
AN ALTERNATIVE METHOD FOR PARALLEL

M-WAY TREE SEARCH ON DISTRIBUTED

MEMORY ARCmTECTURES

By

TROY H. LARAMY

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1991

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
May, 1994



OKLAHOMA STATE UNIVERSITY

AN ALTERNATIVE METHOD FOR PARALLEL

M-WAY TREE SEARCH ON DISTRIBUTED

MEMORY ARCHITECTURES

Thesis Approved:

Thesis ~dviser

Dean of the Graduate College

11



ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Dr. Huizhu Lu, my adviser, for all

her time, effort, patience, and invaluable suggestions and comments during the entire

thesis process. I would also like to thank Dr. Blayne Mayfield for his comments and

suggestions as well as for serving on my thesis committee. I wish to give special

thanks to Dr. Keith Teague for the use of the Hypercube parallel processor as well as

for providing me with a solid background and interest in parallel processing and

parallel programming.

I also want to thank Jill, my wife, for all of her patience, love, and

understanding, as well as for grading a lot of COMSC 3431 assignments while I

worked on my thesis. Finally I wish to thank my parents. Without their emotional

and financial support and encouragement, not only this thesis, but my entire education

would not have been possible.

111



Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION.......................................... 1

II. SURVEY OF RELATED RESEARCH 4

Shared Memory Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Distributed Memory Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Pipeline Schemes 6

III. AN ALTERNATIVE SEARCH TREE DISTRIBUTION
AND MAINTENANCE SCHEME 9

Explanation and Analysis of Carey and Thompson
Style Pipeline Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Explanation 9
Analysis 11

Alternative Search Tree Distribution and Maintenance Scheme 13
Description of Tree Distribution . . . . . . . . . . . . . . . . . . . .. 13
Description of Tree Operations 15
Root and Subroot Processor Algorithms 16

Root Processor Algorithm . . . . . . . . . . . . . . . . . . .. 19
Subroot Processor Algorithm . . . . . . . . . . . . . . . . .. 19

Analysis of Communication Costs 20
Example of Scheme Mapped to a Current Multiprocessor

Architecture 20
Balance Method Used by New Scheme 22

Description of Serial Balancing Algorithm 23
Description of Parallel Version of the Balancing

Algorithm 27
Example of the Parallel Balancing Process 30
Possible Out-of-Balance Detection Schemes 34
Integration of Balance Operation with New

Tree Search Scheme 35
Modified Root Processor Algorithm 35
Modified Subroot Processor Algorithm 39

IV



IV. RES'ULTS 41

Description of the Hypercube Hardware 41
Message Path Determination Rules (Hardware) 43
Message Passing Functions (Software) 43

Description of Scheme Implementations 44
Subtree Scheme Implementation . . . . . . . . . . . . . . . . . . . . . 44
Pipeline Scheme Implementation 44

Description of Evaluation Run Test Data . . . . . . . . . . . . . . . . . . . . 46
Evaluation Run Results 47

Results for Operation Mix Number 1 (All Updates) 47
Results for Operation Mix Number 2 (All Accesses) 52
Results for Operation Mix Number 3

(Half UpdateslHalf Accesses) 56
Discussion of Results 62

v. CONCLUSIONS.......................................... 65

Summary of Subtree and Pipeline Scheme Features 65
Summary of Subtree Scheme Advantages 66

Summary of Performance Comparison 67
Conclusions 68
Future Work Recommendations 69

REFERENCES 70

APPE'NDlXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

APPE'NDIX A - M-WAY TREE REBALANCING ALGORITHM
OF W.F. SMYTH 73

APPE'NDIX B - SUBTREE SCHEME SOURCE CODE 89

APPE'NDIX C - PIPELINE SCHEME SOURCE CODE . . . . . . . . . . .. 116

APPE'NDIX D - BINARY REFLECTIVE GRAY CODES 131

v



Table

LIST OF TABLES

Page

1. Performance Summary for 50% Insert, 50% Delete
Operation Request Mix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2. Performance Summary for 100% Access Operation
Request Mix 56

3. Performance Summary for 50% Access, 25% Insert,
25% Delete Operation Request Mix 57

4. Summary of Time Required for Rebalance Operation
for Subtree Scheme 62

5. Performance Gain/Loss Summary for Subtree Scheme
As Compared to Pipeline Scheme 67

VI



Figure

LIST OF FIGURES

Page

1. Pipeline Scheme of Carey and Thompson . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Pipeline Communication diagram for InsertlDelete
Operations (Right) and Search (Left) 10

3. Structure of Node in the M-way Tree ~ 13

4. Example of a Tree Partitioned by Subtrees of the Root 15

5. Outline of Root (top) and Subroot (bottom) Processor
Algorithms for Insert, Delete, and Access
Communication Management 17

6. Figure 4 Redrawn with Processors Labeled Starting
from 0 for Comparison with Figure 7 21

7. Physical Connections for a Hypercube Corresponding
to Logical Connections of Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8. Typical Rotation Step in the Conversion of an Arbitrary
M-way Tree to a Vine 24

9. Arbitrary Unbalanced M-way Search Tree 25

10. Typical Compression Step (M=4) 25

11. M-way Tree of Figure 9 Converted to a Vine 26

12. Balanced M-way Tree (Compressed Vine) of Figure
9 (11) for M=4 26

13. Outline for Node Transfer Step of Parallel Balancing
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

14. M-way Tree as a Vine Distributed Across 4 Subroot
Processors (After Step 1 of Balancing Algorithm) 31

VII



15. Adjustments Resulting from P3 Sending Nodes to P2 •• • • • • • • • • • • • • • • • • 32

16. Adjustments for P2 Sending Nodes to Pl. . . . . . . . . . . . . . . . . . . . . . . . . . 33

17. Adjustments if P3 Were to Send Nodes to P4 ••••••••••••••••••••••• 33

18. Outline of Root Processor Algorithm Modified for
Rebalance Request Processing 36

19. Outline of Subroot Processor Algorithm Modified
for Rebalance Request Processing 39

20. Figure 7 (Chap. III, p. 20) Redrawn With Binary
Node and Communication Link Labels 42

21. Execution Time vs. Problem Size for the Subtree (no rebalance)
and Pipeline Schemes for a Request Mix of 50% Inserts, 50%
Deletes (all updates) As Run With 4 and 8 Processors 48

22. Execution Time vs. Problem Size for the Subtree (no rebalance)
and Pipeline Schemes for a Request Mix of 50% Inserts, 50%
Deletes (all updates) As Run With 16 and 32 Processors 49

23. Execution Time vs. Problem Size for the Subtree (with rebalance)
and Pipeline Schemes for a Request Mix of 50% Inserts, 50%
Deletes (all updates) As Run With 4 and 8 Processors 50

24. Execution Time vs. Problem Size for the Subtree (with rebalance)
and Pipeline Schemes for a Request Mix of 50% Inserts, 50%
Deletes (all updates) As Run With 16 and 32 Processors 51

25. Execution Time vs. Problem Size for the Subtree (no rebalance)
and Pipeline Schemes for a Request Mix of 100% Accesses,
0% Inserts and Deletes (no updates) As Run On 4 and 8 Processors 54

26. Execution Time vs. Problem Size for the Subtree (no rebalance)
and Pipeline Schemes for a Request Mix of 100% Accesses,
0% Inserts and Deletes (no updates) As Run On 16 and 32 Processors .... 55

VIII



27. Execution Time vs. Problem Size for the Subtree (no rebalance)
and Pipeline Schemes for a Request Mix of 50% Accesses,
25% Inserts, and 25% Deletes As Run On 4 and 8 Processors 58

28. Execution Time vs. Problem Size for the Subtree (no rebalance)
and Pipeline Schemes for a Request Mix of 500/0 Accesses,
25% Inserts, and 25% Deletes As Run On 16 and 32 Processors 59

29. Execution Time vs. Problem Size for the Subtree (with rebalance)
and Pipeline Schemes for a Request Mix of 50% Accesses,
25% Inserts, and 25% Deletes As Run On 4 and 8 Processors 60

30. Execution Time vs. Problem Size for the Subtree (with rebalance)
and Pipeline Schemes for a Request Mix of 50% Accesses,
25% Inserts, and 25% Deletes As Run On 16 and 32 Processors 61

IX



Chapter I

Introduction

The efficient storage, access, and update of large amounts of data stored in the

main memory of a computer has long been the subject of intense research. Some of

the most efficient and general algorithms that have emerged as a result of this research

are those that maintain the data in the form of a balanced search tree structure. Thus,

it is not surprising that with the increased commercial availability of low cost parallel

processing computers, much recent attention has been focused on the efficient

implementation of balanced search tree structures on these parallel processing

computers.

The majority of this research has been based on shared memory multiprocessor

systems as opposed to distributed memory systems. While the shared memory

schemes do offer an efficient implementation of balanced search tree structures on a

multiprocessor computer, they are limited to a relatively low number of useable

processors (20 to 30) by the memory contention and bus bottleneck of the very

architecture on which they are implemented. Of the work that has been done on

distributed memory systems, the majority is based on hypothetical special purpose

database machines which are designed based on an actual tree-like structure. As such,

these schemes do not efficiently map to a general purpose multiprocessor which

usually consists of several identical processors connected by one of many various

topologies each with a different degree of connectivity.

The development of efficient balanced tree maintenance algorithms for general

purpose distributed memory multiprocessors has received only limited attention. As

I



these general purpose multiprocessors continue to become more prominent and support

an increasing number of processors, attention should be given to the development of

efficient search tree algorithms that can take advantage of the processing power and

available interprocessor connectivity of these multiprocessors.

The objective of this research is to develop a scheme to efficiently maintain a

balanced search tree on a general purpose distributed memory multiprocessor

consisting of several identical processors connected by some arbitrary interconnection

network. In particular, this work will focus on a scheme to maintain a balanced

M-way search tree capable of concurrent search, insert, and delete operations as well

as a periodic rebalance operation suitable for implementation on such a general

purpose distributed memory multiprocessor.

In Chapter II, several methods from the literature for distributing and

maintaining a search tree on a multiprocessor are presented. Emphasis is placed on

pipelined schemes for use on distributed memory multiprocessors. In Chapter III, a

new scheme for distributing and maintaining a balanced search tree on distributed

memory is presented. The operations of insert, delete, and access are discussed as

well as a detailed explanation and example of a parallel periodic rebalancing

algorithm. An example of the new scheme as mapped to the hypercube parallel

processing architecture is presented. Also, this new scheme is compared with the

typical pipelined style of distributed memory search tree maintenance schemes for

performance and efficiency. In Chapter IV, an empirical evaluation and comparison of

these two methods as implemented on the hypercube multiprocessor architecture is

presented. The performance results of each scheme as implemented and tested on the

Intel iPSC/2 Hypercube distributed memory general purpose multiprocessor are

2



presented and discussed. Finally, in Chapter V the results of the research are

summarized and discussed. Some contributions and advantages of the new scheme are

given and some related areas for future research are presented.

3



Chapter II

Survey of Related Research

There are several schemes available in the literature for implementing and

maintaining a balanced search tree in a parallel processing environment. Due to the

earlier development and commercial availability of shared memory parallel processors,

most of the earlier schemes are based on the shared memory model. In a shared

memory system, the entire data structure is held in an area of common memory that is

accessible to all processors, while in a distributed memory system the data structure is

partitioned among the local memories of the individual processors.

Shared Memory Schemes

Shared memory schemes have been presented for most of the common tree

structures. All of these schemes center around various types of locking protocols to

ensure the consistency of the structure. A locking protocol to allow the concurrent

manipulation of binary search trees was developed by Kung and Lehman[l]. Samdi[2]

presented a basic locking protocol for the B-tree to avoid deadlocks. An improvement

to this locking protocol was presented by Bayer and Schkolnick[3] to allow a greater

degree of concurrency for the B-tree structure. Ellis[4] gave a locking protocol to

allow concurrent search and insert on an AVL-tree, and another[5] to allow concurrent

search and insert on a 2-3 tree.

Distributed Memory Schemes

The scope of this research will be limited to those schemes developed for

distributed memory parallel processors. In particular, those schemes that can be

4



effectively mapped to a general purpose distributed memory multiprocessor. Much of

the discussion of distributed memory search trees in the literature is based on

hypothetical special purpose database machines [6, 7, 8, 9, 10, 11, 12]. In these

machines, the processors are permanently configured in a tree topology and the

hardware is specifically tuned and restricted to performing database dictionary

operations only. These machines can handle a large variety of database operations

executing concurrently. Each individual operation can complete in OOg N) time,

where N is the number of entries in the tree. Thus if there are several operations

executing concurrently (such as in a pipeline), these machines are capable of

completing an operation every 0(1) time units. However, these machines also require

the use of O(N) processors (processing elements), and more importantly, they are very

special purpose machines useful only for one specific task. It is of more interest, and

the specific focus of this thesis, to examine and expand upon the work done on

implementing search trees that can be effectively used on general purpose distributed

memory multiprocessors.

O'Gorman[13] presented a method for distributing the nodes of a binary tree

among processors in a linear array such that the left child of a node N is at location

2N and the right child is at location 2N+1 in much the same way a binary tree is

stored in an array in conventional data structures. This scheme allows concurrent

searches using the nodes of the tree (processors in the array) as routers. While this

scheme can be used on a general purpose multiprocessor (the simple vector processor)

it still needs O(N) processors for an N element tree. Also, insertions and deletions are

quite costly as they change the size of the tree (and hence the processor array) which

causes a need for the inefficient task of rearranging the keys in the array.

5



Pipeline Schemes

Tanaka, Nozaka, and Masuyama[14] proposed a ng N + 11 processor search

tree. They used a ng N + 11 processor pipeline to heapsort a stream of records and

arrange the sorted stream into the fonn of a balanced binary search tree. This

pipelined tree searching is just one component of a data flow database computer

proposed by Tanaka, Nozaka, and Masuyama. The scheme is not of general interest as

a tree maintenance method, as it does not even support insertions or deletions. The

important contribution from this scheme is the concept of distributing the nodes of the

search tree among the processors of the multiprocessor such that each level of the tree

is stored and maintained on a separate processor. This distribution of the tree nodes

allows search operations on the tree to be performed in a natural pipeline fashion on a

linear array of processors. Also, this level-to-processor mapping guarantees that the

number of processors required in the array to store an N element tree is of O(lg N), as

opposed to the O(N) processors required by the previous schemes.

Similarly, Fisher[15] proposed a scheme for maintaining a trie tree on a

pipeline of processors where the length of the processor pipeline is proportional to the

length of the longest key. This scheme is also based on the level-to-processor

partitioning of the tree. The tree is accessed and maintained by a level-parallel

(pipelined) radix tree algorithm. This scheme showed improved performance for small

key values. But more importantly, it showed that the O(N) processor tree machine

schemes and their node-to-processor distributions are not necessarily the best method

by which to improve performance. Unfortunately, this scheme (as well as the scheme

of Tanaka, Nozaka, and Masuyama) relies on a highly specialized VLSI

implementation to achieve good performance.

