CACHE PERFORMANCE ANALYSIS:
A TRACE-DRIVEN SIMULATION

By
PAMELA NEELAVENI
Bachelor of Engineering (Hons)
Birla Institute of Technology and Science
Rajasthan, INDIA

1990

Submitted to the faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirement for
the Degree of
MASTER OF SCIENCE
July 1994

OKLAHOMA STATE UNIVERSITY

CACHE PERFORMANCE ANALYSIS:
A TRACE-DRIVEN SIMULATION

Thesis Approved:

.
3

M s o S O v A;m é(?\f{\

Thesis Advisor

el) Mg
s O Cllinn

" Dean of the Graduate College

ACKNOWLEDGEMENTS

I thank my graduate advisor Dr. Mansur H. Samadzadeh for his advice, assistance,
and guidance. His constructive criticism helped me gain confidence. During my whole
graduate studies, I got inspiration and motivation due to his constant guidance. My sincere
thanks to Drs. Blayne Mayfield and Mitch Neilsen for serving on my graduate committee.

I also want to thank Mr Jim McGee and Mr. Andy Adsit, my supervisor at the
University Computer Center, OSU, for allowing flexible working hours.

I would like to thank my husband Srikanth for his strong encouragement at times
of difficulty, love and understanding throughout this whole process. Finally, I would like
to express my gratitude to my parents, brother, and sisters. Without their support and

encouragement, this task would not have been possible.

TABLE OF CONTENTS

Chapter Page
LINTRODUCTION'iitiiitittennenneeeneneennananss 1
I LITERATURE REVIEW i iiitiiitiiinnnenenennnns 4
21Introduction i it i i i e ittt e e 4
22Definitions i ittt it et 4
22Storage Hierarchy i iiiiiinnnnn. 6

24Cache MemoOryc0iiiinernnncnnnnnnnnnnns 7
25CacheDesign Parameters0c0ciinnenannn 8
251CacheSize i i e 9

252Block Size it i i 9

253 Cache Organizationccctievvunnennn 9

254 MissesinPreferch i i, 10

255 MissesOccurringinClumps 12

256 CacheCoherencecciiiiiiennnnnnns 12

257 CacheConsistencyc0itiieeennnannn 13

2.5.8 Replacement Algorithms 13

1. DESIGN AND IMPLEMENTATIONISSUEScc0un... 15
3.1 Implementation Platform and Environment 15

3.1.1 Sequent Symmetry S/81 ann 15

3.2 0DbJeCtVe .. iiii ittt e e e e e 16

33Input Parameterscittetintenananaeanns 16

3.3.1 Trace Collection Method 16

332 CacheOrganizationcc0vuunn. 17

3.3.3 Replacement Policies 17

334 Scheduling it 17

34 Designofthe Simulationc.. c0uun 17

341 PageMapTable 19

342 Process Control Block 20

3.5 Implementation Details 21
IV.EVALUATIONOF THETOOL0ttiitnnnennenannnnn 25

v

Chapter Page

41 TestProgramscovueueieennaneecnacennnas 25

42Graphsi ittt i i, 28

430DbSEIvationst ititttieate et aanan 28

V. SUMMARY AND FUTUREWORK ciitiiiinnnnnn. 37

5.l SuUMMArYc0iiiiiiiiiii ittt 37

S2Future Work0iiiiiiiniinineneneneennnnns 38

REFERENCESc0ifiiiiiiiiiiieeeeeneeeeneneneneannannns 39

APPENDICES ittt iiteenneaesroienananannnnnas 41
APPENDIX A - GLOSSARY AND TRADEMARK

INFORMATIONot ittt iieiieenennnnnas 42

APPENDIX B- PROGRAMULISTINGiitiiiinennnas 43

LIST OF FIGURES

Figure Page
1. Different address tracing techniques it 2
2. Associative mapping using a page map table, given the
vitual address i i i i i i et e 11
3. Organization of cache and mainmemorycc... 19
4 Datastructureof cache ittt 20
S.Datastructure of MAIN MEMOTYottt e e tnenennnereneanans 20
6. The data structure used forpagemaptable 23
7.Demand page algorithm i, 24
8. Pagefault_handler algorithm 24
9. Hit ratio vs. cache size for gcc (LRU policy), 30
10. Miss ratio vs. cache size for gcc LRU policy) 30
11. Miss ratio vs. delay due to a miss for gcc (LRU policy) 3
12. Cache size vs. effective access time for gcc LRU policy) 31
13. Miss ratio vs. cache size for spice LRU policy) 32
14. Hit ratio vs. cache size for spice LRU policy) 32
15. Miss ratio vs. delay due to a miss for spice (LRU policy) 33
16. Cache size vs. effective access time for spice (LRU policy) 33
17. Miss ratio vs. cache size for espresso (LRU policy) 34
18. Hit ratio vs. cache size for espresso (LRU policy) 34

Figure Page

19. Cache size vs. effective access time for espresso

LRU POUCY) - oii ittt ittt ittt eneneannneeansonenanns 35
20. Hit ratio vs. cache size for GNU chess LRU policy) 35
21. Miss ratio vs. cache size for GNU chess (LRU policy) 36

22. Cache size vs. effective access time for GNU chess
LRUPOLCY) .. iii ittt ittt it tttttenneaeneneanesnns 36

Table

1. Traces used for the simulation

LIST OF TABLES

oooooooooooooooooooooooooooooooooo

CHAPTER 1
INTRODUCTION

Cache memory is used in most computer systems. An important goal in the design
of a computer system is that it should behave according to the expectations of the
designer. The performance of a system can be captured and evaluated using various
techniques. Trace-driven simulation is one of the techniques used to study the
performance of a computer system.

Nowadays most of the small, medium, and large machines have cache memories
to improve their performance. Information located in cache can generally be retrieved in
less time than the information located in main memory [Smith82]. Trace-driven simulation
is a technique by which, using the actual address traces as the external stimuli, a model
of a proposed system, e.g., cache memory, can be evaluated.

Several address tracing techniques have been developed over the last ten years,
cach one with its own merits and demerits [Stunkel91]. These techniques are typically
analyzed with respect to issues such as speed, flexibility, completeness, reduction in
exccution time, and accuracy. Different methods of address tracing techniques can be
classified into five categories as given in Figure 1 (adapted from [Stunkel91]). A brief
description of these five techniques is given below.

In the hardware monitored technique, the address traces are directly recorded

1

Address Tracing Techniques

hardware interrupt code |instrumentation altering software

monitored based microcode simulation
source assembly ~ compiler object pixie
level ievel based level

Figure 1. Different address tracing techniques

off processor memory requests when they are sent to off-chip caches and memory chips.
In the altering microcode technique, commonly known as ATUM (address tracing using
microcode), the traces are obtained by making minor changes to the existing microcode
of a machine. This technique has been employed to obtain addresses for VAX
architectures [Agarwal88]. In the interrupt based technique, every instruction generates
aCPU interrupt and the interrupt routine analyzes the opcode, calculates the memory

addresses, if any, and stores it in a buffer. Most architectures provide a trap bit that can
be enabled and a corresponding interrupt routine that can be modified to acquire the
traces. In the instrumented program technique, the application program is instrumented
at specific points. During run time, these extra instructions log the trace information
which, when postprocessed, gives the actual trace. The code level insertion technique can

be carried out at various levels such as source code level, assembly level, or binary level

3
or object level [Stunkel91]. Software simulation methods can model processor execution

and simultaneously provide user traces. Pixie is one of the software simulation methods
used to capture traces. This method of generating address traces was initially developed
on SPARC systems at Berkeley [Lovett93].

The most accurate way of studying cache performance, before a machine is
actually built, is through simulation [Marcovitz88]. By changing the parameters of a
simulation model, it is possible to simulate a cache of any size. Using this kind of
approach and model, one can design a cache model for a required behavior. If some
discrepancies are detected, based on the performance analysis of the model, the cache can
be redesigned.

Chapter II of this thesis provides a review of the current literature on the trace-
driven simulation technique and memory management in general. Chapter III provides a
discussion on the design and the implementation details of the software that was
developed as part of this thesis. The testing and evaluation of the software developed are
discussed in Chapter IV. The last chapter, Chapter V, provides a summary of this thesis,

- the conclusions drawn from this study, and the suggestions for future work.

CHAPTER 11
LITERATURE REVIEW
2.1 Introduction

The most accurate method of determining the performance of a specific computer
design or the validity of a new architectural approach, is to build it [Lilja93]. A complete
implementation is time consuming and expensive, and generally precludes the opportunity
for using the performance evaluation for tuning the system. Therefore, it is necessary to
explore the details of the design, before building a system, using mathematical analysis
or by simulation. A primary goal in modeling a system before constructing the actual
system is to reduce the memory access time in order to reduce the execution time and
improve the performance of the system. Since cache memories are often used in modern
computer systems, the study of cache size, mapping, and replacement algorithms is an

" important field in computer system performance evaluation.
2.2 Definitions

This section contains some of the basic definitions about cache memory that are
used in this thesis. These definitions are mostly based on three major references [Smith82]

[Agarwal88] [Marcovitz88].

5
* A trace is an address sequence obtained by executing a program and recording every
memory location referenced by the program during its execution.
» Locality of reference is a property exhibited by running processes, that processes tend
to reference storage in nonuniform, highly localized patterns.
- All data that is written by at least one processor, and read or written by at least one
other processor, is marked as non-cacheable.
* Clumpiness means occurring close together. In this thesis, misses refer to cache misses.
Clumpiness in misses refers to misses occurring close, or almost overlapping.
* Prefetch is to get data or instructions required by a program before they are actually
needed.
* Block size or line size is the amount of storage associated with an address tag.
* A cache miss in a cache occurs whenever the desired information is not available in
the cache.
* A cache hit in a cache occurs whenever the desired information is available in the
cache and the processor does not have to wait for the information.
-+ A block is defined as a group of words which can be read from or written to a device.
A block in a cache can be divided into words. A block can have any number of words.
Whenever there is a miss, instead of getting one word, a whole block is brought into the
cache.
* When the CPU executes instructions that modify the contents of the current address
space, those changes must be reflected in main memory. Effecting the modifications

immediately to the main memory is called write-through.

6
- When the CPU executes instructions that modify the contents of the current address
space, those changes can be initially modified in cache and later be reflected in the
memory. This is called copy-back.
* Page map table is a table used to map virtual addresses onto physical addresses.
* Multiprogramming is defined as a collection of processes running logically in parallel
where the CPU switches from one process to another process.
* When more than one process is requesting the CPU, the operating system must decide
which one to run first. That part of the operating system concerned with this decision is

called the scheduler and the process of assigning the CPU to jobs is called scheduling.
2.3 Storage Hierarchy

Storage hierarchy refers to arranging storage devices on the basis of access speed
and cost so that only the most important information, i.e., the programs and data
referenced by the CPU directly, is kept on the expensive fast devices and the rest of the
information is kept on inexpensive slow devices [Leung82). The principal reason in

-having a hierarchial memory system is to improve the effective memory access time and
accordingly increase the processing speed [Smith82). For example, in a two-level memory
hierarchy system having a main memory and an auxiliary memory, the information must
first be moved to primary storage before it can be referenced by the CPU. Thus the
auxiliary memory has a copy of all the information stored in main memory. When a copy
of data is modified in main memory, the copy of data in auxiliary memory must also be

modified using a write-through or copy-back scheme. In a two-level system, the data is

7
referenced from the main memory. If the data that is referenced is not available in the

main memory, then the data must be transferred from the auxiliary memory to main
memory and, unless main memory is not full yet, some page in the main memory must
be replaced using one of the replacement policies such as LRU, FIFO, or MRU.

The conventional storage hierarchy, consisting of main/auxiliary memory, was
extended in the early 60’s using an additional level called cache memory, which is a high-
speed storage with a much faster access time than the main memory [Smith82]. Cache
storage is extremely expensive compared to the main storage and therefore only small
caches are typically used.

The address space is divided into equal blocks called pages and the main memory
is divided into blocks of the same size called page frames. A page of data will reside in
a page frame of memory, and the typical size of such a block is 512 to 1K words
[Leung82]. Data transfers in the memory hierarchy are usually done by pages, rather than
individual words or bytes, because locality of reference plays an important role in page

transfer.

