diameters should be taken into

account by pOSSl"bly modeling the filter as a composite of several layers with each

layer containing a different fiber diameter.
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APPENDIX A

COMPAlUSON OF AEROSOL PARTICLE GENERATION

TECHNIQUES AND NUMBER OF SAMPLES PER RUN

Before actual measurements of-the flow field in the prototype housing were at­

tempted several different aerosol particle generation techniques were tested to determine

what method would produce the most reliable resuhs. At the same time different number

of samples per data point were tried to determine how many samples were required to

produce a valid sample. As seen in Fig. A I the use of two uhrasonic humidifiers to pro-

duce sample particles gave only marginal results. At greater than 3000 samples per data

point the repeatability ofthe data is still only within ±2% ofthe average velocity. By com-
.

parison, tests ron with 0.966 J.1D1 polystyrene latex (PSL) microspheres, as shown in Fig.

A2 and Fig. A3, produced data within ±I% ofthe average velocity at only 1000 samples

per data point. The choice to use PSL particle was made using this data.

Comparing Fig. A2 and Fig. A3 shows that 200 ppm suspensions ofPSL particles

provided better repeatability than 100 ppm suspensions of PSL particles. The use of 200

ppm suspensions also made the time required to obtain a 1000 sample data point more

bearable at 2 to 3 minutes per point. We chose to use a 1000 sample data point because

this appeared to be the least number ofpoints that could be used and still obtain a reliable

ron.
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APPENDIXB

SYMMETRY OF VELOCITY PROFILES IN THE PROTOTYPE

HOUSING AND ITS RELATIONSHIP TO FILTER PLEAT

CURVATURE AND HOUSING EXIT LOCATION

Before measuring the entire flow field inside the prototype housing several tests

were performed to determine if the exit location ofthe housing or the curvature of pleats

. in the filter had an effect on the symmetry ofvelocity profiles on the upstream side ofthe

filter. Measurements were taken with a new filter along the y-centerline of the prototype

housing 13 mm upstream. of the-filter. The filter was then turned around in the housing

and another set of velocity measurements were taken. This test was then repeated using'

another filter. Fig. B.I illustrates the resuhs of these te~s. With the filter placed such that

the concave side of the pleat curvature pointed towards the right and the exit was situated

on the right side, "Run A" was measured. The filter was then turned around so that the

concave side of the pleat curvature pointed towards the left side of the test housing with

the exit still situated on the left side ofthe housing to measure "Run B." As can be seen in

Fig. B.I the asymmetrical hump on the right side of ron A is on the left side of ron B. By

reversing the run B data it can be seen that the two rons are now more similar in their

asymmetry. Judging from this data I have decided that what asymmetIy there is in the

measurements is caused mainly by the curvature ofthe filter pleats. All subsequent meas­

urements were taken with the concave side of the pleat curvature always pointing toward

the left end ofthe test housing.
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APPENDIXC

COMPUTER PROGRAM FOR THE CALCULATION OF FIBROUS

FILTER PARTICLE COLLECTION EFFICIENCIES

This program was written using.Borland Turbo C++ v. 3.1 and is based on a simi-

Jar program found in Sabnis (1993).

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>

#define
#define
#define
#define
#define
~efine

#define
#define
#define
#define
#define
~efine

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define UNIV

L1
L2
L3
W1
W2
W3

C
RHO
RHOA
MU
R
H
A
WF
HF
PF
LAMBDA
T
K

AAPLANO
SABNIS 1
2

13.970
14.605
19.050
7.9375
7.9375
12.700

0.23
2723.0
1.1374
1.837e-5
198-6
0.0007
O.5e-6
0.121
0.03
0.003125
6.96e-8
298.15
1.380658..23

r packing density */
r particle density (kglmA3)*1
r air density (kglmA3)*1
r air viscosity (P.·s) *1
r fiber ...dtus (m) *1
r filter bed thickness (m) -,
r particle ...dlus (m) -,
/* width of flit« piNt (m) *'
/* height of tilt« plut (m) *'
/* pitch of flit« plut (m) *1
r mean free path of air (m)*1
r air temptnture (K) -,
/* BoItzrn., cons" .,

void
void
void
void
void
void
void
double
void
void

Sabnis(double v2,double ·efri,double *st,double •...double a,double y);
S8bnis1(double v2,double *efrt,double *st,double *eri,double .,double y);
Landahl(double,v2,double *efri.double *st,double -eri.double a);
Ptak(double v2,double *efrt,double ·st,double ·wi.double .);
Lee(double v2,double ·efri,double *st,double.·~,double .~;