6



Carey and Thompson[16] developed a pipelined version of a 2-3-4 search tree

based on the top-down node splitting algorithm of Guibas and Sedgewick[17]. This

scheme also uses a linear array of ng N + 11 processors to maintain a balanced (2-3-

4) tree of up to N items. As in the Tanaka, Nozaka, and Masuyama scheme, the tree

is distributed among the processor array by levels, thus each processor takes care of

one level of the tree. The last processor in the array (Ppg N + 1~ holds all the keys in

the tree; processors PI through Pflg N1 hold the index set. An example of a tree

distributed on this type of architecture is shown in figure 1. Carey and Thompson's

scheme is capable of performing insertions, deletions, exact match searches and range

queries. The scheme is almost fully pipelined, so that as many as ng N + 11 / 2

operations can be at varying stages of execution at anyone point in time. This means

that if the pipeline is full, it is possible for one operation to complete every 0(1)

message time units.

Requests

1
Processor 1

t
Processor 2

t
Processor 3

t
Processor 4

!
Processor 5

1
Replies

Figure 1 Pipeline Scheme of Carey and Thompson [16]

7

Index Set
Processors
~-p

IgN

}
Keyset
Processor

PIgN+1



The work of Carey and Thompson has been extended by Colbrook and

Smythe[18] to encompass the general case 2w
-
2
• 2W tree (W>2). This scheme uses a

generalized version of the 2-3-4 tree top-down node splitting algorithm of Guibas and

Sedgewick. Analogous to the Carey and Thompson scheme, the Colbrook and Smythe

scheme uses a linear array of up to ng N/(W-2)l + 1 processors and is capable of

having up to (ng N/(W-2)l+1) / 2 operations executing concurrently.

The operation of the Carey and Thompson style pipeline schemes will be

presented and analyzed in detail in Chapter III.

8



Chapter m '

An Alternative Search Tree Distribution
And Maintenance Scheme

Explanation and Analysis of Carey and Thompson Style Pipeline Schemes

Explanation

Both the Carey and Thompson scheme, and its more generalized version, the

Colbrook and Smythe scheme provide an acceptable implementation of general

balanced search trees which can be mapped to general purpose distributed memory

multiprocessors. However, both of these schemes rely on the pipeline concept for

improved performance. As is shown in figure 1, requests come in at the root and

propagate down the tree (making appropriate balance transformations at each level if

the request is an insertion or deletion), until the last processor in the array is reached.

At the last processor, the appropriate action is taken (insert, delete, or match) and an

appropriate response is issued to the outside world (it is assumed by these schemes

that Pt and Pflg N + I' have direct communication links with the outside world). If

there are continuous requests waiting to be processed, then these schemes can

complete an operation every 0(1) message time units. Thus, as long as the pipeline is

full (there is a series of requests waiting to be processed), these schemes provide a

good improvement in throughput. However, the communication delay between the

time a request is. issued and the time the response to that particular request is received

is O(lg N) message times. Also, the improvement in throughput is dependant upon the

pipeline staying full.

9



The reason for the O(lg N)

communication time delay can also be

seen in figure 1. It is simply because

the request must propagate all the way to

the last processor before the response

may be issued to the requestor. This

means that if there are P processors in

the processor array, then the request

must pass through all P processors on

the way to the last (leaf) level processor.

For insertions / deletions, there is a node

•••

Figure 2 Pipeline Communication Diagram for
split / concatenation that may take place Insert/Delete Operations (Right) and Search (Left)

at each of these P processors (levels in the tree) as the request passes through. Each

possible node adjustment (whether it actually occurs or not) requires two additional

messages be passed between each processor in the array. One from Pi to P;+J to give

Pi+J the new key and indicate that an insert / delete transfonnation may be required to

maintain the 2-3-4 tree invariants (message 1, right side of figure 2), and one from P;+l

back to P; to give the new pointer and key arrangements resulting from an adjustment

transformation if one was required, or a message indicating that no transformation was

necessary otherwise (message 2, right side of figure 2). Finally, the operation is

continued from Pi to P;+l along these new pointers, if a transformation was required, or

along the old pointers otherwise (message 3, right side of figure 2). The top down

node splitting algorithm of Guibas and Sedgewick used by this scheme guarantees that

10



node adjustments will not propagate back up the tree. 'Thus, the communication steps

required per update (insert or delete) will always be exactly as just described.

Analysis

In the case of a simple search, one message must be passed between each

processor (left side of figure 2), and for an insertion or deletion three messages must

be exchanged between each processor (right side of figure 2). Since the processor

array must be of length {lg N + 17for a tree of N elements in the Carey and

Thompson scheme or (lg N/(W-2) 7+1 for the Colbrook and Smythe scheme, the

delay for a single search is equal to {lg N + 1]or (lg N/(W-2) 7+1 respectively.

Similarly, the delay for a single insertion or deletion is 3({lg N + 1]) for the Carey

and Thompson scheme and 3({lg N/(W-2) 7+J) for the scheme of Colbrook and

Smythe. In both cases, this delay is of O(lg N). If the number of searches is roughly

equal to the total number of insertions and deletions, this yields an average delay for

any single operation of 2({lg N + 1]) and 2({lg N/(W-2) 7+J) for the Carey and

Thompson and Colbrook and Smythe schemes, respectively. Also notice that until any

processor Pi receives a reply from processor P;+l for an insert or delete operation, the

keys and pointers in Pi may be incorrect. Thus, at any given point in time, half of the

processors will be dealing with insertion and deletio~ transformations. Hence, for an

arbitrary sequence of insert, delete and search operations, there may be a maximum of

{lg N + 1]/2 (Carey and Thompson) or ({lg N/(W-2) 7+1)/2 (Colbrook and Smythe)

operations executing concurrently at any given time.

As the number of processors on commercially available distributed memory

parallel processing machines continues to increase, the response time delay for these

11



pipeline schemes will generally continue to increase as well. This is because of what

is referred to as the throughput/response time trade-off. As more processors are added

to the processor pipeline, there is an increase in throughput (if the pipeline stays full),

but because the request and intermediate replies must now propagate through more

processors, there is generally also a corresponding degradation in the response time for

a single query. Furthermore, not only will an increase in the number of processors in

the pipeline generally increase the response time delay, but it will also increase the

number of requests for operations that must be available in order to fill the pipeline

and keep it filled, which is required to get the increase in throughput.

It should also be pointed out that if the multiprocessor is a general purpose

machine composed of identical processors, as most are, much of the memory in the

processors that contain the upper levels of the tree will be wasted by the pipeline

schemes since all the keys must be stored in the last (leaf level) processor. Also

notice that the pipeline schemes use a linear array of processors which requires only

one communication connection per processor. While this is certainly not a

disadvantage, it does mean that these schemes do not take full advantage of modem

multiprocessors which offer a higher degree of connectivity. These schemes also

assume that the connections on the first processor PI and the last P~g N + 11 may

communicate directly with the outside world, which cannot be accepted to be a valid

assumption for a general purpose multiprocessor. In light of these deficiencies,

attention should be given to new ways to distribute, use, and maintain a balanced

search tree structure on distributed memory multiprocessors. This new method should

attempt to avoid the problems associated with the pipeline dependency of these other

schemes.

12



In particular, any new scheme should attempt to minimize the response time

delay for an individual request while still attempting to achieve increases in throughput

for a series of requests. Also, since most commercially available general purpose

multiprocessors have identical processors and a relatively rich interconnection network,

a new scheme should attempt to make full use of the computational and storage

capabilities available on every processor as well as the enhanced communication

between processors. Of course, this new scheme should also be able to provide

concurrent insertions, deletions, and accesses as well as provide a mechanism to

maintain the global balance of the structure, all while ensuring the consistency of the

search tree.

Alternative Search Tree Distribution and Maintenance Scheme

Description of Tree Distribution

Like the pipeline schemes, this new scheme will maintain an M-way search tree

on a distributed memory parallel processor. The M-way tree will consist of nodes

with M-I keys and M pointers. A visual interpretation of the node structure can be

seen in figure 3. Each key has an associated left pointer that points to either nothing

Of another node that contains values less than the key associated with the pointer.

Each node also contains a count K of

keys in the node and a right pointer.

The right pointer always points to

whatever is to the right of the Kth key

Key 1 . Key2
;R

Key 3 Key M-1 ,

i
........3 ....Poi*rM-1 _

in the node.
Figure 3 Structure of a Node in the M-way Tree [19]

13



In order to avoid the inefficient use of processors and connectivity and reduce

the response time delay involved with earlier pipeline schemes, it is necessary to

partition the tree among the processor's local memories in a different fashion than that

used by the pipeline schemes. Recall from figure 1 that these schemes partition the

tree among the processors by levels of the tree. This partitioning is inherently

beneficial to the pipeline schemes for improvement in throughput and top-down

balancing, however it is also inherently detrimental to the response time for a single

query as well as efficient use of memory and processing power in the processors that

contain the upper levels of the tree. In order to avoid these problems, this new

scheme partitions the M-way tree among the processors of a multiprocessor by

subtrees of the root rather than by levels of the tree.

An example of an arbitrary M-way tree partitioned by subtrees of the root is

shown in figure 4. The root processor simply acts as a communication port for the

tree. It routes incoming requests to the appropriate subroot processor and receives

results form the subroot processors. Assuming bidirectional links between the

processors and that any processor may communicate with any other processor (not

necessarily by a direct link), the processors of the multiprocessor should be logically

connected as shown in figure 4, where PI is the root processor and P2 through P8 are

the subroot processors. Notice that the value of M for the M-way tree need not be

equal to the number of subroot processors. Each subroot processor maintains its own

local M-way subtree. The node in the root processor is a pseudoroot which contains

P-2 keys and their associated left pointers and a right pointer, where P is the total

number of processors available for use in the tree. Each of the pseudoroot pointers is

14



simply the address of a subroot processor which contains an M-way tree with keys

that are less than or equal to the value of the of pseudoroot key associated with the

pointer.

Root Processor

Pseudoroot --+

Replies i

Pa

Subroot
Processor 1

Ps
Subroot

Processor 2

~
Subroot

Pr0C8880l"3

~
Subroot

Processor 4

P, P7 P
a

Subroot Subroot Subroot
Processor 5 Processor 8 PrOC888Ol' 7

Figure 4 Example of Tree Partitioned by Subtrees of the Root

Description of Tree Operations

The dictionary operations on the tree are performed as follows. The key to be

inserted, deleted, or accessed is compared left to right with the keys in the pseudoroot

in the root processor. If and when the key is less than the tit pseu.doroot key, then the

root passes the request on to the subroot processor whose address is associated with

15



the fit pseudoroot key. If the key is greater than all the pseudoroot keys, then the

request is sent to the subroot processor whose address is stored in the right pointer of

the pseudoroot. Upon completion of the request at the subroot processor, a response

is sent back to the root processor. This informs the root processor that the operation

at that subroot processor is complete and it is ready to process another request. Thus,

the root processor must dispatch requests to the appropriate subroot processors and

poll for completion responses from these processors. The subroot processors must

accept these requests, perform the requested operation, and send a completion response

back to the root processor. Since each subroot processor may process requests

completely independently of the others, up to P-I operations can be going on

concurrently at any given time. Notice that this scheme safely assumes only one

processor (the root processor) has a direct communication link to the outside world.

Root and Subroot Processor Alf:orithms

A high-level outline of the root and subroot processor algorithms is given in

figure 5. An explanation of the data structures and functions referenced by these

algorithms follows. Done is a boolean variable that will remain FALSE as long as

there are requests to process. New_Request is a compound variable with two

required fields; namely Key and Operation. Key is the key used to place the item in

the tree, and Operation is the operation to be performed (insert, delete, or access).

The variable Request is of the same type as New_Request. The function

Get_lncoming_Request() will check to see if a new request has arrived from the

outside world, and if so return it in NeW_Request, otherwise it will set

New_Request to NULL.

16



Root Processor Algorithm

Whlle( !Done)
Begin

Get_lncoming_Request( New_Request)
If( New_Request)

Queue_lncoming_Request( Queues, New_Request, PseudoRoot)

Fat( i=1 to Numbe,_o,-Processors - 1 )
Begin

Iff Queues[I]. Waiting)
Begin

If( Message_Done(Queues{i}.Receive_id) )
Queues{I]. waiting =FALSE

End
Iff !Queues[i]. Waiting And !Queues[i}.Empty )

Begin
Request = DeQueue( Queues{l] )
Queues{I]. Send_id =Send(Request, Queues[I].Subroot_Proc_id)
Queues{I]. Receive_id =Receive(Signal, Queues[I]. Subroot_Proc_id)
Queues[I]. Waiting = TRUE

End
End

End

Subroot Processor Algorithm

While{ !Done J
Begin

Receiv8_id =Receive(Request,Subroot_Proc_id)
Message_Wait( Receive_id )
Switch( Request. Operation)

Begin
Cllse: INSERT

Inser1(Request)
Case: DELETE

Delete(Request)
Case: ACCESS

Search(Request)
End

Send_id = Send(Signal,Root_Proc_id)
End

Figure 5 OutHne of Root (top) and Subroot (bottom) Processor Algorithms for Insert, Delete and
Access Communication Management

17



The function Queue_lncoming_Request() will place New_Request in the

appropriate queue based on the value of the Key field as compared to the keys in the

pseudoroot. The functions Send() and Receive() are asynchronous message passing

functions. The Send() function sends the variable that is its first argument to the

processor with the identification number that is its second argument. Similarly, the

Receive() function places a message from a processor with the identification number

of its second argument into the variable named as its first argument. Since both of

these message passing functions are asynchronous, they both simply initiate the

requested action and return immediately. They do not block until the message has

been delivered or received. They both return a message identification number which

can be used to check the status of the actual message (as described below).

Queues is a single dimensional array of queue heads. The elements stored in

these queues are the incoming requests of type New_Request. There is a separate

queue of requests maintained for each subroot processor. Each queue head contains

the additional information fields Send_id, Receive_id, Waiting, Empty, and

Subroot_Proc_id. Send_id and Receive_id are message identification numbers

returned by the Send() and Receive() functions, respectively. These message

identification numbers are used by the Message_Done() function to determine if a

particular message has been received. Message_Done(), when supplied with a

message id, returns TRUE if the message has been received, or FALSE otherwise.

Waiting is a boolean variable set to TRUE when a request is sent to a subroot

processor, and set back to FALSE when the reply from that processor is received.

