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PREFACE

I desired to find the mode shapes ofa structure without measuring the input excitation

force. The eventual application for this research will be in the determination of the flutter

modes ofa web. The web, being very light, would have its mass significantly affected by

the attachment of a vibration transducer and cannot be excited in any measurable fashion

by a calibrated impact hammer. The vibration of the web can, however, be measured by

laser-Doppler velocimeters that will detect the velocity of select points on the web without

the need to attach anything to the web at all. The question before my research was: are

time histories of the motion ofa structure at select points along its surface enough

information to develop discrete mode shapes, without knowing the excitation? In order to

answer this question, I chose a simple structure to work with--one whose mode shapes

can be calculated analytically: a cantilever beam. I measured the vibration of the beam

using two very light accelerometers that had negligible effect on the beam's mass. Using

one accelerometer as a stationary reference, frequency response functions between it and a

roving accelerometer were determined at several points along the beam's length. Using

the peak picking technique, mode shapes were determined from these functions. These

shapes are almost identical to the theoretical mode shapes calculated for my beam.

Therefore, I achieved my goal because I never measured the type or amount of force I was

using to set the beam in motion--I tapped it with my finger.
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NOMENCLATURE

Al(s) Fourier transform of roving accelerometer's signal

A2(s) Fourier transform ofstationary accelerometers signal

Al (t) time history from roving accelerometer

A2(t) time history from stationary accelerometer

c damping

5 unit impulse function

tlx,t) external excitation of the beam

F force imparted to the structure

FFT Fast Fourier Transform

FRF frequency response function

Gbb auto spectral density of time signal b

Gbc cross spectral density of time signals band c

HO the true frequency response of a system

H1 the most commonly used FRF

H(s) FRF used in the experiment

H2 an FRF affected by output noise

Hv a very accurate FRF

k stiffness

~ the eigenvalues of the characteristic equation
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m mass

mdof multi-degree-of-freedom

m(t) the noise in the output ofa system

n(t) the noise in the input signal ofa system

Qr generalized forces exciting the structure

r mode number

* the complex conjugate

t time

u(t) the true input ofa system

V.-(x) the mode shapes of the structure

v(t) the true output ofa system

COr the natural frequencies of the structure in radians per second

x the horizontal location on the beam (equal to zero at the clamped end)

y(t) time signal from a measurement point on a simple structure

y(x,t) the vertical displacement of the beam

IX



CHAPTER I

INTRODUCTION

Background

Conventionally, modal analysis of structures is conducted by measuring many

frequency response functions. These functions, which resemble transfer functions, have as

their input and output the Fourier transforms of records ofexcitation forces and

vibrational response. A typical FRF (frequency response function) will have the Fourier

transform of the excitation time history as its input, and the Fourier transform ofa

vibration transducer's record as its output. The vibration transducer is usually located

somewhere on the structure, and may measure acceleration, velocity, or displacement. To

obtain the several FRF's required, the excitation (commonly applied and measured with a

calibrated impact hammer) can be moved to different locations on the structure while the

vibration transducer remains stationary. This procedure ensures that all of the FRF's have

the same reference point. Another possibility is to move the transducer to different

locations on the structure while always exciting the structure in the same location. The

reason an impact hammer is usually used as the excitation is because an impulse (the ideal

of the time history obtained with a quick whack from the hammer) transfonns into a

uniformly flat signal in the frequency domain, which is simple to work with and excites all

frequencies of interest. Other excitations such as random or sinusoidal are permissible

1
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and, in some applications, preferable. The time histories are usually recorded with a

spectrum analyzer, which has a Fast Fourier Transform (FFf) algorithm programmed into

it in order to perform the Fourier transformations ofthese time histories. Once the

structure has been appropriately discretized into points ofmeasurement, and all ofthe

FRF's have been obtained, the natural frequencies of the structure will be known because

they occur at the peaks of the Fourier transforms ofthe vibration time histories as well as

at the peaks of the FRF's. This discretization is arbitrary and the number of points of

measurement must be chosen wisely by the modal analyst, such that the resulting discrete

mode shapes--whose number of relative deflection values is equal to the number of

measurement points--will give an accurate representation of the motion ofwhat is actually

a continuous system. The FRF's are then compared in order to obtain the mode shapes of

the structure, and they can be further processed by a modal analyzer's modal software

program in order to obtain the modal model of the structure (i.e., mass, stiffness, and

damping matrices).

