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CHAPTER I

INTRODUCTION

Artificial neural networks have many applications in solving
problems of prediction such as stock prices, grain harvest [4], etc. [3]
described a feedforward fully connected neural network with learning
algorithm of standard back-propagation that “can predict the soil moisture
content, and gave good results. However, the work on comparison of
performance of this neural network for prediction of soil moisture
with several other alternatives has not been done. This comparison
would involve choice of different training algorithms with the same
neural network architecture, and the choice of different network
architectures. This is obviously of great interest to us.

For training layered feedforward neural networks, back-
propagation is the most frequently applied algorithm [5]. However, the

standard back-propagation has the problem of choosing a step size [7]
since it just computes gw— the partial first derivative of the overall error
function E with respect to each weight w, in the network. When these
derivatives are given, a gradient descent can be performed in the weight
space, reducing the error with each step. Clearly, if we take infinitesimal
steps down the gradient vector, running a new training epoch to recompute
the gradient after each step, we will eventually reach a local minimum of
the error function. Experience has shown that in most cases, this local
minimum will be a global minimum, or at least a good enough solution of

the problem. But actually we can't take infinitesimal steps from a practical

point of view; instead we always want to take steps that are as large as



possible so that we can speed up the learning process. Unfortunately, if we
choose a step size that is too large, the networks may not converge to the
solution we desire.

Many schemes have been suggesied to deal with the step size

problem. Fahlman's quick propagation is one of them. Quick propagation

. . — OE
not only considers the first partial derivative v but also uses a second

1
L 4

order method that is related to Newton's method, to update the weights.

Another scheme to deal with step size involves dynamically
adjusting the step size of learning, based on the change in gradient between
successive steps [1], {2], [4]. In this thesis, this kind of method is called
Delta Bar Delta (DBD) as in [4]. Modification to the method of Delta Bar
Delta (DBD) will lead to the method of Extended Delta Bar Delta (EDBD)
[4].

Minimization techniques have also been explored to solve the step
size problem. Conjugate gradient method with line search and scaled
conjugate gradient method without line searches have been studied for this
purpose [10], [15]. But in this thesis, we will study gradient descent with
a line search.

One of the problems with feedforward fully connected neural
networks is that the architecture has to be specified beforehand; i.e., the
number of hidden layers as well as the number of neuron units in each layer
must be determined. But, most of time it is difficult to know how many
hidden layers and how many neuron units in each layer are appropriate to
solve particular applications. Fahlman's Cascade Correlation network [7]
provides an approach to deal with this problem. A Cascade Correlation

network just requires a fixed number of neuron units in the input layer



and output layer, which are actually application dependent, before training
begins. It just adds one unit each time in the hidden layer during the
training course. Therefore, it not only speeds up learning, but also saves
storage for weights and neurons and helps avoid overfitting the data. In
addition, according to Fahlman [7], it can solve the problem of a moving
target.

This thesis is organized as follows:

In Chapter I, a general introduction to the problem we are going to
investigate is given.

In Chapter II, a brief review will be given of neural network basic
concepts, feedforward fully connected networks, the cascade correlation
network, and a description of the soil moisture content prediction problem.

Chapter III will be dedicated to the study of five training algorithms,
which are standard back propagation, quick propagation, delta bar delta
(DBD), extended delta bar delta (EDBD), and steepest descent in batch
mode with line search.

In Chapter IV, we will give the results of training and testing neural
networks for prediction of soil moisture content using two different
architectures and five different training algorithms.

In Chapter V, we will make some conclusions on the comparison of
performance of these two neural networks as well as five different training
algorithms for prediction of soil moisture.

Finally, the source program which implemented standard back-
propagation, quick back-propagation, delta bar delta, extended delta bar

delta, and minimization with line search will be put into Appendix A.



Chapter 11

Literature Review

Basic Concepts of Neural Networks

The neuron is the fundamental cellular unit of the nervous system and the
brain. Each neuron is a simple microprocessing unit which receives and
combines signals from many other neurons through input processes. If the
combined signal is strong enough it activates the firing of the neuron which
produces an output signal. In artificial neural networks, the unit analogous
to the biological neuron is referred to as a processing element (PE). A
processing element has many input paths and combines them by a simple
summation of the values of these inputs. This can be described as follow:

Ii = Zwinj
J

The combined input is then modified by a transfer function or "squashing"
function. There are various forms of transfer function, which can be a
threshold function that only passes information if the combined activity
level reaches a certain level, or it can be a continuous function such as a
sigmoid function or hypertangent function. The output function can be

represented as follows:

O; = £(1;)



The input summation and output modification is shown in Fig 2.1
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Figure 2. 1

There are several functions that can used as transfer functions, which can

be described as follow. A sigmoid function is defined as below
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Figure 2. 2

The threshold function is defined as



f,(z)=1i1fz>T

f,(z) =0 otherwise
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Figure 2. 3

The hypertangent function is defined as
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Figure 2.4
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Note that f3(z) is related to fj(z) by f3(z) =21j(2z) - 1.

The output path of a processing element can be connected to the
input paths of other processing elements through connection weights. A
neural network consists of many such processing elements together and
very interesting effects result from the ways the neurons are

interconnected.



Processing elements are usually organized into groups called layers.
Generally there are two layers that provide a connection from networks to
the outside world: an input layer where data is presented to the network
and an output layer which holds the response of the network to a given
input. The layers between the input layer and the output layer are called
hidden layers.

There are two phases in the iteration c;f a neural network, learning
and recall [4]. Learning is the process of adapting or modifying the
connection weights in response to input vectors presented to the input
layer. If there is a desired output presented at the output layer, we call this
supervised learning. There are many learning algorithms existing for such a
learning process. There are Hebbian learning, the Delta rule, etc.. The most
popular one may be back-propagation, which we will discuss in Chapter III
in detail.

One of the important properties of a neural network is its capability
of storing information. Neural computing is distributed and the connection
weights are the memory units of a neural network. The nature of a neural
network memory leads to a reasonable response when the network is
presented with a previously unseen input. This property is referred to as
generalization. The quality of generalization depends on the particular
application and on the sophistication of the network. Feedforward fully
connected networks with back-propagation learn about the features in their
hidden layers. The knowledge in the hidden layers can be combined to form
intelligent responses to novel stimuli [4], [2]. Some efforts were made to
improve the generalization performance of neural networks. [11] proposed
a scheme called double propagation to get better generalization from a

training set to a test set. The idea of this method is to form an energy



function that is the sum of the normal energy term found in general back-
propagation and an additional term that is a function of the Jacobian. [14]
showed that the improvements are especially significant for those
architectures that show good performance when trained using back-

propagation.
Feedforward Fully Connected N.eural Networks

The simplest form of a network has no feedback connection from
one layer to another or to itself. Such a network is called a feedforward
network. In a feedforward network, information is passed from the input
layer through the hidden layers to the output layer, in each of which a
summation and a transfer function are used. Furthermore, if each unit in
one layer in the network is just connected to the layer immediately below it
or above it, we call it a feedforward layered network or feedforward fully
connected network. Clearly, in feedforward networks, each layer can only
receive signals from the immediately previous layer and send signals to the
immediately following layer. A feedforward fully connected network is

shown in Fig 2.5
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Cascade Correlation Networks

The Cascade correlation network was proposed by S. E. Fahlman to
deal with the so-called moving target problem [4]. Unlike feedforward fully
connected networks, a cascade correlation network does not have to be
specified by a fixed number of hidden layers as well as a specified number
of neuron units in each hidden layer. Instead, it just has a minimal
topology at the beginning of learning, and then adds new hidden units one
by one during the training course, thus creating a multilayer structure.

Fig 2.6 shows a sample cascade correlation network architecture
which has six inputs, two outputs, and a bias that is permanently set to 1.0.
This is a minimal structure for a cascade correlation network. Clearly, this

minimal structure is application-dependent, i.e., the number of inputs and



number of outputs are determined by the particular application. All of the

inputs and the bias directly connect to the outputs.
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Figure 2. 6 The Cascade architecture: Initial state with no hidden units
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Figure 2.8 Cascade architecture with two hidden units
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Figure 2.9 Cascade architecture with three hidden units
21 weights, one at each X
where the vertical lines sum all incoming activations. Boxed connections
are frozen and X connections are trained repeatedly.

At first, the training begins with no hidden units. The connection
weights between inputs and outputs are directly trained as well as possible
over the training set. This process can be repeated until some criterion is
satisfied. In Fahlman's implementation, there are two parameters governing
this process, which we will discuss in detail in Chapter V. Since this is just
a single layer network, several learning algorithms can be chosen for
training, which include Widrow-Hoff or the Delta rule, the perceptron
learning algorithm, etc. In Fahlhman's implementation, quick propagation

was chosen as the learning algorithm.
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After a number of epochs of training the network, which is set in a
parameter, if the accuracy is still not satisfied, a hidden unit is added to
the existing network. This new hidden unit will receive a connection from
each of the network's original inputs and also from each of the pre-existing
trained hidden units. The input connection weights of this new hidden unit
can be decided as below.

We begin with a candidate unit that receives input connections as
indicated above. To adjust these connection weights, we introduce a

correlation function S, which is defined below [4]:

S=33"(v, -V)(E,, -E)

where o is the network output at which the error is measured and p are the
training examples or patterns. The Vv and E, are values of V and E,
averaged over all training examples. V is the candidate unit's value, and E
is the residual output error observed at unit O. The goal is to maximize the
function S. In order to do this, we need to calculate the partial derivative

of S with respect to each of the candidate unit connection weights, —6(5\:5—

This can be represented as
s
o

i

= Zso (Ep,o —Eo)fi;ll.p
p,0

where o is the sign of the correlation between the candidate value and the

output O, f; is the derivative for training example p of the candidate unit's

activation function with respect to the sum of its inputs, and I, is the

input that the candidate unit receives from unit i for example p.

13
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After computing o for each incoming connection, we can perform

a gradient ascent to maximize S. So we can adjust the input connection
weights by using an appropriate learning algorithm, for example, quick
back-propagation. When S stops improving, we can add this new candidate
as a new unit to the network. .

Instead of using a single candidate, [4] uses a pool of candidate
units, where each candidate unit is set to a different random initial weight
and receives the same input signals, and sees the same residual error for
each training pattern. These candidates can be trained separately or in
parallel, so they will receive different input connection weights. When this
training stops, we can pick the one from the pool whose correlation score
is the best. The advantage of using a pool of candidates is that it can
greatly reduce the chance that a useless unit will be permanently installed
since an individual candidate unit may get stuck during training. In [4], the
size of the pool is chosen to be 12.

When the candidate has been created, it can be installed in the
existing network. The candidate's input connection weights will be frozen,

while its output connection will be trained repeatedly until the error

satisfies the convergence criterion.
Description of Soil Moisture Content Prediction
The soil moisture content measure is important in agricultural

engineering. It varies with depth, time, texture, bulk density, climate and

many other factors [3]. However, it is difficult to get an instantaneous,

14



accurate measure of soil moisture. Since the rate of heat dissipation is
sensitive to water content according to soil thermal theory, we can predict
soil moisture by using soil temperatures, and soil temperature is much
easier to measure than soil moisture.

[3] indicates that the soil moisture at some depth from the soil
surface is related to the soil temperatures at different levels of depth.
Also the soil moisture at time t correlate to the temperature at time t-k,
where k is a time constant. Generally k is set to 12 hours [3]. This means
that the moisture relates to the temperature 12 hours before. For example,
the soil moisture of a depth of 30 cm is correlated with the temperatures at
depths of 10, 20, 40, 50 cm respectively. Furthermore, for the same level
of depth, three sample site data are used. Now we can decide how many
input units are required in the network for this application. We have four
levels of depth of temperatures, each level with three sampling sites. So for
time t, we have 4*3 = 12 data entries. In addition, since we need this sort
of data 12 hours before, we have another 12 data entries. So a total of 24
temperature data entries are required. Also, we always have a bias that is
permanently set to 1.0. For the output layer, we need only one unit as
moisture output. For choosing the number of hidden layers, [4] indicate
that one or two hidden layers are enough for most applications. For
choosing the number of neuron units in one hidden layer, we will try
several different numbers to get best performance of the network. Figure

2.10 shows a feedforward fully connected network with one hidden layer

with five neuron units.

