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Dissertation Abstract 
 

 
Bone tissue engineering has progressively emerged as a response to the 

current limited replacement therapies for damaged or lost bone tissue. Ideally, the 

implanted construct should aid in complete bone regeneration in a reasonably short 

time, without causing significant inconvenience to the patient. General tissue 

engineering approaches are based on three different bioactive factors: scaffolding, a 

cellular component, and a molecular component. These factors are closely conjoined 

to create successful constructs and fit into a bone tissue engineering paradigm that 

includes the extraction of a cellular biopsy from a healthy site of the patient. Cells are 

then expanded in vitro and seeded onto the scaffold. The cell-scaffold construct is 

cultured under mechanical and/or chemical stimuli for a certain amount of time so as 

to allow the in vitro secretion of a bone-like extracellular matrix (ECM). This 

construct, which now possesses an osteoinductive nature due to the secreted ECM, is 

implanted in the defective site for bone regeneration. The main objective of the 

present research project was to create an integral tissue engineering approach that 

combines both mechanical and chemical stimulation by. To fulfill this goal, four 

major steps were successfully carried out. First, a dynamic scaffold seeding technique 

based on oscillatory flow perfusion that improved initial cellular distribution 

throughout the scaffold surface, and cell-matrix interactions was developed. Secondly, 

a biomimetic poly(L-lactic acid scaffold) with improved cell adhesion using RGD 

peptides that could additionally allow the evaluation of the effect of different 

modification levels on cell adhesion, proliferation and differentiation was created. 

Thirdly, the oscillatory flow perfusion seeding of these RGD-modified scaffolds was 

characterized. And lastly, the effect of the level of RGD scaffold modification on the 

osteoblastic differentiation of mesenchymal stem cells when cultured under 
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conditions of flow perfusion was evaluated. What makes this approach unique is the 

combination of mechanical and chemical stimulation of mesenchymal stem cells to 

direct them towards an osteoblastic path. This combinatorial approach resulted more 

successful than those based on chemical or mechanical stimulation alone. 
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Chapter 1 
 

Overview and Research Objectives 
 
 

Over the past two decades, bone tissue engineering has progressively emerged 

as a response to the current limited replacement therapies for damaged or lost bone 

tissue. Ideally, the implanted construct should aid in complete bone regeneration in a 

reasonably short time, without causing significant inconvenience to the patient. The 

optimum alternative would be the use of autografts, in which a bone biopsy is 

extracted from a healthy site of the patient and implanted into the injured site. 

Nevertheless, donor site morbidity and lack of graft availability pose major limitations 

on the application of this therapy. Other choices are allografts extracted from a 

different individual of the same species, and xenografts, which come from an 

individual of a different species. These last two therapies have shown a certain degree 

of success, but they may result in strong immune responses and disease transmission. 

1-3 Tissue engineering creatively combines biology and engineering principles to 

create constructs capable of replacing damaged or lost tissue and overcoming the 

aforementioned obstacles 4. 

 

General tissue engineering approaches are based on three different bioactive 

factors: scaffolding, a cellular component, and a molecular component. These factors 

are closely conjoined to create successful constructs that can induce the efficient 

regeneration of the damaged tissue once implanted 4. In the case of bone, the 

scaffolding is usually a porous matrix that can support cell adhesion, migration and 

proliferation 5,6. Scaffolds are made out of natural or synthetic materials. Collagen, 

poly(ethylene glycol), ceramics, titanium and poly-α- hydroxyl esters are among 
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some of the most popular choices 7-11. A wide variety of cell types; but progenitor 

cells, such as mesenchymal stem cells (MSC) have grown in popularity and will 

continue to do so due to their great osteogenic potential 12-15. The molecular 

component consists of growth and differentiation factors, which are basically proteins 

or other molecules that are capable of eliciting specific cellular responses. In many 

instances growth factors are incorporated into scaffolding technologies to create a 

biomimetic scaffold. As the name suggests, biomimetic scaffolds are matrices 

designed to mimic a certain feature correspondent to the native extracellular matrix 

(ECM) and have the purpose of inducing a desired cellular response, such as the 

differentiation of MSCs towards the osteoblastic phenotype 16-21.  

 

All these components fit into a bone tissue engineering paradigm, on which 

this project is based, that includes the extraction of a cellular biopsy from a healthy 

site of the patient. Cells are then expanded in vitro and seeded onto the scaffold. The 

cell-scaffold construct is cultured for a certain amount of time so as to allow the in 

vitro secretion of a bone-like extracellular matrix (ECM). This construct, which now 

possesses an osteoinductive nature due to the secreted ECM, is implanted in the 

defective site for bone regeneration 4. Conditions of culture prior to implantation are 

crucial in the development of an efficient construct. Furthermore, researches have 

realized that mimicking the in vivo mechano-chemical conditions in which the tissue 

operates dramatically enhances the secretion and rearrangement of the ECM that more 

closely resembles the morphology of the native tissue 22-28. Bioreactors effectively 

modulate the desired mechanical conditions. Additionally, they enhance the 

transportation of nutrients to the interior of the scaffolds and yield homogenous 

distribution of cells and ECM 23,29. 
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This study ultimately focuses on a novel approach that employs both chemical 

and mechanical stimulation to enhance MSC osteogenesis. This innovative concept 

can therefore yield more efficient constructs than those produced through individual 

stimulation. Mechanical stimulation was exerted by the application of shear forces on 

the cells in a flow perfusion bioreactor that has been shown to induce higher degrees 

of MSC osteoblastic differentiation than those achieved by static cultures 23,30-32. 

Moreover, in order to amplify the effect of flow perfusion on the development of bone 

constructs, the system was not only used for long term cultures but also in scaffold 

seeding. Traditional static seeding techniques, in which the cell suspension is added in 

a drop-wise manner on top of the scaffolds, yield rather low number of cells on the 

scaffolds and poor cellular distributions throughout the scaffold surface. Flow 

perfusion is capable of overcoming external and internal diffusion limitations and 

thereby could potentially yield a more homogenous initial cellular distribution 23.  

 

Chemical stimulation was based on enhancing the cell interactions with the 

scaffolding material, poly (L- lactic acid) (PLLA). Cell-matrix interactions play an 

important role in bone tissue engineering since they affect the proper cell growth, 

migration and differentiation towards the osteoblastic phenotype 33-35. The interaction 

of cells with PLLA is very limited due to the inert nature of the polymer; thus, it is 

desired to incorporate bioactive molecules that support cell adhesion. This was done 

by the linkage of adhesion peptides, most specifically Arginine-Glycine-Aspartic 

Acid (RGD), to an amine-functionalized PLLA surface.  
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In the present project, it was hypothesized that the combination of this novel 

biomimetic scaffold with flow perfusion cultures would result in improved MSC 

osteoblastic differentiation, when compared to their sole effects. MSCs were seeded 

on the scaffold using the newly developed technique and cultured under mechano-

chemical conditions beneficial to their osteoblastic differentiation. Therefore, the 

main objective of the present research project (shown in Figure 1.1) was to create an 

integral tissue engineering approach that combines both mechanical and chemical 

stimulation by utilizing the three different bioactive components (scaffold, cells and 

growth factors).  

 

 

Figure 1.1. An integral bone tissue engineering approach that includes biomimetic scaffolds and 

bioreactor technologies to produce efficient constructs with a bone-like matrix secreted by 

mesenchymal stem cells. The biomimetic scaffold is produced by incorporating growth factors in the 

scaffold making process 

 

The proposed approach can result in enhanced MSC osteoblastic 

differentiation when compared to those achieved by the stimulatory mechanisms 

individually. In order to fulfill the main objective, four specific aims were proposed: 
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1) To develop a dynamic scaffold seeding technique based on oscillatory 

flow perfusion and evaluate its effects on seeding efficiency, initial 

cellular distribution throughout the scaffold surface, and cell-matrix 

interactions. 

2) To create a biomimetic poly(L-lactic acid scaffold) with improved cell 

adhesion using RGD peptides that can additionally allow the 

evaluation of the effect of different modification levels on cell 

adhesion, proliferation and differentiation.  

3) To characterize the newly developed oscillatory flow perfusion seeding 

of mesenchymal stem cells on the modified scaffolds based on cell 

spatial distribution, seeding efficiency and strength of cell attachment 

at different modification levels and flow conditions. 

4) To evaluate the effect of the level of RGD scaffold modification on the 

osteoblastic differentiation of mesenchymal stem cells when cultured 

under conditions of flow perfusion.  

 

In order to better understand the reasons behind the main objective of this 

project, Chapter 2 provides a more detailed background on bone tissue engineering, 

the bioactive components involved in it, and an overview on biomimetic scaffolds and 

bioreactor technologies. Chapter 3 describes the development of a new oscillatory 

flow perfusion seeding technique that resulted in improved seeding efficiency and 

distribution of osteoblastic cells onto fibrous matrices and porous foams. The creation 

of a functionally flexible, biomimetic scaffold with improved cell adhesion is 

presented in Chapter 4, while the characterization of the seeding of MSCs on these 

scaffolds is highlighted in Chapter 5. In Chapter 6, the effect of different extents of 
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RGD incorporation into PLLA foams on the osteogenic differentiation of MSCs under 

conditions of flow perfusion at different flow rates is presented. Finally, Chapter 7 

provides general conclusions addressing the general research objective and specific 

aims. This chapter also provides ideas for future projects that aim at answering new 

questions that arose during the development of the present project. 
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Chapter 2 

Bone Tissue Engineering: An Introduction 

 

Chapter Abstract 

An increasing number of bone-related injuries has propelled the quest for 

finding efficient therapies, particularly in the cases where the body cannot regenerate 

the lost tissue by itself. Current techniques have limited success, driving researchers 

towards developing tissue engineering approaches. In bone tissue engineering, it is 

desirable to create an implant that can induce and conduct new tissue formation 

without compromising the mechanical and other functional properties of the tissue. 

The main bone tissue engineering components consist of a scaffolding material, 

osteoblastic and/or osteoprogenitor cells, and growth and differentiation factors. An 

interaction between these three elements is desired. A recent growing application is 

the use of bioreactors that can mimic the physiomechanical conditions in which the 

tissue operates. This chapter gives an insight into the main aspects of bone structure 

and function, the fundamentals of bone tissue engineering, as well as some of the 

common, existent technologies on tissue engineering scaffolds and bioreactor 

cultures. 
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2.1 Overview of Bone 

Bone, the major component of the skeletal system, is a hard, calcified, 

connective tissue that protects vital organs, provides support for body motion, and 

serves as storage of calcium and other ions. Bone is viscoelastic, porous and semi 

rigid. The major components of this tissue are: cells, extracellular matrix, and an 

inorganic mineral phase, with weight percentages of about 8%, 25% and 67% 

respectively 1,2. 

 

2.1.1. Cellular component 

The most relevant cell types related to bone formation and modeling are the 

osteoblasts, osteocytes and osteoclasts. Osteoblasts and osteocytes are responsible for 

the bone-making process and reside along with the bone-lining cells, which are 

immediate osteoblast precursors 3,4. Osteoblasts also derive from local pluripotent 

progenitor cells, such as mesenchymal stem cells (MSC). In their last stage of 

differentiation, osteoblasts synthesize alkaline phosphatase, and secrete calcium and 

other extracellular matrix proteins, such as osteopontin, osteocalcin, and bone 

sialoprotein 3. Once they have secreted sufficient calcified ECM, osteoblasts are 

entrapped and become osteocytes. They communicate among themselves and other 

cells on the bone surface through gap-junction-coupled cell processes that take place 

in the extracellular matrix via channels called canaliculi 5-7. However, bone is a 

dynamic tissue that is undergoing a constant process of remodeling; thus, as there is a 

process of bone formation, a process of bone digestion must also exist in order to 

maintain the integrity of the tissue. The resorption of bone matrix is carried out by 
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osteoclasts, which are multinucleated cells of hematopoietic origin formed by the 

fusion of mononucleated cells of the monocyte/macrophage family 5,8. 

 

2.1.2. Organic extracellular matrix (ECM)  

The extracellular matrix of bone is mainly composed of approximately 90% 

collagen type I, and a series of non-collagenous proteins and proteoglycans in smaller 

quantities 5. It is important to point out that osteoblasts secrete, on a mole basis, one 

non-collagenous protein molecule per one collagen molecule, and that the difference 

in quantity is due mainly to molecular weights 8,9. Collagen fibers in bone present 

many intra and intermolecular crosslinks, diminishing their solubility. Their structure 

and degree of crosslinking affect the strength and general function of bone. Some of 

the non-collagenous molecules found in bone ECM are osteopontin, osteonectin, 

glycosaminoglycans (chondroitin sulfate, dermatan sulfate, keratan sulfate, and 

hyaluronic acid), fibronectin, and some growth factors from the morphogenetic 

protein (BMP) family entrapped in the matrix during bone formation 5,8-10.  

 

2.1.3. Mineral phase 

The mineral phase of bone is based on calcium compounds. This is the main 

feature that differentiates the composition of bone from that of other musculoskeletal 

tissues and is a major player in bone strength. The mineral component of bone is 

comprised of a crystalline analog of hydroxyapatite [Ca10(PO4)6(OH)2]. This structure 

is often called dahllite. It is deficient in calcium and less crystalline when compared to 
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hydroxyapatite, in addition to containing carbonate 5. The mineral crystals are 

arranged in a parallel fashion within the bone collagenous matrix and appear as plate-

shaped crystals that are hundreds of angstroms in length and 20-30 angstroms thick 

1,2,5,8. 

 

2.1.4. Bone structure 

Macroscopically, there are different types of bone in the skeleton and different 

ways to classify them. The macroscopic classification of bone can be based on its 

function; it can be weight bearing, protecting, articulating, etc. Another categorization 

is based on the shape, long, short or flat. The most used macroscopic cataloguing of 

bone is based on its mechanism of formation: endochondral bone formation or 

intramembraneous ossification. 

 

However, in long bones there are two different types of tissue: cortical or 

compact bone, found mostly in the diaphyses, and cancellous or trabecular (also 

called spongy bone) found mainly in the metaphyses and epiphyses (see Figure 2.1). 

Cancellous bone is spongy in appearance, formed by thin trabeculae and arranged in a 

3D lattice, and is located in the extremities of the bone. Cortical bone, on the other 

hand, is a compact, continuous mass usually located at the cortices of mature bone. 

Thus, the main difference between cancellous and trabecular bone is their porosity. 

The diaphysis of a long bone can withstand bending and torsional loads imposed on 

its shaft due to its tubular design, basically a thick cylinder with bone marrow in the 

cavity. The metaphysis and epiphysis however, are designed to withstand mostly 

compression forces 5,11-13. 
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Figure 2.1. Macroscopic bone structure. The different areas of a long femur are shown, as well as the 

different types of bone in each area: cancellous or spongy, and cortical or compact 14.  

 

 On a microscopic level, there are two different types of bone: woven and 

lamellar. Woven bone is generally immature tissue that is generated for rapid bone 

formation such as in the repair of fractures and other injuries. Collagen fibers are 

arranged in a random fashion and give the tissue an isotropic behavior. Lamellar bone 

presents a more organized structure that consists of parallel sheets and bundles1,5.  

 Cortical bone is made up in two thirds by osteons and the remaining is 

composed of interstitial bone derived from previous generations of osteons. Osteons 

are branching cylindrical columns with a diameter in the order of 150 µm and a 



16 

central vasculature canal called the Harvesian canal 11. These canals connect with one 

another and with the marrow cavity via Volkmann’s canals whose blood vessels are in 

fact larger than those of the Harvesian canal. In lamellar bone, osteons are oriented in 

a parallel fashion along the axis of the tubular bone section. They are surrounded by a 

cement line that is a region of reduced mineral and collagen content. Osteons of 

woven bone have a different shape, a more random orientation and are bound to the 

bone marrow on one side and an irregular cement line on the other side 11,15,16. 

 

2.1.5. Mechanisms of bone formation 

After injury, bone can be replaced through two distinct mechanisms of bone 

formation (osteogenesis): intramembranous ossification and endochondral 

ossification. Intramembranous ossification is the process in which precursor cells, 

mesenchymal stem cells (MSC), differentiate directly into osteoblasts and begin 

secreting bone matrix. What appears as thin and disorganized trabeculae soon 

mineralizes, entrapping osteoblasts to form osteocytes. MSCs continue to differentiate 

to form woven bone. This woven bone also has the potential to become a primitive 

cortical bone if the mineral matrix grows at the expense of connective tissue. 

Intramembranous ossification is commonly found in the regeneration of certain bones 

of the skull 1,15,17,18. 

 Endochondral ossification represents a different mechanism from that of the 

intramembranous. As the name suggests this process starts by the deposition of a 

primitive cartilaginous tissue. Endochondral ossification usually takes place when 

there is a need for rapid growth. When the neocartilage is formed, new cells can be 
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easily incorporated into the tissue, expanding both its volume and length rapidly. This 

mechanism is also observed in embryonic bone formation, where an avascular 

cartilaginous model is created with the shape of the bone. Ossification follows with 

three processes occurring simultaneously 11,18,19: 

1. Formation of a collagen type I rich osteon outside the cartilage core, 

which later mineralizes to create a periosteal collar 

2. Hypertrophy of chondrocytes in the center with enlargement of their 

lacunae and calcification of the remaining tissue 

3. The cartilage core is penetrated by new blood vessels coming from the 

periosteum, bringing along hematopoietic and osteoprogenitor cells 

that eventually calcify the entire cartilage volume 

Once the bone is formed, it undergoes a process of modeling and remodeling 

by which the skeleton is continuously renewed so as to maintain its mechanical 

properties, prevent the accumulation of fatigue, and minimize micro fractures, among 

other things. Remodeling is a surface process that begins by osteoclastic resorption of 

the existing organic and mineral components, forming a cavity. After reaching a 

certain depth, osteoclast activity ceases and they are replaced by macrophage-like 

cells that deposit an early, immature tissue. Osteoblasts later start forming a new 

osteon within the cavity 1,11,16,20.  
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2.2 The need for bone tissue engineering 

Every year there are more than 8.6 million procedures related to bone injury 

worldwide, a great portion of these require the use of an implant in order to recuperate 

bone functionally in the affected area. In 2001, expenditures related to bone implants 

surpassed $1 billion 21. Cases where implants are necessary are usually related to the 

destruction of a large portion of the bone, infections, or in any other circumstance 

where the body can not regenerate the damaged osseous tissue, causing the disability 

of the patient. This type of therapy is needed in any part of the skeleton; however, 

usually the most affected areas are long bones, spinal cord, and maxillofacial bones. 

The estimated expenditures due to bone grafts needed for these surgeries is about 

$500 million with over 605,000 procedures a year in the United States alone 21,22. 

Traditional tissue replacement therapies consist of implants made out of 

synthetic materials such as titanium and ceramics that can meet the mechanical 

demands of the injury site, enabling temporal recovery of the functionality. 

Nonetheless, these implants, which to a certain degree are successful in reestablishing 

functionality, generally exert considerable stress on the surrounding tissue resulting in 

significant wear over time 23-26. Thus, further surgeries on a regular basis become 

necessary, increasing not only the cost of the therapy but also the patient’s discomfort. 

The use of constructs that can interact with the body, induce the formation of new 

tissue and be fully incorporated is the most desirable solution to this problem. Natural 

grafts would be ideal for this application because they possess part of the chemical 

and mechanical environment necessary for the optimal performance of the tissue. 

There are different kinds of natural grafts used to regenerate tissue in vivo 27-31. 
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 Autografts: in this therapy, a piece of tissue is harvested from a healthy site 

of the same patient’s skeleton and implanted at the area of injury. This therapy does 

not pose any problems of host acceptance; nevertheless, the surgical procedure would 

be considerably invasive and painful for the patient and morbidity of the site of 

harvesting is a major concern. Additionally, the amount of harvested tissue is limited 

and thereby off-the-shelf availability is very challenging 28,29,32,33.  

 Allografts: these grafts are harvested from another individual of the same 

species, usually a cadaver. The limitations in terms of the amount of tissue being 

harvested still remain, and host acceptance may arise, causing undesired immune 

reactions and potential disease transmission 29,34. 

 Xenografts: these grafts are harvested from a member of a different species. 

For human tissue regeneration, this therapy mitigates the problems of availability 

encountered with the autografts and allografts. Nevertheless, in addition to the risk of 

a strong immune reaction, there exists a great possibility of transmission of animal 

viruses 30,35. 

All the limitations encountered with these different technologies have led 

researchers to the development of new approaches based on the combination of 

different bioactive components. The goal of tissue engineering is then to create 

artificial constructs that induce the formation of new tissue at the site of injury by 

activating a cascade of events related to wound healing and the process bone 

formation. Tissue engineering is based on the principle that new tissue formation can 

be guided through the use of cells, biomaterials and bioactive molecules 36. 

Ultimately, recovery of total functionality is the ultimate goal of this field. The most 

common strategy employed in tissue engineering consists on the extraction of a 
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biopsy of autologous tissue without compromising the functionality of the harvesting 

site (Figure 2.2). Cells extracted from this piece of tissue are then cultured and 

expanded in a three dimensional scaffold that supports their growth and 

differentiation 36. Furthermore, the in vitro creation of an efficient construct can be 

accelerated by applying certain stimuli, chemical or mechanical, that can elicit 

specific responses to the cells.  
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Figure 2.2. The tissue engineering paradigm. Cells are harvested from the patient for expansion in a 

three dimensional scaffold; they are later mechanically stimulated in a bioreactor for implantation and 

regeneration of the damaged or lost tissue 37 

 

2.3. Cell Source for Bone Tissue Engineering 

The type of cells utilized in a specific tissue engineering application is of 

extreme importance. Cells cultured in vitro will generate an initial, immature tissue by 

depositing an extracellular matrix (ECM) rich in tissue-specific proteins and growth 
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factors. These cells will strongly interact with the scaffolding material and respond to 

any environmental stimulus both in vitro and early after implantation in the body. 

Consequently, choosing the right cell type will affect the development of the in vitro 

culture and the efficient tissue regeneration both early and later after implantation. 

One of the first cell-based approaches for bone tissue engineering was the use of 

fresh, unfractioned bone marrow, which is rich on osteogenic precursors 38-40. The 

bone marrow is usually extracted from a healthy site of the patient, i.e. the iliac crest, 

and implanted in the defect site thereby preventing immune rejection. However, the 

greatest limitation to this approach is the lack of availability of sufficient marrow 

aspirate for transplantation 41. Stem cells, such as mesenchymal stem cells (MSC), are 

pluripotent cells found in the bone marrow. They have the potential for differentiation 

into different lineages (Figure 2.3) in addition to the ability of being cultured and 

greatly expanded in vitro without differentiation and without loosing the potential for 

differentiation. Their potential for clinical application has been shown in different in 

vivo studies, where regeneration of bone has been observed 42-46.  

 

Figure 2.3. Differentiation potential of adult bone marrow mesenchymal stem cells. Several steps are 

involved in the mesengenic process as stem cells differentiate into tissue specific cells 47. 
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Specific stem cell differentiation can be achieved through the use of growth 

and differentiation factors or by the application of certain mechanical stimuli that will 

be discussed later in this chapter 16,48-52. MSC harvested from the bone marrow can be 

differentiated into the osteoblastic lineage by being cultured in the presence of β-

glycerophosphate, dexamethasone and ascorbic acid 48. When cultured under these 

conditions, MSCs undergo a cascade of morphological and functional changes that 

lead up to their transformation into osteoblasts. Usually, MSC which are fibroblastic 

in appearance, assume a cuboidal shape and tend to form communities that will 

eventually form hydroxyapatite- mineralized nodules late in the differentiation 

cascade. Other events that take place during osteogenic differentiation include the 

transient up-regulation of alkaline phosphatase (AP) activity, while at the late states 

collagen type I is down-regulated, and the production of ECM proteins such as 

osteopontin, osteocalcin and bone sialoprotein are up-regulated 47,48,53. 

 

2.4. Scaffold Technologies in Bone Tissue Engineering 

The biochemical and physical interactions of the cells with the scaffold are of 

crucial importance in the process of tissue regeneration. The deposition of 

extracellular matrix by the osteoblastic cells on the surface of the scaffolds improves 

the osteoinductive potential of the construct once implanted in vivo. Thus, strong cell-

matrix interactions between the cultured cells and the scaffold will result in greater 

expression of extracellular matrix components. The scaffold has to thereby support 

the adhesion of the cells, as wells as their growth, migration and differentiation 

towards a specific phenotype, in this case, osteoblasts 54,55. 
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Certain mechanical and morphological requirements must be met by the 

scaffold in order to achieve a more efficient regeneration process 56. The scaffolding 

material needs to have mechanical properties that can meet the demands of the defect 

site, especially when the injury occurs in a load-bearing zone. Sufficient porosity, an 

optimum pore size and pore interconnectivity are necessary for the nutrition of the 

cells. It is important to achieve the formation of neotissue and a vascular network that 

will guarantee the survival of the newly formed tissue. Ideally, the scaffold should be 

biodegradable so as to permit further formation of tissue as it degrades. However, this 

process needs to occur without compromising the mechanical demands at the site of 

implantation. 29,56-58  

Scaffolds for tissue engineering have been created using a wide variety of 

techniques and materials, both synthetic and natural. Collagen is the most widely used 

material for the creation of scaffolds in numerous tissue engineering applications 

ranging from cardiovascular tissue to bone 59-68. Other important natural materials 

include glycosaminoglycans, which are traditionally used for cartilage reconstruction; 

however, crosslinked heparin and hyaluronic acid have been found to support the 

deposition of mineral matrix 69-73. Some popular choices for synthetic materials 

include ceramics, metals such as titanium, poly-ethylene glycol and biodegradable 

polymers 74,75. Poly(α-hydroxy esters) are widely used biodegradable polymers for 

bone and other tissue engineering therapies due to their well known degradation 

characteristics and the fact that they are approved by the Food and Drug 

Administration, particularly poly(lactic acid), poly(glycolic acid) and their 

copolymers. Both types of materials present advantages and disadvantages. Generally 

being part of the ECMs of different tissues, natural materials can be chosen to possess 

the right chemical composition to allow strong cell-matrix interactions and thereby 
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provide the appropriate environment for the cells to attach, migrate and proliferate. 

