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CHAPTER I

INTRODUCTION

Othello, the Game

othello is a two-player game using an eight-by-eight

square board similar in size to a chess board. The initial

board position is shown in Figure 1. Players take alternate

turns. One player is represented by the black pieces while

the other player is represented by white.

Figure 1

The object of the game is to have the most pieces at

the end of the game. The pieces are black on one side and

white on the other. A piece may be played if the player can

position his piece on an empty square such that it results

in bracketing a continuous line of enemy pieces between the

new piece played and another piece whose color is the same

as the new piece. This line may ei ther be a horizontal,

vertical or diagonal line. All bracketed enemy pieces are
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flipped, becoming the same color as those that bracketed

them. In fact, the playing of one piece can result in more

than one such line. If no piece can be bracketed, the

current player must pass. The game ends when either all 64

squares have been occupied or both players must pass.

Unlike chess, Black has first move. Therefore, from the

ini tial board setup of Figure 1, the number of possible

moves for Black's first move is given by Figure 2.

Figure 2

At this point in the game, it is immaterial which one

of the four possible squares is played due to synunetry.

Thus arbitrarily selecting an empty square and positioning a

black piece yields Figure 3.

Figure 3

Since a whi te piece has been bracketed between the

newly positioned black piece and another black piece on the
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board, that whi te piece is flipped which yields Figure 4,

the end of the first turn. It is now White's turn to move.

White has three possible moves, and the game would continue

from this board position.

Figure 4

Game Playing

Game playing on computers has utilized a variety of

methods in an attempt to play at the level of human play.

One of the approaches still in use today was described by c.

Shannon [13] in 1950 and dealt with playing chess. John von

Neumann [14] had previously shown that a strategy based upon

present board position and future possible moves could

theoretically be determined for games of perfect information

such as chess.

Essentially, the game is described by a given set of

rules that determine the transition from one state or board

position to the next or rather, the next possible group of

alternatives. This series of transitions can be viewed in

the form of a game tree as seen in Figure 5 for Othello at

the start of a new game. For example, as shown previously,



Black has four moves at the start of the game.
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It was also

claimed that it was immaterial which move was made due to

symmetry. After Black moves, Whi te has three choices of

moves. Next, Black will have either three, four, or five

possible moves depending upon the move made by White.

Initial Board

Figure 5

The transition from Black to White or White to Black is

referred to as one ply (one level in the tree). The maximum

ply depth of the game tree for Othello is sixty. The amount

of time required to search the entire tree is extremely

large and is covered later. Therefore, due to time

limitations, the search depth is limited. This still

results in a large number of alternative board positions at

the bottom of the game tree called leaf nodes.

An evaluation function is defined to compute various

aspects of a given board state in terms of piece count,

stability, and so forth. This evaluation function is

applied to the leaf nodes of the game tree resulting in a

numerical value reflecting the approximate 'goodness' of a

given board position.
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The next step is to attempt to determine which position

will more likely be reached. If the leaf nodes represent a

move for Black, then it is in Black's best interest to

select that child node of a given parent node whose value is

superior. A parent node is any node that has children.

Child nodes who share a cornman immediate parent are

siblings. Those values for Black are then "backed-up" to

the parent node. One value exists per node. At this level

in the game tree, it is now White's turn. White would best

be served by picking the smallest value or minimum for the

backed-up Black values. These minimums are then backed-up

to the appropriate parent of the previous level. Since it

is Black's turn, Black will once again select the best or

maximum value. This process is repeated and the appropriate

minimum or maximum values are backed-up until the current

board position is reached. At the current board position,

that move associated with the maximum value, based upon the

evaluation function, should be the next move. This process

is referred to as the Minimax algorithm. If the entire game

tree is not or cannot be searched, then the game may be

unaware of a better move (as judged by the approximate

evaluation function) that would have been revealed had a

deeper search been made. This is referred to as the horizon

effect.

Other algorithms exist which perform the same function

as the Minimax algor i thm, wi th the same resu'l ts, but have

superior speed because they prune portions of the game tree
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based upon information discovered as the game tree is

searched. These algorithms always choose the same move as

the Minimax algorithm; they just do it faster. Two of these

algorithms are branch-and-bound and alpha-beta pruning.

These algorithms will be discussed later.



CHAPTER II

BACKGROUND

Samuel's Method

Samuel [10] describes some methods he utilized in

machine learning he had applied to the game of checkers.

One of the methods used an evaluation function whose

coefficients and respective signs were continually modified

during play. He used alpha-beta pruning to search the game

tree.

The terms of the evaluation function consisted of

coefficients multiplied by various parameters associated

with aspects of the game such as mobility, advancement to a

king, board pas i t ion and so forth. These parameters are

generally counters whose values increase in relation to the

number of times that the condition is satisfied. The

coefficients were powers of 2. He identified 38 parameters,

but only utilized 16 at any given time during execution of

the program, due to limited computer memory. This was due

to the computer resources available to him at that time.

His program swapped out parameters based on certain

criteria. This swapping introduced some complexities.

When the program played i tsel f, one side .(BETA) used an

evaluation polynomial that was not modified during play

7
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while the other side (ALPHA) adjusted its coefficients.

Should ALPHA win the game, BETA is given ALPHA's values for

the coefficients. Should ALPHA prove inferior, the leading

term' 5 coefficient was set to zero. A baseline for the

program's level of play was established by having the

program playa book game with its learning process disabled.