15



Figure 2.10

For a cascade correlation architecture, the number of input units and
output units is the same as in a fully connected network, but the number of
hidden layers as well as the number of units in each layer is dynamically
determined during the training course. We just nced to assume a minimal
structure for a cascade correlation architecture at the beginning of training,

i.e. the input layer and output layer.
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Chapter III

Learning Algorithms for Neural Networks

Back-Propagation

The back-propagation method of Rumelhart, Hinton, and Williams
[12] is a learning procedure for multilayer feedforward neural networks. By
means of this procedure, the network can learn to map a set of inputs to a
set of outputs. The mapping is specified by giving the desired activation
state of the output units for each presented state of the input units.
Learning is then carried out by iteratively adjusting connection weights in
the network so as to minimize the differences between the actual output
state vector of the network and the desired output state vector. During the
learning process, an input vector is presented to the network and
propagated forward to determine the output signal. The output vector is
compared with the desired output vector, thus resulting in an error signal,
which is back-propagated through the network in order to adjust the
connection weights in the network. This procedure will be repeated until
the network converges to a state that is sufficiently close to the desired
one. Back-propagation can be described as below.

Here we consider a network with N input neurons (processing
elements), M outputs and an arbitrary number of hidden layers. We assume
that each neuron output is fully connected to the immediately following

layer; i.e., from input to output.

17



The typical back-propagation network always has an input layer, an
output layer and at least one hidden layer. There is no theoretical limit on
the number of hidden layers but typically there are one or two. [2] indicate
that maximum of four layers ( three hidden layers and one output layer) are
required to solve arbitrarily complex pattern classification problems. Each
layer is fully connected to the succeeding layer.

For convenience, we define notation as follows:

X= (xl, Xo, X3, ... Xm) input vector

Y =(Yy, Y2, Y30 -0 Y) desired output vector

S = (sq, S5, 835 oo Sm) actual obtained output vector
sk actual obtained output vector at

k'th iteration

yk desired output vector at k'th iteration
sik i'th component of S at k'th iteration
¥; i'th component of Y at k'th iteration
f the activation function ot a neuron

£ the derivative of f

O, the output of neuron j

I the input of neuron i

e(k) the step size at iteration k

The total error in the output when one training example is presented

to the input layer is

EX(w) = (8 ~Y*)? = 30(85 - Y4)?

18



The total error over the complete training set is then calculated:

E(w) = S EX(w)
k

The back-propagation algorithm consists of carrying out a gradient descent
minimization process on E. In general, an al;proximation may be used, in
which each connection weight is modified following each presentation of
example k, using changes given by:

w (k)= w (k- 1)—e(k)2wik

This requires the program to calculate the sensitivity of E* to each

weight wy:
EY  &E' 4,
a’vu B di ‘}wu
Alternatively:

a, 5(}:,,“’-'.»0») -0
oW . A !

Y ]

In equation (32.3), p ranges over the neurons in the layer preceding neuron

i, and the outputs O, of these neurons do not depend on the weights w,.

The following result for the error sensitivity can be obtained:

19



oB* _ oE*
ow, o '

Y

k
— c .
Substituting d; for 1 we obtain:
1z

k
OE =d0.

i)

ij
thus giving

w, (k)= w,(k - 1)-e(k)d,0,

For neuron i in the output layer, since only Sf depends on I;, we have:

dv:a[zj(sj-yf)z] -
' ol.

i i

Furthermore, since s{= f(I):

d; = 2(sf -y ()
for the neurons in the hidden layers:

_(?Ek_gl_h_~}:d o,

d; = b= =
= oI, o, 4 "o

In this equation, h ranges over the neurons to which neuron i sends signals.

In reality, the inputs I to other neurons are independent of I.. This means

that



Using an index p over the neurons providing input to h, these neurons are

contained in the same layer as i and thus their outputs O, are independent

of O, for p=i, giving

o, O(Z,, Win)
00. 00.

1 1

Finally, since O, ={{(l,), we obtain
d; = Zhdnwmfl(li)

This gives the complete rule for modifying the weights, when an example

from the training set is presented for the k'th time:

w, (k)= w(k ~1)-e(k)d,0,

d; =2(s; —y)f'(L) (output layer)
d; =y d,wyuf() (hidden layer)
h

The error function can be defined as

E= ()T (4 -0,

There are other alternative definitions of the error function, which

include

21



1
E,= (E)Zldk - Oxr
<

and

E, = ()T (¢ -0,

Essentially back-propagation is a gradient descent algorithm. One of
the problems of this method is that it needs to set an appropriate learning
rate. Changing the connection weights as a linear function of the partial
derivatives as defined above makes the assumption that the error surface is
locally linear, where "locally" is defined by the size of the learning rate.
However, at some point of high curvature this linearity does not hold and
divergent behavior might occur at such points. It is therefore important to
keep the learning coefficient low enough to avoid such behavior. But on
the other hand, a small learning rate can lead to very slow learning. A
momentum term was introduced to deal with this problem [4]. The weight
Aw; at time t is modified so that the Aw; at time t-1 is added to it and
feeds through to the current delta weights. So the delta weights can be

defined as

Awij(t) = gex; + I]Awij(t -1)

where € is the learning rate and n is the momentum coefficient.
Even though adding a momentum term, some problems may still exist
with learning speed. Intuitively, different weights should have different

learning rates and ditfferent momentum coefficients. So several schemes of



dynamically adjusting the learning rate and momentum coefficients have
been proposed [4], which we will discuss in detail in later sections of this

chapter.

Delta-Bar-Delta (DBD)

Delta-Bar-Delta is a heuristic approac':h to improving the rate of
convergence of the connection weights in a multilayer neural network [1].
Generally speaking, each component of the weight vector may be quite
different in terms of its effect on the overall error surface. In particular,
every connection of a network should has its own learning rate. The step
size appropriate for one component of the weight vector may not be
appropriate for another weight component. Furthermore, these learning
rates should vary with time. The standard feedforward networks usually
have only a single learning rate for all connections, or a single learning rate
for all connections in the same layer. Permitting the learning rate for each
connection in the neural network to change continuously over time may
speed up connection weight convergence.

Since there are a lot of connection weights in a neural network, it is
very complex to determine how each weight varies over time. One scheme
for adjusting the connection weights was proposed in [2]. The basic idea
behind this is that, when the sign of the increment in a weight changes for
several consecutive time steps, the learning rate for that connection weight
should be decreased, while if the connection weight changes have the same
sign for several consecutive time steps, the connection learning rate for
that connection weight should be increased.

Here we define notation:

23



Ek) value of the error at time k

w(k) connection weight at time k

Aw(k) connection delta weight at time k

a(k) connection learning rate at time k

Aa(k) connection delta learning rate at time k

&k) gradient component of the V\Teight change at time k
&k) weighted, exponential average of previous gradient

components at time k

0 convex weight factor
K constant learning rate
¢ constant decrement factor

The Delta-Bar-Delta algorithm is given as

w(k +1)= w(k)+a(k)&k)
&k)=(1- G&k)+08Kk - 1)
a(k)= alk - 1)+Aa(k)

Aatk)= K if q&)&k-1)>0
Aa(k)= - patk) if &k-1)&k)<0
Aa(k)=0 otherwise

To understand how the rule works, we consider two simple cases.

Set the parameters k=¢=0.1 and let a;,=2.0 as an initial value. First,

suppose that the gradient components of the weight change for a

connection are of the same sign for five consecutive steps. At the end of
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these iterations, the connection learning rate will have been incremented

five times as shown below
a =a,+0.1
a, =a, +0.1
a, =a, +0.1
a, =a;+0.1

as;=a,+01l=a,+05=25

The change of a(k) is shown in Figure 3.1

a(k)

Figure 3.1

In contrast, suppose that the gradient components of the weight
change for a connection alternate sign for five consecutive steps. The

connection learning rate is adjusted as below:



a, =a,—0.1a, =(1.0-0.1)a,
o, =0, -0.1a, =(1.0-0.1)a,
o, =a, —0.1a, =(1.0-0.1)a,
a, =0,;-01u, =(1.0-0.1)a,
os=0o,~0.la, =(1.0-0.1)a,

=(1.0-0.1)’a, = 1.18098

The changes of a(k) can be shown in Figure 3.2

/N a(k)
201
}—
1.6}_
1.4
1.2
1 L | 1 { N\
0 1 2 3 4 5 ;

Figure 3.2
It is clear from the above cases that the rule increments learning
rates linearly, but decrements them geometrically. Incrementing linearly can
prevent the learning rate from becoming too large too fast. Decrementing
geometrically ensures that the connection learning rates are always
positive. Furthermore, they can be decreased more rapidly in regions of

high curvature.



In the Delta-Bar-Deita scheme, the error calculation and propagation
is the same as standard Back-Propagation. The only difference is that a

varying learning rate for each connection weight is adopted.

Extended Delta-Bar-Delta (EDBD)

The extended Delta-Bar-Delta scheme was introduced to overcome
some of shortcomings of Delta-Bar-Delta. Delta-Bar-Delta does not use a
momentum heuristic, and even small, linear increases of k could eventually
cause a learning rate to increase sufficiently that it might result in wild
jumps in weight space in this scheme. Furthermore, the geometric decrease

is sometimes not fast enough to prevent wild jumps.

Here we define notation as follows:

u(k) connection momentum rate at time k

Aulk) connection delta momentum change at time k
K, constant learning rate scale factor

K, constant momentum rate scale factor

Y constant learning rate exponential factor

Y constant momentum rate exponential factor
@, constant learning rate decrement factor

a, constant momentum rate decrement factor

[0 20 upper bound on learning rate

Hoa upper bound on momentum rate
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The Extended Delta-Bar-Delta scheme is given as follows:

Aw(k +1)= a(k)S(k)+u(k)Aw (k)
&R)=(1- ORk)+ 6k - 1)

Aa(k)= K e 74N if &k -1)&k)>0
Aa(k)= -, alk) if &k-1)&k)<0
Aa=0 otherwise )
Ap= K e T if 3k -1)&k)>0
Ap=—p u(k) if &k -1)&k)>0
Au=0 otherwise

a(k)= alk - 1)+Aa(k)
HE)= plk = 1)+Aulk)

To prevent wild jumps in weight space, constraints will be imposed on

a(k), u(k):

ok a,
M)

Notice that the learning rate and the momentum rate have separate
constants controlling their increase and decrease. Once again, the sign of
8(k) is used to indicate whether, heuristically, an increase or decrease is
appropriate. The adjustment for decrease is identical in form to that for
DBD. However, the learning rate and momentum rate increases were
modified to be exponentially decreasing functions of the magnitude of the

weighted gradient components, o6(k). Thus, greater increases will be
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applied in areas of small slope or curvature than in areas of high curvature.

This is a partial solution to the jump problem.
Quick Back-Propagation

To deal with the problem of slowness of back-propagation, many
schemes have been proposed. One of them is quick back-propagation, or
QuickProp, proposed by Fahlman [5]. Quick back-propagation is a second-
order method, based loosely on Newton's method. Two assumptions are
made with this method: first that the error vs. weight curve for each weight
can be approximated by a parabola whose arms open upward; second that
the change in the slope of the error curve as seen by each weight is not
affected by all of the other weights that change at the same time [5].

Based on these two assumptions, the delta weight Aw; can be computed as

below

L

Aw,(t)=e* 5 . B * Aw(t —1)

c_?v—v—;(t -1)- (')—w:(t)

where € is a learning rate and needs to be predetermined.

In this computation, we involve not only the current slope but also
the previous slope in the weight space. One situation may happen when the
current gradient is in the same direction as the previous gradient but is the
same size or larger in magnitude. In this case we would take an infinite

step or actually move backwards, up the current slope and toward a local

maximum. One of parameters called p was introduced to deal with this



problem. We will not allow a weight step that is greater than p times the
previous step for that weight. If the step computed by quickprop would
be too large, infinite or uphill on the current slope, we use p times the
previous step as the size of the new step. The choice of p depends on the
application. [5] suggested that u=175 will work for a wide range of

problems.

Steepest Descent with line search

Since standard back-propagation has a poor convergence rate and
depends on parameters which have to be specified by the user, there have
been efforts to improve the performance of back-propagation. One of them
is to try some minimization techniques to deal with this problem.