Such is the norm, but what if it is desired to find the flutter mode shapes ofa very light

and extremely flexible structure such as a thin plastic web? Such a structure would have

its mass greatly affected by the attachment of a vibration transducer, and hence any natural

frequencies or mode shapes obtained would be highly suspect to error. Velocity,

however, can be measured by laser-Doppler velocimeters, which are not attached to the

structure, and therefore do not affect its mass. The question that arises is whether or not

velocity measurements will suffice for obtaining mode shapes. This topic will be

addressed in the Conclusion. Also, the high degree ofdamping in a plastic web will create

phase shifts in the frequency plots of any vibration signals measured. These phase shifts,
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depending on their degree, may make it very difficult to apply certain modal analysis

techniques used to acquire mode shapes. This possible difficulty will be addressed in the

chapter on suggestions for further research, since it will not present a problem in the

experiment conducted for the research discussed in this paper. But what about the

excitation? Obtaining an accurate time history of the excitation required to set a web in

flutter (likely to be a crosswind) is extremely difficult. And so, the question arises: can

mode shapes be acquired without measuring the force used to excite the structure? One

way ofacquiring mode shapes is to excite the structure at its natural frequencies

(sinusoidal excitation), and then record the structure's motion. This motion, since it

occurs at a natural frequency, must represent the mode ofvibration associated with that

frequency. The other modes are not excited unless the excitation is at a frequency other

than the natural frequency associated with that mode. Although this technique of

obtaining mode shapes is common, its successful application to a highly flexible web is

difficult. And so, the real question is: can mode shapes be obtained by exciting the

structure at a range offrequencies, and without measuring this excitation? Answering this

question is the subject of this thesis. The hypothesis is that mode shapes can, indeed, be

found by measuring response, without measuring the excitation.

The Experiment

A simple cantilever beam was chosen as the test structure because its natural

frequencies and mode shapes can be determined analytically, and in tum compared to the

experimental results. Two very light A3 53B17 accelerometers were purchased from PCB

so as not to significantly affect the mass of the beam. In fact, their combined weight is
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approximately 2.2% ofthe weight ofthe l>eam, allowing one to ignore their mass when

predicting what the natural frequencies ofthe beam will be (Laura, Pombo, & Susemihl

1974). Other important specifications are 10 mV/g voltage sensitivityy 1 to 10000 Hz

frequency range (±5%), 500g amplitude range, and .01g peak resolution. The

accelerometers were powered by 480D06 DC power supplies from PCB for minimal noise

in the signals. These signals, Al(t) and A2(t), were filtered by a 30 kHz low-pass filter

built into the Data Precision 6100 spectrum analyzer, in order to avoid aliasing. Only

acceleration time histories will be used to attempt to find the mode shapes of the structure.

The question that, hence, arises is whether causality is an issue between the input and

output. Conventionally, when a force and a vibration are measured, the vibration is

obviously caused by the force and occurs after the force is applied~ therefore,

measurement of both signals should clearly begin (or be triggered) at the instant the force

is applied. With two accelerometers, however, it is uncertain which one should act as the

trigger for measurement to begin. It is also uncertain whether or not one needs to know

which transducer will be affected by the excitation first. These questions will be answered

in the conclusion. The set-up looked like Figure 1 on page 5.
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Figure 1. Experimental Set-up

Tapping by the researcher's finger at midspan was the excitation used. This transient

excitation covers a range of frequencies, as opposed to just one as in sinusoidal excitation.

It was important to see if mode shapes could be obtained using such an excitation because

the thin web that eventually will be analyzed must also be excited at many frequencies, in

order to achieve flutter. One of the accelerometers was stationary and attached to the free

end ofthe beam. The other one was labeled roving and its signal, Al(t), took the place of

the conventional excitation record that would come from an impact hammer. This

experiment will aid in answering four questions concerning the determination ofmode

shapes:

• Is knowledge ofa structure's excitation required?

• Does it matter whether acceleration, velocity, or displacement is measured?

• Must the input and output ofan FRF be causal?
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• Wtll phase shifts caused by significant damping present any difficulties?

The Frequency Response Function

The signals, Al(t) and A2(t), were processed in the usual manner, via the FFf. The

output ofthe algorithm was chosen to be a magnitude and a phase, for both signals.

Symbolically, one can write

H(s) = Al(s)
A2(s)

where H is the FRF in the complex domain, and Al(s) and A2(s) are the Fourier

(1)

transforms ofthe accelerometers' time histories. The FRF's magnitudes were generated as

the roving signal's FFT magnitude divided by the stationary signal's FFT magnitude. The

FRF's phases were generated as the roving signal's FFT phase minus the stationary signal's

FFT phase, or

IHl_IAl(S~
-1A2(s~

and

LH = LAI(s) - LA2(s)

(2)

(3)

It should be noted that the FRF in Equation (I) is only one of many. What follows is a

discussion of some various FRF's and their comparison. Figure 2 on page 7 will be

helpful.