This could then be compared to those moves recommended in

the book game. In addition to the program's level of play,

a method is needed for measuring changes made in the

evaluation polynomial. The only way the program can measure

improvement is by the scoring polynomial, which is

continually modified. Therefore, Samuel [10] measured this

improvement by the following method:

• Compute the value of the evaluation polynomial and
save this value at each step.

• Compute the backed-up score for all board
positions to a given depth.

• Compare the initial board score, as saved from the
previous move, wi th the backed-up score for the
current position. This difference between the
scores is called "Delta".

• Maintain a record of the correlation existing
between the signs of the indi vidual term
contributions in the ini tial scoring polynomial
and the sign of Delta.

• After each play, an adjustment is made in the
values of the correlation coefficients, due
account being taken of the number of times that
each particular term has been used and has a non­
zero val ue.

• It is necessary
polynomial for a

to
given

recompute the scoring
initial board position



9

after a move has been determined and after the
indicated corrections in the scoring polynomial
have been made, and to save this score for future
comparisons, rather than to save the score used to
determine the move.

The current author does not completely understand the

entire process that Samuel used. This is due in part to

ambigui ty in language and insufficient information in the

article.

Figure 6 summarizes the current author's understanding

of the basic principles behind the method. This summary

does not include the details of how the changes were

actually computed, but is an overview of the process. A ply

depth of 'M' is assumed for the calculations involving

either move 'K' or the state of the board 'X.' An

additional assumption that Delta is large enough to warrant

modifying the evaluation function is also made. The current

author has concluded that where Samuel [10] says:

... computing the scoring polynomial for each board
position encountered in actual play and by saving this
polynomial in its entirety...

and

At each play by Alpha the initial board score, as saved
from the previous Alpha move ...

are referring to the same value. 'Ek' is intended to mean

the evaluation function in effect at the beginning of the

'k-th' move in the game prior to changing the evaluation

function. The ini tial board score for the 'k-2' move is

understood by the current author to be computed at move 'k'
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The reason

that Samuel [10] recomputes the ini tial board score is to

correct a defect involving Del ta. His program may even

recalculate the board position again based on given values

of Del ta. However, it is not clear to the current author

whether those changes or modifications include recalculating

all intervening board positions, or not.

Side Move Actual Backed Delta Recompute
Play up after
(IBS) Score changes -

Replaces
ISS

A K-2 Ek(Xk-2) Ek-2 (Xk+3) Ek-2(Xk-4)- Ek+2(Xk-2)
Ek-2 (Xk+3)

B K-l Ek(Xk-l) NA NA NA

A K Ek+2 (Xk) Ek(Xk+m) Ek(Xk-2)- Ek(Xk+rn) Ek+4 (Xk)

B K+l Ek+2 (Xk+ 1) NA NA NA

A K+2 Ek+4 (Xk+2) Ek+2{Xk+2+m) Ek+2 (Xk) - Ek+6 (Xk+2)
Ek+2(Xk+2+m)

B K+3 Ek+4 (Xk+3) NA NA NA

A K+4 Ek+6 (Xk+4) Ek+4(Xk+4+m) Ek+4(Xk+2)- Ek+8 (Xk+4)
Ek+4 (Xk+4+m)

Figure 6
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Magg's Use of Values for Squares

Maggs [7] uses two arrays containing values for the

squares. One array uses values at the start of the game.

The second array is used for the endgame. The only other

change is modification of the values associated wi th the

squares next to the corner squares when the corner square

has been occupied. He states:

Undoubtedly it could be improved by introducing a
number of other changes reflecting particular board
configurations and the possibility that a square might
have different val ues for Black and Whi te in some
circumstances.

Frey's Observations of Values for Squares

Professor Frey [2] made several observations concerning

game strategy. Of specific interest is the comparison of

play between one program whose strategy was to play whatever

piece flipped the largest number of pieces in a turn,

against another program that played the square that had the

highest value. The latter strategy proved to be more

effective. Each square was assigned a priority number.

Once again, no other basis for determining the value of the

squares was given. The values apparently were assigned

based on cornmon sense and maybe trial-and-error.

Lee and Mahajan's Criticism of Samuel

Lee and Mahajan [6] make no reference to values

assigned to specific squares, but make several references to
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However, they do

address the method that they utilize for learning.

state that:

They

Learning schemes such as Samuel's signature table
algorithm must learn a large number of parameters. In
order to control the number of parameters, quantization
is often necessary. Unfortunately, this quantization
results in the 'blemish' effect (Berliner [1]):

a very small change in the val ue of some feature
could produce a substantial change in the value of
the function. When the program has the ability to
manipulate such a feature, it will frequently do
so to its own detriment.

The signature table algorithm was another method that

Samuel investigated after examining the self-modifying

evaluation function. Lee and Mahajan[6] recommend the use

of Bayesian learning, claiming that:

While other learning programs learn to differentiate
good fea t ures from poor ones or to imi ta te expert's
moves, Bayesian learning learns the optimal concept,
namely, "moves tha t 1 ead to a wi n. "

This project does not investigate Bayesian learning, but

this reference was included to introduce the potential for

future work.

Game Tree Search Methods

In addition to Samuel's method and other individuals'

work in the game of Othello, how the game tree is searched

is another important aspect in the determination of the

values for the squares. This is important due to the time

required to analyze all possible opportuni ties of play in
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Specifically, a maximum bound on the number of

positions in the game can be approximated by considering the

following analysis.