From an optimization point of view, learning with back-propagation
in a neural network is equivalent to minimizing a global error function,
which is a multivariable function that depends on the connection weights in
the network. Johansson, Dowla, and Goodman [15] describe the theory of
general conjugate gradient methods and how to apply the methods in
feedforward neural networks. They pointed out that the standard conjugate
gradient method with line search is faster than standard back-propagation
when tested on the parity problems [15]. Martin introduced a new variation
of the conjugate gradient method -- scaled conjugate gradient, which
avoids the line search per learning iteration by using the Levenberg-
Marquardt approach [15]. In this thesis, we will just investigate the
gradient descent minimization with line search for training a neural
network with back-propagation.

We can regard a feedforward neural network as a function
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F = F(x},X,,X5,....X, )

to be minimized where X=(x,X,,X,,..X,) are the connection weights in the
network. As a matter of fact, F is the error function, and our goal is to
minimize it. For a gradient descent method, the minimization search
direction can be obtained from the gradient véctor. The line search need to
be used to find the minimum point along the search direction. So given a
fixed search direction d and an initial point X, the line search problem is

that we just need to find a, such that
F(a)=F(X+ad)

is minimized. There are several line search methods available up to now.
They generally involve function evaluations and/or both function evaluation
and gradient calculations. [16] studied the Brent line search method and
the Nash line search method. For simplicity, in this thesis, we just like to
use a success-failure algorithm [16]. It can be described as below. Given

starting point x and step size h, if
F(x+h) <F(x)

the step will be called a success; otherwise it will be called a failure. In the

case of a success, the step size h will be increased and replaced by 9+*h,

and

x :=x+h
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where 8 is called the success factor, and we try again. In the case of a
failure, the step size will be reduced and h is replaced by t*h, and then we
try again. Generally 8 and t can be set to 2.5 and 0.5 respectively, but
they are application dependent. In this thesis these two values are set to
1.95 and 0.2 respectively.

This algorithm is very simple and ea'sily implemented for ncural
networks since it only involves function evaluations. The function
evaluations are equivalent to presenting input patterns to the input layer
and passing them forward to the output layer, and then comparing this

computed output with the desired output, resulting in an error that is the

-~

function value we desire. The calculation of

is equivalent to
0

computing a search direction. And finally, the computation of the step size
is equivalent to deciding a learning rate. It is necessary to point out that
the error function is based on the entire training set, and the connection
weights are updated after an entire set of training examples have been

presented to the network. We call this training mode batch mode.
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Chapter IV

Results and Analysis

In this chapter, we will give the results of comparison of the
performance of two different neural networks as well as five different
training algorithms for prediction of soil moisture content. These two
networks are a feedforward fully connected neural network and a cascade
correlation network, and the five algorithms are standard back-
propagation, quick back-propagation, delta bar delta, extended delta bar

delta, and steepest descent in batch mode with line search.

Test Data Preparation

To do the comparison of performance mentioned above, we use
temperature data sampled from a field for one year. The depth at which
the soil moisture content is to be predicted is chosen to 30 ¢m from the
soil surface. As discussed in Chapter III, to predict soil moisture content at
one point 30 cm deep, we need to know the temperatures at depths of 10,
20, 40, 50 cm respectively. For each day we use temperature and moisture
content data at times 2 am and 2 pm. Since each level has three
temperature sample sites, for each input pattern we have 24 temperature
inputs and one bias that is permanently set to 1.0. To study how the
network's performance behaves after training, we divide the whole data set
into two parts: one is the training data set, the other is a test data set that

is never exposed to the network during the training course, each of which
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has 154 data points. The division into two data sets can be done by
extracting temperature data of every other day into another set.

Before a training pattern is presented to the network, it needs to be
normalized. There are some problems that can arise due to not normalizing
the data before training. To normalize, we generate a MinMax table that
contains the maximum and minimum value of each field of the entire

training set. The normalization can carried out as below:

(high — low)
(max; —min,)

scale =

. high * min. — low * max.
offset = —2 . -
max, — min,

output = input * scale + offset

scaled
where max, and min, are the maximum and minimum of field i through the
whole training set; high and low are the range we would like to scale the
input.

The initialization of neural networks also has an effect on the
learning time [17]. Several methods have been invented to give neural
networks as good an initial state as possible. This can be done by either
some understanding of the learning mechanism in the networks or some

prior knowledge [17]. We can initialize the network with random values

uniformly distributed on [0,1].

Convergence Criterion
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First we need to define the learning time. There are several
definitions of learning time. One is number of the epochs, where an epoch
is defined as one pass through the entire set of training examples [7]. But
some researchers have defined an epoch as a subset of the entire training
set [5]. In this study, we adopt the first definition. The other definition of
learning time is simply the number of presentations of input patterns. In
this thesis, we give both of them as a measure of learning time.

To set a convergence criterion, one popular method is to use RMS

error [4], which is defined as below

2.(d; - 0;)?
RMS = -

where d; is the actual output and o, is the desired output. N is the number

of presentations of input patterns. A desired maximum value of RMS is
set to certain value before training begins. When the criterion RMS is
satisfied, the training will stop. There are some misunderstandings that the
poor generalization of a neural network from the training set to the test set
results from overtraining. In many applications, many users have commonly
overparameterized the network having the number of weights only a little
less than the number of training examples or even larger than the number
of training examples. This lead to overfitting of the training data and
consequent poor generalization. Some users have tried to cure this by
stopping training before reaching even a local minimum. This is not a
reasonable solution. The correct solution is to reduce the number of
weights of the network, or perhaps to use a smoothing or regularization

approach [26]. There is a rule of thumb for obtaining good generalization



of a network trained by examples is that one should use the smallest
network that will fit the training data [26]. Usually we want the number of

weights of the network significantly less than the number of training

examples.

Results

First we investigate the Cascade Correlation network. We start with
a minimal structure for this network, that is, the original network consists
only of the input layer and the output layer. At this time, it has 25 weights
and no hidden units. As indicated before, the Cascade Correlation network
will add new hidden nodes during the training course, one at a time. There
are two parameters that govern the process of adding a new hidden node,
one is outEpochs and the other is Threshold. The parameter outEpochs
gives the maximum number of epochs to train the output layer before
Threshold can be satisfied. After the maximum number of epochs has
elapsed, a new hidden node can be added to the existing network. The
parameter Threshold gives a criterion that will stop training the output
layer if it is satisfied, and add a new hidden node. The convergence
behavior of the Cascade Correlation network for prediction of soil moisture
is given in Table I. The final architecture of this cascade correlation
network consists of one hidden wunit with 26 weights. It needed
approximately 60 epochs of training to get to the RMS value of 0.03748.

Next we investigate three networks with standard back-propagation,
which have one hidden layer with three, four or five units, and the numbers
of weights of 79, 105, 131 respectively. The total number of nodes of each

of these networks are 29, 30 and 31, including 24 input units, 3, 4 or §
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hidden units, one output unit, and one bias that is permanently connected
to a constant input of 1.0. The convergence behavior of these networks
are shown in Table II, III, IV. The networks with 3, 4 or S hidden units
have no significant difference in terms of convergence speed and
generalization. For the network with four hidden units, it needs
approximately 150 epochs to get to an RMS value of 0.03831. Actually, we
kept on training until the number of epochs reached 600, but there was no
significant improvement.

For QuickProp, we use networks of the same architectures as in the
standard back-propagation above. This means that we have total number of
nodes of 29, 30, 31 each, the weights of 79, 105, 131 respectively, and
one hidden layer with three, four or five units. We find that the networks
with 3, 4 and 5 hidden units have almost the same convergence speed and
generalization performance. This may suggest that when the number of
hidden units of the network with QuickProp falls into some range, their
convergence behavior and generalization performance will not be sensitive
to the changes in the number of hidden units. In Table V, VI, VII for
QuickProp, we can find that it is almost 5 times faster than standard back-
propagation for solving the problem of prediction of soil moisture content.
In Fahlman's experiment with the complement encoder problems, the
QuickProp is about 6 times faster than the standard back-propagation. This
shows that the QuickProp is a promising method for speeding up
convergence of networks in wider applications.

The result of steepest descent in batch mode with line search is
shown in Table VIII, IX, X. The networks with 3, 4 or 5 hidden units have
almost the same convergence speed and generalization performance. We

also use the same architecture as in the standard back-propagation above.
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Since it updates the connection weights after all training patterns have
been presented, extra storage is needed to hold the accumulated delta
weights,

Table XI, XII, XIII and Table XIV, XV, XVI show the results of
DBD and EDBD. Both of them use the same architecture as in standard
back-propagation above. Both of the networks with 4 and 5 hidden units
converge faster than the one with 3 hidden units for the DBD rule, but the
network with 5 hidden units has poorer generalization performance than the
one with 3 or 4 hidden units. This is due to the overparameterization of the
network with the DBD rule. For the EDBD rule, the network with 3 hidden
units has almost the same convergence speed as the ones with either 4 or §
hidden units, but it has better generalization performance than both of
them. From these tables above, we can see that DBD and EDBD are faster
than standard back-propagation. This is due to changing their learning
parameters dynamically. Since DBD needs to adjust dynamically each
learning rate associated with each weight, it needs the same amount of
storage to hold the time-varying rates as that of weights. So it requires
twice as much storage as the standard back-propagation does. For EDBD,
in addition to dynamically adjusting learning rates, it also needs to
dynamically adjust the momentum term. So it requires three times as much
storage as the standard back-propagation does.

The comparison of these training methods and the cascade network
are summarized in Table XVII. We give some discussion about this table.
The cascade method may be the best one of all method. It has the same
order of convergence as the QuickProp and the steepest descent, but it
only one hidden node. More important, since it adds hidden nodes

dynamically during the training course, we don't have to worry about such
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things as choosing the number of hidden layer as well as the number of
units in each layer beforehand as in the case of feedforward fully-connected
network. Therefore, some overparameterization can be avoided. QuickProp
is faster than standard back-propagation because it considers not only the
first derivative of error function E with respect to the weight w,, but also
the second derivative of E with respect to w,. The speeding up of
convergence of the network by DBD and "EDBD was at the cost of

adjusting the learning rates and momentum terms dynamically.
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Table I

Convergence Behavior for a Cascade Correlation Network

# of # of # of RMS
epochs iterations hidden
units i
2 308 0 0.06488
4 616 0 0.2133
6 924 0 0.04920
8 1232 0 0.04789
10 1540 0 0.04180
12 1848 0 0.04162
14 2156 0 0.04009
16 2464 0 0.04031
18 2772 0 0.03941
20 3080 0 0.03927
22 3388 0 0.03907
24 3696 0 0.03865
26 4004 0 0.03852
28 4312 0 0.03851
30 3620 0 0.03833
40 6160 0 0.03804
50 7700 1 0.03789
55 8470 1 0.03809
60 9240 1 0.03748
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Convergence behavior for Standard Back-Propagation

Table II

with Three Hidden Units

# of # of # of RMS
epochs iterations hidden
units

1 154 3 00.2983
10 1540 3 0.03839
20 3080 3 0.03842
30 3620 3 0.03840
40 6160 3 0.04436
50 7700 3 0.04433
60 9240 3 0.04753
70 6160 3 0.03921
80 7700 3 0.04253
90 9240 3 0.04223
70 10780 3 0.03808
100 15400 3 0.03854
110 16940 3 0.03852
120 18480 3 0.03884
130 20020 3 0.04066
135 20790 3 0.03979
140 21560 3 0.03886
145 22330 3 0.03816
150 23100 3 0.03777
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Convergence behavior for Standard Back-Propagation