Nonetheless, most of these materials present poor mechanical properties, posing a 

limitation for the regeneration of certain tissues such as bone in load bearing zones. 

Greater mechanical properties can be acquired through the right modulation of 

synthetic materials in terms of their chemistries and morphologies. The disadvantage 

of synthetic materials is often due to the lack of functional groups that the cells are 

known to interact with.  

Scaffolds for tissue engineering can be injectable or preformed. Injectable 

materials are in situ polymerizable and generally come in the form of hydrogels and 

ceramic pastes, which can be made of different synthetic and natural materials. 

Poly(ethylene glycol) and modifications of it are some of the most widely used 

hydrogels. Injectable scaffolds are able to fit injuries with odd shapes and they also 

require implantation procedures with a minimal level of invasiveness 76,77. They also 

have drawbacks such as potentially poor mechanical properties and inability to work 

for large defects, but most importantly, they may result in high levels of cytotoxicity 

negatively affecting the surrounding tissue. Preformed scaffolds, as the name 

suggests, are scaffolds formed in vitro prior to implantation. Many different 

techniques have been used to create them: fiber bonding, solvent-casting, particulate 

leaching, micro-printing, melt molding, etc 78-83. All these techniques are capable of 

producing porous scaffolds that can sustain cell attachment and growth, and provide 

open spaces for nutrient transport. Most of these scaffolds minimize risks of 

cytotoxicity and have better mechanical properties than preformed scaffolds, but their 

implantation can be rather invasive. 
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Most biodegradable polymers used in preformed scaffolds are able to support 

cell adhesion and growth to a certain extent, yet they possess a hydrophobic and inert 

nature that limits cell-matrix interactions 84. Consequently, the creation of a construct 

that can mimic the in vivo molecular environment and enhance cell-matrix 

interactions is imperative in the process of creating efficient constructs 60,85. The 

development of these biomimetic scaffolds involves the bulk or surface modification 

of the base biomaterial with growth and differentiation factors that can improve cell 

attachment, proliferation, and migration, as well as eliciting other specific cellular 

responses and biological signals to the surrounding extra cellular matrix (ECM) of the 

tissue in vivo such as development of angiogenesis 36,60. 

The most common way to modify biodegradable polymers is by chemically 

grafting them with a bioactive molecule 60,86-88. Shan-hui H et al improved cell 

attachment by cross linking poly (lactic-co glycolic acid) (PLGA) with collagen type 

II 89. Cook et al also increased the number of cells attached to the surface and 

improved cell spreading by covalently attaching arginine-glycine-aspartic acid (RGD) 

peptides to PLGA 90.  

Physisorption is another technique that has been utilized for surface 

modification of tissue engineering scaffolds 91,92. Yang et al induced adsorption 

poly(L-lysine)-GRGDS conjugates to the surface of poly(L-lactic acid) (PLLA) films 

and porous scaffolds, affecting the osteoblasts’ response not only in terms of cell 

adhesion but also on differentiation and the long term deposition of extracellular 

matrix 88. However, this methodology poses the risk of desorbing the incorporated 

bioactive molecules. Cui et al entrapped gelatin in the surface of PLLA films and 

enhanced the attachment of chondrocytes, overcoming, at the same time, the problem 
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of desorption of the bioactive molecule 93. In our studies we have used partial 

dissolution and entrapment of bioactive molecules for the creation of biomimetic 

scaffolds that can be further functionalized for specific applications. 

 

2.5. Bioreactors in Bone Tissue Engineering 

A bioreactor is described as a simulator, a device in which biological and/or 

biochemical processes can be carried out 57. In tissue engineering, bioreactors are used 

to impart certain forces that imitate different mechanical stimuli that simulate those 

occurring in the body. However, these devices are not limited to the sole application 

of mechanical stimuli; they must meet other requirements in order to create grafts 

that, when implanted, will lead to the regeneration of damaged organs. A bioreactor 

must efficiently transport nutrients and oxygen to the construct, maintaining an 

appropriate concentration in solution. In most tissue engineering applications, a 

scaffold is seeded with cells that supports the formation of extracellular matrix 

(ECM). Consequently, the bioreactor has to induce a homogeneous cell distribution 

throughout these structures in order to generate a uniformly distributed ECM. Tissue 

engineering bioreactors can be used for cell seeding and/or long term cultures. 

 

2.5.1. Common Bioreactors Designs in Tissue Engineering 

The choice of a bioreactor to cultivate three dimensional constructs depends 

upon the tissue to be engineered and its functional biomechanical environment. 

Emulation of physiological conditions is the main objective when developing these 
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kinds of systems, and this issue has been addressed in different ways. The 

incorporation of convective forces has become a common characteristic among most 

bioreactors. Some bioreactors that meet some these characteristics and are often used 

in many different applications are: 

Spinner Flask: The spinner flask (Figure 2.4b) represents one of the simplest 

bioreactor models. It was first designed with the idea to use convection in order to 

maintain a well mixed system. The scaffolds are threaded into needles connected to 

the cover of the flask, and submerged in the culture medium. Convection is generated 

through the usage of a magnetic stir bar or a shaft that continuously mixes the media 

surrounding the scaffolds, providing a practically homogenous distribution of oxygen 

and nutrients 52,94. The fluid dynamic environment at the external surface of the 

scaffolds is turbulent and characterized by the existence of eddies that may enhance 

the transport of nutrients into the porosity, and locally expose cells residing at the 

exterior of the construct to relatively high shear forces. The magnitude of the shear 

stresses can vary significantly between different locations; therefore, not all the cells 

are exposed to the same shear stresses. The presence of convective forces external to 

the scaffolds may not suppress concentration gradients appearing deep inside large 

three dimensional constructs, where diffusion is the controlling mechanism of nutrient 

transport 95,96. 

Rotating-Wall Vessels: Initially designed by NASA as a microgravity 

environment for cell culture, the rotating wall bioreactor (Figure 2.4c) is now widely 

used in the formation of engineered bone, cartilage, and other tissues 52,94,97,98. This 

device consists of two concentric cylinders whose annular space contains the cell 

culture medium 99. The inner cylinder is static and permeable to allow gas exchange 
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for oxygen supply. The outer cylinder, on the other hand, is impermeable and 

horizontally rotates at a speed that causes centrifugal forces that can balance, if tuned 

properly, the gravitational forces; thus, generating a pseudo microgravity environment 

52,99,100. Unlike the spinner flask, in the rotating wall vessel the fluid flow is mostly 

laminar and the range of shear forces experienced by the cells at the outer surface is 

relatively narrow, with the existence of a stagnation zone at the upstream edge. As 

reported by Williams et al, shear stresses decrease in the direction of flow, and no 

significant variations from scaffold to scaffold are observed 101. Medium can be 

recirculated between the annular space and an external gas membrane. A modification 

of the original design, called rotating-wall perfused-vessel bioreactor, includes the 

rotation of the inner cylinder. In this model, media is perfused from the vessel’s end 

cap to the pores of the inner cylinder 100.  

 

(b)
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Figure 2.4. Common bioreactors used in tissue engineering. (a) Static culture (b) Spinner flask (c) 

Rotating wall (d) Perfusion system (e) Perfused column 37 
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Perfusion Chambers and Flow Perfusion Systems: Flow perfusion 

bioreactors provide continuous flow through chambers where the scaffolds are 

located. The perfusion column (Figure 2.4e) was one of the first designs of this kind 

of bioreactors. Culture medium is continuously recirculated through the chamber, thus 

improving the transport of nutrients and oxygen to the constructs 62,102,103. 

Nevertheless, the flow of medium in these chambers is distributed between the inner 

network of the construct and its surroundings, minimizing convective flow through 

the scaffold 79,104,105. To ensure that the flow of medium occurs exclusively through 

the porosity of the material, new designs of flow perfusion bioreactors include the 

confining of the construct in chambers (figure 2.4d). In this way, a more controllable 

flow is achieved and nutrient transport limitations are virtually eliminated. Internal 

flow can also expose the cells inside the scaffold to fluid shear forces that have been 

known to be stimulatory for some cell types such as osteoblasts and endothelial cells 

51,105,106. A standard design of this kind of reactors does not exist, but all of them are 

based on the same principle. A more detailed description of a perfusion system will be 

given later in this chapter. 

 

2.5.2. Cell Seeding in Bioreactors 

The first step to culturing cells in a three dimensional environment is the 

seeding of scaffolds 107. Along with the characteristics of the material, this process 

plays a crucial role in the development of efficient constructs for tissue engineering. 

Seeding of scaffolds determines the initial number of cells in the construct, as well as 

their spatial distribution throughout the matrix. Consequently, proliferation, migration 

and the specific phenotypic expression of the engineered tissue will be affected by the 
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seeding technique utilized 102. In the case of tissues that require a fibrous or porous 

material, static seeding has been the most widely used method of cell seeding (see 

Figure 2.4a))..    Burg et al., compared different seeding techniques using rat aortic cells 

in poly(glycolide) fibrous meshes. Static seeding produced the poorest cellular 

distribution 108. In addition to preventing a homogeneous spatial distribution of the 

cells, static seeding also produces a low yield 57,108.  Holy et al., reported a 25% 

efficiency of attac hment after seeding 0.5 to 10x106 cells on porous PLGA 75/25 

scaffolds 57. A low yield diminishes the development of specific functions related to 

cell-cell interactions and increases the amount of cells necessary; therefore, the usage 

of new seeding techniques becomes imperative. 

 

In order to address these issues, researchers have incorporated convection into 

the process of cell seeding, suppressing some of the mass transfer limitations 

encountered in the static procedure. Spinner flask bioreactors (figure 2b) have been 

implemented to create convection and, thereby, hydrodynamic forces that could help 

increase mass transport. Poly(glycolic acid) (PGA) scaffolds were threaded onto 

needles, and chondrocytes suspensions with a total number of cells between 2x106 

and 10x106 were used. A yield of 60% was obtained after 2 hours of seeding. A more 

uniform distribution of the cells in the scaffold was seen (compared to the static 

seeding); nonetheless, the concentration of cells in the outer layer of the construct was 

60-70% higher than that in the bulk 109. This behavior may be due to the poor 

convection to the interior of the scaffold, making migration the only way for cells to 

reach the interior of the scaffold. 
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It has been reported that, in the spinner flask, the shear forces at the external 

surface of the scaffold are highly non-uniform. Such variability may influence the 

homogeneity of the seeded cells even when considering only the external surface area 

96. However, despite the high efficiency of seeding achieved with the spinner-flask 

bioreactor, a more homogeneous distribution of the cells throughout the construct 

volume is still desired. 

 

One way to guarantee mass transfer to the interior of the scaffold and a better 

distribution of cells is by applying perfusion 79,108,110. In this technique, the construct 

is press fitted into a chamber, and the cell suspension is flowed through it (figure 2c). 

Li et al., used a depth filtration system to seed poly(ethylene terephthalate) matrices at 

a rate of 1ml/min. The cell suspension was recycled to increase the yield. Cell density 

increased along with the inoculation cell number, with an efficiency of about 65%, 

while with the static seeding, the yield stayed constant and lower than that achieved 

with perfusion 102. Similarly, Kim et al seeded hepatocytes on polymeric matrices 

using a flow perfusion system. A suspension of rat hepatocytes at a density of 5x106 

cells/ml was pumped through bone matrices at a flow rate of 1.5 ml/min for 4 h. A 

total of approximately 4.4x106 cells were attached to the matrix, which was 

considered successful. Furthermore, scanning electron microscopy and histology 

confirmed a uniform distribution of hepatocytes throughout the scaffold. 

Wendt et al., monitored seeding efficiency and uniformity of static, spinner 

flask and perfusion systems 110. Using the same inoculation concentrations, there was 

not statistical significance among the efficiencies of the static and perfused 

techniques, both producing a larger yield than the spinner flask. Uniformity, however, 
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was optimized by the perfusion apparatus, while the static and the spinner flask 

generated cell-scaffold constructs with low spatial uniformity 110.  

 

2.5.3. Development of Bone-Like Extracellular Matrix in Bioreactor Systems 

Bone is a hard connective tissue that provides mechanical support to the 

human body and is a frame for locomotion. Bone grafts have been generated under a 

wide variety of culturing conditions, including static and dynamic systems. Among 

the most popular dynamic systems are spinner flasks, rotating wall vessels and 

perfusion systems 106,109,111. Like for every tissue engineering approach, before 

deciding upon the kind of bioreactor to be used, considerations concerning the carrier 

matrix, cells (osteoblasts, mesenchymal stem cells, etc.) and growth factors must be 

taken into account. In the case of bone, the matrix to be used must be 

osteoconductive, provide mechanical support, deliver cells and allow their attachment, 

growth, migration and osteoblastic differentiation. Synthetic and natural polymers 

have been implemented. Among the synthetic polymers poly(α-hydroxy esters), 

poly(ε-caprolactone), poly(propylene fumarate), poly(sebacic acid) and their 

copolymers have been widely used. Materials such as ceramics and titanium have 

been also used for bone replacement 74,75. Cell number and calcium deposition are 

good markers to evaluate the evolution of bone matrix. Furthermore, alkaline 

phosphatase activity (ALP) is used to assess early differentiation activity of 

osteoblastic cells. Production of extracellular matrix proteins such as osteocalcin, 

osteopontin and bone sialoprotein is also taken into consideration 112.  
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As mentioned earlier, static culture was one the first attempts to produce bone 

matrix. Ishaug et al., seeded marrow stromal cells on top of poly (DL-lactic-co-

glycolic acid) foams of different pore sizes at different densities. Cell proliferation 

was supported by the scaffold, and high level of ALP activity and calcium matrix 

deposition were observed. It was found that the depth of mineralized tissue increased 

over time, but the maximum penetration was only around 240µm, resulting in a non 

homogeneous cell and matrix distribution 84.  

Improvement in the development of bone matrix in vitro has been achieved 

with the addition of convection in the in vitro culture stage, which ultimately 

translates in a better transport of nutrients and gases. After statically seeding 1x106 

marrow stromal  cells on PLGA scaffolds, Sikavitsas et al., cultured these constructs 

under three different conditions: statically, in a spinner flask and in a rotating-wall 

vessel 52. The culture was carried out for 21 days, and samples were analyzed at 7, 14 

and 21 days. Scaffolds cultured in the spinner flask bioreactor showed the largest 

number of cells at all time points, followed by the static culture. At the end of the 

culture period, constructs in the spinner flask presented higher calcium contents than 

those encountered in the static and rotating wall vessel 52. 

Shea et al., also utilized a spinner flask to culture poly(lactic acid) foams 

seeded with MC3T3-E1 pre-osteoblasts and evaluated their differentiation 59. Cells 

were seeded statically and cultured for 12 weeks. Proliferation was observed over 

time; however, their distribution throughout the scaffold lacked homogeneity. Cells 

were densely located only at a thin layer of 200µm near the scaffold’s surface. The 

density dramatically decreased deeper into the construct. The same behavior was seen 

for the formation of extracellular matrix and calcium deposition. 
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It has been shown that mechanical stimulation augments the production of 

alkaline phosphatase, osteoblast proliferation, and mineral deposition in osteoblastic 

cells seeded on different scaffolding materials 113. Osteoblastic cells have been shown 

to be responsive to shear stress induced by fluid flow. The stimulatory effect of shear 

stresses has shown to induce an increase in the release of important regulatory factors 

such as nitric oxide and prostaglandin E2 16,114. Interestingly, osteoblasts have been 

found to be more responsive to fluid shear forces than mechanical strain 115. A 

question arises then, what is the physiological relevance of the stimulatory effect of 

fluid flow on bone cells? It has been hypothesized that mechanical strains on bone 

tissue cause fluid flow in the lacunar-canalicular porosity of bone 116-118. 

Consequently, the incorporation of fluid flow through the porous network is desired in 

order to stimulate a faster and more efficient formation of bone matrix. This goal has 

been reached with the implementation of flow perfusion bioreactors 92,106,119.  

Bancroft et al., developed a perfusion system (figure 2.4) where medium is 

pumped through the scaffold, thereby maintaining mechanical stimulation and 

transport of nutrients through the pores 94. The scaffolds are tightly fit into cassettes in 

order to ensure fluid flow exclusively through the porous network. Constructs are 

later placed in flow chambers that are capped and secured with o-rings to restrict the 

flow around them (figure 2.5a). The medium is pumped from a flask to the top of the 

chamber and sent to another reservoir from the bottom. This direction of flow helps 

avoiding the entrance of air bubbles into the flow chamber. Both flasks are connected 

so that the medium is in continuous recirculation. The main body of the reactor 

consists of a total of six chambers and is made out of Plexiglas to allow the 

visualization and monitoring of the flow inside the chambers. Each chamber 

corresponds to an independent circuit using one of the heads of a peristaltic pump that 
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produces flow rates from 0.1 to 10 ml/min (Figure 2.5b). The tubing permits the 

exchange of carbon dioxide and oxygen with the atmosphere in the incubator. A 

complete change of medium can be done due to the two-reservoir set up 51,104. 
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Figure 2.5. Schematics of a flow perfusion bioreactor (a) Close up of the perfusion chamber where the 

scaffold is press fitted (b) Lateral view of the main body of the bioreactor (c) Schematics of the system 

 

To study how the shear rate affects the growth of bone matrix in vitro, 

Bancroft et al., varied the flow rate when culturing titanium fiber meshes seeded with 

rat marrow stromal cells for 16 days 51,105. Controls had been cultured under static 

conditions, and the flow rates used in the perfusion culture were 0.3, 1.0 and 3.0 

ml/min. It was found that the deposition of calcium was greatly increased in the flow 

perfusion culture as compared with the static conditions. It was also observed that 

increased medium flow improves the distribution of extracellular matrix throughout 

the construct volume 51,105.  The increased calcium deposition could have been due to 

the increased shear forces or increased chemotransport in the porosity of the scaffolds 

when higher flow rates were employed. To isolate the effects of shear forces from the 

mass transport effects, the shear forces were changed by varying the viscosity of the 
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culture medium under constant flow rate 51. An increase in viscosity, which translates 

into greater shear forces, was found to enhance the deposition of mineral matrix and 

the ECM distribution throughout the construct, demonstrating the importance of fluid 

flow induced shear forces on the creation of bone tissue-engineered grafts. 

Mainel et al., cultured human mesenchymal stem cells on silk scaffolds for 

five weeks in a flow perfusion chamber (at 0.2 ml/min) and a spinner flask. Scaffolds 

cultured under flow perfusion showed a more homogenous distribution of the 

mineralized matrix throughout the construct although those cultured in the spinner 

flask produced a greater amount of deposited calcium 119. 

The use of flow perfusion greatly enhances the formation of bone matrix, 

activating mechanisms related to the differentiation of osteoblastic cells. Great 

challenges are still encountered however. What are the actual mechanisms that 

transduce the external shear forces and influence the cellular behavior? Currently, 

only estimates of the shear rates at the interior of three dimensional scaffolds have 

been provided, and detailed mathematical modeling needs to be conducted. Using 

larger scaffolds can represent another problem; is it possible to achieve a completely 

homogeneous distribution of matrix in larger constructs? What would be the 

necessary culturing conditions to achieve this? And how long and under what 

conditions must the cells be pre-cultured prior to the application of mechanical forces 

to avoid their detachment? By answering these questions, the field of tissue 

engineering could be enriched and take a more feasible route towards achieving 

practical applications.  

 



38 

In bone tissue, cells experience a degree of shear stress due to interstitial fluid 

flow. The shear stress was estimated by Weinbaum et al assuming peak physiological 

loading regimes, with values of 8-30 dynes/cm2. This effect is mimicked in the flow 

perfusion bioreactor; therefore, it is important to estimate the values of average shear 

stresses experienced by the cells due to perfused flow.120 

 

The mechanotransduction mechanisms by which the activity of bone cells is 

increased are still being investigated. However, it has been shown that different 

osteoblast and osteocytes receptors, such as integrins and CD44, that are located on 

their membrane, are stimulated by shear forces and convert the mechanical stimuli 

into different intracellular signaling pathways. Prostaglandins have also been shown 

to be involved in osteoblastic behavior in the presence of shear stress. Moreover, 

nitric oxide (NO) production increases in the presence fluid flow. NO is a mediator of 

many intracellular processes, and it is suggested that it maybe one of the major 

mediators of the response of osteoblasts to stress.6 

 

The characterization of shear forces on the surface of tissue engineering 

scaffolds in the presence of perfusion has proven very challenging. Scaffolds 

generally possess non-uniform pore distribution. In the present work, the scaffolds 

used were prepared through two different techniques:  

1. Porous foams by particulate leaching 

2. Fibrous matrices by melt blowing 

 

In the first case, foams made by particulate leaching, the pores represent a 

tortuous path with very irregular structures generated by the initial presence of sodium 
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chloride crystals (refer to Chapter 3 for more details on slat leaching). Thus, the 

estimation of shear stresses at different points of the scaffold’s surface can be made 

by three dimensional computational modeling, usually based on the Lattice-Boltzman 

method. For the fibrous matrices prepared by melt blowing, the scenario is very 

similar since the fibers are randomly oriented.121,122  

 

In the field of tissue engineering, the need for characterizing the distribution of 

shear stresses throughout the scaffold has been recognized. This analysis would allow 

for a detailed study of cell-matrix interactions due to fluid flow. Nevertheless, for the 

studies comprising the present doctoral research project, it was important to at least 

know the magnitude of the shear stresses. Models for the estimation of shear stress on 

scaffolds in the presence of flow perfusion are based on Newton’s Law of Viscosity. 

Figure 2.6 shows a fluid placed between two parallel, infinite plates. At a certain time 

(t = 0) the lower plate is set in motion in the x direction at a constant velocity v. After 

some time, the linear steady state velocity profile is reached. It is assumed here that 

the flow is laminar, moving in parallel layers. Newton’s law of viscosity establishes 

that the constant force, F, required to maintain the steady state motion is proportional 

to the area, A, and velocity, and inversely proportional to the distance, y. This is 

summarized in equation 2.1: 

dy

dv

A

F xµτ −==                   (2.1) 

 

where τ is the shear stress, defined as the applied force per unit area necessary to 

deform the fluid. The symbol µ is the viscosity, and it is the proportionality constant 

between the shear stress and the shear rate (dvx/dy). 123 
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Figure 2.6. Steady state linear velocity profile of a Newtonian fluid between two plates. 

 

For porous foams, it is assumed that the flow is uniformly distributed across a 

foam surface of diameter, D. The mean velocity, Vm, through the porous media is then 

calculated as 95: 

2)2/(D

Q
Vm φπ

=                   (2.2) 

 

where Q is the flow rate, and φ is the porosity of the scaffold. The shear stress, τ, at 

the pore walls can be estimated by assuming flow through parallel cylindrical pores of 

diameter d. 95 

d

Vmµ
τ

8
=                    (2.3) 

 

For the fibrous matrices, the Stokes-Olsen model for flow around a cylinder 

can be applied 124. This model was developed for creeping flow around a single 

cylinder. In the scaffolds used for the study presented in Chapter 3, fibers were 

separated by at least 150µm, which is considerably greater than the fiber size (20-50 

µm). In addition to that, Reynolds numbers were very small at the conditions of flow 

used (Re < 1). Thus, this model was appropriate for estimating the magnitude of the 

shear stresses experienced by the cells under those conditions of flow perfusion. 

According to this model, the drag coefficient is expressed as follows 124: 
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( )Re
4.7logRe*

8
2

π
ρ

==
rU

D
CD                 (2.4) 

 

where D is the drag force per unit length, ρ is the density of the fluid, U is the 

velocity, r is the radius of the cylinder, and Re is the Reynolds number. Shear stress is 

defined as: 

A

D
=τ                     (2.5) 

where A is the area of the cylinder, which is defined as A= 2πrL. Then considering 

the area per unit length, and knowing that the Reynolds number for flow around a 

cylinder is: 

µ
ρUr2

Re =                    (2.6) 

where µ is the fluid’s viscosity, equations 2.4, 2.5 and 2.6 are combined to obtain an 

expression for shear stress on the walls of the cylinder 124: 

 

( )Re
4.7log*

2

r

Uµ
τ =                   (2.7) 
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Chapter 3 

 

Oscillating Flow perfusion improves seeding of different 

tissue engineering scaffolds 

 

Chapter Abstract 

Scaffold seeding determines initial cellularity and cell spatial distribution 

throughout the scaffold, and affects cell-matrix interactions. Static seeding often 

yields low seeding efficiencies and poor cell distributions; thus creating a need for 

techniques that can improve these parameters. We have evaluated the effect of 

oscillating flow perfusion on seeding efficiency and spatial distribution of MC3T3-E1 

pre-osteoblastic cells in fibrous polystyrene matrices (20, 35 and 50-µm fibers) and 

foams prepared by salt leaching, using as controls statically seeded scaffolds. An 

additional control was investigated where static seeding was followed by 

unidirectional perfusion. Oscillating perfusion resulted in the most efficient technique 

yielding higher seeding efficiencies, more homogeneous distribution and stronger 

cell-matrix interactions. Cell surface density increased with inoculation cell number 

and then reached a maximum, but significant detachment occurred at greater flow 

rates. Oxygen plasma treatment of the fibers greatly improved seeding efficiency. 

Having similar porosity and dimensions, fibrous matrices yielded higher cell surface 

densities than foams. Perfusion seeding produced more homogeneous cell 

distribution, with fibrous matrices presenting greater uniformity than the foams. 
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3.1 Introduction 

The main goal of bone tissue engineering is to create artificial constructs that 

could repair or simply replace lost or damaged osseous tissue. Common tissue 

engineering strategies involve the extraction of cells from a small biopsy of tissue for 

in vitro expansion. This culture can be carried out in a three dimensional scaffold that 

allows and induces the formation of new tissue after implantation 1-4. Most 

approaches in this field are based on common bioactive factors, consisting of cells 

(generally stem or tissue specific cells), a scaffolding material and growth and 

differentiation factors 5. Furthermore, the in vitro creation of an efficient construct can 

be improved by applying certain stimuli that can elicit specific responses to the cells. 

