EXPLANATION AND IMPLEMENTATION

OF A 112 - b TRANSMISSION

GATE ADDER

By
XIAOBO LIU
Master of Science

Beijing Polytechnic University
Beijing China
1985

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE

December, 1994

EXPLANATION AND IMPLEMENTATION

OF A 112-b TRANSMISSION

GATE ADDER

Thesis Approved:

Dean of the Graduate College

ACKNOWLEDGMENTS

! would like to thank my advisor Dr. Louis G. Johnson for his guidance and advice throughout my research work. Without his guidance completion of this thesis would have been difficult. My sincere appreciation extends to my other committee members Dr. R.G. Rumakumar and Dr. George M. Sheets.

Finally, I would like to thank the Department of Electric and computer engineering for supporting during these my study at Oklahoma State University.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION. 1
II. EXPLANATION OF CIRCUIT 4
2.1 Basic Circuit 4
2.2 Conflict - Free Bypass Circuit 9
2.3 Design of the $16-\mathrm{b}$ Adder 16
2.4 Design of the 112 - b Adder 22
III. LAYOUT DESIGN 28
3.1 The Area of the Transistors 32
3.2 Discussion about the Inverters 33
3.3 About Compound Gates Control Signals 34
IV. SIMULATION RESULTS 35
4.1 Simulation Results of the 16 - b Adder 35
4.2 Simulation Results of the 112 - b Adder 38
V. PREPARATION FOR FABRICATION 47
VI. COMPARISON AND CONCLUSION 54
REFERENCES 56

LIST OF TABLES

Table Page

1. Two Input multiplexer Truth Table 5
2. The Control signals and the Activated Gate 13
3. The Block Adder Truth Table 22
4. Truth Table for Figure 11 36
5. Arrangement of Pads, inputs, outputs and clock signals 48

LIST OF FIGURES

Figure Page

1. One - bit Adder 6
2. Manchester Adder and its waveform 10
3. Conflict - Free circuit 10
4. 16-b Bypass Network 17-18
5. Block Diagram 23
6. Block Carry Generator and Bypass Network for the 112 - b Adder 25
7. Layout Design of the $\mathbf{1}-\mathrm{b}$ Adder 29
8. Layout Design of the $16-\mathrm{b}$ Adder 30
9. Layout Design of the 112 - \mathbf{b} Adder 31
10. The Simulation Results of the 16 - b Adder (a) 40
11. The Simulation Results of the 16 - b Adder (b) 41
12. The Simulation Results of the $16-\mathrm{b}$ Adder (c) 42
13. The Simulation Results of the 16 - \mathbf{b} Adder (d) 43
14. The Simulation Results of the 112 - b Adder (a) 44
15. The Simulation Results of the 112 - b Adder (b) 45
16. The Simulation Results of the 112 - b Adder (c) 46
17. Diagram of the I/O Control Circuit and Waveform 30
18. Layout Design of the 112 - b Adder with Buffers 51
19. Layout Design of whole Circuit 52
20. Simulation Results form the Pads 53

CHAPTER 1

INTRODUCTION

Adders are very often in the critical path of the computer, so it is very important that their performance will not limit the cycle time of the machine. In VLSI applications, area and power are also important factors which must be taken into account in the design of a fast adder. High-speed floating-point arithmetic circuits are required for high performance computer systems. One choice is the carry - skip adder, which, because of its topological regularity and layout simplicity, is considered a good compromise in terms of area and performance. But in a carry select adder, two ripple carry adder structures are built, one with a zero carry-in and the other with a one carry-in. The previous carry then selects the appropriate sum using a multiplexer or tri-state adder gates. The stage carries and the previous carry are gated to form the carry for the succeeding stage. In other words, the carry select adder uses two sum signals instead of one sum signal, thus wasting transistors ${ }^{11}$. Another choice is a kind of improved carry - skip adder which uses one carry adder structure to implement the function of carry - skip adder ${ }_{[2]}$. Because there are only half the numbers of the transistors in the latter adder, it is faster than a conventional carry select adder.

The transmission gate is a pair of transistors connected to function as complementary switch. It consists of an n-channel transistor and a p-channel transistor. The control signal is applied to the gate of the n-device, and its complement is applied to
the gate of the p-device. The operation of the transmission gate can be best explained by considering the characteristics of both the n-device and p-device as pass transistors individually. One can address this by treating the charging and discharging of a capacitor via a transmission gate. Comparing with NAND, NOR AND XOR gates, using transmission gates to build an adder reduces both the propagation delay time and the number of transistors.

High performance computer systems need both fast integer and floating-point operations. Floating-point operations require several cycles. The floating-point multiplier can operate directly on a normalized or wrapped number. The first stage of the multiplier contains a parallel multiplier, and a long bit adder is used for the second stage to execute a carry propagate addition ${ }_{13}$. A double precision floating point parallel multiplier based on the IEEE standard needs a long bit adder with more the $108-\mathrm{b}_{121}$

However, as the number of adder sections increases, the carry-skip circuits become more costly and more complex. In large adders, bypass networks have been used to speed up the propagation signals. The problems of a conventional bypass circuit are conflicting signals. Since the two transmission gates output different signal levels in their transition phases, some node voltages are at intermediate voltage. This causes a long propagation delay time and wastes power.

A novel conflict - free bypass circuit has been introduced by T. Sato, M. Sakate, H. Okada, T. Sukemura, and G, Goto ${ }_{2 \mid 1}$ They use their conflict-free bypass circuit to speed up the propagation of bypassed signals of a 112 - \boldsymbol{b} transmission gate adder.

Although they have given the block diagrams for their circuit, they do not address exactly how that bypass network works, and they failed to specify how the bypass control signals control the adder. They give an example of the conflict - free control signal instead of the general way how to build the conflict free bypass system. In short, they do not want to explain their circuit in detail so that no one can implement their adder.

This research word is aimed at accomplishing the following:

1. Explanation of the basic circuit of the improved carry-skip adder.
2. Explanation of the general law of the conflict - free bypass signals.
3. Design the conflict-free bypass circuit for a $\mathbf{1 6}$ - \boldsymbol{b} adder and then design the conflict-free bypass circuit for all2-b adder.
4. Implementation and layout design for a 112 - \boldsymbol{b} transmission gate adder with the conflict - free bypass circuit.
5. Simulation of the $\mathbf{I 6} \boldsymbol{-} \boldsymbol{b}$ adder and the $\boldsymbol{1 1 2} \boldsymbol{- b}$ transmission gate adder.
6. Preparation for the fabrication this circuit with 64 -pad package.
7. Comparison of the result obtained with previous published results.

CHAPTER 2

EXPLANATION OF CIRCUIT

2.1 Basic circuit

The addition of two binary numbers A and B can be obtained by means of the relations

$$
\begin{aligned}
& C_{-1}=0 \\
& S U M M_{i}=A_{i} \oplus B_{i} \oplus C_{i-1}=P_{i} \oplus C_{i-1} \\
& C_{i}=A_{i} B_{i}+P_{i} C_{i-1}=C_{i}+P_{i} C_{i-1}
\end{aligned}
$$

Where

$$
\begin{array}{cl}
P_{i}=A_{i} \oplus B_{i} & \text { [Propagate signal] } \\
\ddots_{i}=A_{i} B_{i} & {[\text { Generate signal }]} \\
C_{i} & {[\text { Carry bit } i]}
\end{array}
$$

In a simple carry ripple adder, the worst case delay is proportional to its size, because if a carry is generated, it will ripple through the entire structure.