INPUT, Al(t) = u(t) + o(t) ,

"Al(s)

SYSTEM

7

OUI'PlIT, A2(t) = v(t) + m(t)'.,
A2(s)

Figure 2. A System to be Analyzed Spectrally

The true input and output are u(t) and v(t), respectively, while Al(t) and A2(t) represent

what is measured. The input and output noise are represented by o(t) and m(t),

respectively. It is useful to present some definitions here (Harris 1988):

GAlAI (s) = Al(s)Al • (s)

G A2A2 (S) = A2(s)A2 ·(s)

GA1A2(S) = Al(s)A2 *(s)

G A2A1 (S) =A2(s)AI*(s)

(4)

(5)

(6)

(7)

In the above equations, G represents an auto spectral density if its subscripts are the same

and a cross spectral density if its subscripts are different, while • denotes a conjugate of

the Fourier domain's independent variable, s. The following are also true:

GA1A1(S) = Guu(s) +Gnn(s)

GA2A2 (8) = Gvv(s) + Gmm(S)

The most commonly used FRF is

The true frequency response ofa system is

(8)

(9)

(10)
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(11)

Using Equation (8), it can be shown that

(12)

which demonstrates that H1(s) deviates from Ho(s) due to noise occurring in the input

signal (Modal Analysis Theory 1984). Substituting Equations (4) and (7) into Equation

(10), one can also show that

H ( ) =A2(s)AI*(s) = A2(s) = ()
1 s AI(s)AI*(s) AI(s) H s

(13)

which demonstrates that H1(s) is equivalent to the true frequency response for a noiseless

system, since H(s) is equal to Ho(s) when noise is not present.

Another commonly used FRF is (Harris 1988)

(14)

Using Equation (9), it can be shown that

(15)

which demonstrates that H2( s) deviates from Ho(s) due to noise occurring at the output

(Modal Analysis Theory 1984). Substituting Equations (5) and (6) into Equation (14),

one can show that

H (s) =A2(s)A2 *(s) =A2(s) =H(s)
2 AI(s)A2 *(s) Al(s)

(16)
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which demonstrates that H2(s) is equivalent to Ho(s) for a noiseless system (Harris 1988).

A newer FRF is

(17)

Substituting Equations (12) and (15) into Equation (17), one can show that

(18)

thus demonstrating that Hv(s)'s accuracy is dependent on input and output noise; however,

since this dependency is of the half-order power, Hv(s) is actually more accurate than

H1(s) or H2(s). Inspection ofEquation (18) also clearly shows that Hv(s) is equivalent to

the true frequency response for a noiseless system (Modal Analysis Theory 1984).

For the experiment conducted using the cantilever beam, H.(s) and H2(8) were plotted.

These plots did not result in significant peaks at some ofthe natural frequencies, thus

making them undesirable for the peak picking algorithm later used to determine mode

shapes. Hv( s) could not be formulated on the Data Precision 61 00 spectrum analyzer

because of limited memory. H(s) was ultimately used because noise was not a significant

problem in the system and because the resonance peaks were quite obvious in plots of the

Fourier transforms ofacceleration time histories.



CHAPTER II

FUNCTION OF A MODAL ANALYZER

Spectral Analysis

A modal analyzer encompasses two processing elements, one of which is a spectrum

analyzer, or signal processor. The primary function of this unit is to convert time signals

into frequency signals. The means by which signal conversion takes place is the Fast

Fourier Transform, or FFT. When a time signal is transformed into the frequency domain,

the result can be an imaginary part vs. frequency and a real part vs. frequency. Output is

most commonly viewed graphically in the form ofa magnitude and a phase, both plotted

vs. frequency. When a time signal is transformed into a frequency signal, the resulting

frequency signal has infinite domain (i.e. the frequency axis extends to positive and

negative infinity); therefore, a specified frequency range is chosen by the user. For

structural analysis, this range is positive and usually toward the lower end of the frequency

spectrum. The available transducers that produce the time signals fed into the analyzer

yield an analog signal and often have varying output voltage ranges. For spectral analysis,

the FFT must be implemented, which means the signal the FFT algorithm operates on

must be a discrete time signal. Therefore, analyzers must have an analog to digital

converter. The converter in the modal analyzer used in the experiment discussed in this

paper was 8-bit. The varying output voltage ofavailable transducers is accommodated by

amplifiers built into the analyzer that can either increase or decrease the voltage range of

the signal to be processed.

For modal analysis~ an input and an output signal ofa structure are u~ally measured.