2.4 Cache Memory

Cache memory, as used in most computer systems, is a high-speed buffer memory
interposed between main memory and the CPU. With the arrival of a logical address from
the CPU, the operation of cache starts [Smith82]. At any time, cache contains most of the
information that a processor needs. Whenever a reference is made to new data and that

data is not present in cache, the old data in cache has to be replaced to give room to the

8
new data brought from main memory. So, in this context, the issues of data traffic

between cache and main memory are analogous to the issues of data traffic between

2.5 Cache Design Parameters

In uniprocessor computers, the main reason in employing a cache is to reduce the
effective memory access time. If the miss ratio is reduced, the execution time can also
be reduced. The execution time being "the sum of the time to service each cache hit plus
the sum of the time to service each cache miss" [Marcovitz88]. If the misses occur close
together (referred to as clumpiness of misses), then the time to service each cache miss
can be less. Thus cache miss ratio can be a good performance metric in a single-
processor, single-cache computer.

There are four important aspects to be considered in designing a cache memory
[Smith82]).

1) Improving the probability of finding a memory reference’s target in the cache (the hit
-1atio).

2) Minimizing the miss ratio.

3) Minimizing the delay due to a miss.

4) Minimizing the overheads of updating main memory, i.e., whether to use a write-
through or copy-back to reflect the modifications.

The following subsections describe the design parameters of a cache memory

system such as cache size, block size, cache organization, misses in prefetch, misses

9
occurring in clumps, cache coherence, cache consistency, and replacement algorithms.

2.5.1 Cache Size

The size of the cache is an important design decision that impacts the performance
and cost of a cache memory system. The larger the cache, the higher the probability of
finding the required information in it [Smith82]. Obviously, cache cannot be expanded

without limit, due to its cost and physical size.

2.5.2 Block Size

A block is a group of words that can be read from and written to a device.
Selecting the block size is also an important decision that has to be considered in a
memory system design. Kaplan and Winder [Kaplan73] indicated that there are a number
of trade-offs in selecting the block size. Obviously, the transmission time for moving a
small block from main memory to cache is less compared to that for a bigger block.
Locality of reference plays an important role in making a decision about the block size.
If the block size is large, the transmission time may be large, but the process can refer
to the same block. If the block size is small, we may have to access main memory twice
instead of just once. So the designer has to decide about the block size so as to improve

the performance of the system.

2.5.3 Cache Organization

Cache organization is one of the design parameters that would influence the

10

performance and cost of a cache memory system. In order to locate an element in cache,
it is necessary to have some kind of mapping which maps a main memory address to a
cache location, or to search the cache associatively.

Various cache organizations such as fully associative, direct mapping, or set
associative are used in most computer systems [Leung82]. The fully associative cache
organization allows any page from main memory to be assigned to any page frame in
cache. Figure 2 gives a clear picture of associative mapping. For each page of data stored,
the corresponding main memory address is also stored. Whenever a reference is made,
all the addresses are searched so as to find the match for the referenced address. In direct
mapping cache organization, each page in memory can be mapped to a particular location
in cache. This indicates that direct mapping is more restrictive than fully associative cache
organization. Set associative cache organization involves organizing the cache into S sets
of E elements per set. Thus the page frames in a set associative cache are grouped into
a number of sets [Smith82]. Each page in main memory is mapped onto a page frame,
which belongs to a particular set in cache. If a particular page is in cache, it must be
. stored in one of the elements in the corresponding set in cache. In this kind of cache

organization, replacement policies will be made to the set of elements involved.

2.5.4 Misses in Prefetch

Prefetching is one of the popular strategies used to get the pages in cache before
a particular page is required. Prefetching is used to get the data or instructions before they

are actually needed by a program, with the intention that the program might use them in

11
the near future. In prefetching, the data that may be required in the near future is brought
into the prefetch buffer.

There are two situations that can cause misses to occur when using prefetch
buffers.
1) When the processor requests either data or instructions from main memory that is not
available in cache, the processor has to wait till it gets the data; and

2) Network traffic to shared memory can increase the delay and can result in a cache

miss.
Virtual address
P d
Associative map
N
p' d
/7
Real address

p Virtual page number
p' Page frame number in main memory

d Displacement
Figure 2. Associative mapping using a page map table, given the virtual address

2.5.5 Misses Occurring in Clumps

Marcovitz discussed the clumpiness of misses, i.c., misses occurring close together for a
shared memory multiprocessor with prefetching [Marcovitz88]. When misses are close
together, the miss service times can be overlapped. When misses occur, it is good if they
occur in clumps because the service time for those misses can be reduced. Hence the
prefetch buffer has to wait for more than one miss to occur. Thus the number of misses
that occur close together can be a good performance metric for a uniprocessor computer

in designing a cache [Marcovitz88].

2.5.6 Cache Coherence

Cache coherence must be maintained when considering multiprocessor computers
with shared memory and private caches. In these cases, the cache works like a
uniprocessor’s cache as long as a processor accesses data that is not shared with any other
processor, keeping a copy of the recently used locations. In a uniprocessor environment,
memory locations are shared only by a single processor, hence cache coherence need not
| be maintained as the processor can read the correct value. In a multiprocessor
environment, the data in a particular location disappears from a processor’s cache when
another processor writes into it [Hill90]. When memory locations are shared among
processors, cache coherence must be maintained so that each processor sees a comrect
value for the same variable. Marcovitz discusses cache coherence using non-cacheable
marking [Marcovitz88]. Non-cacheable marking can help in maintaining cache coherence

in a multiprocessor environment.

14
are typically used in order to replace the data in cache [Smith82]. The LRU policy using
the stack model can be used to replace the information in cache. In the LRU stack model
algorithm, the addresses referenced by the processor are placed in a stack with the most
recently used address at the top of the stack and the least recently used address at the
bottom of the stack. When a particular address is referenced, a search for the referenced

block is carried out in the stack. The referenced address is then placed on the top of the

stack and all other addresses are shifted down [Wang90].

CHAPTER Il
DESIGN AND IMPLEMENTATION ISSUES

3.1 Implementation Platform and Environment

3.1.1 Sequent Symmetry S/81

The Symmetry S/81 is a powerful mainframe-class multiprocessor system
developed by Sequent Computer System, Inc. Its shared-memory, multiprocessing
architecture consists of the following elements [Sequent90]:

* A parallel architecture using multiple industry-standard microprocessors.

- The DYNIX/ptx or DYNIX V3.0 operating system, both UNIX system ports.

- Standard interfaces including Ethernet, MULTIBUS, VMEbus nad SCSI.

The operating system of the Symmetry S/81 have been engineered to incorporate

_parallcl processing features. However, UNIX compatible software can run on the
Symmetry S/81 without modification or with slight modification. In multi-user
applications, tasks are automatically distributed to multiple processors which generally
increases system throughput and reduces response times [Sequent90].

DYNIX V3.0 supports both the Berkeley UNIX and UNIX System V command

sets, whereas DYNIX/ptx is compatible with AT&T System V3.2 only [Sequent90]. The

simulation program for this thesis was developed on a Symmetry S/81 in C.

15

16

3.2 Objective

The main purpose of this thesis was performance analysis of cache using a trace-
driven simulation technique. The simulation was run using address traces with variations
in cache size, size of a page in cache, replacement algorithms, and cache access time.
Simulation runs provided experimental results showing the performance changes (see

Section 4.2) due to variations in those parameters.

3.3 Input Parameters

3.3.1 Trace Collection Method

Traces can be collected using certain UNIX utilities such as the prof command and
UilDumpSymbolTable available on the Sequent Symmetry S/81 machine using
DYNIX/ptx. These address traces serve as input to the simulation. The prof command is
used in generating addresses referenced by programs during execution. The prof command
interprets a profile file produced by the monitor function. Profiling is a three-step process.

‘First a program is compiled with a -p option, then the program is executed, and finally
the program is run to analyze the data. In DYNIX/ptx, the -p option to the C compiler
command cc arranges for calls to monitor the addresses at the beginning and at the end
of the execution and the profile file to be written [Sequent90].

Some of the traces used as input to the simulation were developed at the "Parallel
Architecture Research Laboratory” of New Mexico State University [Spice94]. Gec, spice,

espresso, and eqntott were some of the traces that were developed on the dix architecture

17
machine and are kept in the public directory of the ftp site tracebase@nmsu.edu

[Spice94].
3.3.2 Cache Organization

A fully associative cache organization (see Section 2.5.3 for the definitions of
various cache organizations) with page map tables and pages is used in this thesis to
study the performance analysis of the cache. At any time, the cache contains page map
tables and pages of the active jobs only. Several other cache organizations can also be

used for performance analysis of cache.

3.3.3 Replacement policies

The LRU and FIFO replacement policies using a time-stamp are used in replacing
the pages in cache in order to give room to new pages. The resident bit in the page map

table plays an important role in the implementation of replacement policies.

3.3.4 Scheduling

A round-robin scheduling with time-slicing was used in this thesis work to
simulate a multiprogramming environment. The choice of a particular scheduling

algorithm can play an important role in improving the performance of a computer system.
3.4 Design of the Simulation

A trace-driven simulation has been developed on the Sequent Symmetry S/81

18
machine running the DYNIX/ptx operating system using the C programming language.
The input to the simulation is a reference string of five jobs. The reference string of five
jobs is stored in a reference file called REFILE. Each reference in the reference string
containg two fields. The first field is the reference type and the second field is the
memory address. Each reference in the reference file has a reference type and takes three
values 0, 1, or 2. The value 0 or 1 indicates that a read operation needs to be performed,
and the value 2 indicates that a write operation has to be performed.

An array of records has been used to simulate the cache. Once the user inputs the
size of the cache, the array of records will be dynamically allocated according to the input
value. Figure 3 gives a picture of the cache and main memory organization used in the
simulation. A certain amount of the space in cache has been allotted for page map tables
and a certain amount of space has been allotted for pages. At any time, the cache contains
the page map tables and the pages of active jobs. The size of the page map tables is fixed
and virtual memory is achieved through page traffic between the main memory and the
cache. Figure 4 gives the data structure used in simulating the cache. Main memory
-contains the page map tables of all the jobs in the system. Whenever a job becomes
active, a copy of the page map table is brought from the main memory and put in cache.
Main memory also contains the global free frame table. This frec frame table contains the
information as to which page in the main memory is either allotted or available. Once a
job terminates, all the page frames allotted to that job are made available for the other

jobs through the free frame table. Figure 5 gives the data structure used in simulating the

main memory.

19

pmt1 0
1024
pmt2
0
pmt1 — 2048
1024 P 3072
pmt2 pmt4
204 4096
pmt5
pmt3 5120
3072

Cache memory with page map
tables and pages of active
jobs

Main memory with page map tables
and pages of the jobs in the system

Figure 3. Organization of cache and main memory

3.4.1 Page Map Table

Page map table is used to map virrual addresses to physical addresses. A virtual

adgrcss contains avirual page number and an offset (a virtual address in general can

contain a segment number also, but segmentation is beyond the scope of this thesis). The
virtual page number xs used as an index into the page table. From the page table entry,
the page frame numbcr is found. The page frame number is appended to the offset to
form the physical address. The exact layout of each entry in the page map table is highly
machine dependent, but the kind of information stored is almost the same from machine

to machine. A typical page table entry has 32 bits, out of which 21 bits are allotted for

20
the frame number, 1 bit for the modified or dirty bit (to indicate if the referenced page
has been modified), 1 bit used as the resident bit (to indicate if the page is in cache), and
the remaining bits for caching. The resident bit plays an important role in several of the

page replacement algorithms.

typedef struct {
struct word pmpt[4096];

struct page **pg;
}CACHE;

Figure 4. Data structure of cache

struct mamem{

struct word pmt[5120];
struct page **mpg;
struct fft fmt{2000);

K

Figure 5. Data structure of main memory

3.4.2 Process Control Block

The PCB is a central store of information that allows the operating system to
locate all key information about a process. When the operating system switches the CPU
among processes, it uses the save areas in the PCB to hold the information such as the
identification number of a process, the current state of the process, and the process’

priority. Whenever a process gets the CPU, it uses the information stored in the PCB to

21

restart the process.

The pcb typically contains the following information for each job.