If we divide the total number of bits into groups, the following rules apply to each group:

1. If each $A_{i} \neq B_{i}$ in a group, then we do not need to compute the new value of C_{i} for the block. The carry in of the block can be propagated directly to the next block.
2. If $A_{i}=B_{i}=1$ for some i in the group, a carry is generated which may be propagated up to the output of that group.
3.If $A_{i}=B_{i}=0$, a carry will not be propagated by that bit location.

The 112-b adder here is divided into seven 16-b adder blocks. Fig. 1 shows the 1-b adder circuit diagram of $16-\mathrm{b}$ adder $\mathrm{r}_{2|1|| || | l \mid}$.

There are four parts in the $1-b$ adder of Fig. 1. We re-draw the circuit diagram on the right side. From the right side diagram, we can see the basic circuit unit for this adder is the two input multiplexer. A multiplexer function is formed by using the complementary switches to select between a number of inputs. As the switches have to pass zeros and ones equally well, complementary switches with n - and p - transistors are used. The truth table for the two input multiplexer is shown in Table 1. The complementary switch is also called a transmission gate or pass gate (complementary). A commonly used circuit symbols is two triangles as shown in Fig. 1.

TABLE 1 Two input multiplexer truth table

Input A	Input B	Control Signal S	Complementary of S	Output
x	0	0	1	0 (B)
x	1	0	1	$1(\mathrm{~B})$
0	x	1	0	0 (A)
1	x	1	0	1 (A)

The basic idea of a carry-skip adder is to assess if in each group all A_{i} do not equal $B i$ and enable the block's carry-in to skip the block when it happens. Our circuit works

(a)
 $\mathrm{Pi}=\mathrm{Ai} \quad \oplus \mathrm{Bi}$
(b1)

Ripple Carry
(b2)

$\mathrm{Pi}_{\mathrm{i}}{ }^{\prime} 1^{\prime} \Rightarrow \mathrm{BPi}=\mathrm{BPi}^{\prime}-1$
$\mathrm{Pi}={ }^{\circ} 0^{\prime} \Rightarrow \mathrm{BP}_{\mathrm{i}}={ }^{\circ} 0^{\circ}$
(c)

$\mathrm{SUMi}=\overline{\mathrm{Pi}}(\mathrm{BPi}-1 \mathrm{BCm})+(\mathrm{Pi} \quad \oplus \mathrm{BGi} 1) \overline{(\mathrm{BPi}-1 \mathrm{BCm}})$

Fig. 1 One - bit Adder
like a carry select adder but with some difference. In a carry select adder, there are two summation signals and they are selected by block carry signals, thus wasting transistors. By contrast, the sum signal in this design is selected by logically multiplied block carry and block carry propagate signals based on the logical equation:

$$
\begin{gathered}
S U M_{i}=\overline{P_{i}} \bullet\left(B P_{i-1} \bullet B C_{m}\right)+\left(P _ { i } \oplus B \left({j_{i-1}}^{) \overline{\left(B P_{i-1} \bullet B C_{m}\right)}}\right.\right. \\
(\mathrm{m}=15,31,47,63,79,95,111) .
\end{gathered}
$$

Where: BP_{i} is a block-carry propagate signal, BG_{i} is a block-carry generate signal and $B C_{m}$ is a block-carry signal. We will find the detail meanings of them from the following chapter.

Now we look back to the Fig. I. In the part (a), two inputs of the multiplexer are Bi and complementary of Bi . And the control signal here is Ai. In this way, the out put of the multiplexer $\mathrm{Pi}=A \oplus B$.

The signal Pi is very useful in the circuit. Not only both the carry propagate signal and the carry generate signal depend upon this signal Pi, but the complementary of Pi is also a signal which is directly sent out to the summation whenever both block propagate signal BPi and block carry signal BCm are ones.

The part (bl) is also a multiplexer with previous block generate signal BGi-1 and one of the adder input, say Ai, as the two inputs. The control signal is Pi. The output of this part is current block generate signal. The output signal of the part (bl) is like the normal carry signal of the ripple adder.

The part (b2) of the Fig. 1 is not exactly a multiplexer, since there is only one pair of transmission gate with the other input connected to a p- transistor. When the
control signal Pi equals one, the output signal BPi (block propagate signal) of this part equals the previous block propagate signal BPi-1. When Pi equals zero, the output of this part is zero. This means once the BPi becomes zero, it will remain zero until the very end of this block

The part (c) of this circuit consists two multiplexers. The output of the first multiplexer is a normal summation like a normal adder. The second multiplexer use the signal $\mathrm{BPi}-1 \mathrm{BCm}$ as the control signal. Just like the equation we addressed above, the summation of the adder will remain the same as the normal adder's summation except both $\mathrm{BPi}-\mathrm{I}$ and BCm are ones. When that happened, i.e. BPi-I equals BCm equals one, the summation of this adder equals to the complementary of Pi .

2.2 Conflict-Free Bypass Circuit

The bypass circuit is added to propagate the carry signal as fast as possible. Since the carry signal of the conventional bypass circuit is generated by a wired-OR at some node, two transmission gates are activated at the same time. Then, a signal conflict is generated. One of the examples of the conventional bypass circuit used in the carry propagation path of a 4-b Manchester adder is shown in Fig. 2 (a). Fig. 2 (b) shows its waveform with all carry propagate signals (Pi's) equal to one and all carry generate signals (Gi's) equal to zero. A carry signal is generated by a wired-OR at the node S and two transmission gates are activated at the same time, a signal conflict is generated. Since the two transmission gates output different signal levels in their transition phases, the node S is at intermediate voltage. The dark areas on the Fig. 2(b) shows the intermediate voltage stage. This causes a long propagation delay time and wastes power.

Some other bypass circuits are used to solve the conflict problem. The paper [6] uses a NAND or NOR gate in place of a wired-OR. This circuit solves the power consumption problem, however, there are some transition phases in which the bypass circuit does not provide any performance improvement. Another type of bypass cicuit ${ }_{21}$ has been used, but it only works when the signal changes from low to high, not when the signal changes from high to low.

Fig. 2 (a) Manchester adder (wired-OR type)
(b) Waveform (with pi=1 and Gi=0, $1=1,2,3,4$)

Fig. 3 Conflict - free circuit

The best method to solve this problem is the conflict - free bypass circuit shown in Fig. 3. A selector to generate the C_{n} signal is used to instead of a wired-OR, a NAND gate or a NOR gate. The transmission gates are controlled by some signals which are combined by propagate signals of the bypassed gates.