Stimulation can be done in two major ways: chemically and mechanically 6-9.  

 

The need for in vitro mechanical stimulation in tissue engineering is drawn 

from the fact that most tissues function under specific biomechanical environments in 

vivo that play a key role in tissue remodeling and regeneration 10,11. These mechanical 

stimuli can be classified into different kinds of forces that range from load bearing to 

hydrodynamic forces due to fluid flow 9,11. Thus, the mechanochemical 

microenvironment that progenitor cells grow into is expected to control the fate of 

these cells and influence their differentiation.  

 

In many tissue engineering applications, bioreactors are used to impart certain 

forces that imitate different mechanical stimuli occurring in the body, thereby 

enhancing the formation of an extracellular matrix (ECM) similar to the in vivo matrix 

12-19. However, these devices are not limited to the sole application of mechanical 

stimuli; they must meet other requirements in order to create grafts that, when 
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implanted, will lead to the regeneration of damaged organs. A bioreactor must 

efficiently transport nutrients and oxygen to the construct. In most tissue engineering 

approaches, a scaffold is seeded with cells and supports the formation of extracellular 

matrix (ECM). Consequently, the bioreactor has to induce a cell distribution 

throughout these structures that is as homogeneous as possible in order to generate a 

uniformly distributed ECM. Tissue engineering bioreactors can be used for cell 

seeding and/or long term cultures 19-29. 

 

The first step to culturing cells in a three dimensional environment is the 

seeding of scaffolds with cells appropriate for the desired application 20. Scaffold 

seeding determines the initial number of cells in the construct, as well as their spatial 

distribution throughout the matrix. Therefore, proliferation, migration and the specific 

phenotypic expression of the engineered tissue will be affected by the utilized seeding 

technique 30. In the case of tissues that require fibrous or porous materials, static 

seeding has been the most widely used method of cell seeding; however, poor cellular 

distribution and a low seeding efficiency are obtained with this technique 26,31.  A low 

seeding efficiency diminishes the development of specific functions related to cell-

cell interactions and requires a greater amount of cells suspended prior to seeding; 

therefore, the usage of new and improved seeding techniques becomes imperative 32. 

 

In order to address these issues, researchers have incorporated convection into 

the process of cell seeding to overcome some of the limitations encountered in the 

static procedure. Spinner flask bioreactors have been utilized to create convective 

flow and deliver hydrodynamic forces that may help increase mass transport into the 

scaffold. In these systems, higher seeding efficiencies are obtained, and the cells are 
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more uniformly distributed when compared with static seeding; however, a more 

homogeneous cell distribution is still desired 19,33. This behavior may be due to the 

poor convection through the interior of the scaffold, making migration the only way 

for cells to reach the interior. 

 

One way to improve cell penetration into the interior of the scaffold and a 

better distribution of cells is by applying perfusion 14,24,34-36. In this technique, the 

construct is press fit into a chamber, and the cell suspension is perfused through it. 

Different systems that operate based on the concept of flow perfusion have been 

utilized to seed polymeric scaffolds. Dramatic increases in the seeding efficiency have 

been found in all these systems, and more homogeneous cell distributions throughout 

the scaffolds have been achieved, compared with static and other dynamic systems 

30,34,37. 

 

Therefore, it can be hypothesized that scaffolds seeded in a flow perfusion 

system, using oscillatory flow, will present higher seeding efficiencies and more 

homogeneous cell distributions than scaffolds seeded statically.  In this study, we 

evaluate the effect of flow perfusion on seeding efficiency and cell spatial distribution 

on fibrous polystyrene matrices and foams using MC3T3-E1 pre-osteoblastic cells, 

using a flow perfusion system also suitable for long-term cultures. To asses the 

potential applicability of this seeding technique as a first step for long term cultures or 

as the last step prior to implantation of cell/scaffold constructs, oscillatory flow was 

followed by unidirectional flow and the scaffold cellularity (total number of cells 

attached per scaffold) was determined afterwards. The effects of fiber size and surface 

modification by oxygen plasma on polystyrene fibers were also evaluated, as well as 
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the assessment of cell distribution on poly(L-lactic acid) (PLLA) foams in order to 

demonstrate that the employed methodology is not material dependant. The results 

yielded by oscillatory flow perfusion seeding are compared to those achieved with 

static seeding and static seeding followed by unidirectional flow perfusion. 

 

3.2 Materials and Methods 

 

3.2.1 Scaffolds 

Fibrous meshes and porous foams are among the most popular scaffold architectures 

employed in the regeneration of bone and other tissues 13,38-45. These two different 

morphologies were utilized in this study and seeded with MC3T3-E1 pre-osteoblastic 

cells under static and dynamic conditions in a flow perfusion bioreactor14. Scaffolds 

were prepared as follows: 

 

a) Fibrous meshes. Non-woven polystyrene fibrous matrices were produced by 

spunbonding 46,47. The apparatus consisted of a Brabender™ single screw extruder, a 

spin pack equipped with a gear pump, and a spinneret. The extruder barrel was 19.0 

mm (0.75 in.) in diameter and 381 mm (15 in) in length and had a compression ratio 

of 3:1. The spin pack contained a Zenith™ gear pump that metered and pressurized 

the molten polymer. A single-hole spinneret was used for the production of fibers. 

The single-hole spinneret had a diameter of 0.407 mm (0.016 in) and a length 2.97 

mm (0.1169 in). The Brabender extruder was kept at 265oC, the spin pack was kept at 

275oC, and the spinneret was kept at 280oC. Fiber diameters were 20, 35 and 50µm. 

The fibers were used as produced and also treated with oxygen-plasma in order to 

incorporate hydroxyl groups on the surface of the fibers and; both, plain and treated 
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surfaces were compared. Oxygen-plasma treatment was carried out for 1 min at 

medium intensity and a pressure of 200mmHg in a plasma cleaner/sterilizer (Model 

PDC-32G, Harrick). Fibrous scaffolds were punched from the resulting mesh. These 

fibrous matrices had an approximate porosity of 95%, and dimensions of 8 mm in 

diameter and 3 mm in thickness. The porosity was determined as the percentage ratio 

of the weight of the scaffold to the weight of a solid polystyrene disc with the same 

dimensions. 

 

b) Porous foams. Polystyrene foams were prepared by particulate leaching, using 

sodium chloride (NaCl) as the porogen 48-50. The grain size of the NaCl was between 

300-450µm. Briefly, polystyrene (average MW 100,000) was dissolved in chloroform 

at a concentration of 5% w/v. The solution was then poured on a sodium chloride bed, 

and the solvent was allowed to evaporate for 24 h. The solid salt-polymer composite, 

which was 95 wt% NaCl, was pressed in a cylindrical mold with an inner diameter of 

8 mm at 500 psig, using a hydraulic press, with simultaneous heating at 130oC for 30 

min. The resulting pellet was cut into discs of 3 mm in thickness using a low speed 

diamond wheel saw (Model 650, South Bay Technology, Inc). Salt leaching was 

carried out using deionized water for 3 days while the water was changed at least 

twice a day. The scaffolds had a porosity of 95% determined as the percentage ratio of 

the weight of the scaffold to the weight of a solid polystyrene disc with the same 

dimensions. 
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3.2.2. Cell Source  

Preosteoblastic MC3T3-E1 cells were cultured in T-75 flasks (Corning) using 

Dulbeco’s modified essential medium (D-MEM, 10% fetal bovine serum) (Atlanta 

Biologicals), in a humid atmosphere at 37ºC and 5% CO2. Media was changed every 

other day. Prior to seeding, cell cultures were rinsed with PBS (Atlanta Biologicals) 

and lifted from the culture flask using 0.25% trypsin/EDTA (Gibco). Cells were 

centrifuged at 400g for 5 min and re-suspended in fresh D-MEM. Seeding densities 

were 1.25x105, 2.50x105, 5x105 and 1x106 cells in 250µl of D-MEM.  

 

3.2.3. Seeding Techniques 

Three different seeding techniques were compared to evaluate scaffold initial 

cellularity, seeding efficiency and cell spatial distribution. 

 

Static Seeding: Scaffolds were pre-wet with 200-proof alcohol by applying 

manual vacuum, rinsed in a series of solutions of decreasing concentrations of alcohol 

in phosphate buffered saline (PBS), press fit into cassettes designed for static seeding 

and placed in a low-attachment 6-well plate prior to seeding. Cells suspended in 

250µl of D-MEM were slowly distributed on top of the scaffolds and allowed to 

attach for 4h. The wells were then filled with medium and cells were allowed to 

condition for 8h, in an incubator at 37oC and under 5% CO2. 

 

Oscillatory perfusion (Dynamic) seeding: a modified flow perfusion system 

utilized in other studies was used in this set of experiments 14. Briefly, scaffolds were 

confined in cassettes so as to force the flow throughout the porous network and 

restrict it from going around the scaffold. The cassettes were placed into the perfusion 
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chambers of the main body of the bioreactor, which consists of a total of six 

chambers. Culture media was pumped to the top of the chambers using a peristaltic 

pump (Cole-Parmer) from a media reservoir and returned to a second reservoir, 

allowing media recirculation.  

 

Prior to seeding, the flow system was cured with D-MEM for 2 h. Pre-wet 

scaffolds were press-fit into cassettes and placed in the flow perfusion chambers of 

the bioreactor. Cell suspensions (in 250µl of D-MEM) were poured on top of the 

scaffolds, and the chambers were filled up with fresh media to avoid the presence of 

air bubbles. Oscillating flow was then applied for 2 h at 0.15 ml/min by manually 

changing the direction of the pump every 5 min.  Cell conditioning, without flow, was 

allowed for a period of 2h, after which unidirectional flow was incorporated at 0.15 

ml/min for 8h.  

 

Statically seeding followed by shearing: Scaffolds were seeded statically for 

4h, using flow perfusion cassettes as described earlier in this chapter. After that, the 

cassettes with the statically seeded scaffolds were placed in the bioreactor chambers, 

and unidirectional flow was applied at 0.15 ml/min for 8h. 

 

3.2.4. Cell detachment 

Scaffolds were seeded statically or dynamically for 2h as explained 

previously. After the additional 2h conditioning period (absence of any type of flow), 

unidirectional flow was applied for 8h at rates of 0.15, 0.5 and 1 ml/min, using the 

flow perfusion bioreactor. 
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3.2.5 Cell number quantification  

After completing of the seeding process that lasted 12h for all groups, the 

constructs were quickly rinsed in PBS, suspended in 3 ml of water, and broken down 

into small pieces. Samples were later submitted to three cycles of freezing and 

thawing in order to lyse the cells. A picogreen® DNA quantification assay 

(Invitrogen) was carried out to obtain the number of cells attached to the scaffolds. A 

standard curve was made using known-concentration solutions of λ-DNA. Sample 

and standard aliquots of 43µl were accommodated in a 96-well plate, along with 

107µl of reaction buffer (20mM Tris-HCl, 1 mM EDTA, pH 7.5) and 150µl of the 

Picogreen® Dye. Fluorescence was measured at 490 nm in excitation and 520 nm in 

emission, using a Synergy HT plate reader (Bio-Tek). The number of cells was 

calculated using the total amount of DNA determined in the sample divided by the 

amount of DNA contained in one cell, which was estimated in our laboratory to be 3 

pg/cell. 

 

The data were reported in two ways: total scaffold cellularity, which is the 

total number of cells attached to the scaffold; and cell surface density, which is 

defined as the cellularity divided by the total surface area available for cell 

attachment. Surface area in the foams was estimated using mercury porosimetry. The 

surface area of the fibrous matrices was calculated as follows51: 

 

First, the total volume of the fibers (V) was computed by:  

 2LD
4
π

ρ
mV ==                    (3.1) 
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Where L is the total length of the fibers, D is the fiber diameter, m is the mass of the 

fibrous matrix, and ρ is the polystyrene density. Then, the total surface area of the 

fibers is given by: 

 πDLA =                    (3.2) 

By combining equations 3.1 and 3.2, the surface area available for attachment in a 

fibrous matrix is estimated by the following expression: 

 

 
ρD
4m

A =                    (3.3) 

 

3.2.6. Assessment of cell spatial distribution throughout the scaffold surface 

 

3.2.6.a. Fluorescence microscopy 

After seeding with all of the methodologies previously described, cells were 

fluorescently tagged with BODIPY® FL phallacidin (Invitrogen), a high affinity 

probe for F-actin. Briefly, seeded scaffolds were fixed in 3.7% formalin for 10 min. 

Rinsing with 0.1% Triton-X and PBS followed. Constructs were then incubated for 20 

min in the dye solution, with a concentration of 200units/ml. They were finally rinsed 

with 0.1% Triton-X and PBS. Top and bottom sections were analyzed for cell 

distribution, with the top section corresponding to the surface on which the cell 

suspension was originally placed. In fibrous matrices, the middle portion of the 

construct was also assessed for cellularity by manually sectioning the matrices along 

the axial direction. Fluorescence microscopy was performed using a Nikon 

Epifluorescence microscope, and image analysis was carried out with MetaMorph 6.2 

(Universal Imaging Corporation). The excitation and emission wavelengths were 

558nm and 569nm respectively. 
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3.2.6.b. Histological Analyses 

Histology of 20-µm plasma treated fibers seeded both statically and 

dynamically with MC3T3-E1 pre-osteoblastic cells was carried out. Seeded scaffolds 

were fixed in 3.7% formalin overnight, dehydrated using a series of ethanol solutions 

of increasing concentration, and embedded in paraffin. Embedded samples were 

sectioned using an MT 6000 microtome (RMC). Sections were mounted on glass 

slides and stained with Safranin-O (Electron Microscopy Sciences). 

 

Histology of porous foams seeded both statically and dynamically was also 

carried out. The material used in this section of the study was poly(L-lactic acid) 

(PLLA) (Birmigham polymers, average MW: 100,000). Foams were prepared by 

particulate leaching, using sodium chloride as the porogen (as previously explained 

for polystyrene foams). Seeded scaffolds were fixed in 3.7% formalin overnight, 

dehydrated, and embedded using a low viscosity embedding media Spurr’s kit 

(Electron Microscopy Sciences, RT 14300). Infiltration of the samples with the 

embedding medium was done by starting with and ethanol-PBS solution (1:1), 

followed by a 1:3 mixture, and finally pure PBS. Each infiltration step lasted 2h. 

Fresh embedding media was aggregated and allowed to polymerize overnight at 60oC. 

Embedded samples were sectioned in the direction of the flow, mounted on glass 

slides and stained with toluidine blue (Electron Microscopy Sciences). Microscopy 

was performed using a Nikon Epifluorescence microscope. Eight images were taken 

per each cross-section with a 10X objective.  
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The images were segmented in three different areas: an upper zone close to the 

surface on which the cell suspension was placed (0-1mm), a middle zone (1-2 mm), 

and a lower zone (2-3 mm). Cell nuclei were counted per zone. The distribution of 

cell coverage along the direction of the flow was determined by calculating cell 

coverage fractions. The cell coverage fraction was defined as the ratio of the number 

of cells counted in one zone to the total number of cells in the entire cross section.  

 

To obtain a quantitative measurement of cell uniformity, we utilized the 

method proposed by Zhao et. al. and Wendt et. al.56,65. Six histological sections were 

obtained for each scaffold. Each cross section was divided into five areas in the 

direction of the flow starting from the top. Each area was imaged and the number of 

cells per image was quantified. The average number of cells for a cross section ( x ) 

along with the standard deviation (s) were determined. Percent uniformity for a cross 

section was calculated by the following equation 56,52: 

 









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

−=
x

s
Uniformity 1*100%                 (3.4) 

 

3.2.7. Statistical analysis 

For all the experiments, three to five samples were used (n = 3-5) in all the 

experiments, unless otherwise specified. Values were reported as the average of all 

the samples, and the error was reported as the standard error of the mean. The data 

were analyzed by using ANOVA, and multiple pair-wise comparisons were carried 

out using the Tukey-HSD method at a confidence level of 95%. 
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3.3. Results 

 

3.3.1 Effect of the seeding technique and fiber diameter on initial scaffold 

cellularity and seeding efficiency in fibrous scaffolds 

In Figure 3.1, the three different seeding techniques are compared in terms of 

scaffold initial cellularity (total number of cells attached per scaffold) at different 

fiber sizes and at an inoculation number of 2.5x105 cells. At fiber sizes of 20 and 35 

µm, oscillatory flow perfusion seeding (also called dynamic seeding) yielded the 

highest cellularity. In all cases, the shearing of statically seeded scaffolds yielded the 

lowest scaffold cellularity.  

 

 

Figure 3.1. Effect of seeding technique and fiber size on the number of cells attached per scaffold using 

an inoculation number of 2.5x105 cells. All scaffolds were oxygen plasma treated. (*) p<0.05 

 

The efficiency of seeding (percentage ratio of the initial scaffold cellularity to 

the number of cells suspended), is shown in Figure 3.2 for the different seeding 

techniques. As a general trend, it was observed that seeding efficiency decreased at 
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higher suspension cell numbers. Dynamic seeding yielded the highest efficiency in 

most cases, with a maximum value of about (56±5)%; nonetheless, differences among 

the different seeding techniques were not clearly appreciated on untreated fibers 

(Figure 3.2a). In oxygen-plasma treated fibrous scaffolds, the differences on 

efficiency among the different seeding techniques were more obvious (Figure 3.2b). 

The tendency of the dependence of seeding efficiency on inoculation number was 

preserved, with values of up to (87±6)%. In most cases, the plasma treatment 

significantly increased seeding efficiency when compared with untreated fibers 

(Figures 3.2, 3.3 and 3.4). 
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Figure 3.2. Effect of cell inoculation number on the seeding efficiency of (a) untreated scaffolds and 

(b) oxygen-plasma-treated scaffolds at different seeding techniques. All scaffolds had a fiber size of 20 

µm. Multiple pair-wise comparisons have been carried out using the Tukey-HSD methodology at a 

confidence level of 95%.The ampersand symbol (&) denotes the seeding technique that yielded the 

highest seeding efficiency at the same inoculation number. The plus symbol (+) represents the seeding 

technique that yielded the lowest seeding efficiency at the same inoculation cell number. (*) p<0.05 

 

The dependence of the scaffold cellularity on the inoculation cell number after 

dynamic seeding is presented in Figure 3.3. Similar trends were noticed for all fiber 
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sizes; cell attachment increased with the inoculation cell number, but it reached a 

plateau at an inoculation number of 5x105 cells. In untreated fibers, there was not a 

significant difference between fiber sizes of 20 and 35µm; however, fibrous matrices 

with 50 µm fibers had a significantly lower number of cells attached. Plasma-treated 

scaffolds presented a similar trend in terms of cellularity related to the inoculation cell 

number and fiber size (Figure 3.3b). However, at higher inoculation numbers (5x105 

and 1x106 cells in the inoculum), the number of cells attached to the plasma treated 

scaffolds dramatically changed, presenting a 2-fold increase for fiber diameters of 20 

and 35 µm, and a 5-fold increase for 50 µm, with respect to untreated scaffolds. 
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Figure 3.3. Dependence of the number of cells attached per scaffold (cellularity) on the cell inoculation 

number and fiber size of (a) untreated scaffolds, and (b) oxygen-plasma-treated scaffolds after flow 

perfusion seeding. Multiple pair-wise comparisons have been carried out using the Tukey-HSD 

methodology at a confidence level of 95%. The ampersand symbol (&) denotes the fiber size that 

presented the highest cellularity at the same inoculation number. The plus symbol (+) represents the 

fiber size that yielded the lowest cellularity at the same inoculation cell number. (*) p<0.05 

 

Scaffold cellularity was normalized with the surface area available for cell 

attachment (Figure 3.4). This normalization is referred to as cell surface density. 
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Scaffold surface areas were estimated to be (11.8 ± 2.1), (5.2 ± 0.8), and (4.2 ± 0.4) 

cm2 for fibers of 20, 35 and 50 µm respectively, and (18.7 ± 1.5) cm2 for porous 

foams. Cell surface density kept a similar dependence on the inoculation cell number 

to that obtained in Figure 3.3, reaching a plateau when the number of cells in the 

inoculum was 5x105. No clear trend on cell surface density was observed with respect 

to fiber sizes when untreated meshes were used, but, in plasma treated fibers, the 

surface density in the 20-µm fibers was significantly lower than those yielded by 

larger fiber sizes (35 and 50 µm).  
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Figure 3.4. Dependence of cell surface density on cell inoculation number and fiber size of (a) 

untreated scaffolds, and (b) oxygen-plasma-treated scaffolds after flow perfusion seeding. Multiple 

pair-wise comparisons have been carried out using the Tukey-HSD methodology at a confidence level 

of 95%. The ampersand symbol (&) denotes the fiber size that presented the highest cell surface 

density at the same inoculation number. The plus symbol (+) represents the fiber size that yielded the 

lowest cell surface density at the same inoculation cell number. (*) p<0.05 

 

The effect of scaffold architecture on cell surface density is shown in Figure 

3.5. Both kinds of scaffolds, fibrous matrices and porous foams, had the same 

dimensions, 8 mm in diameter by 3 mm in thickness, and a porosity of 95%. 
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Untreated, 20 µm fibers were compared to untreated foams prepared by salt leaching. 

In both architectures, cell surface density increased with the inoculation number but 

reached a plateau at an inoculation of 5x105 cells. The cell surface density of the 

foams was lower than that of the fibrous meshes at higher cell inoculation numbers 

(5x105 and 1x106 cells). 

 

 

 

Figure 3.5. Effect of scaffold morphology on cell surface density after seeding in a flow perfusion 

system. Both scaffolds had a diameter of 8 mm, thickness of 3 mm and a porosity of approximately 

95%. The symbol (*) denotes significantly higher cell surface density when comparing the different 

scaffold architectures at the same cell inoculation number. The symbol (#) represents cell inoculation 

number that yielded significantly lower cell surface densities than those yielded by inoculation cell 

numbers of 5x105 and 1x106 at the same scaffold morphology.  

 

Figure 3.6 shows the effect of the seeding technique on the seeding efficiency 

on porous foams. As observed with the fibrous matrices, the oscillatory flow 

perfusion seeding yielded the highest seeding efficiency, while the static followed by 
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shearing yielded the lowest (p<0.01). Approximately, 40% of the cells seeded 

statically were detached when unidirectional flow perfusion was applied. 

 

 

Figure 3.6. Effect of seeding technique on the cell seeding efficiency of prous scaffold scaffolds 

made by particulate leaching using an inoculation number of 5x105 cells. (*) denotes the seeding 

technique that yielded the highest efficiency. (#) denotes the seeding technique that yielded the lowest 

seeding efficiency. 

 

3.3.2. Cell detachment after seeding 

Perfusion seeding consists of three stages: oscillating flow, cell conditioning 

without flow, and unidirectional media recirculation at a specific flow rate. In the 

detachment studies, three different flow rates were tested in the recirculation phase, 

0.15, 0.5 and 1.0 ml/min.  Figure 3.7 shows the detachment curves in plasma-treated 

fibrous meshes with a fiber size of 20 µm, seeded using an inoculation of 2.5x105 

cells. Scaffold cellularity remained unchanged at different stages of the perfusion 

seeding, oscillating flow for 2h, cell conditioning for 2fh without flow, and 

unidirectional media recirculation for 8h, both at a flow rate of 0.15ml/min. 

Nonetheless, the number of cells attached to the scaffolds seeded dynamically 
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decreased when higher rates of media recirculation were tested. At 0.5 and 1.0 ml/min 

unidirectional flow, the cellularity of the mesh was respectively about 50 and 35% of 

that obtained at 0.15 ml/min.  

 

In the case of statically seeded scaffolds, the cellularity was decreased when 

unidirectional flow was incorporated, and lower cellularities were obtained compared 

to the dynamically seeded scaffolds experiencing the same unidirectional flow for the 

same period of time. Statically seeded scaffolds that were subjected to 0.15 ml/min 

presented about 70% of the initial cellularity, yielding the same cellularity as the 

dynamically seeded scaffolds exposed to 1.0 ml/min in the recirculation phase. After 

applying flow rates of 0.5 and 1 ml/min to statically seeded scaffolds, the total 

scaffold cellularity was between 38 and 31% of the initial cellularity, respectively.  

 

 

 

Figure 3.7. Detachment curve of cells seeded both statically and dynamically on oxygen plasma treated 

fibrous meshes with a fiber size of 20 µm. Inoculation cell number of 2.50x105 cells. (*) p<0.05 with 

respect to 0.5 ml/min; (+) p<0.05 with respect to 0 ml/min. Both curves were significantly different at 

every point of flow rate (p<0.05). 
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3.3.3. Assessment of cell spatial distribution 

Fluorescence microscopy was used to assess cell distribution. In Figure 3.8, 

the different seeding techniques for the fibrous matrices were compared by 

fluorescence microscopy. Scaffolds were separated in three general regions: top, 

middle and bottom, with the top being the surface on which the cell suspension was 

initially placed. In the statically seeded scaffolds, cells were clustered around the 

fibers at the top of the matrix, forming large cellular networks. Middle and bottom 

sections of these scaffolds showed significantly fewer cells, and no clusters were 

found. A closer look at the cells, using a higher magnification, revealed that a great 

number of single cells attached to the fibers had a rounded shape, while others were 

slightly stretched (Figure 3.9a). In the dynamically seeded fibers, the top surface also 

appeared to have more cells than the other regions of the scaffold, but the difference 

in depth was less pronounced than that observed under static conditions. Clusters 

were occasionally found in some areas of the upper scaffold section, but they were 

smaller than those seen in statically seeded scaffolds and localized. Unlike cells 

attached under static conditions, most of the dynamically seeded cells stretched along 

the surface of the fibers (Figure 3.9b).  

