
A COtvfPARISON STUDY OF FEEDFORWARD FULLY-CONNECTED

NEURAL NETWORKS YS. CASCADE CORRELA1'ION

NETWORKS FOR PREDICTION OF SOIL

•
MOISTURE CONTENT

By

XIAOJI LIU

Bachelor of Science

East Cllina Institute ofrrecllnology

Nanjing, China

1982

Sublnitted to the Faculty of the
Graduate College of the

Oklallo111a State University
in partial fulfillment of
the requirements for

tile Degree of
MASTER OF SCIENCE

December, 1994

A COMPARISON STUDY OF FEEDFORWARD FULLY-CONNECTED

NEURAL NETWORKS VS. CASCADE CORRELATION

NETWORKS FOR PREDICTION OF SOIL

•
MOISTURE CONTENT

Tllesis Approved:

--~~-0- TheSiS AdViser

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express nlY sincere gratitude to Dr. John P. Cllandler, my

major adviser, for his guidance, dedication, patience) and invaluable

instructions. He made a great deal of effort t9 improve this tllesis, both in

content and in English. My appreciation is also extended to Dr. K. M. George

and Dr. M. Neilsen, tile other committee nlembers, for their helpful

advisement and suggestions.

I would also like to thank to Dr. Marvin L. Stone for providing nle the

opportunity to do research work on the neural networks on soil nloisture

prediction and pernlitting me to use the related experinlelltal data in nlY

thesis, and helping me to understand them.

I am grateful to my parents Huilil1 Wang and Junllua Liu, for tlleir

consistent support and encouragement. My deep thaJlks are also dedicated to

my wife, nlY sisters aJld brothers, for tlleir support and uIlderstanding.

ill

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. LITE.RATURE ItEVIEW 4

Basic Concepts ofNeural Networks 4

Feedforward Fully-Connected Neural Networks 8

Cascade Correlation Networks 9

Description of Soil Moisture Content Prediction 14

III. LEARNING ALGORITHMS FOR NEURAL NETWORKS 17

Back-Propagation 17

Delta-Bar-Delta 23

Extended Delta-Bar-Delta 27

Quick Back-Propagation 29

Steepest Descent in Line Searell 30

IV. ItESULTS AND ANALySIS 33

Test Data Preparation 33

COllvergence Criterion , ,.34

Results 36

V. CONCLUSIONS 57

A SELECTED BIBLIOGRAPHY o • 0 •••••••••••••••••••••••••••• 58

APPENDIX--PROGRAM LISTING 61

iv

Table

LIST OF TABLES

Page

I. Convergence Behavior for a Cascade Network 40

•
II. Convergence Behavior for Standard Back-Propagatioll

with Three Hidden Units 41

III. Convergence Behavior for Standard Back-Propagation

with Four Hidden Units 42

IV. Convergence Bellavior for Standard Back-Propagation

with Five Hidden Units 43

V. Convergence Bellavior for Quick Back-Propagatioll

with Tllree Hidden Units 44

VI. Convergence Behavior for Quick Back-Propagation

with Four Hidden Units 45

VII. Convergence Bellavior for Quick Back-Propagation

with Five Hidden Units 46

VIII. Convergence Behavior for Steepest Descent

witll Tilree Hidden Units 47

IX. Convergence Bellavior for Steepest Descent

witll Four li.idden Units 48

v

X. Convergence Behavior for Steepest Descent

witil Five Hidden Units 49

XI. Convergence Behavior DBD with Three Hidden Units 50

•
XII. Convergence Behavior DBD with Four Hidden Units 51

XIII. Convergence Bellavior DBD with Five I-lidden Units 52

XIV. Convergence Bellavior EDBD witll Tllfee l-lidden Units 53

XV. Convergence Behavior EDBD witll Four Hidden Units 54

XVI. Convergence Behavior EDBD with Five Hiddell Uluts 55

XVII. Comparison of Convergence Behavior for Different Arcllitectures

and Algoritllms 56

vi

LIST OF FIGURES

Figure Page

1. Input Summation and Output Modification 5

2. Sigmoid Function 5

3. Threshold Function 6

4. Hypertangent Function 6

5. Gelleral Feedforward Fully-Connected Network 9

6. Cascade Arcllitecture: Initial State with No Hidden Units 10

7. Cascade Arcllitecture witli One I-liddcll Unit 11

8. Cascade Architecture with Two Hidden Units 11

9. Cascade Architecture witll Three Hidden Units 12

10. Feedforward Fully-Connected Network witll

One I-lidden Layer witll Five Units 16

11. a(k)--Linear Function 25

12. a(k) --Exponential Function 26

vii

CHAPTER I

INTRODUCTION

Artificial neural networks have many applications in solving

problems of prediction such as stock prices, grain llarvest [4], etc. [3]

described a feedforward fully connected neural network witll learning

•
algorithm of standard back-propagation tilat can IJredict tile soil llloisture

content, and gave good results. However, tile work on comparison of

performance of this neural network for prediction of soil moisture

with several other alternatives has not beell done. This comparison

would involve choice of different training algorithnls with tile same

neural network architecture, and the choice of different network

architectures. This is obviously of great interest to us.

For training layered feedforward neural networks, back-

propagation is the most frequently applied algorithm [5]. However, the

standard back-propagation has the probleln of Clloosing a step size [7]
DE

since it just computes --, the partial first derivative of the overall error
Ow.

I

function E witll respect to each weight Wi In the network. When tllese

derivatives are given, a gradient descent can be performed in the weight

space, reducing tIle error with each step. Clearly, if we take infinitesimal

steps down the gradient vector, running a new training epoch to recompute

the gradient after each step) we will eventually reach a local minimum of

the error function. Experience has shown that in most cases, this local

minimum will be a global minimum, or at least a good enough solution of

the problem. But actually we can't take illfinitesimal steps from a practical

point of view; instead we always want to take steps that are as large as

1

possible so that we can speed up the learning process. Unfortunately, if we

choose a step size that is too large, the networks nlay not converge to the

solution we desire.

Many schenles have been suggested to deal witll tile step size

problem. Fahlman's quick propagation is one of theIll. Quick propagation

not only considers the first partial derivative DE but also uses a second
Ow·l

•

order method that is related to Newton's metllod, to update tIle weigllts.

Another scheme to deal witll step size involves dynamically

adjusting the step size of learning, based on the cllange in gradient between

successive steps [I], [2], [4]. In this tllesis, this kind of metll0d is called

Delta Bar Delta (DBD) as in [4]. Modification to the nletllod of Delta Bar

Delta (DBD) will lead to the method of Extended Delta Bar Delta (EDBD)

[4] .

Minimization techniques have also been explored to solve the step

Size problem. Conjugate gradient method with line search and scaled

conjugate gradient nlethod without line searches have been studied for this

purpose [10], [15]. But in this thesis, we will study gradient descent with

a line search.

One of the problems with feedforward fully connected neural

networks is tilat tile arcllitecture has to be specified beforehand; i.e., the

number of hidden layers as well as the number of neuron units in each layer

must be determined. But, most of tinle it is difficult to know how many

hidden layers and llOW many neuron units in each layer are appropriate to

solve particular applications. Fahlnlan's Cascade Correlation network [7]

provides an approach to deal with this problem. A Cascade Correlation

network just requires a fixed number of neuron units in the input layer

2

•

and output layer) which are actually application dependent, before training

begins. It just adds one unit each tinle in the hidden layer during tile

training course. Therefore, it not only speeds up learning) but also saves

storage for weights and neurons and helps avoid overfitting tIle data. In

addition, according to Fahlman [7], it can solve the problem of a moving

target.

This thesis is organized as follows:

In Chapter I, a general introduction to the problenl we are going to

investigate is given.

In Chapter II, a brief review will be given of neural net\vork basic

concepts, feedforward fully connected networks, the cascade correlation

network, and a description of tile soil moisture content prediction problem.

Cllapter III will be dedicated to tile study of five training algorithms)

whicll are standard back propagation, quick propagatioIl t delta bar delta

(DBD), extended delta bar delta (EDBD), and steepest descent in batell

mode with line searcll.

In Chapter IV, we will give tIle resul ts of training and testi ng neural

networks for prediction of soil nloisture content using two different

architectures and five different training algorithms.

III Chapter V, we will make some conclusions on the comparison of

performance of these two neural networks as well as five different training

algorithms for prediction of soil moisture.

Finally) the source program whicll inlplenlented standard back­

propagation, quick back-propagation, delta bar delta, extended delta bar

delta, and Ininimization with line search will be put into Appendix A.

3

Cllapter II

Literature Review

Basic Concepts of Neural Networks

The neuron is the fundamental cellular unit of the nerVOllS system and the

brain. Eacll neuron is a simple microprocessing unit Wllich receives and

combi nes signals fronl nlany other neurons t hrough input processes. If tile

combined signal is strong enough it activates the firing of tIle neuron Wllich

produces an output signal. In artificial neural networks, tIle unit analogous

to the biological neuron is referred to as a processing element (PE). A

processing elenlent 11as nlany input paths and cOJnbines theJn by a simple

sunln1atioIl of tile values of tllese il1pUtS. 1~his can be described as follow:

I· - ~w··x·
1-~ IJ J

j

The combined input is then nlodified by a transfer function or "squashing"

function. Tllere are various fornls of transfer function, which can be a

tllreshold functioIl that only passes infornlation if the combined activity

level reaches a certain level) or it can be a continuous function such as a

signloid function or hypertangent function. The output function can be

represented as follows:

O· - f(I·)1 - 1

4

The input summation and output modification is shown in Fig 2.1

x
n

Figure 2. 1

There are several functions that can used as transfer functions, Wllich can

be described as follow. A signloid function is defined as below

o
z

Figure 2. 2

TIle thresllo1d function is defined as

5

f2 (z) =1 if z > T

f., (z) =0 otllerwise

1 - --

T z

Figure 2. 3

The hypertangent function is detilled as

e Z _ e-z

f] (z) = -z----.z
e +e

-1
z

Figure 2.4

Note that [3(z) is related to f1(z) by f)(z) = 2f1(2z) -1.

TIle output path of a processing elelnent can be connected to the

input patlls of other processing elenlents througll connection weights. A

neural network consists of nlany suell processing elements together and

very interesting effects result from tile ways the neurons are

interconnected.

6

Processing elements are usually organized into groups called layers.

Generally there are two layers that provide a connection franl networks to

the outside world: an input layer where data is presented to the network

and an output layer which holds tile response of tIle network to a given

input. The layers between tile input layer aIld the output layer are called

hidden layers.
".

There are two phases in tile iteration of a Ileural network, learnillg

and recall [4]. Learning is the process of adapting or modifying tIle

connection weights in response to input vectors presented to tile input

layer . If there is a desired ou tpu t presented at tIle au tpu t layer, we call this

supervised learning. There are nlany learning algoritllnls existing for such a

learning process. There are Hebbian learning, the Delta rule, etc .. The nlost

popular one may be back-propagation, which we will discuss in Cllapter III

in detail.

One of tIle inlportant properties of a neural network is its capability

of storing information. Neural conlputing is distributed and the connection

weights are the memory units of a neural network. The nature of a neural

network menlory leads to a reasollable response when tIle network IS

presented with a previously unseen input. This property is referred to as

generalization. 1'lle quality of generalization depends on tile particular

application and on the sophistication of tile network. Feedforward fully

connected networks with back-propagation learn about the features in their

llidden layers. l"he knowledge in the hidden layers can be combined to form

intelligent responses to novel stinluli [4], [2]. Some efforts were made to

improve the generalization performance of neural networks. [11] proposed

a scllenle called double propagation to get better generalization from a

training set to a test set. The idea of this method is to form an energy

7

function that is the sum of tIle normal energy term found in general back­

propagation and an additional term that is a function of the Jaeobian. [14]

showed that the inlprovements are especially significant for those

architectures that show good perfornlance wIlen trained using back­

propagation.

•
Feedforward Fully Connected Neural Networks

The simplest form of a network has no feedback connection from

one layer to another or to itself. Such a network is called a feedforward

network. In a feedforward network, information is passed from the input

layer through the hidden layers to the output layer, in each of Wllich a

sumnlation and a transfer function are used. Furthermore, if each unit in

one layer in the network is just conl1ected to the layer ilnmediately below it

or above it, we call it a feedforward layered network or feedforward fully

connected network. Clearly, in feedforward networks, each layer can only

receive signals from the immediately previous layer and send signals to tIle

imlnediately following layer. A feedforward fully connected network is

shown in Fig 2.5

8

Output Layer

Hidden Layer2

Hidden Layer1

Input Layer

Figure 2.5

Cascade Correlation Networks

Tile Cascade correlation network was proposed by S. E. Fahlman to

deal with tile so-called moving target problenl [4]. Unlike feedforward fully

connected networks, a cascade correlation network does not llave to be

specified by a fixed nunlber of hidden layers as well as a specified nUlnber

of neuron units in each hidden layer. Instead, it just has a minimal

topology at the beginning of learning, and then adds new hidden units one

by one during the training course, thus creating a multilayer structure.

Fig 2.6 shows a salllple cascade carrel atia n network architecture

Wllich has six inputs, two outputs, and a bias that is permanently set to 1.0.

Tilis is a nlininlal structure for a cascade correlation network. Clearly, this

nlininlal structu re is application-dependent, i. e., the nu Inber 0 f inp ut5 and

9

number of outputs are determined by the particular application. All of the

inputs and the bias directly connect to the outputs.

Initial State

No Hidden Units

Inputs

+1.O---------------__---w----..--~
Figure 2. 6 The Cascade architecture: Initial state with no hidden units

15 weights, one at each X

10

Add Hidden

Unit 1

+ 1. O---t...A...t-------------w----W----4--4

Inputs

Figure 2.7 Cascade architecture with one hiddell unit

18 weigllts, one at caell X

Add Hidden
unit 2

Inputs

+1. O_--+"""-+_~""_+____- __----__--.....--- -~

Figure 2.8 Cascade architecture with two hidden units

21 weigllts, one at each X

11

+1 • O---+.......---+-I-f----+-'--+------ --.....---~~~

Add Hidden

unit 3

Inputs

Figure 2.9 Cascade architecture witll three hidden units

21 weights, one at eacll X

where the vertical lines sunl all inconling activations. Boxed connections

are frozen and X connections are trained repeatedly.