In the Fig. 3, \boldsymbol{n} is the number of gates bypassed by the circuit, in other words, \boldsymbol{n} represents how many signals are used to control the bypass circuit, and \boldsymbol{m} is the number of gates used to implement the bypass function. Although the number \boldsymbol{m} are normally less than or equal to the number \boldsymbol{n}, sometimes the number \boldsymbol{m} could be one more than the number \boldsymbol{n}. In fact, \boldsymbol{m} depends upon how many gates need to be bypassed, or is dependent upon n. When n is getting bigger, m should become larger. However, considering the power consumption, \boldsymbol{m} normally takes the number 2,3 or 4 .

When $\boldsymbol{n}=2, \boldsymbol{m}-3$:

$$
\begin{gathered}
T_{1}=\overline{P_{1}} P_{2} \\
T_{2}=\overline{P_{2}} \\
T_{3}=P_{1} P_{2}
\end{gathered}
$$

In this case, there are two gates bypassed by the circuit. i.e. there are two signals are used to control the bypass circuit. And there are three gates used to implement the bypass function. When P_{1} is equal zero and P_{2} is equal to one, then the gate T_{1} is activated and T_{2} and T_{1} are opened When P_{2} is zero, no matter P_{1} equals to zero or one, the gate T_{2} turns to be activated and the gate T_{1} and T_{3} are open. When both P_{1} and P_{2} are ones, the gate T_{3} turned to be activated and l_{1} remains open and T_{2} switches to open. So, there is only one of three gates is activated to form the shortest path.

When $\boldsymbol{n}=3, \boldsymbol{m}=3$:

$$
\begin{gathered}
T_{1}=\overline{\left(P_{1} P_{2}\right)} P_{3} \\
T_{2}=\overline{P_{3}} \\
T_{2}=P_{1} P_{2} P_{3}
\end{gathered}
$$

In this case, there are three gates bypassed by the circuit. i.e. there are three signals are used to control the bypass circuit. Also there are three gates used to implement the bypass function. When P_{1} and P_{2} are not equal to each other, and P_{3} is one, the gate T_{1} is activated while T_{2} and T_{3} are opened. When P_{3} is zero, no matter P_{1} and P_{2} are equal to zero or one, the T_{2} is activated while T and $T /$ are opened. When all of the three gates are ones, the gate T is activated and T remains open and $T 3$ turn to open. So, there is only one of three gates is activated to form the shortest path.

When $\boldsymbol{m}=4, \boldsymbol{n}=5$:

$$
\begin{gathered}
T_{1}=\overline{\left(P_{3} P_{4}\right)} P_{5} \\
T_{2}=\overline{\left(P_{1} P_{2}\right) P_{3} P_{4} P_{5}} \\
T_{3}=\overline{P_{5}} \\
T_{4}=P_{1} P_{2} P_{3} P_{4} P_{5}
\end{gathered}
$$

In this case, there are five gates bypassed by the circuit. i.e. there are five signals are used to control the bypass circuit. And there are four gates used to implement the bypass function. When P_{3} and P_{4} are not equal to each other, and P_{5} is one, the gate T_{1} is activated while T_{2}, T_{3} and T_{1} are opened. When P_{5} is $z e r o$, no matter $P_{1}, P_{2} P_{3}$ and P_{4} are equal to zero or one, the T_{3} is activated while $T_{1} T_{2}$ and T_{4} are opened. When all of the five gates are ones, the gate T_{t} is activated and T and T_{2} remains open and $T 3$ turn to open. So, there is only one of five gates is activated to form the shortest path.

It is easy for the reader to find the rule of this bypass control signal. For example, if $\boldsymbol{m}=4$, and $\boldsymbol{n}=10$, then:

$$
\begin{gathered}
T_{1}=\overline{\left(P_{1} P_{2} P_{3} P_{4} P_{7} P_{4} P_{4} P_{4}\right)} P_{1} P_{11} P_{6} P_{7} P_{x} P_{1} P_{11} \\
T_{3}=\overline{P_{11}}{ }_{10}{ }_{10}=P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7} P_{x} P_{9} P_{11}
\end{gathered}
$$

TABLE 2 shows how the bypass signals to control the circuit. Where we put some possible combinations of signal on the rows and the very right column of the table shows which gate is activated. As we have explained before, there is exactly one of those gate activates at one time to form the shortest path

TABLE 2 The control signals and the activated gate

PI	P2	P3	P4	P5	P6	P7	P8	P)	P10		
	1	1	0	1	0	0	1	1	0	0	${ }^{1}$
	0	1	0	0	0	0	1	0	0	0	${ }^{13}$
	0	1	1	0	${ }^{\prime \prime}$	0	0	0	${ }^{\circ}$	0	${ }^{13}$
	1	0	0	1	0	0	1	0	0	0	${ }^{3}$
	0	0	0	1	0	1	1	0	1	0	${ }^{1}$
	0	0	0	1	${ }^{\prime}$	0	1	0	0	0	${ }^{3}$
	0	0	0	0	\cdots	"	"	1	0	0	T3
	${ }^{1}$	0	0	0	${ }^{\circ}$	0	0	11	1	1	${ }^{3}$
	0	0	${ }^{\circ}$	0	0	0	0	0	0	1	TI
	1	1	0	0	0	0	0	0	0	0	${ }^{1}$
	0	1	1	0	0	0	0	0	1	1	${ }^{3}$
	0	0	1	1	0	0	0	0	0	0	${ }^{3}$
	0	0	-	1	1	0	0	0	1	1	${ }^{3}$
	0	0	0	\because	1	1	0	0	0	0	${ }^{3}$
	0	0	0	"	${ }^{\prime}$	1	1	0	0	0	T3
	0	0	"	"	0	0	1	1	0	0	${ }^{3}$
	0	1	0	"	0	0	${ }^{0}$	1	1	0	${ }^{3}$
	0	\cdots	0	0	0	0	${ }^{\prime \prime}$	0	1	1	T1
	1	1	1	"	-	0	0	0	${ }^{1}$	0	${ }^{3}$

0	1	1	1	0	0	0	0	0	0	T3
0	0	1	1	1	0	0	0	0	0	T3
0	0	0	1	1	1	0	0	0	0	T3
0	0	0	0	1	1	1	0	0	0	T3
0	0	0	0	0	1	1	1	0	0	T3
0	0	0	0	0	11	1	1	1	0	13
0	0	0	0	0	0	0	1	1	1	T1
1	1	1	1	0	0	0	0	0	0	T3
0	1	1	1	1	0	0	0	0	0	T3
1	0	1	1	1	1	0	0	0	0	T3
0	0	0	1	1	1	1	0	0	0	T3
0	0	0	0	1	1	1	1	0	0	T3
1	0	0	0	0	1	1	1	1	0	T3
1	0	0	0	0	$1)$	1	1	1	1	T1
1	1	1	1	1	0	0	0	0	0	T3
0	1	1	1	1	1	0	0	0	0	T3
0	0	1	1	1	1	1	0	0	0	T3
0	0	0	1	1	1	1	1	0	$1)$	T3
0	0	0	0	1	1	1	1	1	10	T3
0	0	0	0	0	1	1	1	1	1	T2
1	1	1	1	1	1	0	0	0	0	T3
0	1	1	1	1	1	1	0	0	0	T3
0	0	1	1	1	1	1	1	0	0	T3
0	0	0	1	1	1	1	1	1	0	T3
0	0	0	0	1	1	1	1	1	1	T2
1	1	1	1	1	1	1	0	0	0	T3
0	1	1	1	1	1	1	1	0	1	T3
0	0	1	1	1	1	1	1	1	0	T3
0	0	0	1	1	1	1	1	1	1	T2
1	1	1	1	1	1	1	1	0	1	T3
0	1	1	1	1	1	1	1	1	0	T3
0	0	1	1	1	1	1	1	1	1	T2
1	1	1	1	1	1	1	1	1	0	T3
0	1	1	1	1	1	1	1	1	1	T2
1	1	1	I	1	1	1	1	1	1	TH

This proposed bypass scheme can be extended for the network. In the control scheme, a transmission gate is opened when all the inner gates are activated and the outer gate is not activated. Exactly one of these signals activates to form the shortest
path. All of the other wired - OR nodes are controlled in a same way, so there is no signal conflict in this bypass network.