There are sixty-four squares; a bit string consisting

of sixty-four bi ts is used to represent whether or not a

square is white, and another sixty-four bit string used for

black. A one in the first bi t string indicates a whi te

piece while a zero indicates a non-whi te state, non-white

because the square could either be empty or black. A one in

the second bit string indicates a black piece while a zero

indicates a non-black state. If the same bit location in

both bit strings is zero, then the square indicated by that

location is empty. Specifically, or both bit strings, then

take the complement. In the resul ting bi t string, a one

indicates the square is empty. Based on this, the following

bit string represents the initial condition of the board at

the start of the game for black:

0000000000000000000000000001000000001000000000000000000000000000

or in board form

00000000
00000000
00000000
00001000
00010000
00000000
00000000
00000000
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And the next bi t string represents the ini tial

condition of the board at the start of the game for white:

0000000000000000000000000000100000000100000000000000000000000000

or

00000000
00000000
00000000
00001000
00010000
00000000
00000000
00000000

When placed together, the initial state of the board can be

viewed as:

0000000000000000000000000001000000001000000000000000000000000000
0000000000000000000000000000100000000100000000000000000000000000

Remember that a square may have one of three states:

empty, white or black. A square cannot be both black and

white at the same time. Therefore, based on the

representation used, zeros can exist in the same bit

location in both bit strings, but ones cannot. This fact

complicates the analysis. For example, certain bit patterns

cannot exist. Both strings cannot consist of all ones. In

fact the total of all ones never exceeds sixty four. Some

unanswered questions that resul ted from this proj ect are:

"How many bit patterns cannot exist?" "Do these bit

patterns have a pattern or can they be determined?"

If one ignored concerns associated with data

structures, then an upper bound could be det'ermined based
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upon permutations. Since a square can have 3 states and 64

squares exist, 3 A 64 is all possible permutations, excluding

the possibili ty of permutations which cannot exist. The

proof that some permutations cannot exist will be done by

showing one example. It is impossible to reach the board

posi tion such that a black piece exists in any or all

corners for the second move. A combination exists to

represent this unreachable position. Therefore, more

patterns exist than do possible positions.

During a given run of sixty four garnes, the program

kept track of the maximum number of possible moves at any

given turn for any given game. Based on the data generated

by the program, the following product is an empirical result

of an upper bound:

18 ---------------.-----.---..--.--- -}_.-...._._._-_.-_ ...... -..._._.._._..__.._.. --_._.......-------....--.. -.-------- ..---.----------

i ~: +----.--~~-~==~=~-=~-~t--··:~!ifiJ----~~-----~===~--~--==~~
-C 12 +----------1

t5 10....
o 8... 4-----+---+-t--t

G)

.c 6E -+----r--t~ ft

i. 4 iA}-I-~~-f-III-'--__

2 +---__---__w ----+--~-+++-.--)l-.-;M--------.-.-.-•.;_-----
o 4-+-~_++_+_+__1~+_+_+_H_++++_H_+_++-t__H_++++-H-+_t_+_+-H_++_+_+_t_t_t .

~ ~ ~ ~ re ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Move

Figure 7

The lower line in Figure 7 with solid squares

represents the minimum number of branches during a sixty



game run of the program.
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The top line with empty squares

represents the maximum number of branches at any given move.

The middle line with the solid diamonds represents the

average number of branches for any given move of the sixty­

four games.

Minimax

The basic concept of the Minimax algorithm was

presented previously in the Introduction. The algori thm,

with minor modifications, is described by Horowitz and

Sahni[5] as:

int Minimax( depth, boardyosition)
{ ans = -infinity~

if (depth == 0) return( evaluation(boardyosition) )~

if (nuffi_of_children == 0) retum( evaluation(boardyosition) );
for (kid=l ~ kid <= num_of_children ; kid++ ) {

ans = max (ans, -Minimax( depth-I, boardyosition) );
}
return(ans)~

}

Branch-and-bound, Alpha-Beta

Algorithms for branch-and-bound and alpha-beta from

Horowitz and Sahni[5] with minor modifications are:

branch and bound(depth,boardyosition,beta)
{ if(d;pth = 0) retum( evaluation( boardyosition ));

if (num_of_children = 0) retum( evaluation( boardyosition »;
ans= -infinity~

for (kid=1~kid<num_of_children+ 1~kid++) {
ans= max( ans, - branch_bound(depth-l,boardyosition,-ans»~
if (ans >= beta) return(ans);

}
retum(ans)~

}
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alpha_beta(depth,board-position,alpha,beta)
{

if (depth = 0) retum( evaluation( board-position »;
if (num_of_children = 0) retum( evaluation( board-position »~

ans=alpha;
for (kid=1;kid<nuffi_of_children+1Jcid++) {

ans= max( ans, -alpha_beta(depth-I,board-position,-beta,-ans»);
if (ans >= beta) retum(ans)~

}
return(ans);

}

Knuth and Moore [3] provide a detailed analysis of

branch-and-bound and alpha-beta pruning in their paper. As

can be seen in the two algorithms, they are very similar.

The difference exists in passing the lower bound as a

parameter in the alpha-beta algorithm while setting its

value to minus infinity in branch-and-bound. As a variable,

it changes value based upon exploration of the game tree.

Knuth and Moore [ 3 ] state that branch-and-bound

examines the same nodes as alpha-beta "until the fourth

level of look-ahead is reached .... On levels 4,5, ... ,

however I procedure F2 (alpha-beta) is occasionally able to

make "deep cutoffs" which Fl(branch-and-bound) is incapable

of finding."

