
CACHE PERFORMANCE ANALYSIS:

A TRACE-DRIVEN SIMULAnON

By

PAMELA NEELAYENI

Bachelor of Engineering (Hons)

Birla Institute of Technology and Science

Rajasthan, INDIA

1990

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirement for
the Degree of

MASTER OF SCIENCE
July 1994

CACHE PERFORMANCE ANALYSIS:

A TRACE-DRIVEN SIMULATION

Thesis Approved:

TheSIS Advisor

/1

Dean of the Graduate College

11

ACKNOWLEDGEMENTS

I thank my graduate advisor Dr. Mansur H. Samadzadeh for his advice, assistance,

and guidance. His constructive criticism helped me gain confidence. During my whole

graduate studies, I got inspimtion and motivation due to his constant guidance. My sincere

thanks to Drs. Blayne Mayfield and Mitch Neilsen for serving on my graduate committee.

I also want to thank Mr Jim McGee and Mr. Andy Adsit, my supervisor at the

University Computer Center, OSU, for allowing flexible working hours.

I would like to thank my husband Srikanth for his strong encouragement at times

of difficulty, love and understanding throughout this whole process. Fmally, I would like

to express my gratitude to my parents, brother, and sisters. Without their support and

encouragement, this task would not have been possible.

iii

Chapter

TABLE OF CONTENTS

Page

L INTRODUcnON .. 1

n. LITERAlURE REVIEW ..

2.1 Introduction
2.2 Definitions .
2.2 Storage Hiea-arehy ...•....••.•••.•••••••••.•••••••
2.4 Cache Memory .
2.5 Cache Design Parameters

2.S.1 Cache Size .
2.5.2 Block Size .
2.5.3 Cache Organization .
2.5.4 Misses in Prefeteh
2.5.5 Misses Occurring in Cumps ..
2.S.6 Cache Coherence .
2.5.7 Cache Consistency .
2.5.8 Replacement Algorithms

m. DESIGN AND IMPLEMENTATION ISSUES .

3.1 Implementation Platform and Environment .
3.1.1 Sequent Symmetty S/81

3.2 Objective .
3.3 Input Parameters .

3.3.1 Trace Collection Method
3.3.2 Cache Organization
3.3.3 Replacement Policies .. .
3.3.4 ,Scheduling .

3.4 Design of the Simulation .
3.4.1 Page Map Table
3.4.2 Process Conttol Block

3.5 Implementation Details

4

4
4
6
7
8
9
9
9

10
12
12
13
13

15

15
IS
16
16
16
17
17
17
17
19
20
21

IV. EVALUATION OF 1HE TOOL

IV

2S

Chapter

4.1 Test Programs
4.2 Graphs
4.3 Observations

Page

2S
28
28

v. SUMMARY AND FU1URE WORK

S.1 SIJrnmary
5.2 Future Work

REFERENCES

.. 37

37
38

39

APPEN'DICES . •. 41

APPENDIX A- GLOSSARY AND TRADEMARK
DNFO~TION . 42

APPENDIX B- PROORAM USTIN'G • • • . . • • • • •• 43

v

Figure

USTOFFIGURES

Page

1. Different address tracing techniques . • • .. 2

2. Associative mapping using a page map table, given the
virtu.al address . • .. 11

3. Organization of cache and main memory 19

4. Data. sttueture of cache . 20

S. Data structure of main melDOry . • • • • . • • • • • . • • • • • • • • • • . . • . • • • 20

6. The data structure used for page map table 23

7. Demand page algorithm 24

8. Pagefault_handler algorithm 24

9. Hit ratio vs. cache size for gcc (LRU policy) 30

10. Miss ratio vs. cache size for gee (LRU policy) 30

11. Miss ratio vs. delay due to a miss for gcc (LRU policy) 31

12. Cache size VI. effective access time for gee (LRU policy) 31

13. Miss ratio vs. cache size for spice (LRU policy) 32

14. Hit ratio vs. cache size for spice (LRU policy) 32

15. Miss ratio VI. delay due to a miss for spice (LRU policy) 33

16. Cache size vs. effective access time for spice (LRU policy) 33

17. Miss ratio vs. cache size for espresso (LRU policy) 34

18. Hit ratio vs. cache size for espresso (LRU policy) 34

vi

Figure

19. Cache size vs. effective access time for espresso
(l..,RU pcllicy) .••......•.. • · · .. · · ••.. • . • • • • • • • . • • • • • • • • • . • • •• 35

20. Hit ratio vs. cache size for GNU chess (LRU pcllicy) . • • • • • . • • • • • • • . • • .• 35

21. Miss ratio vs. cache size for GNU chess (l..,RU pcllicy) •...••....••.•••. 36

22. Cache size vs. effective access time for GNU chess
(I..,RU pcllicy) •...•..••....•...........•.•.••...•.....•.•••• 36

vii

LIST OF TABLES

I. Traces used for the simulation 26

VlU

CHAPIER I

INTRODUCTION

Cache memory is used in most computer systems. An important goal in the design

of a computer system is that it should behave according to the expectations of the

designer. The performance of a system can be captwM and evaluated using various

techniques. Trace-driven simulation is one of the techniques used to smdy the

performance of a computer system.

Nowadays most of the small, mediUlD, and large machines have cache memories

to improve their perfonnance. Infonnation located in cache can generally be retrieved in

less time than the infonnation located in main memory [Smith82]. Trace-driven simulation

is a technique by which, using the actual address traces as the external stimuli, a model

of a proposed system, e.g., cache memory, can be evaluated.

Several address tracing techniques have been developed over the last ten y~,

each one with its own merits and demerits [Stunke191]. These techniques are typically

analyzed with respect to issues such as speed, flexibility, completeness, reduction in

execution time, and accuracy. Different methods of address tracing techniques can be

classified into five categories as given in Figure 1 (adapted from [StunkeI91]). A brief

description of these five techniques is given below.

In the hardwaIe monitored technique, the address traces are directly recorded

1

2

Address Tracing Techniques

hardware
monitored

interrupt
based

code instrumentation altering software
microcode simulation

source
level

asse mbly compiler object
level based level

Figure 1. Different address tracing techniques

piXie

off processor memory n:quests when they are sent to off-chip caches and memory chips.

In the altering microcode technique, commonly known as AroM (address tracing using

microcode), the ttaces are obtained by making minor changes to the existing microcode

of a machine. This technique has been employed to obtain addresses for VAX

architectures [Agarwal88]. In the internlpt based technique, every instruction geoemtes

a CPU interropt and the interropt routine analyzes the opcode, calculates the memory

addresses, if any, and stores it in a buffer. Most architectures provide a trap bit that can

be enabled and a corresponding interrupt routine that can be modified to acquin: the

traces. In the instrumented program technique, the application program is instrumented

at specific points. During run time, these extta instructions log the trace information

which, when postprocessed, gives the actual trace. The code level insertion technique can

be carried out at various levels such as source code level, assembly level, or binary level

3

or object level [Stunkc191]. Software simulation methods can model processor execution

and simultaneously provide user ttaees. Pixie is one of the software simulation methods

used to capture traces. This method of generating addIess traces was initially developed

on SPARe systems at Berkeley [Lovett93].

The most accurate way of studying cache performance, before a machine is

actually built, is through simulation [Marcovitz88]. By changing the parameters of a

simulation model, it is possible to simulate a cache of any size. Using this kind of

approach and model, one can design a cache model for a requited behavior. If some

discrepancies are detected, based on the performance analysis of the model, the cache can

be redesigned.

Chapter n of this thesis provides a review of the current literature on the traee­

driven simulation technique and memory management in general. Chapter ill provides a

discussion on the design and the implementation details of the software that was

developed as part of this thesis. The testing and evaluation of the software developed are

discussed in Chapter IV. The last chapter, Chapter V, provides a summary of this thesis,

. the conclusions drawn from this study, and the suggestions for future work.

CHAPTERn

LITERATURE REVIEW

2.1 Introduction

The most accumte method of detennining the performance of a specific computer

design or the validity of a new architectural approach, is to build it [Lilja93].A complete

implementation is time consuming and expensive, and generally precludes the opportunity

for using the perfonnance evaluation for tuning the system. Therefore, it is necessary to

explore the details of the design, before building a system, using mathematical analysis

or by simulation. A primary goal in modeling a system before constructing the actual

system is to reduce the memory access time in order to reduce the execution time and

improve the perfonnance of the system. Since cache memories are often used in modem

computer systems, the study of cache size, mapping, and replacement algorithms is an

. important field in computer system performance evaluation.

2.2 Definitions

This section contains some of the basic definitions about cache memory that are

used in this thesis. These definitions are mostly based on three major references [Smith82]

[Agarwal88] [Marcovitz88].

4

5

• A trace is an address sequence obtained by executing a program and reconIing every

memory location referenced by the program dming its execution.

•Locality 0/ reference is a property exhibited by nmning processes, that processes tend

to reference storage in nonuniform, highly localized patterns.

• All data that is written by at least one processor, and read or written by at least one

other processor, is marked as non-cacheabk.

•Clumpiness means occuning close together. In this thesis, misses refer to cache misses.

Clumpincss in misses refers to misses occUlTing close, or almost overlapping.

• Pre/etch is to get data or instructions required by a program before they are actually

needed.

•Block size or line size is the amount of storage associated with an address tag.

• A cache miss in a cache occurs whenever the desired information is not available in

the cache.

• A cache hit in a cache occurs whenever the desired information is available in the

cache and the processor does not have to wait for the information.

.• A block is defined as a group of words which can be read from or written to a device.

A block in a cache can be divided into words. A block can have any number of words.

Whenever there is a miss, instead of getting one word, a whole block is brought into the

cache.

• When the CPU executes instructions that modify the contents of the current addIess

space, those changes must be reflected in main memory. Effecting the modifications

immediately to the main memory is called write-through.

,
• When the CPU executes instructions that modify the contents of the current adc;Imss

space, those changes can be initially modified in cache and later be reflected in the

memory. This is called copy-back.

•Page map table is a table used to map virtual addresses onto physical addresses.

• Multiprogramming is defined as a collection of processes nmning logically in parallel

where the CPU switches from one process to another process.

• When D101'e than one process is requesting the CPUt the operating system must decide

which one to run first. That pan of the operating system concerned with this decision is

called the scheduler and the process of assigning the CPU to jobs is called scheduling.

2.3 Storage Hierarchy

Storage hierarchy refers to arranging storage devices on the basis of access speed

and cost so that only the most impottant information, i.e., the programs and data

referenced by the CPU directly, is kept on the expensive fast devices and the rest of the

infonnation is kept on inexpensive slow devices [Leung82]. The principal reason in

.having a hierarchial memory system is to improve the effective memory access time aDd

accordingly increase the processing speed [Smith82]. For example, in a two-level memory

hierarchy system having a main memory and an auxiliary memory, the information must

first be ·moved to primary storage before it can be referenced by the CPU. Thus the

auxiliary memory has a copy of all the infonnation stored in main memory. When a copy

of data is modified in main memory, the copy of data in auxiliary memory must also be

modified using a write-through or copy-back scheme. In a two-level system, the data is

7

referenced· from the main memory. If the data that is referenced is not available in the

main memory, then the data must be transferred from the auxiliary memory to main

memory and, unless main memory is not full yet, some page in the main memory must

be replaced using one of the replacement policies such as LRU, FIFO, or MRU.

The conventional storage hierarchy, consisting of main/auxiliary memory, was

extended in the early 60's using an additional level called cache memory, which is a high­

speed storage with a much faster access time than the main memory [Smith82]. Cache

storage is extremely expensive compared to the main storage and therefmeonly small

caches are typically used.