 

Cells seeded on porous foams were located along the edges of the pores at the 

outer scaffold surface, as shown in Figure 3.10. In both seeding techniques, the top 

presented an appreciable number of cells. The bottom, on the other hand, showed very 

few cells in dynamically seeded scaffolds and virtually no cells in those scaffolds 

seeded statically. 
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Figure 3.8. Fluorescent micrographs of the top, middle and bottom portions of fibrous matrices (20-µm 

fibers) seeded statically and dynamically in the flow perfusion bioreactor. Cells were tagged with 

BODIPY® FL phallacidin. Calibration bar: 200 µm. 

 

 

Figure 3.9. Cell stretching on fibrous matrices (20-µm fibers) seeded (a) statically, and (b) dynamically 

in the flow perfusion bioreactor. Calibration bar: 50 µm. 
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Static 

Dynamic 

Top Bottom 

 

Figure 3.10. Fluorescent micrographs of the top and bottom portions of polystyrene porous foams 

seeded statically, and dynamically, in the flow perfusion bioreactor. Cells appear as brighter dots. 

Calibration bar: 200 µm. 

 

Histology of porous poly(L-lactic acid) (PLLA) foams was used to assess cell 

distribution in the direction of the flow. Histological sections of statically seeded 

PLLA scaffolds (Figure 3.11) are in accordance with the fluorescence microscopy on 

polystyrene foams; most of the cells are observed close to the top surface, and very 

few cells are located in the bottom portions after static seeding. Under flow perfusion 

however, a greater number of cells was observed in all the sections of the scaffold. 

We also compared scaffold cellularities of PLLA and polystyrene foams under flow 

perfusion seeding for identical inoculation densities but did not find a significant 

difference between the two values (data not shown). 
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Pore edge 

 

Figure 3.11. Axial histological sections of PLLA foams seeded statically and dynamically, in the flow 

perfusion bioreactor. Top and bottom portions of both scaffolds are represented. Cells were stained 

with toluidine blue. Arrows point the areas were cells were observed. Calibration bar: 195 µm. 

 

From the histology analyses, both of the foams and the fibers, it was possible 

to calculate the percent uniformity defined by equation 3.4. The percent uniformities 

for 20-µm fibers (plasma treated) seeded statically and dynamically are compared in 

Figure 3.12, in which a significant difference was observed among the two different 

techniques, with the dynamic seeding yielding higher uniformity. Moreover, Table 3.1 

shows that in dynamically seeded scaffolds cells showed increased homogeneity in 

the direction of the flow than in statically seeded scaffolds. This phenomenon was 

found in fibrous matrices and porous foams. In the foams, the percent uniformity after 

oscillatory seeding was (65 ± 4) %, while in the statically seeded scaffold it was (20 ± 

2) %. 
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Figure 3.12. Percent uniformity of scaffold dynamic and static seeding. Oxygen plasma-treated fibrous 

meshes were used with a fiber size of 20 µm. A cell suspension number of 1x106 was utilized. 

(*p<0.05) 
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Table 3.1. Cell coverage fractions of statically and dynamically seeded scaffolds. Oxygen plasma-

treated fibrous meshes were used with a fiber size of 20 µm. A cell suspension number of 1x106 was 

utilized. Histological sections were segmented in three zones along the direction of the flow: a top zone 

close to the surface on which the cell suspension was originally placed (0-1 mm), a middle zone (1-2 

mm), and a ottom zone (2-3 mm).  

 
Cell Coverage Fraction 

                        Technique 
Zone Static Seeding Dynamic Seeding 

0-1 mm (0.56 ± 0.01) (0.37 ± 0.02) 

1-2 mm (0.28 ± 0.01) (0.39 ± 0.02) 

2-3 mm (0.16 ± 0.01) (0.25 ± 0.01) 
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3.4. Discussion 

 

The purpose of this study was to use oscillatory flow in a flow perfusion 

system suitable for long term cultures as an alternative technique for scaffold seeding. 

We also aimed to evaluate the effects of this seeding technique on seeding efficiency 

and cell spatial distribution on scaffolds with different architectures and materials. We 

compared the results obtained from this technique with those found when scaffolds 

were seeded statically, and when statically seeded scaffolds were submitted to 

unidirectional flow in the perfusion bioreactor.  

 

Most experiments performed in flow perfusion systems utilized for long term 

cell culture have used static seeding and later incorporated these cell-scaffold 

constructs into the bioreactor 36,53-59. However, static seeding is not an ideal method 

due to low efficiencies and poor cell distribution throughout the scaffold’s porous 

network 30,34,37. Consequently, it was important to evaluate the effects of flow 

perfusion in the seeding of polymeric scaffolds for tissue engineering. Performing the 

seeding in the flow perfusion system provided an obvious advantage since scaffold 

handling would be minimized. Seeding scaffolds statically and transporting them into 

the bioreactor poses great risks of contamination due to excessive manipulation.  

 

The effects of the incorporation of flow perfusion in scaffold seeding can be 

examined by considering: 1) the influence of different seeding techniques (static, 

static followed by flow shearing, and oscillating flow perfusion) on seeding 

efficiency; 2) the relation between cell attachment and scaffold architecture, with two 

different kinds of scaffolds, fibrous meshes and porous foams, as well as, the effect of 
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fiber size, and 3) the influence of the seeding technique on the initial cell spatial 

distribution throughout the entire scaffold surface.  

 

3.4.1. Influence of the seeding technique on seeding efficiency. 

Previous studies have used systems similar to the flow perfusion bioreactor 

that we have employed. Li et. al., used a depth filtration system to seed poly (ethylene 

terephthalate) (PET) matrices at a rate of 1ml/min. The cell suspension was recycled 

to increase the yield. Cell density increased along with the suspension cell number, 

with an efficiency of about 65%, while the static seeding yielded lower efficiencies 30. 

Similarly, Kim et. al. seeded hepatocytes on polymeric matrices using a flow 

perfusion system. A suspension of rat hepatocytes at a density of 5x106 cells/ml was 

pumped through decellularized bone matrices at a flow rate of 1.5 ml/min for 4 h. A 

total of approximately 4.4x106 cells were attached to the matrix, and a uniform 

distribution of the hepatocytes throughout the scaffold surface was achieved 27. These 

studies are in agreement with our findings. Higher efficiencies were achieved using 

oscillating flow perfusion compared to static seeding. Furthermore, the seeding 

efficiencies yielded in our study by the oscillating flow perfusion reached values close 

to 100% in some instances.  

 

Wendt et. al. monitored seeding efficiency and uniformity within static, 

spinner flask and perfusion systems. There was no difference among the efficiencies 

of the static and perfusion techniques, both producing a larger yield than the spinner 

flask. Uniformity, however, was optimized by the perfusion apparatus, while the static 

and the spinner flask generated cell-scaffold constructs with low spatial uniformity 34. 

Zhao et. al. used a flow perfusion system to seed PET fibers by continuously 
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recirculating a cell suspension through the system confirming the results from other 

studies 37. We have also demonstrated that dynamic seeding, in this case, oscillatory 

flow perfusion seeding improves cell spatial distribution when compared to static 

techniques.  

 

In this study, not only did we compare dynamic and static seeding, but we also 

considered the effects of exposing statically seeded scaffolds to unidirectional flow. 

Efficiencies yielded by static seeding were in some instances comparable to those 

encountered dynamically, with values reaching 50% sometimes. Despite these 

efficiency values, there were poor cell matrix interactions since many of the cells 

attached under static conditions were washed away when subjected to shear forces in 

the flow perfusion system. A reason for this behavior can be found in Figures 3.8 and 

3.9, in which large clusters are shown around the statically seeded fibers. These 

clusters were either attached to the scaffold in multiple locations or bonded through a 

single cell with the rest floating in the surrounding media. The latter type of clusters is 

expected to be more prone to detachment from the matrix in the presence of shear 

forces.  

 

Under dynamic conditions of seeding, we were able to maintain higher 

efficiencies; an effect that can be attributed to several factors. The oscillation 

provided during the first stage of the perfusion seeding gives more chances for cells to 

attach. Furthermore, it is possible that, by applying these different cycles in the 

oscillation, the cells could attach to places that were more energetically favorable for 

them to interact with, thereby resulting in stronger cell-matrix interactions. 

Microscopy results corroborate this hypothesis by showing an absence of large cell 
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clusters and higher spreading of the cells attached to the fibers. In spite of these 

advantages, it was interesting to observe a decrease in the efficiency when larger 

numbers of cells were present in the suspension. This decrease can be explained by a 

possible saturation of the surface with cells (see the cell attachment curve in Figures 

3.2 and 3.3). Thus, the trend of cell attachment with respect to the inoculation number 

presents a behavior that resembles a protein adsorption isotherm.  

 

Changing the conditions of flow, depicted in the detachment curve, gives us an 

insight into the cell attachment behavior. The fact that the cellularity of dynamically 

seeded scaffolds remained unchanged when recirculation at 0.15 ml/min was applied, 

combined with the fact that the cellularity of statically seeded scaffolds significantly 

declined after applying flow, implies that flow perfusion induced stronger cell 

attachment. A sign of the strength of attachment was the spreading of the cells, shown 

in Figure 8. The incorporation of unidirectional flow at higher rates, which resulted in 

stronger shear forces, showed that the profile of cell detachment for dynamically and 

statically seeded scaffolds is very similar. Even though the profile for cell detachment 

for dynamically and statically seeded scaffolds was very similar, dynamically seeded 

scaffolds retained a significantly greater number of cells even at 1.0 ml/min. Shear 

stresses under the different conditions of cell detachment were estimated by using 

Stokes-Oseen equation (see Apendix II) 60. This equation assumes creeping, 

transversal flow around a single cylinder, based on the determination of the drag 

coefficient. For our estimations, we have used the corrected Stokes-Oseen equation 

for a parallel array of cylinders 61,62. The calculated values of shear stress were 

between 0.04 and 0.4 dyn/cm2 for the range of flow rates utilized. 
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3.4.2. Relation between cell attachment and scaffold architecture 

3.4.2.a. Dependence on fiber size 

When the total number of cells attached was compared at different fiber sizes, 

it was noted that meshes with larger fibers displayed lower cellularity. This behavior 

further elucidated when the cell attachment was normalized by the available surface 

area per scaffold. In the latter case, scaffolds with smaller fibers had the smaller cell 

surface density. MC3T3-E1 pre-osteoblastic cells have a comparable size to the 

smaller fibers used in this study, which enables them to attach more easily to larger 

fibers; such is the case of 35 and 50-µm fibers. 

 

3.4.2.b. Dependence of scaffold morphology on initial cell surface density 

Scaffold morphology varies greatly in different tissue engineering 

applications. Our results demonstrate that cell attachment, among other factors, is 

affected by the architecture of the cell carrier matrix. Parameters such as scaffold 

diameter, thickness and porosity were kept constant for both architectures, but it was 

not possible to maintain the surface area available for cell attachment and the 

distribution of the void spaces constant as well. Inside the fibrous matrices, the flow is 

relatively undisturbed compared to the tortuous paths encountered in the foams. This 

difference may have played a role in the fluid dynamic environment the cells 

encountered within the scaffolds. In the case of the foams, sudden changes in pore 

diameter are capable of generating eddies followed by localized areas of significantly 

higher shear which can detach the cells.   
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3.4.3. Influence on the initial cell spatial distribution throughout the entire 

scaffold surface 

Other groups have reported poor uniformity in cell spatial distribution 

throughout tissue engineering scaffolds when they are seeded under static conditions. 

Dynamic systems such as spinner flask bioreactors and rotating wall vessels have 

been implemented to create convection and, thereby, hydrodynamic forces that could 

increase mass transport to the interior of the scaffold. However, a higher cell density 

is still observed close to the outer surfaces of the construct but very few cells at its 

center 63. Our findings, as well as previous experiments, confirm that flow perfusion 

guarantees fluid flow to the interior of the scaffold and a more uniform cell 

distribution 30,34,53-55,64. 

 

It is implied from these findings that, in the absence of flow, the cells cannot 

easily penetrate the scaffold (especially ones with high tortuosity), and thereby the 

majority of them stay at the upper surface. Capillary forces may also generate barriers 

for the migration of the cells to the inner sections of scaffolds. Additionally, being 

anchorage dependent, MC3T3-E1 will bind to the first surface available, and 

ultimately form large cell cluster networks. The incorporation of flow perfusion into 

the seeding seems to greatly abate part of these problems since it forces fluid flow 

throughout the porous network. Consequently, the cell suspension is forced into the 

scaffolds, giving cells the possibility to attach to the deeper regions of the void spaces. 

Possible cell clusters present in the suspension break down due to the shear forces. 

These features are common for both scaffold morphologies; nevertheless, the porous 

foams exhibited a very small amount of cells at the bottom of the constructs, as 

compared to the fibers. 
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The distribution of the void spaces in these two architectures is dramatically 

different. The void space in the non-woven fibrous matrices is less tortuous when 

compared with the foams, allowing the cell suspension to readily penetrate the porous 

network. Higher tortuosity and decreased pore interconnectivity in the foams prepared 

by particulate leaching 65 obstruct the efficient penetration of the cell suspension into 

interior sections of the foam.   

 

Morphology was not the only factor that was important for us to evaluate in 

this study. Polystyrene is one of many available biomaterials. To confirm the 

applicability of oscillating perfusion seeding beyond polystyrene, we have tested 

PLLA foams prepared in an almost identical way as the polystyrene foams used in 

this study.  Therefore, we also explored whether the behavior observed in cell spatial 

distribution was maintained on PLLA foams. This fact is demonstrated by the 

histological analysis, which showed that flow perfusion yielded more homogeneous 

cell distributions than static seeding in PLLA foams.  
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3.5. Conclusions 

 

In the present study, we have evaluated the effect of different seeding 

techniques on the initial scaffold cellularity and cell distribution, as well as the effects 

of scaffold morphology and the nature of their surface on cell attachment under 

different conditions of seeding. Flow perfusion yields higher seeding efficiencies and 

more homogeneous cell spatial distribution than static seeding. At the same time, 

oscillatory flow perfusion seeding results in stronger cell attachment. Moreover, 

scaffold architecture and the nature of the scaffold surface affect cell-matrix 

interactions. In general, flow perfusion seeding is more convenient for many tissue 

engineering applications, especially if a long term culture is to be carried out in a 

similar system. 
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Chapter 4 

 

Preparation of a functionally flexible, three-dimensional, 

biomimetic poly (L-lactic acid) scaffold with improved cell 

adhesion 

 

Chapter Abstract 

Poly(L-lactic acid) (PLLA) is widely used in tissue engineering applications 

due to its degradation characteristics and mechanical properties but possesses an inert 

nature, affecting cell-matrix interactions. It is desirable to modify the surface of PLLA 

to create biomimetic scaffolds that will enhance tissue regeneration. We prepared a 

functionally flexible, biomimetic scaffold by derivatizing the surface of PLLA foams 

into primary amines, activated pyridylthiols, or sulfhydryl groups, allowing a wide 

variety of modifications. Poly (L-lysine) (PolyK) was physically entrapped uniformly 

throughout the scaffold surface and in a controllable fashion by soaking the foams in 

an acetone-water mixture and later in a polyK solution in dimethylsulfoxide. RGDC 

adhesion peptide was linked to the polyK via creating disulfide bonds introduced 

through the use of the linker N-succinimidyl-3-(2-pyridylthiol)-propionate (SPDP). 

Presence of RGDC on the surface of PLLA 2-D disks and 3-D scaffolds increased the 

number of adherent mesenchymal stem cells. We have proposed a methodology for 

creating biomimetic scaffolds that is easy to execute, flexible, and nondestructive. 
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4.1. Introduction 

 

In most tissue engineering applications, the biochemical and physical 

interactions of the cells with the scaffolding material are of crucial importance. The 

deposition of extracellular matrix by specific functional or progenitor cells (e.g., 

mesenchymal stem cells) on the surface of the scaffolds provides a tissue-inductive 

nature to the construct that can enhance the regeneration of the damaged or lost tissue. 

Thus, strong cell-matrix interactions will benefit the expression of extracellular matrix 

proteins 1,2. The scaffold has to thereby support the adhesion of the cells, as well as 

their growth, migration and differentiation toward a specific phenotype 3-5. 

 

The scaffold needs to possess certain mechanical and morphological 

characteristics so as to achieve a more efficient regeneration process 6-9. The material 

must have mechanical properties that can meet the demands of the defect site, 

especially when the injury occurs in a mechanically demanding zone. Sufficient 

porosity, an optimum pore size and pore interconnectivity are necessary for the 

nutrition of the cells, the formation of new tissue and the establishment of a vascular 

network that will guarantee the survival of the de novo tissue. Ideally, the scaffold 

should be biodegradable and permit progressive tissue formation without 

compromising the fulfillment of the mechanical requirements at the site of 

implantation 8,10-12.  

 

Scaffolds for tissue engineering have been created using a wide variety of 

techniques and materials, both synthetic and natural 13-27.  Collagen, ceramics, and 

biodegradable polymers are among the most popular choices in different approaches 
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21,28,29. Poly(α-hydroxy esters) represent the most common biodegradable polymers 

for this purpose due to their well known degradation mechanisms, and good 

mechanical properties, particularly poly(lactic acid), poly(glycolic acid) and their 

copolymers are widely employed. Nevertheless, these polymers can only support cell 

adhesion and growth to a certain extent 30,31. These polymers can be modified with 

active biomolecules to create scaffolds that enhance cell-matrix interactions or elicit 

other specific cellular responses according to the application 29,32.  

 

The development of these biomimetic scaffolds involves the bulk or surface 

modification of a base biomaterial with growth and differentiation factors that can 

improve cell attachment, proliferation, and migration, as well as eliciting other 

specific cellular responses both in vitro and in vivo 2,6,32. The most common way to 

modify the bulk of biodegradable polymers is by chemically cross-linking polymer 

chains with a bioactive molecule; this technique is popular in the preparation of 

hydrogels for cartilage repair 32-39. A challenge encountered with the current bulk 

modification techniques, when applied to a porous preformed scaffold, is the 

modification of its mechanical properties and degradation characteristics.  

 

Surface modification can also be carried out both physically and chemically. 

Physical adsorption, a common and easy way to modify materials, consists of simply 

incubating the surface of the polymer in a solution with the modifying biomolecule 

and letting it adsorb onto the surface; however, this methodology poses the risk of 

desorbing the incorporated modifying agent during their utilization 38,40,41. The surface 

of the polymer can also be functionalized by hydrolysis or aminolysis by soaking the 

scaffold in reactive solutions. Nonetheless, the extent of modification with this 
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methodology is limited since the intrinsic inert nature of the polymer restricts the 

creation of active sites; in addition to that, the degradation properties of the polymer 

close to the surface could also be changed 42. Physical entrapment of the bioactive 

molecule near the surface of the scaffold is an alternative that could overcome the 

restrictions regarding the generation of active sites as well as desorption of the 

modifying agent. Cui et al. entrapped gelatin in the surface of poly(L-lactic acid) 

(PLLA) films and enhanced the attachment of chondrocytes 43. Furthermore, the 

degradation characteristics are preserved because the chemical structure and bulk 

composition of the polymer are not altered. In our studies, we have used a similar 

modification methodology to that used by Cui et al to create a functionally flexible, 

biomimetic scaffold that can be further functionalized for specific applications in 

tissue engineering. 

 

The aim of this study was to modify the surface of PLLA foams using physical 

entrapment of poly(L-lysine) (PolyK) into their surface. This amine functionalized 

scaffold can be further modified by linking different molecules chosen accordingly in 

different tissue engineering applications through the use of amine coupling 

chemistries. Linking different bioactive molecules makes the scaffold functionally 

flexible since, through its appropriate modification, specific cellular responses can be 

attained depending on the desired application. The possibility of entrapping PolyK in 

a controllable fashion was considered. Moreover, we strived to estimate the amount of 

polyK available in the surface at different levels of entrapment. The stability of the 

modified surface and the effects of the modification technique on scaffold 

morphology were also studied. Further functionalization of the surface was 

demonstrated by improving cell adhesion. Arg-Gly-Asp (RGD), an adhesion peptide 
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found in fibronectin and other bioactive molecules that promote cell adhesion, was 

linked to the entrapped polyK, and the capacity for mesenchymal stem cell attachment 

at different levels of RGD modification was assessed on two-dimensional discs and 

three-dimensional tissue engineering scaffolds .  

 

  

4.2. Materials and Methods 

 

4.2.1 Materials 

Poly(L-lactic acid) (PLLA, average MW 100,000) was purchased from 

Birmingham Polymers. Poly(L-lysine) (PolyK, MW 1000-4000) and dimethyl 

sulfoxide (DMSO) were purchased from Sigma-Aldrich. Periodate-activated 

horseradish peroxidase (HRP) (E-Z link activated peroxidase), N-succinimidyl 3-(2-

pyridylthiol) propionate (SPDP), dithiothreitol (DTT), and fluorescein-5-maleimide, 

were obtained from Pierce. Chloroform and acetone were purchased from Fisher 

Scientific. Sodium chloride, Triton X-100, and hydrogen peroxide (H2O2) were 

obtained from VWR. An ABTS kit for the detection of HRP activity, containing the 

ABTS reagent (2,2'-azino-di(3-ethylbenzthiazoline-6-sulfonate)), citrate buffer and 

hydrogen peroxide (H2O2),  was purchased from Zymed Laboratories. An AMPLEX® 

Red kit, BODIPY® FL phalloidin, cell-loading pinocytic reagent and a PicoGreen® 

DNA quantification kit were purchased from Invitrogen. Phosphate buffered saline 

(PBS) and fetal bovine serum (FBS) from selected lots were purchased from Atlanta 

Biologicals. Alpha minimum essential medium (α-MEM) and trypsin-EDTA were 

obtained from Gibco. Arginine-glycine-aspartic acid-cysteine (RGDC) was purchased 

from American Peptide. 
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4.2.2 Determination of the optimal entrapment technique 

PolyK has been incorporated in different biomaterial surfaces to enhance the 

adhesion of osteoblasts and other cells. PolyK molecules have shown great 

improvement on cell spreading and, in many cases, cell growth, demonstrating 

compatibility of the biomaterial with the cells 44-49. The degree of adhesion has been 

shown to be directly proportional to the polyK molecular weight 50,51. A small-size 

polyK (MW 1000-4000) was utilized in order to minimize its effect on cell adhesion 

and assess the effect of RGD only. 

 

To determine the most efficient entrapment technique, two-dimensional PLLA 

films were created. PLLA was dissolved in chloroform at a concentration of 0.1g/ml 

and poured on glass Petri dishes, and the chloroform was allowed to evaporate 

overnight. Discs with 8 mm in diameter and 200 µm in thickness were punched. The 

following modification techniques were tested: 

(a) Bulk modification. In this technique, the Poly(L-lysine) (polyK) was dispersed in 

the chloroform- PLLA solution at a concentration of 0.1mg polyK/ml, before pouring 

it on the Petri dishes.  

(b) Acetone-polyK soaking. Prefabricated PLLA discs were incubated in 600µl of a 

suspension of polyK in acetone (0.1mg/ml) for 12 h. 

(c) Acetone/DMSO soaking. Prefabricated PLLA discs were soaked in a 7:3 acetone-

water mixture for 1h. They were then soaked in 600µl of a solution of polyK in 

dimethyl sulfoxide (DMSO) (0.1mg/ml) for 12 h.  
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Four discs were used to test each modification technique. To assess polyK 

incorporation, modified discs were reacted in 600 µl of 10-8 M periodate-activated 

horseradish peroxidase (Periodate-HRP) (pH 8) for 2 h. An ABTS kit was used to 

detect the presence of HRP. Briefly, equal amounts of the ABTS reagent and H2O2 

were diluted in a citrate buffer, as specified by the manufacturer. Modified discs were 

incubated in 600µl of the ABTS/ H2O2 solution. HRP activity was measured by 

reading absorbance in a Synergy HT plate reader (Bio-Tek®) at 405nm. Levels of 

polyK entrapment were directly related to the absorbance signal; the higher the signal, 

the greater the amount of polyK entrapped.  

 

PolyK surface distribution after entrapment: Fluorescence tagging of the 

polyK also allows for the evaluation of its distribution throughout the disc surface. 

Modified discs were incubated in 600µl of 1mM N-Succinimidyl 3-(2-pyridyldithio) 

propionate (SPDP) in HEPES buffer (pH 8.3) for 30 min., followed by rinsing and the 

unmasking of the thiol group in 600µl of 1mM dithiothreitol (DTT). The discs were 

then rinsed and incubated in 0.1mM fluorescein-5-maleimide in HEPES buffer (pH 

8.3) for 2 hrs. Every rinsing step after modification consisted of one wash with 0.1% 

Triton X-100 and three washes with deionized water. Fluorescence microscopy of 

modified and unmodified discs was performed using a Nikon Epifluorescence 

microscope with excitation at 495nm and emission at 518 nm. Images were captured 

with MetaMorph 6.2 (Universal Imaging Corporation). 

 

The presence of SPDP linked to the entrapped polyK was corroborated by 

measuring the absorbance generated by the release of pyridine-2-thione at a 

wavelength of 343 nm, after the reaction of SPDP with DTT. A standard curve was 
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generated by preparing SPDP solutions of known concentrations and incubating them 

with DTT for 30 min. Moles of reactive SPDP linked to the polyK in 2-D surfaces 

were estimated with this curve. The number of discs used in these quantifications was 

four. 

 

4.2.3 Modification of 3-D PLLA scaffolds 

Scaffold fabrication. PLLA foams were prepared by particulate leaching using 

sodium chloride (NaCl) as the porogen, with a grain size between 300-450µm 

2,52,53. Briefly, PLLA was dissolved in chloroform at a concentration of 5% w/v. 