Table I11

with Four Hidden Units

# of # of # of RMS
epochs iterations hidden
units

2 308 4 0.1024
4 616 4 0.06440
6 924 4 0.08151

8 1232 4 0.04146
10 1540 4 0.03941
20 3080 4 0.04173
30 4620 4 0.05043
40 6160 4 0.03844
50 7700 4 0.03981
60 9240 4 0.06605
70 10780 4 0.03808
80 12130 4 0.03808
90 13860 4 0.03797
100 15400 4 0.03795
110 16940 4 0.03796
120 18480 4 0.03800
130 19500 4 0.03810
140 21560 4 0.03822
150 23100 4 0.03831
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Table IV
Convergence behavior for Standard Back-Propagation

with Five Hidden Units

# of # of # of RMS
epochs iterations hidden
units

1 154 5 0.2786
10 1540 5 0.03905
20 3080 5 0.03900
30 4620 5 0.04025
40 6160 5 0.03879
50 7700 5 0.03873
60 9240 5 0.04225
70 10780 5 0.04057
80 12130 5 0.03800
90 13800 5 0.03822
95 14630 5 0.03847
100 15400 5 0.03927
105 16170 S 0.04039
110 16940 5 0.04030
115 17710 5 0.04840
120 18480 5 0.03943
125 19250 5 0.03795
130 19500 5 0.03790
135 20790 5 0.03793
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Table V
Convergence Behavior for QuickProp Back-Propagation

with Three Hidden Units

# of # of # of RMS
epochs iterations hidden
units )
1 154 3 0.1849
2 308 3 0.1470
3 462 3 0.2061
4 616 3 0.06129
5 770 3 0.04438
6 924 3 0.03855
7 1078 3 0.03850
8 1232 3 0.03840
9 1386 3 0.03842
10 1540 3 0.03841
12 1848 3 0.06980
14 2156 3 0.04382
16 2464 3 0.03919
18 2772 3 0.03951
20 3080 3 0.03954
22 3388 3 0.03777
24 3696 3 0.03728
26 4004 3 0.03718
28 4312 3 0.03696
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Convergence Behavior for QuickProp Back-Propagation

Table VI

with Four Hidden Units

# of # of # of RMS
epochs iterations hidden
units
1 154 4 0.04514
2 308 4 0.03948
3 462 4 0.04010
4 616 4 0.03836
5 770 4 0.03836
6 924 4 0.03837
7 1078 4 0.03838
8 1232 4 0.03839
9 1386 4 0.08753
10 1540 4 0.05530
12 1848 4 0.07939
14 2156 4 0.03888
16 2464 4 0.03878
18 2772 4 0.03866
20 3080 4 0.03841
25 3850 4 0.03788
30 3620 4 0.03828
33 5082 4 0.03853
34 5236 4 0.03829
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Table VII
Convergence Behavior for QuickProp Back-Propagation

with Five Hidden Units

# of # of # of RMS
epochs iterations hidden
units
1 154 5 0.1783
2 308 5 0.07344
3 462 5 0.2138
4 616 5 0.09049
5 770 5 0.1024
6 924 5 0.05633
7 1078 5 0.1304
8 1232 5 0.04696
9 1386 5 0.06407
10 1540 5 0.03885
12 1848 5 0.03851
14 2156 5 0.03863
16 2464 5 0.03899
18 2772 5 0.05017
20 3080 5 0.04056
22 3388 5 0.03844
24 3896 5 0.03833
26 4004 5 0.03801
29 4466 5 0.03723
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Table VIII
Convergence Behavior for Steepest Descent in Batch Mode

with Line Search with Three Hidden Units

# of # of # of RMS
epochs iterations hidden
units [
1 154 3 0.07044
2 308 3 0.06825
3 462 3 0.06387
4 616 3 0.05992
5 770 3 0.05636
6 924 3 0.05323
7 1078 3 0.05057
8 1232 3 0.04834
9 1386 3 0.04650
10 1540 3 0.04499
12 1848 3 0.04275
14 2156 3 0.04124
16 2464 3 0.04021
18 2772 3 0.03949
20 3080 3 0.03895
22 3388 3 0.03859
24 3696 3 0.03831
26 4004 3 0.03809
30 3620 3 0.03795
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Table IX
Convergence Behavior for Steepest Descent in Batch Mode

with Line Search with Four Hidden Units

# of # of # of RMS
epochs iterations hidden
units 1
1 154 4 0.07425
2 308 4 0.07253
3 462 4 0.06790
4 616 4 0.06373
5 770 4 0.05998
6 924 4 0.05659
7 1078 4 0.05358
8 1232 4 0.05095
9 1386 4 0.04873
10 1540 4 0.04687
12 1848 4 0.04404
14 2156 4 0.04211
16 2464 4 0.04078
18 2772 4 0.03985
20 3080 4 0.03919
22 3388 4 0.03871
24 3696 4 0.03836
26 4004 4 0.03810
28 4312 4 0.03791
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Convergence Behavior for Steepest Descent in Batch Mode

Table X

with Line Search with Five Hidden Units

# of # of # of RMS
epochs iterations hidden
units
1 154 5 0.07702
2 308 S 0.07561
3 462 5 0.07052
4 616 5 0.06258
5 770 5 0.06173
6 924 5 0.05798
7 1078 5 0.05466
8 1232 5 0.05179
9 1386 5 0.04936
10 1540 5 0.04733
12 1848 5 0.04426
14 2156 5 0.04218
16 2464 5 0.04075
18 2772 5 0.03977
20 3080 5 0.03808
22 3388 5 0.03857
24 3696 5 0.03823
26 4004 5 0.03797
28 4312 5 0.03787
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Convergence Behavior for DBD with Three Hidden Units

Table XI

# of # of # of RMS

epochs iterations hidden
units

1 154 3 0.05201

2 308 3 0.03870

3 462 3 0.03892

4 616 3 0.03819

5 770 3 0.04039

6 924 3 0.04047
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Convergence Behavior for DBD with Four Hidden Units

Table XII

# of # of # of RMS
epochs iterations hidden
units
1 154 4 0.05219
2 308 4 0.03685
3 462 4 0.03610
4 616 4 0.03645
5 770 4 0.03091
6 924 4 0.03085
7 1078 4 0.02963
8 1232 4 0.03007
9 1386 4 0.02826
10 1540 4 0.02872
11 1694 4 0.02949
12 1848 4 0.02964
13 2002 4 0.02845
14 2156 4 0.03142
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Table XIII

Convergence Behavior for DBD with Five Hidden Units

# of # of # of RMS
epochs iterations hidden
units
1 154 5 l 0.05050
2 308 5 0.03702
3 462 5 0.03629
4 616 5 0.03236
5 770 5 0.03137
6 924 5 0.02971
7 1078 5 0.03148
8 1232 5 0.02908
9 1386 5 0.03889
10 1540 5 0.03013
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Table XIV

Convergence Behavior for EDBD with Three Hidden Units

# of # of # of RMS
epochs iterations hidden
units |
1 154 3 0.06901
2 308 3 0.04667
3 462 3 0.04140
4 616 3 0.03952
5 770 3 0.04469
6 924 3 0.04133
7 1078 3 0.03901
8 1232 3 0.03808
9 1386 3 0.03764
10 1540 3 0.03643
11 1964 3 0.04202
12 1848 3 0.03827
13 2002 3 0.03780
14 2156 3 0.03698
15 2310 3 0.03669
16 2464 3 0.03733
17 2618 3 0.03695
18 2772 3 0.03618
19 2926 3 0.03611




Convergence Behavior for EDBD with Four Hidden Units

Table XV

# of # of # of RMS
epochs iterations hidden
units
1 154 4 0.06789
2 308 4 0.04491
3 462 4 0.04086
4 616 4 0.03876
5 770 4 0.03775
6 924 4 0.03699
7 1078 4 0.04209
8 1232 4 0.03931
9 1386 4 0.04036
10 1540 4 0.03876
11 1964 4 0.03659
12 1848 4 0.03682
13 2002 4 0.03793
14 2156 4 0.03695
15 2310 4 0.03678
16 2464 4 0.03658
17 2618 4 0.04087
18 2772 4 0.03857
19 2926 4 0.03465




Table XVI

Convergence Behavior for EDBD with Five Hidden Units

# of # of # of RMS
epochs iterations hidden
units
1 154 5 ‘ 0.065859
2 308 5 0.04370
3 462 5 0.03917
4 616 5 0.03699
5 770 5 0.03612
6 924 5 0.03792
7 1078 5 0.03663
8 1232 5 0.03656
9 1386 5 0.03807
10 1540 5 0.03809
11 1964 5 0.03660
12 1848 5 0.03543
13 2002 5 0.03569
14 2156 5 0.03519
15 2310 5 0.03470
16 2464 5 0.03658
17 2618 5 0.03473
18 2772 5 0.03532
19 2926 5 0.03421
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Table XVII

Comparison of Convergence Behavior for Different Architecture

and Algorithms

alg. or | # hidden # # of # of training testing

arch. units weights epochs |iterations RMS RMS
cascade 1 26 60 '9240 0.03748 0.03810
std BP 3 79 155 23870 0.03772 | 0.03815
std BP 4 101 150 23100 0.03831 0.03869
std BP 5 131 135 20790 0.03793 0.03835
quick BP 3 79 28 4312 0.03696 | 0.03750
quick BP 4 101 34 5236 0.03829 | 0.03870
quick BP 5 131 29 4466 0.03723 0.03777
SD 3 79 30 3620 0.03795 0.03810
SD 4 101 34 4466 0.03791 0.03783
SD 5 131 27 4158 0.03787 | 0.03805
DBD 3 79 7 1078 0.04047 | 0.04366
DBD 4 101 15 2310 0.03142 | 0.03940
DBD 5 131 11 1694 0.03013 0.04366
EDBD 3 79 19 2926 0.03611 0.03770
EDBD 4 101 20 3080 0.03465 | 0.03912
EDBD 5 101 19 2926 0.03421 {0.037530

56




Chapter V

Conclusions
We studied two kinds of neural networks: a feedforward fully-
connected network and a cascade correlation network for prediction of soil
moisture content. The comparison of performance of five training methods
with a fully-connected network and a cascade network was made. By

experimental results, we can get following conclusions:

e Standard back-propagation is the slowest of all methods.

e QuickProp is faster than standard back-propagation.

e Cascade correlation has the same order of convergence as the
QuickProp, but it needs fewer hidden units than a fully-connected
feedforward network, resulting in less storage requirement for connection
weights, and is less prone to overparameterization.

e Steepest descent in batch mode with line search is as fast as
QuickProp, but it needs extra storage to hold accumulated delta weights
than general incremental methods.

e DBD and EDBD have almost the same convergence speed, and both
of them are faster than QuickProp and steepest descent in batch mode with

line search.
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APPENDIX A

C THIS PROGRAM IMPLEMENTS THE NEURAL NETWORKS WITH
C ALGORITHMS OF STANDARD BACK PROPAGATION, STEEPEST
C DSCENT IN BATCH MODE WITH LINE SEARCH, DELTA
C BAR DELTA, EXTENDED DELTA BAR DELTA.
C THE TRAINING DATA 1S KEPT IN A FILE CALLED "TRAIN.DAT"
C AND TEST DATA KEPT IN A FILE OF "TEST.DAT", WHICH IS
C NEVER EXPOSED TO THE NEURAL NETWORKS DURING THE TRAINING
C COURSE. AFTER THE TRAINING OF NEURAL NETWORKS HAS BEEN
C COMPLETED, IT WILL BE TESTED USING TEST DATA AND THE RESULT
C WILL BE STORED IN A FILE OF TEST.NNR.
C
INTEGER LJ,1I
C DEFINITION OF CONNECTION WEIGHTS, INPUT NODES, OUTPUT
C NODES, TIME VARYING PARAMETER MATRIX
REAL MOISTURE,EPSILON,SUMERR
* NODEIN(30,30),NODEOUT(30,30),W(3,30,30),DW(3,30,30)
* DELTA(3,30,30),ALPHA(3,30,30),DWA(3,30,30), TEMP(310,206)
* MIN(25),MAX(25),RI,WM,MU(3,30,30)
C SCALE PARAMETER, TRAINING PARAMETER
REAL HIGH,LOW,OFFSET,SCALE,Y1,S81,Y10,SI0
INTEGER NMNODE(3),TRMD,EPOCH,EPLENGTH,
*NN,EPCNT,JJ
* INL,HHDL,OUTL,FRT,LST,NDPT,FLAG,MAXEP,OUT1,0UT2
C
C INPUT LAYER NUMBER
INL=1
C HIDDEN LAYER NUMBER
HHDL=2
C OUTPUT LAYER NUMBER
OUTL=3
C NUMBER OF NODES IN INPUT LAYER
NMNODE(INL)=25
C NUMBER OF HIDDEN NODES
NMNODE(HHDL)=4
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C NUMBER OF OUTPUT NODE
NMNODE(OUTL)=1
C NUMBER OF LAYERS
LAYER=3
C NUMBER OF HIDDEN UNITS
N=NMNODE(HHDL)
C NUMBER OF INPUT UNITS
M=NMNODE(INL)
C OUTPUT RANGE
HIGH=1.0
LOW=0.0
C CONVERGENCE CRITERION
EPSILON=0.037
C SUM SQUARED ERROR INITIALIZATION
SUMERR=0.0
C THE COUNTER FOR EPOCHS ELAPSED
EPCNT=0
C NUMBER OF DATA POINTS IN THE TRAINING SET
NDPT=154
C READ FLAG: FLAG=1 READ TRAINING FILE
C FLAG=2 READ FROM TESTING FILE
FLAG=1
C MAXIMUM NUMBER OF EPOCHS SET
MAXEP=1000
C THE NUMBER OF PRESENTATIONS TO UPDATA WEIGHTS
C IF EPLENGTH=1--A INCREMENTAL UPDATE WEIGHTS
EPLENGTH=1
C THE COUNTER FOR UPDATE WEIGHT
EPOCH =0
C MAXIMUM OF WEIGHT
WM=100.0
C OUTPUT DEVEICE NUMBER
OUT1=4
OUT2=6
OUT3=5
C TRAINING METHOD: TRMD=1--STANDARD BACK-PROPAGATION
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C TRMD=3-DELTA BAR DELTA; TRMD=4--EXTENDED DELTA BAR DELTA
TRMD=4
C THE COUNTER FOR COMPUTE RMS ERROR
NN=0
C
C OPEN PARAMETER FILE
C OPEN(OUTS3,FILE="par.dat’)
C THE TRAINING RMS FILE
OPEN(OUT?2,FILE='err.dat")
C INPUT TEMPERATURE DATA
CALL RDINPUT(TEMP,NDPT,NMNODE(INL),FLAG,LST)
C RANDOMIZE CONNECTION WEIGHTS
CALL RANWT(W,NMNODE,LAYER,INL,HHDL)
C COMPUTE MIN-MAX TABLE
CALL MNTAB(TEMP,MIN,MAX,NDPT,LST)
C INITIALIZE DELTA WEIGHTS
CALL INITDW(DW,DELTA,ALPHA NMNODE,INL,HHDL)
50 RI=RAND()
C IF NUMBER OF EPOCHS OF TRAINING LARGER THAN MAXIMUM
C THEN STOP TRAINING
IF (EPCNT .EQ. MAXEP) THEN
GOTO 32
ENDIF
JJ=J1+1
1I=MOD(JJ,NDPT)
IF (li .EQ. U) THEN
=1
ENDIF