The address space is divided into equal blocks called pages and the main memory

is divided into blocks of the same size called page frames. A page of data will reside in

a page frame of memory, and the typical size of such a block is 512 t9 lK words

[Leung82]. Data transfers in the memory hierarchy are usually done by pages, rather than

individual words or bytes, because locality of teference plays an imponant role in page

transfer..

2.4 Cache Memory

Cache memory, as used in most computer systems, is a high-speed buffer memory

interposed between main memory and the CPU. With the anival of a logical acJdmss from

the CPU, the operation of cache starts [Smith82]. At any time, cache contains most of the

information that a processor needs. Whenever a reference is made to new data and that

data is not present in cache, the old data in cache has to be replaced to give room to the

8

new data brought from main memory. So, in this context, the issues of data traffic

between cache and main memory are analogous to the issues of data traffic between

memory and auxiliary memory.

2.5 Cache Design Parameters

In uniprocessor computers, the main reason in employing a cache is to reduce the

effective memory access time. If the miss ratio is reduced, the execution time can also

be reduced. The execution time being "the sum of the time to service each cache hit plus

the sum of the time to service each cache miss" [Marcovitz88]. H the misses occur close

together (referred to as clumpiness of misses), then the time to service each cache miss

can be less. Thus cache miss ratio can be a good perfonnance metric in a single­

processor, single-cache computer.

There are four important aspects to be considered in designing a cache memory

[Smith82].

1) ImproVing the probability of finding a memory reference's target in the cache (the hit

.ratio).

2) Minimizing the miss ratio.

3) Minimizing the delay due to a miss.

4) Minimizing the overheads of updating main memory, i.e., whether to use a write­

through or copy-back to reflect the modifications.

The following subsections describe the design parameters of a cache memory

system such as cache size, block size, cache organization, misses in prefeteh, misses

9

occmring in clumps, cache coherence, cache consistency, and replacement algorithms.

2.5.1 Cache Size

The size of the cache is an important design decision that impacts the peJformancc

and cost of a cache memory system. The larger the cache, the higher the probability of

finding the required infonnation in it [Smith82]. Obviously, cache cannot be expanded

without limi~ due to its cost and physical size.

2.5.2 Block Size

A block is a group of words that can be read from and written to a device.

Selecting the block size is also an important decision that has to be considered in a

memory system design. Kaplan and Winder [Kaplan73] indicated that there are a number

of trade-offs in selecting the block size. Obviously, the transmission time for moving a

small block from main memory to cache is less compared to that for a bigger block.

Locality 'of reference plays an imponant role in making a decision about the block size.

If the block size is large, the transmission time may be large, but the process can refer

to the same block. If the block size is small, we may have to access main memory twice

instead of just once. So the designer has to decide about the block size so as to improve

the perfonnance of the system.

2.5.3 Cache Organization

Cache organization is one of the design parameters that would influence the

10

performance and cost of a cache memory system. In Older to locate an element in cache,

it is necessary to have some kind of mapping which maps a main memory addmss to a

cache location, or to search the cache associatively.

Various cache organizations such as fully associative, direct mapping, or set

associative are used in most computer systems [Leung82]. 1be fully associative cache

organization allows any page from main memory to be assigned to any page frame in

cache. Figure 2 gives a clear picture of associative mapping. For each page ofdata stored,

the COITCsponding main memory addIess is also stored. Whenever a reference is made,

all the addresses are searched so as to fmd the match for the referenced address. In direct

mapping cache organization, each page in memory can be mapped to a particular location

in cache. This indicates that direct mapping is more restrictive than fully associative cache

organization. Set associative cache organization involves organizing the cache into S sets

of E elements per seL Thus the pagc frames in a set associative cache are grouped into

a number of sets [Smith82]. Each page in main memory is mapped onto a page frame,

which belongs to a particular set in cache. If a particular page is in cachc, it must be

stored in one of the elements in the corresponding set in cache. In this kind of cache

organization, replacement policies will be made to the set of elements involved.

2.5.4 Misses in Prefetch

Prefetching is one of the popular sttategies used to get the pages in cache befo~

a particular page is required. Prefetehing is used to get the data or insttuctions befom they

are actually needed by a program, with the intention that the program might use them in

11

the near future. In prefetebing, the data that may be required in the near future is brought

into the prcfeteh buffer.

There are two situations that can cause misses to occur when using prefeteh

buffers.

1) When the processor requests either data or instructions from main memory that is not

available in cache, the processor has to wait till it gets the data; and

2) Network traffic to shared memory can increase the delay and can result in a cache

miss.

Virtual address

p d

Associative map,
7

"-
/

"-
7

,
7 P p'

"/
,

7
Real address

p Virtual page number

p' Page frame number in main memory

d Displacement

Figure 2. Associative mapping using a page map table, given the virtual address

12

2.S.s Misses Occmring in Oomps

Marcovitz discussed the clumpiness of misses, i.e., misses occuning close together for a

shared memory multiprocessor with prefctehing [Marcovitz88]. When misses aft: close

together, the miss service times can be overlapped. When misses occur, it is good if they

occur in clumps because the service time for those misses can be reduced. Hence the

prefeteh buffer has to wait for more than one miss to occur. Thus the number of misses

that occur close together can be a good performance metric for a uniprocessor computer

in designing a cache [Marcovitz88].

2.5.6 Cache Coherence

Cache coherence must be maintained when considering multiprocessor computers

with shared memory and private caches. In these cases, the cache works like a

uniprocessor's cache as long as a processor accesses data that is not shared with any other

processor, keeping a copy of the recently used locations. In a uniprocessor environment,

memory locations are shared only by a single processor, hence cache coherence need not

be maintained as the processor can read the correct value. In a multiprocessor

environment, the data in a particular location disappears from a processor's cache when

another processor writes into it [Hill90]. When memory locations are shared among

processors, cache coherence must be maintained so that each processor sees a correct

value for the same variable. Marcovitz discusses cache coherence using non-cacheable

marking [Marcovitz88]. Non-cacheable marking can help in maintaining cache coherence

in a multiprocessor environment

14

are typically used in Older to replace the data in cache [Smith82]. The LRU policy using

the stack model can be used to replace the infOrmation in cache. In the LRU stack model

algorithm, the addresses referenced by the processor are placed in a stack with the most

recently used address at the top of the stack and the least teeeDdy used address at the

bottom of the stack. When a particular address is refetenc~ a~h for the referenced

block is carried out in the stack. The referenced address is then placed on the top of the

stack and all other addresses are shifted down [Wang90].

CHAPTERm

DESIGN AND IMPLEMENTATION ISSUES

3.1 Implementation Platform and Environment

3.1.1 Sequent Symmetry S/81

The Symmetry S/81 is a powerful mainframe-elass multiprocessor system

developed by Sequent Computer System, Inc. Its shared-memory, multiprocessing

architecture consists of the following elements [Sequent90):

• A parallel architecture using multiple industry-standard microprocessors.

• The DYNlX/ptx or DYNIX V3.0 opemting system, both UNIX system pons.

• Standard interfaces including Ethernet, MULTIBUS, VMEbus nad SCSI.

The operating system of the Symmetry S/81 have been engineered to incorporate

parallel processing features. However, UNIX compatible softw~ can ron on ~e

Symmetry S/81 without modification or with slight modification. In multi-user

applications, tasks are automatically distributed to multiple processors which generally

increases system throughput and reduces response times [Sequent90].

DYNIX V3.0 supports both the Berkeley UNIX and UNIX System V command

sets, whereas DYNlXlptx is compatible with AT&T System V3.2 only [Sequent90]. The

simulation program for this thesis was developed on a Symmetry S/81 in C.

15

16

3.2 Objective

The main purpose of this thesis was performance analysis of cache using a trace­

driven simulation technique. The simulation was run using address tmees with variations

in cache size, size of a page in cache, leplacemcnt algorithms, and cache access time.

Simulation runs provided experimental JeSuits showing the performance changes (see

Section 4.2) due to variations in those panuneters.

3.3 Input Parameters

3.3.1 Trace Collection Method

Tmces can be collected using certain UNIX utilities such as the profcommand and

UiIDumpSymborrable available on the Sequent Symmetry S/81 machine using

DYNIX/ptx. These address traces serve as input to the simulation. The prof command is

used in generating addresses referenced by programs during execution. The profcommand

interpretS a profile file produced by the monitor function. Profiling is a three-step process.

.First a program is compiled with a -p option, t1\en the program is executed, and finally

the program is run to analyze the data. In DYNlX/ptx, the -p option to the C compiler

command cc arranges for calls to monitor the addresses at the beginning and at the end

of the execution and the proftle file to be written [Scqucnt90].

Some of the traces used as input to the simulation were developed at the "Parallel

Architecture Research Laboratory" of New Mexico State University [Spice94]. Gce, spice,

espresso, and eqntott were some of the ttaees that were developed on the dlx architec~

17

machine and 8ft' kept in the public directory of the ftp site traeebase@nmsu.edu

[Spice94].

3.3.2 Cache Organization

A fully associative cache organization (see Section 2.5.3 for the definitions of

various cache organizations) with page map tables and pages is used in this thesis to

study the performance analysis of the cache. At any time, the cache contains page map

tables and pages of the active jobs only. Several other cache organizations can also be

used for performance analysis of cache.

3.3.3 Replacement policies

The LRU and FIFO replacement policies using a time-stamp are used in replacing

the pages in cache in order to give room to new pages. The resident bit in the page map

table plays an important role in the implementation of replacement policies.

3.3.4 Scheduling

A round-robin scheduling with time-slicing was used in this thesis work to

simulate a multiprogramming environment The choice of a particular scheduling

algorithm can play an important role in improving the performance ofa computer system.

3.4 Design of the Simulation

A traee-driven simulation has been developed on the Sequent Symmeay SlS1

18

machine nmning the DYNIX/ptx operating system using the C programming language.

The input to the simulation is a reference string of five jobs. The tefeleDCe string of five

jobs is stored in a reference file called REFILE. Each tefelence in the reference string

contains two fields. The first field is the refe~nce type and the second field is the

memory address. Each reference in the reference file has a reference type and takes three

values 0, 1, or 2. The value 0 or 1 indicates that a tead operation needs to be pcrf~

and the value 2 indicates that a write operation has to be perfonned.

An array of records has been used to simulate the cache. Once the user inputs the

size of the cache, the array of records will be dynamically allocated according to the input

value. Figure 3 gives a picture of the cache and main memory organization used in the

simulation. A certain amount of the space in cache has been allotted for page map tables

and a certain amount of space has been allotted for pages. A~ any time, the cache contains

the p.age map tables and the pages of active jobs.~ size of the page map tables is fixed

and virtual memory is achieved through page traffic betwccn the main memory and the

cache. Figure 4 gives the data structure used in simulating the cache. Main memory

.contains the page map tables of all the jobs in the system. Wbcne~er ~ ..jQ~< .~~Q.~s

~~.!~~ ..~.copy of the pale map ~ble is brought~ the main memory~p'u~ .~ ~~._

Main memory also contains the global free frame table. This free frame table contains the

information as to which page in the main memory is either allotted or available. Once a

job terminates, all the page fnunes allotted to that job are made available for the other

jobs through the ftce frame table. Figure S gives the data structure used in simulating the

main memory.