2.3 Design of the 16-b adder

Since the $\mathbf{1 1 2 - b}$ adder is divided into seven $\mathbf{1 6}$ - \boldsymbol{b} adder blocks, we start here to explain the circuit function and bypass network for the $\mathbf{1 6} \boldsymbol{- b}$ adder.

The $16-\boldsymbol{b}$ adder is basically formed by 16 I- \boldsymbol{b} adder shown in Fig. 1, with the block - carry generate signals ($\mathrm{BGi}_{\mathrm{i}}$) and block - carry propagate signals (BP_{i}) connected in the way shown in Fig. 4. This bypass network has four bypass units. The first one is for gate numbers 3,4 and 5 , the second one is for the gate number $6,7,8,9$ and 10 , the third one is for gate numbers 13 and 14 , and the last one is for gate numbers 6 to 15 . The bypass control signal for every unit is made according to the rule of the conflict-free bypass circuit which we mentioned before. For every bit in the carry - chain, there is a Ai signal as one of the input of the multiplexer. Whenever P i equals zero, the carry signal at that bit equals the $A i$. In that way, we can save one gate used to implement the bypass function. In other words, if we still take \boldsymbol{n} to represents how many signals are used to control the bypass circuit, and \boldsymbol{m} to represents how many gates to implement the bypass function, then the number \boldsymbol{m} should be less than or equal to the number \boldsymbol{n}.

The critical paths of this bypass network shown in Fig. 4 are chains of inverters and
 propagated. This multi - bypass network shortens the critical paths. In this network, from wherever the $\mathrm{BGi}_{\mathrm{i}}$ (or BP_{i}) signal starts to propagate, the path consists of four or less transmission gates.

BGi 16-b adder multi-bypass network

Fig. 4 (a) 16 - b BGi bypass network

BPn 16-b adder multi-bypass network

$15 Z=\mathrm{P} 6 \mathrm{P} 7 \mathrm{P} 8 \mathrm{P} 9 \mathrm{P} 10 \mathrm{P} 11 \mathrm{P} 12 \mathrm{P} 13 \mathrm{P} 14 \mathrm{P} 15$

Fig. 4 (b) 16 - b BPi bypass network

From Fig. 4(a), we can see that control signals of the first bypass unit for the carry generate signal are:

$$
\begin{gathered}
5 X=\overline{\left(P_{3} P_{4}\right)} P_{5} \\
5 Y=P_{3} P_{4} P_{5}
\end{gathered}
$$

That means there are two gates used to implement bypass function to bypass three gates in the circuits. Since this bypass unit is on the bit number $5, B G ;$ equals $A 5$ if the P_{5} is zero. When P_{5} equals to one, $B\left(;\right.$ depends upon P_{3} and P_{4}. Only when both P_{3} and P_{4} are ones, is the gate 5 Y activated with 5 Y opened, otherwise the gate 5 X is activated The control signals of the second bypass unit for the carry generate signal are:

$$
\begin{gathered}
10 X=\overline{\left(P_{x} P_{9}\right)} P_{11} \\
10 Y=\overline{\left(P_{6} P_{7}\right)} P_{x} P_{9,} P_{11} \\
10 Z=P_{6} P_{7} P_{x} P_{9} P_{11}
\end{gathered}
$$

In this unit, there are three gates used to implement bypass function to bypass five gates in the circuits. Since this bypass unit is on the bit number $10, B(; 10$ equals $A \ldots$ if the P_{1} is zero. When P_{1}, equals to one, $B\left(C_{1}\right.$ depends upon $P_{k} P_{7} P_{x}$ and P_{9}. When P_{x} and P_{9} are not both ones, the gate 10 X is activated with the gates 10 Y and 10 Z opened. When P_{r} and P_{7} are not both ones and all $P_{6} P_{7} P_{x}$ are ones, the gate 10 Y is activated with the gates 10 X and 10 Z opened. Only when all $P_{6} P_{7} P_{x}$ and P_{9} are ones, is the gate 10 Z activated with 10 X and 10 Y opened.

The control signals of the third bypass unit for the carry generate signal are:

$$
\begin{aligned}
& 14 X=\overline{P_{13}} P_{14} \\
& 14 Y=P_{13} P_{14}
\end{aligned}
$$

In this unit, there are two gates used to implement bypass function to bypass two gates in the circuits. Since this bypass unit is on the bit number $14, B C_{14}$ equals A_{14} if the P_{14} is zero. When P_{14} equals to one, $B C_{14}$ depends upon P_{13}. When P_{13} equals zero, the gate 14 X is activated with the gate 10 Y is opened. When P_{13} one, the gate 14 Y is activated with the gate 14 X opened.

The control signals of the forth bypass unit for the carry generate signal are:

$$
\begin{gathered}
15 X=\overline{\left(P_{11} P_{12} P_{13} P_{14}\right)} P_{15} \\
15 Y=\overline{\left(P_{6} P_{7} P_{8} P_{9} P_{16} P_{11} P_{12} P_{13} P_{14} P_{15}\right.} \\
15 Z_{15}=P_{6} P_{7} P_{8} P_{91} P_{16} P_{11} P_{12} P_{13} P_{14} P_{15}
\end{gathered}
$$

In this unit, there are three gates used to implement bypass function to bypass ten gates in the circuits. Since this bypass unit is on the bit number $15, B C i 15$ equals A_{15} if the $P_{1 s}$ is zero. When P_{15} equals to one, $B\left(i / s\right.$ depends upon $P_{6} \sim P_{14}$. When $P_{11} \sim P_{14}$ are not all ones, the gate 15 X is activated with the gates 15 Y and 15 Z opened. When P_{6}, $\sim P_{10}$ are not all ones and all $P_{11} \sim P_{x}$ are ones, the gate 15 Y is activated with the gates 15 X and 15 Z opened. Only when all $P_{6} \sim P_{1+}$ are ones, is the gate $15 Z$ activated with 15 X and 15 Y opened.