At first, the training begins with no llidden units. The connection

weights between inputs and outputs are directly trained as well as possible

over the training set. Tllis process can be repeated until some criterion is

satisfied. In Fahlman's implementation, there are t\VO parameters governing

tllis process) which \ve will discuss in detail in Chapter V. Since this is just

a single layer network, several learniJlg algorithms can be chosen for

training, whicll inel ud e Widrow-Hoff or tile Del ta rule, the perceptron

learning algori thnl, etc. III Falllhn1an 's inlplenlentation, quick propagation

was chosen as the learning algorithm.

12

After a number of epochs of training the network, Wllicll is set in a

parameter, if the accuracy is still not satisfied, a hidden unit is added to

the existing network. This new hidden unit will receive a connection from

each of the network's original inputs and also from eacll of tile pre-existing

trained hidden units. The input connection weights of tllis new hidden unit

can be decided as below.

We begin with a candidate unit that rece1ves input connections as

indicated above. To adjust tllese connectiol1 weights, we introduce a

correlation function S, which is defined below [4]:

s= LL(vp -~)(Ep.o -Eo)
o p

where 0 is the network au t pu t at which t lIe error is nleasu red and p are tIle

training exanlples or patterns. The V and Eu are values of V and Eo

averaged over all training exalnples. V is the candidate unit's value, and Eo

is the residual output error observed at unit O. TIle goal is to maximize the

function S. In order to do this, we need to calculate the partial derivative

of S with respect to each of the candidate unit connection weights. c"5.
OW.

I

This can be represented as

wllere 0"0 is tile sign of the correlation between the candidate value and the

output O. f~ is the derivative for training example p of the candidate unit's

activation function with respect to tile sunl of its inputs, and I i.p is the

input that the candidate unit receives from unit i for example p.

13

Af · as C h·· ·ter computing -- lor eac Incoming connection, we can perform
Ow.

I

a gradient ascent to maXImize S. So we can adjust the input connection

weights by using an appropriate learning algorithm, for exanlple) quick

back-propagation. When S stops improving, we can add this new candidate

as a new unit to the network.
•

Instead of using a single candidate) [4] uses a pool of candidate

units, where each candidate unit is set to a differel1t randolll initial weight

and receives the saIne input signals, and sees the sanle residual error for

eaell training pattern. Tllese candidates can be trained separately or in

parallel, so they will receive different input connection weigllts. WIlen tlli s

training stops, we can pick tile one from the pool wllose correlation score

is the best. The advantage of using a pool of candidates is tllat it can

greatly reduce the chance that a useless unit will be perlnanently installed

since all individual candidate unit may get stuck during training. In [4], the

size of the pool is cllosen to be 12.

When the candidate has been created, it can be installed in the

existing network. The candidate's input connection weigllts will be frozen,

while its output connection will be trained repeatedly until the error

satisfies the convergence criterion.

Description of Soil Moisture Content Prediction

The soil moisture content Ineasure IS ilnportant In agricultural

engineering. It varies with depth, time, texture, bulk density, climate and

nlany other factors [3]. However, it is difficult to get an instantaneous)

14

accurate measure of soil moisture. Since the rate of Ileat dissipation is

sensitive to water content according to soil therlllal theory) we can predict

soil moisture by using soil temperatures) and soil telnperature is much

easier to measure than soil moisture.

[3] indicates that tile soil nloisture at some depth from the soil

surface is related to the soil temperatures at different levels of depth .

•
Also tIle soil moisture at time t correlate to tile tenlperature at time t-k,

where k is a time constant. Generally k is set to 12 hours [3]. This means

tllat tIle moisture relates to the temperature 12 hOllrs before. For example,

the soil moisture of a depth of 30 enl is correlated witll the tenlperatures at

depths of 10, 20, 40, 50 cm respectively. Furtllernlore, for the sanle level

of depth, three sample site data are used. Now we can decide 110W Illany

input units are required in the network for tllis application. We llave fOUf

levels of depth of tenlperatures, each level with three sampling sites. So for

time t, we have 4*3 = 12 data entries. In addition) since we need this sort

of data 12 llours before, we have another 12 data entries. So a total of 24

telnperature data entries are required. Also, we always have a bias that is

perolanently set to 1.0. For the output layer, we need only one unit as

1110isture output. For choosing the nUlnber of hidden layers, [4] indicate

that one or two hidden layers are enough for most applications. For

choosing tile number of neuron units in one hidden layer, we will try

several different numbers to get best performance of the network. Figure

2.10 shows a feedforward fully connected Iletwork with one hidden layer

witll five neuron units.

15

hidden layer

output layer

Figure 2.10

For a cascade correlation arcl1itecture, the nunlber of input units and

output units is tIle same as in a fully connected network, but the number of

hidden layers as well as the Ilumber of units in each layer is dynanlically

deterillined during the training course. We just need to assume a nlinilnal

structure for a cascade correlation architecture at tIle beginning of training,

i.e. the input layer and output layer.

16

Chapter III

Learning Algorithnls for Neural Networks

Back-P ropagation

•

The back-propagation metllod of Rumelhart) Hinton, and Williams

[12] is a learning procedure for multilayer feedforward neural networks. By

means of this procedure, the network can learn to nlap a set of inputs to a

set of outputs. Tile mapping is specified by giving the desired activation

state of the output units for eacll presented state of tile input units.

Learning is tllen carried out by iteratively adjusting connection weigllts in

the network so as to minimize the differences between the actual output

state vector of the network and the desired output state vector. During tile

learning process, an input vector is presented to the network and

propagated forward to deternline the output signal. The output vector is

compared with tile desired output vector, thus resulting in all error signal,

Wllich is back-propagated tllrough tile network in order to adjust tIle

connection weigllts in the network. This procedure will be repeated until

tile net\vork converges to a state that is sufficiently close to the desired

one. Back-propagation can be described as below.

Here we consider a network witil N input neurons (processing

elenlents), M outputs and an arbitrary nunlber of llidden layers. We assume

that eaell neuron output is fully connected to the inlmediately following

layer; i.e., froIn input to output.

17

The typical back-propagation network always has an input layer, an

output layer and at least one hidden layer. There is no tlleoretical limit on

the number of hidden layers but typically there are one or two. [2] indicate

that maximum of four layers (three llidden layers and one output layer) are

required to solve arbitrarily complex pattern classification problenls. Eacll

layer is fully connected to the succeeding layer .
•

For convenience, we define notation as follows:

x= (xl' x2' x3' xm)

y = (y l' y2' Y3' , Ynl)

S = (s1' s2' s3' , sm)

Sk

o·J
I·J

e(k)

input vector

desired output 'vector

actual obtained output vector

actual obtailled output vector at

k'th iteration

desired output vector at k'th iteration

i'th C0l11pOnent of S at kith iteration

ilth cOlnponent of Y at kith iteration

the activation function of a neuron

tIle derivative of f

the output of neuron j

t IIe input 0 f ncur0 n i

the step size at iteration k

Tile total error in the output when one training exanlple is presented

to the input layer is

m

E k. (w) =(S k. - Y k.) 2 =L (S ~ - y j
k

) '2

18

The total error over the conlplete training set is tllen calculated:

The back-propagation algorithm consists of carrying out a gradient descent
•

miniInization process on E. In general) an approximation rnay be used, in

which each connection weight is Inodified following each presentation of

exalnple k, using cllanges given by:

This requires the program to calculate the sensitivity of EL: to each

weight w ij :

c'E k iEk el.
I--=----

[m.. a. {}vv ..
lJ 1 lJ

Alternatively:

In equation (32.3)) p ranges over the neurons in the layer preceding neuron

i. and the outputs Op of these neurons do not depend on the weights wi/.

Tile following result for the error sensitivity can be obtained:

19

iJEk aEk

-=-0.
Ow.. aI. J

aJ I

ct"~
Substituting di for we obtain:

c1. '
1

DEk

-=d·O.Ow.. 1 J
IJ

thus giving

For neuron i in tIle 0 Ut put layer, since only Sr de pends on Ii, we have:

Furtllernlore, since sr= f(Il):

for tile neurons in tile hidden layers:

In this equation, h ranges over the neurons to Wllich neuron i sends signals.

In reality, the inputs I to other neurons are independent of Ii. Tllis means

that

20

Using an index p over tile neurons providing input to h, tllese neurons are

contained in the same layer as i and tllUS tlleir outputs Op are independent

of 0i for p ~ i, giving

at O(L whj,)
_h = P

ao. roo
I 1

Finally, since 0i =[(Ii)' we obtain

This gives tile COnll)lete rule for nlodifying tIle weights, wIlen an example

from the training set is presented for the kith tillIe:

wij(k)= wiJ(k -l)-e(k)d.O j

di = 2(Si - Yi)f'(I i)

dj = Ldbwhif'(IJ
h

(output layer)
(hidden layer)

The error function can be defined as

There are otller alternative definitions of ttle error function, Wllich

include

21

and

Essentially back-propaga t ion is a gradient descent algori tllnl. One of

the problems of this Inethod is that it needs to set an approl>riate learning

rate. Changing the connection weigllts as a linear fUllction of tile partial

derivatives as defined above n1akes tile assunlption t hat the error surface is

locally linear, where "locally" is defined by the size of the learning rate.

However, at some point of lligh curvature tllis linearity does not llold and

divergent behavior might occur at suell points. It is therefore important to

keep tile learning coefficient low ellough to avoid such behavior. But on

tile ot}ler 11and, a sOlall learning rate can lead to very slow learlling. A

monlent urn ternl was introduced to deal with this llfob lenl [4]. The weigllt

L\wij at tiIne t is nlodified so that tl1c dW jj at tilne t-1 is added to it and

feeds through to tIle current delta \veights. So tile delta weights can be

defined as

where E is the learning rate and 11 is the monlentunl coefficient.

Even tllOUgll adding a momentum term) some problems may still exist

withIearn ing speed . In t u i t ivel y, d i ffe ren t \v e ig ht s sh0 U 1d have d i fferen t

learning rates and different filOlllentull1 coefficients. So several scllemes of

22

dynamically adjusting the learning rate and momentum coefficients have

been proposed (4], which we will discuss in detail in later sections of this

chapter.

Delta-Bar-Delta (DBD)

•
Delta-Bar-Delta is a heuristic approach to inlproving tile rate of

convergence of the connection weights in a multilnyer neural network [1].

Generally speaking, each component of the weight vector may be quite

different in terms of its effect on the overall error surface. In particular,

every connection of a network should l1as its own learning rate. l"he step

size appropriate for one component of tIle weight vector nlay not be

appropriate for anotller weigllt C01l1pOnent. Furthernl0re, these learning

rates Sllould vary with time. The standard feedforward networks usually

have only a single learning rate for all COll11cctions, or a single learning rate

for all connec ti OIlS in the same layer. PerIlli t ting the learning rate for each

connection in the neural network to change continuously over time may

speed up connection weight convergence.

Since there are a lot of connection weigllts in a neural network) it is

very cOlnplex to deternline 110W each weight varies over tiIne. One schelne

for adjusting tIle connection weights was proposed in [2]. Tile basic idea

behind this is tl1at, when the sign of the increnlent in a weight changes for

several consecutive time steps, tile learning rate for that connection weight

should be decreased, while if the connection weight changes llave the same

sign for several consecutive time steps, the connection learning rate for

that connection weight should be increased.

Here we define notation:

23

E(k)

ly(k)

dly(k)

a(k)

~a(k)

~k)

l\k)

K

value of the error at time k

connection weight at time k

connection delta weight at time k

connection learning rate at time k

connection delta learning rate at tinle k

gradient component of the V:eight change at time k

weighted, exponelltial average of previous gradient

conlponents at tinle k

convex weigl1t factor

constant learning rate

constant decren1ent factor

The Delta-Bar-Delta algorithnl is given as

lv(k +1)= lv(k)+a(k)8(k)

l\k)=(l- B)~k)+(}~k-1)

a(k)= a(k -1)+L\a(k)

i!a(k)= K

Li.a(k)= -qJa(k)

~a(k)= 0

if ~k)~k -1» 0

if 8(k -l)l\k)< 0

otherwise

To understand 110W the rule works, \ve consider two simple cases.

Set the paranleters K= <p = 0.1 and let a o =2.0 as all initial value. First,

suppose that the gradient componellts of the weight change for a

connection are of tile saBle sign for five consecutive steps. At the end of

24

these iterations, the connection learning rate will have been increnlented

five times as shown below

a. = aCJ +0.1

as = a 4 +0.1 = a o +0.5 = 2.5

The cl1ange of a(k) is shown in Figure 3.1

a(k)

2.5
2.4
2.3
2.2
2.1
2.0

1 2 345

Figure 3.1

k

In contrast, suppose that the gradient components of the weight

change for a connection alternate sign for five consecutive steps. The

connection learning rate is adjusted as below:

25

0.1 = 0.0 - O.luo =(1.0 - 0.1)0.
0

0. 2 =Ct1-O.la.1 =(l.O-O.I)a1

Ct 3 =0.2 -O.1a2 =(1.O-O.1)u2

(l4 =0. 3 - O.la l =(1.0- 0.1)0.]

as =0.4 -0.10.4 =(I.O-0.I)u4

=(I.O-O.1)sau = 1.18098

The changes of a.(k) can be shown in Figure 3.2

a (k)

2.0 _

1.6

o 1 2 3 4 5
k

Figure 3.2

It is clear froln the above cases that the rule increments learning

rates linearly J but decrenlents them geonletrically. Incrementing linearly can

prevent the learning rate fronl becon1ing too large too fast. Decrenlenting

geonletrically ensures tllat tIle connection learniIlg rates are al\vays

positive. Furthermore, they can be decreased nlore rapidly in regions of

lligll curvature.

26

In the Delta-Bar-Delta scheme, the error calculation and propagation

IS the same as standard Back-Propagation. The only difference is tllat a

varying learning rate for each connection weight is adopted.

Extended Delta-Bar-Delta (EDBD)

•
The extended Delta-Bar-Delta schenle was introduced to overCOllle

SOfile of shortcomings of Delta-Bar-Delta. Delta-Bar-Delta does not use a

momentum heuristic, and even small, linear increases of k could eventually

cause a learning rate to increase sufticiently that it Inight result in wild

jumps in weight space in this scheme. Furtherillore, the geoll1etric decrease

is sometimes not fast enough to prevent wild junlps.