Empty is a boolean variable that indicates if the queue for a given processor has any

requests waiting to be processed or not.

18



Root Processor Aliorithm The root processor loops until there are no more

requests to be processed. Inside the loop, it accepts new requests and places them in

the queue for the appropriate subroot processor based on the keys in the pseudoroot.

It then polls each of the queues and checks to see if' each queue's associated processor

is currently processing a request (i.e. if Queues[i).Waiting is TRUE). If it is, then

the root processor calls Message_Done() with Queues[i].Receive_id to see if that

processor has completed that request. If the processor has completed the request

(Message_Done() returns TRUE), then Queues[i).Waiting will be set to FALSE

indicating that this processor is ready for another request. If a processor is in this state

(ready to accept a request) as indicated by Queues[i].Waiting being FALSE, and the

processor's associated queue is not empty (Queues[i].Empty is FALSE), then a new

request is taken from that processor's queue and sent to that processor. A receive

buffer is then posted for the completion message that will be sent by this processor,

and the processor's waiting flag (Queues[i].Waiting) is set to TRUE until this

completion message arrives.

Subroot Processor AI~Qrithm The outline of the algorithm that runs on the

subroot processors (figure 5, bottom) is simple and straightforward. Each processor

simply posts a Receive() and waits for a request to process. It waits for a request by

calling the function Message_Wait() which will block until the message with the

message id passed to it as an argument arrives. When a request does arrive, the

processor checks the Operation field and calls the appropriate function (Insert(),

Delete(), or Search()) to perform the requested operation on the tree. Upon

completion of the operation (return from the function), a completion message is sent

19



back to the root processor to inform it that this subroot processor is now ready to

process another request.

Analysis of Communication Costs

In this scheme, the response time delay is a function of the connectivity of the

processors. This is assuming that the cost of sending a message between the

processors is the dominant portion of the time spent processing a request, and thus

ignoring for the moment the O(logmN/(P-l» tree search time involved at each subroot

processor. If the subroot processor processing the request is directly connected to the

root processor, then the response time will be equal to 2 message times. One to send

the request to the subroot processor and one to send the response back to the root

processor. In the worst case, the request would have to be routed through each of the

subroot processors to reach its destination. Hence, the worst case performance would

be of O(P-l) message times. This worst case would occur for processors linked by a

linear array connectivity. The best case would be of 0(1) message times, which

would occur for a completely connected multiprocessor, while the average case for

most current multiprocessors is somewhere in between depending on their degree of

connectivity.

Example of Scheme Mapped to a Current Multiprocessor Architecture

As an example, consider the hypercube multiprocessor architecture. In this

architecture, there are Ig P connections per processor, where P is again the total

number of processors allocated. Also, processors may only be allocated in quantities

that are a power of 2. So, for the processor that is logically connected as shown in

20



figure 4 (redrawn in figure 6 to reflect the node numbering starting at zero on the

hypercube), the actual physical connections in the hypercube are as shown in figure 7.

.....- ---. For requests that get routed to subroot

processors 1, 2, or 4 the response

time will be the best case 2 message

times, while requests that get routed

to subroot processors 3, 5 or 6 will

have a response time of 4 message

times. Requests that get routed to

subroot processor 7 will take 6

Figure 6 Figure 4 Redrawn with Processors Labeled
Starting from 0 for Comparison with Figure 7 message times to complete. In

general, the maximum number of message times to go from any processor on a

hypercube to any other processor on the hypercube is Ig P. Thus, the response time

delay for this new scheme on a hypercube architecture is OOg P) as opposed to

OOg N) for the pipeline schemes.

Not only will this scheme make

7
the response time delay a function of the

number of processors and their

connectivity rather than a function of the

number of nodes in the tree, but it will

also make much more efficient use of the

available processors and memory because

each processor will now store and

3

4

Figure 7 Physical Connections for a Hypercube
perform operations on a complete subtree Corresponding to Logical Connections of Figure 6

21



of the global search tree. Notice that as previously mentioned, this scheme will make

it possible to have up to P-l operations executing concurrently. Recall that the root

processor issues requests for operations to the appropriate subroot processor, then

awaits a response from that processor indicating completion of the operation, at which

point the next request may be sent to that processor. Note however that since the root

processor need not wait for a response from anyone subroot processor before sending

a new request to a different subroot processor that is ready, it is possible to have an

operation being processed at each of the P-l subroot processors at the same time (see

the root processor algorithm in figure 5-top for details). In this way, this new scheme

can be thought of as P-l pipelines all of varying length. Hence, this scheme provides

good increased throughput while minimizing the response time as much as the

connectivity of the architecture will allow.

Balance Method Used by New Scheme

So far this scheme has shown improvements in all the areas in which the

earlier pipelined schemes were deficient, but there is one desirable attribute of the

pipeline schemes that is not yet present in this scheme, namely that of maintaining the

global balance of the search tree. Recall that both the pipelined schemes of Carey and

Thompson and Colbrook and Smythe maintained search trees that were globally

balanced across the processors. The level to processor partitioning of these schemes

coupled with top-down node splitting was used to maintain a 2-3-4 tree and a 2W
-
2_2w

tree respectively.

In this new scheme, the level to processor partitioning of the tree has been

replaced with a subtree partitioning, the benefits of which have already been discussed.

22



This subtree partitioning does however make the use of traditional tree balancing

techniques very costly. Any kind of on-the-fly balancing of the global tree structure

could necessitate changes across several subtrees. This would require costly

communication between the subroot processors as well as cause surrounding subroot

processors to have to wait for completion of the balancing operations caused by an

update on some other subroot processor before being able to service their next request.

This would considerably reduce the amount of concurrency possible and thus the

efficiency of the entire scheme. For these reasons, the new scheme will use a parallel

version of the M-way search tree periodic balancing algorithm presented by W.F.

Srnyth[19]. The next section contains a detailed description of this balancing process,

followed by an explanation of how it is used by this new tree search scheme.

Description of Serial Balancinl: AI~Qrithm

The algorithm used is based on a periodic balancing technique that was

originally presented for the binary tree by Stout and Warren[20] and later extended by

Smyth to the M-way tree, M>2. A detailed explanation and example of the algorithm

can be found in Appendix A. The following is an overview of the functionality of the

algorithm and how it is used by this scheme to maintain the global balance of the

parallel search tree. In general, Smyth's algorithm works in two -stages.

1. Conversion of the existing tree to a vine
2. Conversion' of the vine to a balanced tree

A vine is simply an M-way tree, consisting of nodes such as those depicted in figure

3, in which every left pointer is NULL and every right pointer points to another node,

except the right pointer of the last node in the vine which points to NULL. Each vine

node, except possibly the last (rightmost) node, is completely full (i.e. contains exactly

23



M-l keys). So a vine is essentially a
u

linked list of completely full tree

nodes connected by right pointers.

The process of converting the

M-way tree to a vine consists of

repeated applications of the rotation

shown in figure 8. These rotations

.~

A

start with the root node of an M-way

tree as the current node (U) and rotate

each left subtree (V) attached to this

node to the right. When all the left

•
z

subtrees of the current node (U) have Figure 8 Typical Rotation Step in the Conversion of
an Arbitrary M-way Tree to a Vine (19]

been rotated, this current node is

added to the vine and the new current node becomes the right child of this node. As

each node is added to the vine, keys are shifted into the previously added vine node

from the most recently added node to ensure that there are exactly M-I keys in the

previously added vine node. This assures that each node in the vine contains exactly

M-I keys. If this shifting causes the most recently added vine node to become empty,

then that node is simply left out of the vine. This is then repeated for each node in

the tree until the right child of the most recently added vine node is NULL. Notice

that these rotations cause the keys in the vine to be stored in strict ascending order.

Figure 11 (page 26) shows an example of a vine created by applying this process to

the unbalanced M-way tree (M=4) containing randomly generated integer keys found

in figure 9.

24



o 131

4713 •

91

7 72

BIJBJJ [[][[]BIJ
831

Figure 9 Arbitrary Unbalanced M-way Search Tree

The process of converting this

newly created vine to a balanced M-way u

tree is accomplished by repeated 17 21 30

Figure 10 Typical Compression Step (M=4)

x

121

w

v

of X, making pointer adjustments and

(U,V,W) around to be the left children

compression rotates the three nodes

nodes to its right (V, W, and X). Each

starting with the root (U) and the three

the inverse of the rotations. They

process the vine in groups of M nodes,

in figure 10. The compressions perform

applications of the compression shown

25



key exchanges as required. The

node X then becomes the V-node

for the next compression and so on

until the vine has been completely

processed (compressed). At this

point, the vine will have been

converted into a balanced M-way

tree. An example of a balanced M-

way tree created by this process

from the vine in figure 11 is shown

in figure 12.

Figure 11 M-way Tree of Figure 9 Converted to a Vine

Figure 12 Balanced M-way Tree (Compressed Vine) of Figu~e 9 (11) for M=4

26



Description of Parallel Version of the Balancini: Ali:orithm

To use this balancing algorithm efficiently in a parallel implementation, the

basic steps of the algorithm are modified as shown below.

1. Each of the subroot processors performs the conversion of their local M-way
subtree to a vine in parallel.

2. Nodes are exchanged between the subroot processors so that each processor
will have an equal number of nodes.

3. Each subroot processor performs the conversion of its local vine to a
balanced M-way tree in parallel.

Steps 1 and 3 are exactly the same as the serial case discussed above, except that they

are carried out simultaneously by each of the subroot processors. Step 2 is required

because we not only want to balance the individual M-way subtrees on each of the

subroot processors, but also the global search tree structure as well. To balance the

global search tree using this algorithm, each processor should have an equal number of

tree nodes. This transfer of nodes is best done between the two stages of the original

sequential balancing algorithm. This is the best time because when the M-way trees at

each subroot processor are in the form of a vine, segments from the root (tail) of a

neighboring processor's vine may simply be inserted at the tail (root) of the processor

to the left (right).

This modified version of Smyth's algorithm is well suited for use in this new

parallel tree search and maintenance scheme. While much of the actual data transfer

involved in Step 2 must be done sequentially, Steps 1 and 3 are entirely independent

and may be done wholly in parallel. Furthermore, since the transfer of these nodes in

Step 2 is done by transferring sections of the tree in the form of a vine, the relinking

involved at each subroot processor during Step 2 is trivial. An algorithm to perform

this transfer of nodes (Step 2) is given in figure 13.

27



Each of the Following Variables Is Calculated for Each Processor

Give =number of nodes on processor over Nodes_per_proc

Requests =how many nodes needed on this processor to bring the node
count up to Nodes_per_proc

Requests_from_lett =how many nodes the processor to the left of this
processor is requesting

Body of the Algorithm

FOR( i =leftmost subtree processor TO rightmost subtree processor)
BEGIN

IF( subroot processor[i].Give > 0 )
BEGIN

Send_right(subroot processor[i].Give)
This sends subroot processor[i}.Give nodes from subroot
processor[i} to subroot processor{i+1}

i=i+1
END

ELSE
BEGIN

Current_processor =i
WHILE( sUbroot_processor[Current_processor].Requests > 0 )

Current_processor =Current_processor + 1
Send_lett(Current_processor, i)

This sends the requested number of nodes
(Requests_from_left) from Current_processor to the neighbor
processor to the left. This left neighbor processor then sends
the number of nodes requested of it (its Requests_fram_left) to
its left and so on until the requests on the original processor
(processor[i]) have been satisfied

i = Current_processor
END

END

Figure 13 Outline for Node Transfer Step of Parallel Balancing Algorithm

28



This algorithm is run by the root processor after receiving confirmation of

completion of the conversion to a vine (Step 1) from each of the subroot processors.

The calculation of the variables used by this algorithm (Requests, Give and

Requests_from_left) are calculated in equations 1, 2, and 3 respectively. Again, a

unique set of these variables is kept by each processor, so subscript notation is used in

the fonnulae to indicate which processor the variables correspond to. For example,

Processor[i].Left means the value of the variable Left for processor i as i goes from

the leftmost (1) to the rightmost (P-l) processor.

Processorp}.Requests = (Nodes-per-I'roc + ProcessorfiJ.RequestsJro",_left) ­
(processor/i}.Nodes + Processor{i-l}.Give)

Then based on the value of Requests (Processor[i].Requests) from (1), Give and
Requests are reset as follows.

If (Processorp}.Requests < 0) Then
Processorp}.Give - -(processor/i}.Requests)
Processor[i}.Requests - 0

Otherwise,
Processorfi}.Give - 0

And Finally,
Processor{i+I}.RequestsJrom_left - Processor[i}.Requests

(1)

(2)

(3)

After the calculation of these variables, the algorithm simply processes each of

the subroot processors from left to right. If the tit processor has more than the

required nodes present, it sends the extra nodes to the processor to its right, if it has

less than the required nodes, it requests what it needs from the processor to its right.

A request keeps going down (right) through the processors, possibly accumulating new

requests as it goes, until it finally reaches a processor which can satisfy all the requests

accumulated so far (which it is guaranteed to be able to find). The required nodes are

then sent left satisfying all requests accumulated to that point. The processing then

29



continues in the same manner from that point on to ~he right until the rightmost

processor has been processed. At this point, all the node transfers (Step 2) will be

complete and each subroot processor may convert its own local vine to a balanced tree

simultaneously (Step 3).

Example of the Parallel Balancin~ Process

An example of this entire balancing process is now given. Consider again the

unbalanced tree given in figure 9. Under this new scheme, each subtree of the root

would be on a separate processor. Figure 14 shows the tree partitioned among the

processors along with the corresponding values of Give, Requests, and

Requests_from_left (R.F.L.) as well as the number of nodes present on each subroot

processor (Nodes) after all the subroot processors have completed the conversion of

their respective subtree to a vine (Step 1).

Following the algorithm of figure 13, the root calculates Nodes_per_proc to be

4 (total nodes/number of subroot processors), and then begins node distribution

processing with the leftmost processor PI. PI cannot have any requests from the left

(R.F.L.) since it is the leftmost processor. Since PI has only one node, it must request

3 (to bring it up to the required 4 Nodes_per_proc) from the processor to its right

(P2). Hence, P2'S requests from left value (R.F.L.) is set to 3. P2 has only 3 nodes, so

it must request 1 node from the processor to its right (P3) in addition to the 3 nodes

requested from its left (from PI). Thus P2 must request a total of 4 nodes from P3

which results in setting P3'S R.F.L to 4. P3 has 10 nodes, but only needs 8 (4 to

maintain the required NOdes_per-proc plus 4 which are requested from processors to

its left). As a result, P3 has 2 nodes to give to the processor to its right (P4).

30



ITO 7 84

p
o

53.