19

4096

5120

o
1024

2048

3072

pmt1

pmt2
0

pmt1
pmt3

4
pmt2 pmt4

t"'l V
.~

~ pmt5
pmt3

"..

memory with page map
and pages of active

204

307

102

Cache
tables
jobs

Main memory with page map tables
and pages of the jobs in the system

Figure 3. Organization of cache and main memory

3.4.1 Page Map Table

Page map table is used to map vinual addresses to physical addresses. ~.._~

~dress contains a(viI1ual page number and an offset (a virtual address in general can
. '.- ~--""""""",•• "w.""",--~,-,,,,,,,,,,,,,,,,~,~,,,,,~--~,,, ...••.,... -;"-...... •.. ··~·.i_,_·····'_ ... ~·· .

contain a segment number also, but segmentation is beyond the scope of this thesis). The

virtual page number is used as an index into the page table. From the page table entry,

"' /

the pag~ frame nuihber is found. The page frame number is appended to the offset~,.~
"'-.... r ... _ ... -. ·_- ...·• ... - • _ '. _ _.", _-".,.. "",'. .,. .. ', _I'~"' •• ~1r·'''''''·W-'''

fQ.ml_~~"ppy~i~ addres_~. The exact layout of each entry in the page map table is highly

machine dependen~ but the kind of information stored is almost the same from machine

to machine. A typical page table entry has 32 bits, out of which 21 bits are allotted for

20

the frame number, 1 bit for the modified or ditty bit (to indicate if the referenced page

has been modified), 1 bit used as the resident bit (to indicate if the page is in cache), and

the remaining bits for caching. The resident bit plays an important role in several of the

page replacement algorithms.

typedef struct (
struet word pmpt[4096];
struct page ••pg;
)CACHE;

Figure 4. Data structure of cache

struct mamcm{
struct word pmt(5120];
struct page ··mpg;
struct mfmt(2000);
);

Figure 5. Data structure of main memory

3.4.2 Process Control Block

The PCB is a central store of infOrmation that allows the operating system to

locate all key infonnation about a process. When the operating system switches the CPU

among processes, it uses the save areas in the PCB to hold the information such as the

identification number of a process, the current Slate of the process, and the process'

priority. Whenever a process gets the CPU, it uses the infOrmation stored in the PCB to

21

restart the process.

The pcb typically contains the following infOrmation for each job.

1) The job id
2) When the job entered the system.
4) Number of pages allotted for the job.
S) The starting address of the job in cache.
3) The starting address of the page map table of the job in the main memory.

In this simulation program, a free PCB is obtained and allotted for a job whenever

a job enters the system, and the job's identification number is stored in the PCB.

Whenever the CPU switches among jobs, the jobs' current swus is stored in the PCB so

that, when the job gets back the CPU, the operating system can use the information stored

in the PCB to restan the process.

3.5 Implementation Details

The main input to the simulation program is a reference string (also referred to as

a trace) and the cache size. The reference file (REFILE) consists of reference strings for

five jobs~ Each reference in the reference fde is processed separately. Some of the

references used for this thesis are actual memory traces [Spicc94]. To simulate a multi-

user environment, the individual traces were interleaved.

The simulation program is menu driven. A user can input design parameters such

as cache. size and replacement policy, and obtain performance graphs generated by the

system. The simulation has been implemented using the round..robin schedtJ1ing algorithm.

In round-robin scheduling, a job is ron till the time slice exp~s, the job terminates, the

job asks for I/O, the job biggers a page fault, or the job asks for interprocess

22

commuDjcation, then the next job in the queue is given the CPU.

The cache used in this simulation contains the plge "",n tables and nstI'P_C of active
... ~ -------.'-"""-~".,,_ .• - ••. , .'"_., .' - .. " , ,_ .•._.- ,....... . ~ ,.f'O':: 'i., , t__ ,.'"" ..~~=o» ":'_.r_ _,.."" ,~~, " .'_"

jobs only. The size of the page map table and the number of pages allotted for each job
-..--.----~-,., .

are fixed and the maximum degree of multiprogranmring is four. Thus, when four jobs

are active, a copy of the four jobst page map tables are brought into the cache from main

memory. A fixed number of cache page frames ale allotted to the active jobs when the

cache is loaded Each page of each job is mapped onto a distinct page in main memory

via the page map table. Figure 6 gives the data sbUCture used for the page map table in

the simulation. The first page referenced by a job is always loaded into the cache and the

resident bit for that page in the page map table is set to 1. The rest of the pages allotted

for a job in cache are loaded upon request, using a demand page algorithm given in

Figure 7. Each time a page is loaded into the cache, the resident bit for that particular

page in the page map table is set to 1.

Once all the pages allotted for ajob become full and a new page has to be brought

in, one of the pages allotted for the job needs to be ~placed using one of the leplacement

policies such as LRU or FIFO using the time-stamp. A variable called clock is used to

indicate when a page was last referenced. A time-stamp is associated with each entry in

the page map table and is used for implementing replacement policies. When a reference

is made to a particular page and that page is not available in cache (i.e., a cache miss),

the desired page has to be brought into the cache. The main memory page frame number

is obtained from the page map table and the page is brought from the main memory and

loaded into cache. Each time a page is referen~ the corresponding page map tables is

23

adjusted.

typedef struet word(
int mapgno, residbit;
char r_w;
int time-stamp;
int Ip~ca, modifibi~

}WORDS;

Figure 6. The Data stnlcture used for page map table

In the LRU (least recently used) policy, the entry in the page map table whose

resident bit is set to 1 is checked to fmd the entry with the lowest time-stamp, and that

page is replaced. In the FIFO (fIrSt in first out) policyt the entry in the page map table

whose resident bit is set to 1 is checked to see which entry has the highest time-stamp

value, and then that page is replaced. Figure 8 gives the pseudocode of the

pagefault_handler algorithm used in the simulation. Once the job tenninates, the cache

is flushed and the main memory free frame table is adjusted accordingly.

calculated by the number of statements executed to get the page from main memory, and

the effective access time is calculated by the sum of the time to service each cache hit

plus the sum of the time to service each cache miss.

if(paqe is not in cache)
(- - --

if(nopages < nopaqesalloted)
(

paqefault_han~er();

}
else
(

obtain_mainframeno_from-PMt ();
load_cache();

Figure 7. Demand page algorithm

find the least recently usedpaqe()i
if(dIrtybit set) -
(-
)
else
(

replace_the-paqe();

Figure 8. Pagefault_handler algorithm

24

CHAPTER IV

EVALUATION OF 1HE SIMULATION

In this chapter, the evaluation of the simulation is mentioned with some

observations based on the simulation. The results obtained through the simulation are

compared against the results obtained by Marcovitz [Marcovitz88], Smith [Smith82], and

Agarwal [Agarwal93].

4.1 Test Programs

Several traces obtained from the Parallel Architecture Research Laboratory of New

Mexico State University were used to drive the simulation [Spice94]. The test programs

that were used are gee, spice, espresso, eqntott, and matrix. These traces were captured

in real time from ten SPEC89 programs running on a Sun 3/00 under SunOS 4.0.3

[Spice94]. TABLE I gives the nature and characteristics of the traces used. Sevc~

graphical user interface application programs written in C were also used to collect

address ttaees. These reference strings were also used to drive the simulation. The

programs that were used were GNU chess, lander, xboard, xpaint, and ClWM. The miss

ratios, hit ratios, delays due to a caehe misses and execution times were obtained and the

graphs were plotted to evaluate the simulation. A brief description of the programs, whose

traces were obtained to drive the simulation, are given below.

25

26

TABLE I. TRACES USED FOR nIB SIMULATION

Program
Length of the

reference string

gee 17.432.576

spice 22,609,920

espresso 13.959,168

eqntott 11,599,872

matrix 11,592,326

GNU chess 175

lunar lander game 142

xboard
132

xpaint 172

ClWM 95

,Gee Progmm: Gee is the trace obtained from the GNU C compiler. The GNU C compiler

is written in C. This benchmark "measures the time it takes for the GNU C compiler to

convert a number of its pre-processed source fues into optimized Sun-3 assembly

language output" [Jhonson94].

Spice Progmm: Spice is the trace of the analog circuit simulator written in FORTRAN

with a C interface to UNIX. This benchmark is a "general purpose circuit simulation

program for nonlinear dc, nonlinear transient, and linear ac analyses" [Johnson94].

27

Esoresso: Espresso trace is the trace obtained from a program used to minimize logic

equations in computer design. This program is written in C.

Egntott: Eqntott trace is the trace of a program that converts logic equations to troth

tables.

Matrix: Matrix trace is a trace obtained from a mattix multiplication program written in

C. This ttbenchmark also performs transposes using Linpack routines on matrices of Older

300" [JoOOso094].

GNU Chess: GNU chess is an ANSI/C version chess program developed by Stuart

Cracmft.

Lunar Lander Game: The lunar lander game is a C implementation program of the old

"lunar lander'· game seen in amusement arcades. This program was developed using

curses.

Xboard: Xboard is an XIIIR4-based user interface for GNU chess.

Xpaint: Xpaint is also a graphical user interface program developed in X-windows. The

program was developed by David Koblas used for drawing and editing figures similar

to macpainl

CIWM: CIWM (Claude's tab window manager) is a window manager for X-Windows.

28

4.2 GRAPHS

Graphs have been plotted using Harvard Graphics (Harvatd Graphics for windows

Ver 3.0, a software package developed by the Software Publishing Corporation), which

is an interactive graphics package used to plot graphs. This tool was used to plot graphs

with the hit ratio on the Y axis vs. the cache size on the X axis, or the miss ratio OIl the

Y axis VI. the cache size on the X axis. Several graphs were plotted with different cache
~,..~"",--.'U- ,_.", - \. ~, - ~ : ~.' "':, - ~. , •.,' :jIl)~_J.,,_.- ' , ' ~, "\Il-' ,.;7'I:" k,.,'~ .. _, _"'._ -,..". ~ _ ' " ,.,.-:,A.,

sizes and a fix~_~p~~g~_~_~~ ..~_12...~~.~,p~ge, using the two diffcmnt replacement
.~_._._-_.... .

policies of LRU and FIFO. Graphs were also plotted with the delay due to a miss on the

X axis and the miss ratio on the Y axis for all the test programs. From the graphs

obtained, it can be observed that the miss ratio can be a good performance metric in

designing a cache. From the graphs. it can also be observed that the perfonnance of a

system can be improved by including page map tables and pages in cache, becallse the

effective access time is less.

4.3 Observations

The graphs were plotted for all the test programs, and the graphs obtained were

compared with the comparable graphs from the literature [Agarwal94] [Marcovitz88]. The

graph in Figure 9 for the gcc trace (using the LRU policy) shows that as the cache size

increases, the miss ratio decreases; but after a certain stage, the miss ratio is not affected

even after increasing the cache size. The graph in Figure 10 for the gee trace (using the

LRU policy) shows that as the cache size increases hit ratio also increases. The graph in

Figure 11, plotted for the gee trace, shows that the delay due to a cache miss decreases

29

as the miss ratio decreases, because there ate few misses and the amount of time 10

service a miss is less. The graph in Figwe 12 shows that as the miss ratio decreases, the

effective access time also decreases because the number of times the main memory is

accessed to service a cache miss is less. The graphs (the delay due to cache miss vs. the

miss ratio and the miss ratio vs. the effective access time)W~ compared with the graphs

obtained by Marcovitz [Marcovitz88]. The graph in Figure 13 for the spice trace (with

the LRU policy) docs not show much difference in the miss ratio, even after increasing

the cache size, mainly because of the reference pattern. The graph in Figwe 17 for the

espresso trace (with the LRU policy) shows that sometimes the miss ratio decreases and

sometimes the miss ratio remains unchanged even after increasing the cache size,

depending on the behavior of the program in execution. We can observe the same changes

even in the hit ratio vs. the cache size. The graphs plotted W~ also compared with the

results obtained by Agarwal [Agarwal93]. The graphs in Figwes 14, IS, and 16 plotted

for the spice trace, in Figures 18, and 19 plotted for the espresso trace, and in Figures 20,

21, and 22 plotted for the GNU chess trace can be analyzed in a similar way. So, by

. having the page map tables and the pages in cache, the effective access time is reduced.