Here we define notation as follows:

fJ(k)

lij-i(k)

Ya

an~x

connection Inonlentunl rate at tinle k

connection delta Inonlclltunl change at tinle k

constant learning rate scale factor

constant momentufil rate scale factor

constant learning rate exponential factor

constant nlonlentunl rate exponential factor

constant learning rate decremellt factor

constant monlentunl rate decrelllent factor

upper bound on learning rate

upper bound on momentunl rate

27

if f1...k -l)~k» 0

if t5(k -l)~k)< 0

The Extended Delta-Bar-Delta scheme is given as follows:

~lv(k+1)= a(k)~k)+fJ(k)~w(k)

~k)=(l- O)~k)+()~k -1)

Jia(k)= Kae-r"l~k)(

Lla=O

~}J =-lfJ~J.i(k)

tl}J = 0

a(k)= a(k -l)+L\a(k)

j,J(k)= fJ(k - 1)+~1J(k)

otherwise

if f1...k -1)t5(k» 0

if f1...k -l)t5(k» 0

otllerwise

To prevent wild junlps In weight space, constraints will be inlposed on

a(k)~ a max

II(k)~ J1 nw.x

N atice that tile learni ng rate and the manlentu nl rate have separate

constants controlling their increase and decrease. Once again, the sign of

8(k) is used to indicate whether, heuristically, an increase or decrease is

appropriate. The adjustment for decrease is identical in form to that for

DBD. However, the learning rate and nl0nlentum rate increases were

nloditied to be exponentially decreasing functions of tIle nlagnitude of tIle

weigllted gradient components, 8(k). Thu s, greater increases will be

28

applied in areas of sinall slope or curvature than in areas of high curvature.

This is a partial solution to the jump problenl.

Quick Back-Propagation

To deal witil tIle problem of slo\vness of back-propagation, Illany

•
schemes 11ave been proposed. One of tllem is quick back-propagation, or

QuickProp, proposed by Fahltnan [5]. Quick back-propagation is a second­

order method, based loosely on Newton's Inetllod. Two assulnptions are

made with this method: first tllat tile error vs. weigllt curve for each weigllt

can be approximated by a parabola whose arnIS 0llerl upward; second that

the change in the slope of tile error curve as seen by each weight is not

affected by all of tile atller weights tllat change at tile sanIe tinle [5].

Based on these two assumptions, the delta weight ~Wij can be cOlnputed as

below

DE
--(t)
Dw··

Llwij(t)= e* BE I) BE ,.. LlW(t -1)
-(t -1)- -(t)
Dw ij Dw'J

where E is a learning rate and needs to be predeterJnined.

In this cOlnputation, we involve not only tile current slope but also

the previous slope in the weight space. One situation may happen when the

current gradient is in the same direction as the previous gradient but is the

sanle size or larger in nlagnitude. In this case we would take an infinite

step or actually move backwards, up the current slope and toward a local

maximum. One of parameters called ~l \vas introduced to deal with this

29

problem. We will not allow a weight step that is greater than J.1 times the

previous step for that weight. If the step computed by quickprop would

be too large, infinite or Upllill on the current slope, we use ~l tinles the

previous step as the size of the new step. The cll0ice of ~l depends on the

application. [5] suggested tilat jJ = 1.75 will work for a wide range of

problems.

•

Steepest Descent with line search

Since standard back-propagation 11as a poor convergence rate and

depends on parameters wllich have to be spccitied by the user J tllere llave

been efforts to improve the perfornlance of back-propagation. One of tlleIn

is to try SOlne minimization tecllniques to deal witll tllis problelll.

From an optinlization point of view, learnillg with back-propagation

In a neural network is equivalent to mininlizing a global error function,

which is a multivariable function that depends on tIle connection weights in

the network. Johansson, Dowla, and Goodman [15] describe the theory of

general conjugate gradient methods and how to apply the methods in

feedforward neural networks. They pointed out that the standard conjugate

grad ient nletllod with line search is faster t han standard back-p ropaga tion

wilen tested on the parity problenls [15]. ~lartin introduced a new variation

of the conjugate gradient nlethod -- scaled conjugate gradient, which

avoids the line searcll per learniIlg i tera tion by usi ng the Levenberg­

Marquardt approacll [15]. In this tllesis, we \vill just investigate the

grad ien t descen t 111in i llli za t ion wi th line searc h fo r trai ni ng a neu ral

network witll back-propagation.

We can regard a feedforward neural network as a function

30

to be minimized where X =(X 1,X2,X)J ... 'Xn) are the conllection weights in the

network. As a matter of fact, F is the error functioll, arId our goal is to

minimize it. For a gradient descent method, the minilnization search

--direction can be obtained from the gradient vector. The line search need to

be used to find tIle minimum point along the search direction. So given a

fixed search direction d and an initial point X, the line search problell1 is

that we just need to find a., sue}l that

F(a) = F(X + ad)

IS minimized. There are several line search lnethod s available up to now.

They generally involve function evaluations and/or botll fUIlction evaluation

and gradient calculations. [16] studied the Brent line search Inethod and

the Nash line searcll nlethod. For sinlplicity, in this thesis, we just like to

use a success-failure algorithm [16]. It can be described as below. Given

starting point x and step size h, if

F(x + 11) < F(x)

the step will be called a success; otherwise it will be called a failure. In the

case of a success, tile step size 11 will be increased and replaced by 8* h,

and

x := x + h

31

where 8 is called the success factor, and we try again. In the case of a

failure, the step size will be reduced and h is replaced by t* h, and tllen we

try again. Generally Sand 1 can be set to 2.5 and 0.5 respectively. but

they are application dependent. In this thesis these two values are set to

1.95 and O. 2 respectively.
•

This algorithm is very simple and easily implenlented for neural

networks since it only involves function evaluations. 1'he function

evaluations are equivalent to presenting input patterns to the input layer

and passing thenl forward to the output layer, and tllen comparing this

computed output witll the desired output, resulting in an error that is tile

function value we desire. The calculation of DE is equivalent to
Ow,j

computing a seare11 directio n. And finally, the conl pu tation 0 f t he step sIze

is equivalent to deciding a learning rate. It is necessary to point out tllat

the error function is based on the entire training set, and the connection

weights are updated after an entire set of training exanlples have been

presented to the network. We call tllis training mode batch nlode.

32

Chapter IV

Results and Analysis

In this chapter, we will give the results of comparison of the

performance of two different neural networks as well as five different

training algorithms for prediction of soil n;oisture content. These two

networks are a feedforward fully connected neural network and a cascade

correlation network, and the five algoritllnl~ are standard back­

propagation, quick back-propagation, delta bar delta, extended delta bar

delta, and steepest descent in bate]l nlode with line search.

Test Data l)reparation

To do the comparison of perfornlance nlentioned above, we use

teolperature data sampled froln a field for one year. The depth at Wllich

the soil moisture content is to be predicted is chosen to 30 cln fronl the

soil surface. As discussed in Chapter III, to predict soil moisture content at

one point 30 CIn deep, we need to know the temperatures at depths of 10.

20, 40, 50 em respectively. For each day we use temperature and moisture

content data at tinles 2 anl and 2 pnl. Since each level has three

temperature saolple sites, for each input pattern we have 24 temperature

inputs and one bias that is permanently set to 1.0. To study how the

network's performance behaves after training, we divide the whole data set

into two parts: one is tile training data set, tIle other is a test data set that

is never exposed to the network during the training course, each of which

33

has 154 data points. The division into two data sets can be done by

extracting temperature data of every other day into another set.

Before a training pattern is presented to the network, it needs to be

normalized. There are some problems that can arise due to not normalizing

the data before training. To normalize, we generate a MinMax table that

contains the maximum and nlinimunl value of eaell field of the entire

training set. The normalization can carried out as below:

1
(lugll -low)

sea e =------
(maxi - min J)

ffi
l1igh * nlin.o

- low * Inax 0

o set = . I

nlax i - nllll i

outputsca1cd = input *scale + offset

wllere max, and mIn, are the IllaXlffiunl and ffilnlIllU n1 of field i through the

wllole training set; high and low are t he range we would like to scale the

input.

The initialization of neural networks also has an effect on tIle

learning time [17]. Several methods have beell invented to give neural

networks as good an initial state as possible. This can be done by either

sonle understanding of the learning Illecllanism in the networks or some

prior knowledge [17]. We can initialize tIle network with random values

uniformly distributed on [0,1].

Convergence Criterion

34

First we need to define the learning time. There are several

definitions of learning time. One is number of the epochs, where an epoch

is defined as one pass through the entire set of training examples [7]. But

some researchers have defined an epoch as a subset of the entire training

set [5]. In this study, we adopt the first definition. The atller definition of

learning time is simply the number of presentations of input patterns. In

this thesis, we give both of them as a measure ~f learning time.

To set a convergence criterion, one popular nletllod is to use RMS

error [4], whicll is defined as below

where d i is the actual au tpu t and 0i is tile desired au t pu t. N is the nUlllber

of presentations of input patterns. A desired n1axinlum value of RMS IS

set to certain value before training begins. When the criterion RMS IS

satisfied, the training will stop. There are sonle nlisunderstandings that the

poor generalization of a neural network fr0l11 the training set to the test set

results from overtraining. In many applications, Illany users have commonly

overparameterized tIle network having the number of weights only a little

less than tIle nunlber of trainillg examples or even larger than the nunlber

of training examples. This lead to overfitting of the training data and

consequent poor generalization. Sonle users Ilavc tried to cu re this by

stopping training before reaclling even a local nlinimunl. This is not a

reasonable solution. The correct solution is to reduce the number of

weights of the network, or perhaps to use a smoothing or regularization

approach [26]. Tllere is a rule of thumb for obtaining good generalization

35

of a network trained by examples is that one should use the smallest

network that will fit the training data [26]. Usually we want the number of

weights of the network significantly less than the number of training

examples.

Results
•

First we investigate the Cascade Correlation network. We start with

a minimal structure for this network, that is, the original network consists

only of the input layer and the output layer. At this time, it has 25 weights

and no hidden units. As indicated before, the Cascade Correlation Iletwork

will add new hidden nodes during tIle training course, one at a tinle. Tllere

are two paranlcters that govern the process of adding a ne\v hidden node,

one is outEpochs and the other is Threshold. rrhe parameter outEpochs

gives the maximum nUluber of epochs to train the output layer before

Threshold can be satisfied. After the nlaximuIll nUlnber of epochs has

elapsed, a new hidden node can be added to the existing network. The

parameter Thresllold gives a criterion tllat will sto p trai ning the aut pu t

layer if it is satisfied, and add a new hidden node. The convergence

behavior of' tile Cascade Correlation network for prediction of soil moisture

is given in Table I. The final arcllitecture of this cascade correlation

network consists of one hidden unit with 26 weights. It needed

approximately 60 epoc}ls of training to get to the RMS value of 0.03748.

Next we investigate three net\vorks with standard back-propagation,

whicll have one hidden layer with three, four or tive units, and tIle numbers

of weights of 79, 105, 131 respectively. The total number of nodes of each

of these networks are 29, 30 and 31, including 24 input units) 3, 4 or 5

36

hidden units, one output unit, and one bias that is permanently connected

to a constant input of 1.0. The convergellce behavior of these networks

are shown in Table II, III, IV. The networks with 3, 4 or 5 hidden units

have no significant difference in terms of convergence speed and

generalization. For the network with four hidden units, it needs

approximately 150 epochs to get to an ItMS value of 0.03831. Actually~ we

kept on training until the number of epochs r~ached 600, but there was no

significant improvement.

For QuickProp, we use networks of the same architectures as in the

standard back-propagation above. This means that we have total number of

nodes of 29, 30, 31 each, tIle weights of 79, 105, 131 respectively, and

one hidden layer with three, four or five units. We find that the networks

with 3, 4 and 5 11idden units have allnost the sanle convergence speed and

generalization performance. Tllis may suggest that when the number of

l1idden units of tile network with QuickProp falls into sanle range, tlleir

convergence behavior and generalizati on perforlnance will not be sensi ti ve

tot 11e changesin the nu01 ber 0 f hidden un its. I11 Tab1e V, VI, VII for

QuickProp, we can find that it is almost 5 tilues faster than standard back­

propagat ion for salvi ng the problem of pred ict ion of so i1 nloistu re content.

In Failiman's experinlent with the con1plement encoder problems, the

QuickProp is about 6 tinles faster than the standard back-propagation. This

SllOWS tl1at the QuickProp is a pronlising nletllod for speeding up

convergence of networks in wider applications.

The result of steepest descent in batell mode with line search is

shown in Table VIII, IX, X. The networks with 3, 4 or 5 hidden units have

almost the same convergence speed and generalization performance. We

also use the same architecture as in the standard back-propagation above.

37

Since it updates the connection weights after all training patterns have

been presented, extra storage is needed to hold the acculnulated delta

weigllts.

Table XI, XII, XIII and Table XI V) XV, XVI SllOW the results of

DBD and EDBD. Both of them use tile sanle architecture as in standard

back-propagation above. Botll of the networks with 4 and 5 hidden units

converge faster than the one with 3 hidden units for the DBD rule, but the

network with 5 hidden units has poorer generalization performance than the

one witll 3 or 4 hidden units. Tllis is due to tile overparanleterization of tile

network with the DBD rule. For the EDBD rule, the network with 3 llidden

units llas alnl0st tile same convergence speed as the ones with either 4 or 5

11idden units, but it has better generalization perforn1ance than both of

them. From these tables above, we can see that DBD and EDBD are faster

than standard back-propagation. This is due to changing their learning

parameters dynaInically. Since DBD needs to adjust dynanlically eacll

learning rate associated witil caelI weight) it needs the sanle an10unt of

storage to hold the time-varying rates as tIlat of weights. So it requires

twice as nlucll storage as the standard b,lck-propagation does. For EDBD,

in addition to dynalnically adjusting learning rates, it also needs to

dynamically adjust the momentum ternl. So it requires three tinles as much

storage as the standard back-propagatiol1 does.

The conlparison of these training nlethods and tile cascade network

are sUffiIllarized ill Table XVII. We give SOllle discussion about this table.

TIle cascade method may be the best one of all nlethod. It has tile same

order of convergence as the QuickProp aIld the steepest descent, but it

only one hidden node. More in1portant, since it adds Ilidden nodes

dynaolically during tIle training course) we don't have to worry about such

38

things as choosing the nuolber of hidden layer as well as the number of

units in each layer beforehand as in the case of feed forward fully-connected

network. Therefore, some overparameterization can be avoided. QuickProp

is faster than standard back-propagation because it considers not only the

first derivative of error function E with respect to tIle weight lVi) but also

the second derivative of E with respect to 1.),_ The speeding up of

•
convergence of the network by OBD and EDBD was at the cost of

adjusting the learning rates and monlentum terms dynamically.