1) The job id.

2) When the job entered the system.

4) Number of pages allotted for the job.

5) The starting address of the job in cache.

3) The starting address of the page map table of the job in the main memory.

In this simulation program, a free PCB is obtained and allotted for a job whenever
a job enters the system, and the job’s identification number is stored in the PCB.
Whenever the CPU switches among jobs, the jobs’ current status is stored in the PCB so

that, when the job gets back the CPU, the operating system can use the information stored

in the PCB to restart the process.

3.5 Implementation Details

The main input to the simulation program is a reference string (also referred to as
a trace) and the cache size. The reference file (REFILE) consists of reference strings for
five jobs. Each reference in the reference file is processed separately. Some of the
references used for this thesis are actual memory traces [Spice94). To simulate a multi-
user environment, the individual traces were interleaved.

The simulation program is menu driven. A user can input design parameters such
as cache size and replacement policy, and obtain performance graphs generated by the
system. The simulation has been implemented using the round-robin scheduling algorithm.
In round-robin scheduling, a job is run till the time slice expires, the job terminates, the

job asks for /O, the job triggers a page fault, or the job asks for interprocess

communication, then the next job in the queue is given the CPU.

jobs only. The size of the page map table and the number of pages allotted for each job
are fixed and the maximum degree of multiprogramming is four. Thus, when four jobs
are active, a copy of the four jobs’ page map tables are brought into the cache from main
memory. A fixed number of cache page frames are allotted to the active jobs when the
cache is loaded. Each page of each job is mapped onto a distinct page in main memory
via the page map table. Figure 6 gives the data structure used for the page map table in
the simulation. The first page referenced by a job is always loaded into the cache and the
resident bit for that page in the page map table is set to 1. The rest of the pages allotted
for a job in cache are loaded upon request, using a demand page algorithm given in
Figure 7. Each time a page is loaded into the cache, the resident bit for that particular
page in the page map table is set to 1.

Once all the pages allotted for a job become full and a new page has to be brought
in, one of the pages allotted for the job needs to be replaced using one of the replacement
policies such as LRU or FIFO using the time-stamp. A variable called clock is used to
indicate when a page was last referenced. A time-stamp is associated with each entry in
the page map table and is used for implementing replacement policies. When a reference
is made to a particular page and that page is not available in cache (i.c., a cache miss),
the desired page has to be brought into the cache. The main memory page frame number
is obtained from the page map table and the page is brought from the main memory and

loaded into cache. Each time a page is referenced, the corresponding page map tables is

adjusted.

typedef struct word{
int mapgno, residbit;
charr_w;
int time-stamp;
int lpg_ca, modifibit;
JWORDS;

Figure 6. The Data structure used for page map table

In the LRU (least recently used) policy, the entry in the page map table whose
resident bit is set to 1 is checked to find the entry with the lowest time-stamp, and that
page is replaced. In the FIFO (first in first out) policy, the entry in the page map table
whose resident bit is set to 1 is checked to see which entry has the highest time-stamp
value, and then that page is replaced. Figure 8 gives the pseudocode of the
pagefault_handler algorithm used in the simulation. Once the job terminates, the cache
is flushed and the main memory free frame table is adjusted accordingly.

The output of the simulation contains cache hit ratio, cache miss ratio, effective
access_time, and the delay caused due to cache miss. The delay due to a cache miss is
calculated by the number of statements executed to get the page from main memory, and
the effective access time is calculated by the sum of the time to service each cache hit

plus the sum of the time to service each cache miss.

if (page_is_not_in_cache)
if (nopages < nopagesalloted)
{ pagefault handler():
else

obtain_mainframeno_from pmt ();
load cache():

Figure 7. Demand page algorithm

find the_least_recently usedpage();
if (dIrtybit_set)
{

write_ it memory():

replace_the_page():

Figure 8. Pagefault_handler algorithm

CHAPTER IV
EVALUATION OF THE SIMULATION

In this chapter, the evaluation of the simulation is mentioned with some
observations based on the simulation. The results obtained through the simulation are
compared against the results obtained by Marcovitz [Marcovitz88], Smith [Smith82], and

Agarwal [Agarwal93].
4.1 Test Programs

Several traces obtained from the Parallel Architecture Research Laboratory of New
Mexico State University were used to drive the simulation [Spice94]. The test programs
that were used are gcc, spice, espresso, eqntott, and matrix. These traces were captured
in real time from ten SPEC89 programs running on a Sun 3/60 under SunOS 4.0.3
[Spice94]. TABLE 1 gives the naturc and characteristics of the traces used. Several
graphical user interface application programs written in C were also used to collect
address traces. These reference strings were also used to drive the simulation. The
programs that were used were GNU chess, lander, xboard, xpaint, and CTWM. The miss
ratios, hit ratios, delays due to a cache misses and execution times were obtained and the
graphs were plotted to evaluate the simulation. A brief description of the programs, whose

traces were obtained to drive the simulation, are given below.

25

TABLE 1. TRACES USED FOR THE SIMULATION

Length of the
Program .
reference string

gcc 17, 432, 576

spice 22, 609, 920

espresso 13, 959, 168

eqntott 11, 599, 872

matrix 11, 592, 326
GNU chess 175
lunar lander game 142
xboard 132
xpaint 172
CTWM g5

Gec Program: Ge is the trace obtained from the GNU C compiler. The GNU C compiler

is written in C. This benchmark "measures the time it takes for the GNU C compiler to
convert a number of its pre-processed source files into optimized Sun-3 assembly

language output” [Jhonson94].

Spice Program: Spice is the trace of the analog circuit simulator written in FORTRAN
with a C interface to UNIX. This benchmark is a "general purpose circuit simulation

program for nonlinear dc, nonlinear transient, and linear ac analyses” [Johnson94].

27
Espresso: Espresso trace is the trace obtained from a program used to minimize logic

equations in computer design. This program is written in C.

Eqgntott: Eqntott trace is the trace of a program that converts logic equations to truth

tables.

Matrix: Matrix trace is a trace obtained from a matrix multiplication program written in
C. This "benchmark also performs transposes using Linpack routines on matrices of order

300" [Johnson94].

GNU_Chess: GNU chess is an ANSI/C version chess program developed by Stuart

Cracraft.

Lunar Lander Game: The lunar lander game is a C implementation program of the old

"lunar lander" game seen in amusement arcades. This program was developed using

curses.

- Xboard: Xboard is an X11/R4-based user interface for GNU chess.

Xpaint: Xpaint is also a graphical user interface program developed in X-windows. The

program was developed by David Koblas used for drawing and editing figures similar
to macpaint.

CTWM: CTWM (Claude’s tab window manager) is a window manager for X-Windows.

4.2 GRAPHS

Graphs have been plotted using Harvard Graphics (Harvard Graphics for windows
Ver 3.0, a software package developed by the Software Publishing Corporation), which
is an interactive graphics package used to plot graphs. This tool was used to plot graphs
with the hit ratio on the Y axis vs. the cache size on the X axis, or the miss ratio on the
Y axis vs. the cache size on the X axis. Sf__r@ graphs were plotted with dxffetentcachc

sizes and a fixed page size of 512 words per page, using the two different replacement
policies of LRU and FIFO. Graphs were also plotted with the delay due to a miss on the
X axis and the miss ratio on the Y axis for all the test programs. From the graphs
obtained, it can be observed that the miss ratio can be a good performance metric in
designing a cache. From the graphs, it can also be observed that the performance of a
system can be improved by including page map tables and pages in cache, because the

effective access time 1is less.
4.3 Observations

The graphs were plotted for all the test programs, and the graphs obtained were |
compared with the comparable graphs from the literature [Agarwal94] [Marcovitz88]. The
graph in Figure 9 for the gcc trace (using the LRU policy) shows that as the cache size
increases, the miss ratio decreases; but after a certain stage, the miss ratio is not affected
even after increasing the cache size. The graph in Figure 10 for the gcc trace (using the
LRU policy) shows that as the cache size increases hit ratio also increases. The graph in

Figure 11, plotted for the gcc trace, shows that the delay due to a cache miss decreases

29
as the miss ratio decreases, because there are few misses and the amount of time to

service a miss is less. The graph in Figure 12 shows that as the miss ratio decreases, the
effective access time also decreases because the number of times the main memory is
accessed to service a cache miss is less. The graphs (the delay due to cache miss vs. the
miss ratio and the miss ratio vs. the effective access time) were compared with the graphs
obtained by Marcovitz [Marcovitz88]. The graph in Figure 13 for the spice trace (with
the LRU policy) does not show much difference in the miss ratio, even after increasing
the cache size, mainly because of the reference pattern. The graph in Figure 17 for the
espresso trace (with the LRU policy) shows that sometimes the miss ratio decreases and
sometimes the miss ratio remains unchanged even after increasing the cache size,
depending on the behavior of the program in execution. We can observe the same changes
even in the hit ratio vs. the cache size. The graphs plotted were also compared with the
results obtained by Agarwal [Agarwal93]. The graphs in Figures 14, 15, and 16 plotted
for the spice trace, in Figures 18, and 19 plotted for the espresso trace, and in Figures 20,
21, and 22 plotted for the GNU chess trace can be analyzed in a similar way. So, by
. having the page map tables and the pages in cache, the effective access time is reduced.

If effective access time is reduced, the overall execution time is also reduced and these

results can be used in designing a cache.

hit ratio

miss ratio

0.715

Ty

0.705

™

T

0.695

L 4

0.685 |-

0675+

06 - L 1 1 i 1 1 1 b i i | 1 1 A i 1 1

65
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88
cache size

Figure 9. Hit ratio vs. cache size for gcc (LRU policy)

o.335b

03155—

0.295:-

oo7s bt 11 1 1o 11111l
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 10. Miss ratio vs. cache size for gcc (LRU policy)

5200

e v e YT o vTTTY

delay due to a miss

4800 p=
4600 =
5
4400 [1 1 1 1 1 4 L 1 L L
0276 028 0284 0288 0292 0296 03 0304 0308 0312 0316 032 02324
miss ratio

Figure 11. Miss ratio vs. delay due to a miss for gcc (LRU policy)

T

5400

5100

EAT

4800

T T T YT Y

4500

LANN BN SRS SEND ANND SENE SRALANED SN |

L A 1 1 1 1 L i 1 1 i d 1 1 1 1

1
420015 20 24 28 32 36 40 44 48 52 S6 60 64 68 72 76 80 84 88
cache size

Figure 12. Cache size vs. effective access time for gcc (LRU policy)

C
0.106 |-
0.098 |-
o i
©
e
w
w s
E o009}
0.082 |-
0.074 1 1 1 4 1 1 1 1 1 1 L i 1 1 1 1 1
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 13. Miss ratio vs. cache size for spice (LRU policy)

0.93

0.92

L S

0.91

LANNN SREN SN NN SEAR SEa

hit ratio

09}

0.89

088 1 L 1 1 1 I3 | 1 1 1 i i 1 L) 1

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88
cache size

Figure 14. Hit ratio vs. cache size for spice (LRU policy)

32

1900

1600 -

1300 -

delay due to a miss

1000

H 1 1] 1 1

700 4)
0.075 0.08 0085 0.09 0095 0.1 0105 0.11 0.115 0.12
miss ratio

Figure 15. Miss ratio vs. delay due to a miss for spice (LRU policy)

1700

1500

1300 |-

EAT

1100 -

900

1 1 L i L L i 1 1 1 1 1 1

700 L L [l 1
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88
cache size

Figure 16. Cache size vs. effective access time for spice (LRU policy)

05

b=
E§ 0.48 |-
7, 9
@
E

0.46 -

044 1 1] i i 1 1 1 1 1 1 1 1 1 L 1 A

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 17. Miss ratio vs. cache size for espresso (LRU policy)

0.56
0.54 |-
9 3
S o052}
= !
05}
3
0 48 [1 1 j 1 1 1 1 1 1 1 1 § 3 ;1 1 1 L 1
7716 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 18. Hit ratio vs. cache size for espresso (LRU policy)

8700 -

8400

EAT

8100

7800 |-

1 I | 1 [] I I 1 1 1 1 L Lo 1 1

00
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88
cache size

Figure 19. Cache size vs. effective access time for espresso (LRU policy)

0.23

021

hit ratio

0.19 -

0.17

1 1 1] 1 i 1 L 1] I i 1 1 L A

1
0‘1516 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88
cache size

Figure 20. Hit ratio vs. cache size for GNU chess (LRU policy)

084 |

081

miss ratio

0.78 i

3

b

1 i 1 1 | i 1 1 1 1] i b 1 i 1 i

75
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88
cache size

Figure 21. Miss ratio vs. cache size for GNU chess (LRU policy)

4800 |
4600

4400 -

EAT

4200 }-

4000 -

3800 1 | 1 1 i 1 1 1 1 1 1 1 1 1 I L
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

cache size

Figure 22. Cache size vs. effective access time for GNU chess (LRU policy)

CHAPTER V
SUMMARY AND FUTURE WORK

5.1 Summary

In Chapter I, the significance of the simulation, the introduction, and the main
objective of the thesis was stated. Chapter II presented a general introduction to cache
memory. The topics covered in this chapter consisted of the basic definitions to
understand cache design, storage hierarchy, and some of the important cache design
parameters such as cache size, block size, cache organization, replacement policy, cache
coherence, snoopy cache mechanism, and cache consistency. Chapter IIl discussed the
implementation issues and trace-driven simulation. Section 1 of Chapter III addressed the
implementation platform and the run-time environment. Chapter III also contains the trace
collcctioﬁ method, a brief description of page map tables, and other implementation
 details. Chapter IV discusses the evaluation of the simulation, the test programs used, ahd
the graphs obtained.