81 131

272 S28

701

171 _

Nodee.1 N0de8 = 3 Nod.. = 10 Nod88=4
Requeel8. 3 RequeatII = 4 Requeata=O Req.... =O
GMa-O GIve .0 Give. 2 GIve. 2
R. F. L.-O R. F. L.• 3 R. F. L-4 A. F. L.O

~
p p

PI • ..

Figure 14 M-way Tree as a Vine Distributed Across 4 Subroot Processors (After Step 1)

So P4 has no requests from the left (i.e. R.F.L. = 0). Since P4 is the rightmost

processor its Give value is never considered because there is no processor to its right.

31



But notice that if there was a processor to the right, P4 would have 2 nodes to give to

it. This is because it already has exactly the required 4 nodes plus an additional 2

nodes that it would receive from P3.

Now that the root processor has calculated all the required values, it must

simply examine each subroot processor from left to right, as described in figure 13, to

see if it has any requests for nodes or nodes to give, and take the appropriate action

for either case. In this example, PI has a request for 3 nodes, so the root processor

searches right through the processors until it finds a processor with no requests. When

a processor has no requests, it means this processor has sufficient nodes to satisfy its

Ern

Figure 15 Adjustments Resulting from P3 Sending Nodes to P2

from it (its R.F.L.) to the

processor to its left (P2).

This results in the

adjustments shown by the

dashed arrows in figure

15. Pz now has 7 nodes

so it can satisfy its R.F.L.

and send 3 nodes to PI.

These adjustments are

reflected by the dashed

arrows in figure 16.

own needs as well as all the requests from its left. For this example, the first such

node to the right of PI is

P3. So P3 is instructed to

send what is requested

32



Figure 16 Adjustments for P2 Sending Nodes to PI

The adjustments shown in figure

17 need not be made since P4 is

the rightmost processor, but they

are included to show how the

vine is adjusted when a processor

has excess nodes to give to the

right, as P3 has to give to P4-

Finally, the keys in the

pseudoroot of the root processor

are adjusted to reflect the

adjusted vines and the node
'. '.

ElJJ

.. 'I.

1
\
\
\

. \
\\,'~.~ \. ED]]

;

, "I:
r.J:l:J ) ,1/'
ITD !

" I /'

'-.. / /
• ...,____ ,~------ .I

....._-------
p•

distribution process (Step 2) is

complete. Now each processor

may perform the conversion

(compression) of its local vine to

a balanced tree (Step 3)

simultaneously and the entire

balancing process will be

complete.

Figure 17 Adjustments if P3 Were to Send Nodes to P4

33



Possible Out-of-Balance Detection Schemes

The decision of when a rebalance should take place can be based on a number

of factors, depending on how the tree is being used. One possible method that would

benefit this parallel implementation is based on the size of the request queues on the

root processor. If anyone processor's request queue becomes a certain percentage

larger (i.e. contains a certain percentage more requests) than any other processor's

queue, then this indicates that one processor is processing the majority of the requests

while the others are relatively idle. This should trigger a rebalance in order to

redistribute the keys among the processors to increase the degree of parallelism.

Similarly, the decision could be based on the tree size at each processor. The root

processor could keep a count of the number or keys' or nodes at each processor and

when one processor had a certain percentage more than any other processor, a

rebalance would be triggered.

Alternatively, the decision could be based on space usage. The root could

maintain a ratio of keys to nodes (keys/nodes) for each processor and when this ratio

falls below a certain threshold, a rebalance would be triggered to compact the tree and

free the wasted memory in partially filled nodes. The decision could also be based on

factors external to the algorithm, such as available processing time or disk space. For

example, the tree may be rebalanced during a time of low activity on the machine on

which it is implemented (like at night or on weekends), or when the disk space on

which it is stored reaches a certain maximum level. In any case, since all requests and

replies are routed through the root processor, any desired statistics to be used in

making this decision can be gathered and maintained there with no additional

communication costs.

34



Inteifltion of Balance Operation with New Tree Search Scheme

In order to implement this rebalancing algorithm as part of this new parallel

search tree scheme, some changes must be made to the basic algorithm presented in

figure 5. The root processor algorithm must be modified to be able to accept a request

for a rebalance operation in addition to the insert, delete, or search operations already

discussed. When the root receives a rebalance request, it must take the following

actions.

1. Stop accepting new requests, and place the rebalance request on the tail of
each subroot processor's queue.

2. Process all the requests that remain in the queues (empty the queues). This
includes sending the rebalance request which was the last request queued.

3. While waiting for acknowledgement from~ subroot processor of
completion of the conversion of their respective subtrees to a vine (Step 1 of
the rebalance algorithm), calculate the required statistics resulting from
equations 1, 2, and 3 for each subroot processor.

4. Direct subroot processors to exchange vine segments as described by the
node transfer algorithm of figure 13.

5. Upon completion of the node transfer algorithm, direct all the subroot
processors to convert their modified vines to a balanced tree (Step 3 of the
rebalance algorithm).

6. Wait for~ subroot processor to ackno\yledge completion of the
conversion of their respective vine to a balanced tree, and then resume
normal request servicing.

Modified Root Processor Alaorithm Figure 18 shows the root processor

algorithm outline of figure 5 modified for servicing the rebalance request. Figure 19

shows the corresponding subroot processor algorithm. There are two new boolean

variables introduced, namely Build_Queues and Serve_Queues. Both of these

variables are initialized to TRUE.

35



Root Processor Algorithm

Whle( tDone)
Begin

If( Build_Queues)
Begin

Get_lncoming_Request( New_Request)
If( New_Request)

If( New_Request.Operation 1= REBALANCE)
Queue_lncoming_Request( New_Reque.t, PseudoRoot )

ElM
Begin

For( 1=1 to Number_of_Processors - 1 )
Queue_Rebalance_Request( Queues[i] )

Build_Queues = FALSE
End

End

Serve_Queues = FALSE
For( 1=1 to Number_of_Processors - 1 )

Begin
If( Queues[il·Waiting )

Begin
Serve_Queue. = TRUE
If( Mesaage_Done(Queues[i).Receive_id) )

Queues[i].waiting =FALSE
End

If( IQueues[I).Waiting And fQueues[i).Empty )
Begil

Serve_Queues = TRUE
Request = DeQueue( Queues[i] )
Queues[i].Send_id = Send(Requeat,Queues~).Subroot_Proc_ld)

Queues[i].Receive_id = Receive(Signal,Queuea[i].Subroot_Proc_ld)
Queues[i).Waiting = TRUE

End
End

If( IServe_Queues )
Begin

For( i=1 to Number_of_Processors - 1 )
Queues(ij.Receive_id = Receive(Signal,Queues[i).Subroot_Proc_ld)

Calc_Node_Tranafer_Stats( Queues)
For( 1=1 to Number_of_Processors - 1 )

Message_Wait( Queues[i).Receive_id )
Transfer_Nodes( Queues)
For( 1=1 to Number_of_Processors - 1 )

Begin
Queues[i].Send_id = Send(Trans_Complete,Queues(i).Subroot_Proc_ld)
Queues[i).Receive_id = Receive(Signal,Queues[i).Subroot_Proc_ld)
Mess.ge_Wait( Queues[q.Receive_id )

End
Serve_Queues =TRUE
Build_Queues =TRUE

End

End

Figure 18 Outline of Root Processor Algorithm Modified for Rebalance Request Processing

36



The algorithm functions the same as described before (see figure 5) as long as

Build_Queues and Serve_Queues are TRUE. However, notice that each

New_Request is checked to see if it is a REBALANCE request. If it is not, then the

request is queued just as before, but if it is a REBALANCE request, the function

Queu8_Rebalance_Request() is called for each subroot processor's queue to place

the rebalance request at the tail of the queue. Also, Build_Queues is set to FALSE

at this point so that no new requests will be added to the queues until the rebalance is

complete.

Now the remaining requests in all of the queues must be processed before the

rebalancing algorithm is executed. This is accomplished through the boolean variable

Serve_Queues. Immediately before entering the loop that polls to see if any of the

subroot processor's queues are waiting on a completion response or have a request in

their queue that is ready to be sent, Serve_Queues is set to FALSE. If any subroot

processor is found to be waiting on a completion response, or found to have a request

waiting to be processed in its queue, then Serve_Queues is set back to TRUE before

the loop is exited. In other words, if when the polling loop is exited Serve_Queues

has the value of TRUE, then the queues are not yet all completely serviced and they

must be checked again.

When the polling loop is exited and Serve_Queues has not been reset to

TRUE, then all the requests in all the queues have been sent and completion responses

have been received. This means that all of the queues have been flushed and the

rebalancing algorithm may now be executed. Recall that the last request queued was

the rebalance request. When the subroot processors receive this rebalance request,

37



they each perform the conversion their own local subtree to a vine (Step 1 of the

rebalancing algorithm). Upon completion of this conversion, each subroot processor

sends a signal to the root processor to inform the root that it is finished with Step 1.

So the root posts a Receive() call for each of these completion messages. It then

calls the function Calc_Node_Transfer_Stats() to calculate the required statistics in

preparation for the node transfer step (Step 2) of the rebalancing algorithm. This

allows the root to calculate all the node transfer statistics while the subroot processors

perform the conversion to a vine. The root processor must now call Message_Wait()

for each completion message to ensure that all subroot processors are finished with the

conversion to a vine (Step 1) before starting the node transfer step (Step 2).

After receiving a completion signal from each of the subroot processors for

Step 1~ the root calls the function Transfer_Nodes() to perform the node transfer step

(Step 2) of the rebalancing algorithm as described in figure 13. After the node transfer

step is complete, the root sends a signal to each of the subroot processors to inform

them that the node transfer step is complete and they may begin the conversion their

local vine to a balanced M-way tree (Step 3). Then the root must again wait for a

completion signal from each of the subroot processors by posting a Receive() call and

calling Message_Wait() for each message ide

When the root receives a completion signal from each subroot processor for

Step 3, it resets the value of Serve_Queues and Build_Queues to TRUE. This

signals the end of the rebalancing process and allows normal request processing to

resume once agaIn.

38



Subroot Processor Algorithm

Whlle( tDone )
Begin

Receive_id = Receive(Request,Subroot_Proc_id)
Message_Wait( Receive_id )
Swttch( Request.Operation )

Begin
Case : INSERT

Insert(Request)
Case : DELETE

Delete(Request)
Case : ACCESS

Search(Request)
Case : REBALANCE

Begin
Send_id =Send(Signal,Root_Proc_id)
Tree_to_Vine( )
Send_id = Send(Signal,Root_Proc_id)
Transfer_Nodes( )
Receive_id = Receive(Trans_Complete,Subroot_Proc_id)
Message_Wait( Receive_id )
Vine_to_Tree( )

End
End

Send_id =Send(Signal,Root_Proc_id)
End

Figure 19 Outline of Subroot Processor Algorithm Modified for Rebalance Request Processing

Modified Subroot Processor Al~orithm The modifications to the subroot

processor algorithm to facilitate the rebalance request reflect the modifications in the

root processor algorithm. When the subroot processor receives a REBALANCE

request, it immediately responds by sending a signal back to the root processor to

acknowledge receipt of the rebalance request. This signal allows the root processor to

flush its queues and begin the rebalancing process on its end. The subroot processor

then calls the function Tree_to_Vine() to convert its local tree to a vine. When the

conversion to a vine is complete, the subroot processor sends another signal to the root

39



processor to inform the root of this. At this point, the subroot processor calls the

function Transfer_Nodes(} to exchange nodes with its neighbor processors as directed

by the Transfer_Nodes() function running on the root processor. After the subroot

processor has completed its transfer of nodes t it pos~s a Receive() call and waits (by

using Message_Wait(») for a signal from the root processor that all the subroot

processors have completed the node transfer step. When the subroot processor

receives this signal from the root, it calls Vine_to_Tree() to convert its vine to a

balanced M-way tree. Finally, after the conversion of its vine to a balanced tree is

complete, the subroot processor sends a final signal to the root processor which

informs the root that the rebalancing process on the subroot processor is complete and

the subroot processor is now ready to accept requests once again.

40



Chapter IV

Results

To evaluate and compare the performance of this new subtree partitioned tree

search and maintenance scheme on a current multiprocessor architecture, both the

subtree scheme and a Carey and Thompson style pipeline scheme were implemented

on a hypercube multiprocessor architecture. Specifically, both schemes were

implemented on the Intel iPSC/2™ Hypercube running under the NX/2 operating

system. This machine is typical of currently available general purpose distributed

memory multiprocessors.

Description of the Hypercube Hardware

The particular iPSC/2 machine on which these two schemes were implemented

consists of 32 Intel 80386 processors running at 33 MHz. Each processor has between

4 and 8 megabytes of RAM memory. The processors are connected by bidirectional

communication links in a hypercube configuration. This results in each processor

having Ig P connections to Ig P other processors, where P is the total number of

processors in the hypercube. An example of 8 processors connected in this fashion is

found in figure 7 of Chapter III (page 20). Notice that in order to be connected in a

hypercube configuration, the quantity of processors to be used must always be a power

of two (2, 4, 8, 16, or 32 in this case). The node labeling in the hypercube is exactly

as shown in figure 7 as well. The nodes are labeled such that any two neighbor nodes

(nodes connected by a direct link) differ by exactly one binary digit (bit) in the binary

representation of their numeric label. The links between the nodes are labeled in a

similar manner. A link is labeled such that its label is the exclusive-or of the two

41



Unk1

instruction, multiple data (MIMD)

nodes it directly connects. To illustrate

this, an example of the cube in figure 7 111
LInk 1

is redrawn in figure 20 with the link
Jj~ ~~

04 "~ "-
labels shown and the node labels LInk 1

~100

expressed as binary digits rather than
LJnIc 1~ 011

~ C\I
decimal digits. :: ~

Since the hypercube is a multiple
~

machine, each processor executes its
Figure 20 Figure 7 (Chap. III, p. 20) Redrawn
With Binary Node and Communication Link: Labels

own set of instructions on its own set of

data completely independently of all the other processors. The actual hypercube

machine is front ended by a smaller single processor machine referred to as the host.

The host is responsible for allocating and loading the programs onto the processors in

the hypercube as well as receiving output from the hypercube. While any hypercube

processor may send a message to the host, only node 0 has a direct link. All other

messages must pass through node 0 and then on to the host.

It is important to realize that each processor in the hypercube may

communicate with any other processor in the hypercube, even if they are not

connected by a direct link. That is, if node 0 (000) in figure 20 wished to send a

message to node 5 (101), it would be able to do so. The message would go from node

oto node 1 across link 0 and then from node 1 to node 5 across link 2. The path for

this message (as well as all other messages) on the hypercube is determined by the

NX/2 operating system by using the following rules.