Figure 8 contains a modified excerpt from two of the

graphs in Knuth's paper. The tree demonstrates the returned

values for the branch-and-bound algorithm and the alpha-beta

algorithm. The numbers associated with the terminal nodes

indicate the value of the evaluation function. At each

branch in the tree, the backed-up value for branch-and-bound

is indicated first if different values exist for the alpha-
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beta algorithm, otherwise only one value is shown if branch­

and-bound is identical to alpha-beta. In the example shown,

branch-and-bound finds the same cutoffs as alpha-beta except

for the circled 7. Alpha-beta finds that cutoff whereas

brand-and-bound did not.

Figure 8



CHAPTER III

PROBLEM DESCRIPTION

Values Determined as Coefficients
in the Evaluation Function

Several programs exist for playing Othello; however,

all publications reviewed to date indicate that any initial

values assigned to squares on the board are estimates. This

project in its early stage investigated initial values

assigned to the squares using the basic approach in Samuel's

method [10]. As a natural development, the project

investigates the assignment of varying values to the squares

throughout the game. Restating, if the coefficients of an

evaluation polynomial are associated with values for squares

on an Othello board, this project investigates whether or

not the values for these coefficients stabilize under

Samuel's method.

Values Determined by Successful Selection

At any given point in the game, a player has ei ther

zero or more possible legal moves. A second method of

determining square values will be based on increasing the

value of the square selected from the group of possible

legal moves. The square selected will increase in value

compared to those squares not selected.

19

Ideally, a search
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with a ply depth equal to one would indicate the same move

as a search of depth greater than one as the evaluation

function is modified over time. At any given move, a

square's value is determined by averaging the value of the

square that was established in the previous game wi th the

returned value of the evaluation function for a search depth

of one ply and increasing the value of the square indicated

by the alpha-beta search of a depth greater than one by a

value proportional to the number of possible moves. If the

square selected by the search of a depth greater than one

matched the square selected by a search depth equal to one,

no modifications are made to the values of any of the

squares.

Conceptual Problems Encountered in Samuel's Method

A basic problem in using the evaluation function is

identifying the appropriate parameters. It was and still is

unclear how to determine if you have enough parameters to

adequately model your problem. Similarly, how do you know

if magnitude of any of your parameters get too large such

that the value of the parameters is biasing the evaluation

function too much in one direction? In this case, the value

of the parameters starts to perform the function of the

coefficients; it is unclear whether this is good or bad.

For example, a piece count is used to provide direction

toward a win. If the value of the piece count is very small
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compared to the total value of the evaluation function, then

it no longer provides significant direction. If the piece

count value is an order of magnitude larger than the

evaluation function, then it will completely override other

parameters that might need to have more precedence at that

point in the game.

The next question was how to initialize the

coefficients. Samuel had his program set up to use or

discard parameters under various situations. As a result

of this, he had a mechanism for ini tializing the

coefficients as if they had been in use for some time. The

current author chose to have the exponents of the

coefficients initially set to zero which makes the value of

the coefficients equal to one. No negative values were set.

The current author believes that some of the positive

coefficients could be translated to negative coefficients by

shifting the initial range such that some are negative and

some positive. Moreover, since some of the parameters where

counting is 'number of good minus number of bad', then if

the 'bad' states outnumbered the 'good' states, that term

would in fact be negative.

Since Samuel modifies the evaluation function for the

previous turn based upon the Delta computed by the backed-up

function, how do you really know that a possible poor

position wasn't the result of a move prior to that one used

to compute Delta? Regardless, having made a decision on the
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approach to use, should all intermediary changes to the

coefficients be redone or left alone?

Samuel used the Delta calculation with the

understanding that a negative difference implied that the

evaluation function was in error and should be modified by

decreasing those coefficients that had greater weight and

increasing those coefficients that had lesser weight. He

then somehow calculated some correlation coefficients to

guide the amount of change to the actual coefficients of the

evaluation function. This correlation coefficient was based

on terms between a backed-up evaluation function and the

prior turn of ALPHA. The current author has some concern

that the coefficients should have different values at

different points in the game. Therefore, how can you change

the values based on correlation coefficients computed

between the backed-up evaluation function to the value of

the evaluation function for a search depth equal to one?

What if the coefficients should have different values at

different points in the game? Samuel addressed this issue

by having four different evaluation functions utilized at

different times in the game.

Dr. Mayfield posed two questions during the formal

proposal. "Since you are modifying the evaluation function,

how do you know that your game is trying to win? How do you

know that the values you determine using this method are any

good?" Al though not asked, also implied was, "How do you
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know when you have the best values? How do you know when to

stop?"



CHAPTER IV

METHODS UTILIZED

Grouping Squares

The basic approach utilizes the fundamental concept

described by Samuel [10] in order to investigate initial

values for the squares. The board consists of sixty-four

squares, however only sixty pieces can be played as the four

ini tial pieces are set up at the start of the game. The

first step is to evaluate whether the values under

investigation need to be determined for all sixty squares.

If a subset can be used, determine the size of the subset

and which squares comprise the subset.

Addi tional lines have been drawn to help provide a

reference for the symmetry of the initial board in Figure 9.

B

AD
Figure 9

B

A

c..........~

24
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If the board is folded (or rotated) on axis AA or axis

BB, it can be seen that symmetry is maintained as one black

square lay on top of the other. However, folding the board

about axis CC or DD does not maintain symmetry. In this

case, a whi te square now coincides wi th a black square.