The main objective of this thesis was to develop a simulation package for cache
memory using a trace-driven simulation technique. This package can be used to design
a system and improve the performance of an existing system. The results of this

simulation were compared with the results obtained by Marcovitz [Marcovitz88], Agarwal

37

[Agarwal93], and Smith [Smith82].

5.2 Future Work

The future versions of this package should remove one or more restrictions
mentioned below. The size of page map tables used in cache and main memory are fixed
in the current implementation. The page map table size can be varied and allocated
dynamically. A fixed number of page frames were allotted for each active job in cache.
The number of page frames allotted for each job can be varied. Several other replacement
algorithms such as second chance replacement, most recently used (MRU), and least
frequently used algorithms can also be used as page replacement policies. Several other
scheduling algorithms like FIFO (first in first out), SJF (shortest job first), and priority

scheduling can also be used.

38

REFERENCES

[Agarwal88] Anant Agarwal, John Hennessey, and Mark Horowitz, "Cache
Performance of Operating System and Multiprogramming Workloads", ACM
Transactions on Computer Systems, Vol. 6, No. 4, pp. 393-431, November
1988.

[Agarwal93] Anant Agarwal and Steven D. Pudar," Column-Associative Caches: A
Technique for Reducing the Miss Rate of Direct-Mapped Caches", Proceedings
of the 20th Annual International Symposium on Compuser Architecture, Los
Alamitos, CA, USA pp. 179-190, 1993.

[Hill90] Mark D. Hill and James R. Larus, "Cache Considerations for Multiprocessor
Programmers”, Communications of the ACM, Vol. 33, No. 8, pp. 97-102,
August 1990.

[Johnson89] Eric E. Johnson, "Working Set Prefetching for Cache Memories”, ACM
Computer Architecture News, Vol. 17, No. 6, pp. 37-141, December 1989.

[Johnson94] Collen S. Schieber and Eric E. Johnson, "RATCHET: Real-time Address
Trace Compression Hardware for Extended Traces”, ACM Performance
evaluation Reviews, Vol. 21, No. 3, pp. 22-32, April 1994.

[Kaplan73] K. R. Kaplan and R. O. Winder, "Cache-Based Computer Systems”,
IEEE Computer, Vol. 6, No. 3, pp. 30-36, March 1973.

‘[Leung82] Yuk-Hoi Leung, "A Variable Cache Simulation System", Project Report for
Masters Degree, University of Southwestern Louisiana, 57 pages, May 1982.

[Lilja93) David J. Lilja, "Cache Coherence in Large-Scale-Memory Multiprocessors:
Issues and Comparisons", ACM Computing Surveys, Vol. 25, No. 3, pp. 303-
338, September 1993.

[Lovett93] Tom Lovett, Sequent Computer Systems, Inc., Personal Communication,
June 1993.

[Marcovitz88] David Michael Marcovitz, "A Multiprocessor Cache Performance
Metric", Technical Report CSRD Rpt. No. 813 (UILU-ENG-88-8011), Censre

39

40

Jor Supercomputing Research and Development, University of Illinois, Urbana,
IL, August 1988.

[Sequent90] DYNIX/pex User’'s Guide, Sequent Computer Systems, Inc., 1990.

[Smith82] Alan Jay Smith, "Cache Memories”, ACM Computing Surveys, Vol. 14,
No. 3, pp. 228-270, September 1982.

[Spice94] An International Trace Archive, NMSU Tracebase, New Mexico State
University, Lascruses, NM, 1994,

[Stenstrom90] Per Stenstrom, " A Survey of Cache Coherence Schemes for
Multiprocessors”, IEEE Computer, Vol. 23, No. 6, pp. 12-24, June 1990.

[Stunkel91] Craig B. Stunkel, Bob Janssens, and W. Kent Fuchs, "Address Tracing for
Parallel Mechanisms”, JEEE Computer, Vol. 24, No. 1, pp. 31-38, January
1991.

[Wang90] Wen-Hann Wang and Jean Loup Baer, "Efficient Trace-Driven Simulation
Methods for Cache Performance Analysis”, ACM SIGMETRICS: Performance
Evaluation Review, Vol. 18, No. 1, pp. 27-31, May 1990.

APPENDICES

41

assembly level
address tag:

Cache Cherence:

compiler based
address tag:
gnuplot:
intermiss time:
object level

address tag:

' pixie:

APPENDIX A

GLOSSARY AND TRADEMARK INFORMATION

One of the code insertion techniques in which a program is
modified at the assembly level to generate addresses.

Coherence is correctness; cache coherence means caches must be
able to see the correct value for the same variable when a memory
location is shared by different processors so as to maintain the
correct execution of programs.

One of the code insertion techniques in which a program is modifi-
ed during compile time to generate addresses referenced by the
processor.

An interactive, command-driven function plotting program.

The time between two misses on a single processor.

One of the code insertion techniques (sometimes called as link time
code modification) in which a program is modified during the
link time for generating address traces.

A program used to capture traces referenced by the processes
during program execution.

TRADEMARK INFORMATION

DEC is a registered trademark of Digital Equipment Corporation.

DYNIX, DYNIX/ptx, Sequent, and Symmetry are registered trademarks of the Sequent
Computer System, Inc.

UNIX is a registered trademark of AT&T.

42

APPENDIX B

PROGRAM LISTING

/t****************ﬁ*******t**t*t********t****tti***t**t**t*t***tt*t****

DESCRIPTION :
This program is used to study the performance of cache. A cache with
page map tables and pages has been used in the simulation. At any
instance, cache contains page map tables and pages of active jobs only.
Certain amount of storage in cache is reserved for page map tables and
certain amount of storage is used for pages. The jobs table gives the
information of the starting address of the job in cache. Each entry in
the page map table contains the page frame number, resident bit,
modified bit, location of the first page in cache, and time stamp. The
replacement policy used is LRU and FIFO to replace the page to give
room to the incoming page. The following information is obtained from
the simulation. The cache miss ratio, the hit ratio, effective access
time, and the delay due to a miss.

tﬁit**ﬁ**t*t*i*ti***itt**i**itii**t*tiii*itiitt*tii*ti*****i********t**/

#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<string.h>
#include<malloc.h>
#define WORD 512 /* size of the each page */
#define PMTSIZECA 8 /* the storage space for page map table in
cache*/
#define PMTSIZEMEM 10 /* the storage space for page map table in
; memory*/
#define PMTSIZE 1024 /* size of the page map table */
#define JOBSTOBEDONE 33 /* to check if the jobs are done */
. §#define MAXJOBS 200 /* maximum number of jobs */
#define CACHEMISS 55 /* a global variable to check if it is a
cache miss*/
#define LOADED 2 /* a global variable to check if the
page map table of the job is loaded
successfully*/
#define CACHEFULL -1 /* a check to find if the cache is full */
#define 22z 99999 /* variable used for random number
generator*/
#define TERMINATED 99 /* a check to find if the job has
terminated */
#define TIMEOVER 44 /* check to see if the time has expired*/
#define TRUE 1 /* a boolean variable for true or false*/
#define FALSE 0 /* a boolean variable for true or false*/
#define AA 16807.0 /* a variable used for random number
generator*/
#define RR 2836.0 /* a variable used for random number

43

4

generator*/

#define MM 2147483647.0 /* a variable used for random number
generator*/

#define QQ 127773.0 /* a variable used for random number
generator*/

/**************itt*****it***i*i*t**tﬁtﬁtttIt*ttttﬁ*t*itt*t*tttttt*t**ti*

The structure used for cache,main memory,page map table,pcb,list of jobs
in the system, list of jobs in the active queue.
ﬁ***t*********tiﬁ*ttt*t**t*tit*ttt***tttt*tt**ﬁt*t*'t*t*t*t**t**tt*tti*/
/* structure of a pcb */
struct pcbh infof{

int Jid:

int jb_size;

int start time;

int end_time;

int pccounter;

int base_addrcac:

int base_addrmem;

int lfirst_pgca;

int nopages:;

int pcb_flg:;

int jb_status;

}:

/* structure declaration for the word */
/* each entry in page map table contains the following fields
. The main memory page frame number
2. The resident bit to indicate whether the page is present
in cache;
3. The modified bit to indicate that the page has been modified
since it has been last referenced.
4. The time stamp used for the replacement policy.
; 5. The location of the page in cache.
*
typedef struct word{
int mapageno;
int residbit;
int modifibit;
int time_stamp:;
int lpg_ca;
char oper;
}WORDS ;

/* structure declaration for the page*/
typedef struct page{

struct word wrd(512};

}PAGE;

/* structure declarations for cache */
typedef struct cache{

struct page **pg;

struct word pmpt (4096];

}CACHE;

struct arr{
int flag,no:;
int refno, index;

}:

typedef struct pmt{
int base_pmtaddr,pmt_flag;

45

int max;
}PMT;

struct wrdbuf{
int offst,ref no;
int termflg;
¥z

/* structure for jobs table to give the no pages allotted */
struct jobs_table(

int jbflg,list_id:

int nopagesallt;

}:

/* structre for page list */
struct pg_list{

int pgflg:;

}:

struct temperory(
struct wrdbuf wrdbf[1024];
int buffijid;
}:

/* structure to collect information about all the jobs */
struct perf(
int cache hit;
float cache_hitratio;
float cache missratio;
int cache_miss;
float hit_time;
float miss time;
float update_time;
float cupage time;
float page_time;
int no;
int job_id;
)2

/* structure for free frame table in main memory */
struct fft({

int fftflg:;

}:

/* structutre of main memory with free frame table and page map tables
*/
struct mamem{

struct page **mpg;

struct fft fmt[1000];

struct word pmt [5120];

)i

int loading_cache();

int alljobs_loaded():;
int obtain_pmtma();

int obtain_ind{():

int obtain_pcb();

void adjust_jblist():
float get_random no();
int get_job();

int run_job_timeslice():
int get_free_pgcache();

struct mamem *mem;

struct pcb_info pcb({MAXJOBS]:
struct perf perf[MAXJOBS]:;

struct arr arry([1024]);

struct pmt ca_pmtarry(10];
struct jobs table list [MAXJOBS]);
struct pg_lIist list_pges{1200};
struct temperory buffer [MAXJOBS]:
struct pmt ma_pmtarry{MAXJOBS]);

/* some of the global variables used */

int templ[25];
int cachesize = 0;

int numpages cache = 0;

int perfcnt = 0;
double seed = 1.0;
int buffcnt = 0;
int clock_tick = 1;

int numpg_frames = 0,blksize = 0;
int pg_size = 0,pmtendaddr_ca = 0,pmtendaddr ma = 0;
float delay = 0.0,hitser_time = 0.005;

CACHE *mycache;
FILE *fpl;