10
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These signals could each be any offorce, acceleration, velocity, or displacement

measurements. Once these signals are converted to the frequencydo~ the spectrum

analyzer can manipulate them in various ways. For instance~ one might divide the

magnitude ofthe output in the frequency domain by the magnitude of the input in the

frequency domain and subtract the input's phase angle from the output's phase angle in

order to arrive at the transfer function, or frequency response functio~ between two

respective points ofmeasurement. For structural analysis, FRFs are obtained between

several points on the structure, with every FRF having its input (or in some cases, its

output) be the frequency signal from one particular reference measuring point on the

structure. Ifan input is used as such a reference, the FRF is said to be of inertance type;

whereas, ifan output is used as the reference, the FRF is labeled mobility type. Other

possible results from frequency response manipulation include Nyquist plots and Bode

plots. FRF's, however, are the most important results for modal analysis.

Parameter Estimation

The other processing element ofa modal analyzer is the modal program, which uses

the FRF's obtained from the spectral analysis in order to estimate the parameters of the

structure. These parameters may include the modes shapes and the modal mass, stiffness,

and damping matrices. The latter three are collectively called the modal model. The

Zonic 6088 Modal Analyzer, used in preliminary testing of the beam discussed in this

paper, implements three popular parameter estimation techniques: peak picking, circle fit,

and multi-degree-of-freedom (mdof) complex exponential curve fit. In the research

conducted~ only the peak picking technique was used.

Peak picking is the simplest parameter estimation technique. It assumes the structure

can be modeled as one or more single degree of freedom systems. The magnitude of the

FRF between any two points reaches a local maximum at the resonant frequencies of the

structure and approaches zero away from the resonant frequencies. Ther~fore, every FRF
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will consists ofseveral humps always occurring at the same frequencies, which are the

structure's resonant frequencies. The differences between the many FRFs lie in the

magnitudes ofthese resonance maxima at the particular resonant frequencies. A mode

shape exists for every natural frequency, and for a continuous syste~ these mode

shapes can be approximated by discrete, relative magnitudes at each of the points of

measurement. These relative magnitudes are the same as the relative magnitudes of the

resonance maxima at one particular frequency, taken from all of the FRFs. It must be

noted that, even for a lightly damped structure (a condition that the very use ofpeak

picking assumes), there is a difference between the resonant and the natural frequencies.

Therefore, one might question the use of FRF magnitudes at the resonant frequencies

when mode shapes are actually associated with natural frequencies. Recall that the FRF's

have real and imaginary parts. For an inertance type ofFRF, the maxima of the imaginary

part occur at the natural frequencies. For the mobility type, the maxima of the real part

occur at the natural frequencies. Thus, an apparent dilemma is resolved. The peak

picking technique will not, however, generate a modal model.

The next level of sophistication for the single degree of freedom parameter estimation

technique is the circle fit. It is better than peak picking because it uses more values

around the resonance point than just the peak value. If a frequency shift among the FRF's

measured from different locations of the structure occurs, peak picking may miss the peak,

but the circle fit will still yield a good result (Modal Analysis Theory 1984).

The mdof complex exponential curve fit is a least square algorithm which uses all of

the FRF's simultaneously in order to obtain the global parameters (resonant frequency and

damping). Because of the errors in measurement, the resonant frequencies (and damping)

may differ from FRF to FRF. One solution would be to average all of the values together,

but a better way is to use all FRF's simultaneously (Modal Analysis Theory 1984).

Considerable explanation ofboth the circle fit and complex exponential culVe fit

could be provided, but since neither technique was used in the experiment discussed in this
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paper, this author deems it unnecessary. Both techniques resolve the modal model,. a

result not obtainable in the aforementioned experiment because ofreasons discussed in the

Appendix.



CHAPTER III

THEORETICAL PREDICTIONS

Natural Frequencies

The natural frequencies of a simple structure, such as the cantilever beam used in the

experiment discussed in this paper, are easily calculated. The natural frequencies ofa

cantilever beam have been calculated to be:

( EI)~m =It -
r r pA r =1, ... ,00 (19)

where E is the elastic modulus, I is the second moment ofarea, p is the density, A is the

cross-sectional area, Ais an eigenvalue of the structure, and r is the mode number. The

A'S of the first five modes for a 16 inch beam are (Craig 1981):

A,2 =.2934in-1

As =.8836in-1

(20)

The beam used in the experiment has a length of 16 inches, a width of .75 inches, a height

of. 1 inches, an elastic modulus of29x 106 psi, a second moment of area of6.25x 10-5

14
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in4, a density of.3 Iblin3, and a cross-sectional area of .075 in2. The elastic modulus and

density are assumed values based on the fact that the beam is comprised of steel~ and were

not actually measured. Equation (19) yields a result in radians/sec, but division by 21t

yields the first five natural frequencies in Hertz:

fl = 12.1954

f2 = 76.411

f3 = 214.008

f4 = 419.388

f5 = 693.220

Mode Shapes

(21)