39

Table I

Convergence Behavior for a Cascade Correlation Network

of # of # of RMS

epochs iterations hidden
~

units

2 308 0 0.06488

4 616 0 0.2133

6 924 0 0.04920

8 1232 0 0.04789

10 1540 0 0.04180

12 1848 0 0.04162

14 2156 0 0.04009

16 2464 0 0.04031

18 2772 0 0.03941

20 3080 0 0.03927

22 3388 0 0.03907

24 3696 0 0.03865

26 4004 0 0.03852

28 4312 0 0.03851

30 3620 0 0.03833

40 6160 0 0.03804

50 7700 1 0.03789

55 8470 1 0.03809

60 9240 1 0.03748

40

Table II

Convergence behavior for Standard Back-Propagation

with Three Hidden Units

of # of # of RMS

epochs iterations hidden
~

units

1 154 3 00.2983

10 1540 3 0.03839

20 3080 3 0.03842

30 3620 3 0.03840

40 6160 3 0.04436

50 7700 3 0.04433

60 9240 3 0.04753

70 6160 3 0.03921

80 7700 3 0.04253

90 9240 3 0.04223

70 10780 3 0.03808

100 15400 3 0.03854

110 16940 3 0.03852

120 18480 3 0.03884

130 20020 3 0.04066

135 20790 3 0.03979

140 21560 3 0.03886

145 22330 3 0.03816

150 23100 3 0.03777

41

Table III

Convergence behavior for Standard Back-Propagation

with Four Hidden Units

of # of # of RMS

epochs iterations hidden .
units

2 308 4 0.1024

4 616 4 0.06440

6 924 4 0.08151

8 1232 4 0.04146

10 1540 4 0.03941

20 3080 4 0.04173

30 4620 4 0.05043

40 6160 4 0.03844

50 7700 4 0.03981

60 9240 4 0.06605

70 10780 4 0.03808

80 12130 4 0.03808

90 13860 4 0.03797

100 15400 4 0.03795

110 16940 4 0.03796

120 18480 4 0.03800

130 19500 4 0.03810

140 21560 4 0.03822

150 23100 4 0.03831

42

Table IV

Convergence behavior for Standard Back-Propagation

with Five Hidden Units

of # of # of R~!S

epochs iterations Ilidden
•

units

1 154 5 0.2786

10 1540 5 0.03905

20 3080 5 0.03900

30 4620 5 0.04025

40 6160 5 0.03879

50 7700 5 0.03873

60 9240 5 0.04225

70 10780 5 0.04057

80 12130 5 0.03800

90 13800 5 0.03822

95 14630 5 0.03847

100 15400 5 0.03927

105 16170 5 0.04039

110 16940 5 0.04030

115 17710 5 0.04840

120 18480 5 0.03943

125 19250 5 0.03795

130 19500 5 0.03790

135 20790 5 0.03793

43

Table V

Convergence Behavior for QuickProp Back-Ilropagation

with Three Hidden Units

of # of # of RMS

epochs iterations hidden
•

units

1 154 3 0.1849

2 308 3 0.1470

3 462 3 0.2061

4 616 3 0.06129

5 770 3 0.04438

6 924 3 0.03855

7 1078 3 0.03850

8 1232 3 0.03840

9 1386 3 0.03842

10 1540 3 0.03841

12 1848 3 0.06980

14 2156 3 0.04382

16 2464 3 0.03919

18 2772 3 0.03951

20 3080 3 0.03954

22 3388 3 0.03777

24 3696 3 0.03728

26 4004 3 0.03718

28 4312 3 0.03696

44

Table VI

Convergence Behavior for QuickProp Back-Propagation

with Four Hidden Units

of # of # of RMS

epoclls iterations hidden

units

1 154 4 0.045]4

2 308 4 0.03948

3 462 4 0.04010

4 616 4 0.03836

5 770 4 0.03836

6 924 4 0.03837

7 1078 4 0.03838

8 1232 4 0.03839

9 1386 4 0.08753

10 1540 4 0.05530

12 1848 4 0.07939

14 2156 4 0.03888

16 2464 4 0.03878

18 2772 4 0.03866

20 3080 4 0.03841

25 3850 4 0.03788

30 3620 4 0.03828

33 5082 4 0.03853

34 5236 4 0.03829

45

Table VII

Convergence Behavior for QuickProp Back-Propagation

with Five Hidden Units

of # of # of RMS

epochs iterations hidden
..

units

1 154 5 0.1783

2 308 5 0.07344

3 462 5 0.2138

4 616 5 0.09049

5 770 5 0.1024

6 924 5 0.05633

7 1078 5 0.1304

8 1232 5 0.04696

9 1386 5 0.06407

10 1540 5 0.03885

12 1848 5 0.03851

14 2156 5 0.03863

16 2464 5 0.03899

18 2772 5 0.05017

20 3080 5 0.04056

22 3388 5 0.03844

24 3896 5 0.03833

26 4004 5 0.03801

29 4466 5 0.03723

46

Table VIII

Convergence Behavior for Steepest Descellt in Batch Mode

with Line Search with Three Hidden Units

of # of # of RMS

epochs iterations llidden
~

units

1 154 3 0.07044

2 308 3 0.06825

3 462 3 0.06387

4 616 3 0.05992

5 770 3 0.05636

6 924 3 0.05323

7 1078 3 0.05057

8 1232 3 0.04834

9 1386 3 0.04650

10 1540 3 0.04499

12 1848 3 0.04275

14 2156 3 0.04124

16 2464 3 0.04021

18 2772 3 0.03949

20 3080 3 0.03895

22 3388 3 0.03859

24 3696 3 0.03831

26 4004 3 0.03809

30 3620 3 0.03795

47

Table IX

Convergence Behavior for Steepest Descent in Batch Mode

witll Line Search with Four Hidden Units

of # of # of It1v1S

epochs iterations llidden .
units

1 154 4 0.07425

2 308 4 0.07253

3 462 4 0.06790

4 616 4 0.06373

5 770 4 0.05998

6 924 4 0.05659

7 1078 4 0.05358

8 1232 4 0.05095

9 1386 4 0.04873

10 1540 4 0.04687

12 1848 4 0.04404

14 2156 4 0.04211

16 2464 4 0.04078

18 2772 4 0.03985

20 3080 4 0.03919

22 3388 4 0.03871

24 3696 4 0.03836

26 4004 4 0.03810

28 4312 4 0.03791

48

Table X

Convergence Behavior for Steepest Descent in Batch Mode

with Line Searcll witil Five Hiddell Units

of # of # of RMS

epochs iterations hidden

units

1 154 5 0.07702

" 308 5 0.07561."

3 462 5 0.07052

4 616 5 0.06258

5 770 5 0.06173

6 924 5 0.05798

7 1078 5 0.05466

8 1232 5 0.05179

9 1386 5 0.04936

10 1540 5 0.04733

12 1848 5 0.04426

14 2156 5 0.04218

16 2464 5 0.04075

18 2772 5 0.03977

20 3080 5 0.03808

22 3388 5 0.03857

24 3696 5 0.03823

26 4004 5 0.03797

28 4312 5 0.03787

49

Table XI

Convergence Bellavior for DBD with Three Hidden Units

of # of # of !tivlS

epochs iterations 11idden
~

U IIi t s

1 154 3 0.05201

2 308 3 0.03870

3 462 3 0.03892

4 616 3 0.03819

5 770 3 0.04039

6 924 3 0.04047

50

Table XII

Convergence Behavior f'or DBD witll Four Hidden Units

of # of # of RMS

epochs iterations hidden

units .
1 154 4 0.05219

2 308 4 0.03685

3 462 4 0.03610

4 616 4 0.03645

5 770 4 0.03091

6 924 4 0.03085

7 1078 4 0.02963

8 1232 4 0.03007

9 1386 4 0.02826

10 1540 4 O.()2872

11 1694 4 0.02949

12 1848 4 O.()2964

13 2002 4 O.()2845

14 2156 4 0.03142

51

Table XIII

Convergence Behavior for DBD with l~ive Hidden Ullits

of # of # of RMS

epochs iterations hidden

units .
1 154 5 0.05050

2 308 5 0.03702

3 462 5 0.03629

4 616 5 0.03236

5 770 5 0.03137

6 924 5 0.02971

7 1078 5 0.03148

8 1232 5 0.02908

9 1386 5 0.03889

10 1540 5 0.03013

52

Table XIV

Convergence Behavior for EDBD witll Three Hidden Units

of # of # of R1vlS

epochs iterations hidden

-units

1 154 3 0.06901

2 308 3 0.04667

3 462 3 0.04140

4 616 3 0.03952

5 770 3 0.04469

6 924 3 0.04133

7 1078 3 0.03901

8 1232 3 0.03808

9 1386 3 0.03764

10 1540 3 0.03643

11 1964 3 0.04202

12 1848 3 0.03827

13 2002 3 0.03780

14 2156 3 0.03698

15 2310 3 0.03669

16 2464 3 0.03733

17 2618 3 0.03695

18 2772 3 0.03618

19 2926 3 0.03611

53

Table XV

Convergence Behavior for EDBD with Four Hidden Units

of # of # of RMS

epochs iterations Ilidden

units .
1 154 4 0.06789

2 308 4 0.04491

3 462 4 0.04086

4 616 4 0.03876

5 770 4 0.03775

6 924 4 0.03699

7 1078 4 0.04209

8 1232 4 0.03931

9 1386 4 0.04036

10 1540 4 0.03876

11 1964 4 0.03659

12 1848 4 0.03682

13 2002 4 0.03793

14 2156 4 0.03695

15 2310 4 0.03678

16 2464 4 0.03658

17 2618 4 0.04087

18 2772 4 0.03857

19 2926 4 0.03465

54

Table XVI

Convergence Behavior for EDBD witll Five Hidden Units

of # of # of RMS

epochs iterations hidden

units

1 154 5 0.065859

2 308 5 0.04370

3 462 5 0.03917

4 616 5 0.03699

5 770 5 0.03612

6 924 5 0.03792

7 1078 5 0.03663

8 1232 5 0.03656

9 1386 5 0.03807

10 1540 5 0.03809

11 1964 5 0.03660

12 1848 5 0.03543

13 2002 5 0.03569

14 2156 5 0.03519

15 2310 5 0.03470

16 2464 5 0.03658

17 2618 5 0.03473

18 2772 5 0.03532

19 2926 5 0.03421

55

Table XVII

Comparison of Convergence Behavior for Different Architecture

and Algorithms

alg. or # hidden # # of # of training testing

arch. units weights epochs iterations RMS RMS
•

cascade 1 26 60 9240 0.03748 0.03810

std BP 3 79 155 23870 0.03772 0.03815

std BP 4 101 150 23100 0.03831 0.03869

std BP 5 13 1 135 20790 0.03793 0.03835

quick BP 3 79 28 4312 0.03696 0.03750

quick BP 4 101 34 5236 0.03829 0.03870

quick BP 5 13 1 29 4466 0.03723 0.03777

SD 3 79 30 3620 0.03795 0.03810

SD 4 101 34 4466 0.03791 0.03783

SD 5 13 1 27 4158 0.03787 0.03805

DBD 3 79 7 1078 0.04047 0.04366

DBD 4 101 15 2310 0.03142 0.03940

DBD 5 13 1 11 1694 0.03013 0.04366

EDBD 3 79 19 2926 0.03611 0.03770

EDBD 4 101 20 3080 0.03465 0.03912

EDBD 5 101 19 2926 0.03421 0.037530

56

Chapter V

Conclusions

We studied two kinds of neural networks: a feedforward fully­

connected network and a cascade correlation network for prediction of soil

moisture content. The comparison of perfornlance of tive training nletllods
•

with a fully-connected network and a cascade network was Inade. By

experimental results, we can get following conclusiollS:

• Standard back-propagation is the slowest of all Inethods.

• QuickProp is faster than standard back-propagatioll.

• Cascade correlation has the sanle order of convergence as the

QuickProp, but it needs fewer hidden units than a fully-connected

feedforward network, resulting in less storage requirement for connection

weights, and is less prone to overparalneterization.

• Steepest descent in batel1 Illode with line search IS as fast as

QuickProp, but it needs extra storage to hold accunlulated delta weights

tllan general illcremeIltal Illethods.

• DBD and EDBD have alnlost the saine convergence speed, and botll

of tllenl are faster than QuickProp and steepest descent in batch mode with

line search.

57

A Selected Bibliography

[1] R. A. Jacobs, IIIncreased rates of convergence through learning rate

adaptation", Neural Networks, Vol. 1, pp. 295-307) 1988.

[2] A. A. Minai and R. D. Willianls, II Acceleration of Back-Propagation
•

through learning rat e and nlomentuln adapta t ion") International Joint

Conference on Neural networks, Vol. I, pp. 676-679 t Jan. 1990.

[3] C. T. Altendorf, M. L. Stone and R. L. I~lliott, II Using a neural

network for soil nloisture prediction It, 1992 International Winter Meeting

of the American Society of Agricultural Engineers.

[4] NeuralWare Manual, NeuralWarc, Inc., Pittsburgh, PA, 1991

[5] Scott E. FahlInan, "An en1pirical study of learning speed In Back­

Propagation networks tl
, eMU l'echnical Report, CMU-CS-88-162, June

1988.

[6]]). W. Jones and J. l-Ioskins, tlBack-propagation--A generalized delta

learning rule" , BYTE Magazine, Oct. 1987.

[7] S. E. Fahlman and C. Lebiere, "The Cascade-Correlation learning

arcllitecture tl
, School of Computer Science report CMU-CS-90-100,

Pit tsburgll) PA, Carnegie Mellon Uni versi ty.

[8] E. Barnard) UOptilllization for training neural nets", IEEE Trans. Neural

Networks, Vol. 3) pp. 232-240, Mar 1992.

[9] E. Davalo, P Naim, Neural Network, Macnlillan Education Ltd.,

1991.