If effective access time is reduce~ the overall execution time is also reduced and these

results can be used in designing a cache.

0.715

0.705

.9 0.695..-as
'-
..-
:E

0.685

0.675

30

o.665 "- r........i~I._.I~l.._....ll.._....lr_...ll..._...l'___ll._._l

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 9. Hit ratio vs. cache size for gee (LRU policy)

0.335 r-----------------.....

0.315

.2..-eu
C-

(I)

.!!
E

0.295

O.275 L-L....-JL........lL......J~---'---'--..Io--"--'---'----a.---a.---""------'-~

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 10. Miss ratio vs. cache size for gee (LRU policy)

5600

5400

U)

.~

e S200
as
o.-

4600

31

«00 "-.-..._...r.---...I__--'-_..a..---.a._~_.a__~....
0276 0.28 0.284 0.288 0.292 0.296 0.3 0.304 0308 0.312 0.316 0.32 0.324

miss ratio

Figure 11. Miss mtio vs. delay due to a miss for gee (LRU policy)

5400

5100

....«
w

4800

4500

420016 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 12. Cache size vs. effective access time for g~ (LRU policy)

0.106

0.098
0:;::
ca
e-
el)
eI)-e

0.09

0.082

0.074~~~""'-01""---'~'"--~~~---....---....~----..--..--..---..
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 13. Miss UltiO vs. cache size for spice (LRU policy)

0.93,.-------------------..

0.92

0.91

9
ca
'-
.-
.E

0.9

0.89

0.88 "-.- ~---~ --..I.......

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 14. Hit ratio vs. cache size for spice (LRU policy)

32

1900 ,..-------------------....

33

1600

en
enOs
eu
0....

1300CD
:::s
"C
~
eu
(i)
'"0

1000

700_~ __'_ __..10_....L_ __'__ __L._ __'__--'

0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12

miss ratio

Figure 15. Miss ratio vs. delay due to a miss for spice (LRU policy)

1700

1500

.... 1300
«w

1100

900

70016 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 16. Cache size vs. effective access time for spice (LRU policy)

0.5

.9 0.48Cii
e-
el)
II)

IE

0.46

0.44-~Aoo.-~a.-................~................~........................~

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 17. Miss ratio V5. cache size for espresso (LRU policy)

0.56..--------------------.

34

0.54

.52
n;
L.. 0.52

0.5

0.4816 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 18. Hit ratio V5. cache size for espresso (LRU policy)

8700

8400

...«
w 8100

7800

7500__"'--oA--"'--............oA--............~.-...-.....-__........a.--.......

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 19. Cache size vs. effective access time for espresso (LRU policy)

3S

0.23

0.21

9.....
«S
c........
.2 0.19

0.17

0.1516 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 20. Hit ratio vs. cache size for GNU chess (LRU policy)

0.84

,2
0.81

as
'-
(I)
(I)

's

0.78

36

0.75 ~,-,,-'-"-~""""""'''''''~'''''''''''''--''''''''''''6.-'---''--''--L....I
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 21. Miss ratio vs. cache size for GNU chess (LRU policy)

4800

4600

.woo
~
w

4200

4000

3800,L.
6

-2L..
O

....J
2

L...
4

...J28~32---136--"40--"44-4""8-5""2-5""'6-6""'O-64..A..-.6""8-7""'2-7"6-8"'-O-84"""'88

cache size

Figure 22. Cache size V5. effective access time for GNU chess (LRU policy)

CHAP1ER V

SUMMARY AND FU1URE WORK

5.1 Summary

In Chapter I, the signifICance of the simulatio~ the introduction, and the main

objective of the thesis was stated. Chapter n presented a general introduction to cache

memory. The topics covered in this chapter consisted of the basic definitions to

understand cache design, storage hierarchy, and some of the imponant cache design

parameters such as cache size, block size, cache organization, replacement policyt cache

coherence, snoopy cache mechanis~ and cache consistency. Chapter mdiscussed the

implementation issues and traee-driven simulation. Section 1of OIapter m addressed the

implementation platfonn and the run-time environment Oaapter m also contains the trace

collection method, a brief description of page map tables, and other implementation

details. Chapter IV discusses the evaluation of the simulation, the test prograrm used, and

the graphs obtained.

The main objective of this thesis was to develop a simulation package for cache

memory using a ttaee-iJriven simulation technique. This package can be used to design

a system and improve the perfonnancc of an existing system. 1be results of this

simulation were compared with the results obtained by Marcovitz [MaJcovitz88], Agarwal

37

[Agarwal93], and Smith [Smith82].

5.2 Future Wark

The future versions of this package should remove one or more restrictions

mentioned below. The size of page map tables used in cache and main memory am fixed

in the current implementation. The page map table size can be varied and allocated

dynamically. A fIXed number of page frames were allotted for each active job in cache.

The number of page fnunes allotted for each job can be varied. Several other replacement

algorithms such as second chance replacemen~ most recently used (MRU), and least

frequently used algorithms can also be used as page replacement policies. Several other

scheduling algorithms like FIFO (fIrSt in first out), SJF (shonest job fIrSt), and priority

scheduling can also be used.

38

REFERENCES

[Agarwal88] Anant Agarw~ John Hennessey, and Mark Horowitz, "Cache
Performance of Operating System and Multiprogramming Workloads", ACM
Transactions on Computer Systems, Vol. 6, No.4, pp. 393-431, November
1988.

[Agarwal93] Anant Agarwal and Steven D. Pudar," Column-Associative Caches: A
Technique for Reducing the Miss Rate of Direct-Mapped Caches", Proce~dings
01 the 20th Annual International Symposium on Computer Architecture, Los
Alamitos, CA, USA pp. 179-190, 1993.

[Hill90] Mark D. Hill and James R. Larus, "Cache Considerations for Multiprocessor
Programmers", Communications of the ACM, Vol. 33, No.8, pp. 97-102,
August 1990.

[Johnson89] Eric E. Johnson, "Working Set Prcfetehing for Cache Memories", ACM
Computer Architecture News, Vol. 17, No.6, pp. 37-141, December 1989.

[Johnson94] Collen S. Schieber and Eric E. Johnson, "RATCHET: Real-time Address
Trace Compression Hardware for Extended Traces", ACM Per/ormtJllCe
~al""tion Reviews, Vol. 21, No.3, pp. 22-32, April 1994.

[Kaplan73] K. R. Kaplan and R. O. Winder, "Cache-Based Computer Systems",
IEEE Computer, Vol. 6, No.3, pp. 30-36, March 1973.

.[Uung82] Yuk-Hoi Leung, "A Variable Cache Simulation System", Project Reportlor
Masters Degree, University of Southwestern LDuisian~ S7 pages, May 1982.

[Lilja93] David J. Lilja, "Cache Coherence in Large-Scale-Memory Multiprocessors:
Issues and Comparisons", ACM Computing Surveys, Vol. 2S, No.3, pp. 303-
338, September 1993.

[Lovett93] Tom LDvett, Sequent Computer Systems, Inc., Personal Communication,
June 1993.

[Marcovitz88] David Michael Marcovi~ "A Multiprocessor Cache Performance
Mettic", Technical Repon CSRD Rpt. No. 813 (UILU-ENG-88-8011), Centre

39

for Supercomputing Research and D~~lop~nt,University of Dlinois. Umana.
IL, August 1988.

[Sequent90] DYNIXlptt User's Guide, Sequent Computer Systems, Inc., 1990.

[Smith82] Alan Jay Smi~ "Cache Memories", ACM Computing Swveys, VoL 14,
No.3, pp. 228-270, September 1982.

[Spicc94] An International Trace Archive, NMSU TrQCebas~, New Mexico Stale
University, Lascruses, NM, 1994.

[Stenstrom90] Per Stenstrom, " A Survey of Cache Coherence Schemes for
Multiprocessors", IEEE Computer, Vol. 23, No.6, pp. 12-24, June 1990.

[Stunkel91] Craig B. Stunkel, Bob Janssens, and W. Kent Fuchs, "Addlcss Tracing for
Parallel Mechanisms", IEEE Computer, VoL 24, No.1, pp. 31-38, January
1991.

[Wang90] Wen-Hann Wang and Jean Loup Baer, "Efficient Trace-Driven Simulation
Methods for Cache Perfonnance Analysis", ACM SIGMEfRlCS: PerformtJnC~

Evaluation Review, Vol. 18, No.1, pp. 27-31, May 1990.

APPENDICES

41

APPENDIX A

GLOSSARY AND TRADEMARK INFORMATION

assembly level

address tag:

Cache Cherence:

compiler based
address tag:

gnuplot:

intenniss time:

object level
address tag:

. pixie:

One of the code insertion techniques in which a program is

modified at the assembly level to generate addresses.

Coherence is correctness; cache coherence means caches must be
able to see the~ value for the same variable when a memory
location is shaJed by different processors so as to maintain the
correct execution of programs.

One of the code insertion techniques in which a program is modifi­
ed during compile time to generate addresses referenced by the
processor.

An interactive, command-driven function plotting program.

The time between two misses on a single processor.

One of the code insertion techniques (sometimes called as link time
code modification) in which a program is modified during the
link time for generating address traces.

A program used to capture traces teferenccd by the processes
during program execution.

TRADEMARK INFORMAnON

DEC is a registered trademark of Digital Equipment Corporation.

DYNIX, DYNIXlptx, Sequent, and Symmetry are registered trademarks of the Sequent
Computer System, Inc.

UNIX is a registered trademark of AT&T.

42

APPENDIX B

PROORAM LISTING

/**
DESCRIPTION :

This program is used to study the perfo~nce of cache. A cache with
page map tables and pages has been used in the stmulation. At any
instance, cache contains page map tables and pages of active jobs only.
Certain amount of storage in cache is reserved for page map tables and
certain amount of storaqe is used for pages. The jobs table gives the
info~tion of the startinq address of the job in cache. Each entry in
the page map table contains the page frame number, resident bit,
modified bit, location of the first paqe in cache, and time stamp. The
replacement policy used is LRU and FIFO to replace the page to give
room to the incoming page. The following information is obtained from
the simulation. The cache miss ratio, the hit ratio, effective access
time, and the delay due to a miss.
***1

linclude<stdio.h>
finclude<stdlib.h>
finclude<unistd.h>
finclude<strinq.h>
tinclude<malloc.h>

'define WORD 512
'define PMTSIZECA 8

'define PMTSIZEMEM 10

tdefine PMTSIZE 1024
tdefine JOBSTOBEDONE 33

. tdefine MAXJOBS 200
fdefine CACHEMISS 55

'define LOADED 2

Idefine CACHEFULL -1
'define ZZZ 99999

'define TERMINATED 99

Idefine TIMEOVER 44
tdefine TRUE 1
fdefine FALSE 0
fdefine AA 16807.0

fdefine RR 2836.0

/* size of the each page *1
/* the storage space for page map table in
cache*1
/* the storaqe space for page map table in
memory*1
1* size of the page map table *1
1* to check if the jobs are done */
1* max~ number of jobs */
1* a global variable to check if it is a
cache miss*1
1* a global variable to check if the
page map table of the job is loaded
successfully*1
1* a check to find if the cache is full */
1* variable used for random number
generator*1
1* a check to find if the job haa
terminated *1
/* check to see if the time has expired·/
/* a boolean variable for true or false*/
1* a boolean variable for true or false*/
1* a variable used for random number
generator*1
/* a variable used for random number

43

'define MM 2147483647.0

ldefine QQ 127773.0

generator*!
1* a variable used for random number
generator*/
/* a variable used for random number
generator*/

44

/***
The structure used for cache,main memory,p&ge map table, pcb, list of jobs
in the system, list of jobs in the active queue.
***/
/* structure of a pcb */
struct pcb info{

int lid;
int jb size;
int start time;
int end tIme;
int pccounter;
int base addrcac;
int ba8e-add~;

int lfirst--P9cai
int nopaqes;
int pcb f1g;
int jb status;
); -

/* structure declaration for the word */
1* each entry in page map table contains the follovinq fields

1. The main memory paqe frame number
2. The resident bit to indicate whether the page is present

in cache;
3. The modified bit to indicate that the page has been modified

since it has been last referenced.
4. The time stamp used for the replacement policy.
5. The location of the paqe in cache.