A general equation for the mode shapes of a cantilever beam has also been derived:

(22)

where C is an arbitrary constant, x is the horizontal location on the beam in inches and is

equal to zero at the clamped end of the beam, and kr takes on the following dimensionless

values for the first five modes of a 16 inch beam (Craig 1981):

k} = .7341

k2 = 1.019

k3 = .9992

14 = 1

kS = 1

(23)



CHAPTER IV

RESULTS

Preliminaries

The natural frequencies of the beam were the first things sought after. These

frequencies were determined roughly by moving the roving accelerometer along the beam

and measuring FRF's between it and the stationary accelerometer. Only the magnitude

was plotted, and these graphs had obvious peaks at the resonant frequencies. During

these preliminary measurements, a Zonic 6088 modal analyzer was used to collect the

data. A typical time signal from one of the accelerometers looks like Figure 3 on page I 7.

When converted to the frequency domain, this signal has a corresponding magnitude and

phase plot shown in Figure 4 on page 18. As can be seen in the magnitude plot on top,

the resonant peaks are very obvious, and since the structure under consideration is very

lightly damped (virtually all of its damping comes from the clamps used to approximate an

ideal, fixed end), these frequencies may be considered to be the natural frequencies. The

numbers written on the phase plot on the bottom indicate the phases at the natural

frequencies. Table 1 on page 19 shows the ranges of the natural frequencies obtained

from all sixteen of the FRF's measured. The theoretical natural frequencies ofEquations

(21) are repeated in this table for comparison.

16
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TABLE 1

RANGES OF MEASURED NATURAL FREQUENCIES

Mode Number Measured Range Theoretical natural frequency

(Hertz) (Hertz)

1 11.719 only 12.1954

2 76.172 only 76.4119

3 208.984 to 214.843 214.008

4 414.062 to 419.921 419.388

5 687.5 to 695.312 693.220

Finding the Mode Shapes

The data-taking conditions chosen on the spectrum analyzer were 1024 (a power of

two is necessary so that the FFT can be taken) points of measurement (or samples), a 500

microsecond sample period, a 128 millisecond delay (because the initial time history is

somewhat erratic and may get cut-off at the top and bottom due to too much voltage

coming in), and no windowing. Sixteen stations where acceleration would be measured

were marked off at one inch intervals along the beam. The experiment was also repeated

to check for consistency of results, and, indeed, they were consistent.

The sixteen FRF's had as their reference point the Fourier transform ofthe signal

produced by the stationary accelerometer located at the free end ofthe beam. A typical

FRF magnitude plot looks like the top ofFigure 5 on page 21. At first glance, this plot

may seem strange because the natural frequencies are not apparent as they are in



20

magnitude plots ofFFf's ofaccelerometer signals. Upon further reflection, however, the

FRF magnitude plots do make sense because they are the division of two signals that are

very similar--both signals peak in the same locations and are flat in the same regions-and,

hence, should approach unity for all frequencies. Although the variation from unity is

slight, it can be measured with great precision due to the 14-bit resolution ofthe Data

Precision 6100. Hilly regions usually occur due to anomalies in one of the FFT magnitude

plots used to create the FRF magnitude plot; i.e., if one plot isn't quite flat at

antiresonance and the other plot is flat at this frequency, then the division of the two will

create a hilly region around that frequency. The hilly regions were not investigated any

further because only the values of the FRF magnitude plots at resonance were used in the

determination of mode shapes. A typical FRF phase plot looks like the bottom ofFigure 5

on page 21. The numbers on this plot indicate the phase at the natural frequencies. The

phase is used to govern the sign of the magnitude read off at the natural frequencies, and it

was always near either 0 or 180 degrees at resonance, as it should be for a lightly damped

structure. Without the phase plot, all magnitude values would be positive, and that would

make it impossible to get mode shapes higher than the first mode because the higher

modes have nodes, or points ofcrossover between positive and negative relative

deflection. Of course, the scaling ofa mode shape is arbitrary, so a magnitude may be

labeled positive for a corresponding phase of 180 degrees as long as the magnitudes with

odegree phase are labeled negative, or vice versa.