[10] V. D. Dnlagt, "Mininlization method for training feedfofward neural

networks", Neural Networks, Vol. 7, No 1, pp. I-II, 1994

58

[11] H. Drucher and Y. 1. Cun, II Improving generalization performance

using double propagation", IEEE Transactions on Neural Net\vorks. Vol. 3,

Now. 6, November 1993

[12] S. E. Fahlmann and E. Hiton, .. Connectionist arcllitectures for

artificial intelligence", Computer, pp. 100-1 08, January 1987

[13] J. D. Villiers and E. Barnard, If Back propagation Ilcural net witll one

and two hidden layers", IEEE Transactions ~n Neural Networks, Vol. 4,

No. I, Januaray 1992

[14] A. C. Eaton and T. L. Oliver, ttLearning Coefficient dependence on

training set size", Neural Networks, Vol. 5, pp. 283-288,1992

[15] M. F. Moller, " A scaled conjugate gradient algori thin for fast

sUllervised learning", Neural Net\vorks, Vol. 6, pp. 525-533, 1993

[16] A. Sperduti and A. Starita, "Speed up learning and network

optimization witll extended back propagation", Neural Networks, Vol. 6,

pp. 365-383, 1993

[17] T. Denoeux and It. Lengelle, II Illitialize back-propagation networks

wi tIl prototypes II , Neural networks, Vol. 6, pp. 3 5 1-363, 1993

[18] M. Hoehfield and S. E. Fahlnlan, " Learning with linlited nunlerical

precision using t lIe cascade correlat ion algorithm ", IEEE Transactions on

Neural Networks, Vol. 3, No.4, July 1992

[19] M. A. Andree, G. T. BarkeIlla, W. Lourrens, and A. Teal, II A

conlparlson study of binary feedforward neural networks and digital

circuits", Neural networks, Vol. 6, pp. 785-790, 1993

[20] A. V. Ooyen, "Improving the convergence of tile back-propagation

algorithnl lt
, Neural Networks, Vol. 5, pp. 465-471, 1992

[21] M. S. Cheng, " A survey and conlparison of conj ugate gradient

methods of optimization", Oklahoma State University Master Thesis, 1993

59

[22] D. E. Rumelhart, G. E. Hinton and R. J. Williams, II Learning

representations by back propagating errors", Nature. No. 323, pp. 533-536,

1986

[23] T. P. Vogl, It Accelerating the convergence of the back-propagation

method", Biological Cybernetics, Vol. 59, pp. 259-263, 1988

[24] J. Kowalik & M. It. Osborne) Methods for Unconstrained

Optimization, Elsevier, 1968

(25] J. E. Dennis & Jr. Robert, NUInerical lv1ethods for Ullconstrained

Optimization and Nonlinear Equations, Prentice-Hall, 1983

[26] R. Reed, "Pruning algorithnl -- a survey" 1 IEEE Transaction on

Neural Networks, Vol. 4, No.5, 1993

60

APPENDIX A

C THIS PROGRAM IMPLEMENTS THE NEURAL NET\VORKS WITH

C ALGOIUTHMS OF STANDARD BACK PROPAGATION, S·fEEPEST

C DSCENT IN BATCH MODE WITH LINE SEARCH, DELTA

C BAR DELTA, EXTENDED DELTA BAR DELTA.

C THE TRAINING DATA IS KEPT IN A FILE CALLED "'-fRAIN.DAT'·

C AND TEST OATA KEPT IN A FILE OF ItTEST.DATil, \VHICl-llS

C NEVER EXPOSED TO THE NEURAL NETWOltKS DUIUl'KJ THE TRAINING

C COURSE. AFTER THE TRAINING OF NEURAL NETWORKS HAS BEEN

C COMPLETED, IT WILL BE TESTED USING TEST DATA AND THE RESULT

C WILL BE STORED IN A FILE OF TEST.NNR.

C

INTEGER I,J,11

C DEFINITION OF CONNECTION WEIGHTS~ INPUT NODES, OU1'PUT

C NODES, TIME VARYING PARA1v1ETER tvlATIUX

REAL MOISTURE,EPSILON,SUMERR

• ,NODEIN(30,30),NODEOUT(30,30),W(3,30,30),D\V(3,30,30)

• ,DELTA(3,30,30),ALPHA(3.30,30),DWA(3,30,30),TEMP(310,26)

• ,MlN(25),MAX(25).lU,WM,MU(3,30,30)

C SCALE PARAMETER, TRAINING PARMvlETER

REAL HIGH,LOW,OFFSET,SCALE.YI,Sl,YIO,SIO

INTEGER NMNODE(3),TRMD,EPOCH,EPLENGTH,

*NN,EPCNT,JJ

*,INL,HHDL,OUTL,FRT,LST,NDPT,FLAG,MAXEP,OUT1,OUT2

c
C INPUT LAYER NUMBER

INL=l

C HIDDEN LAYER NUMBER

HlIDL=2

C OUTPUT LAYER NUlvtBER

OUTL=3

C NUrvlBER OF NODES IN INPUT LAYER

NMNODE(INL)=25

C NUMBER OF HIDDEN NODES

NtvlNODE(HHDL)=4

61

C NUMBER OF OUTPUT NODE

NMNODE(OUTL)=l

C NUMBER OF LAYERS

LAYER=3

C NUMBER OF HIDDEN UNITS

N=NMNODE(HHDL)

C NUMBER OF INPUT UNITS

M=NMNODE(INL)

C OUTPUT RANGE

HIGH=l.O

LOW=O.O

C CONVERGENCE CRlTEIUON

EPSILON=O.037

C SUM SQUARED ERROR INITIALlZA110N

SUMERR=O.O

C THE COUNTER FOR EPOCHS ELAPSED

EPCNT=O

C NUMBER OF DATA POINTS IN THE TRAINING SET

NDP'T=154

C READ FLAG: FLAG=l READ TRAINING FILE

C FLAG=2 READ FllOM TESTING FiLE

FLAG=l

C MAXIMUM NUMBER OF EPOCI-IS SET

MAXEP=lOOO

C THE NUMBER OF PRESENTATIONS TO UPDATA WEIGH1'S

C IF EPLENGTH=l--A INCREMENTAL UPDATE \VEIGliTS

EPLENGTH=l

C THE COUNTER FOR UPDATE WEIGHT

EPOCH=O

C rvlAXlMUM OF WEIGHT

WM=lOO.O

C OUTPUT DEVEICE NU~1BER

OUTl=4

OUT2=6

OUT3=5

C TRAINING lvlETHOD: TIUvID= I--STANDARD BACK...PROPAGAl'ION

62

C TRMD=3-DELTA BAR DELTA; TRMD=4-EXTENDED DELTA BAR DELTA

TRMD=4

C THE COUNTER FOR COMPUTE RMS ERROR

NN=O

c
C OPEN PARAMETER FILE

C OPEN(OUTI,FILE='par.datt
)

C THE TRAINING RMS FILE

OPEN(OUT2,FlLE='crr.dal')

C INPUT TEMPERATURE DATA

CALL RDINPUT(TEMP,NDPT,NMNODE(INL),FLAG,LST)

C RANDOMIZE CONNECTION WEIGHTS

CALL RANWf(W,NMNODE,LAYER,INL,HI-lDL)

C COMPUTE MIN-MAX TABLE

CALL MNTAB(TEMP,MIN,MAX,NDPT,LST)

C INITIALIZE DELTA WEIGHTS

CALL INITDW(DW,DELT~ALPHA,Nlv1NODE,lNL,HHDL)

50 Rl=RAND()

C if NUMBER OF EPOCHS OF TIWNING LARGElt THAN MAXl~lUf\,1

C THEN STOP TRAINING

IF (EPCNT .EQ. MAXEP) THEN

GOT032

ENDIF

JJ=JJ+1

II=MOD(JJ,NDPT)

IF (11 .EQ. 0) THEN

11=1

ENDlF

DO 20 J=l,NMNODE(INL)

NODEOUT(INL,J)=TEMP(II,J)

IF(NODEOUT(INL,J) .EQ. 0.0)THEN

STOP

ENDlF

20 CONTINUE

C SET INPUT RANGE BETWEEN 0 AND 1.0

63

C NORMALlZATION OF INPUT TEMPERATURE DATA

SIO=NODEOUT(FRT,NMNODE(lNL»

DO I=I~NMNODE(INL)

SCALE=(HIGH-LOW)/(MAX(I)-MlN(I»

OFFSET=(MAX(I)*LOW-MIN(l)*HJGH)/(MAX(I)-tvl1N(I»

NODEOUT(FRT,I)=NODEOUT(FRT,I)*SCALE+oFFSET

END DO

C FORWARD INPUT TRAJNING PAITERN TO OUTPUT LAY"ER

CALL FDINPUT(W,NODEIN,NODEOUT.NMNODE.LAYER,N.l\l)

C ACTUAL OUTPUT FROrvl SMtPLE DATA SCALED TO U AND +1.0

C YIO=NODEOUT(LAYER,FRT)

C NODEOUT(LAYER,Fl{T)= NODEOU1'(LAYER,FItT)*SCALE+OFfSET

SI=NODEOUT(FRT,LS1')

C PREDICTED OUTPU1' SCALED 1'0 ACfUAL VALUE OF 0 AND 0.4

YI=NODEOUT(LAYERFRT)

SCALE=(MAX(LST)-MIN(LST)/(111G11-LOW)

OFFSET=(I-IIGH*MIN(LST)-LO\V*rvlAX(LST)/(I-lIGI-I-LO\V)

YIO=YI*SCALE+OFFSET

C WRlTE(*,23) YIO,SIO

23 FORMAT(lX,2F8.6)

C STANDARD BACK PROPAGATION ALGOIU r

rltlvl

IF(TRMD .EQ. 1) Tl-lEN

CALL STDBP(W,DW,NODEIN,NODEOU1·,NMNODE,LAYEI~N,.tvl,

·SI,YI)

ENDIF

C DELTA BAR DELTA ALGORlTlllv1

IF(TRMD .EQ. 3)THEN

CALL DBDBP(W,DW,NODElN,NODEOUT,N~lNODE,LA YER,N,M,

*SI,YI,ALPHA,DELTA)

ENDlF

C EXTENDED DELTA BAR DELTA ALGORlTI-llvl

IF(TRMD .EQ. 4)THEN

CALL EDBDBP(W,D\V.NODEIN,NODEOUT,N1VINODE,LAYER,N,~fJ

.SI,YI,ALPHA,DELTA,lvlU)

ENDIF

64

C WRITE(OUTI,29) (ALPHA(LAYERFRT,I),I=1,NMNODE(HHDL»

C WRlTE(OUTI,29) (MU(LAYE~FRT,I),I=1,NMNODE(HHDL»)

29 FORMAT(IX,,6F8.6)

DO I=l,NMNODE(HHDL)+l

DWA(LAYER,FRT,I)=DWA(LAYERFIlT,I)+D\V(LAYER"FRT,I)

END DO

DO 25 1=1,NMNODE(2)

DO 28 J=l,NMNODE(l)

DWA(HHDL,I,J)=DWA(HJIDL,I,J)+DW(I-IHDL,I,J) •

28 CONTINUE

25 CONTINUE

EPOCH=EPOCH+1

IF(EPOCH .EQ. EPLENGTH)THEN

EPOCH=O

C IF CONNECTION WEIGHT LARGEI~ THAN BOUND

C SET IT TO TI-lE BOUND

DO 1=1,NMNODE(HHDL)

C UPDATA WEIGHT

W(LAYER,FRT,I)=\V(LAYER,FRT.I)+DWA(LAYEI~FH.l·.I)

IF(W(LAYER,FltT,I) .GT. WM)THEN

W(LAYER,FRT,I)=WM

ENDlF

IF(W(LAYER,FRT,I).LT. -\VM)T1-lEN

W(LAYER,FRT,I)=-WM

ENDlF

ENDDO

DO 40 l=l,NMNODE(Hl-IDL)

DO 42 J=l,NMNODE(INL)

C UPDATE THE WEIGHT

W(HHDL,1,1)=W(H1-lDL,I,J)+0 WA(I-lHDL, I,J)

IF(W(HHDL,l,J) .GT. WM)THEN

W(HHDL,I,J)=\VM

ENDIF

IF(W(HHDL,ItJ) .LT. -\Vlvl)Tl-lEN

\V(HHDL,I,J)= -Wtv1

ENDIF

65

42 CONTINUE

40 CONTINUE

C RESET DELTA WEIGHT

DO l=l,NMNODE(HHDL)

DWA(LA
9

{ER,FRT,I)=O.O

END DO

DO 26 1=1,NMNODE(HHDL)

DO 27 J=I, NMNODE(INL)

DWA(HHDL,I,J)=O.O •

27 CONTINUE

26 CONTINUE

ENDIF

C COMPUTE SUM SQUARED ERROR

SUMERR=SUMERR+(SI0-YIO)·(510-Y10)

IF(NN .EQ. NDPT)TI-lEN

NN=O

C SUM SQUAREED ROOT ERROR

SUMERR=SQRrr(SUMERRlNDIYf)

EPCN1'=EPCNT+1

C OUTPUT SUM SQUARED ERI{OR AND NUtvtBEIl. OF EPOCl-IS ELAPSED

WIUTE(OUT2,31) EPCNT,SUIvtEIUl

WIUTE(*,31) EPCNT,SUMERR

31 FORMAT(lX,15, 't,F~.6)

IF (SUMERR .LT. EPSILON) l'HEN

C IF TRAINING COrvtPLETED, Sl"ART TO TEST NETWOltKS

C READ TEST OATA

FLAG=2

32 CALL !IDINPUT(TEMP,NDPT,NMNODE(lNL),FLAG)

C OPEN TEST RESULT FILE

OPEN(OUTl,FlLE=lCSl.lulf')

WRlTE(OUTl,45) COUNTER

DO K=l,NDPT

DO 21 J=l,NMNODE(INL)

NODEOUT(FRT,J)=TElv1P(K,J)

IF(NODEOUT(lNL,J) .EQ. 0.0)THEN

STOP

66

•

ENDlF

21 CONTINUE

C

SIO=:NODEOUT(FRT,LST)

C NORMALIZATION OF INPUT TEPERATURE DATA

DO 22 1=1,NMNODE(lNL)

SCALE=(HIGH-LOW)/(MAX(I)-MIN(I»

OFFSET=(MAX(l)*LOW-MJN(l)*H1GH)

/~AX(I)-~~(l»

NODEOUT(FRT,I)=NODEOUT(FRT,I)*SCALE+OFFSE'f

22 CONTINUE

C FORWARD INPUT DATA TO OUTPUT LAYER

CALL FORWARDFDINPUTINPUrr(W,NODEIN,NODEOUT,NMNODE,LAYEll,N,~l)