DO 20 J=1,NMNODE(INL)
NODEOUT(INL,J)=TEMP(1L,J)
IF(NODEOUT(INL,J) .EQ. 0.0 )THEN

STOP
ENDIF
20 CONTINUE
C SET INPUT RANGE BETWEEN 0 AND 1.0
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C NORMALIZATION OF INPUT TEMPERATURE DATA
SIO=NODEOUT(FRT,NMNODE(INL))

DO I=1,NMNODE(INL)
SCALE=(HIGH-LOW)/(MAX(1)-MiN(l))
OFFSET=(MAX(1)* LOW-MIN(l)* HIGH)/(MAX(1)-MIN())
NODEOUT(FRT,I)=NODEOUT(FRT,1)*SCALE+OFFSET

END DO

C FORWARD INPUT TRAINING PATTERN TO OUTPUT LAYER
CALL FDINPUT(W,NODEIN,NODEOUT ,NMNODE,LAYER N,M)

C ACTUAL OUTPUT FROM SAMPLE DATA SCALED TO 0 AND +1.0

C  YIO=NODEOUT(LAYERFRT)

C NODEOUT(LAYER,FRT)= NODEOUT(LAYER FRT)*SCALE+OFFSET
SI=NODEOUT(FRT,LST)

C PREDICTED OUTPUT SCALED TO ACTUAL VALUE OF 0 AND 0.4
YI=NODEOUT(LAYER,FRT)
SCALE=(MAX(LST)-MIN(LST)/(HIGH-LOW)
OFFSET=(HIGH*MIN(LST)-LOW*MAX(LST)/(HIGH-LOW)
YIO=YI*SCALE+OFFSET

C  WRITE(*23) YIO,SIO

23 FORMAT(1X,2F8.6)

C STANDARD BACK PROPAGATION ALGORITHM
IF(TRMD .EQ. 1) THEN

CALL STDBP(W,DW,NODEIN,NODEOUT,NMNODE,LAYER N,M,
*SLYI)

ENDIF

C DELTA BAR DELTA ALGORITHM
IF(TRMD .EQ. 3)THEN

CALL DBDBP(W,DW,NODEIN,NODEOUT,NMNODE,LAYER,N,M,
*SI,YI,ALPHA,DELTA)

ENDIF

C EXTENDED DELTA BAR DELTA ALGORITHM
IF(TRMD .EQ. 4)THEN

CALL EDBDBP(W,DW,NODEIN,NODEOUT,NMNODE,LAYER,N,M,
*SI.YI,ALPHA,DELTA,MU)
ENDIF



C  WRITE(OUTS3,29) (ALPHA(LAYER,FRT,I),I=1, NMNODE(HHDL))
C  WRITE(OUTS3,29) (MU(LAYER,FRT,I),I=1,NMNODE(HHDL))
29 FORMAT(1X,6F8.6)
DO I=1,NMNODE(HHDL)+1
DWA(LAYER,FRT,[)=DWA(LAYER,FRT,[)+DW(LAYER,FRT,})
END DO
DO 25 I=1, NMNODE(2)
DO 28 J=1, NMNODE(1)
DWA(HHDL,LJ))=DWA(HHDL,1J))+DW(HHDL,1,}) *
28 CONTINUE
25 CONTINUE
EPOCH=EPOCH+1
IF(EPOCH .EQ. EPLENGTH)THEN
EPOCH=0
C IF CONNECTION WEIGHT LARGER THAN BOUND
C SET IT TO THE BOUND
DO I=1,NMNODE(HHDL)
C UPDATA WEIGHT
W(LAYER,FRT, )=W(LAYER,FRT . )+tDWA(LAYER,FRT.})
IF(W(LAYER,FRT,I) .GT. WM)THEN
W(LAYER,FRT,I)=WM
ENDIF
IF(W(LAYER,FRT,I).LT. -WM)THEN
W(LAYER,FRT,])=-WM
ENDIF
ENDDO
DO 40 I=1, NMNODE(HHDL)
DO 42 J=1,NMNODE(INL)
C UPDATE THE WEIGHT
W(HHDL,1,})=W(HHDL,1,J)+DWA(HHDL,LJ)
IF(W(HHDL,1,)) .GT. WM )THEN
W(HHDL,LJ)=WM

ENDIF

IF(W(HHDL,LJ) .LT. -WM)THEN
W(HHDL,LJ)= -WM

ENDIF
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42 CONTINUE
40  CONTINUE
C RESET DELTA WEIGHT
DO I=1,NMNODE(HHDL)
DWA(LAYER,FRT,1)=0.0
END DO
DO 26 =1, NMNODE(HHDL)
DO 27 J=1, NMNODE(INL)
DWA(HHDL,1,J)=0.0 .
27 CONTINUE
26  CONTINUE
ENDIF
C COMPUTE SUM SQUARED ERROR
SUMERR=SUMERR+(SI0-Y10)*(S10-Y10)
IF(NN .EQ. NDPT)THEN
NN=0
C SUM SQUAREED ROOT ERROR
SUMERR=SQRT(SUMERR/NDPT)
EPCNT=EPCNT+1
C OUTPUT SUM SQUARED ERROR AND NUMBER OF EPOCHS ELAPSED
WRITE(OUT2,31) EPCNT,SUMERR
WRITE(*,31) EPCNT,SUMERR
31 FORMAT(IX,I5, ' F8.6)
IF (SUMERR .LT. EPSILON) THEN
C IF TRAINING COMPLETED, START TO TEST NETWORKS
C READ TEST DATA
FLAG=2
32 CALL RDINPUT(TEMP,NDPT,NMNODE(INL),FLAG)
C OPEN TEST RESULT FILE
OPEN(OUT,FILE=(est.nnr’)
WRITE(OUT]1,45) COUNTER
DO K=1,NDPT
DO 21 J=1,NMNODE(INL)
NODEOUT(FRT,J)=TEMP(K,J)
IF(NODEOUT(INL,J) .EQ. 0.0 )THEN
STOP
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ENDIF
21 CONTINUE

C
SIO=NODEOUT(FRT,LST)

C NORMALIZATION OF INPUT TEPERATURE DATA
DO 22 1=1,NMNODE(INL)

SCALE=(HIGH-LOW)/(MAX(I)-MIN(1))
OFFSET=(MAX(1)*LOW-MIN(I)*HIGH)

*  (MAX(I)-MIN(1))
NODEOUT(FRT,I)=NODEQUT(FRT,1)*SCALE+OFFSET

22 CONTINUE

C FORWARD INPUT DATA TO OUTPUT LAYER
CALL FORWARDFDINPUTINPUT(W,NODEIN,NODEOUT,NMNODE,LAYER,N,M)
YI=NODEOUT(LAYER,FRT)

C SCALED BACK TO ACTUAL RANGE OF TEMPERATURE
SCALE=(MAX(LST)-MIN(LST))/(HIGH-LOW)
OFFSET=(HIGH*MIN(LST)-LOW*MAX(LST))/(HIGH-LOW)
YIO=YI*SCALE+OFFSET
WRITE(OUT!,23) YI0,S10

ENDDO
CLOSE(OUT1)
CLOSE(OUT3)
CLOSE(OUT2)
STOP
ENDIF
C IF CONVERGENCE CRITERION NOT SATISFIED, CONTINUE TRAINING
IF(SUMERR .GE. EPSILON)THEN
NN=0
SUMERR=0.0
GOTO 50
ENDIF
ENDIF
IF(NN .LT. NDPT)THEN
NN=NN+1
GOTO 50
ENDIF
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45 FORMAT(IS)
60 END
C
C
C***#*‘*‘###***#1#*******#t*#!t#‘#‘#"tt‘###l###**'#t*#*"#t‘#‘t
SUBROUTINE FDlNPUT(W,NODElN,NODEOUT,NMNODE,LAYER,N,M)
C FORWARD INPUT VECTOR TO OUTPUT LAYER
REAL W(LAYER,N,M),NODEIN(N,M),NODEOUT(N,M)
INTEGER NMNODE(M),N,M °
INTEGER ,J,K
REAL SUM,SCALE,OFFSET
C SUM -- THE SUM OF ALL INPUT TO ONE NODE
C
DO 100 I=2,LAYER
DO 110 J=1,NMNODE(l)
SUM=1.0*W(L,J,1)
DO 120 K=2,NMNODE(I-1)
C SUM ALL INPUT WITH CONNECTION WEIGHTS
SUM=SUM+NODEOQOUT(I-1,K-1)*W(1,J,K)
120 CONTINUE
NODEIN(1,J)=SUM
C ACTIVATION FUNCTION TO GET OUTPUT
NODEOUT(1,1)=FUN(SUM)
110  CONTINUE
100 CONTINUE
END
C
C

el T P T T e T
SUBROUTINE STDBP(W,DW,NODEIN,NODEOUT,NMNODE,LAYER,N,M,S1,Y1
* INL,HHDL,OUTL,LCOEF)

C STANDARD BACKPROPAGATION ALGOTITHM

C INPUT: DESIRED OUTPUT, ACTUAL OUTPUT

C CONNECTION WEIGHTS AND INPUT AND OUTPUT NODES
REAL W{LAYERN,M).DW(LAYERN.M).NODEIN(N.M).NODEOUT(N.M),
*SLY]



INTEGER NMNODE(N),N,M,LAYER
REAL DI,DJ,LCOEF
INTEGER L,J,INL,HHDL,OUTL
C
C OUTPUT LAYER COMPUTATION OF DELTA WEIGHTS
DI=(SI-YI)*F UND(NODEIN(LAYER,FRT))
DW(LAYER FRT,FRT)=LCOEF*DI*F UN(W(LAYER,INL,FRT))
DO 200 I=1, NMNODE(LAYER-1)
DW(LAYER,FRT,I+1)=LCOEF *DI*NODEOUT(LAYER-1,1)
200 CONTINUE
C HIDDEN LAYER DELTA WEIGHTS COMPUTATION
DO 210 1=1, NMNODE(LAYER-1)
DJ=DI*W(LAYER,FRT,[)*FUND(NODEIN(HHDL, 1))
DW(HHDL,I,FRT)=LCOEF*DJ*FUN(W(HHDL,I,FRT))
DO 220 j=1, NMNODE(LAYER-2)
DW(HHDL,LJ+1)=LCOEF*DJ*NODEOUT(LAYER-2,J)
220 CONTINUE
210 CONTINUE
RETURN
END
C
C