Rotating the board 90 degrees clockwise or counter-clockwise

does not maintain symmetry as the whi te squares are where

the black posi tions used to be and black squares are on

white positions. Rotating the board 180 degrees in either

direction does maintain symmetry. This results in the

categorizing the squares of the board in the following

groups as indicated in Figure 10. In Figure 10, the two

squares marked by a 1 are grouped together; the four squares

marked by a 2 are grouped together.

A

c

B D

Figure 10

B

c

A

The sixty squares can thus be grouped such that only

the values for the shaded subgroup in Figure II' will be

examined. The subgroup consists of eighteen squares. This
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identifies the squares whose values we will attempt to

define via Samuel's method.

Ii .~~~~~ ii~ :if[~ ~%~~~ M~~ ~i~ i1~

:~~t1 iJ~ ~~m~ ;mw m~~ ~:

7 t7
7 t7

Figure 11

Repeating, squares A and D can be represented by A, and

squares Band C can be represented by B. Squares indicated

by Z cannot be played as they contain the initial pieces at

the start of the game. Therefore, the project investigates

the values for the squares using this classification or

grouping of the squares. However, this classification could

be modified in future work so as to compare the values of

all squares except the Z squares in terms of corresponding

to the values of the coefficients for the terms.

Since the values for the squares are being determining

also by successful selection during play, sixty values will

exist for this approach.

Adapting Samuel's Method

The very basics behind Samuel's method are to compare

the backed-up value of the evaluation function 'wi th the

value of the prior move by ALPHA. Based on this comparison,
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make changes to the evaluation function. The current

project compares the backed-up value of the evaluation

function and associated recommended move with the values of

the evaluation function of all of the immediate children to

the current board posi tion. In the best of all possible

worlds, both the current value and the backed-up value of

the evaluation function should indicate placement of the

same piece. If that occurred, no changes were made to the

evaluation function. If the current value of the evaluation

function indicated playing a different piece, then a term by

term difference between the current values for the

recommended move and the current max value of the evaluation

function was computed. In other words, the terms of the

current maximum value were subtracted from the terms of the

current recommended move. The term with the largest

positive difference had its coefficient reduced by a factor

of two while the term with the largest negative difference

had its coefficient increased by a factor of two. This

moves the evaluation function towards recommending the

placement of the same piece as the backed-up value.

This addressed the author's concern in that the

coefficients can now have different values at different

points during the game. If the evaluation function at depth

equal to one starts making the same recommendation as the

function backed-up from depth equal to k over time, then the

game gives the appearance of learning. However, this does
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not address the issue of whether the evaluation function

adequately models the game.

Search Algorithms

The alpha-beta search algorithm was utilized for most

of the project. The Minimax algorithm was used to verify

the functionality of the branch-and-bound algorithm and the

alpha-beta algorithm. How the algorithms were modified so

that they could be utilized in the program is described in

the section dealing with the program.

Values Determined by Successful Selection

It should be noted that the values determined by move

selection are not used in the evaluation function. That

could result in a tendency for the values to either

continually increase or decrease. For example, assume a

given square was selected last time and its value increased.

If that value is also used in the evaluation function, then

it will increase the tendency to probably select that square

again versus some other square whose value did not increase.

Therefore, the values determined by move selection are only

used for determining the order of the search in the alpha­

beta algorithm. These values are also grouped by move. For

example, there is no way that the corner squares can be

played in the first move. Therefore the value of the corner

square will not be evaluated in the first move. Over many
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games, the pieces are grouped in terms of whether or not a

square was played in a given move. This does not

necessarily correspond wi th the theoretical possibili ties,

as th~ entire game tree was not searched. By the same

token, the value for a particular square may then vary based

upon the move under consideration. In general, the value of

the square played is bumped up for a given move, while the

values for the other squares that could have been played,

but were not selected are bumped down. The amount of

adjustment is currently arbitrary, but proportional to the

number of pieces vying to be played and the value of the

evaluation function for a search of ply depth equal to one.

For example, if it is possible to play one of eight choices,

then the selected move beat out seven contenders. The

amount of adjustment probably should be refined.



CHAPTER V

OVERVIEW OF PROGRAM

Fundamental Data Structures

The program utilizes two arrays whose size is sixty

four, the same as the board size. One array represents the

whi te pieces on the board while the other represents the

black pieces. Since they are linear arrays, a formula was

created that calculates the adjacent squares. Other arrays

are used to track the values of the coefficients,

parameters, and so forth. In general, all arrays are either

one-by-sixty-four or two-by-sixty-four. The exception are

those arrays containing values for the parameters and

coefficients.

Organization of the Program

The program consists of the standard functions to

initialize the appropriate items with one driver function

that handles input and alternates between players. Several

functions where created to address checking for legal moves,

playing a piece, searching the game tree, displaying the

board. The only real thing of interest is the use of

Samuel's method as the program follows the typical

organization of most board games.

30
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Implementation of
Samuel's Basic Algorithm

The current author implemented a variation of Samuel's

method. The approach is fairly straight-forward. The

program compares the backed-up value resulting from the

alpha-beta search of depth=K with the values resulting from

a search of depth=1. If the maximum value of the depth=l

search corresponds to the same piece indicated by the

depth=k search, no modification is made. I f the maximum

value of the depth=1 search indicates another piece, the

difference between each term of the maximum and the

recommended piece is made. This difference is computed on

the evaluations made at the depth=l, not a difference

between the maximum depth=l and the depth=k values. This

allows for the value of the coefficients to be independent

at different moves throughout the game. In general, large

positive differences have their corresponding coefficients

reduced while large negative differences have their

corresponding coefficients increased.