There are only $15-\mathrm{b}(1-15)$ of bypass network shown in Fig. 4. Actually there is one bit before the first bit with $A 10$ and B_{0} as the input and $B C_{-1}, B P_{-1}$ and $B C^{\prime} \mathrm{m}$ as the carry in signals. For every $16-\boldsymbol{b}$ adder block, $B\left(j_{-1}\right.$ is always set to zero and $B P_{-1}$ is always set to one. However, the block carry signals $B C \mathrm{~m}$ depend upon the carry out
signals of the advanced adder block.. Inside the $16-\boldsymbol{b}$ adder block all the $B C$ 'm's are connected. We have seven $\mathbf{1 6 - b}$ adder blocks in our $112-\boldsymbol{b}$ adder, so the \boldsymbol{m} here equals $15,31,47,63,79,95$ and 111 respectively for those seven blocks.

If the block carry signal $B C$ in equals zero, that means there is no carry in signal generated by the advanced block, then $S\left(/ M_{i}=P_{1} \oplus B \mathcal{i}_{i+1}\right.$.

If $B C$ in equals one, then $S U / M$ will depend upon the block propagate signal $B P_{i}$. When $B P_{i}$ equals zero, $S(/ M$, will still remain the same as above, i.e. same as when the $B C$ in equals zero. However, when $B P_{1}$ equals one, $S t / M \overline{P_{1}}$

Although the block carry signal $B C$ in remains the same within an adder block, the propagate signals $B P_{\mathrm{i}}$ are variant. $B P_{\mathrm{i}}$ depends upon P_{i}. When P_{i} equals zero, $B P_{\mathrm{i}}$ equals zero; when P_{1} equals one, $B P_{1}$, equals $B P_{1-1}$. Therefore, once $B P_{1}$, changes from one to zero, it will keep the zero until the end bit of the whole block.

2.4 Design of the 112 - b adder

Fig. 5 shows a block diagram of the adder, where seven $\mathbf{1 6}$ - \boldsymbol{b} adder made that 112-b adder. The block carry signal ($B(\mathrm{~m}$) is generated by a block carry generator. Whenever the block carry generate signal of the last bit of $16-\mathrm{b}$ adder ($B(\mathrm{im}$) equals one, $B\left(' m\right.$ equals one. If $B\left(i m\right.$ equals zero but both $B P^{\prime} m$ and $B C^{\prime} m-16$ are ones, then the $B C$ 'm also equals one. So,

$$
\begin{aligned}
B C_{m}^{\prime}= & B C_{m}+B P_{m}^{\prime} \bullet B C_{m-16}^{\prime} \\
& (\mathrm{m}=15,31,47,63,79,95 \text { and } 111)
\end{aligned}
$$

Table 3 uses some examples to show the relationship of $A_{i}, B_{i}, P_{\mathrm{i}}, B C_{i}, B P_{\mathrm{i}}, C_{i}$ (carry), $B C^{m}$ and $S U / M_{1}$. For convenience, here take 4 bits as a block. Where the A_{1} and B_{1} are two inputs of the adder(s). There are 4 pairs of inputs signals for every one of the 4 bit adder block. The least significant bit on the left. Propagate signals $P_{1}=A_{1} \oplus B_{1}$. The

Table 3 The Block Adder Truth Table

	Block \#1	Block \#2	Block \#3	Block \#4	Block \#5	Block \#6	Block \#7
Ai	1010	0101	0111	1101	1110	1001	1010
Bi	0011	1010	1011	1101	1000	0110	0111
Pi	1001	1111	1100	0000	0110	1111	1101
SUM(block)	1000	1111	11011	01101	0001	1111	11001
BGi	00011	00000	00011	01101	01110	00000	00011
BPi	11000	11111	11100	10000	10000	11111	11100
Ci	00011	1111	1111	1101	1110	0000	0011
SUMi	1000	0000	0011	1110	1001	1111	11001

Fig. 5 Block Diagram
$S(M$ block $)$ s are the summations inside the blocks. On the right side of the block \#3, \#4 and \#5, there are one more bit which mean at those blocks there is a carry out signal on that most significant bit of that adder block. At the beginning of every block, the block carry generate signals $B C_{i}$ were set to zero and the block carry propagate signals $B P_{i}$ were set to one. Therefore, there are 5 bits numbers for the carry general signal $B C i$ and the carry propagate signal $B P_{1}$. Both $B\left(i\right.$ and $B P_{1}$, depend on the propagate signal P_{i}. Whenever l_{i} equals one, $B C_{i}=B C_{i-1}$ and $B P_{i}=B P_{i-1}$. While P_{1} equals zero, $B C_{i}$ equals A_{1} and $B P_{i}$ equals zero. The (is show if there have carry out signals on that bit or not. The S / M 's show the summations of the whole adder which combined the block adders
 $S U / M_{i}$ are not same, that should be at the situation that both (im and $B P_{i-1}$ are one, so SU/Mi $\quad P_{i}$.

Fig. 6 shows the block carry generator and the bypass network. The bypass control scheme is the same as in the BG_{i} (or BP_{1}) network, so there is no signal conflict in this bypass network.

There are seven $\mathbf{1 6} \mathbf{- b}$ adder blocks in the $\mathbf{1 1 2 - b}$ adder with three bypass units. The three bypass units are on the bit number 63 (the forth block), the bit number 79 (the fifth block) and the bit number 95 (the sixth block)

The control signals of the first bypass unit for the $\mathbf{1 1 2 - \boldsymbol { b }}$ adder are:

$$
\begin{aligned}
& 63 X=\overline{B P_{47}} A P_{6,3} \\
& 63 Y=B P_{47} B l^{\prime}{ }_{63}
\end{aligned}
$$

BCm Block carry generator and the multi-bypass network

Fig. 6 Block carry generator and bypass network for the 112 -b adder

In this unit, there are two gates used to implement bypass function to bypass two blocks in the circuits. Since this bypass unit is on the bit number 63, the block carry signal $B C_{63}$ equals $B C_{63}$ if the $B P_{63}$ is zero. When the $B P_{63}$ is one, $B C_{63}$ depends upon $B P_{47}$. When $B P_{47}$ is equal to zero, the gate 63 X is activated. When $B P_{47}$ is equal to one, the gate 63 Y is activated.

The control signals of the second bypass unit for the $\mathbf{1 1 2 - \boldsymbol { b }}$ adder are:

$$
\begin{aligned}
& 79 X=\overline{B P_{47} B P_{63}} B P_{79} \\
& 79 Y=B P_{47} B P_{67} B P_{79}
\end{aligned}
$$

In this unit, there are two gates used to implement bypass function to bypass three blocks in the circuits. Since this bypass unit is on the bit number 79 , the block carry
 $B P_{47}$ and $B P^{\prime}{ }_{63}$. When both $B P_{47}$ and $B P^{\prime}{ }_{63}$ are equal to one, the gate 79 Y is activated. Otherwise the gate 79 X is activated

The control signals of the third bypass unit for the $\boldsymbol{1 1 2 - b}$ adder are:

$$
\begin{gathered}
95 X=\overline{B P_{79}} B P_{95} \\
95 Y=\overline{B P_{47}} B P_{66} B P_{79} B P_{95} \\
95 Z=B P_{47} B P_{65} B P_{79} B P_{95}
\end{gathered}
$$

In this unit, there are three gates used to implement bypass function to bypass four blocks in the circuits. Since this bypass unit is on the bit number 95 , the block carry signal $B C_{95}$ equals $B C_{95}$ if the $B P_{95}$ is zero. When the $B P_{95}$ is one, $B(79$ depends upon $B P_{47} . B P_{63}$ and $B P_{79}$. When $B P_{79}$ is zero, no matter $A P_{47}$ and $B P_{63}$ are zeros or ones, the
gate 95 X is activated. When not both $B P^{\prime}{ }_{77}$ and $B P_{6}$ are equal to one, $B P_{79}$ is one, the gate 95 Y is activated. When $B P^{\prime}+7, B P_{6,3}$ and $B P_{79}$ are ones, the gate $95 Z$ is activated. As we explained before, there is only one of the three gates is activated to form the shortest path. There are no signal conflicts in the bypass network.