The solution was then poured on a sodium chloride bed, and the solvent was allowed 

to evaporate for 24 h. The solid salt-polymer composite, which was 95 wt% in NaCl, 

was pressed in a cylindrical mold with an inner diameter of 8 mm at 500 psig, using a 

hydraulic press, with simultaneous heating at 130oC for 30 min. The resulting pellet 

was cut into discs of 3 mm in thickness using a low speed diamond wheel saw (Model 

650, South Bay Technology, Inc). Salt leaching was carried out using deionized water 

for 3 days while the water was changed at least twice a day. Scaffold porosity was 

determined as the percentage ratio of the weight of the porous scaffold to the weight 

of a solid PLLA disc with the same dimensions.  

 

Entrapment of polyK in 3-D scaffolds. Results from the modification of 2D 

discs indicated that the most efficient entrapment technique was Acetone\DMSO 

soaking (section 4.2.2.c); thus, this technique was used to modify three dimensional 

scaffolds. Foams were soaked in a 1:3 acetone-water mixture for 1 h. Then, they were 

placed in 1 ml of a solution of PolyK in dimethyl sulfoxide (DMSO) at 0.1 mg/ml for 

12 h. Rinsing was carried out after that with 0.1% Triton X-100, followed by three 
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washes with deionized water. All the stages were carried out under vacuum and 

vigorous shaking so as to allow the penetration of the different solutions throughout 

the porous network of the scaffold. 

 

Detection of entrapped PolyK. Modified foams were incubated in 600µl of 

1mM SPDP in HEPES buffer (pH 8.3) for 30 min., followed by rinsing and 

unmasking of the thiol group of the SPDP in 600µl of 1mM DTT. Scaffolds were then 

incubated in 0.1mM fluorescein-5-maleimide for 2 hrs. All steps were carried out 

under vacuum and sufficient rinsing followed each incubation step as previously 

explained. Scaffolds were placed in 1-ml centrifuge tubes with deionized water and 

frozen in liquid nitrogen for later longitudinal sectioning using a low speed diamond 

wheel saw. The sections had a thickness of 1 mm. Fluorescence microscopy was 

performed on the transversal sections in a Nikon Epifluorescence microscope with 

excitation at 495nm and emission at 518 nm. Images were captured with MetaMorph 

6.2. Controls included modification of the scaffolds in the following combinations: 

polyK-no SPDP, no polyK-SPDP, or plain. All scaffolds were treated with DTT and 

fluorescein-5-maleimide as explained above. 

 

4.2.4 Varying the amount of entrapped polyK in PLLA foams 

PLLA scaffolds were modified at polyK incubation concentrations of 1x10-8, 

1x10-7, 1x10-6, 1x10-4, and 0.1 mg/ml. PolyK- modified scaffolds were incubated in 1 

ml of 10-7 M periodate-HRP under vacuum for 2 hrs. After HRP linkage, they were 

rinsed in 0.1% Triton X-100 under vacuum, followed by three washes with deionized 

water. Each rinsing step was carried out for 15 min, and the vacuum was applied by 

covering the container with a sleeve stopper and suctioning the air with a syringe. 
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Estimation of the amount of entrapped polyK was achieved by using an AMPLEX® 

Red kit (Molecular Probes). Briefly, equal parts of 20mM H2O2 in reaction buffer 

(0.05 M sodium phosphate in Tris buffer, pH 7.4) and 100µM AMPLEX® Red (10-

acetyl-3,7-dihydroxyphenoxazine) in DMSO were mixed. In a 96-well plate, the 

remaining activated HRP incubation solutions and washes were arranged in aliquots 

of 10 µl, along with 90 µl of PBS and 50µl of the working solution (AMPLEX® 

Red/H2O2) and incubated for 5 min. A standard curve was generated by reading the 

fluorescence of HRP solutions of known concentrations. Fluorescence was measured 

at an excitation of 530 nm and emission of 590 nm in a Synergy HT plate reader (Bio-

Tek®). Fluorescence signals were converted to concentrations through the use of the 

standard curve. The moles of entrapped polyK were determined as the difference 

between the moles of HRP present in the original soaking solution and the moles 

measured in the remaining soaking solutions and washes. Amounts of entrapped 

polyK were calculated by subtracting the background signal emitted by the plain 

scaffolds. The number of scaffolds used in each group was four.  

 

4.2.5. Stability of the modified surface  

Modified 2-D discs were soaked in PBS for 10 days, at room temperature, 

under gentle shaking. After thorough rinsing, entrapped polyK was quantified at days 

0, 4 and 10 with periodate-HRP linkage and AMPLEX® Red, as previously described 

(n = 4).  

 

4.2.6. Effect of the acetone treatment on the porous architecture of 3-D foams 

Micro-computed tomography was carried out by scanning the scaffold (treated 

with acetone) using the ultra-high-resolution tomography system with a 200-kV 
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microfocal X-ray source (Bio-Imaging Research, Inc.) at the University of Texas 

Computed Tomography Facility (UTCT, Austin, TX), using X-ray settings of 180 kV 

and 0.088 mA. The slice thickness and inter-slice spacing was 0.0193 mm.  An 8.15 

mm field of view was reconstructed on a 512x512 pixel field, resulting in a pixel 

spacing of 0.0162 mm. The data was analyzed using the software Blob3D developed 

at the UTCT facility. Values of scaffold porosity and interconnectivity of the void 

spaces were obtained from these analyses 54. (n=1) 

 

4.2.7. Incorporation of RGDC peptides to the polyK modified surface  

After entrapping polyK in the surface of PLLA discs and foams, RGDC was 

linked via a disulfide bond through the SPDP attached to the amine groups. PolyK-

modified surfaces were incubated in 600µl of 1mM SPDP in HEPES buffer (pH 8.3) 

for 30 min. One cycle of rinsing with 0.1% Triton X-100 and three cycles with PBS 

were performed succeeding the reaction. Surfaces were incubated in 100µM RGDC 

for one hour and rinsed. When modifying the 3-D foams, vacuum was utilized at each 

stage of modification to mitigate mass transport limitations to the interior of the 

scaffold.  

 

RGDC linkage to SPDP was corroborated on 2D discs by measuring the 

absorbance at 343nm corresponding to the release of pyridine-2-thione group during 

the reaction of the sulfhydryl group from the cysteine with the SPDP (see Apendix I). 

A standard curve was generated by preparing SPDP solutions of known 

concentrations and incubating them with RGDC for one hour. Moles of reactive 

SPDP linked to the polyK in 2-D surfaces were estimated with this curve (n = 4). 
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X-ray photoemission spectroscopy (XPS). XPS was also performed on the 

surface of RGDC-linked and unmodified disks to confirm the presence of the 

adhesion peptide on the surface. Another control also included polyK-treated disks 

incubated in RGDC, in the absence of SPDP. XPS data were recorded on a Physical 

Electronics PHI 5800 ESCA System with a background pressure of approximately 

3.0X 10-9 Torr. The electron takeoff angle was 45o with respect to the sample surface. 

A spot size of 800-µm and 23 eV pass energy were used for the analysis. The number 

of discs was used was four, and ten spots were taken on each sample. The binding 

energies were corrected by reference to the C1s line at 284.8 eV for hydrocarbon. 

Quantification of the surface composition was carried out by integrating the peaks 

corresponding to each element with aid of the Shirley background subtraction 

algorithm, and then converting these peak areas to atomic composition by using the 

sensitivity factors provided for the each element by the PHI 5800 system software. 

 

4.2.8 Cell seeding on RGDC-modified surfaces 

Adult mesenchymal stem cells (MSCs) were isolated from the bone marrow of 

eight-week-old male Wistar® rats (Harland Laboratories) using well established 

methods 38-40. Briefly, rats were euthanized, and the tibiae and femura were extracted. 

The epiphyses were cut off, and the bone marrow was flushed and suspended in α-

MEM supplemented with 10% fetal bovine serum (FBS). The suspension was then 

distributed in polystyrene culture flasks (75 cm2). Cells were cultured at 37oC and 5% 

CO2. Non-adherent cells were discarded after two days of culture. MSCs were 

detached using trypsin, centrifuged at 400g for 5 min, resuspended in α-MEM and 

replated until the 4th passage. 
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Cell area measurements on 2D discs: Cells from the 4th passage (total of 

5x104 cells at a density of 2x105 cells/ml) were seeded on the surface of polyK-SPDP-

RGDC modified discs (at different levels of modification) and allowed to attach for 6 

hours. Discs were then rinsed in PBS and fixated in 3.7% formalin for 10 min, and 

rinsed with 0.1% Triton-X-100 and PBS. Cells were labeled with 2 units of 

BODIPY® FL phalloidin, a high affinity probe for F-actin, for 10 min. After rinsing, 

fluorescence microscopy was performed using a Nikon Epifluorescence microscope. 

Image processing and measurements of cell area were carried out with MetaMorph 

6.2 (Universal Imaging Corporation). The excitation and emission wavelengths were 

558nm and 569 nm, respectively. Fifteen cells from four different samples were used 

in cell area measurements. Controls in this study included plain discs and plain discs 

incubated in an RGDC solution to assess the effect of RGDC physisorption. 

 

Cell attachment on 3D scaffolds: MSCs from the 4th passage were also seeded 

on three-dimensional foams that were either unmodified or modified with RGDC at 

different levels of polyK-SPDP-RGDC modification (four scaffolds for each 

modification level). Scaffolds were press-fitted in cartridges designed for static 

seeding, and a cell suspension containing 5x105 MSCs (at a density of 2x106 cells/ml) 

was poured on top of the scaffolds. Cells were allowed to attach for 6 hours. 

Furthermore, cells seeded on RGDC-modified scaffolds were cultured for 24 and 48 h 

in order to assess any cytotoxic effects.  After attachment, the seeded scaffolds were 

quickly rinsed in PBS, suspended in 3 ml of deionized water, and broken down into 

small pieces. Samples were later submitted to three cycles of freeze/thaw to lyse the 

cells. A picogreen® DNA quantification assay was performed to obtain the number of 

cells attached to the scaffolds. A standard curve was made using known-concentration 
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solutions of lambda virus DNA. Sample and standard aliquots of 43 µl were 

accommodated in a 96-well plate, along with 107 µl of reaction buffer (20mM Tris-

HCl, 1 mM EDTA, pH 7.5) and 150 µl of the Picogreen® dye. Fluorescence was 

measured  (490 nm excitation and 520 nm emission) using a Synergy HT plate reader. 

The number of cells was calculated using the total amount of DNA determined in the 

sample divided by the amount of DNA contained in one cell. 

 

4.2.9 Statistical analysis 

For most experiments, four samples were used (n = 4), unless otherwise 

specified. Values were reported as the average ± the standard error of the mean. The 

data were analyzed by using ANOVA, and multiple pair-wise comparisons were 

carried out using the Tukey-HSD method at a confidence level of 95%.  
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4.3. Results 

 

4.3.1 Determination of the optimal polyK entrapment technique  

Two dimensional discs were used to determine the most efficient surface 

modification protocol due to their regular morphology and ease of preparation and 

handling. The optimal technique characterized in the 2-dimensional surfaces was later 

utilized in the modification of 3-D foams. After entrapment, it was possible to attach 

HRP to the polyK, and quantitative absorbance or fluorescent assays involving the 

enzymatic reaction with hydrogen peroxide could be carried out.  

 

Detection of entrapped polyK on the surface of PLLA discs using different 

entrapping techniques is shown in Figure 4.1. Bulk modification and acetone-polyK 

soaking yielded no significantly different absorbance signals from the unmodified 

surfaces (0.38 ± 0.06). The acetone/DMSO soaking, on the other hand, gave the 

significantly highest absorbance (1.16 ± 0.11). Thus, acetone soaking of the discs 

followed by incubation (room temperature) in a polyK/DMSO solution resulted in the 

most efficient method to entrap PolyK in the surface of the polymer and would be 

later used to modify three-dimensional scaffolds.  
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Figure 4.1. Detection of poly(L-lysine) entrapped in poly(L-lactic acid) discs with different techniques. 

Horse radish peroxidase was linked to the polyK and reacted with H2O2 in the presence of ABTS, 

developing a green color whose absorbance can be read at 405nm.The (*) represents the technique that 

yielded the significantly highest absorbance signal. (n = 4) 

 

The reaction of SPDP with DTT results in the release of pyridine-2-thione, a 

group responsible for the generation of absorbance at 343 nm (Figure 4.2). The 

detection of this group can also provide an insight into the amount of reactive SPDP 

incorporated to the surface by using a standard curve prepared with SPDP solutions of 

known concentrations unmasked with excess DTT. The estimated amount of SPDP 

linked to disks modified with a polyK incubation concentration of 0.1 mg/ml was 

(36.0 ± 6) nmoles. The unmodified surface yielded a negligible absorbance signal 

(p<0.05). 
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Figure 4.2. Physical entrapment of Poly(L-lysine) (PolyK) on the surface of poly (L-lactic acid) and 

further incorporation of SPDP, and the release of pyridine-2-thione due to the action of DTT 

 

The distribution of the entrapped PolyK was assessed by linking Fluorescein-

5-Maleimide to the sulfhydryl groups provided by the SPDP after DTT treatment. The 

distribution of the PolyK can be seen in Figure 4.3, where both modified and 

unmodified discs are shown. The modified disc exhibited greater fluorescence than 

the plain disc, and a uniform labeling pattern was observed throughout the modified 

surface. 
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Figure 4.3. Fluorescent micrographs of the surface of (a) polyK-modified (using the acetone/DMSO 

procedure), SPDP-derivatized and (b) unmodified discs. Both discs were treated with Fluorescein-5-

Maleimide.  

 

4.3.2 Modification of 3-D porous foams 

Acetone/DMSO soaking resulted in the most efficient polyK entrapment 

technique in PLLA discs; therefore, it was employed to modify three-dimensional 

porous foams. Fluorescein-5-Maleimide was used once again to evaluate the 

distribution of the PolyK throughout the porous network. In Figure 4.4, fluorescence 

micrographs of longitudinal transversal sections of three-dimensional foams prepared 

using different modification methodologies are shown. PolyK/SPDP modified foams 

presented a stronger fluorescence than the controls, which included scaffolds treated 

with polyK/no SPDP, no polyK/SPDP and plain discs; all scaffolds were treated with 

DTT and fluorescein-5-maleimide. A homogeneous intensity was observed 

throughout the transversal sections of polyK/SPDP-scaffold.  
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Figure 4.4. Demonstration of the presence of polyK on the surface of 3-D scaffolds modified with the 

acetone/DMSO procedure. Transversal sections of scaffolds treated differently are shown: (a) 

polyK/SPDP (b) polyK/no SPDP (c) no polyK/SPDP (d) plain. All scaffolds were treated with DTT 

followed by fluorescein-5-maleimide 

 

4.3.3 Varying the amount of the entrapped polyK 

To vary the amount of entrapped polypeptide added to the scaffolds, different 

concentrations of PolyK were incubated with the scaffolds during the period of 

entrapment. The quantification of the amount of entrapped polyK using periodate-

HRP is presented in Figure 4.5. The amount of entrapped polyK directly depended on 

the polyK incubation concentration up to an incubation concentration of 1x10-4 

mg/ml, after which the amount of polyK entrapped did not significantly change. A 

statistically significant lower amount was entrapped at an incubation concentration of 

1x10-6 mg/ml (58.5 ± 0.5 pg). Low polyK incubation concentrations of 1x10-7 and 

1x10-8 mg/ml yielded significant levels of entrapment, with amounts of entrapped 

polyK of (22.8 ± 1.4) and (12.6 ± 0.7) pg, respectively.  
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Figure 4.5. Quantification of the amount of entrapped polyK in the surface of PLLA foams at different 

concentrations of polypeptide in the stage of incubation after the soaking with acetone. (* p<0.05) (n = 

4) 

 

4.3.4. Effect of the acetone treatment on the porous architecture of 3-D foams. 

Micro-computed tomography images (Figure 4.6) revealed that, after 

treatment, the scaffold presented a clear porous network, with a level of 

interconnectivity of 99.9% as reported by the microCT data analysis. This analysis 

also reported a porosity of 90% after treatment, which was in agreement with our 

estimations prior and after treatment, in which cases the porosity was calculated as the 

ratio of the scaffold weight to the weight of a solid PLLA disc with the same 

dimensions, resulting in 90% in both cases.  

 

 

Figure 4.6. Micro-computed tomography scan of a PLLA foam after 

being treated with a mixture of acetone and water (7:3) for 1 hr. 
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4.3.5 Stability of the modified surface  

The initial amount of entrapped polyK in 2-D discs, using the AMPLEX 

RED® quantification procedure, was estimated to be (1.1 ± 0.1) ng. After 10 days of 

incubation in PBS under gentle shaking, the estimated amount of polyK on the surface 

was (1.1 ± 0.2) ng, which was not statistically different from freshly modified 

surfaces.  

 

4.3.6 Incorporation of RGDC peptides to the poly-modified surfaces 

When RGDC is linked to polyK-SDPD-modified surfaces, the sulfhydryl 

group from the cysteine causes the release of the pyridine-2-thione group from the 

SPDP molecule (see Figure 4.7). The amount of released pyridine-2-thione, which is 

equivalent to the amount of SPDP that reacts with the RGDC, was estimated using a 

standard curve, as previously explained. PolyK/SPDP/RGDC-modified 2-D discs 

using a polyK incubation concentration of 0.1 mg/ml yielded (25 ± 8) nmoles.  

 

When using an incubation concentration of 0.01mg/ml, there was no 

statistically significant difference with the higher polyK incubation concentration in 

the estimated amount of reactive SPDP (24 ± 8) nmoles. However, at an incubation 

concentration of 1x10-4 mg/ml, the amount of reactive SPDP was estimated to be (18 

± 6) nmoles, which was significantly lower than those obtained at higher incubation 

concentrations (p<0.05). The release of the pyridine-2-thione at polyK incubation 

concentrations lower than 1x10-4 mg/ml was below the lowest detection limit of the 

dose response curve, and no measurement could be done. 
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The presence of the RGDC peptide on the surface was confirmed by X-ray 

photoemission spectroscopy (XPS). Sulfur was chosen as the marker for comparison 

in this analysis since the sulfhydryl group from the cysteine is responsible for the 

reaction with the SPDP. Sulfur concentration on the polyK/SPDP/RGDC-modified 

surface (0.67 ± 0.25)% was significantly higher than in the polyK/RGDC-modified 

(without SPDP) and unmodified surfaces, (0.22 ± 0.05)% and (0.11 ± 0.01)% 

respectively.  

 

With the quantification of the moles of SPDP present on the surface of the 

polyK-modified PLLA surface by the release of the pyridine-2-thion, it is now 

possible to estimate the area covered by the entrapped poly (L-lysine). In the same 

way, an estimation can be made based on the amount of HRP quantified through the 

AmplexRed procedure. The molecular coverage of the surface, Acov, can be calculated 

through equation 4.1: 

 

molAanNA =cov                   (4.1) 

 

Where n is the number of moles, NA is Avogadro’s number (6.022x1023), and 

amol is the area occupied by a single molecule, which was estimated assuming a circle 

with the molecular hydrodynamic radius. In the case of HRP, the radius was 30 Å. 

When using the SPDP data, amol was based on the spacer length of SPDP (6.8 Å) 

added to the size of a single lysine (10.2 Å). The available surface area for entrapment 

for a PLLA disc was 106 mm2.  
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With the AmplexRed quantification done at a polyK incubation concentration 

of 0.1 mg/ml (the highest used in our studies), 2.8x10-12 moles of HRP/cm2 were 

estimated on the surface of 2D discs. In this case, the area of coverage resulted in 123 

mm2. This value was obtained for the coverage of HRP on the PLLA surface. It needs 

to be noted that HRP is much larger than either polyK or SPDP, and under each HRP 

molecule, multiple polyK molecules can be found. Thus, in essence, we are just 

calculating the HRP coverage, which appears to cover the entire available area of the 

2D surface. Clearly, a one to one stoichiometry of HRP to polyK would provide a 

lower limit on the polyK coverage (2.8x10-12 moles/cm2), while the actual value may 

be higher. This procedure will provide a more accurate estimate of polyK coverage 

when the HRP coverave is very sparce (less than 5% of the value observed here). 

 

For the SPDP calculations, it was assumed that polyK had an average MW of 

2500 (the manufacturer stated that the MW ranged from 1000 to 4000), and that 50% 

of the molecule was entrapped in the PLLA, leaving approximately 12 lysines active 

for reaction. If we assume that all the available lysines react with SPDP, the coverage 

obtained is 56 mm2, implying 53% coverage of the PLLA surface with polyK. 

Clearly, this is a conservative estimate since the presence of unreacted lysines with 

SPDP could result in higher than 53% coverage. If the number of reactive lysines is 

decreased, we can achieve 100% coverage when 6 out of 12 lysines per polyK are 

reacted. Therefore, our surface coverage ranges between 50 and 100%, depending on 

the assumptions made, and the number of reacted lysines is at least 50% of the 

assumed 12 available reactive lysines per polyK molecule.   
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For a lower polyK incubation concentration (1x10-4 mg/ml), and with the same 

assumptions stated in the previous paragraph (avg MW of polyK of 2500, and 12 

lysines available for reaction), it was found that if all lysines react the surface 

coverage is 38%. Moreover, if the number of reactive lysines is decreased to 5, we get 

100% coverage. Again, the lowest limit of polyK coverage can be established to be on 

the order of 35 to 100%, with a similar level of reactive lysines as in the highest 

polyK level.  

 

4.3.7. Cell seeding on RGDC-modified surfaces 

The RGDC incorporation steps can be seen in Figure 4.7. Figure 4.8 shows 

fluorescence micrographs of fluorescently tagged MSCs that were seeded on plain 

and modified discs. In polyK/SPDP/RGDC-modified discs, at polyK incubation 

concentrations of 0.1 and 1x10-4 mg/ml, cells greatly stretched once attached to the 

surface after six hours, with elongated extensions of the cell membrane and a uniform 

distribution throughout the disc surface, while at a polyK incubation concentration of 

1x10-6 some cells started to display a rounded appearance, a behavior that was more 

pronounced on unmodified discs. Cell surface areas at different levels of surface 

modification are shown in Figure 4.9.  
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Figure 4.7. Incorporation of RGDC to the Poly-modified PLLA surface 

 

 

 

Figure 4.8. Cell adhesion test on RGDC-modified PLLA discs. The RGDC was linked to polyK 

through the creation of a disulfide bond using SPDP. Mesenchymal stem cells were seeded on the 

surface of disks modified with polyK at: (a) 0.1 mg/ml, (b) 10-4 mg/ml, (c) 10-6 mg/ml, or (d) plain 

surface.  

 

Greater cell spreading area was obtained at polyK incubation concentrations of 

0.1 and 1x10-2 mg/ml, without any significant difference between the two. Significant 
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declines were observed at polyK incubation concentrations of 1x10-4 and 1x10-6 

mg/ml, but there was not a significant decrement when the incubation concentration 

was reduced to 1x10-7 mg/ml. Furthermore, polyK/SPDP/RGDC-modified surfaces 

provided greater cell surface areas than polyK-modified or polyK/RGDC-modified 

discs. Cell surface area was the lowest when cells were seeded on plain discs and 

plain discs incubated in an RGDC solution.  

 

 

Figure 4.9. Effect of the extent of polyK entrapment on cell surface area after linkage of RGDC 

peptides to polyK entrapped in PLLA discs. Controls included polyK-modified and polyK/RGDC-

modified surfaces, as well as plain discs and plain discs incubated in an RGDC solution. The (*) 

denotes statistical significance between two groups (p<0.05). The (&) denotes the modification 

sequence that yielded the highest cell surface area at a given polyK incubation concentration. The (+) 

denotes the modification sequence that yielded the lowest cell surface area at a given polyK incubation 

concentration. The (#) denotes significant difference (p<0.05) with respect to polyK-SPDP-RGDC at 

every polyK incubation concentration. (n=15 cells)  

 

In the three-dimensional PLLA foams, the incorporation of small amounts of 

RGDC onto the surface (polyK incubation concentration of 1x10-7 mg/ml) increased 

cell attachment after 6 h (2.7 ± 0.1x105 cells) (Figure 4.10), which was about three 
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times higher than that obtained in the unmodified scaffolds, (0.9 ± 0.2x105 cells). 

However, no significant difference in cell attachment was observed when scaffolds 

were modified with RGDC at a polyK incubation concentration of 0.1 mg/ml when 

compared to the lower polyK incubation concentrations. Cellularity of scaffolds 

modified at a polyK concentration of 0.1 mg/ml did not significantly change after 24 

h (2.9 ± 0.1x105 cells), but there was a significant increase after 48 h (3.4 ± 0.1x105 

cells) (p<0.05). At a polyK concentration of 1x10-7 mg/ml, scaffold cellularity was 

(3.0 ± 0.2x105) after 24 h, and a significantly higher cellularity of (3.4 ± 0.2x105) was 

found after 48 h (p<0.05). 

 

 

Figure 4.10. Effect of the extent of modification on the adhesion of cells to three-dimensional, porous 

PLLA foams. Two different extents of modification are represented by polyK incubation 

concentrations of 1x10-7 and 0.1 mg/ml; both scaffolds were treated with SPDP and RGDC. A plain 

scaffold was used a control. The (*) denotes the significantly lowest scaffold cellularity (number of 

cells attached per scaffold). (n = 4) 
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4.4. Discussion  

Aiming to create a functionally flexible construct that can be utilized in 

different tissue engineering applications, we have physically entrapped poly(L-lysine) 

(polyK) in the surface of 3-D, poly(L-lactic acid) (PLLA) tissue engineering 

scaffolds. Thus, the main goal of this study was to demonstrate that 1) the entrapment 

could be done easily, efficiently and in a controllable fashion, 2) the modification 

procedure of three dimensional scaffolds, which consisted of soaking the scaffold in 

an acetone-water mixture and later incubating in a polyK solution in DMSO, was 

nondestructive, and the modified surface was stable, 3) the surface could be further 

functionalized (e.g. with pyridyl thiols, free thiols, or bioactive molecules) to induce 

particular responses from the cells, specially cell adhesion by the incorporation of 

RGDC peptides. 