Given the arbitrary scaling of the mode shapes, the plots ofEquation (22) and the

measured modes have been scaled so that they have one point ofidentical value and

plotted in Figures 6 through 10 on pages 22 through 26. Having one point of identical

value (set equal to positive or negative unity) allows one to compare the measured vs. the

theoretical values at the other locations along the beam. Table 2 on page 27 is a listing of

the measured values of relative deflection vs. the theoretical relative deflections for the

first five modes at the sixteen stations of measurement.
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TABLE 2

MEASURED VS. THEORETICAL MODE SHAPES

x theor1 meas1 theor2 meas2 theor3 meas3 theor4 meas4 theorS meas5
1 0.006862 0.01731 0.042275 0.05777 -0.11809 -0.17063 0.246128 0.288893 -0.38764 -0.42082
2 0.026639 0.0418 0.150434 0.17614 -0.3812 -0.36592 0.701607 0.731489 -0.94582 -0.95779
3 0.058117 0.07321 0.296851 0.33404 -0.66032 -0.92909 1 1 -1 -1
4 0.100087 0.11872 0.455059 0.511256 -0.84868 -0.96411 0.92554 0.879324 -0.40048 -0.41852
5 0.151352 0.16522 0.600807 0.655231 -0.87702 -1.01545 0.471663 0.448118 0.459847 0.506842
6 0.210735 0.22409 0.713198 0.778749 -0.72377 -0.64203 -0.17584 -0.17501 0.970659 0.948582
7 0.277086 0.27157 0.77575 0.849326 -0.41658 -0.23168 -0.73317 -0.72216 0.768197 0.808643
8 0.349296 0.36012 0.777202 0.827879 -0.02358 -0.06535 -0.95238 -0.94086 -0.00081 0.040929
9 0.426309 0.45065 0.711966 0.77104 0.363687 0.35541 -0.73653 -0.75506 -0.76816 -0.71054
10 0.507133 0.50556 0.580132 0.631633 0.652293 0.7025 -0.18492 -0.23201 -0.97418 -0.92878
11 0.59086 0.5857 0.386983 0.42681 0.769454 0.8948 0.451315 0.38359 -0.46798 -0.56415
12 0.676673 0.6787 0.142025 0.1823 0.678607 0.66296 0.882953 0.794883 0.380366 0.214881
13 0.763872 0.76416 -0.14243 -0.11755 0.385859 0.47855 0.913831 0.964834 0.950539 0.824758
14 0.85188 0.853321 -0.45307 -0.44236 -0.06523 -0.03735 0.529844 0.41449 0.825613 0.740858
15 0.940268 0.937298 -0.77768 -0.77587 -0.61024 -0.6564 -0.09489 -0.28343 0.096949 -0.09107

15.675 1 1 -1 -1 -1 -1 -0.50998 -0.88252 -0.475 -0.58378

N
-...a



CHAPTER V

VERIFICATION

Time Response at Free End

Empirically, one surmises that the time response near the beam's base (near the

clamped end) must be dominated more by the higher modes than the time response near

the free end of the beam is governed by these higher modes. Such a conclusion can be

made by observing the differences in FFT magnitude plots corresponding to the free end

and the clamped end. For both cases, the lower modes have much larger resonance peaks

than the higher modes; however, this disparity is less at the clamped end. Due to this fact,

a good check of the acceleration time history obtained at the free end of the beam can be

made. Since this time history will depend much more on the lower modes than the higher

modes, one can determine a theoretical time history based on the first five modes and

compare it to the measured record at the free end. This theoretical record should closely

approximate the time history obtained by measurement, since the measured record should

depend much more on the first five modes than any higher modes.

It is known that

(23)

for zero initial velocity and displacement, where

28



Q r (t) = t f(x, t)Vr (x)dx

and y is the vertical displacement ofthe beam in inch~ t is time in second~ f is the

external excitation of the beam in pounds, and L is the length ofthe beam in inches

(Meirovitch 1986). In applying the aforementioned assumption that the response, y,

depends mostly on the lower modes, one can write

5 1
y(x, t) = L Vr(x)-J~Qr (t)sinror(t - t)dt

r:l (i)r

29

(24)

(25)

For the experiment performed, the beam was tapped quickly by the researchers finger at

midspan, or x = 8 inches, in order to approximate an impulse imparted to the structure at

that point. Therefore,

f(x,t) =FB(t)B(x - 8) (26)

where Brepresents a unit impulse function and F is the force in pounds imparted to the

structure. Knowing Equation (24) allows one to calculate five Q's corresponding to each

of the first five modes, and with the first five natural frequencies already calculated, one

can substitute into Equation (25) and obtain the vertical response of the beam used in the

experiment:

y(x,t) = F{.00871Vl(x)sin76.626t

+ .00292V2(x)sin480.1It

+ .000029V3(x)sin1344.6t

- .000526V4(x)sin2635.1 t

+ (2.62xIO-7)VS(x)sin4355.6t} (27)

This response is a deflection curve and it can be differentiated twice with respect to time in



(28)