CHAPTER 3

LAYOUT DESIGN

The layout was designed by a fully manual layout method to decrease the propagation delay time, and is based on a $2-\mu \mathrm{m}$ CMOS design rules for a double metal layout process.

The major effort of this research is fighting for the optimal layout design so that the adder could be as fast as possible. The distance between the n diffusion and p diffusion regions of all transistors are the minimum size. The connections between the transistors are also as short as possible.

Fig. 7 shown the layout design of the $\boldsymbol{I}-\boldsymbol{b}$ adder. The area of the layout design is $150 \times 180 \mu \mathrm{~m}^{2}$.

Fig. 8 shows the layout design of the $\mathbf{1 6 - b}$ adder block with the bypass circuit under the $161-b$ adders. The area of this $16-b$ adder layout is $400 \times 1700 \mu \mathrm{~m}^{2}$. The left side of the graph is the least significant bit.

Fig. 9 shows the layout design of the $112-b$ adder with seven $16-b$ adder blocks overlapped and the bypass circuit on the left side. The area of this $112-\mathrm{b}$ adder layout is $2750 \times 1750 \mu \mathrm{~m}^{2}$. The bottom right corner is the least significant bit and the top left corner is the most significant bit.

Fig. 7 Layout Design of the $\mathbf{1 - b}$ Adder

Fig. 8 The layout design of the $\mathbf{1 6 - b}$ adder

Fig. 9 The layout design fo the 112 - b adder

3.1 The area of the transistors

Once the basic layout has been determined, some optimization of transistor sizing may take place. This is only necessary if after simulation the adder is found to be lacking in speed.

According to the rule for the $2-\mu \mathrm{m}$ CMOS technology, the minimum area of metal contact is $4 \times 4 \mu m^{2}$. The minimum area of the transistor gate is $2 \times 4 \mu m^{2}$. In order to figure out the optimum area of the transistors which results in the fastest circuit, we design several different transistor gate area. We found the minimum area for both P channei and n - channel transistors does not give the fastest result. If we change the gate area of p - channel transistors to $2 x 6 \mu m^{2}$ and remain the gate area of n - channel transistors to $2 \times 4 \mu \mathrm{~m}^{2}$, the delay of the $16-\boldsymbol{b}$ adder can be reduced 20%.

3.2 Discussion about the inverters

As the carry out signal is used in the generation of summation, the summation signals will be delayed with respect to carry out signal. In the circuit of the $112-\boldsymbol{b}$ adder, every block generate signal and the block propagate signal of each bit has an inverter at input and an inverter at output. To optimize the carry delay, the inverters of every other bit should be omitted. But in the practical layout design, simply taking off the inverter does not always help to speed up the circuit. If one inverter drives more than 3 transistors, it will slow down the circuit speed. Comparing the speed with or without inverters, we conclude here with: taking the inverters out gave more delay than leaving them in.

3.3 About compound gates control signals

In the bypass control signals of 112 - b transmission gate adder, there are several control signals which are generated from logic explanations with many inputs, such as the control signals for the gate $10 \mathrm{Z}, 15 \mathrm{Y}$, and 15 Z . If we use signal compound gates designed exactly as the equation, that should slow down the circuit. If we divide the logic gates into several parts, and for every part there is less than 4 input signals, the speed of the circuit increases significantly. For example, instead of

$$
15 Z=P_{6} P_{7} P_{8} P_{9} P_{11} P_{11} P_{12} P_{13} P_{11} P_{15}
$$

we use :

$$
15 Z=\overline{\overline{P_{6} P_{7} P_{x}}+\overline{P_{4} P_{11} P_{11} P_{12}}+\overline{P_{13} P_{14} P_{15}}}
$$

In this way, we can increase the circuit speed by 11%.

CHAPTER 4

SIMULATION RESULTS

The irsim program running on the Sun work stations has been used to simulate the performance of our transmission gate adder layout since it is a good simulating method for the large circuit.

4.i simulation results of the $16-b$ adder

The $\mathbf{1 6 - b}$ adder has four bypass units on the fifth, the tenth, the fourteenth and the lifteenth bits. Those bypass units only work when not every propagate signal l^{\prime} i equals zero. In other words, if all li's are zeros, then the bypass network is not needed at all, since whenever P_{i} is zero, $B C_{i}$ equals A_{1}. Therefore, there are no carry signals to propagate through the circuits. Fig. 10 shows the simulation results for the $\mathbf{1 6}$ - \mathbf{b} adder where all P_{1} 's equal zeros. There are two steps on the Fig. 10, all A_{1} and B_{1} are ones on the first step and all A_{1} and B_{1} are zeros on the second step. So, all the propagate signals P_{i} are zeros on both steps. The delay for the $\mathbf{1 6}-\boldsymbol{b}$ adder is 9.8 ns . Note, the number in the middle of the top line represents the delay of the circuit, which is shown by a dotted line in the figure. In fact, no matter how many bits in the adder, this delay will remain the same as long as the P 's are zeros

Fig. 11 shows the simulation results of $\mathbf{1 6 - b}$ adder for some certain input data. For this input data, the $P_{4}, P_{5}, P_{x}, P_{10}, P_{1+}$ and P_{15} are ones, the bypass gates: 5 X
$\left(\overline{\left(P_{3} P_{4}\right)} P_{5}\right), 10 \times\left(\overline{\left(P_{8} P_{9}\right)} P_{14}\right), 14 \mathrm{X}\left(\overline{P_{13} P_{14}}\right)$ and $15 \times\left(\overline{\left(P_{11} P_{12} P_{13} P_{14}\right)} P_{15}\right)$ are activated. The delay for the $\mathbf{1 6}-\boldsymbol{b}$ adder is 13 ns . Note, the number in the meddle of the top line represents the delay of the circuit, which is shown by a dotted line in the figure. The simulation results of Fig. 11 are clearly presented in Table 4.

Table 4 Truth table for Fig. II

Bit number (i)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ai	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bi	1	1	1	1	0	0	1	1	0	1	0	1	1	1	1	0
Pi	0	0	0	0	1	1	0	0	1	0	1	0	0	0	0	1
SUMi	0	1	1	1	0	0	1	1	0	1	0	1	1	1	0	0

In the table 4, the least significant number bit is A^{0} on the left of the table. $\mathrm{Pi}=\mathrm{Ai}$ $\oplus B i$, and SUMi's are the summations of the input A_{i} and B_{1}.