 

The quality and effectiveness of the final, biomimetically modified scaffold 

will greatly depend on the polyK entrapment technique. Therefore, the optimal 

entrapment methodology would be the one that not only yields the most suitable 

amounts of the entrapped polyK but is also easy to carry out and preserves the 

morphologic structure of the scaffold. In this study, we initially determined the 

optimal entrapment technique on two dimensional discs due to the ease of preparation 

and handling of the discs, and then confirmed its feasibility on three-dimensional 

scaffolds. In the latter, the additional application of vacuum to the scaffolds to 

thoroughly penetrate the porous structure was found to be critical because it mitigates 

any problems pose by transport limitations. The criteria used to determine the most 

efficient procedure included the highest amount of entrapped polyK, the homogeneity 
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of polyK distribution throughout the surface, and the preservation of the structure of 

the three-dimensional porous foams. 

 

The total amount of polyK present in the incubation steps of all the assayed 

entrapment procedures was maintained constant so as to be able to make a fair 

comparison among those listed in section 4.2.2. In case a, when the polyK was 

suspended into the solution of PLLA in chloroform prior to making the disks (bulk 

modification), the presence of polyK on the disc’s surface was minimal, as observed 

in Figure 1. In case b (acetone-polyK soaking), where the surface was incubated in a 

suspension of polyK in acetone, the amount of polyK available on the surface was not 

significantly different from that of the bulk modification. Case c (acetone/polyK in 

DMSO soaking), where the disc is soaked in acetone and later incubated in a solution 

of polyK in DMSO, resulted in the highest polyK entrapment. 

 

The main improvement in technique c is the introduction of an intermediate 

stage, before rinsing, where the polyK is dissolved in DMSO. It is important to point 

out that polyK is not soluble in either acetone or chloroform; therefore, it is only 

possible to make polyK suspensions in these systems, and during the experimental 

trials, clusters of the polypeptide could be observed. This phenomenon poses great 

limitations in the efficiency of entrapment and the ability to achieve reproducible 

uniform distributions throughout the surface because not every site is exposed to 

polyK molecules that could be potentially entrapped. DMSO, on the other hand, is a 

solvent for polyK; as a result, every site on the surface of the disc is exposed to polyK 

molecules. Furthermore, the DMSO is responsible for slowing down the dissolution 

of the PLLA, simultaneously hardening the polymer surface and entrapping, at the 
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same time, some of the polyK in solution. A similar softening technique was 

implemented by Cui et al where two-dimensional PLLA surfaces were soaked in an 

acetone/water mixture (7:3) and later in a gelatinous solution, where the water is 

responsible for the unswelling or hardening of the polymer surface 43.  

 

Even though case a (bulk modification) was less efficient than case c, 

quantities of entrapped polyK comparable to those obtained in case c can be reached 

by increasing the amount of polyK incorporated in the PLLA-chloroform solution. 

However, due to the distribution of the polyK throughout the polymer volume in the 

solid phase, some of the characteristics of the material, such as degradation and 

mechanical properties, could be altered, ultimately resulting in a potential limitation 

in the range of applications of the scaffold in tissue engineering, especially when 

mechanical strength is an important factor.  

 

PolyK detection assays with periodate-HRP corroborated the availability of 

active polypeptide on the surface for further linkage of other molecules. The coupling 

of fluorescein-5-maleimide also supported these observations. By observing similar 

fluorescence intensities generated by the fluorescein-5-maleimide in different parts of 

the surface of the discs modified by acetone/DMSO soaking (technique c), we were 

able to infer that a competent level of homogeneity in the distribution of polyK on the 

disc surface had been achieved. The absorbance generated by the release of the group 

pyridine-2-thionee, when SPDP was deprotected with DTT, not only corroborated the 

availability of polyK on the surface of the disks but also demonstrated its reactivity 

and that of the SPDP linked to the polyK. 
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Once the optimal entrapment technique had been determined (technique c), we 

proceeded with the modification of 3-D PLLA porous foams, which posed a challenge 

in terms of achieving homogeneity throughout porous network. The existence of 

capillary forces, the intricacy of the porous network, and the presence of tortuous 

paths inside the scaffold give rise to limitations in the penetration of the solutions into 

deeper sections of the scaffold. This problem was overcome by the application of 

vacuum in the different incubation steps.  A similar vacuum methodology has been 

used in other studies to infiltrate porous constructs prior to cell seeding 30,55,56.  

 

SPDP can be used to deliver either an activated thiol reactive group or a free 

sulfhydryl moiety and thus acts as a linker to attach specific bioactive molecules to 

the polyK surface, expanding the repertoire of molecules that may be attached to 

prepare biomimetic surfaces. Controls in Figure 4.4 eliminate the possible hypothesis 

of labeling of the PLLA surface due to physical absorption of the different reagents 

(polyK, SPDP or fluorescein-5-maleimide). Fluorescein-5-maleimide is only attached 

to the SPDP-linked polyK since no fluorescence was observed in the absence of 

SPDP and presence of polyK. The attachment of the periodate-activated HRP and 

SPDP to the surface demonstrates that the reactivity of the polyK is not dramatically 

changed by the physical interactions with the polymer. At this point, we had 

established a clear and easy protocol for the modification of 3-D porous PLLA 

scaffolds. It was then important to evaluate whether the entrapment could be perform 

in a controllable fashion. 

 

A change in the polyK incubation concentration when modifying 3-D foams 

resulted in different amounts of entrapment, as observed in Figure 4.5, where lower 
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polyK incubation concentrations yielded decreased fluorescence signals. 

Nevertheless, the surface is saturated at higher polyK concentrations (above 1x10-4 

mg/ml). Furthermore, it was demonstrated that at lower polyK incubation 

concentrations (as low as 1x10-8 mg/ml) there was measurable entrapment.  

 

One of the concerns when the surface was prepared was the retainment of the 

polypeptide molecules in the surface; even more important was the preservation of its 

activity for a certain period of time after modification. The results indicate that the 

level of polyK was maintained, and, at the same time, that the reactivity of the polyK 

was not changed during the 10 days of incubation. The time of soaking in PBS was 

chosen based on the account that, by 10 days, cell population and the deposition of a 

collagenous matrix by the cells would have started to dominate cell adhesion 

properties. 

 

After showing that the polyK-derivatized surface was stable, we examined the 

effects of the acetone treatment on the scaffold architecture. The scaffold morphology 

is a key component in tissue engineering approaches because it affects the way cells 

attach to the scaffold and migrate along its surface. Pore structure and 

interconnectivity influence the transportation of nutrients, tissue regeneration and the 

formation of a vascular network when the construct is implanted 4,5,10,11,57. Micro 

computed tomography analysis performed after acetone/DMSO soaking demonstrated 

that scaffold porosity was preserved; moreover, a porous network with high levels of 

pore interconnectivity was found after the treatment, making the modified scaffold 

morphologically suitable for tissue engineering. 
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After being characterized, the surface was further modified to improve cell 

adhesion and thereby illustrate the functional capabilities that will allow it to be 

biomimetic. RGDC peptides were linked to the entrapped polyK by forming a 

disulfide bond with the SPDP. XPS analysis, detection of the release of pyridine-2-

thionee and cell attachment assays demonstrated the presence of RGDC peptides on 

the polymer surface and their linkage to the polyK/SPDP-modified scaffolds. The 

amount of SPDP estimated when reacted with the RGDC was similar to the value 

estimated when unmasked with DTT.  

 

RGD peptides have been demonstrated to enhance cell adhesion and 

deposition of a bone-like matrix on different substrates through the interactions with 

integrin receptors 58-62. Rezania et al. reported that the presence of RGD peptides on 

two dimensional quartz surfaces affected osteoblastic differentiation of mesenchymal 

stem cells by boosting alkaline phosphatase activity and improving the deposition of 

calcium. At the same time a higher surface peptide concentration resulted in an 

increment in these parameters 40. Thus, the incorporation of this peptide into the 

surface is a valuable asset due to its multi-functionality.  

 

In the presence of RGDC peptides cells appeared more stretched, which is a 

sign of a stronger attachment. The rounded appearance of the cells in the unmodified 

discs and at lower extents of modification translates into weaker attachment. Higher 

surface concentrations of RGDC caused larger stretching of the cells seeded on two 

dimensional surfaces, and lower concentrations also seemed to have a significant 

effect when compared to plain surfaces, polyK-modified and polyK-RGDC modified 

surfaces.  
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These results demonstrate that the greatest effect on cell stretching was 

exerted by the whole modification, polyK-SPDP-RGDC, and not by possible 

adsorption of RGDC on the surface of the material or the charges presented by the 

polyK. Incubation of the plain disc in a solution of RGDC seemed to have no 

enhancing effect when compared to the plain polymer, implying minimal adsorption 

of RGDC on the PLLA surface or that the adsorbed RGDC was inactive. The 

improvement on the 3-D scaffold initial cellularity after incorporating small amounts 

of the adhesion peptide on the surface imply that cell-matrix interactions were greatly 

improved, but a higher RGDC surface concentration, represented by a higher amount 

of entrapped polyK, did not further increase scaffold cellularity. Although no 

significant difference was observed on scaffold cellularity when high and low RGDC 

surface concentrations were used, our results from the 2-D studies imply that the 

strength of cell attachment may have increased at higher levels of surface 

modification. The effect of the presence of the peptide on cell attachment observed in 

this study complies with the findings of other researchers in different studies 

12,24,34,40,63-69. Furthermore, the results from the extended cell culture, which show cell 

growth after 48 h, demonstrate that the modified scaffolds are able to support cell 

proliferation and do not have any appreciable cytotoxic effects. 

 



136 

4.5. Conclusions 

 

Poly (L-lactic acid), three-dimensional, tissue engineering scaffolds were 

modified by physically entrapping poly (L-lysine) in their surface in order to create a 

functionally flexible construct that can be utilized for different applications. PolyK, a 

source of amino groups, was homogenously entrapped throughout the surface of 3-D 

foams and in a controllable fashion. The modified surface was stable and the 

modification technique was non-destructive. Further functionalization of the scaffold 

was demonstrated by the incorporation of sulfhydryl compounds and RGDC peptides. 

Cell stretching was greatly affected by the RGDC surface concentration on two 

dimensional disks but did not affect the cellularity of three dimensional scaffolds.  
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Chapter 5 

 

Improved Mesenchymal Stem Cell Seeding on RGD-Modified 

Poly (L-lactic acid) Scaffolds using Flow Perfusion 

 

Chapter Abstract 

Arg-Gly-Asp (RGD) has been widely utilized to increase cell adhesion on 

three dimensional scaffolds for tissue engineering. However, cell seeding on these 

scaffolds has only been carried out statically, yielding low cell seeding efficiencies. 

We have characterized, for the first time, the seeding of rat mesenchymal stem cells 

on RGD-modified poly (L-lactic acid) (PLLA) foams using oscillatory flow 

perfusion. Incorporation of RGD on the PLLA foams improved scaffold cellularity in 

a dose dependent manner under oscillatory flow perfusion seeding. When compared 

to static seeding, oscillatory flow perfusion was the most efficient seeding technique. 

Cell detachment studies showed that cell adhesion depended on the applied flow rate, 

and that cell attachment strengthened at higher levels of RGD modification.  
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5.1 Introduction 

 

Tissue engineering seeks to replace lost or damaged tissue through the use of 

different bioactive factors that can induce regeneration.  Common tissue engineering 

strategies involve the culture of a specific type of cells in a three dimensional scaffold 

that has been appropriately chosen for the desired application.  The cell-seeded 

scaffold is then implanted in the affected area for a complete in vivo regeneration and 

formation of new tissue 1-3. 

 

The scaffold must support cell adhesion, migration and proliferation, as well 

as allow the transport of nutrients to its interior by having sufficient porosity, an 

optimum pore size, and pore interconnectivity.  Ideally, the scaffold should be 

biodegradable and permit progressive tissue formation without compromising the 

mechanical needs at the site of implantation 4-10. A wide variety of techniques and 

materials, both synthetic and natural, have been used to make scaffolds 11-17.  Poly(α-

hydroxy esters) are biodegradable polymers that have been frequently used in tissue 

engineering applications, particularly poly(lactic acid), poly(glycolic acid) and their 

copolymers.  Nevertheless, these polymers can only support cell adhesion and growth 

to a certain extent since they lack functional groups that the cells could interact with 

18.  The creation of a scaffold that enhances cell-matrix interactions is thus necessary 

in the creation of efficient tissue engineering constructs 17,19. 

 

The development of functionalized scaffolds involves the bulk or surface 

modification of a base biomaterial with growth and differentiation factors 19,20. 

Common modification techniques include chemical modification such as cross-
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linking polymer chains with a bioactive molecule and surface activation through 

hydrolysis, aminolysis or plasma treatment 19,21-27.  Physical modification can also be 

carried out by physisorption of the molecule onto the surface, or by entrapment 27-29.  

Cui et al. entrapped gelatin in the surface of poly(L-lactic acid) (PLLA) films and 

enhanced the attachment of chondrocytes 30.  In this technique, the material is 

incubated in a partial solvent in order to swell the surface and later placed in a 

solution of the modifying agent that can stop the partial dissolution of the base 

material, namely PLLA, so that some of the molecules of the modifying agent are 

entrapped in the surface. A similar modification methodology has been recently 

proposed involving the creation of an amine-functionalized, three-dimensional 

scaffold by entrapping poly (L-lysine) 31.  

 

In this study, we have linked Arg-Gly-Asp (RGD) peptides to the amine 

functionalized scaffold in order to improve cell seeding efficiency on three 

dimensional PLLA foams.  Different two-dimensional surfaces have been modified 

with the adhesion sequence by physical and chemical means, displaying an 

improvement on cells attachment and morphology 32-40. In three dimensional 

scaffolds, RGD peptides have been incorporated mainly by chemically cross-linking 

them with other molecules and materials that demonstrate poor cell adhesion 

characteristics 10,41-49. Some of these studies have shown that the presence of RGD on 

these materials not only improves cell adhesion, but it also supports MSC osteoblastic 

differentiation in a dose dependent manner 41,46,48. However, the effect of RGD on cell 

adhesion has been only studied using static seeding techniques in which a cell 

suspension is added on top of the scaffold in a drop-wise manner.  
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Static seeding has been shown to yield low seeding efficiencies and poor cell 

distributions. Most of the cells stay close to the upper surface of the scaffold, on 

which the suspension was placed 5,50. One way to overcome these limitations is by 

utilizing flow perfusion during the seeding phase 50-54. In flow perfusion systems, the 

construct is press fitted into a chamber, and the cell suspension is perfused through it, 

being forced to flow throughout the scaffold’s porous network. Different systems that 

operate based on the concept of flow perfusion have been utilized to seed polymeric 

scaffolds and shown increases in seeding efficiency and yielded more homogeneous 

cell distributions throughout the scaffolds, compared with static and other dynamic 

systems such as spinner flasks and rotating wall vessels that can only  provide 

convective forces on the exterior area of the scaffold 54-57. 

 

In this study, we have characterized, for the first time, the seeding of MSC on 

RGD-modified PLLA foams using oscillatory flow perfusion. Flow perfusion was 

chosen as the seeding technique since it enhances cell penetration into the scaffold, 

and yields high efficiencies and homogeneous cell distributions 55. Different levels of 

RGD modification were used to evaluate its effect on the number of cells attached to 

the scaffold (scaffold cellularity) at different cell suspension numbers.  Static seeding 

and static seeding followed by the application of unidirectional flow perfusion were 

used as seeding controls.  The different seeding techniques were compared based on 

seeding efficiency, and cell morphology.  Furthermore, the strength of cell attachment 

after the completion of the seeding phase was evaluated by applying unidirectional 

flow at rates larger than the ones used during the seeding phase. 
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5.2 Materials and Methods  

 

5.2.1. Scaffold Preparation  

Poly (L-lactic acid) (Birmingham Polymers, average MW 100,000) foams 

were prepared by particulate leaching, using sodium chloride (NaCl) as the porogen 

20,58. The grain size of the NaCl was between 300-450µm. Briefly, PLLA was 

dissolved in chloroform at a concentration of 5% w/v. The solution was then poured 

on a sodium chloride bed, and the solvent was allowed to evaporate for 24 h. The 

solid salt-polymer composite, which was 95 wt% NaCl, was pressed in a cylindrical 

mold with an inner diameter of 8 mm at 500 psig, using a hydraulic press, with 

simultaneous heating at 130oC for 30 min. The resulting pellet was cut into discs of 3 

mm in thickness using a low speed diamond wheel saw (Model 650, South Bay 

Technology, Inc). Salt leaching was carried out using deionized water for 3 days, and 

the water was changed at least twice a day. The scaffolds had a porosity of 90% 

determined as the percentage ratio of the weight of the scaffold to the weight of a 

solid PLLA disc with the same dimensions. 

 

5.2.2. Surface Modification 

A technique has been developed and characterized for the surface modification 

of PLLA three-dimensional scaffolds 31. Briefly, this technique consists on the 

physical entrapment of poly (L-lysine) (PolyK, 4000 MW, Pierce) on the surface of 

the polymer, and generates a homogeneous distribution of the polyK throughout the 

entire scaffold surface. The polyK entrapment can be done in a controllable fashion 31. 

The surface can then be further functionalized by linking bioactive molecules of 

interest to the entrapped polyK using amine coupling chemistries. In this study, 
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RGDC peptides were linked to the polyK by creating a disulfide bond using N-

Succinimidyl 3-(2-pyridyldithio) propionate (SPDP). Briefly, foams were soaked in a 

1:3 acetone-water mixture for 1 h. Then, they were placed in 1 ml of a solution of 

PolyK in dimethyl sulfoxide (DMSO) at 0.1, 1x10-4, or 1x10-7 mg/ml for 12 h. 

Rinsing was carried out after that with 0.1% Triton X-100, followed by three washes 

with deionized water. PolyK-modified surfaces were incubated in 600µl of 1mM 

SPDP in HEPES buffer (pH 8.3) for 30 min. One cycle of rinsing with 0.1% Triton X-

100 and three cycles with phosphate buffered saline (PBS) were performed 

succeeding the reaction. Surfaces were incubated in 100µM RGDC for one hour and 

rinsed. All the modification stages were carried out under vacuum and vigorous 

shaking. Controls in this study included scaffolds modified with polyK only and plain 

scaffolds incubated in the RGDC solution. All control scaffolds were rinsed with 

0.1% Triton X-100, followed by three washes with PBS.  

 

5.2.3. Cell Culture 

Adult mesenchymal stem cells (MSC) were isolated from the bone marrow of 

eight-week-old male Wistar® rats (Harland Laboratories) using well established 

methods 59,60. Briefly, rats were euthanized, and the tibiae and femura were extracted. 

The epiphyses were cut off, and the bone marrow was flushed and suspended in α-

modified essential media (α-MEM, Atltanta Biological) supplemented with 10% fetal 

bovine serum (Atlanta Biological). The suspension was then distributed in 

polystyrene culture flasks (75 cm2). Cells were cultured at 37oC and 5% CO2. Non-

adherent cells were discarded after two days of culture. At 70% confluency, MSC 

were detached using trypsin (Invitrogen), centrifuged at 400g for 5 min, re-suspended 

in α-MEM and re-plated until the 3rd passage. Cells from the 3rd passage were 
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detached and resuspended in fresh α-MEM. Seeding densities were 5x105 and 1x106 

cells in 250µl of α-MEM.  

 

5.2.4. Scaffold Seeding 

An oscillatory flow perfusion seeding technique that improves seeding 

efficiency, cell spatial distribution and strength of cell adhesion was developed and 

characterized in our laboratory [55]. This flow perfusion system was also utilized in 

long term culture studies of MSC seeded in three dimensional scaffolds 51,61,62. 

Briefly, scaffolds were confined in cassettes so as to force the flow throughout the 

porous network and restrict it from going around the scaffold. The cassettes were 

placed into the perfusion chambers of the main body of the bioreactor, which consists 

of a total of six chambers. Culture media was pumped to the top of the chambers 

using a peristaltic pump (Cole-Parmer) from a media reservoir and returned to a 

second reservoir, allowing recirculation. 

 

Prior to seeding, the flow system was cured with α-MEM for 2 h. Scaffolds 

were press-fitted into cassettes and placed in the flow perfusion chambers of the 

bioreactor. Cell suspensions were poured on top of the scaffolds, and the chambers 

were filled up with fresh media to avoid the presence of air bubbles. Oscillating flow 

was then applied for 2 h at 0.15 ml/min by manually changing the direction of the 

pump every 5 min. This cycle time was previously demonstrated to be sufficient for 

all the cells to go through the scaffold before changing the direction of the flow 55. 

Cell conditioning, without flow, was allowed for an additional period of 2h, after 

which unidirectional flow was incorporated at 0.15 ml/min for 8h. Static seeding was 

used as a seeding control. In this technique, the scaffolds are placed in cassettes 
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similar to those of the bioreactor system, and the cell suspension is added drop-wise 

on top of the scaffold. Cells were allowed to attach for 12h. In most flow perfusion 

studies, the scaffolds are seeded statically and then placed in the perfusion system for 

application of unidirectional flow 51,53,55,61-63. Thus, a combination of dynamic and 

static seeding that emulates the initial stages of previous flow perfusion studies was 

also carried out by drop-wise adding the suspension on top of the scaffolds, allowing 

the cells to attach for 4h in the absence of flow, and then applying unidirectional flow 

in the flow perfusion system at 0.15 ml/min for 8h to mimic the last phase of the 

oscillatory seeding and measure any potential cell detachment from the statically 

seeded scaffolds due the presence of unidirectional flow.  

 

5.2.5. Detachment Studies 

All RGD-modified scaffolds were seeded dynamically as previously explained 

by applying oscillatory flow for 2h, letting the cells condition for 2 h without flow, 

and finally applying unidirectional flow perfusion for 8h at 0.15, 0.5 and 1 ml/min. 

The shear stress (dyn/cm2) experienced by the cells under the different rates of flow 

perfusion can be estimated by using a model for parabolic flow through cylindrical 

pores: 

 

2
πdD

Q  32
τ

φ
µ

=                    (5.1) 

 

Where µ is the medium viscosity (0.01 g/cm.s), φ is the scaffold porosity, d is the pore 

diameter, and D is the scaffold diameter 53. 
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4.2.6. Evaluation of cell morphology on RGD-modified scaffolds 

RGD-modified scaffolds at polyK concentrations of 1x10-7 and 0.1 mg/ml 

seeded statically or dynamically were fixed in 3.7% buffered formalin for 10 min. 

They were then rinsed with 0.1% Triton-X-100 and PBS. Cells were labeled with 2 

units of BODIPY® FL phalloidin (Invitrogen), a high affinity probe for F-actin, for 20 

min. After rinsing, fluorescence microscopy was performed using a Nikon 

Epifluorescence microscope, and image analysis was carried out with MetaMorph 6.2 

(Universal Imaging Corporation). The excitation and emission wavelengths were 

558nm and 569 nm, respectively. Images were captured at the top surface on which 

the cell suspension was placed and at the bottom surface. 

 

5.3.7. Determination of the number of cells attached to the scaffolds (Scaffold 

Cellularity) 

After seeding, scaffolds were quickly rinsed in PBS, suspended in 3 ml of 

deionized water, and broken down into small pieces. Samples were later submitted to 

three cycles of freeze/thaw to lyse the cells. A picogreen® DNA quantification assay 

(Invitrogen) was performed to obtain the number of cells attached to the scaffolds. A 

standard curve was made using known-concentration solutions of λDNA. Sample and 

standard aliquots of 43 µl were accommodated in a 96-well plate, along with 107 µl 

of reaction buffer (20mM Tris-HCl, 1 mM EDTA, pH 7.5) and 150 µl of the 

Picogreen® dye. Fluorescence was measured (490 nm excitation and 520 nm 

emission) using a Synergy HT plate reader (Biotek). The number of cells was 

calculated using the total amount of DNA determined in the sample divided by the 

amount of DNA contained in one cell. Based on the number of cells attached to the 

scaffold, we were able to determine the seeding efficiency, which is defined as the 
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percentage ratio of the number of cells attached to the scaffold to the initial number of 

cells in suspension. 

 

5.2.8. Statistical analysis 

For all the experiments, three to five samples were used (n = 3-5), unless 

otherwise specified. Values were reported as the average of all the samples, and the 

error was reported as the standard error of the mean. The data were analyzed by using 

ANOVA, and multiple pair-wise comparisons were carried out using the Tukey-HSD 

method at a confidence level of 95%. 
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5.3 Results  

 

5.3.1. Effect of RGD modification on scaffold cellularity after oscillatory flow 

perfusion seeding 

Scaffold cellularity for all RGD-modified scaffolds seeded under oscillatory 

flow perfusion is shown in Figure 5.1. The level of RGD modification is reported as 

the concentration of polyK in the incubation stage of the modification procedure 

before linking the SDPD and RGDC. Higher polyK concentration translates into a 

larger amount of RGDC present on the surface. Under oscillatory flow perfusion 

seeding, the lowest level of RGD modification (polyK-SPDP-RGDC), represented by 

a polyK incubation concentration of 1x10-7 mg/ml, yielded a scaffold cellularity 

significantly higher than those yielded by the controls (plain scaffold, polyK-modified 

scaffold without RGDC, and plain scaffold incubated in an RGDC solution). Further 

increases in the polyK incubation concentration resulted in significantly higher 

scaffold cellularities. 

 

Figure 5.2 shows the dependence of scaffold cellularity with the initial number 

of cells in suspension for all levels of modification. It can be seen that the scaffold 

cellularity increased with the initial number of cells in suspension for all RGD 

modification levels. A cell suspension number of 1x106 nearly doubled scaffold 

cellularity at all polyK incubation concentrations. At any cell suspension number 

scaffold cellularity significantly increased along with the RGD modification level. 
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Figure 5.1. Scaffold cellularity at different levels of RGD modification after oscillatory flow perfusion 

seeding at 0.15 ml/min. Number of cells in suspension was 5x105. The x-axis shows the levels of RGD 

modification represented by polyK incubation concentrations during the polyK entrapment phase, with 

the pattern of modification used (±polyK/±RGDC). Controls for this set of experiments included plain 

scaffold, scaffolds modified with polyK only at 0.1 mg/ml (no RGDC), and plain scaffolds incubated in 

an RGDC solution. (* p< 0.05). 