Implementation of the Search
Algorithm for the Game Tree

The alpha-beta search as given by Figure 12 is

indicated by the bold lines; the non-bold lines are those

added to the algorithm for the purposes of the project.
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alpha_beta (depth, cur_color, alpha, beta)
{

calculate number of children()i
if (depth=-O) return(evaluation(cur color»i
if (num_of_children==O) return(evaluation(cur color»;
ans=alphai -
for (kid=likid<num_of_children+likid++) {

save current board()j
make-move(ChIld[kid],cur color)j
if (cur_color == WHITE) pass color=BLACKi
else - pass color=WHITE;
temp_ans=-alpha_beta(depth-l,pass color,=beta,-ans);
if (ans < temp_ans) { -

ans=temp anSj
if (DEPTH==depth) square_to_move=Child[kid];

}

restore_board();
if (ans >= beta) return(ans);

}

return (ans) ;

Figure 12

In order to make use of the alpha-beta algorithm,

additional code must be written to track which was the

actual move that corresponded to the value returned, along

with actually generating the tree, modifying and restoring

the board positions, etc. The computed values of the

squares are utilized to order the search.

Evaluation Function

The parameters used in the evaluation function are

listed:

•
•

invulnerability
number of potential directions that can flip a
square
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• number of directions that actually flip a square
• number of potential pieces that can flip a square
• number of actual pieces that can flip a square
• square stability based upon occupancy of edge

squares
• horizontal direction
• vertical direction
• both diagonal directions

• piece count
• number of empty adjacent squares
• number of adjacent squares occupied by enemy
• eighteen parameters associated with occupancy of a

square that has a corresponding coefficient to use
in Samuel's method

Figure 13 represents the number of directions that

potentially can flip a given square. r-'or example, the

corner squares are invulnerable. They can not be flipped

from any direction. Therefore, their value is zero. The

other edge squares between the corner squares can be flipped

in one of two directions if piece position allows. All

other squares have the potential to be flipped in any of

eight directions. The number of directions that can

potentially flip a given square will never exceed the

numbers given, but in the course of the game, the number of

directions may and will diminish as the game progresses.

Therefore, while the corner squares are always invulnerable,

other squares will become

progresses.

invulnerable as the game

0 2 2 2 2 2 2 0
2 8 8 8 8 8 8 2
2 8 8 8 8 8 8 2
2 8 8 8 8 8 8 2
2 8 8 8 8 8 8 2
2 8 8 8 8 8 8 2
2 8 8 8 8 8 8 2
0 2 2 2 2 2 2 0

Figure 13
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Figure 14 demonstrates another parameter that indicates

the potential maximum number of pieces which may flip a

given square. This parameter, like the preceding parameter

is of more value earlier in the game rather than later as

the actual positioning of the pieces decreases the value of

both parameters. However, what is not evident is when

either of these parameters should be given less weight.

0 7 7 7 7 7 7 0
7 11 23 23 23 23 11 7
7 23 27 25 25 27 23 7
7 23 25 27 27 25 23 7
7 23 25 27 27 25 23 7
7 23 27 25 25 27 23 7
7 11 23 23 23 23 11 7
0 7 7 7 7 7 7 0

Figure 14

While two other parameters, which represent actual

values instead of theoretical, correspond to these potential

parameters, the estimated computational cost of tracking

actual values as the game progresses was believed to be too

high and so these parameters are mentioned but not used. It

should be noted that parameters might have been utilized if

the author's program was rewri tten and made more use of

tables to minimize the computational cost. An attempt to

offset thi.s was made. The program does track the number of

empty squares which have the potential to flip each color.

This merely corresponds as to whether or not any given

square is a legal move. The program also maintains a piece
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count by color for each move. This is necessary to provide

the game a direction, as the evaluation function is

continually modified or at least has the potential of being

modified. Another parameter counts the number of directions

that each empty square has the ability to flip the enemy,

and the number of directions for the enemy. Again, the

actual number of pieces flipped is not tracked due to

computational effort. If the number of pieces flipped were

to be tracked, then the program has merely completed almost

everything needed for one more ply evaluation. So the

trade-off for some of the parameters not used was based on

the time needed for evaluation. If evaluation of said

parameters corresponds to the time needed for an additional

ply calculation, it was not used.

The number of invulnerable squares occupied by color is

another parameter.

Another measure of stability is ownership of edge

squares. In Figure 15, the edge squares associated with a

particular internal square are shown. This square has edge

squares that correspond with horizontal, vertical, and

diagonal lines drawn through it. Parameters are associated

wi th the group of horizontal lines, the group of vertical

lines, and groups of diagonal lines. The diagonal groups

are associated with top and bottom, left and right diagonals

in order to break the board into sections.
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Figure 15

And last, but not least, there are parameters

associated with the group of squares described by Figure 11.



CHAPTER VI

ANALYSIS OF RESULTS

Analysis of Values

During the course of the project, the program was run

wi th and wi thout ordering the squares for the alpha-beta

search. The search time utili zing the order based on the

value of the squares is approximately twenty to twenty-five

percent less than not using any specific ordering. In the

current author's opinion, that is an empirical indicator

that the values of the squares determined by selection have

value.