Fig. 12 shows the simulation results of the $\mathbf{1 6} \boldsymbol{- b}$ adder for another group of input data. In this case, P Pr P ' are zero's, $P_{7}-P_{15}$ are one's. So, the bypass gates: 10 Y $\left(\overline{\left(P_{6} P_{7}\right)} P_{8} P_{9} P_{11}\right)$ and $15 Y\left(\overline{\left(P_{6} P_{7} P_{8} P_{9} P_{11}\right)} P_{11} P_{12} P_{13} P_{14} P_{15}\right)$ are activated. Since A_{0} A_{6} and $B_{11} \sim B_{6}$ are one's and $A_{7} \sim A_{15}$ and $B_{7} \sim B_{15}$ are zero's, $S_{l} / M_{1} \sim S l / M_{6}$ are one's while other $S / / M$ 'is bits are zero's delay of the $\mathbf{1 6} \boldsymbol{- b}$ adder is 18.9 ns . Note, the number in the middle of the top line represents the delay of the circuit, which is shown by a dotted line in the figure.

When all propagate signals P P's are ones, the worst delay results. Since at this case, the carry generate signal will propagate through all of the circuit. By using the bypass gates: $5 \mathrm{Y}\left(P_{3} P_{1} P_{i}\right), 10 Z\left(P_{6} P_{7} P_{x} P_{1} P_{11}\right), 14 Y\left(P_{13} P_{14}\right)$ and $15 Z\left(P_{1} P_{7} P_{x} P_{9} P_{11} P_{11} P_{12}\right.$
$P_{13} P_{14} P_{15}$), the worst delay for the $16-\mathrm{b}$ adder is 19.7 ns . The simulation results are shown on Fig. 13. Note, the number in the middle of the top line represents the delay of the circuit, which is shown by a dotted line in the figure.

4.2 simulation results of the 112-b adder:

The $\mathbf{1 1 2 - b}$ adder is combined from seven $16-\boldsymbol{b}$ adder blocks with block carry
generator. Fig. 14 shows the simulation results for the case when all 112 P's are zeros. Just as we explained before, no bypass gates are needed here and the delay is still about 10 ns all the way to the end bit in this case, since there are no carry signals to propagate through the circuits. Note, the number in the middle of the top line represents the delay of the circuit, which is shown by a dot line on the figure.

Now we are ready to test the delay time for $112-\boldsymbol{b}$ adder which used the bypass gates. Although the initial block-earry generate signals $B(j-1$ and the initial block-carry propagate signals $B P^{-1}$ are same in each of the seven $16-b$ adder blocks, the block carry signals $B C$ ' m are different. Since the $B C$ ' m 's depend upon the output block-carry generate and propagate signals ($B\left(115\right.$ and $B P_{15}$) of previous block, there should be some undefined stage at the node of $B C \mathrm{~m}$ while the signals propagate from $B\left(j-1\right.$ (or $\left.B P^{-}-1\right)$ to $B\left(\right.$ is (or $\left.B P_{15}\right)$. From Fig. 1, we can find there some transmission gates between $B C_{1}$ (or $B P_{i}$) and $B C \mathrm{~m}$. Note the irsim could not predict the real propagate direction of the signals. So, when we use the irsim to simulate the circuit, the undefined signals could send some undefined feedback signals to $B\left({ }_{j i}\left(\right.\right.$ or $\left.B P_{i}\right)$, that will give the incorrect results although this case will not happen in the real circuit. In order to avoid this situation, we use two steps to test the circuits: first make all P i equal zeros, then send the input signals on the second step to test the delay time

There are three block bypass units in the $\mathbf{1 1 2} \mathbf{- b}$ adder. If the input data shown on Fig. 11 were used on the third $16-b$ adder block, then the block propagate signal $B P_{47}$ is zero. In this way, the bypass gates $63 \times\left(\overline{B P_{17}} B P_{63}\right) \cdot 79 \times\left(\overline{\left(B P_{77} B P_{63}\right)} B P_{79}\right)$ and $95 \mathrm{Y}\left(\overline{\left(B P_{47}{ }_{4} P_{6}{ }_{6}\right)}\right)$ are activated. Fig. 15 shows the simulation results. The delay for the 112-b adder in 768 ns Note the delay of the circuit cquals the number in the middle of the top line (shown by a dotted line in the figure) minus 100 ns , since the input signals are changed at 100 ns

The worst delay of the $112-b$ adder is in the case where all the propagate signals $\left(\mathrm{P}_{1}\right)$ are ones and the carry-in signal for all circuit $\mathrm{C}-1$ equals one. That means all the inputs Ai's are different from inputs Bis. Since at this case, the carry generate signal will propagate through all circuit. We set all A_{1} to one and all inputs Bi's to zero, the simulation results for this case are shown on Fig. 16. The delay for the $\mathbf{1 1 2}-\boldsymbol{b}$ adder is 27.5 ns . Note the delay of the circuit equals the number in the middle of the top line (shown by a dotted line in the figure) minus 100 ns , since the input signals are changed at 100 ns .

Fig. 10 The simulation results of the $16-b$ adder (a)

Fig. 11 The simulation results of the 16 - b adder (b)

Fig. 12 The simulation results of the 16 - b adder (c)

Fig. 13 The simulation results of the 16 - b adder (d)

Fig. 14 The simulation results of the 112 - b adder (a)

Fig. 15 The simulation results of the 112 - \mathbf{b} adder (b)

Fig. 16 The simulation results of the 112 - b adder (c)

CHAPTER 5

PREPARATION FOR FABRICATION

There are 112 pairs of inputs and 112 outputs for our 112 - \boldsymbol{b} adder. In other words, the total signals for inputs and outputs are 336. The maximum pad number we can use to do fabrication is 64 . So we need some buffers to reduce the numbers of pins or pads before the design circuit to be fabricated.

Fig. 17(a) shows the diagram of the I/O control circuit, where two pairs of inputs and two outputs share one pad. In the Fig. 17(a), circuit unit 3 uses D flip-flops!i. This design uses only one clock phase and gated RS flip-flop; it is clock race immune. Circuit unit 2 represents adder bits and circuit unit I is a transmission gate with Rd H and Rd L as the control signals. Fig. 17(b) shows the waveforms of the clock control signals. There are 56 pins for input and output data. and 6 pins for I/O clock control signals. Plus Vdd and GND, the total number of pins is 64 .

Fig. 18 shows the 112 - \boldsymbol{b} adder layout design with buffers on both sides. The area of the layout design is $2900 \times 2800 \mu \mathrm{~m}^{2}$.

Fig. 19 shows the layout design of whole circuit together with 64 pads. The total area of the layout together with pads is $6300 \times 4500 \mathrm{\mu m}^{2}$.

In case some one want to fabricate this $112-\mathrm{b}$ transmission gate, we put all the detail arrangement of pads, inputs, outputs and clock signals on TABLE 5. It tells the pad number and the corresponding inputs and outputs bits.

In the table 5, the first group of rows represents the pad's number. One can find the number D1 ~D56 from the pads of the designed layout. The second group of rows labeled CLI gives the all the corresponding input bits to which the input signals were sent from the corresponding pads during the clock circle 1. Based on the same principle, the third, the forth and the fifth row groups give the input bits to which the input signal were sent from the corresponding pads during the clock circle 2,3 and 4 . The last two row groups are the summation signals which were sent back to the corresponding pads through the clock signals RD-H and RD-L, respectively. Note that the portion of Table 5 on the following page should be on the right of the portion below.