30

order to yield an acceleration curve. When x is set equal to 15.875 inches (the horizontal

distance from the clamped end of the center of the accelerometer as it sits on the free end

of the beam), the acceleration of the free end of the beam can be calculated to be:

y(15.875,t) = F{-I02.92sin76.626t

+ 1338.0sin480.11t

- IOI.66sin1344.6t

- 3387.lsin2635.lt

- 4.4700sin4355.6t}

This acceleration cUlVe is plotted in Figure lIon page 31. At first glance, one may think

that only two modes are being represented since the plots seem to represent the

summation of only two sine waves. In actuality, however, all five terms of Equation (28)

are represented. The most predominant terms are the second and fourth due to their

relatively large amplitudes and they appear quite readily. The first term is barely

noticeable because its period is very long--two thirds the length of the figure. The fifth

term has such a small amplitude and period that it is not resolved in the figure. The third

term has a period almost exactly twice that of the fourth term and, therefore, merely adds

some asymmetry to the waves produced by the latter. Figure 12 on page 32 is a plot of

the measured acceleration curve at the free end of the beam. The theoretical curve has

been scaled for comparison to the measured curve so that both plots cover the same

period of time. One can see that the curves are quite similar, and hence, that theory

compares closely with reality. The closeness of the comparison is a verification that

acceleration is being measured accurately by the transducer.
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Figure 12. Measured Record from Free End Accelerometer
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Modal Assurance Criterion

One ofthe means by which modal analysts can become confident of their results is to

test the modal assurance criterion, or MAC. This criterion suggests that orthogonality or

near orthogonality of the measured modes means that they are very close to the actual

modes ofthe structure tested. One can determine whether or not the measured modes are

normal or not by placing them into a matrix as column vectors and then attempting to

diagonalize this matrix. The closer one can get to 1's along the diagonal and OJs

elsewhere, the more one can be assured of having found the normal modes of the structure

(Modal Analysis Theory 1984). The matrix having as columns the measured modes

obtained in the experiment is

0.01731 0.05777
0.0418 0.17614

0.07321 0.33404
0.11872 0.511256
0.16522 0.655231
0.22409 0.778749
0.27157 0.849326
0.36012 0.827879
0.45065 0.77104
0.50556 0.631633
0.5857 0.42681
0.6787 0.1823

0.76416 -0. 11755
0.853321 -0.44236
0.937298 -0.77587

1 -1

-0.17063
-0.36592
-0.92909
-0.96411
-1.01545
-0.64203
-0.23168
-0.06535
0.35541
0.7025
0.8948

0.66296
0.47855
-0.03735
-0.6564

-1

0.288893
0.731489

1
0.879324
0.448118
-0.17501
-0.72216
-0.94086
-0.75506
-0.23201
0.38359

0.794883
0.964834
0.41449
-0.28343
-0.88252

-0.42082
-0.95779

-1
-0.41852
0.506842
0.948582
0.808643
0.040929
-0.71054
-0.92876
-0.56415
0.214881
0.824758
0.740858
-0.09107
-0.58378

(29)

When one attempts to diagonalize this matrix, one obtains



10000
01000
00100
00010
00001
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

which demonstrates that the obtained vectors are linearly independent. One is thus

assured that normal modes have been obtained.
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CHAPTER VI

CONCLUSION

The hypothesis that mode shapes could be obtained by exciting a structure with an

unknown transient and measuring only accelerations was confirmed. The research

conducted shows that when attempting to find mode shapes:

• Knowledge of the excitation is not necessary

• The vibrations measured do not have to be accelerations~they may be velocities or

even displacements

• Causality between input and output is not required

One might question exactly how unknown the excitation was, since it was chosen to

approximate an ideal impulse; however, not only were its magnitude and duration

unknown (and, hence, not used in the determination of the mode shapes), but any transient

excitation could have been used. As stated earlier, an impulse was chosen so that the

higher frequencies could be excited. Had some other form of excitation been chosen--one

corresponding to a more constrained frequency band--then the modes associated with

natural frequencies within this band would have been excited much more than the others,

making the others difficult to determine. In fact, when this researcher failed to tap the

beam quickly enough (i.e., the impulse had greater duration and thus excited a lower

frequency range), the fifth mode became very difficult to determine because the FFT

35
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magnitude plots ofthe accelerometer signals had no appreciable peak beyond the fourth

natural frequency. Without a noticeable~ the peak picking method could not be

applied effectively. And so, the chosen form ofexcitation was merely used to excite the

modes of interest, not because knowledge of this excitation is required to find the mode

shapes.