60 -----..------------..-~---- ..-----.- .. ----~.-.----.-.---.-,.-~- ..-..,-....._,-...'.~- ._...,..0 -, .•".. ... ._._.•••.• - •••••• -._•• __ .' •• _." •• - ••_~_. ,- , _ •• ~ •• -.• ,.~- .....

ell 50 +-- .._=-_.~IUt.--'~::::~;~;-..~ ..
~ 40 +-~-------------._-------_._----.~--~-------._ .
£
~

~
.... ~+------­o..
G)

~ 20 +----------------
::;,
Z

10 -!--------------
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Figure 16
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Figure 16 shows the number of times the backed-up value

recommended the same piece to be moved as did a depth=!

search. Therefore, on this run, the program started its

searca over seventy-eight percent of the time with the move

that the backed-up value would recommend. However, this is

not proof, in the author's opinion, that the values are the

best values that can be achieved. Other runs with various

ply depths had different values, but the tendency to improve

the number of matches still occurred. One of these runs

only matched twenty-one times at the beginning, but was

matching in the high thirties toward the end of the run.

The square values based on the values of coefficients

corresponding to the squares is demonstrated in Table 1.

Each one of the entries represents the value of the exponent

per move after a run of sixty-four games. The presence of

large isolated positive and negative values indicates a lack

of stability of the results.

Exponents for the Coefficients

Move 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 -2 0 0 0 0 0 0 0 0 0 0 0 3 0 2 -1 2 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 -1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 -9 0 0 0 0 0 0 0 0 7 0 -1 6 0 0 0 -1 1

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0
11 7 0 5 0 0 0 0 0 0 -1 -1 0 -1 0 -1 -1 -1 -1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



15 1 9 -1 0 0 -, 0 0 0 0 1 -1 -1 0 0 0 -1 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 1 0 0 0 0 0 -1 0 0 1 -1 0 -1 -1 0 -2 -1 -1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 -8 -1 0 0 -1 0 ·1 0 5 -, 0 -1 -1 -, 0 -1 0 0
20 -3 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0 0
21 -6 0 0 0 -1 0 0 0 -1 0 -1 -1 9 0 10 -1 -2 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 -6 10 0 0 -, 2 0 0 -, 4 -, 0 0 0 0 0 -2 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 10 -1 0 1 2 0 -1 2 -1 -1 -1 0 -1 -2 -1
26 -11 0 0 0 0 0 -1 -, 0 6 0 0 -1 0 8 5 0 0
27 -1 0 0 0 -1 -1 0 0 0 0 2 0 -1 -, 0 1 -, -,
28 -14 0 0 20 0 0 0 0 0 0 0 -1 -1 -1 0 -1 -, -1
29 -16 -1 -1 0 5 -1 0 0 0 -, -1 2 8 -1 -1 -2 0 0
30 -10 -1 0 0 -1 0 0 0 -, 0 5 12 -1 0 -1 0 -1 0
31 -11 0 0 0 3 2 0 0 -1 -, -, -, -1 -, -, -, -, 0
32 -6 -1 0 0 4 -, 0 5 0 -, 0 -, 0 0 0 -, 4 0
33 -3 0 0 0 0 -, 0 0 0 -, -, -, 0 -, -, 0 -2 0
34 -4 -, 0 0 7 4 -, 0 0 -, 0 0 -, -, 0 0 0 -,
35 -7 0 0 0 8 0 0 0 -, -, -, -, -, 0 0 0 0 0
36 -6 0 0 0 2 0 0 0 0 3 -, -, 0 0 0 , -, 3
37 -10 0 0 8 0 5 0 0 -, -, -, -, -, -, 0 -2 -, -,
38 -6 -1 0 0 0 0 0 0 0 -, 2 0 0 -1 0 -1 -1 -,
39 -8 0 -, -, 0 0 '2 -, 0 -, -, -1 -, 0 -, -2 -1 -1
40 -8 -1 0 0 0 0 0 0 0 -, 8 -1 5 0 , -1 -, 0
41 -8 0 12 0 0 0 2 -, 0 -, -, 0 0 4 -, -1 -1 -1
42 -23 -1 0 -1 -1 2 0 -1 0 0 0 -1 9 0 0 0 -1 0
43 -2 0 1 0 0 0 0 0 0 0 0 2 -1 0 5 0 -2 0
44 -8 -, 0 0 0 0 0 -, 0 -, , 0 0 -1 5 0 0 0
45 -1 0 -1 0 0 -, 4 0 -, -, 5 0 -, 0 -, -1 -, -,
46 0 0 0 0 0 -1 -1 -, 0 0 -, 9 0 0 -1 0 0 0
47 3 0 0 0 0 0 , 0 0 -1 3 -, 0 , 0 -, -, -1
48 -12 -, 0 -1 0 0 -, 0 -, -, '0 2 -1 0 -, 12 0 0
49 -7 0 -1 -1 4 , 1 0 1 -1 -, -1 -, 0 -, -, -1 -1
50 -5 -, 8 0 -, -1 -1 0 2 -, '0 -1 -, 0 -, 0 4 -,
51 -1 0 -1 , 0 -1 0 0 6 0 3 -, -, 1 0 -, .., -,
52 -9 0 0 0 -, -1 -, -, 0 0 -, 4 -, -, 4 , 2 0

53 -7 , -, 0 12 0 0 0 0 -, -, -, -, 0 -, 0 -1 -,
54 0 -1 0 -, 0 , -, 0 1 0 -, 0 0 0 0 8 0 0

55 -5 3 -, -, 8 0 , 0 0 0 -, -1 -, 0 0 -, -1 -1
56 -16 -, -1 0 0 -, -1 -, -1 -, 13 3 9 -, 2 -2 -1 -1

57 -1 0 0 -, 0 -1 1 0 0 -, -1 -, 0 0 0 -, 0 0

58 -'8 -, 0 0 -1 0 0 -, -1 4 -, -, -1 -1 -1 -, 0 0

59 0 -1 0 -, -, 0 0 -, 5 0 0 -1 2 0 -1 -1 -1 0

60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1

39
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The graph in Figure 17 shows the value of all eighteen

coefficients for the fifty-fifth move over a run of games.