Table 5 Arrangement of pads, inputs, outputs and clock signals

																		D									D D
$\begin{aligned} & \mathbf{A} \\ & \mathbf{D} \end{aligned}$	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	2	2	2	2	2	2	2	$\begin{array}{ll}2 & 2 \\ 7 & 8\end{array}$
C	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A A
L	8	1	1	1	1	1	2	2	4	4	t	4	4	5	5	5	7	7	7	7	8	8	8	8	,	1	11
1		0	2	4	6	8	0	2	0	2	1	6	8	0	2	4	2	4	6	8	0	2	\downarrow	6	0	0	11
C	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B B
L	8	1	1	1	1	1	2	2	4	4	4	$+$	4	5	5	5	7	7	7	7	8	8	8	8	1	1	11
2		0	2	4	6	8	0	2	0	2	4	6	8	0	2	\downarrow	2	4	4	8	0	2	4	6	0	0	$\begin{array}{ll}0 & 1\end{array}$
C	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A A
L	9	1	1	1	1	1	2	2	4	t	4	4	t	5	5	5	7	7	7	7	8	8	8	8	1	,	11
3		1	3	5	7	9	1	3	1	3	5	7	9	1	3	5	3	5	7	9	1	3	5	7	0	0	$\begin{array}{ll}0 & 1 \\ 9 & 1\end{array}$
C	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B B
1.	9	1	1	1	1	1	2	2	1	4	4	4	1		5	5	7	7	7	7	8	8	8	8		1	11
4		1	3	5	7	9	1	3	1	3	5	7	9	1	3	5	3	5		9	1		5	7	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 7 \end{aligned}$	$\begin{array}{ll}0 & 1 \\ 9 & 1\end{array}$
		S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	$\mathbf{S} \quad \mathbf{S}$
d	8	1	1	1	1	1	2	2	4	4	4	4	t	5	5	5	7	7	7	7	8	8	8	8	1	1	11
H		0	2	4	6	8	0	2	0	2	t	6	8	0	2	4	2	1	6	8	0	2	4	6	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \end{aligned}$	$\begin{array}{ll} 0 & 1 \\ 8 & 0 \end{array}$
	S	S	S	S	S	S	S	S	S											S	S	S	S	S	S	S	S S
d	9	1	,	1	1	1	2	2	4	4	4	4	4	5	5	5	7	7	7	7	8	8	8	8	1	,	11
L		1	3	5	7		1														1	3	5	7	5	0	$\begin{array}{ll}0 & 1 \\ 9 & 1\end{array}$

Fig. 20 shows the simulation results from the pads. By using the clock signals clock 1, clock2, clock3 and clock4, the input data D25 were separated into two pairs of adder bit input signals: A104, B104 and A105, B105. The summation of two adder bit SUM104 and SUM105 were sent back to the pads D25 through the clock signals RD-H and RD-L

(a)
clock 1 D fip-flop on rising edge, loading A0, A2, A4...
clock $\sqrt{\text { D flip-flop in rising edge, loading B0, B2, B4, ... }}$ clock3 D nip-flop in rising edge, loading A1, A3, A5, .. clock4 D flip-flop in rising edge, loading B1, B3, B5, ...
Rd-H Output high 56 bits on high.
Rd-L \qquad Output low 56 bits on high.
(b)

Fig. 17 Diagram of the I/O control cutcuit and waveforms

Fig. 18 The layout design of the 112 - badder with buffers

Fig. 19 The layout design of the whole circuit

CHAPTER 6

CONCLUSION AND COMPARISON

In this paper, we explained the basic circuit of the improved carry - skip adder, the summation of which is selected by logically multiplied block carry and block carry propagate signals based on the logical equation. We specified a general way how to build the conflict - free bypass signal. We designed the conflict - free bypass networks for the 16 - \boldsymbol{b} transmission gates adder and for the $\mathbf{1 1 2 - b}$ transmission gates adder based on the general law of the conflict - free bypass signal. The major effort of this work was the optimal layout design of 112 - b adder by using the magic program, not only implemented the layout design for the adder but put the adder and 56 flip-flops together inside the 64 - pads package for preparation of the fabrication. Also, we used the Irsim program to simulate the final results.

In order to clarify the advantages of our adder, we compare it with a previously designed 100 - \boldsymbol{b} carry select adder|3|, which uses multi - input NAND and NOR gates. This carry select adder is fabricated in a $1.0 \mu \mathrm{~m}$, triple-metal, full-CMOS process. The delay for this adder is 10.7 ns and consists of 15,096 transistors. The other previously designed 112-b adderpl uses the same bypass network as we use here. Though the addition time is 8.5 ns , they use the $0.8 \mu \mathrm{~m}$ full CMOS triple-metal process technology. We use $2 \mu \mathrm{~m}$ double-metal CMOS process to build 112 - \boldsymbol{b} transmission gate adder, the worst delay is 27.5 ns and about 11,000 transistors were used including the buffers. If we

If we re-estimated our addition time on the same process basis as the one used to fabricate their adder, our results are by no means poor. The most important point is that we clearly explained how the conflict-free bypass network can be fabricated via simulation showed the fabrication works.

REFERENCES

1. N. Weste and K. Eshraghian, principles of (MOS VLSI Design. Reading, MA: Addison-Wesley, 1985.
2. T. Sato, M. Sadate, T. Sukemura, and G, Goto, " An 8.5 -ns 112 -b transmission gate adder with a conflice-free bypass circuit." ILEF: Journal of solud-state (ircuits, vol. 27, no 4. April, 1992.
3. A. Guyot, B. Hocher, and J. M. Muller, " A way to build efficient carry - skip adders." IELE Trans. Comput., vol. C-36. no. 10, pp. 1144-1151. Oct. 1987.
4. A. katsumo et al., " A 64-bit floating-point processing unit with a horizontal instruction code for parallel operations," in proc. IETEE I((1) 1990, pp. 347-350.
5. P. K. Chan et al., " Analysis and design of CMOS Manchester adders with variable carry - skip." IEEE: Trans., ('omput, vol. 39, no. 8, pp. 983-992, Aug. 1990.
6. T. Kudo, T. Tokumaru, "Design of a 32 bit high-speed adder," in IIM $\mathscr{F} 70$ th Anniv. Nat. Conv. Rec., no. 284, 1987, p. 2-88.

VITA

Xiaobo Liu
 Candidate for the Degree of
 Master of Science
 Thesis: EXPLANATION AND IMPLEMENTATION OF A 112-b TRANSMISSION GATE ADDER

Major Field: Electrical Engineering

Biographical:

Education: Received Bachelor of Science degree in physics from Nankai University, Tianjin, China in Oct. 1978; received Master of Science degree in Electrical Engineering from Beijing Polytechnic University, Beijing, China in Dec. 1985; completed the requirements for the Master of Science at Oklahoma State University in December 1994.

Experience: Engineer at Beijing Semiconductor Device Institute. Substantial Examiner at third Examination Dept., Chinese Patent Office for examine patent application in the semiconductor device and IC process.