42



Messaae Path Determination Rules (Physical)

1. Take the exclusive-or of the sending and receiving node.
Ex. Send a message from node 0 to node 5. Step 1 gives:

000
XOR 101

101

2. The bit positions corresponding to the 1's in the result of the XOR from
least-significant-bit to most-significant-bit (MSB i- LSB) determine the links
to follow.
Ex. Using the XOR result above, Step 2 gives:

(101) corresponds to links (/2'/1'/0)' which means that links /0 and /2 (in
that order) are to be followed from the sending node (node 0) to the
receiving node (node 5), since their corresponding values in the XOR
result are 1's.

3. Follow the links in the prescribed order from each node along the path
starting with the sending node, and terminating with the receiving node.
Ex. Following links 10 and 12 as prescribed by Step 2 gives:

Start from node 0, follow link 0 (/0) to node 1. From node 1, follow
link 2 (/2) to node 5, which is the destination or receiving node.

Since this message routing is done by the NX/2 operating system, it is not of concern

to any program running on the iPSC/2 hypercube. All the program must do is request

that a message be sent from node X to node Y. It is important, however, to notice that

this routing does guarantee that any node may send or receive a message from any

other node on the hypercube, and that this message will only have to cross at most 19

P links (where P is again the number of processors being used).

Messa~e Passin~ Functions (Software)

Communication between any of the processors is by message passing only.

The NX/2 operating system offers both synchronous and asynchronous message

passing through calls to C library functions. These messages are passed by one

processor issuing a send (by calling a send() function) of a message to some other

processor which receives (by calling a recv() function) the message. If the

43



synchronous receive function (crecv(») is called, program execution will block at this

statement until a message arrives. However, if the asynchronous receive function

(irecv()) is called, a buffer is established to receive a message and program execution

continues immediately. The asynchronous receive function returns a message

identification number (it/) which can be used by the library functions msgdone(id) and

msgwait(id) to determine if the message has arrived yet or block until it does arrive,

respectively.

Description of Scheme Implementations

Subtree Scheme Implementation

The new subtree scheme is implemented exactly as described in Chapter III.

The root processor algorithm is implemented as a C language program which is loaded

and run on processor 0 of the hypercube. The subroot processor algorithm is also

implemented as a C language program and is loaded and run on processors 1 through

P-l (where P is the number of processors in the hypercube). All of the receive

function calls in the subtree scheme programs are of the asynchronous type. In the

few cases where execution must wait for a message to arrive (such as when a subroot

processor is waiting for a new request, or during the rebalance process), the msgwait()

function is used. Appendix B contains the source code for these programs.

Pipeline Scheme Implementation

The implementation of the Carey and Thompson style pipeline scheme is only a

communication model simulation used to gather performance statistics for comparison

to the new subtree scheme. No actual tree is maintained in this implementation.

44



However, since the number, size and synchronization of the messages that must be

passed using this scheme are completely determined by the type of operation that is

being performed (insert, delete, or access), it is possible to exactly simulate the

communication required by this scheme without actually maintaining a tree. As

discussed in Chapter III, this scheme is very communication bound. The only

processing required at each processor is the search of a single tree node, and perhaps a

node split or merge if the operation being performed is an insert or delete. Also, due

to the inefficient use of memory, if a tree were actually maintained the scheme would

run out of memory after a relatively small number of keys had been inserted. For

these reasons, this implementation of the pipeline scheme is only a communication

model simulation. These simplifications will only cause the pipeline performance

statistics obtained from this implementation to appear an insignificant amount better

than they would if an actual tree were maintained. Appendix C contains the source

code for these programs.

The pipeline scheme is also implemented as a set of C programs that perform

the message passing as described in Chapter III (see figure 2, page 9). It should be

mentioned that the hypercube can be (and is for the implementation of this scheme)

configured as a linear array of processors such that each processor in the array has a

direct connection to its neighbor processor on both sides. This is accomplished by

ordering the processors according to a binary reflective gray code. A binary

reflective gray code will give an ordering of the processors such that for any given

label, the previous label and the succeeding label will differ from it in exactly one bit

position (thus generating a labeling for a linear array of directly connected processors).

See appendix D for how to generate binary reflective gray codes.

45



Recall from Chapter III (figure 2, page 9) that the communication requirements

of the first processor in the linear array (Po), the next to last processor in the array

(PIgN)' and the last processor in the array (P,gN + J) are slightly different than those for

the rest of the processors (PJ through P/gN - 1). Thus, there is one C program loaded

and run on the gray code equivalent of processor 0, another loaded and run on the

gray code equivalents of processors 1 through IgN - 1, another on the gray code

labeling for processor IgN and finally a slightly different one on the processor with a

gray code label corresponding to IgN + 1.

Description of Evaluation Run Test Data

Each scheme was run using random integer keys in the range of 1 to 1,000,000

generated by the random number generator of Park and Miller[21]. Each run was

timed (in milliseconds) for both schemes. The runs consisted of the request operation

mixes (random orderings of insert, delete, and acces~ requests) shown below.

1. 50% inserts, 500/0 deletes, 0% accesses
2. 0% inserts, 0% deletes, 100% accesses
3. 25% inserts, 25% deletes, 50% accesses

(all updates)
(all accesses)
(even mix)

Each of these instruction mixes was run with a problem size of lK, 10K, 20K, 30K,

40K, 50K, 60K, 70K, 80K, 90K, and lOOK keys, on 4, 8, 16, and 32 processors. For

each run, a tree of the indicated size (IK-IOOK) is built, and then the same number of

operations (for each of the three operation mixes above) are performed on that tree.

The resulting execution times of these operations performed after the tree of each

given size is built are shown in the following graphs. The results for each instruction

mix are presented and then analyzed and explained.

46



The results for the subtree scheme are presented two ways for each instruction

mIx. Once as just the time involved in performing the requested operations, and once

with the time of the rebalance included as well.

Evaluation Run Results

Results for Operation Mix Number 1 (All Updates)

The graphs shown in figures 21 and 22 represent the execution times for each

scheme run with random keys and an operation request mix that consists of all update

operations (instruction mix number 1 from page 45). Figure 21 shows the execution

times for this mix with each problem size when run with 4 (top) and 8 (bottom)

processors. Figure 22 shows the same except as run on 16 (top) and 32 (bottom)

processors. The times shown for the subtree scheme in both figures 21 and 22 do not

include any rebalance time. Figures 23 and 24 show the same information as figures

21 and 22 except that the execution time shown in figures 23 and 24 for the subtree

scheme does includes the time involved in rebalancing the tree after all of the

operations had completed.

As would be expected, the new subtree scheme had considerably better

performance for this operation mix. Recall from Chapter III (figure 2), that the

pipeline scheme must pass 3 messages between each of the P processors in the

processor array when performing an update operation (insert or delete), while the

subtree scheme must pass only 2 messages (the request and the corresponding reply)

between at most Ig P processors.

Table 1 shows the performance increase (% faster) of the subtree scheme over

the pipeline scheme for this operation mix as a percentage resulting from equation 4.

47



Execution Times for All Update Requests
Subtree and Pipeline for 4 Processors

.IO-y------------------------.

tIO-t------------------~I___~

"U ..O+----------------__-~ I_-----.l

CD
m
E .20+-----------------II ---.-~ I_-----.l

'-"

! roo
c e IO-+------------ ---II ~- .______e

.2'"S .0+--------------1 - .....-
U
Q)
)( .0+--------------1------

LAJ

10-+----------1___

'000 OOסס' ooסס1 SOIOO .aooo soooo I000O ooסס7 I000O I000O 10000lt

Problem Size (Keys)

I_Subtree Time • Pipeline Time I

Execution Times for All Update Requests
Subtree and Pipeline for 8 Processors

ZOO-r----------------------,
.10+-------------------__1-------1

0' '10
Q)E .'O-+----------------~- t__----t

'-"
Q) tZO

! J,oe-+--------------------II---~------t------t
C e
.2 10

"S .O-+--------------I - t--

o
Q)
~ 4O+-------==--- ---I ~

20-+----- ----tl~

1000 ,lOGO ooסס2 )OOQO ... SOOOO I000O OOסס, IOCIOG lO0IO ooסס0'

Problem Size (Keys)

IlIB Subtree Time • Pipeline Time I

Figure 21 Execution Time vs. Problem Size for the Subtree (no rebalance) and Pipeline Schemes for a
Request Mix of 50% Inserts, and 50% Deletes (all updates) As Run With 4 and 8 Processors

48



Execution Times for All Update Requests
Subtree and Pipeline for 16 Processors

~......---------------------

1..+------------------- 1------1

o llO~---------------------I--~

II)E 140-+------------------------I--~

"'-"
CD 120

! )*4------------------1------------1----1
c: e
.2 10

"So 10

Q)

~ 40+----------:1----------------
20-+----- ---1__

1000 11000 ooסס1 JOOOO ... SOOOO I000O ooסס7 I000O tOOIO ooסס10

Problem Size (Keys)

,_Subtree Time • Pipeline Time I

Execution Times for All Update Requests
Subtree and Pipeline for 32 Processors

200......---------------------
110·0+----------------------1----1

'0 110,+----------------- 1-----1

Q)

E 140
"'-"

Q) 120

! ).OO+------------------I-----------I--~
c: e .o-+----------- I-- --I ~- I--____4
.2
'3o 10
Q)
~ 4O-+----------... ----I__-=--

20-+----- --1__

'000 toooo ooסס2 JOOOO 40000 SOOOO I000O ooסס7 I000O I000O tOlOOO

Problem Size (Keys)

,_Subtree Time • Pipeline Time I

Figure 22 Execution Time vs. Problem Size for Subtree and Pipeline (no rebalance) Schemes for a
Request Mix of 50% Inserts, and 50% Deletes (all updates) As Run With 16 and 32 Processors

49



Execution Times for All Update Requests
Including Subtree Rebalance Time

110...,....-----------------------.

11O-+----------------------I--~

"o I~+-------------------.------I------.I
CD
en
E 120+-----------------11------.------1------.1

'""--'

! )'M
c:: e IO-+---------------------I---~----

.2"5 IO+---------~ - I__

o
CD)( 40+-----------~---

LLJ

20-+--------1---

1GOO ooסס1 tOOOO I000O 60000 SOOOO I000O 70000 IOOOG I000O ooסס0'

Problem Size (Keys)

IBI Subtree Time • Pipeline Time I

Execution Times for All Update Requests
Including Subtree Rebalance Time

200'...,------------------------.

I.O-+---------------------I--~

o t.o-+------------------------I--~

CD
en I~-+--_-------------------------~E

'""--'
Q) 120

! J.M+-------------------II------.-----I-------I
c: C.

.2 10

"5o 10

CD
~ 4O+-------------=----------I---~-

20-+----- --1___

t 000 ooסס1 !ClOOO JOOOO 4000D soooo I000O 10100 I000O toaOO ooסס10

Problem Size (Keys)

IBI Subtree Time • Pipeline Time I

Figure 23 Execution Time vs. Problem Size for Subtree (with rebalance) and Pipeline Schemes for a
Request Mix of 50% Inserts, and 50% Deletes (all updates) As Run With 4 and 8 Processors

50



Execution Times for All Update Requests
Including Subtree Rebalance Time

210-.-------------------------,
tlO-+------------------- I-------4

0' tlO
II»
en 140+----------------~- 1--------4

E
'-"'"

CD 120

~ l..-+------------~-------t--------4
c: 10-+----------- --11 - --4

.Q
'3o .0

CD
~ 4O-+--------==--------I---~-

20-+------ --I ~-

100() ooסס1 JOODO 50000 ~ 50000 I000O ooסס7 I000O tOOOO ooסס10

Problem Size (Keys)

Im Subtree Time _ Pipeline Time I

Execution Times for All Update Requests
Including Subtree Rebalance Time

200..,...-----------------------,

110-+-------------------__1-------4

o 'IO+------------------ t------i

CD
en 160+--------------- - t------i

E
'-'

CD '20

~ )...-+---------------------------------1--------4
c: Co 10-+----------- - __-=-1--------4
.2
3 Jo-+----------=----t ~ ~

o
CD
~ 40-+---------=---------1---

20-+---- ___

'000 ooסס1 !oooo JOOOO 'lOGO SOOOO I000O ooסס1 I000O tOOOO ooסס10

Problem Size (Keys)

Im Subtree Time _ Pipeline Time I

Figure 14 Execution Time vs. Problem Size for Subtree and Pipeline (with rebalance) Schemes for a
Request Mix of 50% Inserts, and 50% Deletes (all updates) As Run With 16 and 32 Processors

51



Petfo~lncr«1U. ~n-o[PipeliMScM,. -F.w:IItiDIIn.etfSUtruSc_ 1IW *100 (4)
Euaalofl1llMtfPlpeliMScMMe

The values shown in table 1 are the average of the result of equation 4 for all the

problem sizes as run on 4, 8, 16, and 32 processors. These values are shown for the

execution times of the subtree scheme with and without rebalancing time included.

Performance Summary for All Update
Operation Request Mix

Number of Percent Faster Percent Faster
Processors Not Including Rebalance Including Rebalance

4 57.7% 55.5%

8 61.7% 60.5%

16 61.4% 60.1%

32 60.5% 58.4%

Table 1 Perfonnance Swnmary for 50% Insert, 50% Delete Operation Request Mix

Results for Operation Mix Number 2 (All Accesses)

Figures 25 and 26 show the execution times in the same fashion for the

operation mix consisting of all access operations and no update operations (operation

mix 2 from page 45). Again figures 25 and 26 show the execution times for this mix

run on 4 (top) and 8 (bottom) processors, and 16 (top) and 32 (bottom) processors

respectively. Since only access operations are performed in this operation mix, the

structure of the tree will never be altered and so there is no need to rebalance the tree.

As can be seen from the graphs, the subtree scheme actually has somewhat

worse performance (slightly larger execution times) than the pipeline scheme for this

operation mix. Recall again from Chapter III that the pipeline scheme must pass only

one message between each processor in the processor array for an access request.

52



This means that for a large series of access operations (such as operation mix 2), the

pipeline scheme is capable of performing P operations concurrently in a pipeline of P

processors. However, the message passing required by the subtree scheme for an

access operation is exactly the same as for an updat~ (2 messages, one to send the

request and one for the corresponding reply). Also, the subtree scheme must devote

one processor (the root processor) solely to perform the task of queue maintenance and

request serving. Thus, the subtree scheme is capable of P-l concurrent operations

(regardless of whether they are inserts, deletes, or accesses) rather than the P

concurrent operations possible for the pipeline scheme (with a long string of access

requests). Moreover, whether or not the subtree scheme will operate at the full P-l

degree of concurrency is somewhat dependant on the randomness of the key values

being inserted into the tree, while the degree of concurrency attained by the pipeline

scheme is strictly dependant on the type of operation being performed, regardless of

the key value. For these reasons, the pipeline scheme is actually able to outperform

the subtree scheme for very long strings of uninterrupted access requests (such as

operation mix 2).