Liu(double v2,double ·efri,double ·st,~ble en,~ble .). .
Suneja{double v2,double *efri,double st,double en,double a).
area12(int *j,int -k,int 111 ,double *dx);
reald8ta(int fl1 ,double a>;
stokesdata(int j);

void main(void)
{

int i,j;



double a;

for(j=O;j<4;j++)
{
switch(j)
{

case 0 : a=O.50e-6;break;
case 1 : a=1.25e-6;break;
case 2 : a=2.50e-6;break;
case 3: a=4.6e-6;break;

}
for(i=O;i<4;i++)
(
realdata(i,a);

}
}

}
void realdata(int fl1 ,double a)
{

III

int i=1 ,j=1 ,k=1;
int dec,sign;
double v2,x,y;
double area,v2avg;
double qto1al=O,qcfm;
double atotal=O,pen;
double pentotal=O,efftotaI;
double efri,st,eri,dx;

,. measured aerosol velocity, x~ocdon. y-Ioc.•/
/* elemental area, average velocity *1
r total flow nIte *1
r total area, elemental penetndion */
r total penetndion. overall efficiency *'
r elemental eft., stokes _, fiber err., width of eI. *'

FILE *in,*out;
char string(80),*bb;
char fin[11],fout(11],~=fin;

bb =(char *) malloc(10);

fI =(char *) malloc(10);

switch(fl1 )

{

r input, output */

/* use different file names for uniform, Jne, and */
r prototype measured velocity profile input names .,

case UNIV : strcpy(ftn,"univ2.txt");
strcpy{fout,"unij;
break;

case SASNIS : strcpy(fin,"sab1.txt");
strcpy(fout,"sabj;
break;

case AAPLAN : strcpy(fin,"aaplanv2.txt");
strcpy(fout,....p");
break;

default : strcpy(fin,"aaplanv2.txt");
strcpy(fout,"reenj;
break;

}

in =fopen{fin,"rt");

bb =ecvt(2*a,3,&dec,&sign);
strcat(bb,".txt");
strcat(fout.bb);

out =fopen(fout,"wt");

r open input file */

r open output file .,



fprintf(out."%41%8ICKt7s%7s%7sCWa7stUsCWa7sY'" ,. pn°nt headers -,
"run"" eI "" II.. •,v · , x, y"," •• "."efri","Stc","en1;

while(fI!=NULL)
{

fI=fget5(string,80,in); ,. read data file *'
if(fI==NULL) break;
sscanf(string,"%If%If%If',&v2,&x.&y); ,. scan for data */
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area =area12(&j,&k,ft1,&dx);
if(fl1==SABNIS) ar..-=2;

qtotal += v2*area*O.OOOO6;
&total += area;

,. ... of given element (mA2) -/
,. area of sabnis elo doubled due to symmetry *'
r total ftovv rate (rnA3Im) -/
r total ar. (mA2) ./

switch(fl1 )
{
case AAPLAN : Sabnis(v2,&efri,&st,&eri,a,dx); r sabnis' efftciMCY subprogram *'

break;
case SABNIS : Sabnis(v2,&efri,&st,&eri,a,dx);

break;
case UNIV : Sabnis(v2,&efri,&st,&eri,a,dx);

break;
default : Sabnis1(v2,&efri,&st,&eri,a,dx);

break;
}

pen =(1-efri)*~rea*v2*O.00006; ,. ...mental penetrdon */

pentotal += pen;

v2avg +=v2;

r total penetrdon */

r used to compute av...ge velocity */

j++;
fprintf(out,",,4d%8.5f%7.2fCMt7.2fCMt7.2fCMt7.4~o3rMt704f\r''t

i, v2, x, y,area,efri t st, eft);

i++;
}

v2avg /= i;

qcfm =qtotaI/O.028317;
efftotal =1-(pentotallqtotal);

,. av.....g. velocity ./

1* total ftow rate *'
r ovenlll efftciMCY ./

atotal 1= 645.16;

fprintf(out,"\r%s"7.3rMts "7.3rMts\r","FIow Rate == ",qtDtaI," mA3Im",qcfm,
.. cfm");

_.61__1 ~_. == ",a/18-6," m1;
fprintf(out,"\r%5CKa10.8f%5V","P-~~US

f ·ntf(out,"\r%s"10.8f%s\r",~Diameter == ",2*al18-6; um1;
;:ntf(out, ""s"10.8f%S\r"~"Fiber~meter ::'~1e;;e,~um1;
fprintf(out, ""s"S.3flMls\r", Interception Parameter - ,aIR, 1,
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fprintf(out,"\r%sCU.3f%s","Area == ",atotaI,· inA21;
fprintf{out,"\r%sCU.3f%S","Avg.VeIocity -= ".v2IIvtI." mil';
fprintf{out,"\r%sCU.8I"Kts","f1ltration Efficiency === .,~." I:

printf("\r%sCU.8f%s","Filtration Efficiency == ",efftotaI," 1;

fclose(out);
fctose(in);