 

 

Figure 5.2. Dependence of scaffold cellularity on the cell suspension number at different levels of 

modification. Scaffolds were seeded under oscillatory flow perfusion at 0.15 ml/min. (#) and (&) 

represent respectively the highest and the lowest scaffold cellularity at a given cell suspension number. 

(* p< 0.05). 
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5.3.2. Effect of oscillatory flow perfusion on seeding efficiency of RGD-modified 

scaffolds 

In Figure 5.3, oscillatory flow perfusion seeding of RGD-modified scaffolds is 

compared to static seeding, and static seeding followed by unidirectional flow 

perfusion. The comparison is made in terms of seeding efficiency. For plain scaffolds 

and at a polyK incubation concentration of 0.1 mg/ml, oscillatory flow perfusion 

seeding yielded the highest seeding efficiency when compared to static seeding, 

achieving values of (22±2%) and (64±2%), respectively. In all cases, the static 

seeding followed by unidirectional flow perfusion yielded the lowest efficiency, 

reaching values as low as (10±1%) for plain scaffolds and as high as (34±4%) at a 

polyK concentration of 0.1 mg/ml. A polyK incubation concentration of 0.1 mg/ml 

yielded the highest seeding efficiency for flow perfusion seeding and static seeding 

followed by unidirectional flow perfusion (34±4%), while plain scaffolds yielded the 

lowest efficiency when compared to the other modification levels at flow perfusion 

seeding, static seeding (17±2%), and static followed by unidirectional flow perfusion 

(10±1%). Under static seeding, there were no statistical differences on seeding 

efficiency between the different levels of modification. 
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Figure 5.3. Dependence of seeding efficiency on the different techniques used to seed RGD-modified 

scaffolds at different modification levels. Flow rate applied in the flow perfusion system was 0.15 

ml/min. Number of cells in suspension was 5x105. (&) and (#) represent the seeding technique that 

yielded the highest and the lowest cellularity at a given polyK incubation concentration. (* p< 0.05). 

 

Figure 5.4 shows the effect of seeding technique on cell morphology on RGD-

modified scaffolds at polyK incubation concentrations of 1x10-7 and 0.1 mg/ml. On 

scaffolds seeded statically, cells appeared rounded in shape and were mostly clustered 

at the top surface, where the cell suspension was placed (Figure 5.4 c and g). Some of 

these clusters seemed to be attached to the pore walls only through a single cell. Cell 

density was higher at the edges of the scaffolds. These observations were found at 

both the lowest and highest RGD-modification levels. There were no cells found at 

the bottom surface on statically seeded scaffolds (Figure 5.4 d and h). On scaffolds 

seeded under oscillatory flow perfusion, a lower cell density was found at the top 

(Figure 5.4 a and e) compared to statically seeded foams, but a significant number of 

cells was found on the bottom surface of the scaffold (Figure 5.4 b and f).Fewer and 

smaller cell clusters were found at the top, specially at the lower modification lever, 

where cells still looked rounded with only some of them showing significant 

stretching (Figure 5.4e). At the highest modification level, cells looked clearly 
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stretched along the edges of the pore, and virtually no clusters were visible (Figure 

5.4a). A uniform cell density was observed throughout the upper and lower surfaces. 

 

Figure 5.4. Fluorescence microscopy of 

the top and bottom surfaces of RGD-

modified scaffolds seeded statically or 

under flow perfusion. The top surface is 

where the initial cell suspension was 

placed. Number of cells in suspension 

was 5x105. Images of scaffolds 

modified at a polyK incubation 

concentration of 0.1 mg/ml: (a) 

oscillatory flow perfusion, top (b) 

oscillatory flow perfusion, bottom (C) 

static, top (d) static, bottom. Images of 

scaffolds modified at a polyK 

incubation concentration of 1x10-7 

mg/ml: (e) oscillatory flow perfusion, 

top (f) oscillatory flow perfusion, 

bottom (g) static, top (h) static, bottom. 

Calibration bar: 195 µm. 

 

 

5.3.3. Cell detachment on dynamically seeded RGD-modified scaffolds 

The percentage of cells seeded statically that detached when submitted to 

unidirectional flow perfusion decreased at higher levels of RGD modification. At 

polyK incubation concentrations of 1x10-4 and 1x10-7 mg/ml the percent of 

detachment was 50% and 67% respectively.  While only 38% of the cells seeded 
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statically were detached when flow was applied to scaffolds modified with a polyK 

incubation concentration of 0.1 mg/ml. 

 

Figure 5.5. Detachment profile of cells seeded under oscillatory flow perfusion on RGD-modified 

scaffolds. Unidirectional flow rate refers to the phase of flow shearing applied after the 2 h of 

oscillatory flow and 2 h of cell conditioning without flow. Number of cells in suspension was 5x105. 

(&) represents the flow rate that yielded the highest scaffold cellularity at a given polyK incubation 

concentration. (*) represents the flow rate that yielded the lowest scaffold cellularity at a given polyK 

incubation concentration. (#) represents the level of modification that yielded the highest cellularity at a 

given flow rate. (+) represents the level of modification that yielded the lowest cellularity at a given 

flow rate. 

 

Results for the cell detachment studies on scaffolds seeded under oscillatory 

flow perfusion are shown in Figure 5.5. In these studies, we varied the flow rate at the 

unidirectional flow perfusion phase of the dynamic seeding in order to evaluate how 

well the cells attached to the scaffold. The shear stress experienced by the cells under 

the conditions of detachment was estimated, through equation 5.1, to be in the range 

of 0.02 to 0.15 dyn/cm2. These values of shear stress are lower than that experienced 

by osteocytes under physiological interstitial shear (8-30 dyn/cm2) or by endothelial 

cells in a superficial femoral artery (2.7 dyn/cm2) (refs). Cellularity of RGD-modified 

scaffolds decreased at higher flow rates for all modification levels. At all flow rates, 
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scaffold cellularity was directly dependant on the RGD modification level. However, 

detachment was more pronounced at lower RGD modification levels. At polyK 

incubation concentrations of 1x10-7 and 1x10-4 mg/ml, 43% of the cells that adhered 

originally were detached after applying a flow rate of 1.0 ml/min, while at 0.1 mg /ml 

the percentage of detachment significantly decreased to 39%. 
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5.4. Discussion 

 

The objective of this study was to evaluate the effect of the presence of RGD, 

at different modification levels, on cell adhesion when seeding MSC on PLLA 

scaffolds under oscillatory flow perfusion conditions. Specifically: a) we assessed the 

effect of the RGD modification level on the cellularity of PLLA foams seeded under 

static or oscillatory flow perfusion conditions, b) we compared the oscillatory flow 

perfusion with static seeding in terms of cell seeding efficiency and cell morphology 

on RGD-modified PLLA scaffolds, and c) we examined the levels of cell detachment 

in statically and oscillatory flow perfusion seeded RGD-modified scaffolds after their 

exposure for 8 h to different unidirectional fluid flow perfusion rates.  

 

5.4.1. Effect of RGD modification on scaffold cellularity after oscillatory flow 

perfusion and static seeding 

Cell adhesion on modified PLLA foams under oscillatory flow perfusion 

seeding was enhanced by the presence of RGDC in a dose dependent manner. MSC 

adhesion was improved mostly due to the presence of the RGDC linked to entrapped 

polyK. Scaffolds modified with polyK only (no RGDC) or plain scaffolds incubated 

in RGDC (no polyK) displayed small improvement on scaffold cellularity when 

compared to all the levels of RGD modification (polyK-SPDP-RGDC) (Figure 5.1). 

This is corroborated by the increased cellularity at increased modification levels. This 

pattern persisted when different cell suspension densities were used (Figure 5.2). 

Previous studies have also shown that cell attachment is dose dependent on RGD 

modification levels. However, these studies have only used static seeding 46,48,59. In 

this study, RGD modification improved cell seeding efficiency under any seeding 
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technique. Unlike the dose dependent behavior of cell seeding efficiency under 

oscillatory flow perfusion, static seeding conditions resulted in comparable scaffold 

cellularities at every level of RGD modification. However, the pattern of increased 

cellularity at increased RGD modification levels reappears after submitting statically 

seeded scaffolds to unidirectional flow perfusion at the lowest flow rate utilized in our 

experiments (Figure 5.3). A potential reason for this behavior could be that weakly 

adherent cell clusters that appear predominantly on statically seeded scaffolds (Figure 

5.4) are detached easier from scaffolds containing low RGD modification levels in the 

presence of fluid flow. Among all the seeding techniques, oscillatory flow perfusion 

not only demonstrated the strongest influence of RGD modification level on scaffold 

cellularity, but it also significantly improved cell seeding for the same level of RGD 

modification when compared to the traditional static seeding technique.  

 

It is important to note that after using that after increasing the polyK 

incubation concentration by six orders of magnitude, scaffold cellularity increased in 

only about 80-90%. It was expected a larger increase in scaffold cellularity; however, 

a previous study carried out in our group made estimations on the amount of 

entrapped polyK at different incubation concentrations. A merely three-fold increase 

in the amount of polyK entrapped, from about 23 to 64 pg, was observed when the 

incubation concentration was increased from 1x10-7 to 0.1 mg/ml (six orders of 

magnitude) 31. 
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5.4.2. Comparison of oscillatory flow perfusion and static seeding of RGD-

modified scaffolds 

Long term cultures performed in flow perfusion systems are often preceded by 

static seeding outside the bioreactor 51,53,60-65. Nevertheless, static seeding is not an 

ideal method because it yields low seeding efficiencies and poor cell distribution 

throughout the scaffold’s porous network 54,56,57. Oscillatory flow perfusion, on the 

other hand, ensures flow throughout the porous network and thereby allows more 

cells to reach the interior of the scaffold. Thus, more of the surface area available for 

adhesion can be utilized by the cells. Oscillatory flow perfusion seeding inherently 

allows the cells to penetrate the scaffold multiple times from the top and the bottom, 

thus increasing the probabilities for cell attachment and consequently leading to 

increased seeding efficiency. Oscillatory flow perfusion seeding has been shown to 

improve cell seeding efficiency in unmodified polymeric scaffolds containing no 

adhesion molecules when compared to static seeding 55.This observation was 

supported by our findings where in plain scaffolds, oscillatory flow perfusion yielded 

the highest seeding efficiency (Figure 5.3).  

 

Although oscillatory flow perfusion seeding was expected to improve cell 

seeding efficiency when compared to static techniques, the combined effect of this 

seeding technique with the presence of RGD peptides on the scaffold surface was not 

obvious. Even though static seeding in some cases yielded seeding efficiencies higher 

than (polyK, 1x10-7 mg/ml) or equal (polyK, 1x10-4 mg/ml) to those yielded by the 

oscillatory flow perfusion (contrary to the behavior observed in plain scaffolds), the 

significant decrease on scaffold cellularity when statically seeded scaffolds are 

submitted to unidirectional flow perfusion indicates that oscillatory flow perfusion is 
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preferable over static seeding. Performing the seeding in the flow perfusion system 

provides an additional advantage when long term culture under flow perfusion is 

attempted since scaffold handling would be minimized by performing the seeding in 

the same environment as the long term culture. Seeding scaffolds statically and 

transporting them into the bioreactor poses an increased risk of contamination due to 

excessive manipulation.  

 

This conclusion is also supported by the microscopy results where it was 

found that under conditions of flow perfusion cells appeared to stretch along the pore 

edges of the top surface (Figure 5.4), demonstrating improved cell-matrix interactions 

when compared to the static seeding. Furthermore, microscopy also demonstrated a 

greater degree of penetration of the cells under dynamic seeding than under the static 

technique evident from the abundant presence of cells at the bottom surface of the 

scaffold (Figure 5.4), implying improved cell distribution.  

 

5.4.3. Cell detachment on oscillatory flow perfusion seeded RGD-modified 

scaffolds 

Cell detachment under different flow conditions has been studied on two-

dimensional surfaces containing adhesion peptides. It has been reported that the extent 

of cell detachment increases with the shear forces caused by the flow rate applied on 

the surface 66-69. Our studies demonstrate that this behavior extrapolates to cells 

seeded on a three dimensional porous network. Increased flow rates, which translate 

into higher shear forces, result in greater cells detachment from the scaffold at all 

RGD modification levels. However, the highest level of RGD modification resulted in 

the lowest cell detachment (reported as the ratio of the remaining cells on the scaffold 
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to the number of cells originally attached) after applying a flow rate of 1 ml/min. 

Thus, the highest level of RGD modification not only generates scaffolds with the 

highest cellularity after oscillatory flow perfusion seeding (compared to the lower 

RGD modification levels), but it also retains the largest portion of these cells in the 

presence of increased shear forces.   
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5.5. Conclusions 
 
 

For the first time, the oscillatory flow perfusion seeding of rat MSC on RGD-

modified PLLA foams has been characterized. Scaffold cellularity was improved by 

the incorporation of RGDC peptides in a dose-dependent manner. Furthermore, it was 

demonstrated that oscillatory flow perfusion was the most efficient seeding technique 

when compared to the more traditional static seeding. Cell detachment increased at 

higher unidirectional flow rates, and the extent of cell detachment was also dependent 

on the level of RGD modification. The use of oscillatory flow perfusion seeding of 

RGD-modified foams will allow the efficient preparation of uniformly seeded 

scaffolds with MSC or mature osteoblastic cells prior to implantation, and in addition 

the design of long term culture studies of MSCs seeded uniformly on three 

dimensional scaffolds in the absence of clustered cells that do not sense the signaling 

moieties attached to the scaffold’s surface. 
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Chapter 6 

 

RGD Peptides Affect the Osteoblastic Differentiation of Rat 

Mesenchymal Stem Cells under Flow Perfusion in a Dose 

Dependent Manner 

 

Chapter Abstract 

Arg-Gly-Asp (RGD) peptides incorporated into different biomaterials have 

been shown to up-regulate the osteoblastic differentiation of mesenchymal stem cells 

(MSC). However, the effect of RGD on MSC osteoblastic differentiation has been 

carried out mostly statically. It has been reported that flow perfusion also has an 

enhancing effect on MSC osteoblastic differentiation. Nonetheless, there is a lack of 

studies that combine RGD surface modification of biomaterials with the mechanical 

stimulation of MSCs due to flow perfusion. In the present study, the effect of the 

RGD modification level of poly(L-lactic acid) scaffolds on osteoblastic differentiation 

under conditions of flow perfusion was evaluated for the first time. It was found that 

there is an enhanced effect on the combination of flow perfusion and the presence of 

RGD on the surface of PLLA foams when compared to their individual effects. 

Furthermore, under conditions of flow perfusion, there exists a critical RGD surface 

concentration that is flow rate dependant. 
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6.1 Introduction 

 

Bioreactors have been widely used in emerging tissue engineering approaches 

to impart certain forces that imitate different mechanical stimuli occurring in the body 

1,2. These stimuli enhance the proper formation of in vitro generated extracellular 

matrix (ECM) that, to a certain extent, mimic the physiological morphology of the 

desired tissue 3-5. However, these devices are not limited to the sole application of 

mechanical stimuli; they must meet other requirements in order to create grafts that, 

when implanted, will lead to the regeneration of damaged organs. A bioreactor must 

efficiently transport nutrients and oxygen to the construct, maintaining an appropriate 

concentration in solution 6. In most tissue engineering applications, a scaffold is 

seeded with cells and supports the formation of ECM 7. Consequently, the bioreactor 

has to induce a homogeneous cell distribution throughout these structures in order to 

generate a uniformly distributed ECM 2. 

 

The scaffolding material must support cell adhesion, migration and 

proliferation.  It must also allow the transport of nutrients to its interior by having 

sufficient porosity, an optimum pore size, and pore interconnectivity.  These 

parameters not only affect the nutrient transport into the scaffold but also the 

formation of new tissue and the establishment of a vascular network that will 

guarantee the survival of the de novo tissue.  Ideally, the scaffold should be 

biodegradable and permit progressive tissue formation without compromising the 

fulfillment of the mechanical requirements at the site of implantation 8-14. 
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Different materials, both natural and synthetic, have been used to create a wide 

array of scaffolds for different tissue engineering applications using numerous 

techniques15-21. Poly(α-hydroxy esters), which include poly(lactic acid), poly(glycolic 

acid) and their copolymers,  are biodegradable polymers that have been widely used 

in tissue engineering applications. Nevertheless, these polymers can only support cell 

adhesion and growth to a certain extent since they lack functional groups that the cells 

could interact with 22.  The creation of a scaffold that enhances cell-matrix 

interactions is thus imperative in the creation of efficient tissue engineering constructs 

21,23. 

 

The development of functionalized, biomimetic scaffolds involves the bulk or 

surface modification of a base biomaterial using growth and differentiation factors 

23,24. Common modification techniques include chemical modification such as cross-

linking polymer chains with a bioactive molecule and surface activation through 

hydrolysis, aminolysis or plasma treatment 23,25-31.  Physical modification can also be 

carried out by physisorption of the molecule onto the surface, or by entrapment 31-33.  

Cui et al. entrapped gelatin in the surface of poly(L-lactic acid) (PLLA) films and 

enhanced the attachment of chondrocytes 34.  A similar modification methodology has 

been recently proposed involving the creation of an amine-functionalized, three-

dimensional scaffold by entrapping poly (L-lysine) 35. Different bioactive molecules 

appropriate for specific tissue engineering applications can be further linked to the 

amine groups present on the surface. 

 

In this study, we have linked Arg-Gly-Asp (RGD) peptides to the amine 

functionalized scaffold in order to improve cell seeding efficiency on three 
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dimensional PLLA foams and assess its effect on the osteoblastic differentiation of 

MSCs.  This amino acid sequence has been demonstrated to improve cell adhesion to 

different materials 26,32,36-40. The RGD sequence is encountered in different 

extracellular matrix components such as fibronectin, osteopontin and bone 

sialoprotein, and cells interact with this sequence through integrin receptors 41. 

Improvement on the adhesion of different types of cells via RGD incorporation has 

been carried out on 2D and 3D surfaces 6,38-60. Ceramic, glass, hydroxyapatite and 

polymeric two-dimensional surfaces have been modified with the adhesion sequence 

by physical and chemical means, displaying an improvement on cells attachment and 

morphology 38,39,41,45-48,51,57.  

 

In three dimensional scaffolds, RGD peptides have been incorporated mainly 

by chemically cross-linking them with other molecules such as collagen, chitosan and 

poly(ethylene glycol) and materials that demonstrate poor cell adhesion 

characteristics 6,14,40,43,49,50,58-61. Some of these studies have shown that the presence of 

RGD on these materials not only improves cell adhesion, but it also supports MSC 

osteoblastic differentiation in a dose dependent manner 6,40,58. However, the effect of 

RGD on the osteoblastic differentiation of MSCs in three dimensional environments 

has been mostly studied statically.  

 

Static culture of cells in three dimensional scaffolds posses limitations on the 

transport of nutrients to the interior of the scaffolds, and thereby cell and matrix 

distributions throughout the scaffold’s surface lack a sufficient level of homogeneity. 

One way to overcome these limitations is by utilizing flow perfusion during the 

seeding phase 62-66. In flow perfusion systems, the construct is press fitted into a 
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chamber, and the culture medium is perfused through it, being forced to flow 

throughout the scaffold’s porous network. Different systems that operate based on the 

concept of flow perfusion have been utilized to culture cell-seeded polymeric 

scaffolds, not only showing more homogeneous cell and matrix spatial distribution 

when compared to the static cultures but also improved osteogenic MSC 

differentiation by yielding higher levels of secreted calcium, alkaline phosphatase 

activity and other osteogenic markers. These improvements have been found with 

respect to static cultures and other dynamic systems such as spinner flasks and 

rotating wall vessels that can only  provide convective forces on the exterior area of 

the scaffold 66-69. A previous study have shown that the incorporation of RGD, 

through physisorption, improves MSC adhesion and their osteoblastic differentiation 

under conditions of flow perfusion 70. 

 

In the present study, we evaluate the effect of different extents of RGD 

incorporation into PLLA foams on the osteogenic differentiation of MSCs under 

conditions of flow perfusion at different flow rates. Static culture controls without 

flow but seeded the same way have been used as controls. Additionally, we have 

utilized an oscillatory flow perfusion seeding technique which has been shown to 

yield higher seeding efficiencies and more homogeneous cell distributions when 

compared to static seeding.  
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6.2. Materials and Methods 

 

6.2.1. Scaffold Preparation  

Poly (L-lactic acid) (Birmingham Polymers, average MW 100,000) foams 

were prepared by particulate leaching, using sodium chloride (NaCl) as the porogen 

24,71. The grain size of the NaCl was between 200-350µm. Briefly, PLLA was 

dissolved in chloroform at a concentration of 5% w/v. The solution was then poured 

on a sodium chloride bed, and the solvent was allowed to evaporate for 24 h. The 

solid salt-polymer composite, which was 95 wt% NaCl, was pressed in a cylindrical 

mold with an inner diameter of 8 mm at 500 psig, using a hydraulic press, with 

simultaneous heating at 130oC for 30 min. The resulting pellet was cut into discs of 3 

mm in thickness using a low speed diamond wheel saw (Model 650, South Bay 

Technology, Inc). Salt leaching was carried out using deionized water for 3 days, and 

the water was changed at least twice a day. The scaffolds had a porosity of 90% 

determined as the percentage ratio of the weight of the scaffold to the weight of a 

solid PLLA disc with the same dimensions. 

 

6.2.2. Surface Modification 

A technique has been developed and characterized for the surface modification 

of PLLA three-dimensional scaffolds 35. Briefly, this technique consists on the 

physical entrapment of poly (L-lysine) (PolyK, 4000 MW, Pierce) on the surface of 

the polymer, and generates a homogeneous distribution of the polyK throughout the 

entire scaffold surface. The polyK entrapment can be done in a controllable fashion 35. 

The surface can then be further functionalized by linking bioactive molecules of 

interest to the entrapped polyK using amine coupling chemistries. In this study, 
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RGDC peptides were linked to the polyK by creating a disulfide bond using N-

Succinimidyl 3-(2-pyridyldithio) propionate (SPDP). Briefly, foams were soaked in a 

1:3 acetone-water mixture for 1 h. Then, they were placed in 1 ml of a solution of 

PolyK in dimethyl sulfoxide (DMSO) at 0.1, 1x10-4, or 1x10-7 mg/ml for 12 h. 

Rinsing was carried out after that with 0.1% Triton X-100, followed by three washes 

with deionized water. PolyK-modified surfaces were incubated in 600µl of 1mM 

SPDP in HEPES buffer (pH 8.3) for 30 min. One cycle of rinsing with 0.1% Triton X-

100 and three cycles with phosphate buffered saline (PBS) were performed 

succeeding the reaction. Surfaces were incubated in 100µM RGDC for one hour and 

rinsed. All the modification stages were carried out under vacuum and vigorous 

shaking. Controls in this study included scaffolds modified with polyK only and plain 

scaffolds incubated in the RGDC solution. All control scaffolds were rinsed with 

0.1% Triton X-100, followed by three washes with PBS.  

. 

6.2.3. Cell Culture 

Adult mesenchymal stem cells (MSC) were isolated from the bone marrow of 

eight-week-old male Wistar® rats (Harland Laboratories) using well established 

methods 70,72. Briefly, rats were euthanized, and the tibiae and femura were extracted. 

The epiphyses were cut off, and the bone marrow was flushed and suspended in α-

modified essential media (α-MEM, Atltanta Biological) supplemented with 10% fetal 

bovine serum (Atlanta Biological). The suspension was then distributed in 

polystyrene culture flasks (75 cm2). Cells were cultured at 37oC and 5% CO2. Non-

adherent cells were discarded after two days of culture. At 70% confluency, MSC 

were detached using trypsin (Invitrogen), centrifuged at 400g for 5 min, re-suspended 

in α-MEM and re-plated until the 3rd passage. Cells from the 3rd passage were 
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detached and resuspended in fresh α-MEM. Seeding densities were 5x105 and 1x106 

cells in 250µl of α-MEM.  

 

6.2.4. Scaffold Seeding 

An oscillatory flow perfusion seeding technique that improves seeding 

efficiency, cell spatial distribution and strength of cell adhesion was developed and 

characterized in our laboratory 67. This flow perfusion system was also utilized in long 

term culture studies of MSC seeded in three dimensional scaffolds 62,73,74. Briefly, 

scaffolds were confined in cassettes so as to force the flow throughout the porous 

network and restrict it from going around the scaffold. The cassettes were placed into 

the perfusion chambers of the main body of the bioreactor, which consists of a total of 

six chambers. Culture media was pumped to the top of the chambers using a 

peristaltic pump (Cole-Parmer) from a media reservoir and returned to a second 

reservoir, allowing recirculation.  

 

Prior to seeding, the flow system was cured with α-MEM for 2 h. Scaffolds 

were press-fitted into cassettes and placed in the flow perfusion chambers of the 

bioreactor. Cell suspensions were poured on top of the scaffolds, and the chambers 

were filled up with fresh media to avoid the presence of air bubbles. Oscillating flow 

was then applied for 2 h at 0.15 ml/min by manually changing the direction of the 

pump every 5 min. This cycle time was previously demonstrated to be sufficient for 

all the cells to go through the scaffold before changing the direction of the flow 67. 

Cell conditioning, without flow, was allowed for an additional period of 2h, after 

which unidirectional flow was incorporated at 0.15 ml/min for 8h.  
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6.2.5. Long term cultures 

After oscillatory perfusion seeding, the scaffolds were cultured statically or in the 

bioreactor. In the static culture, the seeded scaffolds were placed in 6-well Petri 

dishes. The wells were filled with fresh a-MEM, and the cultures were carried out for 

4, 8 and 16 days. Culture medium was changed every three days. In the flow 

perfusion culture (also called dynamic culture), after scaffold seeding, unidirectional 

flow perfusion was applied for 3, 8 and 16 days at flow rates of 0.1 and 1.0 ml/min. 