*/
typedef struct vord{

int mapaqenoi
int residbiti
int modifibiti
int time stamp;
int lpg_ca;
char operi
)WORDS;

/* structure declaration for the paqe*/
typedef struct paqe(

struct word wrd[512];
)PAGE:

1* structure declarations for cache */
typedef struct cachet

struct paqe **pq;
struct word pmpt[4096]i
)CACHE:

struct arr(
int flaq,no:
int refno,index:
}i

typedef struct pmt {
int base~taddr,pmt_flaq;

int max;
}PMTi

struct vrdbuf {
int offst,ref no;
int te:r:mflg: -
};

1* structure for jobs table to give the no paqes allotted */
struct jobs tablet

int jbflq,liat id;
int nopagesallt;
)i

/* structre for page list */
struct pg_list{

int pgflq;
} ;

struct temperory(
struct wrdbuf wrdbf[1024];
int bUffjid:
} :

1* structure to collect info~tion about all the jobs */
atruct perf(

int cache hit;
float cache hitratio;
float cache-mdssratio;
int cache mIss;
float hit-time;
float mdss time;
float update time;
float cupaqe-time;
float page tIme;
int no; -
int job id;
); -

/* structure for free frame table in main memory */
struct fft(

int fftflq;
) ;

/* structutre of main memory with free frame table and page m.p tables
*/
struct mamem{

struct page **mpq;
struct fft fmt[lOOO]i
struct word pmt(5120]i
) ;

int loadinq_cache();
int alljobs_loaded():
int obtain~tma();

int obtain ind();
int obtain:pcb():
void adjust_jblist()i
float get_random_no();
int get job();
int run:job_timeslice();
int get_free-P9cache()i

45

46

struct mame.m *mem;
struct pcb_info pcblMAXJOBS];
struct perf perf [MAXJOBS] ;
struct arr arry[1024];
struct pmC ca~arry[10];

struct jobs table list[MAXJOBS];
struct P9_1Ist list-P98S [1200];
struct temperory buffer[MAXJOBS];
struct pmC ma.JXDtarry lMAXJOBS] ;

/* some of the global variables used */
int temp[25]:
int cachesize - 0;
int numpagee cache - 0;
int perfcnt =0:
double seed - 1.0;
int buffcnt - 0;
int clock tick - 1;
int numpg-frames - O,blksize - 0;
int pc}_size - O,pmtendaddr ca - O,pmtendaddr IDa - 0;
float delay - O.O,hitaer tIme - 0.005; -
CACHE *mycache; -
FILE *fpl;
/**/
main ()
(

int choice,i - O,j • 0;
int time slice - 0:
int base-addrca - O,base addrma - O,pmt cntma - 0;
int statcnt - O,pmt cntca - O,numpme - O,config_no - 1;
float exec time - O~O;
int mem:size - 0;
char policy[6],schedulinq[lO];

/* the menu used to drive the simulation */
while (1)

(
system("tput clear"):

printf("\n\n\n\n\n\n\n\nR
);

printf(" **\n"):
printf(" * MENU *\0"):
printf(" * ------------ ----. -- *\n");
printf(" * *\n");
printf(" * ENTER 0 -> ENTER THE CACHE SIZE *\nW

);

printf(W * ENTER 1 -> PERFORMANCE ANALYSIS *\n");
printf(" * ENTER 2 -> TO END THE SESSION *\nW

);

printf(" * *\n");
printf(" **\n");
printf(W\n PLEASE ENTER NOW YOUR CHOICE -> W):

scanf("\d*cw , 'choice);
system(Wtput clear");
switch (choice)

(
case 0: confiq_no++:

printf("\n CONFIGURATION NO
clock tick - 1;
perfcnt - 0;
buffcnt - 0;
~ize - 512000;
pc} size - 512;

'dW,confiq_fto)i

time slice - 0;
cacheaize - 0;
base adclrma - 0;
base-addrca - 0;
blksIze - 512;
numpages cache - 0:
statcnt -; 0;
numpg frames - 0;
printfC-\n ENTER THE CACHE SIZE NOW-);
scanfC-'d",'cachesize);

~et(Cstruct pcb info *)pcb,NULL,MAXJOBS *
sizeof(struct pcb Info»;
~et«struct arr *)arry,NULL,1024 * sizeofCstruct
arr»:
~et(Cstruct temperory *)buffer,NULL,MAXJOBS *
sizeof(struct temperory»:

initialize-P8rfo~nce();

me~et«struct pmt *)ma~tarry,NULL,MAXJOBS *
sizeof(struct pmt»;
~et«struct pmt *)ca~tarry,NULL,10 *
sizeof(struct pmt»;
~etC(struct jobs table *)list,NULL,MAXJOBS *
sizeof(struct jobs table»;
~et«struct pg_Iist *)list-Pges,NULL,1200 *
sizeof(struct P9_1ist»j

printf("\n ENTER THE REPLACEMENT POLICY AS LRU OR
FIFO"):
scanf("'s",'policy);

strcpy(schedulinq,"RR");
numpaqes_cache - (caches!ze)/(P9_size) - PMTSIZECA;
cachesize - cachesize/S12;

printf("\n CACHE SIZE IS
\d",caches!ze);
printf("K");
printf("\n NUMBER OF WORDS/PAGE IN CACHE
\d",blksize);
printf("\n NUMBER OF PAGES IN CACHE
'd",numpaqes cache);
printf("\n REPLACEMENT POLICY
's",policY)i
printf("\n SCHEDULING
's",schedulinq)i
printf("\n"):

1* main memory size is in bytes */
numpq_frames - «~ize)/pq_size) - PMTSIZEMEMi

pmtendaddr_ca - (PMTSIZECA) * 512;
pmtendaddr_ma - (PMTSIZEMEM) * 512:
for (pmt_cntma - 0; pmt_cntma <-
(PMTSIZEMEM)/2;pmt_cntma++)
(

IDaJXlltarry(pmt_cntma] .pmt_flaq - 0:
maJXlltarry[pmt_cntma].base~taddr­
base addrma:
base:addrma - base addrma + 1024;

47

48

numpmt - (PMTSIZECA I 2) - 1;
for(~_cntca - O;pmC_cntca <- n~;pmC_cntca++)
(

ca~arry{pmC_cntca].pmC_flaq - 0;
ca~arry(pmC_cntca].baae-p-taddr­
base addrca;
base:addrca - base_addrca + 1024;

mycache - NULL;
mem - NULL;
/* allocatinq memory to cache dynamically */
mycache - (struct cache*)m.lloc(sizeof(struct cache»;
if(mycache -- NULL)
(

printf("\n MEMORY ALLOCATION ERROR");
exit(l);

)
/* allocating memory and initialising members in cache
*/
allocatemem initialise cache():
/* allocating memory for main memory */

mem - (struct mamem*)malloc(sizeof(struct mamem»;
if (mem -- NULL)
(

print£("\n MEMORY ALLOCATION ERROR-):
exit(l)i

allocatemain_initialise():

/* making page map tables for the jobs in the system
*/
memory module();
forCi =O;i <- buffcnt;i++)
(

list[i].jbflq - 1;
list[i].list_id - buffer[i].buffjid;

)
printf("\n JOBS STARTED EXECUTION");
if (strcmp(schedulinq, "RR") -- 0)
(

printf("\n ENTER THE TIME SLICE");
scanf("'dW,'time slice);
printfC"'n TIME SLICE: \d",time_slice);
round_robin_scheduling(time_slice,policY)i

}
else

printf("\n ERROR IN TYPE OF SCHEDULING"):

break:
case 1: printf(W\n PERFORMANCE STATISTICS"):
statcnt - Ii
for(i - O;i<- perfcntii++)
(

exec time - (float) (perf[i].cache hit) +
perfTi] .page_time: -
printf("\n JOB ID : \dw,perf[i].job_id);
printf("\n CACHE HITS :
\4.3£", (float) (perf[i].cache hit)/(float)
(perf[il.cache_hit + perf[i]:cache_mdss»;

49

print£(-'n CACHE MISS :
'4.3£-, (float) (perf[i].cache miss)/(float)
(perf[i].cacbe hit + perf[i]~cache miss»;
printf(-\n DELAy T~ : -
'4.3£-, (perf(i].page time»;
printf(-'n EXECUTION-T~ : '4.3f-,exec time);
printf(-\n UPDATE TLME : -
\f·,perf[i].update time);
if«statcnt , 2) ~ 0)

getchar();
printf(W\n\nW);
statcnt++;

)
break;

case 2: exit(l);
break;

default: printf(W\n\n\n\n\n\n
CHOICE. \n");

break;

for(i • Oii < (numpaqes_cache)ii++)
(

free(mycache->pg[i]);

INVALID

}
free(mycache->pg);
memaet«struct word *) (mycache->pmpt),NULL,4096 *
s!zeof(struct word»;
free(mycache);
for(i • O;i < numpq framesii++)
(-

free(mem->mpq[i]);
)
free(mem->mpq);
memaet«struct word *) (mem->pmt),NULL,S120 *
sizeof(struct word»;
memaet«struct fft *) (mem->fmt),NULL,lOOO *
sizeof(struct fft»i
free(mem)i
fclose(fpl);

printf("\n\n\n");
printf(" PRESS <enter> TO CONTINUE -> ");
qetchar()i
}

}
/***
FUNCTION : initialize-P8rformance()
PURPOSE : This functIon is used to initialize the performance variables
***/
initialize~rformance()

(

int i - Oi

for(i - Oii < MAXJOBSii++)
(

perf[i].cache hit - 0;
perf[i].cache-hitratio - 0.0;
perf(i].cache:missratio - 0.0;
perf[i].cache_miss - 0;

}

perf[i].hit time - 0.0;
perf[i].miss time - 0.0;
perf[i].update time - 0.0:
perf[i].cupage-time - 0.0:
perf[i].page tIme • 0.0;
perf[i].no ·-0:
perf[i].job_id - 0:

50

}
1***
FUNCTION : allocatemem initialise cache()
PURPOSE : This function is used to allocate memory dynamically to

cache and initialise the cache
***/
allocatemem initialise cache()
(- -

iot i - O,k - 0;

/* initialisinq paqe map tables */
for(i - O;i < pmtendaddr ca;i++)
(-

mycache->pmpt[i].mapaqeno - -1;
mycache->pmpt(i].residbit - 0;
mycache->pmpt[i] .modifibit - 0;
mycache->pmpt(i].time_stamp - -1;
mycache->pmpt(i].oper - , ';
mycache->pmpt{i].lpq_ca - -1;