Table 2 shows the performance decrease (percent slower) for the subtree

scheme as compared to the pipeline scheme for this operation mix as a percentage

resulting from equation 5.

53



Execution Times for All Access Requests
Subtree and Pipeline for 4 Processors

.-y------------------------,

1O+-------------------fYII.--......
"'"o

Q) 1O+-----------------.fIlIA----fJIl&--......
(It

E
~.-+------------------&-----.-

II)

~ l..-+----------Mlil--~
C t.

.2 »+-----------::=--~~

-;
o
Q) 2O-t-------~~-
)(
~

'0-+------

1000 ooסס, HOOO JOOOO ooסס. SOOOO ooסס. 70100 1000O toOOO ooסס10

Problem Size (Keys)

Ia Subtree Time _ Pipeline Time I

Execution Times for All Access Requests
Subtree and Pipeline for 8 Processors

IG-r-------------------------,

7O-+---------------------flMlt--------4

"'"o
Q) .0-+------------------~---fWi!l__-____4

rn
E
~to-+--------------__BHlI___ -

CD

~ 1..-t-----------IIlIM---tiWiI-

c: Co

.2 JO-+-----------==----tIflW~

"5
o
Q) zo-+--------~-
)(
~

'a-+-------

1000 'DODO 11000 JOOOO .aooo 50000 1000O 10100 1000O toIOO ICIOOOO

Problem Size (Keys)

Ia Subtree Time _ Pipeline Time I

Figure 25 Execution Time vs. Problem Size for Subtree (no rebalance) and Pipeline Schemes for a
Request Mix of 100% Accesses, 0% Inserts and Deletes (no updates) As Run On 4 and 8 Processors

54



Execution Times for All Access Requests
Subtree and Pipeline for 16'Processors

10-.------------------------
7'O+------------------....JIIA.--~

"'"u
CD IO+-----------------=-----Kllll---AA---~

en
E'-"10+----------------------
CD

&l..+---------------'~--II1I/ii.....--.-
c: C.

.2 JO-+---------__---liRiI1----

"So
CD ZO+-------IN--
)(

UJ

.0+------

tooo toooa lOOOO 10000 dOOO soooa ooסס1 70a00 I000O tOOOO tOOOQO

Problem Size (Keys)

Ime Subtree Time _ Pipeline Time I

Execution Times for All Access Requests
Subtree and Pipeline for 32 Processors

IO-r------------------------..,

7O-+----------------------Ail:II------l

"'"~ .0-+------------------fIIJ:&-~---I§lIll!l__-__l
en
E
'-"50+--------------~~.a'A--

CD

~ 1..-+---------mQ---~
c: e

.Q JO+---------___.PIt----Y!W-

"5
o
4) 20+--------~-
)(

UJ

10+------

1000 ,aooo UDOO JOOOO 40000 50000 I000O 70Q00 I000O tOIOO 'ooooa

Problem Size (Keys)

I_ Subtree Time _ Pipeline Time I

Figure 26 Execution Time vs. Problem Size for Subtree (no rebalance) and Pipeline Schemes for a
Request Mix of 100% Accesses, 0% Inserts and Deletes (no updates) On 16 and 32 processors

55



Performance Summary for All Access
Operation Request Mix

Number of Percent Slower Percent Slower
Processors Not Including Rebalance Including Rebalance

4 24.1% N/A

8 24.4% N/A

16 25.1% N/A

32 27.4% N/A

Table 2 Perfonnance Summary for 100% Access Operation Request Mix

So far, results have been presented for both extremes of possible request

operation mixes. For the case of all update requests (mix 1 from page 45), the subtree

scheme yields better performance. However, for the case of all access requests (mix 2

from page 45), the pipeline scheme gives better results. It is of more practical interest

to examine an operation request mix composed of an even combination of these two

extremes. Operation mix 3 from page 45 is exactly such a combination. It consists of

half access operations and half update operations (25% inserts and 25% deletes). This

request mix is much more similar to the type of request mix that would be found in

real world situations.

Results for Operation Mix Number 3 (Half UpdatesIHalf Accesses)

Figures 27 and 28 show the execution times for this operation request mix

without the rebalance time included in the subtree execution times. The subtree

execution times shown in figures 29 and 30 include this rebalancing time. The

operation requests executed in these runs were generated in a random order. In other

words, the runs did not consist of 50% accesses followed by 25% inserts followed by

25% deletes, but rather by a sequence of arbitrary combinations of these operations.

56



While this sequence of operations is arbitrary, it is guaranteed that is composed of

50% accesses, 25% inserts, and 25% deletes.

As would be expected from the results shown for the other two operation

mixes, the performance of the subtree scheme is better than the performance of the

pipeline scheme for this operation mix. Recall that the subtree scheme perfonned

considerably better than the pipeline scheme for the update operations, but only

slightly worse than the pipeline scheme for the access operations. Thus, for an even

mix of these operations it should be expected that the subtree scheme would have

better perfonnance than the pipeline scheme. This is verified by the execution time

graphs found in figures 27, 28, 29, and 30.

Table 3 shows this performance increase as a percentage (percent faster). As

in table 1, the values in table 3 are taken from the average of the result of equation 4

for all the problem sizes on each of the 4, 8, 16, and 32 processor configurations.

Performance Summary for Mixed Update and Access
Operation Request Mix

Number of Percent Faster Percent Faster
Processors Not Including Rebalance Including Rebalance

4 35.8% 33.6%

8 38.8% 37.4%

16 38.7% 36.9%

32 37.4% 34.2%

Table 3 Perfonnance Summary for 50% Access, 25% Insert, 25% Delete Operation Request Mix

57



Execution Times for Mixed Requests
Subtree and Pipeline for 4 Processors

t2l......-----------------------

too-+-------------------------.l----~
~

o
CD
en
E IO-+----------------~----------------I.........,

CD

! 1..-+------------------~--l--
c: e
.2
-S 40

o
CD
)(

W 20-1----------1---

'000 '1000 ooסס1 JOOOO .eooo MOIl) uoeo 1DODO I000O I000O ooסס10

Problem Size (Keys)

1_ Subtree Time _ Pipeline Time I

Execution Times for Mixed Requests
Subtree and Pipeline for 8 Processors

t20-r----------------------,--~

,oo-+------------------------l--~

"""o
CD
rnE .o-+--------------- I--- ~__-__l

.........,

CD

! 1.0-+--------------------------"--
c: e

.2
-S 40

o
CD
)(

W 10-+----------1__

1000 ooסס, HGOO JOOOO ... ~ lO0IO 7GOOO I000O tOOOO ooסס0'

Problem Size (Keys)

1_Subtree Time _ Pipeline Time I

Figure 27 Execution Time vs. Problem Size for the Subtree (no rebalance) and Pipeline Schemes for a
Request Mix of 50% Accesses, 25% Inserts, and 25% Deletes As Run On 4 and 8 Processors

58



Execution Times for Mixed Requests
Subtree and Pipeline for 16 Processors

t.-r------------------------,

t2O-t-----------------------t.__..---4

'"o
CDen tOO-i------------------ ----i_---4

E
'-'

~ rO
c: CIO-+----------------tl --.-_
.2
"5o 60-+---------- ---11---...1..-.-

CD
)(

W
20-+---------1--...

'000 ooסס, ooסס1 JOOOO '1000 HOOO I000O 70C100 toOOO tOQOO ,_

Problem Size (Keys)

I_Subtree Time _ Pipeline Time I

Execution Times for Mixed Requests
Subtree and Pipeline for 32 Processors

'40~-----------------------.

t20+-----------------------I ----i

'"o
CD
en 'OO-+------------------~----I ---i

E
'-'

~ ro
c: c 10+----------- -_

.2
"3o _0-+-------------1------

CD
)(

I.IJ
20-+----------1---

1000 ooסס1 toOOO JOOOO dOOO SOOOO IOOGO ooסס7 I000O toOOO ,_

Problem Size (Keys)

I-Subtree Time _ Pipeline Time I

Figure 28 Execution Time vs. Problem Size for Subtree (no rebalance) and Pipeline Schemes for a
Request Mix of 50% Accesses, 25% Inserts, and 25% Deletes As Run On 16 and 32 Processors

59



Execution Times for Mixed Requests
Including Subtree Rebalance Time

120..,----------------------......

100-+------------------ ----4 ---1
~

o
CD
enE IO+--------------- ---...----i ---i
'-'

CD

&I.o~---- _____
c:
.2"S ..-+-------------i~ -
o
CD
)(

L&J IO-+---------tl--..-,

'000 ooסס, ooסס1 soaoo ~ SOOOO MOOD 70100 I000O toOIO ooסס0'

Problem Size (Keys)

I_ Subtree Time • Pipeline Time I

Execution Times for Mixed Requests
Including Subtree Rebalance Time

120.....----------------------------,

lOO+------------------ --i ---i
~

o
CD
enE 10-+--------------- ---41 ----4

'-'
Q)

&1.0-+--------------------
c: C-

.Q
"S ..-+------------1--------
o
CD
)(

L&J 10+--------1___

1000 '0001 toOOO JOOOO .... SOIOO _ 7D1DO IODOO ... 'OIDOO

Problem Size (Keys)

1_ Subtree Time • Pipeline Time I

Figure 29 Execution Time vs. Problem Size for the Subtree (with rebalance) and Pipeline Schemes for
a Request Mix of 50% Accesses, 25% Inserts, and 25% Deletes As Run On 4 and 8 processors

60



Execution Times for Mixed Requests
Including Subtree Rebalance Time

,.,.-------------------------.

120-+-----------------------I~----.l

'"'o
CD
fI) tOO-+----------------- ~__-~
E

""""

~ JM
e Co IO+-------------tl -.___
.2
'3o 40+-------------1------
Q)
)(

LaJ
20+--------1--

1000 ooסס1 ooסס2 Joooo '0000 50000 I000O ooסס7 I000O tooOO ooסס0'

Problem Size (Keys)

IRB Subtree Time. Pipeline Time I

Execution Times for Mixed Requests
Including Subtree Rebalance Time

t'O-r-------------------------.

'20·-+-------------------~----l

'"'o
Q)
fI) too+------------------__~__----l

E
""""
&JIO
c: C. IO-+--------------tl -._._
.2
3o ~_+__-------_____t__

Q)
)(

LaJ
20-+--------1--

'000 10000 !OOOO ooסס1 &0000 soaoo I000O ooסס7 I000O I000O ooסס0'

Problem Size (Keys)

IRB Subtree Time • Pipeline Time I

Figure 30 Execution Time vs. Problem Size for Subtree (with rebalance) and Pipeline Schemes for a
Request Mix of 50% Accesses, 25% Inserts, and 250/0 Deletes As Run On 16 and 32 Processors

61



Discussion of Results

In general, these results show that the pipeline scheme has better performance

for request operation mixes that contain long strings~of access operations, while the

subtree scheme is superior for update operations. For a realistic mix of access and

update operations (50% update, 50% access), the subtree scheme remains considerably

superior to the pipeline scheme (see table 3).

Notice that the subtree scheme has superior performance over the pipeline

scheme even when the time to perform a rebalance is included. In fact, for all the

execution times shown, the average time involved in the rebalance operation for each

run was only 2% of the total run execution time. Table 4 shows the average time

required for rebalancing as a percentage of the total execution time for all the problem

sizes and each of the 3 instruction mixes, as run on 4, 8, 16, and 32 processors.

Summary of Time Required for Rebalance Operation
For Subtree Scheme

Number of All Update All Access Mixed Operation
Processors Request Mix Request Mix Request Mix

4 2.2% N/A 2.2%

8 1.2% N/A 1.4%

16 1.3% N/A 1.8%

32 2.1% N/A 3.2%

Table 4 Summary of Time Required by the Rebalancing Operation (As a Percentage of Total Execution Time)

The reason for this efficient rebalancing performance is twofold. As previously

discussed in Chapter III, the rebalancing algorithm of Smyth is naturally efficient in a

parallel environment. Recall that the first stage of the parallel version of the

rebalancing algorithm (the conversion of the tree to a vine) and the third stage (the

62



conversion of the vine to a balanced tree) are done completely in parallel. The second

stage (the transfer of vine segments between the processors) is the only sequential

portion of the process. The time required by this middle stage is directly proportional

to the amount of data that must be transferred between the subroot processors. This is

determined by how far out of balance the tree has become. Since the keys used in

these runs were generated by a random number generator, they are fairly evenly

distributed among the subroot processors. Thus it should be expected that the

performance of the rebalancing operation for these runs would be good, because the

runs consist of random data, which naturally helps to control the balance.

Not only is the performance of just the rebalancing portion of the subtree

scheme optimal when used with random data, but also the performance of the entire

scheme benefits from random data. This is because the performance of the scheme is

directly related to the number of operations that are being performed concurrently.

Recall that incoming requests are sent to a particular subroot processor based on the

request's key value as compared to the values in the pseudoroot on the root processor.

Thus, if the incoming request's key values are random, they will naturally be evenly

distributed among the subroot processors, which will yield a high degree of

concurrency for the scheme.

This does not mean that the subtree scheme will not perform well for data that

is not perfectly random. It simply means that the less random (more clustered) the

incoming requests are, the more frequently the rebalancing operations will need to

occur. Each time a rebalancing operation is performed, not only will the tree be

evenly distributed among the subroot processors, but also the keys in the pseudoroot

63



on the root processor will be adjusted to reflect this new distribution. Thus, if the

incoming data is clustered around certain points, a rebalance should be performed

when each cluster is encountered. A cluster could be detected (and a rebalance

operation initiated) by any of the out-of-balance detection schemes discussed in

Chapter III (page 33).

These results also show that both the subtree scheme and the pipeline scheme

take very slightly longer to execute the same problem sizes on the 16 and 32 processor

configurations than they do on the 4 and 8 processor configurations. The subtree

scheme actually shows a slight improvement in performance (decrease in execution

time) in going from 4 to 8 processors, but the pipeline scheme performance peaks

with a maximum of 4 processors. Generally, the execution time varied almost

insignificantly for both schemes with an increase in the number of processors. This

suggests that this machine and architecture is as loosely coupled a system on which

either of these schemes could be usefully implemented.

64



Chapter V

Conclusions

This thesis has described a parallel M-way tree search and maintenance scheme

suitable for implementation on distributed memory multiprocessors. This scheme is

capable of performing concurrent inserts, deletes, and accesses on an M-way tree

distributed among the local memories of an arbitrary number of interconnected

independent processors. This scheme also includes a facility to efficiently maintain the

global balance of this distributed M-way search tree. This scheme distributes the tree

among the processors of a multiprocessor by subtrees of a special root node.