Total changes of medium in the flow perfusion system were carried out every three 

days.  

 

6.2.6. Determination of the number of cells attached to the scaffolds (Scaffold 

Cellularity) 

After every culture time point, scaffolds were quickly rinsed in PBS, 

suspended in 3 ml of deionized water, and broken down into small pieces. Samples 

were later submitted to three cycles of freeze/thaw to lyse the cells. A picogreen® 

DNA quantification assay (Invitrogen) was performed to obtain the number of cells 

attached to the scaffolds. A standard curve was made using known-concentration 

solutions of λDNA. Sample and standard aliquots of 43 µl were accommodated in a 

96-well plate, along with 107 µl of reaction buffer (20mM Tris-HCl, 1 mM EDTA, 

pH 7.5) and 150 µl of the Picogreen® dye. Fluorescence was measured (490 nm 

excitation and 520 nm emission) using a Synergy HT plate reader (Biotek). The 

number of cells was calculated using the total amount of DNA determined in the 

sample divided by the amount of DNA contained in one cell. Based on the number of 

cells attached to the scaffold, we were able to determine the seeding efficiency, which 
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is defined as the percentage ratio of the number of cells attached to the scaffold to the 

initial number of cells in suspension. 

 

6.2.7. Alkaline phosphatase (ALP) activity 

Lysates obtained for the DNA quantification assay were used for the 

determination of ALP activity. This parameter was determined by using a fluorimetric 

assay using p-nitrophenol as standards. Samples and standards aliquots of 80ml were 

arranged in a transparent 96-well plate with 20 µl of a buffer solution (5 mM MgCl2, 

0.5 M 2-amino-2methyl-1-propanol), and 100 µl of substrate solution (5 mM 

paranitrophenylphosphate). After 30 min, the reaction was stopped by adding 100 µl 

of 0.1M NaOH. Absorbance was read at 405 nm in a Synergy HT plate reader 

(Biotek).  

 

6.2.8. Calcium deposition 

Calcium deposition in each scaffold was determined by using the ortho-

cresolphtalein method. Lysates were mixed with an equal volume of 1N acetic acid. 

The assay working solution was prepares by mixing equal volumes of the calcium 

binding reagent (0.024% ortho-cresolphtalein complexone and 0.25% 8-

hydroxyquinoline) and buffer (500 mmol/l 2-amino-2-methyl-1,3 propanediol and 

other nonreactive stabilizers). Standards were prepared with CaCl2. Sample and 

standard aliquots of 10ml were arranged in a transparent 96-well plate along with 

200ml of the working solution, and absorbance was read at 575nm. 
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6.2.9. Statistical analysis 

For all the experiments, six samples were used (n = 6). Values were reported 

as the average of all the samples, and the error was reported as the standard error of 

the mean. The data were analyzed by using ANOVA, and multiple pair-wise 

comparisons were carried out using the Tukey-HSD method at a confidence level of 

95%. 
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6.3. Results and Discussion 

 

6.3.1. Scaffold Cellularity 

Scaffold cellularity is defined as the number of cells attached to the scaffold at 

a given time point. This parameter was determined through the use of the PicoGreen 

DNA quantification assay, and the results are shown in Figure 6.1 for static condition 

(1a) and under flow perfusion at 0.1 ml/min (1b) and 1.0 ml/min (1c). PolyK-

modified scaffolds at an incubation concentration of 1x10-7 mg/ml were included, and 

a plain scaffold incubated in an RGDC solution was used as a control. In general, 

scaffold cellularity increased during the first days of culture, reaching a peak at day 8, 

after which the cellularity decreased considerably by day 16. At all culture conditions, 

scaffolds that were modified with the complete pattern (polyK-SPDP-RGDC) yielded 

higher cellularities than the controls. There was not a clear difference between the 

number of cells among the different culture conditions at days 4 and 16. Nevertheless, 

scaffold cellularity at day 8 significantly increased with the flow rate (p<0.05), with 

the static culture yielding the lowest value.  

Under static conditions, the highest extent of modification (0.1mg polyK/ml) 

yielded the highest scaffold cellularity at every time point. Under flow perfusion the 

difference between the different extents of modification could only be observed at day 

8. Scaffolds modified with a polyK incubation concentration of 1x10-4mg/ml 

presented the highest number of cells, both at 0.1 and 1.0 ml/min, (5.74±0.38)x105 

cells and (6.45 0.34)x105 cells respectively. Cellularity of the scaffolds at the highest 

and the lowest modification extent did not present significant differences at any time 

point when cultured under flow perfusion at 0.1 ml/min. However, the higher flow 

rate (1.0 ml/min) made the differences among these extents of modification more 
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pronounced. At this flow rate, scaffolds at the lowest modification level (1x10-7 mg 

polyK/ml) presented significantly higher number of cells than those at the highest 

level (0.1 mg polyK/ml) at days 4 and 8.  
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Figure 6.1. Effect of the RGD 

modification level (expressed 

as the concentration of polyK 

in the incubation phase of the 

modification) on the growth of 

cells cultured under (a) static 

conditions, and under flow 

perfusion at flow rates of (b) 

0.1 ml/min and (c) 1.0 ml/min. 

Controls included a plain 

PLLA scaffold incubated in an 

RGDC solution (RGDC) and a 

scaffold modified with polyK 

only at an incubation 

concentration of 1x10-7 

mg/min (polyK only). @ 

denotes the modification level 

that yields the highest 

cellularity at a specific day. + 

represents the controls having 

significant lower cellularity 

than the polyK-SPDP-RGDC 

modified scaffolds. # and & 

represent the days with the 

highest and lowest cellularity 

at a specific modification 

level. (*) signifies p< 0.05. 
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6.3.2.. Alkaline Phosphatase Activity 

Alkaline phosphatase (ALP) activity was reported as pg of ALP per cell per 

hour, and it is depicted in Figure 6.2 for scaffolds at all levels of modification and 

controls cultured under static conditions (2a) and flow perfusion at 0.1 ml/min (2b) 

and 1.0 ml/min (2c). As observed with the scaffold cellularity, ALP activity presented 

a peak after eight days of culture under most culture conditions, and modification 

levels and patterns. Under static culture, the activity was statistically equal for all the 

polyK concentrations on polyK-SPDP-RGDC scaffolds; however, the controls 

presented a significantly lower activity at day 8. The values of ALP activity under 

static conditions reached values as high as (4.26±0.55) pmol/hr/cell. Under flow 

perfusion ALP activity was enhanced to values as high as (20.91±3.50) pmol/hr/cell 

after 16 days for a polyK incubation concentration of 1x10-4 mg/ml at a flow rate of 

0.1 ml/min; and (22.28±2.18) pmol/hr/cell after 8 days for a polyK incubation 

concentration of 1x10-7 mg/ml at 1.0 ml/min. At the lowest flow rate, there were no 

significant differences between the different modification levels at days 4 and 8. 

However, ALP activity continued to grow after 16 days for the middle level of 

modification (1x10-4 mg polyK/ml), while declining at the highest and lowest 

modification levels.  At 1.0 ml/min on the other hand, cells cultured at the lowest 

modification level presented the highest ALP activity after 4, 8 and 16 days when 

compared to the other two levels, which did not present significant differences among 

them.  
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Figure 6.2. Effect of the 

RGD modification level 

(expressed as the concentration 

of polyK in the incubation 

phase of the modification) on 

Alkaline Phosphatase Activity 

of cells cultured under (a) static 

conditions, and under flow 

perfusion at flow rates of (b) 

0.1 ml/min and (c) 1.0 ml/min. 

Controls included a plain 

PLLA scaffold incubated in an 

RGDC solution (RGDC) and a 

scaffold modified with polyK 

only at an incubation 

concentration of 1x10-7 mg/min 

(polyK only). @ denotes the 

modification level that yields 

the highest cellularity at a 

specific day. + represents the 

controls having significant 

lower cellularity than the 

polyK-SPDP-RGDC modified 

scaffolds. # and & represent the 

days with the highest and 

lowest cellularity at a specific 

modification level. (*) signifies 

p< 0.05. 
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6.3.3. Calcium Deposition 

Mineralization of the scaffolds is reported as mg of calcium, and it is shown in 

Figure 6.3 for all culture conditions at every extent of modification. At all culturing 

conditions, the calcium deposition significantly increased with time, and the control 

scaffolds presented significantly lower calcium levels. Under static conditions, the 

control scaffolds presented significantly lower calcium deposition after 16 days, but 

there was no difference between the different modification levels. At day 8there were 

no difference between the controls and the modified scaffolds. The amount of 

deposited calcium reached values as high as (195±30mg). Under flow perfusion the 

calcium deposition was greatly improved when compared to that found under static 

conditions. At a flow rate of 0.1 ml/min, scaffolds modified at polyK incubation 

concentration of 1x10-4 mg/ml yielded the highest calcium levels at all time points, 

reaching a maximum of (473±55mg). At 1.0 ml/min, the highest calcium deposition 

was encountered at the lowest RGDC level (1x10-7 mg polyK/ml) at all time points, 

reaching a maximum of (786±120mg). There are no significant differences between 

the other modification levels at this flow rate. 
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Figure 6.3. Effect of the RGD 

modification level (expressed as the 

concentration of polyK in the 

incubation phase of the 

modification) on the deposition of 

calcium by cells cultured under (a) 

static conditions, and under flow 

perfusion at flow rates of (b) 0.1 

ml/min and (c) 1.0 ml/min. Controls 

included a plain PLLA scaffold 

incubated in an RGDC solution 

(RGDC) and a scaffold modified 

with polyK only at an incubation 

concentration of 1x10-7 mg/min 

(polyK only). @ denotes the 

modification level that yields the 

highest cellularity at a specific day. 

+ represents the controls having 

significant lower cellularity than the 

polyK-SPDP-RGDC modified 

scaffolds. # and & represent the 

days with the highest and lowest 

cellularity at a specific modification 

evel. (*) signifies p< 0.05. 
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6.4. Discussion 

 
The objective of the present study was to evaluate the effect of the extent of 

RGD-modification of PLLA foams on the osteoblastic differentiation of rat 

mesenchymal stem cells under conditions of flow perfusion. Thus, we aimed to study 

the effect of mechanical stimulation (represented by flow perfusion) and chemical 

stimulation (represented by the incorporation of RGDC) individually, and ultimately 

their combined effect on MSC osteoblastic differentiation. It has been demonstrated in 

this study that there is an enhanced effect on MSC osteoblastic differentiation due to 

combination of the aforementioned means of stimulation. 

 

The estimation of the degree of differentiation is based on different 

osteoblastic markers. In this study common markers were used: cell growth, alkaline 

phosphatase activity, and mineral deposition represented by the amount of calcium 

deposited by the cells. The levels of RGD modification were represented by the initial 

polyK incubation concentration after the acetone soaking of the PLLA foams (se 

section 6.2.2). Control scaffolds included plain foams soaked in an RGDC solution, 

represented as RGDC in the figures, and polyK-modified PLLA foams without 

RGDC, represented as polyK only. Cultures were carried out in a flow perfusion 

bioreactor at two different flow rates: 0.1 and 1.0 ml/min. Static cultures served as 

controls. 

 

In the present study, MSCs underwent changes typical of the osteogenesis 

process reported in previous studies. An early stage was marked by a high 

proliferation rate. This phase was followed by a period where the proliferation was 

down-regulated and ALP activity was up-regulated, indicating early osteoblastic 
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differentiation. Once ALP activity reached a maximum (day 8), a mineralization stage 

followed with a characteristid down-regulation of ALP activity, continued decrease 

on the proliferation rate and the up-regulation of calcium deposition.  Scaffold 

cellularity also presented a peak around day 8, indicating that at later time points cell 

death occurred possibly due to the achievement of the last stage of osteoblastic 

differentiation. The high levels of calcium and the decrease of ALP activity at day 16 

support this hypothesis. 

 

The effect of flow perfusion on the osteoblastic differentiation of MSCs has 

been previously reported in the literature. The exposure of MSCs to the shear forces 

exerted by the flow throughout the porous network of the scaffold induces higher 

levels of ALP activity and mineral deposition when compared to static cultures. The 

results obtained in the present study corroborate those findings. Not only were levels 

of ALP activity and calcium deposition encountered under flow perfusion 

significantly higher than those found under static conditions, but so was the scaffold 

cellularity. Furthermore, these makers were generally further up-regulated at a higher 

flow rate, agreeing with the results previously reported by Bancroft et al and other 

authors62,70,73,74. In addition to the improvement of MSC osteoblastic differentiation 

due to mechanical stimulation, a similar effect was induced by the presence of RGDC 

on the scaffold surface.  

 

An amine-amine functionalized scaffold was previously developed in our 

laboratory through the controlled physical entrapment of poly-L-lysine (polyK) in the 

surface of PLLA foams. Further incorporation of RGD peptides was possible by 

forming a disulfide bond with SPDP linked to the amine group of the polyK. Thus, 
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the different amounts of entrapped polyK allow us to study the effect of different 

RGD surface concentrations on certain cellular responses, most specifically, the 

differentiation of MSCs towards an osteoblastic phenotype. An up-regulation of ALP 

activity, scaffold cellularity and mineral deposition on polyK-SPDP-RGDC modified 

scaffold when compared to the controls elucidates stronger cell-matrix interactions 

that result into greater differentiation. These results are in agreement with previous 

publications that report the effect of RGD on the osteoblastic differentiation of MSCs 

in a dose dependent manner 40,75,76. In the present study, this behavior was observed at 

both static and flow perfusion cultures. Nonetheless, it is clear that, under flow 

perfusion, the extent of RGD modification has a definite effect on the differentiation. 

 

Holtorf et have reported that the combination of shear forces due to flow 

perfusion combined with the presence of RGD peptides on the surface of titanium 

fiber meshes increases MSC osteogenesis when compared to their individual effects70. 

The results found in this study are in agreement with that finding, but they also show 

there is a critical level of RGD modification, and this level is dependent on the flow 

rate. A lower flow rate (0.1 ml/min) seemed to favor the middle modification level 

represented by a polyK incubation concentration of 1x10-4 mg/ml while the highest 

flow rate (1 ml/min) favored the lowest modification level (polyK incubation 

concentration of 1x10-7 mg/ml). Comisar et al found a similar behavior when 

culturing MC3T3 preosteoblastic cells on RGD nanopatterned hydrogels. They 

changed the spacing of RGD clusters and found that at lower levels of spacing, which 

translates in higher RGD surface density, there was decreased differentiation 75. It is 

proposed that the integrin receptor primarily responsible for osteoblastic cell 

adhesion, αvβ3, also inhibits osteoblastic differentiation 75,77-79.  It is then possible that 



199 

this inhibitory effect is downplayed at lower RGD surface densities due to greater 

spacing of the RGD peptides. This would explain why there is a critical modification 

level, but the question on the shift of this critical level at different flow rates remains. 

 

This may be explained by the enhanced cell-matrix interactions induced by the 

shear forces. When characterizing the seeding of RGD-modified scaffolds, we noticed 

that under static conditions few cells attached to the walls, and the rest formed 

clusters within the pores. At higher modification levels, some of the cells presented 

some stretching, indicating an improvement in cell matrix interactions. However, 

when seeded under oscillatory flow perfusion, the cells were clearly stretched along 

the edges of the pores, thus displaying a dramatic improvement on cell-matrix 

interactions 80. The results of the present study suggest that the interactions found 

under static conditions of culture might be strong enough to show a difference in cell 

numbers at different modification levels but not strong enough to affect the other 

markers. Under flow perfusion, since these interactions are dramatically increased, the 

differences arouse and a behavior similar to that reported by Comisar et al. is 

observed 75. It is possible that at higher flow rates, only strongly bound cells remain, 

and cell-matrix interactions are further strengthened, increasing the inhibitory effect 

of the αvβ3 receptor activation. The osteoblastic differentiation would then be down-

regulated when compared to the lower flow rates. Consequently, the critical 

modification level would shift to a lower RGD surface concentration. 
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6.5. Conclusions 

 

RGDC surface modification combined with flow perfusion conditions of 

culture improved MSC osteoblastic differentiation with respect to the influence of 

modification or flow perfusion individually. The presence of RGD peptides on the 

surface of PLLA foams up-regulated the ALP activity and calcium deposition, and 

this effect was more pronounced under conditions of flow perfusion. From our 

findings we conclude that there exists a critical RGD surface concentration that is 

different for every culture condition in a flow perfusion system. A balance must be 

reached so that this RGD surface concentration is high enough to improve cell-matrix 

interaction and avoid cell detachment due to the shear forces and, at the same time, 

low enough to avoid a strong inhibitory effect on the differentiation of mesenchymal 

stem cells towards an osteoblastic lineage. 
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Chapter 7 

Project Conclusions and Future Directions 

 

In this chapter, conclusions directed towards the fulfillment of the specific 

aims established in Chapter 1 are stated. Ideas for future projects and complements of 

the ideas presented during the discussions to the results presented in Chapters 3 

through 6 are also recommended. 

 

7.1. Project Conclusions 

 

Specific Aim 1: To develop a dynamic scaffold seeding technique based on 

oscillatory flow perfusion and evaluate its effects on seeding efficiency, initial cellular 

distributions throughout the scaffold surface, and cell-matrix interactions. 

 

As mentioned in Chapter 2, a traditional and probably the most common 

seeding technique used in many long-term culture studies, including these involving 

flow perfusion, is the static seeding. In this technique, a cell suspension is added to 

the top of the scaffold in a drop-wise fashion, and the cells are allowed to attach for a 

certain period of time after which they are transferred into the desired culture 

environment. There major limitations with this seeding technique. Firstly, it yields 

low seeding efficiencies because the cell suspension goes through the scaffold 

thickness only once, and this is the only chance the cells have to attach to its surface. 

Secondly, due to transport limitations and capillary forces, the cellular distributions 

achieved by static seeding present poor homogeneity. Thus, it was important to design 
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a culture technique that allowed the penetration of the cells suspension throughout the 

entire scaffold porous network and give the cells more possibilities of attachment.  

 

The oscillatory flow perfusion proposed in Chapter 3 meets these 

requirements. Due to the design of the flow perfusion system, the cell suspension is 

forced into the pores of the scaffold. Additionally, the stage of oscillatory flow allows 

the cells to go through the scaffold’s thickness several times thereby giving them a 

greater chance to attach to the surface. Consequently, it was not only found that, by 

using this technique, homogeneous cell distributions and high seeding efficiencies 

were achieved as compared to static culture but also a stronger extent of cell 

attachment, as demonstrated by detachment experiments. In general, flow perfusion 

seeding is more convenient for many tissue engineering applications, especially if a 

long term culture is to be carried out in a similar system. 

 

Specific Aim 2: To create a biomimetic poly(L-lactic acid scaffold) with improved 

cell adhesion using RGD peptides that can additionally allow the evaluation of the 

effect of different modification levels on cell adhesion, proliferation and 

differentiation.  

 

To complete this aim, a poly(L-lactic acid) foam prepare by particulate 

leaching was used. Amine groups were incorporated on to the surface by physically 

entrapping poly-L-lysine. Due to the process of entrapment, the amount of polyK 

entrapped could be controlled by varying its concentration in the incubation solution. 

It is mentioned in Chapter 4 that this scaffold is functionally flexible because by 

having these amine groups on the surface, different moieties can be further 
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incorporated on the surface to elicit different cell functions. In this project, RGDC 

peptides were linked by creating a disulfide bond with a molecule of SPDP attached 

to the amine group on the surface. This scaffold supported increased cell adhesion 

when compared to unmodified scaffolds and other controls. Furthermore, it supported 

proliferation. The ability to control the extent of polyK entrapment also allowed for 

the preparation of biomimetic scaffolds with different degrees of RGD modification. 

This feature would later support the evaluation of different RGD surface modification 

levels on MSC attachment, proliferation and osteoblastic differentiation, as shown in 

Chapters 5 and 6. 

 

Specific Aim 3: To characterize the newly developed oscillatory flow perfusion 

seeding of mesenchymal stem cells on the modified scaffolds based on cell spatial 

distribution, seeding efficiency and strength of cell attachment at different 

modification levels and flow conditions. 

 

For the first time, the oscillatory flow perfusion seeding of rat MSC on RGD-

modified PLLA foams was characterized, and the results of this characterization are 

shown in Chapter 5. Scaffold cellularity was improved by the incorporation of RGDC 

peptides in a dose-dependent manner. Cell spatial distribution and cell-matrix 

interactions were greater on dynamically seeded scaffolds than on those seeded 

statically. Cell detachment increased at higher unidirectional flow rates, and the extent 

of cell detachment was also dependent on the level of RGD modification. The use of 

oscillatory flow perfusion seeding of RGD-modified foams would allow the design of 

long term culture studies of MSCs seeded uniformly on three dimensional scaffolds, 

as shown in Chapter 6. 
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Specific Aim 4: To evaluate the effect of the extent scaffold modification on the 

osteoblastic differentiation of mesenchymal stem cells under conditions of flow 

perfusion.  

 

It is shown in Chapter 6 that RGDC surface modification combined with flow 

perfusion conditions of culture improved MSC osteoblastic differentiation with 

respect to the influence of modification or flow perfusion individually. The presence 

of RGD peptides on the surface of PLLA foams up-regulated the ALP activity and 

calcium deposition, and this effect was more pronounced under conditions of flow 

perfusion. Moreover, there exists a critical RGD surface concentration that is different 

for every culture condition in a flow perfusion system. A balance must be reached so 

that this RGD surface concentration is high enough to improve cell-matrix interaction 

and avoid cell detachment due to the shear forces and, at the same time, low enough 

to avoid a strong inhibitory effect on the differentiation of mesenchymal stem cells 

towards an osteoblastic phenotype. 

 

Through the fulfillment of these four specific aims, the main objective of the 

proposed research project has been achieved. An integral approach for bone tissue 

engineering has been proposed that uses the scaffolding, cellular and molecular 

components of traditional approaches. What makes this approach unique is the 

combination of mechanical and chemical stimulation of mesenchymal stem cells to 

direct them towards an osteoblastic path. This combinatorial approach resulted more 

successful than those based on chemical or mechanical stimulation alone. 
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7.2. Future Directions 

 

Even though the main objective of this PhD research project have been 

reached, there are still ideas that can be used to look into the suggested hypotheses 

stated to explain some of the observed results. Regarding the preparation of the 

biomimetic scaffolds with different levels of RGD modification, it is recommended to 

quantify more accurately the amounts of RGD present on the surface. The 

fluorimetric technique explained in Chapter 4, based on the AmplexRed dye, only 

gives us rough estimates of these amounts and is only useful to corroborate that there 

are changes on the amount of polyK being entrapped. A more accurate technique that 

works directly on the RGDC peptides would be more desirable. Radioactive assays 

would provide this level of accuracy. Thus, radioactive RGDC peptides can be linked 

to the polyK modified scaffolds following a similar procedure to that explained in 

chapter 4. The quantification can be done by reading the RGDC solution after the 

reaction and each of the washes and subtracting that amount from the initial quantity 

of RGDC in solution. Another alternative is breaking down the RGD-modified 

scaffold manually, followed by sonication, and reading the resulting suspension. 

Actual RGDC amounts can be determined by the use of a standard curve. Once the 

amounts of RGD on the surface of the scaffold are established for every level of 

modification, the reported results can be compared with previous studies that report 

actual RGD surface density and its effect on specific cellular responses.  

 

In Chapter 6, it was mentioned that the integrin receptor αvβ3 may have played 

an effect on MSC osteblastic differentiation; furthermore, it may explain the existence 
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of a critical RGD surface concentration and its shift at different flow rates. It is well 

known that fibronectin increases improves cell adhesion via activation of the α5β1 and 

αvβ3 receptors. In addition to that, previous studies have reported that integrin α5β1 

activation up-regulates osteogenesis. Lee et al coated surfaces with fibronectin or 

RGD peptide sequences at similar densities, and found that the effect of fibronectin of 

mineral deposition and ALP activity was greater in the presence of fibronectin. This 

approach could be used in the flow perfusion studies. Once, a clear protocol has been 

established to estimate the surface concentration of certain bioactive molecules, 

PLLA foams can be modified with fibronectin or units of fibronectin responsible for 

cell adhesion at surface concentrations similar to those used in Chapter 4 for the 

RGDC peptides. Further blocking of the αvβ3 receptors on the MSC membrane can 

further help on determining whether the observed behavior was due to an inhibitory 

effect via this receptor. 

 

With the preparation of the amine functionalized scaffold presented in Chapter 

4, there are many modification patterns that can be created for studies carried out both 

in vitro and in vivo applications that can even go beyond bone regeneration. Further 

incorporation of different glycosaminoglycans can be used to study the effect of the 

different surface concentrations on the osteogenic or chondrocytic potential of MSCs, 

statically or under flow perfusion. Angiogenic factors such as vascular endothelial 

growth factor (VEGF) can also be incorporated using a peptide link that is digested by 

metallo proteinases (MMPs) so as to have its controlled release in vivo. Consequently, 

it would be possible to determine what amount of entrapped polyK would yield the 

highest degree of formation of new blood vessels once the construct is implanted in an 
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animal model. Modifications using different bioactive molecules, such as RGD and 

VEGF, are also possible using this amine functionalized PLLA foam. 

 

Regarding oscillatory flow perfusion, it has been previously reported that cells 

cultured in flow chambers and subjected to changes in the direction of the flow 

presented higher motility and that this change in the direction of the flow up-regulated 

the secretion of certain bone ECM molecules. It would be interesting to carry out long 

term cultures on MSCs under flow perfusion with oscillatory flow at different 

sequences and periodicities and determine whether oscillatory flow further up-

regulates ALP activity, mineral deposition and cell proliferation on three-dimensional 

environments.  

 