/*allocatinq memory dynamically to the paqe*/
mycache->pg - (PAGE **)malloc(numpaqes_cache * sizeof(PAGE *»;
if(mycache->pg -- NULL)
(

printf("\n MEMORY ALLOCATION ERROR");
exitCl);

}
for(i - 0:1 < numpaqes_cache:i++)
(

mycache->pg[i] - (PAGE *)malloc(sizeof(PAGE»;
if (mycache->pg(i] -- NULL)
(

printf("\n MEMORY ALLOCATION ERROR");
exit(l);

}
for(k - O;k < pg_size;k++)
(

mycache->pg[i]->wrd[k).mapaqeno - -1;
mycache->pg[i]->vrd[k).residbit - 0:
mycache->pq(i]->vrd(k).modifibit - 0:
mycache->pg(i]->wrd[k).time_stamp - -1:
mycache->pg[i]->vrd(k].oper - , 'i
mycache->pg[i]->wrd(k].lpg_ca - -1;

Sl

}

/**••*******
FUNCTION : allocatemain initialise()
PURPOSE : This function is used to initialise the main memory

***/
allocatemain initialise()
(-

int i O,k - 0;

for(i - O;i < pmtendaddr_maii++)
(

mem->~[i].mapageno - -1;
mem->pmt[i].residbit - 0;
mem->~[i].modifibit- Oi
mem->pmt[i].time stamp - -1;
mem->pmt [i] .oper-- , ';
mem->pmt[i].lpq_ca - -1;

)
/*allocating memory dynamically to the page*!
mem->mpg - (PAGE **)malloc«numpg frames) * sizeof(PAGE *»;
if (mem->mpq -- NULL) -
{

printf("\n MEMORY ALLOCATION ERROR")i
exit(l);

for(i - Oii < numpg_frameSii++)
(

mem->mpg[i] • (PAGE *)malloc(sizeof(PAGE»;
if (mem->mpq[i] -- NULL)
(

printf("\n MEMORY ALLOCATION ERROR");
exit(l)i

/*allocate memory dynamically to the word*!
for(k - Oik < pg_sizeik++)
(

mem->mpg[i]->wrd[k).~paqeno - -1;
mem->mpg[i]->wrd[k].residbit - 0;
mem->mpg[i]->wrd(k].modifibit - 0;
mem->mpg(i]->wrd(k].time_stamp - -1;
mem->mpg[i]->wrd(k].oper - , 'i
mem->mpg(i]->wrd[k].lpg_ca - -1;

)
/***
FUNCTION : get random no()
PURPOSE : This functIon returns a pseudo random number generator

qreater than or equal to zero and less than 1.The maxtmum
int value taken is 32767

***/
float get_randoM_no()
{

seed - test + MMi

52

double hi,lo,teati

hi - (int) (seed/QQ):
10 - seed - QQ * hi;
test - AA * 10 - RR * hi:
if(test > 0.0)
(

seed - test;
)
else
(

)
return (seed/MM) i

}

1***
FUNCTION : random(n)
PURPOSE : This function returns an inteqer between 0 and n-1.
***/
random(n)
int n;
(

double m;

m - get random noel;
n - «iot) (m ·-32767.0» , ni

return(n);
)
1***
FUNCTION : memory module ()
PURPOSE : This function is used to make the page map tables of the

jobs and load the jobs into the system
**1
memory module ()
(-

char 5[80];
int pmt_index - O,pcb_index - 0;
int flaq,rnd - O,lpgno - 0;
char lopgno[S],type(S];
int typ,count - O,j_id - O,ent - 0;
int max - O,loca - O,tempaddr - 0;

/* openinq the file for processinq */
fpl - fopenCwrefstr","r");
if(fpl -- NULL)
(

printf(ft\n ERROR OPENING INPUT FILE");
exit(l);

/* obtain the paqe map table */
pmt_index - obtain~tma();

/* obtain a free pcb for the job */
pcb_index - obtain-pcb();

fgets(S,80,fpl);

sscanf(S,"'a 's-,'type,'lopgno);

/* storing all the references in a buffer */
if(strcmp(type,·JID") -- 0)
{

Ipgno - atoi(lopgno);
buffer(buffcnt].buffjid - Ipgno;

/* mapping the logical addresses to the paqes in main memory */
j_id - IpgnOi
fgets(S,80,fpl)i
sscanf(S,·'s %s·,&type,&lOpgnO)i
Ipgno - atoi(lopgno);
typ - atoi(type):
max - 0;
/*numpq_frames - (numpq_frames - PMTSIZEMEM) + 1:*/
while(!(feof(fpl»)
(

~et«struct arr *)arry,NULL,1024 * sizeof(struct arr»i
ma~tarry(pmt_index].~_flaq- 1;
pcb [pcb_index] .pcb_flg - 1;

1* storing the base address of the paqe map table in the
pcb */
pcb[pcb index].base add~­
ma~tarry[pmt_indei].base~taddr;
pcb[pcb_index].jid - j_id;
perf (perfcnt] .job id - j idi
max - 0: --
tempaddr - pcb [pcb_index] .base_add~;
flag - TRUE;
while«strcmp(type,"JID·) !- 0) " (flaq -- TRUE»
(

if (typ -- 3)
(

fgets(S,80,fp1):
sscanf(S,·'s's",&type,&lopqnO)i

}
Ipqno - ato!(lopqno);
typ - atoi(type);
buffer(buffcnt].wrdbf[cnt].ref_no - IpqnOi
cnt++;
rnd - random(numpq_frames-l);
while(mem->fmt[rnd].fftflg -- 1)
(

rnd - random(numpq_frames-l);
count++i
if(count >- 10000)
(

count - 0:
seed - seed + 1.0:
rnd - random(numpg_frames-l);

}
) .

if(arry(lpqno).flaq !- 1)
{

loca - tempaddr + Ipqno:
mem->pmt[loca].mapaqeno - rnd;
arry(lpgno].flaq - 1;
mem->fmt[rnd].fftflg - 1;

53

54

else
{

loea - tempaddr + Ipgno;
}

ifCCtyp -- 0) II (typ -- 2»
~~(loc.].oper - 'r';

else
mem->pmt[loca).oper - 'v';

/* making the flag of the occupied page to 1*'
if (lpgno > (max)
(

- max;
max - IpgnOi
pcb[pcb_index].jb_size

)

Ipgno - 0:
fgets(S,80,fpl);
sscanf(S,"%s %s",'type,&lopgno);
flag - TRUE;
if (strcmp(type, "JID") -- 0)
(

)
if(feof(fp1»
(

cnt - cnt - 1;
buffer[buffcnt].wrdbf[cnt].termflg - 1;

flaq - FALSE;

)

i£(£lag -- FALSE)
(

ent - cnt - 1;
buffer[buffcnt).wrdbf(cnt].termflq - 1:
break;

)
else
(

lpgno - ato!(lopgno);
j_id - IpgnOi
pmt index • obtain~tma()i

if(J id -- 1)
- printf("'n STOP");

pcb_index - obtain-pcb();
buffcnt++:
buffer(buffcnt].buffjid - Ipgnoi
perfcnt++i
memset«struct arr *)arry,NULL,1024 * sizeof(struct
arr»;
fgets(S,80,fpl)i
sscanf(S,·%s %s",'type,&lopgno):
cnt - 0;
printf("\n\n");

}
/**
FUNCTION loadinq cache()
PURPOSE This function is used to load the paqe map table into cache

and the page frames are allocated to the jobs dependinq on
the size of the job.

55

.*/
int loading cache(id)
int idi -
(

int i - O,prid - O,loca - 0;
int jd - O,ref - O,pcin - O,addr ma - 0;
int main_no. O,paqe_fto, fr....P9 - O;num - 0:
int locind - O,locca - O,sum - O,locca_addr - 0;

prid - idi
for(i - Oii < MAXJOBSii++)
{

if(pcb(i].jid -- prid)
break;

}

/* finding the pcb for the job given the job id*1
pcin - i;

for(i - Oii <- buffcntii++)
(

if(buffer[i].buffjid -- id)
break:

}

jd - ii
/* address of the job in the main memory *1
addr_ma - pcb(pcin].base_add~;

/* the available free pages in cache is obtained */
fr-P9 - get_free-P9cache();
list-P98s[fr-P9].pqflq - 1;
pcb[pcin].lf{rst-P9ca - fr-P9i

/* fixed number of page frames being allotted to each job */
pcb[pcin).nopages - numpages_cache/4i
num - pcb(pcin].nopag8si
num - num + fr,J>9i

1* setting the pages that have been allotted to each job as
occupied*/
for(i - fr,J>9ii < numii++)
(

list-Pges[i].pqflg - 1i
}
Iocind - obtain-PMtca()i

1* if there is no free page map table available then
the cache is returned full */
if (locind -- -1)

return(CACHEFULL):

loca - addr ma + ii
locca - locca addr + i;
mycache->pmptTlocca].~paqeno-

else
(

1* if a free paqe ~p table is available then the page map
table is loaded into cache */

Iocca addr - ca~arry[locind].base~taddr;

pcb[pcin].baseTaddrcac - locca_addri
c8-pmtarry[loc1nd].pmt_flaq - 1;
for(i - O;i < 1024:i++)
{

56

~~[loca) ...pageDo;
mycache->pmpt[locca).reaidbit ­
~>pmC[local.reaidbit;

mycache->pmpt[locca).modifibit ­
mem-~[loca].modifibit;

mycache->pmpt(locca).lpg ca ~ mem->pmC[loca).lpg Cai
mycache->pmpt[locca].ttmi stamp - -
~>pmC(loca].ttme stamp:
mycache->pmpt[loccaT.oper ~ ~~[loca).oper;

ref - buffer[jd].wrdbf[O].ref no;
main_no - mycache->pmpt(pcb(pcin].baae addrcac +
ref].mapaqeno; -
mycache->pmpt[pcb(pcin).base addrcac + ref].residbit - 1:
mycache->pmpt[pcb[pcin].baae-addrcac + ref).lpq_ca - fr-P9i
mycache->pmpt(pcb[pcin).base-addrcac + ref].time_stamp -
clock tick; -
clock-tick++;
for(i-. O;i < 512;i++)
(

mycache->pq[fr-P9]->wrd(i].mapaqeno ­
mem->mpq[main_Do]->wrd(i].mapaqenoi
mycache->pq(fr-P9]->wrd[i].reaidbit ­
mem->mpq(main no)->wrd[i).reaidbiti
mycache->pq[fr-P9]->vrd[i].modifibit ­
mem->mpq(main no]->vrd[i].modifibit;
mycache->pq[fr-P9]->wrd[i].time_stamp ­
mem->mpq[main_Do]->wrd(i).time_stampi
mycache->pq[fr-P9]->wrd[i].oper ­
mem->mpq[main_no]->wrd[i).oper;
mycache->pq[fr-P9]->wrd[i].lpq_ca ­
mem->mpg(main_no]->vrd[i].lpq_ca;

)
return (LOADED) ;

)
/**
FUNCTION : round robin scheduling()
PURPOSE : This function is used to run the active jobs in a round

robin fashion.
**/
round robin schedulinq(rrslice,repolicy)
int rrslice;
char repolicy[7];
(

int cae reply • O,cpu_reply - 0:
int actIcnt - O,flq,actcnt - 0:
int i - O,jb_ind - O,jb_id - O,jld - 0;
int j id - 0, jobs cnt - O,NOMOREJOBS,numjobs - O,ALLJOBSLOADED;
int ALLJOBSDONE,deq multi - 0;
int pcbind - 0; -
struct jobs_table active_que(MAXJOBS)i