46

/***ﬁ*i*ﬁt***ﬁﬁtti*Qttt***itttit*ttiittt**ttti*.*ttttt'tttt****"**i***/

main ()
{

int choice,i = 0,3 = 0;

int time_slice = 0;

int base_addrca = 0,base_addrma = 0,pmt_cntma = 0;

int statcnt = 0,pmt_cntca = 0,numpmt = 3,con£ig_no - 1;
float exec_time = 0.0;

int memsize = 0;

char policy(6],scheduling(10];

/* the menu used to drive the simulation */

while (1)
{

system("tput clear”®);

printf ("\n\n\n\n\n\n\n\n");

Printf (" RRrarAAARRARASERARRRRARRRRRRRARRRAARNANN\ ") ;
printf (™ * MENU *\n");
printf (™ * *\n") ;
printf (™ * *\n");
printf (" * ENTER 0 -> ENTER THE CACHE SIZE *\n");
printf (™ * ENTER 1 —-> PERFORMANCE ANALYSIS *\n");
printf(" * ENTER 2 -> TO END THE SESSION *\n");
printf(® * *\n");
PIintf (" *ARAAAARRXERRNAARRRRARANARARANRRRERARNAN\ ") ;
printf("\n PLEASE ENTER NOW YOUR CHOICE -> ");

scanf ("$d%*c”, &choice):;
system("tput clear");
switch(choice)

{
case

0: config not++;

printf ("\n CONFIGURATION NO : %d",config no);
clock_tick = 1;

perfcent = 0;

buffcnt = 0;

memsize = 512000;

pg_size = 512;

47

time slice = 0;

cachesize = 0;

base_addrma = 0;

base addrca = 0;

blksize = 512;

numpages cache = 0;

statcnt = (;

numpg_frames = 0;

printf(\n ENTER THE CACHE SIZE NOW"):;
scanf ("%d", &cachesize);

memset ((struct pcb info *)pcb, NULL,MAXJOBS *

sizeof (struct pcb_info));

memset ((struct arr *)arry,NULL, 1024 * sizeof(struct
arr));

memset ((struct temperory *)buffer, NULL,MAXJOBS *
sizeof (struct temperory)):

initialize performance():

memset ((struct pmt *)ma pmtarry, NULL,MAXJOBS *
sizeof (struct pmt));

memset ((struct pmt *)ca_pmtarry,NULL,10 *
sizeof (struct pmt));

memset ((struct jobs_table *)list,NULL,MAXJOBS *
sizeof (struct jobs_table});

memset ((struct pg_ 1ist *)list_pges,NULL, 1200 *
sizeof (struct pg_ 1ist));

printf ("\n ENTER THE REPLACEMENT POLICY AS LRU OR
FIFO™);
scanf ("%s",&policy):

strcpy (scheduling, "RR"}) ;
numpages_cache = (cachesize)/(pg_size) - PMTSIZECA;
cachesize = cachesize/512;

printf ("\n CACHE SIZE IS
%d",cachesize);

printf ("K");

printf ("\n NUMBER OF WORDS/PAGE IN CACHE
3d”,blksize);

printf ("\n NUMBER OF PAGES IN CACHE

$d", numpages_cache) ;

printf ("\n REPLACEMENT POLICY
¥s",policy);

printf ("\n SCHEDULING :
$s",scheduling);

printf ("\n"):

/* main memory size is in bytes */
numpg_frames = ((memsize)/pg_size) - PMTSIZEMEM;

pmtendaddr_ca = (PMTSI2ZECA) * 512;
pmtendaddr_ma = (PMTSIZEMEM) * 512;
for (pmt_cntma = 0;pmt_cntma <=
(PMTSIZEMEM) /2;pmt_cntma++)
{
ma_pmtarry(pmt_cntma).pmt_flag = 0;
ma_pmtarry[pmt_cntma] base_pmtaddr -
base addrma;
base_. “addrma = base_addrma + 1024;

48

numpmt = (PMTSIZECA / 2) - 1;

for(pmt_cntca = 0;pmt_cntca <= numpmt;pmt_cntcat+)
ca_pmtarry{pmt_cntcal.pmt_flag = 0;
ca_pmtarry(pmt_cntca] .base_pmtaddr =
base_addrca;

: base_addrca = base_addrca + 1024;

mycache = NULL;
mem = NULL;
/* allocating memory to cache dynamically */
mycache = (struct cache*)malloc(sizeof (struct cache));
if (mycache == NULL)
{
printf ("\n MEMORY ALLOCATION ERROR");
exit(l);

}
/* allocating memory and initialising members in cache
*

allocatemem initialise_cache():;
/* allocating memory for main memory */

mem = (struct mamem*)malloc (sizeof (struct mamem));
if (mem == NULL)
{
printf("\n MEMORY ALLOCATION ERROR");
exit (1);
}

allocatemain_initialise();

/* making page map tables for the jobs in the system
*/
memory module () ;
for(i = 0;i <= buffent;i++)
{
list[i].jbflg = 1;
list(i}.list_id = buffer[i].buffjid;

)
printf ("\n JOBS STARTED EXECUTION");
if (strcmp (scheduling, "RR") == ()
{
printf("\n ENTER THE TIME SLICE");
scanf ("%d", &time_slice);
printf(*"\n TIME SLICE : %d",time_slice);
round_robin_scheduling(time_slice,policy);

else
printf ("\n ERROR IN TYPE OF SCHEDULING"):

break:
case 1: printf("\n PERFORMANCE STATISTICS");
statcnt = 1;
for(i = 0;i<= perfcnt;i++)
{
exec_time = (float) (perf(i].cache_hit) +
perf([i] .page_time;
printf(”"\n JOB ID : %d”,perf[i).job_id):
print£("\n CACHE HITS :
$4.3f", (float) (perf[i].cache_hit)/(float)
(perf(i] .cache_hit + perf[i].cache_miss));

printf ("\n CACHE MISS :

49

$4.3f", (float) (perf(i].cache_miss)/ (float)
(pexf(i).cache hit + perf(i).cache_miss));

printf("\n DELAY TIME :
%4.3f", (perf{i) .page_time));

printf ("\n EXECUTION TIME : $4.3f",exec_time);

print£("\n UPDATE TIME :
3£",perf(i] .update_time);
if ((statcnt § 2) == Q)
getchar():
printf(~\n\n");
) statcnt++;
break;
case 2: exit(l);
break;
default : printf ("\n\n\n\n\n\n
CHOICE. \n");
break;

for(i = 0;i < (numpages_cache);i++)

}
free (mycache->pg) ;

free (mycache->pgl(i}l):

INVALID

memset ((struct word *) (mycache->pmpt),NULL, 4096 *

sizeof (struct word)):;

free (mycache) ;

for(i = 0;1i < numpg_frames;i++)
{

)
free (mem—>mpqg) ;

free (mem->mpg(i}):

memset ((struct word *) (mem->pmt),NULL, 5120 *

sizeof (struct word)):;

memset ((struct fft *) (mem->fmt),NULL, 1000 *

sizeof (struct fft));
free (mem) ;
fclose (fpl):;
pr;ntf(“\n\n\n"),
printf (" PRESS <enter> TO CONTINUE => "),
getchar();
}

/***ﬁ*ﬁ***t***********i*****ttttt*ttt*t*i**ti*ﬁ**tt*t*tﬁﬁ*ttitt**t***ﬁtt

FUNCTION : initialize rformance ()

PURPOSE : This function is used to initialize the performance variables

****i********t*****t**t*tt**t***tiit*it*iﬁ***ﬁiii*t*i**tﬁti**titiit*tt*/

initialize_performance ()
{

int 1 = 0;

for(i = 0;i < MAXJOBS;i++)
{

perf(i).cache_hit = 0;
perf(i].cache_ “hitratio = 0.0;
perf(i].cache_} “missratio = 0.0;
perf[i].cache miss = 0;

50

perf(i].hit_time = 0.0;
perf(i] .miss time = 0.0
perf[i).update_time = 0
perf{i].cupage time = 0
perf(i].page time = 0.0
perf{i]l].no = 0;
perf[i].job_id = 0;

0
0

e 0 N
e w3

/*t**********i***t******t*i*t*ii****t*tttit**t*ﬁﬁﬁttttt*ttt**iititt*'iiﬁ

FUNCTION : allocatemem initialise_cache()

PURPOSE : This function is used to allocate memory dynamically to
cache and initialise the cache

**********i*tﬁ***ti**tttt****ittttti*i***itttt*tt*t*t*i*t**tt*******ﬁ**/

allocatemem_initialise_cache()

{

int { = 0,k = 0;

/* initialising page map tables */

for(i = 0;i < pmtendaddr_ca;i++)

{
mycache->pmpt [i] .mapageno = -1;
mycache->pmpt [i] .residbit = 0;
mycache->pmpt (1] .modifibit = 0;
mycache->pmpt (1] .time_stamp = -1;
mycache->pmpt (1] .oper = * *;
mycache->pmpt {i].1lpg_ca = ~1;

}

/*allocating memory dynamically to the page*/
mycache~->pg = (PAGE **)malloc(numpages_cache * sizeof (PAGE *));
if (mycache->pg == NULL)
{
printf ("\n MEMORY ALLOCATION ERROR");
exit (1)

}

for(i = 0;i < numpages_cache;i++)

{ mycache->pg (i) = (PAGE *)malloc(sizeof (PAGE)):
if (mycache->pg(i] == NULL)

{
printf ("\n MEMORY ALLOCATION ERROR");

exit (1);

for(k = 0;k < pg_size;k++)

mycache->pg(i]->wrd(k]) .mapageno = -1;
mycache->pg(i]->wrd[k].residbit = 0;
mycache->pg{i]->wrd(k}.modifibit = 0;
mycache->pg(i)->wrd(k].time_stamp = -1;
mycache->pg(i]->wrd(k).oper = * ‘;
mycache->pg [i]->wrd({k].lpg_ca = -1;

51
}

/****t*tt**t******t*t*it**tt**ﬁt**tttttttﬁ***tttttt*t*ttttttttt**t***ti*
FUNCTION : allocatemain initialise()
PURPOSE : This function is used to initialise the main memory

*******i*****tt***tt***t*tttt*t***ttt*t*t*tttttttt*tttttt*t*ttlt*t*****/
allocatemain_initialise()

int 1 = 0,k = 0;

for(i = 0;i < pmtendaddr_ma;i++)

mem->pmt {i] .mapageno = -1;
mem->pmt {1] .residbit = 0;
mem—->pmt [1] .modifibit = 0;
mem->pmt (1] .time_stamp = -1;
mem->pmt (1] .oper = * *;
mem->pmt (1] .1pg ca = ~-1;

}
/*allocating memory dynamically to the page*/
mem—>mpg = (PAGE **)malloc((numpg_frames) * sizeof (PAGE *));
if (mem->mpg == NULL)
{
printf (“\n MEMORY ALLOCATION ERROR");
exit (1),
}

for(i = 0;1i < numpg_frames;i++)

{
mem->mpg (1] = (PAGE *)malloc(sizeof (PAGE));

if (mem->mpg[i] == NULL)
{

printf("\n MEMORY ALLOCATION ERROR"):;
exit (1);
}

/*allocate memory dynamically to the word*/

for(k = 0;k < pg_size ;k++)

{
mem->mpg (1} ->wrd (k] .mapageno = -1;
mem->mpg [1)->wrd (k] .residbit = 0;
mem->mpg (1] ->wrd(k] .modifibit = 0;
mem->mpg (1] ->wrd(k].time_ stamp = -1;
mem->mpg [1]->wrd{k] .oper = ' ’;
mem->mpg (1] ->wrd([k] .1lpg_ca = -1;

}

/*****i****tit*i*ttittii***t*t*tit*t***ttti**it**ti'tk*ﬁt*tti*#**it***ﬁ*

FUNCTION : get_random no()
PURPOSE . This function returns a pseudo random number generator

greater than or equal to zero and less than l.The maximum
int value taken is 32767

*it***********t**tit**ttﬁt**t*t*i*fii*'t*ﬁﬁi*iit*ﬁttﬁttﬁttttiitﬁ**tﬂt**/

float get_random no()
{

52
double hi, lo,test;

hi = (int) (seed/QQ):
lo = seed -~ QQ * hi;
test = AA *]Jo -~ RR * hi;
if (test > 0.0)
{
seed = test;