)

double area12(int *j,int *k,int ft1,double *dx)
{

1* computes elemental-.' */

double area,ac1,ac2,al1,aw1 ,aw2,an1;
double sac,sal,saw,san;

ac1 = W1*L1;
ac2 =W1*L2;
al1 =W1*L3;
aw1 = W3*L1;
aw2=W3*L2;
an1 =W3*L3;

sac =0.11875*0.375;
sal =0.11875*0.75;
saw = 0.2375*0.375;
san =0.2375*0.75;

sac *= 645.16;5al *= 645.16; saw *= 645.16; san *= 645.16;

case 1: area =ac1;*dx=W1;br..k;
case 2 : area =ac2;*dx=W1;break;
case 10: are. = ac2;*dx=W1;break;
case 11: area = ac1 ;*dx=W1 ;*J=O;*k=*k+1 ;br..k;
default : area =al1;*dx=W1;

If(fl1 ==AAPLAN)
{
if((*k<3)1I(*k>9»
{
switch(*j)
{

1* prototype houllng */

case 1: area = aw1 ;*dx=W3;break;
case 2 : ar. =8W2;*dx=W3;break;
case 10 : area = 8W2;*ctx=W3;break;
case 11: area =aw1 ;*dx=W3;*J=O;*k=*k+1 ;break;
default : area = an1 ;*ctx=W3;

}
}
else
{
switch(*j)
{

}
}

}
else
{
If{(*k<2)II(*k>10»
{

r J726 housing *'
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switch(*j)
{

case 1: area =sac;*dx=O.11875*25.4;bruk;
case 11: area =sac;*dx=O.1187~5.4;*j=O;·k=*k+1 ;break;
default : area =saI;*dx=O.11875*25.4;

}
}
else
{
switch(*j)
{

case 1: area =saw;*dx=O.2375~5.4;br..k:
case 11: area =saw;*dx=O.2375*25.4f;*j=O;*k=*k+1 ;break;
default : area =san;*dx=O.237~5.4;

}
}

}
return area;

}

~oid Sabnis(double v2,double *efri,double *st,double *eri,double .,double y) r Eq. (1.42) */

double c,r,h,ip,hf,pf,kn,cc;
double k,vip,er,ei;

C =c;
r =R;

h =H;
hf =HF;
pf =PF;

ip =air;
kn =LAMBDA/a;
cc =1.0+1.257*kn;
k = -o.S*log(c)-Q.7S+c-Q.2S*c*c;

vip =v2*y/sqrt(pow(2*hf*y/pf,2)+pow(y,2»;
vip 1= 1-c;

r interception piII1Im8W */
r knudson number */
/* slip correction fIM:tDr */
1* kUWlat.r. hydrodynamic fIM:tDr */

r velocity inside pi.. */

*st =pow(a,2)*RHO;
*st *= vip;
*st *= Cc;
*st 1= 9.0*MU*r;

/* stokes number */

er = (1-c)/k*ip*ip/(1+ip); r interception efftciency */

ei =pow(*st,3)/(pow(*st,3)+O.77*pow(*st,2)+O.22); r implCtion err. */

*eri =1-«1-er)*(1-ei»; r fiber efficiency *1

/* eI.m....a.l efficiency */

double c,r,h,ip,hf,pf,kn,CC;
double k,vip,er,ei,yo,Rep;

·em =-2*c*(*ert)*h;
*efri/= M_PI*(1-c)*r;
*efri =1-exp(*efri);

toid Sabnis1 (double v2,double *efri,double *st,double *eri,double a,double y) r Eq. (1.42) wI Eq. (1.52) */

{

C =c;



}

r =R;

h =H;
hf= HF;
pf =PF;

ip =air;
kn = LAMBDA/a;
co = 1.0+1.257*kn·
k =-o.S*log(c)-o.75+c-o.2S*c*c;

~p =v2*y/sqrt(pow(2*hf*Y/pf,2)+pow(y,2»;
Vip 1= 1-c;

*st =pow(a,2)*RHO;
*st *= vip;
*st *= cc;
*st 1= 9.0*MU*r;

Rep =RHO*vip*a*2IMU;
yo = 190.0/(pow«*st+Rep),O.68)+190);

er = (1-c)/k*ip*ip/(1+ip);

ei =pow(*st,3)/(pow(*st,3)+0.n*pow(*st,2)+O.22);

*eri =1-«1-er)*(1-ei»;
*eri *= yo;

*efri =-2*c*(*eri)*h;
*efri/= M_PI*(1-c)*r;
*efri = 1-exp(*efri);

,. .dhesive probability *'

liS

void Landahl(double v2,double *efri,double *st,double *eri,double .) 1* Eq. (1.38) *'
{

double c,r,h,hf,pf,kn,cc;
double vip;

c =c;
r =R;

h =H;
hf =HF;
pf =PF;

kn =LAMBDA/a;
cc =1.0+1.257*kn;

vip = v2*pf/(2~hf);

vip 1= 1-c;