The first coefficient (bottom graph) was separated from the

remai~der in order to make the graphs scale better with the

plotting package that was used. The first coefficient for

this series of games had a value of zero in the first game,

but changed from zero in the fifth game to minus one.
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Comparison of Search Methods

The Minimax, branch-and-bound, and alpha-beta

algorithms are compared in Table 2 for ply depths of I, 2,

3, 4, and 5, respectively. The game timings for the methods

were calculated after zeroing out all data files. In

effect, the program was started each time with no acquired

changes for every run. That allows for one-to-one

comparison. The other option would be to make several (at

least thirty) runs for every instance to even pretend to

have some statistical validity.

Depth of Ply Minimax Branch-and- Alpha-Beta
Bound

1 11.19 sec 11.18 sec 11.18 sec
2 30.63 sec 21.65 sec 21.66 sec
3 351.64 sec 125.25 sec 125.27 sec
4 1242.65 sec 479.68 sec 461.84 sec
5 36973.37 sec 3659.41 sec 3558.79 sec

Table 2



CHAPTER VII

SUMMARY, RECOMMENDATIONS

Summary of Project

The purpose of this study is to analyze values for the

squares of Othello utilizing a method developed by A.L.

Samuel. The proj ect 's intent was not necessar i ly to write

an Othello program, however an Othello program written by

the current author was utilized as a vehicle for Samuel' 5

method. The method utilizes the alpha-beta algorithm for

searching the game tree, and modifies the coefficients of

the evaluation function at each move. Some of the

coefficients of the terms of the evaluation function

represent the values of the squares. At the same time,

values for the squares were determined based on move

selection.

The method produced results that were empirically shown

to have value. This was accomplished by using the values to

order the search for the alpha-beta algorithm. A twenty to

twenty-five percent reduction in search time resulted from

use of the ordering. The values determined by move

selection change over time and are a crude form of learning.

For example, the current author has a tendency to play the

same game opening. I f a di fferent opening is used, the

42
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programs values as d t · d . ·e ermlne by selectl0n would sh~ft over
time.

The program works towards a win as it had a direction

based on piece count by color whose respective coefficients

were not modified during play and whose magnitude was

predetermined by the current author to provide sufficient

weight. If the sign of the piece count was reversed, the

program demonstrated a clear tendency to learn to lose.

Values were viewed on a per move basis, as some squares

could not be played until the game had progressed.

Therefore, sixty sets of values were used.

The values of the coefficients stabilized over time.

However, using different search depths could change the

values dramatically as the horizon is pushed down additional

plys. The game had a tendency to repeat games until random

play at the start of the game was added.

The results in Table 1 clearly show some instability;

isolated large values are not reasonable. The approach used

to analyze values appears to function as hoped as the

coefficients seem to have a tendency to stabilize on any

given move, but the values are not necessarily smooth from

move to move. Therefore, it is the current author's opinion

Moreover,

that this proj ect has not determined final values for the

any final values that would besquares.

ultimately determined would have to be taken in context if

applied to another's project.



Future Work

The program learns to play at different levels of play

depending upon the number of plys searched in its learning

mode. This horizon effect has been noticed by the current

author when he plays the program. Due to the time required

to have the game learn at ply depths greater than five, only

a few runs were made during the project's lifetime at depths

of six and seven. It is the current author's opinion that a

ply depth of nine to twelve or more plys is needed for the

method to be highly effective. The number of other

parameters used to establish direction must then be

minimized. This level of search was determined based upon

the number of moves needed to reveal the impact of occupying

the corner square without indicating its relative importance

in the early stages of the game.

In addition to increasing the depth of the search, an

analysis of the differences between Delta determined from a

search of depth k and k+rn might be of interest.

Another question is how large Delta should be before a

change is made, and where should the change be made? For

example, assume Delta is calculated between move K and move

K+N with a search depth less than N, say N-D. The move for

K resulted from the evaluation of board position for move

K+N-D. What values of Delta are needed to indicate that the

wrong move was made at K and not some prior move? Will the

values of Delta indicate that? If it can be determined that
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the wrong move was made at K, then should the evaluation

function be modified at move K, or at move K+N-D, or both,

as the evaluation value for move K was backed-up from K+N-D

Can any correlation be determined between values of

Del ta as the search depth is increased; what patterns or

trends exist, if any?

The values determined by selection are determined over

a short time span, the past game. A long term average of

the values should be tracked.

Since alpha-beta deals with a variable lower bound, the

current author wonders if "deep cutoffs" only occur when the

algorithm computes minimums. Cutoffs can occur on plys two

and three, but those cutoffs occur on both branch-and-bound

and alpha-beta. Or does the a1 ternating between plus and

minus between p1ys work wi th the line if (aIls heta) retllrfl(al1~\~;

to address "deep cutoffs" when computing maximums?

In the current author's opinion, an 'archeological dig'

should be performed on Samuel's work before it might be lost

forever. The article does not reveal sufficient information

to replicate his work.
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