YI=NODEOUT(LAYER,FRT)

C SCALED BACK TO ACTUAL RANGE OF TEl\1PEltATURE

SCALE=(MAX(LST)-MIN(LST»/(I-lIGI-I-LO\V)

OFFSET=(HIGH*MIN(LST)-LO\V*MAX(LST»)/(HIGl-f-LO\V)

YIO=Yl*SCALE+OFFSET

WRITE(OUTl,23) YIO,SID

ENDDO

CLOSE(OUTl)

CLOSE(OUT3)

CLOSE(OUT2)

STOP

ENDlF

C iF CONVERGENCE CIUTERION NOT SATISFIED, CON1~lNUE rrRAINING

IF(SUMEllli .GE. EPSILON)l~HEN

NN=O

SUMERR=O.O

GOT050

ENDIF

ENDIF

IF(NN .LT. NDPT)THEN

NN=NN+l

GOTO 50

ENDlF

67

45 FORMAT(15)

60 END

C

C

c·············......•...
SUBROUTiNE FDINPUT(W,NODEINtNODEOUT,NMNODE,LAYEIt,N,lvl)

C FORWARD INPUT VECTOR TO OUTPUT LAYER

REAL W(LAYER,N,M),NODEIN(N,tvl),NODEOUT(N,~1)

INTEGER NMNODE(M),N,M •

INTEGER I,J,K

REAL SUM,SCALE,OFFSET

C SUM _. THE SUM OF ALL INPUT -fO ONE NODE

C

DO 100 1=2,LAYER

DO 110 J=l,NMNODE(I)

SUM=I.0*W(I,J,I)

DO 120 K=2,NMNODE(I-l)

C SUM ALL INPUT WITl-1 CONNECTION \VEIGl-ll'S

SUM=SUrvl+NODEOUT(I-1 ,K-I)·W(I,J ,K)

120 CONTINUE

NODEIN(I,J)=SUM

C ACTIVATION FUNCTION 'TO GET OUTPU-r

NODEOUT(I,J)=FUN(SUM)

110 CONTINUE

100 CONTINUE

END

c
c

c··· .
SUBROUTINE STDBP(W,DW,NODEIN,NODEOUT,NMNODE,LAYER,N,M,SI,YI

• ,1NLtHHDL,QUTL,LCOEF)

C STANDARD BACKPROPAGATION ALGOTITl-lM

C INPUT: DESIRED OUTPUT, ACTUAL OUTPUrr

C CONNECTION \VEIGHTS AND INPUT AND OUTPUT NODES

REAL \\'\L'-\l'ER.Nlt~f).D\\~{L..~)CR.N.~1)J\ODEI1\(~.:\r).?'ODEOlJT(1\.l\t),

·5L)1

INTEGER NMNODE(N),N.~LAYER

REAL DI,DJ,LCOEF

INTEGER I,J,INL,HHDL,OUTL

c

C OUTPUT LAYER COMPUTATION OF DELTA \VEIGHTS

DI=(51-YI)*FUND(NODEIN(LAYER,FRT»

DW(LAYER,FRT,FRT)=LCOEF*Dl*FUN(\V(LAYER,lNL,Fltrr»

DO 2001=1, NMNODE(LAYER-l)

DW(LAYER,FRT,I+ l)=LCOEF*DI*NODEOUT(LAYER-T,l)

200 CONTINUE

C HIDDEN LAYER DELTA WEIGIiTS COMPUTATiON

DO 210 l=l,NMNODE(LAYER-l)

DJ=DI*W(LAYER,FRT,I)·FUND(NODEIN(HJ-lDL, I»

DW(HHDL,I,FRT)=LCOEF·DJ*FUN(W(HHDL,I,FJl.l"»

DO 220 J=1,NMNODE(LAYER-2)

DW(HHDL,I,J+ l)=LCOEF*DJ*NODEOUT(LAYEH.-2,J)

220 CONTINUE

210 CO~rINUE

RETURN

END

c
c

c··· .
SUBROUTINE DBDBP(W,DW,NODEIN,NODEOUT,NMNODE,LAYER,N,lv1,SI,YI

*DELTA,ALPHA,INL,HHDL,OUTL,LCOEF)

C DELTA BAR DELTA ALGORITH1vl

C INPUT: DESIRED OUTPUT AND ACTUAL OUTPUT AS \VELL

C AS CONNECTION WEIGHTS) INPUT AND OUTPUT NODES

C OUTPUT: COMPUTE DELTA WEIGI-IT

C CONNECTION \VEIGI1T, DELTA \VEIGHT, ALPHA PARA.A1ETEl~

REAL W(LAYER,N,M),DW(LAYER,N,M),DELTA(LAYER,N,?vl),ALP1IA(LAYERN,lvl)

• ,51,YI,NODEIN(N,M),NODEOUT(N,M)

INTEGER NJvtNODE(N),N,M

REAL DI,DIl,DJ,DJ 1,DELTAV,DELTAP,Kl,THETA,Pill,ALPHAl\lAX

• ,LCOEF,DWMAX,PU

c

69

C DEFINITION OF CONSTANTS OF LEARNING COEFIClENTS

C AVERAGE FACTOR OF DLETA E

THETA=O.l

C DELTA RULE PARAMETER

KI=O.3

C EXPONENTIAL FACTOR

PHI=O.l

C TJiE BOUND FOR ALPHA

ALPHAMAX=O.8 •

C MAXIMUM DELTA WEIGHT

DWMAX=15.0

C DELTA RULE PARAMETER

PU=O.l

c
C OUTPUT LAYER DELTA WEIGl-IT COMPUTATION

Dl=(SI-YI)*FUND(NODEIN(LAYERFRT»

OIl=DI*FUN(1.0)

DELTAV=(l-THETA)*DII +Tl-lETA*DELTA(LAYERFH.l',FI~T)

C IF DELTA AND DELTA AVERAGE HAVE SAME SIGNS

IF(DELTAV· DELTA(LAYERFRT,FRT) .G'r. O.O)TI·lEN

DELTAP=KI

ENDIF

C IF DELTA AND DELTA AVERAGE HAVE DIFFERENT SIGNS

IF(DELTAV*DELTA(LAYER,FRT,FRT) .LT. O.O)THEN

DELTAP=-Pl-U*ALPI-IA(LAYER,FRT,FRT)

ENDIF

C IF DELTA EQUALS ZERO OR DELTA AVERAGE EQUALS ZEIl.O

IF(DELTA V*DELl'A(LAYER,FRT,FRT) .EQ. 0.0) THEN

DELTAP=O.O

ENDlF

DELTA(LAYER,FRT,FRT)=D11

ALPHA(LAYER,FRT,FRT)=ALPHA(LAYER,FRT)+DELTAP

C GIVE THE UPPER BOUND OF ALPI-IA PAR.Atv1ETER

C IF COMPUTED ALPHA LARGER THAN THE UPPER BOUND

C SET ALPHA TO THAT BOUND

IF (ALPHA(LAYER,FRT,FRT) .GT. ALPHAMAX)THEN

70

ALPHA(LAYER,FRT.FRT)=ALPHMiAX

ENDIF

DW(LAY'ER,FRT,FRT)=ALPHA(LAYER,FRT,FRT)·DI 1

C IF (DW(LAYER,FRT,FRT) .GT. DWMAX)THEN

C DW(LAYER,FRT,FRT)=PU

C ENDlF

C

DO 400 l=l,NMNODE(LAYER-I)

DIl=DI·NODEOUT(LAYER-l,I) •

C COMPUTE DELTA AVERAGE

DELTAV=(l-THETA)·Dll+THETA·DELTA(LAYER,FRT,I+ J)

C IF DELTA AND DEL'fA AVERAGE HAVE SAME SIGNS

IF(DELTAV· DELTA(LAYER,FRT,I+l) .GT. O.O)TI-lEN

DELTAP=KI

ENDIF

C IF DELTA AND DELTA AVERAGE 1MVE OPPSrrE SIGNS

IF(DELTAV·DELTA(LAYER,FRT,I+I) .LT. O.O)TI-IEN

DELTAP=-PHl*ALPHA(LAYEl{,FltT,1+ 1)

ENDIF

C IF DELTA EQUALS ZERO

IF(DELTAV.DELTA(LAYERFRrr,I+I) .EQ. 0.0)THEN

DELTAP=O.O

ENDIF

DELTA(LAYE~FRT,I+l)=DI 1

ALPHA(LAYERFRT,I+ 1)=ALPHA(LAYE~FRT,I+ l)+DELTAP

C SET UPPER BOUND TO ALPHA

C IF ALPHA LARGER THAN UPPER BOUND, SET ALPHA TO THE BOUND

IF(ALPl-lA(LAYER,FRT,I+1) .GT. ALPHMIAX)THEN

ALPHA(LAYER,FRT,I+ l)=ALPHAMAX

ENDlF

DW(LAYER,FRT,I+1)=ALPHA(LAYEI~FR1',I+ 1)*DI 1

C IF(ABS(DW(LAYER, 1,1+ 1» .GT. DWMAX)THEN

C DW(LAYER,FRT,I+ I)=PU

C ENDlF

400 CONTINUE

C THE FOLLO\VING IS THE SAME AS ABOVE EXCEPT FOR HIDDEN LAYER

71

DO 410 l=l,NMNODE(LAYER-l)

DJ=DJ·W(LAYER,FRTt1)*FUND(NODElN(llliDL,l»

DO 420 J=1,NMNODE(LAYER-2)

DJ1=DJ· NODEOUT(LAYER-2,J)

C COMPUTE DELTA AND DELTA AVERAGE

DELTAV=(l.O-THETA)*DJl+THETA*DELTA(HHDL,J)J+l)

CIF DELTA AND DELTA AVERAGE HAVE SMvlE SIGNS

IF(DELTA(HHDL,I,J+l)· DELTAV .GT. O.O)Tl-IEN

DELTAP=Kl

ENDIF

C IF DELTA AND DELATA AVERAGE HAVE oPPOSrrE SIGNS

IF(DEL'fA(HHDL,I,J+1)·DELTAV .LT. O.O)l]-iEN

DELf"fAP=-PHI*ALPHA(Hl-IDL,I,J+ 1)

ENDlF

C IF DELTA OR DELTA AVERAGE EQUALS ZEltO

IF(DELrrA(IlliDL,I,J+l)· DELTAV .EQ. O.O)THEN

DELTAP=O.O

ENDIF

ALPHA(HlIDL,I,J+ 1)=ALPI-lA(HHDL,I,J+ 1)+DELTAP

C SET UPPER BOUND TO ALPHA

C IF COMPUTED ALPllA IS LARGER l'tl-lAN UPPER BOUND

C THEN SET ALPHA TO UPl~ERBOUND

JF(ALPHA(I-lllDL,I,J+l) .GT. ALPI-lAMAX)TllEN

ALPI-IA(HHDL,I,J+ l)==ALPI-lAMAX

ENDlF

DELTA(HHDL,I,J+ 1)=DJ 1

D\V{HHDL,I,J+1)=ALPHA(HHDL,I,J+ 1r~DJ 1

C IF(ABS(DW(HHDS,I,J+ 1» .GT. DWrvlAX)THEN

c DW(HHDL,I,J+l)=PU

C ENDlF

420 CONTiNUE

410 CONTINUE

RETURN

END

c
c

72

c··· .
SUBROUTINE EDBDBP(W,DW,NODEIN,NODEOUT,NMNODE.LAYERN.M,Sl,Yl

*,ALP~DELTA,MU,INL,HHDL,OUTL,LCOEF)

C EXTENDED DELTA BAR DELTA ALGORITHM

C EXTENDED DELTA BAR DELTA IS A MODIFICATION VERSION OF

C DELTA BAR DELTA \VITH MOMENTUlvl BEING TlME-VARlNG

C CONNECTION WEIGHT, DELTA WEIGHT,INPUT NODE AND OUTPUT NODE

C ALPHA AND DELTA PARAMETER

REAL W(LAYER,N,M),DW(LAYE~N,M),NODEIN(N,M):NODEOU·r(Ntrvl),SI, YI

REAL DELT A(LAYERN,M),ALPHA(LAYERN,M),MU(LAYEI~·N,f\.1)

INTEGER N,M,NMNODE(N)

REAL DI,DJ,DI 1,DJ1

INTEGERI,J

C DEFINiTION OF DIfFERENT PARAMETERS FOR EOOD RULE

REAL

DELTAP,DELTAV,DELTNvlU,Tl-lETA,KALPl-IA,KlvlU,GALPHA,Gl\1U,PALPrlA,PMU

If,ALPHAMAX,MUMAX,DWMAX,PU

c
THETA =0.1

C CONSTANT LEARNING RATE SCALE FAC1~OR

KALPHA=O.2

C CONSTATN MOMENTUM SCALE FACTOIt

KMU =0.1

C CONSTANT LEARNING RA'fE EXPONENTIAL FACl'OH.

GALPHA = 0.05

C CONSTANT MOMENTUM RATE EXPONENrrlLA FACTOIl.