C#*#***#*‘*******#‘##****t##‘#'“‘*##*#.#‘*“-#‘#t#"l#‘###t#*##"#

SUBROUTINE DBDBP(W,DW,NODEIN,NODEOUT,NMNODE,LAYER,N,M,SIL, Y1
*DELTA,ALPHA INL HHDL,OUTL,LCOEF)

C DELTA BAR DELTA ALGORITHM

C INPUT: DESIRED OUTPUT AND ACTUAL OUTPUT AS WELL

C AS CONNECTION WEIGHTS, INPUT AND OUTPUT NODES

C OUTPUT: COMPUTE DELTA WEIGHT

C CONNECTION WEIGHT, DELTA WEIGHT, ALPHA PARAMETER
REAL W(LAYER,N,M),DW(LAYER,N,M),DELTA(LAYER,N,M),ALPHA(LAYER,N,M)
* SI,YILNODEIN(N,M),NODEOUT(N,M)
INTEGER NMNODE(N),N.M
REAL DI1,DI11,DJ,DJ1,DELTAV,DELTAP KI,THETA,PHI, ALPHAMAX

* LCOEF,DWMAX,PU
C
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C  DEFINITION OF CONSTANTS OF LEARNING COEFICIENTS
C AVERAGE FACTOR OF DLETA E
THETA=0.1
C DELTA RULE PARAMETER
KI=03
C EXPONENTIAL FACTOR
PHI=0.1
C THE BOUND FOR ALPHA
ALPHAMAX=0.8 .
C MAXIMUM DELTA WEIGHT
DWMAX=15.0
C DELTA RULE PARAMETER
PU=0.1
C
C OUTPUT LAYER DELTA WEIGHT COMPUTATION
DI=(SI-YI)*FUND(NODEIN(LAYER FRT))
DI1=DI*FUN(1.0)
DELTAV=(1-THETA)*DI1+THETA*DELTA(LAYER FRT,FRT)
C IF DELTA AND DELTA AVERAGE HAVE SAME SIGNS
IF(DELTAV * DELTA(LAYER,FRT,FRT) .GT. 0.0)THEN
DELTAP=KI
ENDIF
C IF DELTA AND DELTA AVERAGE HAVE DIFFERENT SIGNS
IF(DELTAV*DELTA(LAYER FRT,FRT) .LT. 0.0)THEN
DELTAP=-PHI*ALPHA(LAYER,FRT,FRT)
ENDIF
C IF DELTA EQUALS ZERO OR DELTA AVERAGE EQUALS ZERO
IF(DELTAV*DELTA(LAYER FRT,FRT) .EQ. 0.0) THEN
DELTAP=0.0
ENDIF
DELTA(LAYER,FRT,FRT)=DI1
ALPHA(LAYER FRT,FRT)=ALPHA(LAYER,FRT)+DELTAP
C GIVE THE UPPER BOUND OF ALPHA PARAMETER
C IF COMPUTED ALPHA LARGER THAN THE UPPER BOUND
C SET ALPHA TO THAT BOUND
IF (ALPHA(LAYER FRT,FRT) .GT. ALPHAMAX)THEN
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ALPHA(LAYER,FRT,FRT)=ALPHAMAX
ENDIF
DW(LAYER,FRT FRT)=ALPHA(LAYER FRT FRT)*DI|
C  IF (DW(LAYERFRTFRT) .GT. DWMAX)THEN
C  DW(LAYERFRT,FRT)=PU
C ENDIF
C
DO 400 I=1, NMNODE(LAYER-1)
DI1=DI*NODEOUT(LAYER-1,1) .
C COMPUTE DELTA AVERAGE
DELTAV=(1-THETA)*DI1+THETA*DELTA(LAYER FRT,I+1)
C IF DELTA AND DELTA AVERAGE HAVE SAME SIGNS
IF(DELTAV * DELTA(LAYER,FRT,1+1) .GT. 0.0)THEN
DELTAP=KI
ENDIF
C IF DELTA AND DELTA AVERAGE HAVE OPPSITE SIGNS
IF(DELTAV*DELTA(LAYER,FRT,I+1) .LT. 0.0)THEN
DELTAP=-PHI*ALPHA(LAYER,FRT,1+1)
ENDIF
C IF DELTA EQUALS ZERO
IF(DELTAV*DELTA(LAYER FRT,1+1) .EQ. 0.0 )THEN
DELTAP=0.0
ENDIF
DELTA(LAYER,FRT,1+1)=DI1
ALPHA(LAYERFRT,1+1)=ALPHA(LAYER FRT,l+1)+DELTAP
C SET UPPER BOUND TO ALPHA
C IF ALPHA LARGER THAN UPPER BOUND, SET ALPHA TO THE BOUND
IF(ALPHA(LAYER FRT,I+1) .GT. ALPHAMAX)THEN
ALPHA(LAYER,FRT,I+1)=ALPHAMAX
ENDIF
DW(LAYER,FRT,I+1)=ALPHA(LAYER FRT,I+1)*DI 1
C  IF(ABS(DW(LAYER1,1+1)) .GT. DWMAX)THEN
C DW(LAYER,FRT,I+1)=PU
C  ENDIF

400 CONTINUE
C THE FOLLOWING IS THE SAME AS ABOVE EXCEPT FOR HIDDEN LAYER
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DO 410 I=1 NMNODE(LAYER-1)
DJ=DI*W(LAYER,FRT,1)* FUND(NODEIN(HHDL,1))
DO 420 J=1,NMNODE(LAYER-2)
DJji=DJ * NODEOUT(LAYER-2,})
C COMPUTE DELTA AND DELTA AVERAGE
DELTAV=(1.0-THETA)*DJ1+THETA*DELTA(HHDL,1,J+1)
C IF DELTA AND DELTA AVERAGE HAVE SAME SIGNS
IF(DELTA(HHDL,1,J+1) * DELTAV .GT. 0.0)THEN
DELTAP=KI1
ENDIF
C IF DELTA AND DELATA AVERAGE HAVE OPPOSITE SIGNS
IF(DELTA(HHDL,1LJ+1)*DELTAV .LT. 0.0)THEN
DELTAP=-PHI*ALPHA(HHDL,LJ+1)
ENDIF
C IF DELTA OR DELTA AVERAGE EQUALS ZERO
IF(DELTA(HHDL,1,J+1) * DELTAV .EQ. 0.0)THEN
DELTAP=0.0
ENDIF
ALPHA(HHDL,1,J+1)=ALPHA(HHDL,1J+1)*DELTAP
C SET UPPER BOUND TO ALPHA
C IF COMPUTED ALPHA 1S LARGER THAN UPPER BOUND
C THEN SET ALPHA TO UPPER BOUND
IF(ALPHA(HHDL,1,J+1) .GT. ALPHAMAX)THEN
ALPHA(HHDL,1,J+1)=ALPHAMAX
ENDIF
DELTA(HHDL,1,J+1)=DJ1
DW(HHDL,I,J+1)=ALPHAHHDL,LJ+1)*Dl1

C IF(ABS(DW(HHDS,1,J+1)) .GT. DWMAX)THEN
C DW(HHDL,LJ+1)=PU
C ENDIF

420 CONTINUE

410 CONTINUE
RETURN
END
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C‘*****‘***#‘t#"**‘t‘*‘*#‘t*t#U*‘*‘###tt#**‘t**!##“#“#"‘t#“"t‘
SUBROUTINE EDBDBP(W,DW,NODEIN,NODEOUT ,NMNODE,LAYER N,M,S1, Y]
*,ALPHA ,DELTA MU, INL ,HHDL OUTL,LCOEF)
C EXTENDED DELTA BAR DELTA ALGORITHM
C EXTENDED DELTA BAR DELTA IS A MODIFICATION VERSION OF
C DELTA BAR DELTA WITH MOMENTUM BEING TIME-VARING
C CONNECTION WEIGHT, DELTA WEIGHT, INPUT NODE AND OUTPUT NODE
C ALPHA AND DELTA PARAMETER
REAL W(LAYER,N,M),DW(LAYER,N,M),NODEIN(N,M),NODEOUT(N,M),S1,YI
REAL DELTA(LAYERN,M),ALPHA(LAYER,N,M), MU(LAYER,N,M)
INTEGER N,M,NMNODE(N)
REAL DI,DJ,DI1,DJ1
INTEGER 1,J
C DEFINITION OF DIFFERENT PARAMETERS FOR EDBD RULE
REAL
DELTAP,DELTAV,DELTAMU,THETA KALPHA KMU,GALPHA,GMU,PALPHA,PMU
* ALPHAMAX,MUMAX,DWMAX,PU

THETA = 0.1

C CONSTANT LEARNING RATE SCALE FACTOR
KALPHA =0.2

C CONSTATN MOMENTUM SCALE FACTOR
KMU=0.1

C CONSTANT LEARNING RATE EXPONENTIAL FACTOR
GALPHA = 0.05

C CONSTANT MOMENTUM RATE EXPONENTILA FACTOR
GMU =0.01

C CONSTANT LEARNING RATE DECREMENT FACTOR
ALPHA =0.1

C CONSTANT MOMENTTUM RATE DECREMENT FACTOR
PMU=0.1

C UPPER BOUND ON THE LEARNING RATE
ALPHAMAX =0.1

C UPPER BOUND IN THE MOMENTUM RATE
MUMAX =0.01

C MAXIMU VALUE OF DELTA WEIGHT
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DWMAX =5
C SET DELTA WEIGHT TO THIS VALUE IF LARGER THAN BOUND
PU=0.1
C
C COMPUTATION OF OUTPUT LAYER
DI=(SI-YT)*FUND(NODEIN(LAYER, 1))
DIN=DI*FUN(W(LAYER,INL,FRT))
C COMPUTE DELTA AVERAGE
DELTAV=(1.0-THETA)*DI1+THETA*DELTA(OUTL,FRT,FRT)
C IF DELTA AND DELTA AVERAGE HAVE SAME SIGNS
IF(DELTAV*DELTA(OUTL,FRT,FRT) .GT. 0.0)THEN
DELTAP=KALPHA*EXP(-GALPHA*ABS(DELTAY))
DELTAMU=KMU*EXP(-GMU*ABS(DELTAYV))
ENDIF
C IF DELTA AND DELTA AVERAGE HAVE OPPOSITE SIGNS
IF (DELTAV*DELTA(OUTL,FRT,FRT) .LT. 0.0)THEN
DELTAP=-PALPHA*ALPHA(OUTL,FRT,FRT)
DELTAMU =-PMU*MU(OUTL,FRT,FRT)
ENDIF
C IF DELTA AND DLETA AVERAGE EQUALS ZERO
IF (DELTAV*DELTA(OUTL,FRT,FRT) .EQ. 0.0)THEN
DELTAP=0.0
DELTAMU=0.0
ENDIF
DELTA(OUTL,FRT,FRT)=DI1
ALPHA(OUTL,FRT FRT)=ALPHA(OUTL,FRT FRT)+DELTAP
C SET UPPER BOUND TO ALPHA
C IF COMPUTED ALPHA IS LARGER THAN UPPER BOUND
C THEN SET ALPHA TO UPPER BOUND
IF(ALPHA(OUTL,FRT,FRT) .GT. ALPHAMAX)THEN
ALPHA(OUTL,FRT,FRT)=ALPHAMAX
ENDIF
MU(OUTL,FRT,FRT)=MU(OUTL,FRT,F RT)+DELTAMU
C GIVE THE BOUND OF MU
IF(MU(OUTL,FRT,FRT) .GT. MUMAX)THEN
MU(OUTL,FRT,FRT)=MUMAX
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ENDIF
DW(LAYER,INL,FRT)=ALPHA(OUTL FRT,FRT)*DI1
* +MU(OUTL,FRT,FRT)*DW(LAYER INL FRT)
C  IF(DW(LAYER INLFRT) .GT. DWMAX)THEN
C DW(LAYER,INL,FRT)=DWMAX
C ENDIF
DO 500 1=1, NMNODE(LAYER-1)
DI1=DI*NODEOUT(LAYER-1,])
C COMPUTE DELTA AND DELTA AVERAGE -
DELTAV=(1.0-THETA)*DI1+THETA*DELTA(OUTL,FRT.1)
C IF DELATA AND DELTA AVERAGE HAVE SAME SIGNS
IF(DELTAV*DELTA(OUTL,FRT,1+1) .GT. 0.0)THEN
DELTAP=KALPHA*EXP(-GALPHA * ABS(DELTAV))
DELTAMU=KMU*EXP(-GMU * ABS(DELTAV))
ENDIF
IF(DELTAV*DELTA(OUTL,FRT,I+1) .LT. 0.0)THEN
C IF DELTA AND DELTA AVERAGE HAV OPPOSITE SIGNS
DELTAP=-PALPHA*ALPHA(OUTL,FRT,I+1)
DELTAMU=-PMU*MU(OUTL,FRT,1+1)
ENDIF
C IF DELTA OR DELTA AVERAGE EQUALS ZERO
IF(DELTAV*DELTA(OUTL,FRT,1+1) .EQ. 0.0)THEN
DELTAP=0.0
DELTAMU=0.0
ENDIF
DELTA(QUTL,FRT,I+1)=DIl
ALPHA(OUTL,FRT,1+1)=ALPHA(3,1,1+1)+DELTAP
C SET UPPER BOUND TO ALPHA. IF ALPHA COMPUTED IS LARGER
C THAN UPPER BOUND THEN SET IT TO UPPER BOUND
IF(ALPHA(OUTL,FRT,I+1) .GT. ALPHAMAX)THEN
ALPHA(OUTL,FRT, 1+1)=ALPHAMAX
ENDIF
MU(OUTL,FRT,1+1)=MU(OUTL,FRT,I+1)+DELTAMU
C  GIVE THE BOUND OF MU
IF(MU(OUTL,FRT,1+1) .GT. MUMAX)THEN
MU(OUTL,FRT,1+1)=MUMAX
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ENDIF
DW(OUTL,FRT,1+1)=ALPHA(OUTL,FRT,I+1)*Dl1
* + MU(OUTL,FRT,I+1) * DW(OUTL,FRT,I+1)