·st =povv(a,2)*RHO;
·st .= vip;
·st .= cc;
*st 1= 9.0*MU*r;

*eri =povv(*st,3)/(POW(*st,3)+O.77*pow(*st,2)+O.22); r impaction eft. *1

*efri =-2*c*(*eri)*h;
*efri/= M_PI*(1-c)*r;



}
*efri =1-exp(*efri);
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~d Ptak(double v2,double *efri,double *5t,double -eri.double a)

double c,r,h,ip,hf,pf,kn,cc;
double vip,er,ei;
double Re,Rap,dummy;
double fC,yo,ko;

c =c;
r =R;

h = H;
hf =HF;
pf =PF;

ip =air;
kn =LAMBDA/a;
cc = 1.0+1.257*kn;

vip = v2*pf/(2*hf);
vip 1= 1-c;

,. Eq. (1.~) *'

Re
Rep

fe
yo
ko

=RHOA*vip*r-2JMU;
=RHO*vip*a*2JMU;

=O.9/pow(c,O.3);
=190.0/(pow«*st+Rep),0.68)+190);
=0.53;

,. fiber reynolds number ./
r particle reynolds number */

r interference coeff. */
r adhesive probability *'
r filter inhomogeneity coeff.•/

*st =pow(a,2)*RHO;
*st *= vip;
*st *= cc;
*st 1= 9.0*MU*r;

dummy =*st-Q.75*pow(Re,-Q.2);
*eri =pow(dummy,2);
dummy =*st+O.4;
*eri 1= pow(dummy,2);
*eri += pow(ip,2);
*eri *= fc*yo*ko;

*efri =-2*c*(*eri)*h;
*efri/= M_PI*(1-c)*r;
*efri =1-exp{*efri);

,. fiber efficiency *'

r elemental efficiency *'

double c,r,h,ip,hf,pf,kn,CC;
double k,vip,er,ei;

}

void Lee(double v2,double *efri,double *st,double *eri,double .) r Eq. (1.21) *'
{

c =c;
r =R;

h =H;
hf =HF;
pf =PF;

ip =air;



kn =LAMBDA/a;
cc =1.0+1.257*kn;
k = -o.S*1og(c)-O.75+c-Q.25*c*c;

vip =v2*pf/(2*hf);
vip 1= 1-c;

est =pow(a,2)*RHO;
*st *= vip;
est *= cc;
*st 1= 9.0*MU*r;

*eri =(1-c)/k*ip*ip/(1 +ip);

*efri =-2*c*(*eri)*h;
*efri/= M_PI*(1-c)*r;
*efri =1-exp(*efri);

}

void Suneja(double v2,double *efri,double *st,double *eri,double a) ,. Eq. (1.39) *1
{

double c,r,h,ip,hf,pf,kn,cc;
double vip,er,ei;
double Re,dummy;

c =c;
r =R;

h =H;
hf =HF;
pf =PF;

ip =air;
1m =LAMBDA/a;
cc =1.0+1.257*kn;

vip =v2*pf/(2*hf);
vip 1= 1<;

Re =RHOA*vip*r*2IMU;

*st = pow(a,2)*RHO;
*st *= vip;
"'st *= cc;
*st 1= 9.0*MU*r;

dummy =(1.53-0.23*1og(Re)+O.0167*poYI{log(Re),2»;
dummy/= ("'st);
dummy+= 1;
"'en =1/poY1(dummy,2);
*eri += (213)*{iP/{*st»;

*efri =-2*c*(*eri)*h;
*efri/= M_PI*(1-c)*r;
*efri =1-exp{*efri);

}
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APPENDIXD

FILTER SPECIFICATIONS

Table D.1 Filter specificatiODS

Description units AF3192

length of filter mm 193

Width of filter mm 121

Height of pleat mm 30

Pitch of pleat mm 3.125

Approx. mean J.1m 39
fiber diameter

Approx.. packing 0.23
density I
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APPENDIXE

TEST DUST SPECIFICATIONS

SAE J726 specifies the use ofAC fine and AC course dust in test conducted under

the test code.

Table E.I Test dust specifications, particle size distribution by volume

Size, 11m Fine grade Course grade
(%Ie.. than) (% Ie.. than)

5.5 3~3 38±3

11 54:1:3 24:t3

22 71:1:3 37:t3

44 89%3 56±3

88 97:1:3 84:t3

125 100 100

Table E.2 Test dust specificatiODS~particle size distribution by weight

Size, IJ.m Fine grade Course grade
(% Ie.. than) (%1_ than)

0-5 39±2 12Z2

5 -10 1~3 12%3

10 -20 16±3 14:1:3

20-40 1~3 23Z3

40-80 9%3 30±3

80 - 200 - 9%3
-
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