GMU =0.01

C CONSTANT LEARNING RATE DECRElVtENT FAcrOR

ALPHA = 0.1

C CONSTANT MOMENTTUM RATE DECREI\'lENT FACTOlt

PIvlU =0.1

C UPPER BOUND ON THE LEARNING RATE

ALPHA!v1AX = 0.1

C UPPER BOUND IN THE lvl0MENTUlvt RATE

tvlUMAX =0.01

C ~tAXllvlU VALUE OF DELTA WEIGHT

73

DWMAX=5

C SET DELTA WEIGHT TO THIS VALUE IF LARGER THAN BOUND

PU = 0.1

c
C COMPIJTATION OF OUTPUT LAYER

Dl=(SI-YI)*FUND(NODEIN(LAYER,l»

011=DI·FUN(W(LAYER,INL,FRT»

C COMPUTE DELTA AVERAGE

DELTAV=(1.O-THETA)*Dl1+THETA*DELTA(OUTL,FRT,FH.I')

C if DELTA AND DELTA AVERAGE HAVE SAtvtE SIGNS

IF(DELTAV*DELTA(OUTL,FRT,FRT) .GT. O.O)THEN

DELTAP=KALPHA*EXP(-GALPHA*ABS(DELTAV»

DELTAMU=KMU·EXP{-GMU·ABS(DELl'AV)

ENDIF

C IF DELTA AND DELTA AVERAGE HAVE OPPOSiTE SIGNS

IF (DELTAV·DELTA(OUTL,FRT,FRT) .LT. O.O)Tl-lEN

DELTAP=-PALPI-IA*ALPHA(OUTL,FRT,FltT)

DELTAMU =-PMU*MU(OUTL,FRT,FltT)

ENDIF

C IF DELTA AND DLETA AVERAGE EQUALS ZERO

IF (DELTAV*DELTA(OUTL,FRT,FRT) .EQ. O.O)THEN

DELTAP=O.O

DELTAMU=O.O

ENDlF

DELT A(OUTL,FRTtFRT);;DI 1

ALPHA(OUTL,FRT,FRT)=ALPHA(OUTL,FltT,FltT)+OELTAP

C SET UPPER BOUND TO ALPHA

C IF COMPUTED ALPHA IS LARGER l'HAN UPPER BOUND

C THEN SET ALPHA TO UPPER BOUND

IF(ALPHA(OUTL,FRT,FRT) .QT. ALPHAMAX)THEN

ALPHA(OUTL,FRrr,FRT)=ALPHA1vtAX

ENDIF

lvlU(OUTL,FRT,FRT)=MU(OUTL,FRT,FRT)+DELTAMU

C GIVE THE BOUND OF fvlU

IF(MU(OUTL,FRT.FRT) .GT. MUMAX)THEN

MU(OUTL,FRT,FRT)=MUMAX

74

ENDIF

DW(LAYER,INL,FRT)=ALPHA(OUTL.FRT.FRT).Dl1

• +MU(OUTL,FRT,FRT)*DW(LAYER,INL,FRT)

C IF(DW(LAYER,INL,FRT) .QT. D\VtvtAX)THEN

C DW(LAYER,lNL,FRT)=0WMAX

C ENDIF

DO 500 l=l,NMNODE(LAYER-l)

DI 1=DI*NODEOUT(LAYER-l ,I)

C COMPUTE DELTA AND DELTA AVERAGE •

DELTAV=(l.O-THETAr'DIl+THETA*DELTA(OU1'L,FRT.!)

C IF DELATA AND DELTA AVERAGE HAVE SAME SIGNS

IF(DELTAV*DELTA(OUTL,FRT,I+l) .GT. O.O)TliEN

DELTAP=KALPHA*EXP(-GALPl-IA • ABS(DELTAV»

DELTAMU=KMU*EXP(-GMU .. ABS(DELTAV)

ENDIF

IF(DELTAV·DELTA(OUTL,FRT,1+ 1) .LT. O.O)TtiEN

C IF DELTA AND DELTA AVERAGE HAV OPPOSITE SIGNS

DELTAP=-PALPHA·ALPHA(OU1'L,FRT,1+ 1)

DELTAMU=-PMU·MU(OUTL,FRTJ+ 1)

ENDlF

C IF DELTA OR DELTA AVERAGE EQUALS ZERO

IF(DELTAV*DELTA(OUTL,FRT,l+ 1) .EQ. O.O)Tl-lEN

DELTAP--o.O

DELTAMU=O.O

ENDIF

DELTA(OUTL,FRT,I+l)=Dll

ALPHA(OUTL,FRT,l+ 1)=ALPHA(3, 1,1+ l)+DELTAP

C SET UPPER BOUND TO ALPHA. IF ALPI-IA COlvWUTED IS LARGER

C THAN UPPER BOUND THEN SET IT TO UPPER BOUND

IF(ALPHA(OUTL,FRT,l+1) .GT. ALPHAMAA1THEN

ALPHA(OUTL,FRT,1+ l)=ALPHAMAX

ENDlF

MU(OUTL,FRT,I+ l)=MU(OUTL,FRT,I+ l)+DELTAfv1U

C GIVE THE BOUND OF ~1U

IF(MU(OUTL,FRT,1+1) .GT. M~lAX)THEN

MU(OUTL,FRT,1+1)=MUMAX

75

ENDlF

DW(OUTL,FRT.I+l)=ALPHA(OUTL.FRT.I+l)·Oll

• + MU(OUTL,FRT,1+1) • DW(OUTL~FRT,I+1)

C IF(DW(OUTL,FRT,l+1).GT. DWrvlAX)THEN

C D\V(OUTL,FRT,I+l)=D\VMAX

C ENDlF

500 CONTINUE

C

C THE FOLLWING IS THE SAME AS ABOVE EXCEprr FOJ~ lilDDEN LAYER

DO 510 I=l,NMNODE(LAYER-l)

DI=DI*W(OUTL,FRT,l+l)· FUND(NODEIN(HHDLJ»

DI 1=DI*FUN(W(Hl-lDL,I, I»

C CALCULATE ALPHA AND lvlU

C CO~1PUTE DELTA AND DELTA AVERAGE

DELTAV=(l.O-THETA)·Dll+THETA·DJ 1

IF(DELTAV*DELTA(HHDL,I,FRT) .GT. O.O)Tl-iEN

DELTAP==KALPHA*EXP(-GALPHA"Al3S(DIl»

DELTAIvlU=lOv1U*EXl)(-GMU·ABS(DI1»

ENDIF

IF(DELTAV· DELTA(Hl1DL,I,FRT) .LT. O.O)TllEN

DELTAP=-PALPI-IA*ALPI-IA(Hl-lDL,I,FRT)

DELTArvtU=-PMU*MU(HHDL,I,FRT)

ENDlF

IF(DELTAV.DELTA(l--IHDL,I,FR1) .EQ. O.O)THEN

DELTAP=O.O

DELTAMU=O.O

ENDlF

DELTA(HHDL,l,FRT)=DIl

ALPHA(HHDL,I,FRT)=ALPHA(HHDL,I,FRT)+DELTAP

C GIVE THE UPPER BOUND OF ALPHA

C IF ALPHA IS LARGER THAN UPPER BOUND

C THEN SET IT TO UPPER BOUND

IF(ALPHA(HI-IDL,I,FRT) .GT. ALPHA~1AX)THEN

ALPHA(HHDL,I,FRT)=ALPHAMAX

ENDIF

MU(HHDL,I,FRT)=~1U(HHDL,I,FRT)+DELTAlvlU

76

C GIVE THE UPPER BOUND OF MU

MU(HHDL,I,FRT)=MU(HHDL,I,FRT)+DELTM·tU

IF(MU(HHDL,I,FRT) .GT. Mlnv1AX)THEN

MU(HHDL,I,FRT)=MUMAX

ENDIF

DW(HHDL,I,FRT)=ALPHA(illlDL,I,FRT)-OIl+rvlU(HHDL,l.FI~T)

DO 520 J=l,NMNODE(LAYER-2)

011=Dl·NODEOU1'(LAYER-2,J)

C COMPUTE DELTA AND DELTA AVERAGE •

DELTAV=(I.O-THETA)*DIl+THETA*Dl1

W(DELTAV*DELTA(HHDL,I,J+l) .GT. O.O)T1-lEN

DELTAP=KALPHA·EXP(-GALPHA·ABS(DI 1»

DELTAMU=K1v1U·EXP(-GlvlU·ABS(Dll»

ENDIF

IF(DEL'TAV·DELTA(illlDL,l,J+ 1) .LT. O.OrrHEN

DELTAP=-PALPlIA·ALPHA(I-U-lDL,I.J+ 1)

DEL1"'A!vlU=-PMU*MU(HHDL,I,J+1)

ENDIF

IF(DELTAV+DELTA(HHDL,I,J+l) .EQ. O.OrrI-lEN

DELTAP=O.O

DELTA!vlU=O.O

ENDlF

DELTA(HI-IDL,I,J+ 1)=Dl1

ALPHA(HHDL,I,J+ 1)=ALPHA(l-lHDL,I,J+ 1) + DELTAP

C GIVE THE UPPER BOUND OF ALPI-lA

IF(ALPHA(I-lliDL,I,J+1) .GT. ALPHAMAX)THEN

ALPHA(HHDL,I,J+ 1)=ALPHAMAX

ENDlF

MU(HHDL,I,J+ l)=MU(HHDL,I,J+1)+DELTM1U

C GIVE THE UPPER BOUND OF MU

MU(HHDL,I,J+1)=MU(HHDL,I,J+1)+DELTAMU

1F(MU(HHDL,l,J+l) .GT. lvlUMAX)THEN

MU(HHDL,I,J+ l)=MUMAX

ENDIF

D\V(HHDL,I,J+ l)=ALPHA(HHDL,I,J+ 1)*Dl I+MU(HHDL,I,J+ 1)

• * DW(HHDL,I,J+l)

77

C IF(D\V(HHDL,I,J+I) .QT. DWMAX)THEN

C DW(HHDL,I,J+l)=DWMAX

C ENDIF

520 CONTINUE

510 CONTINUE

END

c
c

c··*············*··································~·· .
FUNCTION FUND(X)

C DERIVATIVE OF TRANSFER FUNC1"'lON

C COMPUTE DERIVATiVE OF TRANSFER FUNCl'lON

C BY TRANSFUNCTION

CINPUT:X

C OUTPUT: FUND

REAL FUND,X,Y

c
FUND=(1.O+FUN(X»)*(1.O-FUN(X))

Y=FUND

RETURN

END

c
c
c··· .

FUNCTION FUN(X)

C TRANSFER FUNLfION OF SIGMOID

C INPUT:X

C OUTPUT: FUN

REAL FUN, X

c
FUN=(EXP(X)-EXP(-X»/(EXP(X)+EXP(-X»

RETURN

END

c
C

•••
C············

78

SUBROUTINE ROINPUT(T,N,.M,FLAG.NDPT,LST)

C READ TRAINING DATA

C FROM TRAINING DATA FILE WHICH IS NOT

CNORMALIZED

C OUTPUl : T(N,M)

REAL T(N,M)

INTEGER N,M,NDPT,.LST

INTEGER I,J,lN

C

IN=2

IF(FLAG .EQ. 1)THEN

OPEN(IN,FILE=tlulrain.dal')

ELSE

OPEN(IN, FILE='UllCSl.dal')

ENDIF

DO 600 l=l,NDPT

READ(4,610) (T(I,J),J= 1,LST-l),T(I,LST)

600 CONTINUE

610 FORMAT(24F6.2,F9.6)

CLOSE(JN)

RETURN

END

c
c

c···...
SUBROUTINE RANWT(W,NfvlNODE,LAYERN,~I,lNL,HJ-lDL)

C INTIALIZE NEURAL NET\VORK BY RANDOMNIZE ITS WEIGl-ITS

REAL \V(LAYER,N,~I)

INTEGER NMNODE(N),LAYER,N,M,I,J

c
DO l=ltNlvlNODE(HHDL)+l

W(LAYER,FRT,I)=RAND()

ENDDO

DO 700 l=l,NMNODE{HHDL)

DO 710 J=I, NMNODE(lNL)+l

710 CONTINUE

79

700 CONTINUE

END

c
c

c··· .
FUNCfION FlNDMAX(T,N,M,II.NDPT)

C FIND MINNIMUM AND MAXIMUM OF EACH FIELD OF

C WHOLE TRAINING SET

C INPUT:TEMPERATURE T(N,M)

C OUTPUT: MIN(N), MAX(N)

REAL FINDMAX,T(N,~1)

INTEGER N,M,II,I

FINDMA.X=U.O

DO 1=1,NDIYf

IF(T(I,ll) .GT. FINOlvtAX)Tl-lEN

FINDMAX::::'r(l,II)

ENDIF

ENDDO

RETURN

END

c
c
c··· .

FUNCTION FINDMIN(T,N,tvl,II,NDPT)

C FIND MINIMUM ELEfvlENT FROM T

REAL FINDMIN,T(N,fvl)

INTEGER N,lvl,II,1

C SET INITIAL VALUE FOR COMPAIUSON

FINDMlN = 1000.0

DO l=l,NDPT

IF(T(I,II) .LT. FINDMIN)THEN

FINDMIN=T(I,II)

ENDIF

ENDDO

80

RETURN

END

c
c

c················ .
SUBROUTINE MNTAB(T,MlN,fv1AX,N,t~1,LST)

C SET UP MIN-MAX TABLE

REAL T(N,M),MIN(LST),MAX(LSl')

INTEGER N,M,I,LST

c
DO l=l,LST

MAX(J)=FINDMAX(T,N,M,I)

MIN(I)=FINDMIN(T,N,M,J)

END DO

END

c
c

c·············**······································ .
SUBROUTINE INITDW(D\V,DELTA,ALPI-lA,LAYEl{,N,Nl)

C INITIALIZE DELTA \VEIGHT AND PAR.A1v1ETEH.S

C

REAL DW(LAYER,N,M),DELTA(LAYER,N,l\'1),ALPlfA(LAYER,N,lvl)

c
INTEGER N,M,NlvlNODE(LAYElt),LAYER

c
INTEGER I,J

REALAX,DX

c
C SE1' DELTA INITIAL VALUE

DX=O.l

C SET ALHPA INITIAL VALUE

AX=O.l

DO I=l,N

DW(LAYER,FRT,I)=RAND()

DELTA(LAYER,FRT,1)=AX

ALPHA(LAYERFRT,()=DX

81

END DO

DO 800 l=l,N

DO 810 J=l,M

DW(HHDL,I,J}=RAND()

DELTA(HHDL,I,J)=DX

ALPHA(HHDL,I,J)=AX

810 CONTINUE

800 CONTINUE

END

c
c

c··· .
C THIS IS THE MAIN PROGRAM FOR STEEPEST DESCENT IN BAwrCH

C MODE WITH LINE SEARCH. ALL OF SUBI~OU~rlNE OR FUNCrlON CALLS

ENCOUNTEREDC IN wfl-llS POIl.TION IS EXACTLY TllE SMtE AS IN TIlE PH,OGRAM

C ABOVE AND IS NOT LISTED HERE FOR AVOIDING REPEATING.

e IT CAN BE EXECUTED INDEPENDEN~rLY. DOING SO IS ONLY

C FOR THE REASON OF PROGRAlvlMING CONVENIECE.

INTEGER I,J,ll

REAL MOISTURE,EPSILON,SUMERH.

*,NODEIN(30,30),NODEOUT(30,30),W(3,30, 30),0W(3,30,30)

• ,DELTA(3,30,30),ALPHA(3,30,30),DWA(3,30,30),l13tvl1)(31U,26)

• ,MIN(25),fv1AX(25),RI,WM

.,TW(3,30,30),RDFf,ENFf,LCOEF,FV,BR

• ,HIGH,LOW,OFFSET,SCALE,YI,SI,YIO,SIO

INTEGER NMNODE(3),TRMD,EPOCH,EPLENGTH.