: seed = test + MM;
return (seed/MM) ;

/****************i******t*****tt**t*t*t**t*ttt****i*ttt***i**t*tt****tt*

FUNCTION : random(n)

PURPOSE : This function returns an integer between 0 and n-1.
******************t****tt**t***t**tttt**tttﬁt*i*t*tttt*tti**t*iitiitt**l

random(n)
int n;
{

double m;

m = get_random no():
n = ((int) (m * 32767.0)) % n;

return(n);

/ﬁt***t***i*t*t*i**t**t*t*t*t***t!*t***ﬁt****ti*i**ittit**it*ittt*i*t***

FUNCTION : memory module ()

PURPOSE : This function is used to make the page map tables of the
jobs and load the jobs into the system

ti***********ti***t*tt****tt*t***ﬁt**tti**ﬁt**tttttt*t*t**tt*t**t*t**t/

memory_ module ()

{

char S(80];

int pmt_index = 0,pcb_index = 0;
int flag,rnd = 0,1pgno = 0;

char lopgno([5],type(5];

int typ,count = 0,j_id = O,cnt = 0;
int max = 0,loca = 0,tempaddr = 0;

/* opening the file for processing */
fpl = fopen("refstr”,"r");
if (fpl == NULL)

{
printf("\n ERROR OPENING INPUT FILE");

exit (1):
}

/* obtain the page map table */
pmt_index = obtain_pmtma():

/* obtain a free pcb for the job */
pcb_index = obtain_pcb ()7

fgets (s, 80, fpl);

S3

sscanf (S,"%s %s",&type, &lopgno);

/* storing all the references in a buffer */
%f(atrcmp(type,'JID') == ()

lpgno = atoi (lopgno);
, buffer(buffcnt] .buffjid = lpgno;

/* mapping the logical addresses to the pages in main memory */
j_id = lpgno;
fgets (S, 80,fpl);
sscanf (S, "%s %s",&type, &lopgno);
lpgno = atoi(lopgno);
typ = atoi(type):
max = 0;
/*numpg_frames = (numpg_frames - PMTSIZEMEM) + 1;*/
while (! (feof (£fpl)))
{
memset ((struct arr *)arry,NULL,1024 * sizeof (struct arr)):;
ma_pmtarry({pmt_index]}.pmt_ flag = 1;
pcb(pcb_index) .pcb_flg = 1;

/* st7ring the base address of the page map table in the
pcb *
pcb(pcb_index] .base_addrmem =
ma_pmtarry(pmt_index].base_pmtaddr;
pcb(pcb_index]).jid = j_id;
perf(perfcnt] .job_id = j_id;
max = 0;
tempaddr = pcb{pcb_index] .base_addrmem;
flag = TRUE;
while{(strcmp (type,"JID") != 0) && (flag == TRUE))
{

if(typ == 3)

{

fgets (5,80, fpl);
sscanf (S, "%s %s",&type, &lopgno);
}
lpgno = atol (lopgno):
typ = atoi(type):
buffer{buffcnt] .wrdbf(cnt].ref no = lpgno;
cnt++;
rnd = random(numpg_frames-1);
while (mem->fmt (rnd) .fftflg == 1)
{
rnd = random{numpg_frames-1):;
count++;
if (count >= 10000)
{
count = 0;
seed = seed + 1.0;
rnd = random(numpg_frames-1);

}

}

if(arry({lpgnol .flag != 1)

{
loca = tempaddr + lpgno:;
mem->pmt [loca) .mapageno = rnd;
arry(lpgno) .flag = 1;
mem->fnmt [rnd] .fftflg = 1;

S4

else
{

}
if((typ == 0) || (typ == 2))
mem->pmt {loca] .oper = ‘¢’ ;

loca = tempaddr + lpgno;

else
mem—->pmt [local .oper = ‘w’;

/* making the flag of the occupied page to 1*/
%f(lpgno > (max))

max = lpgno:
pcb(pcb_index]).jb_size = max;

lpgno = 0;

fgets (s, 80, fpl);

sscanf (S, "%s %s", &type, §lopgno);
flag = TRUE;

if (strcmp (type, "JID") == 0)

{

cnt = ¢cnt - 1;
buffer[buffcnt] .wrdbf (cnt].termflg = 1;
}
if (feof (£pl))
{

flag = FALSE:
}
}
if (flag == FALSE)
{
ent = ¢cnt - 1;
buffer (buffcnt] .wrdbf{cnt] .termflg = 1;
break;

else

lpgno = atoi(lopgno);
j_id = lpgno:;
pmt_index = obtain_pmtma();
if(3_id == 1)

printf("\n STOP");
pcb_index = obtain_pcb();
buffcnt++;
buffer(buffcent] .buffjid = lpgno;
perfent++;
memset ((struct arr *)arry,NULL, 1024 * sizeof(struct
arr)).;
fgets (S, 80, fpl);
sscanf (S, "%s %s",&type, &lopgno);
cnt = 0;
printf ("\n\n");

}**tt********t******t*t*******tt***i***ttt*t*i*****iﬂ*ttﬁ*t*t!*t**tt***

FUNCTION : loading_cache())
PURPOSE : This fgﬁbtion is used to load the page map table into cache

’ and the page frames are allocated to the jobs depending on
the size of the job.

58

**************t***tt****tt**i*itttt*ttt*tt*ttt**t**ttt**t*i***i****t**/
int loading_cache(id)
int id;
{
int i = 0,prid = 0,loca = 0;
int jd = 0,ref = 0,pcin = 0,addr ma = 0;
int main _no= 0,page_no,fr_pg = 0,num = 0;
int locind = 0,locca = 0,sum = 0,locca_addr = 0;

prid = id;
for(i = 0;1 < MAXJOBS; i++)
if(pcb{i).jid == prid)
break;

)
/* finding the pcb for the job given the job id*/
pcin = %;

for(i = 0;1i <= buffent;i++)

{
if (buffer(i).buffjid == id)
break:;

}

jd = i;

/* address of the job in the main memory */
addr _ma = pcb(pcin].base_addrmem;

/* the available free pages in cache is obtained */
fr pg = get_free_pgcache();

list_pges(fr l.pgfig = 1;

pcb(pcin] .1first_pgca = fr_pg;

/* fixed number of page frames being allotted to each job */
pcb(pcin) .nopages = numpages_cache/4;

num = pcb{pcin).nopages;

num = num + fr_ pg;

/* setting the pages that have been allotted to each job as
occupied*/

for(i = fr_pg;i < num;i++)

{

list_pges(i].pgflg = 1;

}
locind = obtain_pmtca():

/* if there is no free page map table available then
the cache is returned full */
if (locind == -1)
return (CACHEFULL) ;
else

{
/* if a free page map table is available then the page map

table is loaded into cache */

locca addr = ca_pmtarry(locind) .base_pmtaddr;
pcb(pcin] .base_addrcac = locca_addr;
ca_pmtarry[locznd].pmt_flag = 1;

for(i = 0;i < 1024;i++)

{
loca = addr_ma + i;

locca = locca_addr + i;
mycache->pmpt {locca]) .mapageno =

56

mem->pmt {loca] .mapageno;
mycache->pmpt [locca) .residbit =
mem->pmt [loca] . residbit;
mycache—>pmpt (locca] .modifibit =
mem—->pmt [loca) .modifibit;
mycache->pmpt [loccal .lpg _ca = mem->pmt [loca].lpg_ca;
mycache->pmpt [locca] .time stamp = -
mem—>pmt [loca] .time_stamp;

: mycache->pmpt [locca] .oper = mem->pmt [loca] .oper;

reg = buffer[jd].wrdbf (0] .ref_no;

main no =~ mycache->pmpt [pcb(pcin] .base_addrcac +

ref] .mapageno; -
mycache->pmpt [pcb (pcin] .base_addrcac + ref].residbit = 1;
mycache->pmpt [pcb (pcin] .base_addrcac + ref).lpg_ca = fr_pg;
mycache->pmpt [pcb [pcin] .base addrcac + ref).time stamp =
clock_tick; - -
clock_tick++;

for(i = 0;i < 512;i++)

mycache->pg{fr_pg)->wrd({i] .mapageno =
mem->mpg (main _no)->wrd{i] .mapageno;
mycache->pg(fr_pg]l->wrd(i].residbit =
mem->mpg (main_no)->wrd{i].residbit;
mycache->pg(fr_pg)->wrd[i] .modifibit =
mem->mpg (main_noj->wrd(i] .modifibit;
mycache->pg(fr_pgl=->wrd(i].time_stamp =
mem->mpg [(main no)->wrd[i].time_stamp;
mycache->pg(fr_pg]l->wrd(i].oper =
mem->mpg (main_no]->wrd(i] .oper;
mycache->pg[fr_pg)->wrd(i].lpg_ca =
mem~->mpg (main_no}->wrd{i].lpg_ca;

}
return (LOADED) ;

}

/****t***t**tt***t**ti*t*t***t**t*tﬁ*t****iitt**ttﬁtt**titt*ttt***ttt**
FUNCTION : round_robin_scheduling()
PURPOSE : This function is used to run the active jobs in a round

robin fashion.
********t*ﬁt**t*tt*i**ti***t*tt**t**tt**ﬁtt*t*t***tttttttttttttt*tttit/

rounq_robiq_scheduling(rrslice,:epolicy)
int rrslice;

char repolicy(7]):

{

int cac reply = 0,cpu_reply = 0;

int acticnt = 0,flg,actent = 0;

int i = 0,3jb_ind = 0,jb_id = 0,3j1d = 0;

int j_id = 0,jobs_cnt = 0, NOMOREJOBS, numjobs = 0, ALLJOBSLOADED;
int ALLJOBSDONE,deg_multi = 0;

int pcbind = 0;
struct jobs_table active_que [MAXJOBS];

NOMOREJOBS = TRUE;
numjobs = buffcnt:;
jb_ind = get_job (numjobs):

/* get the first job in the system */

57

jb_id = list[jb_ind).list_id;

ALLJOBSLOADED = FALSE;
thle(NOHOREJOBS == TRUE)

/* loading the jobs until cache is full */

cac_reply = loading_cache(jb_id):

7hile((caq_reply != CACHEFULL) && (ALLJOBSLOADED != TRUE))
if (cac_reply == LOADED)
{

deg multi++;
active_que(actcnt].list_id = 3b_id;
active_que(actcnt).jbflg = 1;
active_que{actcnt) .nopagesallt++;
actcnt ++;

) list (jb_ind).jbflg = 0;

else
list[jb_ind].jbflg = 1;

jld = alljobs_loaded():
if(jld == -2)

ALLJOBSLOADED = TRUE;
else

ALLJOBSLOADED = FALSE;

Jb_ind = get_job(numjobs);
Jb_id = list(jb_ind].list_id;
cac_reply = loading_cache(jb_id):;

}

acticnt = actent;

j_id = active_que(0].list_id;
active_que(actcnt].list_id = j_id:

/* the job is run until time slice expires */

cpu_reply =
run_job_timeslice(rrslice, j_id, repolicy,active_que);
actIVe_gue[actcnt].nopagesallt = active_que(0].nopagesallt;

while (cpu_reply != TERMINATED)

for(i = 0;1 < actcnt:;i++)

{
active_que(i).list_id = active_que(i+l).list_id;

active_que(i] .nopagesallt =
active_que(i+l).nopagesallt;
}
active_que(actcnt].list_id = 0;
active_que(actcnt].jbflg = 0;
j id = active_que(0]).list_id;
active_que(actcnt].list_id = j_id;

cpu_reply =
run_job_timeslice(rrslice, j_id, repolicy, active_que):

actIve_gque(actcnt].nopagesallt =
active_que{0] .nopagesallt;

;}arintf("\n TERMINATED JID : %d ", 3_id);
active_que(0].list_id = 0;
active_que(0].jbflg = 0;

for(i = 1;i < actcnt;i++)

{

58

active_quef{i-1].list_id = active_que(i].list_id:

actent—;

pcbind = obtain_ind(3j_id);
numjobs--; -
adjust_3jblist (numjobs, j id);
cache flush(pcbind);
Jld = alljobs_loaded();
%f(jld == -2)