C IF(DW(OUTL,FRT,I1+1).GT. DWMAX)THEN

C DW(OUTL,FRT,[+1)=DWMAX
C ENDIF

500 CONTINUE
C

C THE FOLLWING IS THE SAME AS ABOVE EXCEPT FOR HIDDEN LAYER
DO 510 I=1, NMNODE(LAYER-1)
DI=DI*W(OUTL,FRT,1+1) * FUND(NODEIN(HHDL,I)
DI1=DI*FUN(W(HHDL,1,1))
C CALCULATE ALPHA AND MU
C COMPUTE DELTA AND DELTA AVERAGE
DELTAV=(1.0-THETA)*DI1+THETA*DI|
IF(DELTAV*DELTA(HHDL,I,FRT) .GT. 0.0)THEN
DELTAP=KALPHA*EXP(-GALPHA*ABS(DI1))
DELTAMU=KMU*EXP(-GMU* ABS(DI1))
ENDIF
IF(DELTAV * DELTA(HHDL,L,FRT) .LT. 0.0)THEN
DELTAP=-PALPHA*ALPHA(HHDL,1,FRT)
DELTAMU=-PMU*MU(HHDL,1,FRT)
ENDIF
IF(DELTAV*DELTA(HHDL,L,FRT) .EQ. 0.0)THEN
DELTAP=0.0
DELTAMU=0.0
ENDIF
DELTA(HHDL,1L,FRT)=DII
ALPHA(HHDL,,FRT)=ALPHA(HHDL,1,FRT)+DELTAP
C  GIVE THE UPPER BOUND OF ALPHA
C IF ALPHA IS LARGER THAN UPPER BOUND
C THEN SET IT TO UPPER BOUND
IF(ALPHA(HHDL,LFRT) .GT. ALPHAMAX)THEN
ALPHA(HHDL,1,FRT)=ALPHAMAX
ENDIF
MU(HHDL,1,FRT)=MU(HHDL,LFRT)+DELTAMU
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Cc

GIVE THE UPPER BOUND OF MU
MU(HHDL,L,FRT)=MU(HHDL,1,FRT)+DELTAMU
IF(MU(HHDL,LFRT) .GT. MUMAX)THEN

MUHHDL,LFRT)=MUMAX
ENDIF
DW(HHDL,I,FRT)=ALPHA(HHDL,I,FRT)*DI1+MU(HHDL,I,FRT)
DO 520 J=1,NMNODE(LAYER-2)
DI1=DI*NODEOUT(LAYER-2,J)

C COMPUTE DELTA AND DELTA AVERAGE .

*

DELTAV=(1.0-THETA)*DI1+THETA*DI|
IF(DELTAV*DELTA(HHDL,1,J+1) .GT. 0.0)THEN
DELTAP=KALPHA*EXP(-GALPHA*ABS(DI1))
DELTAMU=KMU*EXP(-GMU*ABS(D11))
ENDIF
IF(DELTAV*DELTA(HHDL,],J+1) .LT. 0.0)THEN
DELTAP=-PALPHA*ALPHA(HHDL,I,J+1)
DELTAMU=-PMU*MU(HHDL,1,J+1)
ENDIF
IF(DELTAV*DELTA(HHDL,1,J+1) .EQ. 0.0)THEN
DELTAP=0.0
DELTAMU=0.0
ENDIF
DELTA(HHDL,1,J+1)=DI1
ALPHA(HHDL, ] j+1)=ALPHA(HHDL,1,J+1) + DELTAP
GIVE THE UPPER BOUND OF ALPHA
IF(ALPHA(HHDL,1,J+1) .GT. ALPHAMAX)THEN
ALPHA(HHDL,I,J+1)=ALPHAMAX
ENDIF
MU(HHDL,,J+1)=MU(HHDL,1,J+1)+DELTAMU
GIVE THE UPPER BOUND OF MU
MU(HHDL,, J+1)=MU(HHDL,L}+1)+DELTAMU
IF(MU(HHDL,1,J+1) .GT. MUMAX)THEN
MU(HHDL,I,J+1)=MUMAX
ENDIF
DW(HHDL,1,J+1)=ALPHA(HHDL,1J+1)*DI+MU(HHDL,L}+1)
* DW(HHDL,1,J+1)
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C IF(DW(HHDL,1,J+1) .GT. DWMAX)THEN
C DW(HHDL,LJ+1)=DWMAX
C ENDIF
520 CONTINUE
510 CONTINUE
END
C
C
oAt I I e e S e NS L
FUNCTION FUND(X)
C DERIVATIVE OF TRANSFER FUNCTION
C COMPUTE DERIVATIVE OF TRANSFER FUNCTION
C BY TRANSFUNCTION
CINPUT: X
C OUTPUT: FUND
REAL FUND,X,Y

FUND=(1.0+FUN(X))*(1.0-FUN(X))
Y=FUND
RETURN
END
C
C
C#*#*#!*#*lt###*#‘#*###t!*4#!‘#‘####“#‘#!“#‘###‘#t#*‘#‘####‘##
FUNCTION FUN(X)
C TRANSFER FUNCTION OF SIGMOID
C INPUT:X
C OUTPUT: FUN
REAL FUN, X
C
F UN=(EXP(X)-EXP(-X))/(EXP(X)+EXP('X))
RETURN
END
C
Cc

C##**#***#**‘###‘#“*#“####“##‘#‘l‘#‘#ti*#t"“““##t*‘#‘###'
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SUBROUTINE RDINPUT(T ,N,M,FLAG,NDPT,LST)
C READ TRAINING DATA
C FROM TRAINING DATA FILE WHICH ISNOT
C NORMALIZED
C OUTPUT: T(N,M)
REAL T(N,M)
INTEGER N,M,NDPT,LST
INTEGER LJ,IN

IN=2
IF(FLAG .EQ. 1)THEN
OPEN(IN,FILE='mtrain.dat’)
ELSE
OPEN(IN, FILE="mtcst.dat')
ENDIF
DO 600 I=1,NDPT
READ(4,610) (T(1,J),J=1,LST-1),T(1,LST)

600 CONTINUE
610 FORMAT(24F6.2,F9.6)

CLOSE(IN)

RETURN

END
C
C
C******#**t##*“#t*t*#**#t##*"ﬁ#**‘#*‘*##"‘#““‘#‘t#‘#

SUBROUTINE RANWT(W,NMNODE,LAYER,N,M,INL,HHDL)
C INTIALIZE NEURAL NETWORK BY RANDOMNIZE ITS WEIGHTS

REAL W(LAYER,N,.M)

INTEGER NMNODE(N),LAYER,N,M,L,J

DO 1=1,NMNODE(HHDL)+1
W(LAYER,FRT,I)>RAND()
ENDDO
DO 700 1=1,NMNODE(HHDL)
DO 710 J=1, NMNODE(INL)+1
710 CONTINUE
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700 CONTINUE
END
C
C
C##‘*#*!“#"#t#*##“““‘*##t#"#4##‘4"!““.#“!‘."‘O'O#O
FUNCTION FINDMAX(T,N,M,II,NDPT)
C FIND MINNIMUM AND MAXIMUM OF EACH FIELD OF
C WHOLE TRAINING SET
C INPUT:-TEMPERATURE T(N,M)
C OUTPUT: MIN(N), MAX(N)
REAL FINDMAX,T(N,M)
INTEGER N.M 111

FINDMAX=0.0
DO I=1,NDPT
IF(T(1,11) .GT. FINDMAX)THEN
FINDMAX=T(l,11)
ENDIF
ENDDO
RETURN
END
C
C

Ctt#tm#t#*#trﬂwtwn:-uttwt‘mumn#wn#-unnu-c#tuu#-nwco-uu-wn

FUNCTION FINDMIN(T,N,M,II,NDPT)
C FIND MINIMUM ELEMENT FROM T

REAL FINDMIN,T(N,M)

INTEGER N,M,IL!

C SET INITIAL VALUE FOR COMPARISON
FINDMIN = 1000.0
DO 1=1,NDPT
IF(TQ,1D LT FINDMIN)THEN
FINDMIN=T(L1I)
ENDIF
ENDDO
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RETURN
END
C
C
C***‘#*#**#‘#**###**#‘#*#'#t#“‘#‘i#“"'#t'#‘#.l‘.###‘##t'l‘#t#‘
SUBROUTINE MNTAB(T,MIN,MAX N,M,LST)
C SET UP MIN-MAX TABLE
REAL T(N,M),MIN(LST),MAX(LST)
INTEGER N,M,LLST

DO I=1,LST
MAX(1)=FINDMAX(T,N.M,1)
MINI)=FINDMIN(T,N,M,1)
END DO
END
C
c
on L T T T T P
SUBROUTINE INITDW(DW,DELTA ,ALPHA LAYER,N,M)
C INITIALIZE DELTA WEIGHT AND PARAMETERS
C
REAL DW(LAYER,N,M),DELTA(LAYER,N,M),ALPHA(LAYER,N,M)

INTEGER N,M,NMNODE(LAYER),LAYER

INTEGER 1,J
REAL AX,DX

C SET DELTA INITIAL VALUE
DX=0.1
C SET ALHPA INITIAL VALUE
AX=0.1
DO I=1,N
DW(LAYER,FRT,)=RAND()
DELTA(LAYERFRT,l)=AX
ALPHA(LAYER,FRT,[)=DX
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END DO
DO 800 I=1,N
DO 810 J=1,M
DW(HHDL,1,J}=RAND()
DELTA(HHDL,},J)=DX
ALPHA(HHDL, I,J)=AX
810 CONTINUE
800 CONTINUE
END
C
C
C#*#‘*##*t‘**t#‘*#‘#'.""‘t‘.*“U#"*#!‘#“QOQ#‘t“‘Q“‘#‘#'#‘0“0
C THIS IS THE MAIN PROGRAM FOR STEEPEST DESCENT IN BATCH
C MODE WITH LINE SEARCH. ALL OF SUBROUTINE OR FUNCTION CALLS
ENCOUNTEREDC IN THIS PORTION IS EXACTLY THE SAME AS IN THE PROGRAM
C ABOVE AND IS NOT LISTED HERE FOR AVOIDING REPEATING.
C IT CAN BE EXECUTED INDEPENDENTLY. DOING SO IS ONLY
C FOR THE REASON OF PROGRAMMING CONVENIECE.