*NN,Mlvl,EPCNT,JJ,INL,I-IJ-IDL,OUTL

*FLAG,MAXEP,MAXSCH

c
C INPUT LAYER NUf\tffiER

INL=l

C HIDDEN LAYER NillvlBER

HHDL=2

C OUTOUT LAYER NUMBER

82

OUTL=3

C NUMBER OF NODES IN INPUT LAYER

NMNODE(INL)=25

C NUMBER OF NODES IN HlDDEl'J LAY'ER

NMNODE(HHDL)=4

C NUMBER OF NODES IN OUTPUT LAYER

NMNODE(OUTL)=I

C NUMBER OF LAYERS

LAYER=3 •

C NUMBER OF UNITS IN INPUT LAYElt

N=NUMNODE(INL)

C NUMBER OF UNITS IN I-llDDEN lAYER

M=NUMNODE(HHDL)

C CONVEltGENCE CRITEIUON

EPSILON =0.037

C SET SUM SQUARE ERROR TO ZEltO

SUMERR=O.O

C FLAG FOR READ TRAINING FilE OR TEST FilE

C FLAG=I--READ TRAINING FiLE; FLAG=2-READ 1"ES1'ING FILE

FLAG=l

C THE NUIill3ER OF PRESENTATIONS BEFORE UPDAl""ING \VEIGHTS

EPLENGTH = 154

C OUTPUT RANGE OF UPPER AND LOWER BOUND

HIGH = 1.0

LOW =0.0

C NUfvtBER OF DATA POiNTS IN TRAINING SE'f OIt TESTING sl~'r

NDPT=154

C THE FIRST NODE IN ONE LAYER

FRT=l

C THE LAST NODE IN INPUT LAYER

LST=25

C THE COUNTER FOR UPDATE WEIGHTS

EPOCH =0

C MAXltvlU VALUE OF \VEIGHT

W~t=50.0

C DECREtvlENTING RANGE

83

BR=O.005

C MAXIMUM NUMBER OF EPOCH OF TRAINING

EPMAX=lOOO

CSETENLARGEFACTOR

ENfT=1.5

C SET REDUCE FACTOR

RDF=O.75

C SET INITIAL LEARNING COEFICIENT

LCOEF=O.2

C

C OUTPUT DEVICE

, OUT1=4

OUT2=6

c
MM=O

c
OPEN(OUT22,FILE='bp.dal')

C READ TRAINING DATA INTO BUFFElt

CALL RDINPUT(TEMP,NDP'T,NMNODE(INL),FH.T)

C RANDOMIZE CONNECTION WEIGI-lTS

CALL RANWEIGI-IT(W,NMNODE,LAYERtNtvlNODE(lNL),N~1NODE(I-IlIDL»

C INPUT MlNMAX TABLE FOR NORMALlZATION

CALL MMTAB(TEtv'lP,MIN,MAX,NDPT,NtvlNODE(INL»

C INITIALIZE DELTA WEIGHTS

CALL INITDW(DW,DELTA)

C

50 DO 52 KK=l,NDPT

C

C PRESENT ONE VECTER TO INPUT LAYER

DO 20 J=ltN'MNODE(INL)

NODEOUT(INL,J)=TEtv1P(KK,J)

20 CONTINUE

C

SIO=NODEOUT(FRT,LST)

c

84

C NORMALIZE THE INPUT PATTERN

DO I=l,NMNODE(INL)

SCALE=(HIGH-LOW)/(MAX(I)-lvl1N(I»

OFFSET=(MAX(I)·LOW-MIN(I)·HIGH)/(~1AX(I)-tv11N(1»

NODEOUT(INL,I)=NODEOUT(INL,I)·SCALE+oFFSET

ENDDO

c
C FORWARD INPUT VECTER TO OUTPUT LAY'ER

CALL FDINPUT(W,NODEIN,NODEOUT,NMNODE,LAYElt,N,tvl)

c
C RESCALE OUTPUT TO TrlE ORIGINAL RANGE

SI=NODEOUT(FRT,LST)

YI=NODEOUT(LAYER,FRT)

SCALE=(MAX(LST)-MIN(LST»)/(HIGI-l-LO\V)

OFFSET=(HIGH*MlN(LST)-LO\V*MAX(LST»/tHIGH-LO\V)

YIO=YI*SCALE+OFFSE1'

C WRlTE(*,23) YIO, S10

23 FORMAT(lX~2F8.6)

C

C COI\tlPUT TI-IE SUM SQUARED Elill.OR

SUMERR=SUtv1.EIU"{+(SIO-YIO)*(SlO..YIO)

c
C COMPUT DELTA WEIGl-rr

CALL STDBP(\V,DW,NODEIN,NODEOUT,N~lNODE,LA YER,N,M,

• SI,YI)

C ACCUMULATE DELTA WEIGHTS

C DO I=l,NMNODE(HHDL)

DWA(LAYER,FRT,I)=DWA(LAYER.FRT,l)+DW(LAYER.FRT,I)

ENDDO

DO 25 I=l,NMNODE(HHDL)

DO 28 J = l,NMNODE(INL)

D\VA(HHDL,I,J)=D\VA(HHDL,l,J)+D\\l(illIDL,I,J)

28 CONTINUE

25 CONTINUE

85

C

52 CONTINUE

C

FV=SUMERR

15 SUMERR=SQRT(SUMERRlNDPT)

C OUTPUT NUMBER OF EPOCHS AND ROOT SQUARED SUM ERROR

WRlTE(OUT2,31) EPCNT,SUMERR

WRITE(·,3l) EPCNT,SUMERR

EPCNT=EPCNT+1

31 FOIWAT(lX,I6,", FR.G)

C IF RMS LESS THAN EPSILON, THEN BEGiN TO TEST NErr\VOHK

IF(SUMEAA .LT. EPSILON)TI-lEN

C READ TEST DATA FROM FILE

FLAG=2

32 CALL RDINPUT(TEMP,NDPT.Nl\'1NODE(INL),FLAG)

OPEN(OUT1,FILE='bp.nnr')

WRITE(OUTl,45) COUNTER

DOK=l,NDPT

DO 21 J=l,NMNODE(INL)

NODEOUT(INL.J)=l'EMP(K,J)

IF(NODEOUT(l,J) .EQ. 0.0)THEN

STOP

ENDlF

21 CONTINUE

SIO=NODEOUT(FRT,LST)

C NORMALIZE rrHE INPU1' YECTElt

DO 221=1,NMNODE(INL)

SCALE=(HIGH-LOW)/(MAX(l)-lvlIN(l»

OFFSET=(MAX(I)*LOW·rvlIN(I)*HIGH)

I(MAX(l)-rv1I~(I»

NODEOUT(INL,I)=NODEOUT(INL,I)*SCALE+OFFSET

22 CONTINUE

C FORWARD THE INPUT VECTERS

CALL FDlNPUT(W.NODEIN,NODEOUT,NtvlNODE.LAYER,N,M)

86

YI=NODEOUT(LAYER,FRT}

SCALE=(MAX(LSn- tvtlN(LST»/(HIGH-LOW)

OFFSET=(HJGH"M1N(LST)-LOW·MAX(LST»)

I(HIGH-LOW)

YIO=YI*SCALE+OFFSET

WRlTE(OUTl,23) YIO,SIO

END DO

CLOSE(OUTl)

CLOSE(OUT2)

STOP

ENDIF

c
SUlvlERR=O

C

59 DO I = l,NMNODE(HHDL)+l

TW(LAYER,FRT,I)=W(LAYER~FltT.I)+LCOEF·DWA(LA YER,FRT.l)

ENDDO

DO 35 l=l,NMNODE(HIIDL)

DO 38 J=l,NMNODE(l)

TW(HHDL,I,J)=W(J-U-IDL,I,J)+LCOEF*D\VA(lillDL,l,J)

38 CONTINUE

35 CON1'INUE

C

SUlvlERR=O

c
C IF NUMBER OF EPOCHS LARGER THAN MAXltvlU NUrvlBER

C THEN STOP TRAINING

IF(EPCNT .EQ. ~1AXEP)THEN

GOTO 32

ENDIF

DO 53 KK=l,NDPT

DO J=1,Wv1NODE(INL)

NODEOUT(INL,J)=TEMP(KK,J)

87

ENDDO

c
c FORWARD INPUT VECTER

CALL FDINPUT(TW,NODEIN,NODEOUT.NMNODE,LAYERN,~t)

c
SI=NODEOUT(FRT,LST)

YI=NODEOUT(LAYER.,FRT)

C

CCOMWUTESUMSQUAREERROR

SUMERR=SUMERR+(SI-YI)*(SI..Yl)

53 CONTINUE

C

C WRITE(·,3l) EPCNT,SUMERR

IF«SUMERR-FV) .LE. BR)THEN

WRlTE(*,45) NN

NN=O

DO I = 1,NMNODE(HHDL)+ I

W(LAYER,FRT,I)=W(LAYERFRT,I)+LCOEF*DWA(LAYER,FRT,I)

C IF WEIGHT LARGER OR LESS Tl1AN BOUND

C THEN SET IT TO Tl-lE BOUND

IF(W(LAYER.,FRT,I) .GT. WM)THEN

W(LAYERFRTJ)=WM

ENDIF

IF(W(LAYER,FRT,I) .LT. -WM)THEN

W(LAYER,FRT,I)=-WM

ENDlF

ENDDO

DO 40 I=l,NtvlNODE(HHDL)

DO 42 J=1,NMNODE(INL)

W(llliDL,I,J)=W(I-IHDL,I,J)+LCOEF*D\VA(HHDL,I,J)

C SET \VEIGHT TO THE UPPER OR LOWER BOUND

C IF IT LARGER OR LESS THAN ITS BOUNDS

IF(W(IffiDL,I,J) .GT. W1vl)THEN

W(lll-IDL,I,J)=\Vfvl

ENDlF

IF(\V(HHDL,I,J) .LT. -WM)THEN

88

W(HHDL,I,J)=-WM

ENDlF

42 CONTINUE

40 CONTINUE

C IF SUCCESS THEN ENLARGE FACl'OR

LCOEF=ENFT*LCOEF

GOT070

ENDlF

c
C IF SEARCH FAlLURE THEN REDUCE FACTOR

C AND CONTINUE TRY

LCOEF=RDFT*LCOEF

NN=NN+l

SUMERR=O

IF(NN .GE. MAXSCH)'''HEN

NN=O

DO I=l,NrvlNODE(HHDL)+l

W(LAYEIt,FRT,I)=W(LAYERFRT,I)+LCOEI~·DWA(LA YEl(,I~]~l",l)

C SET WEIGl-IT TO UPPER OIt LOWER BOUND

C IF IT LARGER OR LESS THAN 11'5 BOUNDS

IF(W(LAYERFRTJ) .GT. Wlvlrrl-lEN

W(LAYER,FRT,I)=WM

ENDIF

IF(W(LAYERFRT,I) .LT. -WM)TI-lEN

W(LAYER,FRT,I)=-WM

ENDIF

END DO

C UPDATE WEIGI-lTS IF SUCCESS

DO -11 I=l,NMNODE(HHDL)

DO 43 J=l,NMNODE(INL)

\V(HHDL,I,J)=W(HHDL)I,J)+LCOEF·D\VA(HHDL,I)J)

C SET WEIGHT TO UPPER OR LOWER BOUND

C IF IT LARGER OR LESS THAN ITS BOUNDS

IF(W(HHDL)I,J) .GT. \VM)THEN

W(HHDL,I,J)=\VM

ENDIF

89

IF(W(HHDL,I,J) .LT. -WM)THEN

W(HHDL,I,J)=-WM

ENDIF

43 CONTINUE

41 CONTINUE

GOT070

ENDIF

GOTO 59

c
C WRlTE(*,29) LeOEF

29 FORMAT(lX,F8.6)

SUMERR=O.O

c
C RESET DELTA WEIGHTS

70 DO I=l,NMNODE(HHDL)

D\VA(LAYER,FRT,I)=O.O

END DO

DO 26 I=l,NMNODE(HHDL)

DO 27 J=I,NMNODE(INL)

OWA(HHDLJ,J)=O.O

27 CONTIN'UE

26 CONTINUE

45 FOR1v1AT(lXJ5)

SUMERR=O.O

GOTO 50

60 END

90

/'\ "
':i

VITA

Xiaoji Liu

Candidate for the Degroo of

Master of Science

Thesis: A COMPARISON STUDY OF FEEDFORWARD FULLY-CONNECTED

NEURAL NETWORKS VS. CASCADE CORRELATION NETWORKS

FOR PREDICTION OF SOIL MOISTURE CONTENT

Major Field: COlllputer Science

Biograpllical:

Personal Data: Born in Taizhou, Jiangsu Province, I). R. China, July 1957,
tIle son of Huilin Wang and JUll11ua Liu.

Education: Graduated Franl First High School ofTaizhou, Taizhou. Jiangsu
Province, P. R. Cluna in July 1975; received Bachelor of Science Degree in
Applied MatlleIllatics fI-Olll East Cluna Institute ofTeclmology in JaJ1Uary

1982; cOlnpleted requirements for the Master of Science degree at
Okiallollla State University in December 1994.

Professional Experience: Software engineer) North Industry Corporation ofChina)
1989 tllrough 1992. Visiting engineer, lIT (Integrated Information
Technology, Inc.), Santa Clara, California) fi·onl Novelnber 1988 to August
1989. Software engineer,North Industry Corporation ofCllina, from
January 1982 to July 1988.

Men1bersllip: Cllina Computer Society; American tv1athematical Society.

	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	006.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	022.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif
	055.tif
	056.tif
	057.tif
	058.tif
	059.tif
	060.tif
	061.tif
	062.tif
	063.tif
	064.tif
	065.tif
	066.tif
	067.tif
	068.tif
	069.tif
	070.tif
	071.tif
	072.tif
	073.tif
	074.tif
	075.tif
	076.tif
	077.tif
	078.tif
	079.tif
	080.tif
	081.tif
	082.tif
	083.tif
	084.tif
	085.tif
	086.tif
	087.tif
	088.tif
	089.tif
	090.tif
	091.tif
	092.tif
	093.tif
	094.tif
	095.tif