NOMOREJOBS = FALSE;

else

NOMOREJOBS = TRUE;
jb_ind = get_job(numjobs);
jb_id = list{jb_ind].list_id;

}

/* t£ill all jobs are done */
ALLJOBSDONE = TRUE;
while (ALLJOBSDONE == TRUE)
{
j_id = active_que(0].1list_id;

/* jobs being sent to CPU */

cpu_reply =
run_job_timeslice(rrslice, j_id, repolicy,active que);
if (cpu_reply == TERMINATED)

{

printf("\n TERMINATED JID : %d",3j_id):
active_que(0].list_id = 0;
active_que(0].jbflg = 0;

for(i = 1:;i < actent;i++4)

{

}

actcnt——;

active que(i-1].1list_id = active_que(i).list_id;

else

/* if the job has not terminated, then the next job in
the active queue is given the CPU */
active_que(actcnt].list_id = J_id;

for(i = 0;i < actcnt;i++)

active_que(i].list_id = active_que{i+l].list_id;

}

}

if (actent == ()
ALLJOBSDONE = FALSE:;

}

/****ﬁ**tt******t*it**i*t*tt*ﬁt*t*’lt.t**ﬁ'*tﬁ*t*t*'ttﬁ'tt"ttﬁt*ttt*i*tt

FUNCTION : adjust_jblist()

PURPOSE : This function is used to adjust the number of jobs in the
system once the job terminates

t*************t**t**#t**t*t*i**iti**f***t****t*t't*itﬁt*ti*ttf**tﬁt/

void adjuat_jblist(njoba,njid)

int njobs,njid;

59

int i = 0,3 = 0;

for(i = 0;i <= njobs;i++)
if(list[i].list_id == njid)

} break;

list(i]).jbflg = 0;

for(j = 1;3 <= njobs;j++)

list[j].list_id = list{j+1].list_id;
}

/****it*******t*******i**t*****t***t**i**t*i**t****t*t*tt**itttit**t***

FUNCTION : obtain_ind()

PURPOSE : This function is used to obtain the correct job id when the
active jobs page map table is to be loaded into cache

************t**ti******t*********t*t*ttttt*ttttttttittt*tttt*tﬁttﬁ**tt,
int obtain_ind(id)
int id:

int 1 = 0;
for(i = 0;1i < MAXJOBS;i++)
{

if (pcb[i].jid == id)
break;
}

return(i);
}

/******t*tﬁﬁ****ti**ﬁﬁ**t*********Q**tttﬁﬁRt*t***ﬁt**ti*'ttttiiittﬁ**tﬁ

FUNCTION : get_job()

PURPOSE : This function is used to get the next job in the system
**************tt***it**tttt**t*t****ttti****t*ﬁ***t**t*t**tittittt**t*/

int get_job(njbs)
int nijbs;
{ .

int i = 0;

for(i = 0;i <= njbs ;i++)

if (list[i].jbflg == 1)
{

}

}
if((i == njbs) && (list(i].3ibflg == 0))
return(-3);

break;

else
return(i);

}

/**************i**ii******t*ttt**t**iitﬁ***t*****iitttlttt********ittt

FUNCTION : alljobs_loaded()
PURPOSE : This function is used to check if all the jobs in the system
are loaded and there are no more jobs in the system.

******t*****t*iitt*t*ittt***i't***ﬁ*t'tﬁiﬂtﬁtﬁt*ﬁﬁ*tl'*'*'*ﬁt'tttt*t’tt/

int alljobs_loaded()
{

60
int i = 0;

/* finding out the number of jobs in the system */
for(i = 0;i < MAXJOBS;i++)
%f(list[i].jbflg - 1)

break;
}
}
if (i == MAXJOBS)
return(~-2);

else
return(0);

/********************tt**i*t*t*tttttt*ttt**tttit**t****t**t*ttitttttttt

FUNCTION : run_job_timeslice()

PURPOSE : This function is used to run the jobs given the timeslice and
the job is run till the time slice expires, Once the time
slice expires and if the job has not terminated, the status
of the job is kept in the program counter so the next time
the job becomes active, the job can start its execution from

the place where it has stopped.
******t****t**t***t****i**tttt*ttitttt*t****t*t*t*tt*tti*tt*tt*t*tttit’

int run_job_timeslice(cpslice,rjid,rjpolicy,actlist)
int cpslice,rjid:

char ripolicy(7]):

struct jobs_table actlist [MAXJOBS]:;

{

int main_no = 0, jbpages = 0,rnd _no = 0;

int pgin cache = 0;

int pcb_Id = 0,3b_run = 0,4 = 0,3 = 0,k = 0;
int time = 0,prescnt = 0,ref = 0,main_frno = 0;
int maddre = 0,pmtaddr = O;

int TERMFLG,check= 0,perfct = 0;

for(i = 0;1i < MAXJOBS;i++)

if(pcb[i].jid == rjid)
break;

}

pcb_id = i;

jbpages = pcb(pcb_id] .nopages;
pgin_cache = pcb(pcb_id).lfirst_pgca;
maddre = pcb(pcb_id] .base_addrcac;
for(i = 0;i <= buffcnt;i++)

if (buffer(i] .buffjid == rjid)
break;

}
jb_run = i;
jbpages = pgin_cache + jbpages;

for(i = 0;i < MAXJOBS:;it+)

if(perf[i].job_id == rjid)
break:

}

perf(i) .no = perfcnt;
perfct = i;

time = 1;

61

prescnt = pcb({pcb_id].pccounter;
TERMFLG = (;

/* running the job until time slice e ires *
while(time <= cpslice) ® /

{

TERMFLG = (;

ref = buffer({jb_run).wrdbf[prescnt].ref _no;
pmtaddr = maddre + ref;
%f(buffer[jb_run].wrdbf[prescnt].termflg == 1)

TERMFIG = 1;

}

if ((TERMFLG == 0)
{

Il (TERMFLG == 1))

if (mycache->pmpt [pmtaddr] .residbit == 1)

{

perf [perfct].cache_hit++;

else

check = actlist{0]).nopagesallt;
j - pgin cache + check;

if(j <
{

else

jbpages)

delay = 0.0;

perf[perfct].cache_miss++;

mycache->pmpt[pmtaadr] residbit = 1;

delay++;

mycache->pmpt [pmtaddr].time_ stamp =

clock_tick;

delay++;

mycache->pmpt [pmtaddr].lpg_ca = J;

delay++;

main_no = mycache->pmpt ([pmtaddr] .mapageno;

delay++;

for(k = 0;k < pg_size;k++)

{
mycache->pg(j]l->wrd{k] .mapageno =
mem->mpg [main _no)->wrd(k) .mapageno;
mycache->pg({j]->wrd{k] .residbit =
mem->mpg (main no]->wrd(k].residbit;
mycache->pg(j]->wrd (k] .modifibit =
mem->mpg (main_no)->wrd(k] .modifibit;
mycache->pg(j]->wrd (k] .time_stamp =
mem->mpg (main_nol->wrd{k].
time stamp;
mycache->pg (j]->wrd{k] .oper =
mem->mpg (main no]->wrd(k].oper;
mycache->pg[jJ->wrd{k].1lpg ca =
mem->mpg (main_no)->wrd(k]. lpg ca;

}

delay = delay + 6 * 512;

perf [perfct).page_time+= delay;
actlist[0] .nopagesallt++;

delay = 0.0;
perf[perfct].cache_miss++;
main_frno =

62

mycache->pmpt (pmtaddr] .mapageno;
delay++;
%f(strcup(:jpolicy,'LRU') - ()

pagefault_handler LRUtime stmp (
: main_frno, pcb_id, ref, perfct);
else if(strcmp(rijpolicy, "FIFO") == ()

{
pagefault handler_FIFOtime stmp(
main_frno,pcb_id, ref,perfct);

printf ("\n ERROR IN CHOICE"™):
exit (1)

}
}
if (TERMFLG == 1)
{

}
if(time == cpslice)
{

return (TERMINATED) ;

pcb(pcb_id] .pccounter = prescnt;
return (TIMEOVER) ;

}

prescnt++;
time++;
clock_tick++;

}

/******************tt***iﬁ**ii*******ti*tﬁtittt*til*t*itttt*iit*ttttﬁ**

FUNCTION : pagefault handler_ LRUtime_stmp ()
PURPOSE : This function is used to replace the page in the cache to

give room to the incoming page using a least recently used

policy using time stamp.
******t******t*****tttt**ﬁt***ttt*tt*iit*fﬁi**ﬁiitttttt*t*ttittttttﬁtt/

pagefault handler_ LRUtime stmp (replno,perfjd, pgref,perfl)
int replno,perfijd,pgref,perfl;
{

int { = 0,minimum = 0;

int baddr = 0,j = 0,k = 0;
int page being_replaced = 0,rpgl = 0,rpg_frame = 0,pgno_cache = 0;

int tempindex = 0;
struct arr temp(30]:

/* Here an LRU replacement policy is used to replace the page

using the time stamp */
memset ((struct arr *)temp,NULL,30 * sizeof(struct arr));

delay++; .
baddr = pcb[perfjd].base_addrcac;

delay++;

for(i = baddr;i <= {(pcbiperfid].jb_size + baddr);i++)

delay++;
%f(mycache—)pmpt[i].:esidbit = 1)

temp(j).no = mycache-~ .
delay++; mycache—>pmpt (1] .time_stamp;
temp(j).refno = he- .
delay++; mycache->pmpt (1) .mapageno;
temp(j].index = &;

delay++;

J+es

delay++;

}
minimum = temp(0].no;

delay++;
page_being replaced = t 0] .refno;
delay++; emp (0] . refno
tempindex = temp(0].index;
delay++;
for(k - 1;k < jik++)

delay++;

%f(temp[k].no < minimum)

minimum = temp(k).no;

delay++;

page_being replaced = temp{k].refno;
delay++;

tempindex = temp(k].index;

delay++;

)

rpgl = page_being_ replaced:

delay++;

rpg_frame = tempindex;

delay++;

mycache->pmpt [rpg_frame] .residbit = 0;
delay++;

mycache->pmpt [rpg_frame] .time_stamp = -1;
delay++;

pgno_cache = mycache->pmpt [rpg_frame].lpg ca:
delay++;

mycache~->pmpt [rpg_frame].lpg ca = -1;
delay++;

if (mycache->pmpt [rpg_frame] .oper == ’'w’)
{
for(i = 0;i < blksize:;i++)

{

mem->mpg [rpgl] ->wrd[i] .mapageno =
mycache->pg (pgno_cache] ->wrd(i] .mapageno;
mem->mpg (rpgl]l->wrd(i] .residbit =
mycache->pg(pgno_cache]->wrd[i].residbit;
mem->mpg (rpgl)->wrd(i] .modifibit =
mycache->pg (pgno_cache]->wrd[i] .modifibit;

63

64

mem->mpg[rpg1]->vrd[i].tima_;tamp -
mycache->pg [pgno_cache]~>wrd{i].time stamp:
mem->mpg [rpgl]->wrd[i] .oper = N
mycache->pg[pgno_cache]~>wrd(i) .oper;
mem—>mpg [rpgl]->wrd(i].lpg ca =
: mycache~>pg[pgnq_pache}->wrd[i].1pg ca;
perfperfl].update * * ;
Reiayoes pdate_time+= 6 (512 0.0005);

for(i = 0;i < blksize;i++)

mycache->pg (pgno_cache]->wrd[i] .mapageno =
mem—->mpg ([replno] ->wrd({i] .mapageno;
mycache->pg[pgno_cache]->wrd[i).residbit =
mem->mpg [replno] =>wrd[i] .residbit;
mycache->pg[pgno_cache]->wrd[i] .modifibit =
mem->mpg [replno] =>wrd[i] .modifibit;
mycache->pg[pgno_cache]->wrd[i].time stamp =
mem->mpg [replno] =>wrd (i) .time stamp;
mycache->pg (pgno_cache]->wrd (1] .oper =
mem->mpg [replno] ->wrd{i] .oper;
mycache->pg (pgno_cache]->wrd(i].lpg ca =

} mem->mpg [replnol=>wrd[i]).lpg ca;

delay = delay + 6 * 512;

/* here the page map tables are updated */
mycache=>pmpt [baddr + pgref].residbit = 1;
delay++;

mycache->pmpt [baddr + pgref].lpg_ca = pgno_cache:
delay++; -
mycache->pmpt [baddr + pgref].time_stamp = clock_tick;
delay++; -

perf[perfl] .page_time+= delay;

) .