In the case of the thin polymer web eventually to be analyzed, vibration can only be

measured in the form ofvelocity. The question was posed, in the introduction, as to

whether or not it would make a difference if velocity were measured, as opposed to

acceleration. One might suggest that these velocities be differentiated into accelerations,

and then manipulated as in the experiment discussed in this paper. This procedure would

certainly be valid, but the step ofdifferentiation is unnecessary, and undesirable because it

may introduce errors. A simpler and more accurate method would be to obtain FRF's

from the Fourier transforms of velocity signals, instead ofaccelerometer signals. These

Fourier transform magnitudes will only differ from Fourier transform magnitudes obtained

from acceleration time histories by a constant. This constant happens to be the frequency,

co. Since all magnitude plots will be divided by the same constant at all frequencies, the

resulting FRF's would be the same as those one would obtain using accelerations. The

same procedure could also be followed using displacement measurements. Ofcourse, if

the FRF's are the same for all three cases, then the modes they yield must be the same.

Another issue brought up in the introduction was that of causality, or whether it would

matter which accelerometer was affected by the excitation first. Either signal can be used

as the trigger to begin the recording ofdata. In fact, FRFs were obtained using both

accelerometers as the trigger for several trial runs. Sometimes, the trigger accelerometer
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was located farther away from the point 0.£excitation than the other transducer, resulting

in the output being affected before the input. This scenario posed no problem; therefore,

causality is not an issue when finding mode shapes using only vibration signals.



CHAPTER VII

SUGGESTIONS FOR FURTHER RESEARCH

The success of this experiment makes one wonder about future experiments that may

expand the realm ofmodal analysis yet further. The structure chosen for the current

analysis was a simple cantilever beam with very little damping. The determination of its

mode shapes was achieved via the peak picking method. This method, as described

earlier, is only reliable for such lightly damped structures. It is known that higher values

ofdamping tend to bring the phase angle at resonance away from its undamped norm of

either 0 or 180 degrees. When this phase migration occurs, the peak picking technique

becomes useless. The circle fit a1gorithm~ however, could be used to investigate a

structure with higher damping. For such an experiment, a modal analyzer must be used

because a spectrum analyzer does not have any built-in modal software, i.e., parameter

estimation programs. Clearly, if accurate mode shapes are determined for a significantly

damped structure excited by an unknown excitation covering a broad frequency range,

then analysis of the thin web structures mentioned earlier can begin. Ofcourse, the

method of excitation will have to be changed--a tapping of the finger will no longer be

satisfactory. Perhaps a continuous cross wind would set the web into flutter vibration that

could be detected by laser velocimeters.
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APPENDIX

OBTAINING A MODAL MODEL WITHOUT MEASURING

THE STRUCTURE'S EXCITATION: AN

UNDERDETERMINED SYSTEM
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One ofthe requirements for conducting modal analysis is to obtain FRFs between

several different measurement points ona structure. The Zonic 6088, used in the

preliminaries of the experiment discussed in this paper, requires force vs. acceleratio~

force vs. velocity, or force vs. displacement FRFs in order to resolve the modal model. In

using any ofthese options, one thing is always true: the input force to the structure must

be known. The reason this input force must be known is because the circle fit and the

mdof complex exponential curve fit algorithms require it in order to be able to find the

modal model. For simplification, let us consider a structure having only two measurement

points, the time signals ofwhich are called y(t) and u(t). The signals obtained at these two

points are any combination ofacceleration, velocity, or displacement; however, neither

signal represents the force used to excite the structure. Ifdifferent types of signals are

measured at the two points, one of them can easily be integrated or differentiated in order

to make it the same type of signal as measured at the other point. In this, the simplest

possible scenario for conducting a theoretical modal analysis, the setup would look as is

shown in Figure 13 on Page 42.
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Figure 13. Simplest Modal
Analysis Scenario

The symbols k, e, and m represent the stiffness, damping, and mass, respectivelyJ between

the two measurement points. The bottom of the figure represents an infinitely rigid

ground. The equation of motion for this simple structure is

my+c(y-u)+ k(y- u)= 0

Rearranging the equation yields

my +cy + ky =eli + ku

(31)

(32)

where the right hand side must be the external forcing function at the location where y(t)

is measured. One already knows u(t), and uis easily obtained by differentiation ofu(t),

t

and Ju(~)dt is easily obtained by integrating signal u(t) (it may be necessary to obtain this
o

integral or derivative, depending on what type of signal u is when it's measured--

displacement, velocity, or acceleration); therefore, one would only have to know c and k

in order to provide the Zonic 6088 with an acceptable FRF with which to perform

parameter estimation. The problem is that c and k are not known beforehand; in fact, C
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and k are two ofthe parameters that the modal program tries to find. Consequendy, ifone

does not have a recorded signal ofthe external excitation to the struc~ one would have

to know the modal model before one tries to find it!
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