Summary of Subtree and Pipeline Scheme Features

This subtree based distribution allows one processor (the root processor) to

queue and distribute the incoming requests to the remaining processors (the subroot

processors). Each of these remaining processors must accept the requests sent to it

and perform the requested operations on its local M-way subtree. Thus, the

communication required for any given request is only two messages; one to send the

request to the appropriate subroot processor, and one for that subroot processor to

acknowledge that the operation is complete and that it is ready to accept a new

request. Since each of the subroot processors maintains its local M-way subtree

completely independently of the others (except during the rebalance operation), the

scheme is capable of perfonning P-l operations concurrently, where P is the total

number of processors being used.

The subtree scheme was compared with the typical pipeline style distributed

memory tree search schemes based on the work of Carey and Thompson[16]. In these

65



schemes, an M-way tree is distributed among the processors in a linear array of

processors such that each level of the tree is stored on a separate processor. A top

down balancing algorithm is employed by these schemes to maintain the global

balance of the tree. A request must pass through all the processors (levels of the tree)

being used before the request is complete. All the actual data stored by these schemes

is stored in the last (leaf level) processor in the processor array. The advantage of

these schemes is that the operations may be partially pipelined. In fact, the access

(search) operation may be fully pipelined, allowing up to P accesses to be at varying

stages of execution at anyone time. However, in order to maintain the balance of the

tree, additional balance information must be passed between each processor for an

update operation (insert or delete), which reduces the average degree of concurrency

possible for a typical random mix of operations to P/2.

Summary of Subtree Scheme Advantai:es

The new subtree scheme was found to compare favorably to the pipeline style

schemes in several areas. While the pipeline schemes require only one connection per

processor (a linear array), they are also incapable of using additional connections if

they should exist on the machine on which the scheme is implemented. The subtree

scheme, on the other hand, will fully exploit the connectivity of any machine on which

it is implemented. Also, since all the data stored in the tree must be stored in the last

processor in the array when using the pipeline schemes, the useable memory in the

processors that contain the upper levels of the tree will be significantly reduced at each

level closer to the root. The subtree scheme, by virtue of its efficient rebalancing

algorithm coupled with its subtree based partitioning, is able to fully utilize all the

66



available memory on the processors. Since most current commercially available

general purpose multiprocessors consist of a collection of identical processors

connected by an interconnection network with a considerably higher degree of

connectivity than a linear array, these advantages of the subtree scheme are very

important features.

Summary of Performance Comparison

Most importantly, the subtree scheme offers improved performance over the

pipeline style schemes when implemented on a common distributed memory

multiprocessor and evaluated with realistic data. Both schemes were implemented and

evaluated on the Intel iPSC/2 Hypercube parallel processing computer. The average

performance difference as a percentage for three different combinations of insert,

delete and access operations and randomly generated keys is shown in table 5 below.

The numbers' not enclosed by parentheses indicate the performance increase of the

subtree scheme over the pipeline scheme; those in parentheses indicate the

performance increase of the pipeline scheme over the subtree scheme.

Performance GainlLoss Summary
For Subtree Scheme As Compared to Pipeline Scheme

Combination of Performance GainlLoss Performance GainlLoss
Operations No Subtree Rebalance Time With Subtree Rebalance

Included Time Included

100% Updates, No Accesses 60.3% 58.6%

100% Accesses, No Updates (25.3)0/0 N/A

50% Updates, 50% Accesses 37.7% 35.5%

Table 5 Performance Gain (Loss) for Subtree Scheme as Compared to Pipeline scheme

67



This shows that for the operation combination mix of all updates, the performance of

the subtree scheme was far better than that of the pipeline scheme, while the

performance of the pipeline scheme was somewhat better than the performance of the

subtree scheme for the operation combination mix of all access operations. For a

typical realistic operation mix of half updates and half accesses, these results show the

subtree scheme to have considerably better performance than the pipeline scheme, even

when the time required to do a global rebalancing of the tree is included.

Conclusions

Both schemes ran in O(lg N) time and exhibited a relatively insignificant

performance change when implemented on 4, 8, 16, or 32 processors. Thus, neither of

these schemes should be used to attempt to improve the response time of a single

query, but rather as a method by which to efficiently manage an extremely large

amount of data stored in a tree structure by employing the use of additional processors.

Of these two methods, the subtree scheme has been shown to be superior in

performance for a typical combination of operation requests with random keys.

The subtree scheme presented in this thesis provides an improved alternative

method for distributed memory based parallel M-way tree search and maintenance over

the typical pipeline style schemes for a realistic typical combination of operations with

random data. Also, this new subtree scheme is capable of fully and efficiently

utilizing the available processing power, memory, arid interprocessor connectivity of

the machine on which it is implemented. This scheme would be an excellent choice

for the storage, retrieval, and maintenance of a massive collection of data to be

managed on a typical general purpose distributed memory multiprocessor.

68



Future Work Recommendations

The following is a list of areas in which future work is needed in order to

further investigate and improve the new subtree based M-way tree search and

maintenance scheme.

1. Develop a scheme to allow more than one access (search) to take place
concurrently on individual subroot processors.

2. Evaluate and test various out-of-balance detection schemes (such as those
discussed in Chapter III).

3. Investigate more efficient queuing and pseudoroot search techniques to run
on the root processor.

4. Develop a more efficient node transfer step for the rebalancing algorithm to
allow some of the transfers to be done in parallel.

69



REFERENCES

[1] Kung, H.T., Lehman, P.L, "Concurrent manipulation of binary search trees."
ACM Transactions on Database Systems, 5, 3 (September 1980), 354-382.

[2] Samadi, B., "B-Trees in a system with multiple users." Information Processing
Letters, 5, 4 (1976), 107-112.

[3] Bayer, R., Schkolnick, M., "Concurrency of operation on B-trees." Acta
Informatica, (1977), 9,1-21.

[4] Ellis, e.s., "Concurrent search and insertion in AVL trees." IEEE Transactions,
C-29, 9 (1980),811-817.

[5] Ellis, e.s., "Concurrent search and insertion in 2-3 trees.", Acta Informatica,
(1980), 14, 63-86.

[6] Bently, J.L., Kung, R.T, "A tree machine for searching problems.", Proceedings
of the International Conference on Parallel Processing, IEEE, New York, 1979.

[7] Song, S.W., "A highly concurrent tree machine for database applications."
Proceedings of the International Conference on Parallel Processing, IEEE,
New York, 1980.

[8] Ottman, T.A., Rosenberg, A.L., Stockmeyer, L.J., "A dictionary machine."
IEEE Transactions, C-31, 9 (1984), 892-897.

[9] Atallah, M.J, Kosaraju, S.R., "A generalized dictionary machine for VLSI",
IEEE Transactions, C-34, 2 (1985),151-155.

[10] Chang, J.H., Ibarra, O.H., Chung, M.J., Rao, K.K., "Systolic tree
implementation of data structures." IEEE Transactions, C-37, 6 (1988), 727-
735.

[11] Bonuccelli, M.A., Lodi, E., Lucio, F., Maestrini, P., Pagli, L., "A VLSI tree
machine for relational databases." Proceeding of the 1Oth annual AeM
International Symposium on Computer Architecture, (June, 1983),67-73.

70



[12] Somani, A.K, Agarwal, V.K., "An unsorted dictionary machine for VLSI.",
VLSI design lab, McGill University, Montreal, Canada, 1983.

[13] Q'Gorman, R. "The RPA - making the array approach acceptable." Major
Advances in Parallel Processing, 130-146.

[14] Tanaka, Y., Nozaka, Y., Masuyama, A., "Pipeline sorting and searching
modules as components of a data flow database computer.", Proceedings of the
International Federation for Information Processing, New-Holland, Amsterdam,
1980, 427-432.

[15] Fisher, A.L., "Dictionary machines with a small number of processors.",
Proceedings of the 11th annual International Symposium on Computer
Architecture, IEEE, New York, 1984, 151-156.

[16] Carey, M.J., Thompson, C.D., "An efficient implementation of search trees on
[LgN + 1] processors." IEEE Transactions, C-33, 11 (1984), 1038-1041.

[17] Guibas, L.J., Sedgewick, R., "A dichromatic framework for balanced trees."
Proceedings of the 19th annual IEEE Computer Society Symposium on
Foundations ofComputer Science, October 1978, 8-21.

[18] Colbrook, A., Smythe, C., "Efficient implementations of search trees on parallel
distributed memory architectures." lEE Proceedings, 137, 5 (Part E) (Sept.
1990), 394-400.

[19] Smyth, W.F., "Mu-balancing M-way search trees.", The Computer Journal, 34,
5 (1991), 406-414.

[20] Stout, Q.F., Warren, B.L., "Tree rebalancing in optimal time and space.",
Communications of the ACM, 29, 9 (Sept. 1986), 902-908.

[21] Park, S., Miller, K., "Random number generators - good ones are hard to find.",
Communications of the ACM, 31, 5 (May 1988), 857-864.

71



APPENDIXES

72



APPENDIX A

The following appendix is a detailed example of the Sequential M-way tree
rebalancing algorithm presented by W.F. Smyth [19]. It contains a description
of the operations performed by the algorithm and a corresponding example.

73



I. General Approach of the Reba)ancina AJurithm

Several of the special terms that will be used in the "following sections are defined

below:

N N is simply the number of nodes in the tree.

M M is the number of child pointers contained in each node.

MU MU (~) is a defined parameter «M-I) that is the number of keys
that will be in each node of the tree after rebalancing.

vine A vine is an M-way tree or subtree in which every left pointer is
NULL.

p-full A level of depth d of an M-way tree is said to be J.1-full if it
contains (Jl+ l)d nodes.

p-balanced An M-way tree is said to be fl-balanced if and only if level A+l
is empty and levels O,...,A,-l are fl-full, where A= UO~+lJlNJ.

The basic idea of the rebalancing algorithm is summarized below.

1. The algorithm takes an ordinary M-way tree and converts it into a vine such
that each node in the vine (with the exception of the last (rightmost) node)
contains exactly MU keys.

2. This vine created in step 1 is then converted back to an M-way search tree
which will be MU-balanced.

Step 1 is accomplished by a procedure called TREETOVINE and step 2 is carried out

by a procedure called VlNETOTREE. Each of these procedures (as presented by

Smyth), along with their respective support procedures, will be discussed in the

following two sections Each will then be explained by making use of an example of

its operation. Note that it is only natural to assume that MU should be M-I (thus each

node is utilized as completely as possible), but it is not required. The only

requirement is that MU be less than or equal to M-I. In the examples and discussion

that follow, however, MU is assumed to be equal to M-l. This section is concluded

74



struct NODE {
int K;
struct CHILD {

int KEY;
struct node *LEFf;

} C [M-l];
struct node *RIGHT;

};

Figure 1. Node Structure to be Used

with a description the node structure

that will be used by the discussion

and examples that follow.

Figure 1 shows a C-like

implementation of the node structure

to be used. K is the count of keys in

the node. C is an array of M-l KEY and LEFf pointer pairs. KEY is a numeric key

value and LEFf and RIGHT are pointers to child nodes. The pointers C[l].LEFf

through C[K].LEFf are pointers to nodes in the tree that contain key values that are

less than the value in their own corresponding C[x].KEY field. RIGHT is the right

pointer associated with key C[K].KEY.

2.Conversion of a Tree to a Vine

The procedure TREETOVINE is responsible for converting an M-way tree into a vine

such that each node in the vine has exactly MU keys. Recall that a vine is simply an

M-way tree in which all left pointers (in this case C[I].LEFf through C[M-l].LEFf)

are NULL. TREETOVINE accomplishes this conversion by repeatedly performing the

rotation described by Figure 2. Each time the rotation is performed on a given node

U, its leftmost non-null subtree, headed by node V, is moved so that it is pointed to by

D's right pointer (U.RIGHT). V's right pointer (V.RIGHT) is then set to point to

whatever D's right pointer used to point to (in this example, Z). Then the left pointer

in U that used to point to V is set to what V's right pointer pointed to before it was set

to point to Z (in this example, C[2].1eft is set to point to node C). Finally, the left

children (keys and corresponding left pointers) of node V (if any exist) are reinserted

75



into node U between the keys that were originally to the left and right of node V. In

this example, this would be to insert the key-pointer pairs from V associated with the

keys 21 and 30 into U between the keys 17 and 72. Note that in order for this to

work, the keys must be allowed to flow out of node U and down into node V.

Conceptually, the child arrays of each node (U and V) can be thought of as one

continuous array into which values are deleted and reinserted in the manner just

described (each key simply drags its left pointer along with it). Note in Figure 2 that

the left pointer associated with 41 (originally the leftmost non-null pointer in U) is

reassociated to point to node C before the insertions of the children of V into U take

place. While the code to actually perform this rotation is quite complicated, the net

effect of the rotation is rather easy to follow. The example in Figure 2 is for a 4-Way

tree (M=4), so MU will be M-l or 3.

u

II

c [!] z

Figure 2 Typical Rotation Step

76



TREETOVINE continues to apply this rotation to the node U until every left

subtree of U has been moved to the right and, as such, every left pointer in U will be

NULL. When every left pointer in U has been made NULL by these rotations, the

node U is added to the vine (at which point it is designated as node X) and Us right

child is designated as the next U node to which rotations will be applied. This is

continued until the right pointer of the current U node is NULL. At this point the

procedure is finished and the M-way tree has been converted into a vine.

The repeated rotations will in fact create a vine from the nodes in an M-way

tree. However, recall that TREETOVINE is responsible for creating this vine in such

a way that every node in the vine (except possibly the rightmost) contains exactly MU

keys. The rotations do not guarantee this condition. In order to guarantee this

condition, the procedure TREETOVINE calls a support procedure PACK just before

each new U-node that is ready to be added to the vine is actually added. The

procedure PACK then checks the node that was most recently added to the vine

(designated X) to see if it contains exactly MU keys. If it does, then PACK does

nothing, otherwise PACK will move the required number of keys from the node

designated as U into the node designated as X. If this movement of keys causes U to

become empty, then U is eliminated, otherwise its count of keys (U->K) is reset and it

is added to the vine. An example of the actions of PACK is shown in Figure 3 below.

\
\

\
\

77



To further illustrate the conversion of an M-way tree into a vine of nodes with

MU keys per node, the following example is presented. In this example, the procedure

TREETOVINE is applied to the 4-way tree shown below. Each rotation, and possibly

packing, of the nodes is shown until the given tree is completely transformed into the

specified vine.

NOTE: Again for this example, MU is assigned to be M-I, so MU=3. A NULL

pointer from any nodes key or right side is indicated simply by the absence of a

linking line.

17 41 72

21 30

19 20 35

2223

The Origional M-way Tree

Figure 4 Original Tree to be used in the Example

The root and its leftmost non-null child then participate in the original rotation of the

78



conversion to a vine. This rotation and the resulting tree are shown below.