/****t**'kt******ﬁ***t******t*****ﬁt*tt**t'tt*tti*tt*ﬁﬁ't.t*t'itit*tﬁiﬁtt

FUNCTION : cache_flush()

PURPOSE : This function is used to flush the cache once the job
terminates

****t*tt**t**tt*t****itt**tiﬁ*tﬁtittt*i*t*ttt*'ﬁittﬁtﬁtttit*ﬁittﬁt*ttt’/

cache_flush(caind)

int caind;

{

int 1 = 0,k = 0,m = 0;
int addrca = 0,pmtind = 0,addrma = 0,loc = 0,pges = 0;

int main no = 0,totca = 0,pge = 0,totmem = 0;

addrca = pcb(caind].base_addrcac;
addrma = pcb(caind] .base_addrmem;
loc = pcblcaind].lfirst_pgca;
pges = pcblcaind].nopages;

totca = addrca + 1024;

totmem = addrma + 1024;

pmtind = obtain_pmtind(addrca);
ca_pmtarry{pmtind].pmt_flag = 0;
pcb(caind) .pcb_flg = 0:

pge = loc + pges:;
for(i = loc;i < pge;i++)

{

}

list pges[i].pgflg = 0;

for(k = 0;k < pg_size;k++)
mycache->pg (i} ->wrd (k] .mapageno = -1;
mycache->pg[i]->wrd{k].residbit = 0;
mycache->pg[i]->wrd(k] .modifibit = 0;
mycache->pg[i]->wrd(k].time stamp = -1;
mycache~>pg(i}->wrd(k).oper = * *;
mycache->pg(i]->wrd(k].lpg ca = -1;

/* free frame table is set */
for(i = addrca;i < totca;i++)

{

for(i

main _no = mycache->pmpt(i].mapageno;
if(main_no != -1)
{

for(m = 0;m < pg_size;m++)

mem—->mpg (main_no}->wrd(m] .mapagenc = ~1;
mem->mpg (main no]->wrd{m] .residbit = 0;
mem->mpg (main_nol]->wrd[m] .modifibit = 0;
mem->mpg (main_no)->wrd([m] .time_stamp = -1;
mem->mpg (main_no)->wrd(m).oper = ' /;
mem->mpg (main_no]->wrd(m).lpg_ca = ~1;

}
: mem->fmt (main no).fftflg = 0;
mycache->pmpt (1) .mapageno = -1;
mycache->pmpt [1] .residbit = 0;
mycache->pmpt {1] .modifibit = 0;
mycache->pmpt (1) .time_stamp = 0;
mycache->pmpt (1] .oper = ’ ’;
mycache~>pmpt (1] .1lpg_ca = -1;

= addrma;i < totmem;i++)

mem->pmt (1] .mapageno = -1;
mem->pmt [1] . residbit = 0;
mem->pmt (1] .modifibit = 0;
mem->pmt [i]) .time_stamp = 0;
mem->pmt [i] .oper = * ’;
mem->pmt (1] .1pg_ca = -1;

65

Y3233 3 2223222222322 2222222222222 222

/******ttt**tt**t'ittt****ilt*iitt

FUNCTION : obtain_pmtind()

PURPOSE . This function is used to get the page map table so as to

£lush the cache once the job terminates.

ﬁtt***i**t*****t*ﬁ*******t*t*t**t*tt't'ttﬁ!t'*t*t*tttt*tttttttttﬁ/

int obtain pmtind(pmtaddrca)
int pmtaddrca;
{

int i = 0,numpmts = 0;

66

numpmts = PMTSIZECA / 2:
for(i = 0;i < numpmts;i++)
if (ca_pmtarry(i).base_pmtaddr == pmtaddrca)
break;

}
return(i);

/******t***i**********tttt*tt***t#t*ttttiiitt**t***t***tt*t*****tt*ttttt

FUNCTION : pagefault_ handler_ FIFOtimestamp ()

PURPOSE : This function is used to replace the page in cache so as to
give room to the incoming page using a first in first out
replacement policy.

**********t*t*i*tt*tt**ttttt*tttttttﬁtittt*ttﬁt*tttﬁt*t*t**ttt**ttttitt/
pagefault handler FIFOtime stmp (fplno,fjid, fpgref,perff)

int fplno, fjid, fpgref,perff;

{

int i = 0, maximum = 0;

int §j = 0,k = 0,baddr = 0;

int replaced_page = 0,rpgl = 0,rpg_frame = 0,pgno_cache = 0;
int tempindex = 0;

float upd time = 0.0,pg_time = 0.0;

struct arr temp([30];

/* Here an LRU replacement policy is used to replace the page
using the time stamp */

memset ((struct arr *)temp,NULL,30 * sizeof(struct arr));
delay++;

baddr = pcb(fjid].base_addrcac;

delay++;

for(i = baddr;i <= (pcb(fjid).jb_size + baddr);i++)
{

if (mycache->pmpt [1] .residbit == 1)

{
temp(j]}.no = mycache->pmpt [1] .time_stamp;
delay++;
temp(j].refno = mycache~->pmpt [i] .mapageno;
delay++;
temp(j].index = 1i;
delay++;
j++:
delay++;

)

delay++;

}

maximum = temp(0].no;

delay++;

replaced_page = temp (0] .refno;
delay++;

tempindex = temp (0] .index;
delay++;

for(k = 1;k < jiktt)

if (temp(k].no > maximum)

{
maximum = temp (k] .no:

delay++:

replaced page = t K} . :
delayﬂ;—pa emp (k] .refno
tempindex = temp(k].index;
) delay++;
: delay++;

rpgl = replaced page:;

delay++; —Pag

rpg_frame = tempindex;

delay++;

mycache~->pmpt [rpg_frame] .residbit = 0;
delay++;

mycache->pmpt [frame].time st - -1;
delay++; I~ . —SHame :
pgno_cache = mycache->pmpt frame].l ;
delay++; [rpq_frame].1pg_ca
mycache->pmpt (rpg_frame).lpg ca = -1;
delay++; - Po-

%f(mycache->pmpt[rpg_frame].oper - fyl)

for(i = 0;1 < blksize;i++)

mem->mpg (rpgl] ->wrd[i] .mapageno =
mycache->pg [pgno_cache] ->wrd[i] .mapageno;
mem->mpg [rpgl] ~>wrd({i] .residbit =
mycache->pg[pgno_cache]->wrd[i] .residbit;
mem->mpg (rpgl] ->wrd{i) .modifibit =
mycache->pg [pgno_cache] ->wrd[i] .modifibit;
mem->mpg [rpgl) ->wrd(i].time stamp =

mycache->pg [pgno_cache] ->wrd[i).time_stamp;

mem->mpg [rpgl)->wrd(i] .oper =
mycache->pg [pgno_cache)->wrd(i) .oper:
mem->mpg [rpgl]}->wrd(i]) .lpg_ca =
mycache->pg ([pgno_cache] ->wrd[i] .1lpg_ca;

}
perf [perff).update_time+= 6 * (512 * 0.0005);
delay++:

for(i = 0;i < blksize;i++)

mycache->pg [pgno_cache)~>wzd[i] .mapageno =
mem->mpg (fplno]->wrd(i] .mapageno;
mycache—>pg(pgno_pache]—>wrd(i].zesidbit -
mem->mpg [fplno] ->wrd[i] .residbit;
mycache->pg[pgno_pache]->wrd[i].modifibit -
mem—>mpg[fplno]->wrd[i].modifibit:
mycache->pg[pgno_pache]->wrd[i].time_;tamp -
mem->mpg [£plno] ->wrd(i].time stamp;
mycache->pg(pgno_pache]->wrdTi].ope: -
mem->mpg [fplno] ->wrd(i] .oper’
mycache-)pg[pgno_pache]—>wrd[i].1pg_ca -
mem->mpg [(fplno)->wrd(i] .1pg_ca;

}
delay - delay + 6 * 512:

67

/* here the page map tables are bein
g updated */
mycache->pmpt [baddr + fpgref].residbit = 1;

delay++;

mycache->pmpt (baddr + f £]. - ;
delay++; pgref) ..lpg_ca pgno_cache;
mycache->pmpt [baddr + £ . - s
delaytis pPgref] .time stamp = clock_tick;

perf[perff] .page_time+= delay;

/**i***********t*i***t**tt*ttt*t****tt*tt*titt*ttti****tt**t*'**i*t*i**
FUNCTION : obtain_pmtma ()
PURPOSE : This function is used to get the page map table in the memory

SO0 as to load the job into the system
t*t*****t*****tt**tt*******tt*itittittt**t**tttittttﬁtttt'tttttt*ttitﬁi/

%nt obtain_pmtma ()
int i = 0Q;

for(i = 0;1i < 20;i++)
{
if (ma_pmtarry(i].pmt_flag != 1)
break;

}
return (i) ;

}

/ittt*t******ﬁ****tt***ﬁttt*it*i*'t*t****itttitti..".*tttt'itﬁittttﬁ*ﬁ'

FUNCTION : obtain_pmtca()
PURPOSE : This function is used to get the page map table in cace so as

to load the active jobs page map table in cache
**************t*****tt*tt***t***t*t***t*tﬁttt*ﬁ***tttt***ttttt**tt*t**t/

obtain_pmtca ()
{

int 1 = 0;
int numpmts = 0;

numpmts = PMTSIZECA/2;

for(i = 0:;1i < numpmts;i++)

L
if(ca_pmtarry(i].pmt_flag != 1)
{

break;
}
}
if (i == numpmts)
return(-1);

else
return{i):;

PZ2 2232222222222 2222 k228

/*ii**ﬁ******it*t*tﬁ***tt*tttt*fiﬁ'ﬁ'*"'*.ﬁ't

FUNCTION : obtain_pcb()
PURPOSE + This fﬁﬁction is used to get the pcb for the job once the

enters the system.
***********t223***tt***t****t**t**t**tt***tt*ttt*ttfittttﬂttttittttttt*[

int obtain_pcb()
{

int 1 = 0;
for(i = 0;i < MAXJOBS;i++)

69

if (pcbli].pcb flg != 1)
return(l);

}

/****************i***t*tttiitt*tt*tt**tttttttt**tttt*ttttttttt*tttttt*tt
FUNCTION: get_free_pgcache()

PURPOSE : This function is used to get the free page in cache to allot

for the job once the job becomes active
********t**it**tt*t*****tttttt*ttttttt*ttﬁt*t*t*tt*ttttitttt****t*'ttt*/

int get_free_pgcache()

{
int i = 0;

for(i = 0;i < numpages_cache;i++)

if(list_pges(i] .pgflg != 1)
break;

return(i);

/***************t***t*********ﬁt*ttt*'tt****ﬁttttttttttt*ittitiitttt*ﬁ*/

s

VITA
Pamela Neelaveni
Candidate for the degree of

Master of Science

Thesis: CACHE PERFORMANCE ANALYSIS: A TRACE-DRIVEN SIMULATION
Major Field: Computer Science

Biographical:
Personal Data: Born in Hyderabad, INDIA, on December 18, 1968, daughter
of N. Sreeram and N. Chandra Leela.

Education: Graduated from St. Anns Junior College, Hyderabad, INDIA in
May 1985; received Bachelor of Engineering (Hons) degree in Chemical
Engineering from Birla Institute of Technology and Science, Pilani,
Rajasthan, INDIA in June 1990. Completed the requirements for the Master
of Science degree in Computer Science at the Computer Science
Department at Oklahoma State University in July 1994,

Experience: Worked as design engineer for Gwalior Rayon Industries; employed
by Oklahoma State University, University Computer Center as a graduate
research assistant from October 1992 to June 1994,

	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	006.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	022.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif
	055.tif
	056.tif
	057.tif
	058.tif
	059.tif
	060.tif
	061.tif
	062.tif
	063.tif
	064.tif
	065.tif
	066.tif
	067.tif
	068.tif
	069.tif
	070.tif
	071.tif
	072.tif
	073.tif
	074.tif
	075.tif
	076.tif
	077.tif