INTEGER LJ,11
REAL MOISTURE,EPSILON,SUMERR
* NODEIN(30,30),NODEOUT(30,30),W(3,30,30),DW(3,30,30)
* DELTA(3,30,30),ALPHA(3,30,30),DWA(3,30,30), TEMP(310,20)
* MIN(25),MAX(25),R1,WM
* TW(3,30,30),RDFT,ENFT,LCOEF,FV,BR
* HIGH,LOW,OFFSET,SCALE,Y1,SL,Y10,S10
INTEGER NMNODE(3),TRMD,EPOCH,EPLENGTH,
*NN,MM,EPCNT,JJ,INL,HHDL,OUTL
*FLAG,MAXEP,MAXSCH
C
C INPUT LAYER NUMBER
INL=1
C HIDDEN LAYER NUMBER
HHDL=2
C OUTOUT LAYER NUMBER
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OUTL=3

C NUMBER OF NODES IN INPUT LAYER
NMNODE(INL)=25

C NUMBER OF NODES IN HIDDEN LAYER
NMNODE(HHDL)=4

C NUMBER OF NODES IN OUTPUT LAYER
NMNODE(OUTL)=1

C NUMBER OF LAYERS
LAYER=3 .

C NUMBER OF UNITS IN INPUT LAYER
N=NUMNODE(INL)

C NUMBER OF UNITS IN HIDDEN LAYER
M=NUMNODE(HHDL)

C CONVERGENCE CRITERION
EPSILON = 0.037

C SET SUM SQUARE ERROR TO ZERO
SUMERR = 0.0

C FLAG FOR READ TRAINING FILE OR TEST FILE

C FLAG=1--READ TRAINING FILE; FLAG=2—-READ TESTING FILE
FLAG=1

C THE NUMBER OF PRESENTATIONS BEFORE UPDATING WEIGHTS
EPLENGTH = 154

C OUTPUT RANGE OF UPPER AND LOWER BOUND
HIGH = 1.0
LOW = 0.0

C NUMBER OF DATA POINTS IN TRAINING SET OR TESTING SET
NDPT=154

C THE FIRST NODE IN ONE LAYER
FRT=1

C THE LAST NODE IN INPUT LAYER
LST=25

C THE COUNTER FOR UPDATE WEIGHTS
EPOCH =0

C MAXIMU VALUE OF WEIGHT
WM=50.0

C DECREMENTING RANGE
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BR=0.005
C MAXIMUM NUMBER OF EPOCH OF TRAINING
EPMAX=1000
C SET ENLARGE FACTOR
ENFT=1.5
C SET REDUCE FACTOR
RDF =0.75
C SET INITIAL LEARNING COEFICIENT
LCOEF=0.2
C
C OUTPUT DEVICE
OUTI=4
OuUT2=6

MM =0

OPEN(OUT?22,FILE="bp.dat')
C READ TRAINING DATA INTO BUFFER

CALL RDINPUT(TEMP,NDPT,NMNODE(INL),FRT)
C RANDOMIZE CONNECTION WEIGHTS

CALL RANWEIGHT(W,NMNODE,LAYER,NMNODE(INL),NMNODE(HHDL))
C INPUT MINMAX TABLE FOR NORMALIZATION

CALL MMTAB(TEMP,MIN,MAX,NDPT,NMNODE(INL))
C INITIALIZE DELTA WEIGHTS

CALL INITDW(DW,DELTA)
C
50 DO 52 KK=1,NDPT
C
C PRESENT ONE VECTER TO INPUT LAYER

DO 20 J=1,NMNODE(INL)
NODEOUT(INL,J)=TEMP(KK,J)

20 CONTINUE
C

SIO=NODEOUT(FRT,LST)



C NORMALIZE THE INPUT PATTERN
DO I=1 NMNODE(INL)
SCALE=(HIGH-LOW)/(MAX(I)-MIN(1))
OFFSET=(MAX(I)*LOW-MIN(1)*HIGH)/(MAX(1)-MIN(1))
NODEOUT(INL,[)=NODEOUT(INL,I)*SCALE+OFFSET
ENDDO

C
C FORWARD INPUT VECTER TO OUTPUT LAYER
CALL FDINPUT(W,NODEIN,NODEOUT,NMNODE,LAYER,N,M)
C
C RESCALE OUTPUT TO THE ORIGINAL RANGE
SI=NODEOUT(FRT,LST)
YI=NODEOUT(LAYER,FRT)
SCALE=(MAX(LST)-MIN(LST))/(HIGH-LOW)
OFF SET=(HIGH*MIN(LST)-LOW*MAX(LST))/(HIGH-LOW)
Y10=YI*SCALE+OFFSET

C  WRITE(*,23) YIO, SIO
23 FORMAT(1X,2F8.6)
C
C COMPUT THE SUM SQUARED ERROR
SUMERR=SUMERR+(S10-Y10)*(S10-Y10)
C
C COMPUT DELTA WEIGHT
CALL STDBP(W,DW,NODEIN,NODEOUT,NMNODE,LAYER,N,M,
* SLYI)
C ACCUMULATE DELTA WEIGHTS
C DO I=1,NMNODE(HHDL)
DWA(LAYER,FRT,I)=DWA(LAYEILFR’I‘,!)+DW(LAYER,F RT,D)
ENDDO
DO 25 I=1, NMNODE(HHDL)
DO 28 J = 1, NMNODE(INL)
DWA(HHDL,I,J)=DWA(HHDL,l,J)+DW(HHDL,I,J)
28 CONTINUE
25 CONTINUE
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C

52 CONTINUE

C
FV=SUMERR

15 SUMERR=SQRT(SUMERR/NDPT)

C OUTPUT NUMBER OF EPOCHS AND ROOT SQUARED SUM ERROR
WRITE(OUT?,31) EPCNT,SUMERR
WRITE(*,31) EPCNT,SUMERR
EPCNT=EPCNT+1

31 FORMAT(1X,16,'", F8.0)

C IF RMS LESS THAN EPSILON, THEN BEGIN TO TEST NETWORK
IF(SUMERR .LT. EPSILON)THEN

C READ TEST DATA FROM FILE
FLAG=2
32  CALL RDINPUT(TEMP,NDPT,NMNODE(INL),FLAG)
OPEN(OUTL,FILE='bp.nar’)
WRITE(OUT]1,45) COUNTER
DO K=1,NDPT
DO 21 J=1,NMNODE(INL)
NODEOQUT(INL,J)=TEMP(K,J)
IF(NODEOUT(1,J) .EQ. 0.0 )THEN
STOP
ENDIF
21 CONTINUE
SIO=NODEOUT(FRT,LST)
C NORMALIZE THE INPUT VECTER
DO 22 I=1,NMNODE(INL)
SCALE=HIGH-LOW)/(MAX()-MIN())
OFFSET=(MAX(1)"LOW-MIN(I)"‘HlGH)
/(MAX(1)-MIN(1))
NODEOUT(INL,l)=NODEOUT(lNL,I)"‘SCALE+OFF SET
22 CONTINUE

C FORWARD THE INPUT VECT ERS
CALL FDlNPUT(W,NODElN,NODEOUT,NMNODE,LAYER,N,M)
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YI=NODEOUT(LAYER, FRT)
SCALE=(MAX(LST)- MIN(LST))/(HIGH-LOW)
OFFSET=(HI GH*MIN(LST)-LOW*MAX(LST))
/(HIGH-LOW)
YIO=YI*SCALE+OFFSET

WRITE(OUT1,23) Y10,SI0

END DO
CLOSE(OUT1)
CLOSE(OUT2)
STOP

ENDIF

SUMERR=0
C
59 DOI=1NMNODE(HHDL)+1
TW(LAYERFRT,I)=W(LAYER,FRT,)*LCOEF*DWA(LAYER FRT,I)
ENDDO
DO 35 1=1, NMNODE(HHDL)
DO 38 J=1,NMNODE(1)
TW(HHDL,I,J)=W(HHDL,1,J)*LCOEF*DWA(HHDL,1,J)
38 CONTINUE
35 CONTINUE
C
SUMERR=0
C
C IF NUMBER OF EPOCHS LARGER THAN MAXIMU NUMBER
C THEN STOP TRAINING
IF(EPCNT .EQ. MAXEP )THEN
GOTO 32
ENDIF
DO 53 KK=1,NDPT

DO J=1,NMNODE(INL)
NODEOQUT(INL,J)=TEMP(KK,J)
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ENDDO
C

C FORWARD INPUT VECTER
CALL FDINPUT(TW,NODEIN,NODEOUT,NMNODE,LAYER N,M)

SI=NODEOUT(FRT,LST)
YI=NODEOUT(LAYER FRT)
C
C COMPUTE SUM SQUARE ERROR
SUMERR=SUMERR+(SI-Y1)*(SI-Y1)
53 CONTINUE
C
C  WRITE(*31) EPCNT,SUMERR
~ IF((SUMERR-FV) .LE. BR )THEN
WRITE(*,45) NN
NN =0
DO I = 1,NMNODE(HHDL)+1
W(LAYERFRT,l)=W(LAYER FRT,))+LCOEF*DWA(LAYER FRT,])
C IF WEIGHT LARGER OR LESS THAN BOUND
C THEN SET IT TO THE BOUND
IF(W(LAYER,FRT,]) .GT. WM)THEN
W(LAYER FRT,1)=WM
ENDIF
IF(W(LAYER,FRT,I) .LT. -WM)THEN
W(LAYER FRT,l)=-WM
ENDIF
ENDDO
DO 40 I=1, NMNODE(HHDL)
DO 42 J=1,NMNODE(INL)
W(HHDL,1,J)=W(HHDL,1,J)+LCOEF*DWA(HHDL,L)
C SET WEIGHT TO THE UPPER OR LOWER BOUND
C IF IT LARGER OR LESS THAN ITS BOUNDS
IF(W(HHDL,LJ) .GT. WM )THEN
W(HHDL,LJ)=WM
ENDIF
[F(W(HHDL,LJ) .LT. -WM)THEN
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W(HHDL,LJ)=-WM
ENDIF
42 CONTINUE
40  CONTINUE
C IF SUCCESS THEN ENLARGE FACTOR
LCOEF=ENFT*LCOEF
GOTO 70
ENDIF
Cc
C IF SEARCH FAILURE THEN REDUCE FACTOR
C AND CONTINUE TRY
LCOEF=RDFT*LCOEF
NN=NN+1
SUMERR=0
IF(NN .GE. MAXSCH)THEN
NN=0
DO I=1,NMNODE(HHDL)+1
W(LAYERFRT,)=W(LAYER,FRT,)+LCOEF*DWA(LAYER,FRT,I)
C SET WEIGHT TO UPPER OR LOWER BOUND
CIF IT LARGER OR LESS THAN ITS BOUNDS
IF(W(LAYER,FRT,]) .GT. WM)THEN
W(LAYER,FRT,I)=WM
ENDIF
I[F(W(LAYER,FRT.,}) .LT. -WM)THEN
W(LAYER,FRT,I)=-WM
ENDIF
END DO
C UPDATE WEIGHTS IF SUCCESS
DO 41 I=1, NMNODE(HHDL)
DO 43 J=1,NMNODE(INL)
W(HHDL,L,J)=W(HHDL,LJ))+LCOEF *DWA(HHDL,LJ)
C SET WEIGHT TO UPPER OR LOWER BOUND
C IF IT LARGER OR LESS THAN ITS BOUNDS
IF(W(HHDL,LJ) .GT. WM )THEN
W(HHDL,1,J))=WM
ENDIF
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IF(W(HHDL,I,J) LT. -WM)THEN
W(HHDL,,J)=-WM
ENDIF
43 CONTINUE
41  CONTINUE
GOTO 70
ENDIF
GOTO 59
C
C  WRITE(*,29) LCOEF
29 FORMAT(1X,F8.6)
SUMERR=0.0
C
C RESET DELTA WEIGHTS
70 DO I=1,NMNODE(HHDL)
DWA(LAYER FRT,1)=0.0
END DO
DO 26 I=1,NMNODE(HHDL)
DO 27 J=1, NMNODE(INL)
DWA(HHDL,1,1)=0.0
27  CONTINUE
26 CONTINUE
45 FORMAT(IX,15)
SUMERR=0.0
GOTO 50
60 END
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