NOMOREJOBS - TRUE;
numjobs - buffcnt;
jb_ind - qet_job(numjobs);

/* get the first job in the system */

)
else

51

jb_id - list[jb ind].liat id:- -
ALLJOBSLOADED - FALSE·• I

wh11e(NOHOREJOBS -- TRUE)
(

1* loadinq the jobs until cache is full */
cae_reply - loadinq cache(jb id);7hile «cac_reply !--CACHEFULL) " (ALLJOBSLOADED !- nUE))

if(cac reply -- LOADED)
(-

deq multi++;
actIve_que(actcnt).list_id - jb_id;
active_que[actcnt].jbflg - 1:
active_que(actcnt].nopaqesallt++;
actcnt++;
list(jb_ind].jbflg - 0:

list[jb_ind).jbflq - 1:

jld - alljobs loaded():
ifCjld -- -2)-

ALLJOBSLOADED - TRUE;
else

ALLJOBSLOADED - FALSE;

jb_ind - get_job(numjobs)i
jb id - list(jb ind].list id;
cae_reply - loadinq_caChe(jb_id)i

)
acticnt - actcnt;
j_id - active_que(O).list_id;
active_que[actcnt].list_id - j_id;

/* the job is run until time slice expires */
cpu_reply -
run job timeslice(rrslice,j id,repolicy,active que);
actIve que[actcnt].nopaqesaIlt - active que[O]7nopaqesallt;
while(cpu reply !- TERMINATED) -
(-

for(i - Oii < actcnt:i++)
(

activ8_que(i].list_id - active_que(i+l].list_idi
active que(i].nopagesallt ­
active:que[i+l].nopaqesallt;

)
active_que(actcnt).list_id - 0;
active que[actcnt].jbflq - Oi
j id ·-active que[O].list id;
active_que[actcnt].list_id - j_id;
cpu reply ­
run~job_timeslice(rrslice,j_id,repolicy,active_que);

act1ve que[actcnt].nopaqesallt •
active:que[O].nopagesallt:

)
printfCW\n TERMINATED JID : \d -,j_id);
active_que[O].list_id - Oi
active que[O].jbflq - 0:
for(i ; l:i < actcnt:i++)
(

58

}

actcnt-;
pcbind - obtain ind (j id)·
numjobs--; - -'
adjust_jblist(numjobs,j id);
cache_flush(pcbind): ­
jld - alljobs loaded()·
if(jld -- -2)- ,
(

NOMOREJOBS - FALSE;
)
else
(

NOMOREJOBS - TRUE;
jb ind - get job(numjobs);
jb:id - listTjb_ind].list_id:

1* till all jobs are done */
ALLJOBSDONE - TRUE;
while(ALLJOBSDONE -- TRUE)
(

j_id - active_que[O].list_id;

/* jobs beinq sent to CPU */
cpu_reply ­
run_job_timeslice(rrslice,j_id,repolicy,active que):
if (cpu_reply -- TERMINATED) -
(

printf("\n TERMINATED JID : 'd-,j_id):
active que[O].list id· 0;
active:que[O].jbflq - 0;
for(i - l;i < actcnt;i++)
(

)
actcnt--;

}
else
(

/* if the job has not te~nat.d, then the next job in
the active queue is given the CPU */
active_que[actcnt].list_id - j_id:
fore! - O;i < actcnt:i++)
(

)
if (actcnt -- 0)

ALLJOBSDONE - FALSE:

}
1**
FUNCTION: adjust_jblist()
PURPOSE : This function is used to adjust the number of jobs in the

system once the job te~nates

***/
void adjust_jblist(njobs,njid)
int njobs,njid;

59

(
int i - O,j - Oi

for(i - O;i <- njobs;i++)
(

if(list[i].list id
break; -

.... njid)

}
list[i].jbflg - 0;
for(j - i;j <- njobSij++)
{

list[j].list_id - list(j+l].list_idi

}
1**
FUNCTION : obtain ind()
PURPOSE : This function is used to obtain the correct job id when the

active jobs page map table is to be loaded into cache
**/
int obtain ind(id)
int idi -
(

int i - 0:

fore! - Oil < MAXJOBSii++)
(

i£(pcb[i].jid -- id)
break;

return(i):
}
/**
FUNCTION : get job()
PURPOSE : This function is used to qet the next job in the system
**/
int qet job (njbs)
int njbs:
(

int i - 0;

for(i - Oii <- njbs ;1++)
(

if(list[i].jbflq -- 1)
(

breaki

}
i£«i -- njbs) " (list[i] .jbflq -- 0»

return(-3)i
else

return(i)i
}
1***
FUNCTION : alljobs_loaded()
PURPOSE : This function is used to check if all the jobs in the system

are loaded and there are no more jobs in the system.
***/
int alljobs_loaded()
{

60

int i - 0;

1* finding out the number of jobs in the system */
for(i - O;i < MAXJOBSii++)
(

break;

if(list[i].jbflg -- 1)
(

)
}

i£(i -- MAXJOBS)
return(-2);

else
return(O)i

)
/**
FUNCTION run job timeslice()
PURPOSE This function is used to run the jobs qiven the timealice and

the job is run till the time slice expires, Once the time
slice expires and if the job haa not te~nated, the status
of the job is kept in the program counter so the next time
the job becomes active, the job can start its execution from
the place where it has stopped.

**/
int run_job_timeslice(cpslice,rjid,rjpolicy,actlist)
int cps1ice,rjid:
char rjpolicy[71:
struct jobs table actlist[MAXJOBS]i
(-

int main_no - O,jbpages - O,rnd_no - 0:
int pqin cache - 0:
int pcb Id - O,jb run - O,i - O,j - O,k • 0;
int tim8 - O,prescnt - O,ref - O,main_frno - 0:
int maddre - O,pmtaddr - 0;
int TERHFLG,check- O,perfct - 0;

if(pcb[i].jid -- rjid)
break:

for(! - Oii < MAXJOBSii++)
(

if(buffer(i].buffjid -- rjid)
break;

}

pcb id - ii
jbpaqes - pcb[pcb_id).nopaqes;
pgin_cache - pcb[pcb_id].lfirst-P9ca ;
maddre - pcb[pcb_id].base_addrcaci
for(i - Oii <- buffcntii++)
(

-- rjid)if(perf[i).job_id
break;

)
jb run - i;
jbpages - pgin_cache + jbpaqes;

for(i - Oi! < MAXJOBSii++)
(

}
perf[i].no - perfcnti
perfct - ii
time - 1;

61

present - pcb[pcb id).pccounter;
'l'ERMFLG - 0; -

1* running the job until time slice expires */
while(time <- cpslice)
(

TERMFLG - 0;
ref - buffer(jb_run).wrdbf[preacnt].ref no;
pmtaddr - maddre + refi -tf (bUffer[jb_runJ .wrdbf[prescnt).term£lQ -- 1)

TERMFLG - 1:
}

if «TERMFLG ~ 0) I I (TERMFLG... 1»
(

if(mycache->pmpt[pmtaddr].residbit -- 1)
(

)
else
{

perf[perfct].cache_hit++:

check - actlist[O].nopaqesallt;
j - pqin cache + check:
if (j < jbpaqes)
(

delay - 0.0;
perf[perfctl.cache mdss++;
mycache->pmpt[pmtaadr].residbit - 1;
delay++:
mycache->pmpt[pmtaddr].time stamp -
clock tick; -
delay++;
mycache->pmpt[pmtaddr].lpq_ca - j;
delay++;
main no - mycache->pmpt[pmtaddr].mapaqeno;
delay++;
for(k - Oik < pq_SiZ8;k++)
{

mycache->pq[j]->wrd[k].mapaqeno ­
~>mpg[main no]->vrd(k).mapaqenoi
mycache->pq(j]->wrd(k).residbit •
mem->mpg[main no]->vrd[k].residbit;
mycache->pq(jT->wrd(k].modifibit •
~>mpg[main no]->wrd[k].modifibit;
mycache->pq(j]->wrd(k).time_stamp •
mem->mpg[main no]->wrd(k].
time stamp: ­
mycache->pg(j]->wrd(k].oper ­
mem->mpg[main no]->wrd[k).operi
mycache->pg(j]->vrd[k].lpq_ca ­
mem->mpq(main_no] ->wrd(kJ .lpg_ca;·

}
delay - delay + 6 * 512;
perf[perfct].paqe_time+- delay;
actlist(O].nopaqesallt++;

}
else
{

delay - 0.0;
perf[perfct].cache_miss++;
main frno -

62

mycache->pmpt (pmtaddr] .mapageno:
delay++;
if(strcmp(rjpolicy,-LROW) -- 0)
{

)

if (TERMFLG -- 1)
(

)
else
(

pa'iefault_handler_FIFOtime_St!Dp(
m&1n_frno,pcb_id,ref,perfct);

printf(W\n ERROR IN CHOICER);
exit(l);

return(TERMINATED)i
)

if(time -- cpslice)
(

pcb[pcb id].pccounter - present;
return(TlMEOVER);

)
prescnt++i
time++;
clock_tick++;

}

/**
FUNCTION paqefault handler LRUtime stmp()
PURPOSE This function is used to replace the page in the cache to

give room to the incoming paqe using a least recently used
policy using time stamp.

**/
paqefault handler LRUtime stmp(replno,perfjd,pgref,perfl)
int replno,perfjd;pgref,Pirfli
(

int i - O,minimum • 0;
int baddr - O,j - O,k - 0;
int page being_replaced - O,~l - O,~_frame - O,pqno_cache - 0;
int tempIndex - 0;
struct arr temp(30]i

/* Here an LRU replacement policy is used to replace the paqe
usinq the time stamp */
~et«struct arr *)temp,NULL,30 * sizeof(struct arr))i
delaY++i
baddr - pcb[perfjd).base_addrcac;
delay++;

iOr(i - baddr;i <- (pcb(perfjd). jb_size + baddr) ;i++)

delay++;
tf(myCaChe->pmptlil.reSidbit -- 1)

temp[j].no - mycache->pmpt[i).time stamp;
delay++; -
temp[j].refno - mycache->pmpt(i].mapageno;
delay++;
temp[j).index - ii
delaY++i
j++:
delay++;

mdnLmum - temp[O].no;
delay++;
page_beinq_replaced - temp(O].refno;
delay++;
tempindex - temp(O].index;
delay++;
for(k - l;k < j;k++)
(

delay++:
if (temp [k] .no < mdnLmum)
(

minLmum - temp(k] .no:
delay++:
paqe_beinq_replaced - temp(k].refnoi
delay++:
tempindex - temp[k].index;
delay++;

~l - paqe_beinq_replaced:
delay++:
~_frame - tempindex;
delay++;
mycache->pmpt[rpq frame].residbit - 0;
delay++; -
mycache->pmpt[rpq_frame].time_stamp - -1;
delay++:
pgno_cache - mycache->pmpt[rpq_frame].lpq_ca;
delay++:
mycache->pmpt[rpq_frame].lpq_ca - -1:
delay++:

if (mycache->pmpt [rpq_frame] .oper - 'w')
(

for(i - O;i < blksizeii++)
(

mem->mpq[rpql]->wrd(i].mapageno ­
mycacbe->pq(pgno_cache]->wrd(i].mapaqenoi
mem->mpq[rpql]->vrd(i].residbit ­
mycache->pq(pgno_cache]->wrd(i).residbit;
mem->mpq[rpql]->wrd(i].modifibit ­
mycache->pg[pgno_cache]->wrd[i].modifibit:

63

~>mpq(~l]->vrd[i].time stamp ­
mycacbe->pg(pgno_cach.]->V~[i].time stamp:
~>mpq[~l]->wrd[i].oper- -
mycach.->pg[pgno_cach.]->W~[i].oper:
~>mpg[~l]->Vrd[i] .lpg ca -

} mycache->pg(pgno_cachel->wrd(il.lpg_ca;

perf [perfl] •update time..... 6 * (512 * 0.0005) i
delay++; -

for(i - Oii < blkaiz8;i++)
(

mycache->pq(pgno_cache)->wrd[i].mapageno ­
mem->mpq[replno]->wrd[i).mapaqeno;
mycache->pg[pgno cache]->vrd[i].reaidbit ­
mem->mpq[replno)=>wrd[i].reaidbit:
mycache->pg[pgno cache]->vrd[i].modifibit •
mem->mpq[replno]=>wrd[i].modifibit;
mycache->pg[pgno_cache]->wrd[i].time_stamp ­
mem->mpq[replno]->wrd[i].time stamp:
mycache->pg[pgno_cache]->wrd[I).oper ­
mem->mpq[replno)->wrd[i].oper;
mycache->pg[pgno_cache]->vrd[i].lpg_ca ­
mem->mpg[replno]->vrd[i].lpg_ca;

delay - delay + 6 * 512;
1* here the page map tables are updated */
mycache->pmpt[baddr + pgref].residbit - 1;
delay++:
mycache->pmpt[baddr + pgref].lpg_ca - pgno_cache;
delay++:
mycache->pmpt[baddr + pgref].time_stamp - clock_tick;
delay++:
perf[perfl).paqe_time+- delay;

)
/***
FUNCTION: cache flush()
PURPOSE : This function is used to flush the cache once the job

terminates
***/
cache flush(caind)
int caind:
(

int i - O,k - O,m - 0:
int addrca - O,pmtind - O,addzma - O,loc - O,pqes - 0:
int main_no - O,totca - O,pqe - O,totmem - 0:

addrca - pcb(caind).base_addrcac:
addrma - pcb(caind].base_addCDem:
loe - pcb[caind].lfirst-P9ca ;
pges - pcb[caind].nopages;
totca - addrca + 1024;
totmem - addrma + 1024;
pmtind - obtain...PDtind(addrca);
ca~tarry[pmtind].pmC_flaq- 0;
pcb[caind].pcb_flg - 0;

65

pqe - loe + pqea;
fore! - loc;i < pge;i++)
(

}
}

list-P988 [i).pqflq. 0;
for(k • Oik < nn s!ze·k++){ ~--'

mycache-~[i]->vrd[k].mapageno - -1;
mycache->pq[i]->vrd[k].reaidbit - 0;
mycache->pq[i]->wrd[k].modifibit - 0:
mycache->pq[i]->vrd(k).time stamp - -1:
mycache->pq[il->Wrd[k).oper-. , 'i
mycache-~[i]->wrd[k].lpq__c. - -1;

1* free frame table is set */
fore! - addrca;i < totca·i++)(,

main_no. mycache->pmpt(i].mapagenoi
if(main no !- -1)
(--

for(m - Oim < PC) size;m++)
(--

mem->mpq[main_Ro]->wrd[m).mapageno - -1;
~>mpq[main_no]->vrd[.).r.aidbit- 0;
~>mpq[main_no]->vrd[m).modifibit- 0;
mem->mpq(main no)->wrd[m).time stamp - -1;
mem->mpq (main:no] ->wrd(m] .oper--. I ';

mem->mpq[main no]->wrd[m).lftn ca • -1;) __ r~_

mem->fmc[main_no).fftflg • Oi
}
mycache->pmpt[i].mapaqeno - -1;
mycache->pmpt[i].residbit - 0;
mycache->pmpt[i).modifibit - 0;
mycache->pmpt[i).time_stamp - 0;
mycache->pmpt[i].oper - I 'i
mycache->pmpt(i).lpq_ca • -1;

fore! - add~;i < totmem;i++)
(

mem->pmt(i).mapaqeno • -1;
mem->~[i].residbit• 0;
mem->pmC[i).modifibit • 0;
mem->pmt [i] •time_stamp - 0;
mem->pmt [i) .oper - , ';
mem->pmt[i].lpq_ca - -1;

}
1**

FUNCTION : obtain-PBtind()
PURPOSE : This function is used to get the paqe map table so as to

flush the cache once the job t.~nat.s.

***/
int obtain~ind(~addrca)
int pmtaddrca;
(

int i - O,numpmts - 0;

"
n~s - PMTSIZECA I 2;
for(i - Oi! < n~s;i++)
(

if(ca~arry[i].baae~addr -- ~addrca)
break;

}

return (i) ;
}

/***
FUNCTION paqefault han~er FIFOtimestamp()
PURPOSE This function is used to replace the page in cache so as to

qive room to the inco~ng page uainq a first in first out
replacement policy.

***/
pagefault_han~er_FIFOtime_stmp(fplno,fjid,tpgref,perff)

int fplno,fjid,fpgref,perff;
(

int i - O,maximum - 0:
int j - O,k - O,baddr - 0;
int replaced-paqe - O,~l - O,~_frame - O,pgno_cache - 0;
int tempindex - 0;
float upd time - O.O,pq time - 0.0:
struct arr temp (30] : -

/* Here an LRU replacement policy is used to replace the paqe
using the time stamp */
~et«struct arr *)temp,NULL,30 • aizeof(atruct arr»:
delay++:
baddr - pcb[fjid].base_addrcac;
delay++:

if(mycache->pmpt[i].residbit -- 1)
(

temp[j].no - mycache->pmpt(i].time_stamp;
delay++;
temp[j].refno - mycache->pmpt[i).mapaqenoi
delay++;
temp[j].index· i:
delay++:
j++;
delay++:

for(i - baddr:i <- (pcb(fjid].jb_size + baddr);i++)
(

)
delaY++i

l;k < jik++)

if(temp(k).no > maxtmum)

{ maximum - temp[k] .no:
delay++;

max~um." temp[O].no;
delay++:
replaced-paqe - temp[O).refnoi
delay++:
tempindex - temp(Ol.index;
delay++;
for(k ­
{

6'

rep1aced-Pa98 - temp(k).refno·
delay++i '
tempindex - temp [k] •index;
delay++:

}
delay++:

}

~1 - replaced-paqe:
delaY++i
~_frame - tempindexi
delay++;
mycache->pmpt[~_frame].residbit- 0;
delay++;
mycache->pmpt[~ frame].time stamp - -1:
delay++: - -
pgno_cache - mycache->pmpt[rpg frame].lpg ca:
delay++; --
mycache-~t[~ frame].lpg ca - -1;
delay++; - -

tf (mycache->pmpt [rpg_framel .oper - 'v')

fore! - Oi! < blks!ze;i++)
{

mem->mpq[~l]->vrd[i].mapaqeno •
mycache->pq[pqno_cache]->wrd[i].mapageno;
mem->mpg[rpgl]->vrd[i].reaidbit ­
mycache->pq[pqno_cache]->wrd[i].reaidbit;
mem->mpq[~l]->wrd[i].modifibit­
mycache->pq(pqno cache)->wrd(i].modifibit;
mem->mpq[rpql]->wrd[i].time stamp ­
mycache->pq(pqno_cache]->wrd(i].time_stamp:
mem->mpq[rpql]->wrd[i).oper ­
mycache->pq(pqno_cache]->wrd[i).oper;
mem->mpq[~l]->wrd[i].lpgca ­
mycache->pq[pqno_cache]->wrd[i).lpq_cai

}
perf[perff].update_time+- 6 * (512 * 0.0005);
delay++;

for(i - O;i < blksiz8ii++)
(

mycache->pq[pqno_cache]->wrd[i].mapaqeno ­
mem->mpg(fplno]->vrd[i].mapageno;
mycache->pq(pqno_cache]->wrd(i].residbit ­
~>mpg[fplno]->wrd(i].residbit;
mycache->pq(pqno cache]->wrd(i].modifibit ­
mem->mpq[fplno]->wrd[i].modifibit:
mycache->pq[pqno_cache]->wrd[i].time_stamp ­
mem->mpq[fplno]->wrd(i].time stamp;
mycache->pq(pqno_cache]->vrdTi].oper ­
mem->mpq[fplno]->wrd[iJ.oper;
mycache->pq(pqno_cache]->vrd[i].lpq_ca ­
mem->mpq[fplno]->wrd[i].lpq_ca;

)
delay - delay + 6 * 512;

I * here the paqe map tables are being updated *I
mycache-~t[baddr + fpgref].reaidbit - 1;
delay++;
mycache-~t(baddr+ fpgref].lpg_ca - pgno_cache;
delay++:
mycache-~t[baddr+ fpgref].time stamp - clock_tick;
delay++: -
perf[perff].page_time+- delay;

68

}

/**
FUNCTION : obtain~()
PURPOSE : This function is used to get the page map table in the ...-ory

so as to load the job into the system
***/
int obtain~ma()
(

int i - 0:

forti - O:i < 20;i++)
(

if(ma-PMtarry[i].pmt_flaq !- 1)
break:

}
return(i);

}
/***••*****.**••***••**.***••••***
FUNCTION : obtain~tca()

PURPOSE : This function is used to get the page map table in cae. so as
to load the active jobs page map table in cache

***/
obtain"'pmtca()
(

int i - 0;
int numpmts - 0;

numpmts - PMTSIZECA/2:
forti - O:i < numpmts:i++)
{ .

if(ca~tarry[i].pmt_flag

(
break;

}
if(i -- numpmts)

return (-1) :
else

return(i)i

!- 1)

} ***************-******************************./************************
FUNCTION : obtain-pcb() j h
PURPOSE : This function is used to get the pcb for the ob once t e

job enters th:*:!:~~;*************************************1*************************
int obtain"'pcb()
(

int i - 0;

for(i - Oii < MAXJOBSii++)

"
if(pcb[i].pcb flq !- 1)

return(I);

}
1***
FUNCTION: get_free-P9cache()
PURPOSE : This function is used to get the free page in cache to allot

for the job once the job becomes active
***/
int get_free-P9cache()
(

int i - 0;

for(i - O:i < numpaqes_cacheii++)
(

if(list-Pges[i].pgflq !- 1)
breaki

}
return(i);

)
1***./

VITA

Pamela Neelavcni

Candidate for the degree of

Master of Science

Thesis: CACHE PERFORMANCE ANALYSIS: A TRACE-DRIVEN SIMULAnON

Major Field: Computer Science

Biographical:
Personal Data: Born in Hyderabad, INDIA, on December 18, 1968, daughter

of N. Sreemm and N. Chandra Leela.

Education: Graduated from 5t. Anns Junior College, Hyderabad. INDIA in
May 1985; received Bachelor of Engineering (Hoos) degree in Qlemjcal
Engineering from Birla Institute of Technology and Science. PilaDi,
Rajasthan, INDIA in June 1990. Completed the requirements for the Master
of Science degree in Computer Science at the Computer Science
Department at Oklahoma State University in July 1994.

Experience: Worked as design engineer for Gwalior Rayon Industries; employed
by Oklahoma State University, University Computer Center as a piuate
research assistant from October 1992 to June 1994.

	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	006.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	022.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif
	055.tif
	056.tif
	057.tif
	058.tif
	059.tif
	060.tif
	061.tif
	062.tif
	063.tif
	064.tif
	065.tif
	066.tif
	067.tif
	068.tif
	069.tif
	070.tif
	071.tif
	072.tif
	073.tif
	074.tif
	075.tif
	076.tif
	077.tif