'M1k:h yIIIdI"T.. 1n..bin
below: .......... poinIIrI .. lei ....

1M.. new nodII U 8nd V..

IIbeIId

The rotations continue acting on the nodes labeled U and V. Notice that the next
rotation makes all of U's left pointers NULL so that it is added to the vine, its right
child becomes the next U node and the old U is labeled X. As always, D's leftmost
non-null child is labeled V.

79



The U-V rotations continue as shown.

Ag8i1 UII re&ett to add m"me
8nd v wII became the new U, 8nd

Uwli become the new X

Since the new U already has no left subtrees, it can be added to the vine immediately,
as shown below.

Howwer, thI8 time the node
X does not contain MU Ic8y8 80

PACKwli move keys from the Q.lnent

U to X lI'IIIl X has MU keys.

Then UII added. before.

AQ&In. UIs IIRedy ready

to be added to the vhe.

10 It II added • befont.

After X is filled to MU keys, the rotations with the new U and V nodes continue as
follows.

80



Continuing:

P.-IormIng • raIIIIorw with

with U and V 8Q8it~"­
tIM .Ihown below:

•

•

Again.

Belote U .. 8ddId mthe vine

PACK.11hift 3& and 41 into X to
give it MU keyI. AlIa 1he roIBtIon hu

C8UI8d V to become 8ft1)ty. 10 II wil be

dropped tram the tree (vine).

•

Again. U.. nI8dy (III left
poinI8ra are NULLJ to be
edded to the vine. 10 PACK
wilshift _left to X, and

edct U to the vine.

•
•

•
•

And 8ince Xnow hu 8 NULL
right pointer, It II Rnpty 8dded
tDthevine.

81



And so finally the last node (with NULL right pointer) is added to the vine, and the
procedure is complete.

80.. FIn8I aampIet8 VIne
n which cHIt ......
..NUlL a-Iow.

This is now the prescribed vine such that it is an M-way tree in which each node

(except possibly the rightmost) has exactly MU keys and all NULL left child pointers.

This example was created by simply tracing through the given code for TREETOVINE

which can be found in Appendix A.

Note: It should be mentioned at this point that if for some special case, (none
of which I can imagine) fewer than M-l keys/node (MU<M-l) is
desired in the final balanced tree, it can be accomplished by a parceling
of the keys in any node with more than MU keys into itself and a new
node. This would be done as each U node is added to the vine. If the
current U node to be added has more than MU keys, a new node is
allocated into which the extra (U->K-MU) keys are placed. Then, since
both nodes will contain only keys with NULL left child pointers
(because they came from a U node that was about to be added to the
vine) both U and the new node are added to the vine. This is
accomplished by procedure PARCEL (see Appendix A), and would only
be needed if MU was set to some value less than M-I.

82



3,Conyenjon of a Vine back to a MU-balanced Tree

The conversion of the vine back to a MU-balanced tree is accomplished by the

procedure VINETOTREE. While the actual code to implement this conversion is

much more complicated than that for TREETOVINE, the conceptual actions that result

from its execution are actually quite simple and perhaps even easier to follow.

VINETOTREE takes the vine that was created by the procedure TREETOVINE and

converts it to a MU-balanced M-way tree. The basic idea of VINETOTREE is to

take a series of MU+1 nodes in the vine and perform a compression on them. The

result of this compression is that only one of the MU+1 nodes will remain in the

spine. A spine is simply what was once the vine, but is no longer qualified to be the

vine because the compression step has made it such that some nodes now have left

pointers that are not NULL. Recall that strictly speaking, a vine consists of nodes

such that every node has all NULL left pointers.

The actions taken by a compression step of MU+1 nodes in a 4-way tree

(MU=3) are shown in Figure 5. Keys are extracted from nodes V, W, and X such that

the key from node V is taken from the (k= l)th position, the key from node W is taken

from the (k+ l)th position and so on until the key in position k=MU (3) is taken from

the (MU+ l)tb node involved in the compression (X). The holes left by these

extractions are filled in from the nodes below by shifting the keys, and their

corresponding left pointers, left by one for each extraction (just like in the PACK

function). Notice that keys are NOT shifted up into the (MU+ l)th node (X) since the

node below it does not participate in this compression step. After the extraction and

related shifting of keys is complete, the last node in the chain (X), which will be the

83



(MU+l)'" node, will be empty. The MU keys that were extracted are then placed, in

order, into this empty node, X. The left child pointer of each key placed into X is set

to point to the parent node of the node from which it was extracted, and that parent

node's right pointer is set to point to whatever the corresponding extracted key's

pointer originally pointed to before the compression.

u

17 21 ao

v

41 72 87

72 87 95

x

121

w

x

41

u

After

Compreaaian

17 21 SO

Figure 5 Typical Compression Step

The compression step of Figure 5 is what Smyth refers to as an ordinary

compression. An ordinary compression is simply a compression that consists of

MU+l nodes.

84



Notice that the nodes compressed in the first compressions of the vine will

become the leaf nodes of the lowest level of the final MU-balanced tree. Recall that

in order for the final M-way tree to be MU-balanced, every level except this lowest

level must be MU-full. In order to guarantee this, the first stage of compressions in

VINETOTREE must leave exactly enough nodes for, the subsequent compressions to

completely fill the upper levels of the tree. Smyth gives two simple equations (of not

so simple derivation) to determine (1) the number of 'ordinary' compressions to be

carried out, followed by (2) a final 'special' compression of a possibly different number

of nodes. Thus this initial stage of compressions in VINETOTREE actually consists

of the two distinct parts (1) and (2) shown below:

(1) N1 div p 'ordinary' compressions of p+l nodes each, followed by
(2) a 'special' compression of N1 mod p+l nodes

where N1 = N - [(P+l)A-l]/p [19].

After this initial stage of zero or more 'ordinary' compressions followed by zero or

more 'special' compressions, all of the remaining nodes (if any) in the vine may be

processed by 'ordinary' compressions like the one shown in figure 5. Finally, when all

the compressions are complete, a procedure is called to pull any remaining keys from

the rightmost non-root node up into the parent of this node (there will be remaining

keys in this node when the last node in the vine is not full, so this will only involve

the moving of a maximum of MU-I keys)

Now VINETOTREE will be applied to the vine created by the example in the

previous section to yield a MU-balanced M-way tree (M=4, MU=3). Recall that the

final vine was as shown at the top of the next page.

85



21

First, VINETOTREE must calculate the number of ordinary compressions it will

perfonn and the number of nodes to be involved in the special compression for the

initial stage of compressions. This is done by plugging into equations (1) and (2)

where N=6 and MU=3.

Then,

so,
A = Uog,.+l~NJ = In(~) 1 In(J1+1) = In( 18) / /n(4) = 2

N1 = N-[(~+1)1-1]/J.1 = 6-[(3+1)2-1]/3 = 1

hence, the number of ordinary compressions of fJ.+ 1 (or 4) nodes is:

N1 div p = 1 div 3 = 0

and the number of nodes in the final special compression is:

N). mod p+l = 1 mod 4 = 1

Thus the initial stage of compressions consists of no ordinary compressions (since this

vine is so small), and a special compression which involves 1 node.

86



This special compression results in the changes to the original vine shown in Figure 6.

17

Figure 6 Special Compression Step

The remaining nodes in the spine are then compressed by 'ordinary' compressions just

as shown in figure 5. These 'ordinary' compressions continue until there are no longer

(MU+1) uncompressed nodes left in the spine to compress. At this point the tree that

remains will be MU-balanced. Since there are only 6 nodes in the spine of figure 6,

only one 'ordinary' compression of MU+1 (4) nodes will performed. The results of

this compression (performed exactly as shown in figure 5, shifting keys up from the

left as needed) is shown in below.
x

wv

23

u
19 20 21

17

Figure 7 Final Ordinary Compression

87



This tree is then by definition, a MU-balanced M-way tree (M=4, MU=3) since every

level, except the last one, is JI.-full.

If there had been more nodes in the vine, the compressions would have

continued in like manner. The current node labeled X in the last figure would have

become the next U, its right child would become the next Vt and this new V's right

child would become the next W and so on for the number of nodes calculated to be in

the particular compression. VINETOTREE would continue these compressions until

there were no longer MU+1 uncompressed nodes in the spine. At that point the final

MU-balanced M-way tree would have been created.

88



APPENDIX B

Subtree Scheme Source Code

89



Host Machine Program

/*******************************************************.*******.*******************/
/* */
/* SUbtree Scheme Host Source Code *1
/* March 20, 1994 */
/* */
/* This is the code that runs on the host computer to drive the subtree scheme. .,
/* It allocates the cube, loads the nodes with the node code, and deallocates • /
/* the cube. *1
/* *1
/*********************.****.*.**.****.*.** •••***** ••**.* •• ** •••• * ••• ** ••••• *•••••••• ,

'include <stdio.h>
'include <cube.h>

'include elocdefs.he
'include elocstructs.he

'define UDNUM 2

main ()
{
int i,k,j,signal:
int done = PALSE:
int n~rocs,prob_size;

struct cnfg config;
char response[30];
char cubQ_size(30]:

for(k=4: k<=32: k=k·2)
(
for(j=1000; j<=100000; j=j+l0000)

{
if( j == 11000

j = 10000:
num-procs = k;
prob_size = j;
sprintf(cube_size,·%d·, (num-procs»;
strcat(cube_size,esx·);
printf(·\n\nWaiting for cube ==> %s prob_size ==> %d\n·,cube_size,proh_size);
done = FALSE;

while(_getcube(·Barney·,cube_size,NULL,O,O»;

printf(·Cube Allocated ====> %s\n\n\n·,cube_size);

setpid(HOST_PID);
load(·qserv·,ROOT,QSERVER);
for(i=l; i<=num-procs-l; i++)
load(·node·,i,SUB_PID};

printf(····*···············**·*·*****************************·*****··*\n·);
printf(· All nodes Loaded ==== Execution Begins\n·);
printf(···*···········*··············***···**·**·*********************\n\n·);

crecv(READY,&signal,sizeof(int»;
config.procs = num-procs;
config.base = prob_size;
config.udsize = prob_size;
config.udnum =UDNUM;
csend(CONFIG,&config,sizeof(config),ROOT,QSERVER);

while ( !done )
{
crecv(SIGNAL,&signal,sizeof(int»;
if( signal == EXIT)

{ done = TRUE:
printf(·'nRoot Received EXIT Message from Nodes ... Terminating Cube\n\n·);

}
else if( signal == REBAL )
printf(·'nRebalance completed ==> No Errors\n\n·);

killcube(ALL_NODBS,ALL_PIDS);
relcube ( •Barney· ) ;
}

}

90



Problem Size ==> %d at %d, %d\n-,num-procs,

Root Processor Program

/*********************************.*****.*.*.* ••• **** ••• *•• *•• * ••**.*•••• **.* •••••*.,

/* *'
/* SUbtree Scheme Root Processor Source Code */
/* March 20, 1994 */
/* */
/* This is the code that runs on the root processor. */
/* This code accepts new requests, queues them to the appropriate subroot .,
/* processor, and polls to servie these queues. This operation is explained ·1
/* in Chapters 3 _ 4. *1
/* ·1
/************** •••• *••••••••••••••••••••• *••••• *•••• *••••••••• ** •••••••••••• *••••••*,

'include <stdio.h>
'include <cube.h>

'include Ilocdefs.h l

linclude Ilocstructs.h l

struct CLreq *new_CL.item();
struct CL,head ·pick-proc_q();
void enqueue();
void redist():
void dist_stats();
void send_right();
void sena-left();
struct req dequeue();
void init_q();
int search-Pseudo();
void print_stats();
double rndm();
void rebal();
void print_times();
void print_tot_times();
void mem-error();
void get_request()i

struct ~head *Queues;
long int *pseudo_root;
int nUJILProcs;

double seed = 1.0;

int BASE,UDNUM,UDSIZE;

FILE *qout;

void main ( )
( .
int i,j,root_count,sent,recd,~count,bulld,~min;

int build-queues, serve_queues, signal;
long int rec_id, sna-id, rac_count, re~rep=l;

double range;
struct cnfg config;
struct req new_request;
struct CLhead *proc_q;

root_count = 0;
j = 0;
CLcount = 0;
sent = 0:
recd = 0;
rec_count = 0;
build = TRUE:
build-queues = TRUE;
serve_queues = TRUE;

csend(READY,&signal,sizeof(signal),myhost(),HOST_PID);

crecv(CONFIG,&config,sizeof(config»;
num-Procs = config.procs;
BASE = config.bas8:
UDNUM = config.udnum;
UDSIZE = config.udsize;

printf(·Executing cube ==> %dsx

91



ODNUM,BASE,UDSIZB);

Queues = (struct CL-head *)calloc( n\1llLProcs,sizeof(struct q..,head) );
pseudo_root = (long int .) calloc ( nUDl...,procs-l, sizeof ( long int ) );

ins_count = del_count = acc_count = 0;

~in = num-procs;

init_q ( Queues );

for(i=l; i<=PRlME; i++)
rndm() ;

for(i=l; i<=nUDLProcs-l: i++)
crecv(READY,&signal,sizeof(signal»;

fort ; ; )
{

if ( (builCLqueues)
{
get_request( knew_request, &rec_count, &build );

if( new_request.op == SPECIAL )
(
build-queues = FALSE;
if( new_request.key == REBAL )

(
new_request.op = REBAL;
for(i=l; i<=n\1llLProcs-l: i++)

enqueue ( &Queues[i],new_request );
}

else if( new_request.key == EXIT)
new_request.op = EXIT;

}
else

{
proc_q = pick-proc_q( new_request,&root_count );
if( proc_q 1= NULL)

( enqueue ( proc_q,new_request );
~count++;

}
else

(
/* printf(-Error on Enqueue for key = %d op

new_request.op); */
%d\n·,new_request.key,

if( (~count >= Q-min) I I (!buila-queues)
{
serve_queues = FALSE;
for(i=l; i<=n\1llLProcs-l: i++)

(
if( Queues(i].waiting )

{
Queues(i].waiting = «(msgdone(Queues[i).rid» -- TRUE) ? FALSE
if( 1 (Queues[i].waiting) )

{ msgdone(Queues[i].sid);
recd++:

}
serve_queues = TRUE;

TRUE) :

}
if( (I (Queues[i].waiting» && (!(Queues[i].empty» )

(
Queues[i].act_req = dequeue( &Queues[i) );
Queues[i].sid = isend(Queues[i).proc_req,&Queues[i].act_req,

sizeof(struct req),Queues[i).proc_num,SUB_PID);
Queues[i).rid = irecv(Queues[i).proc_rep,&Queues(i).act_rep,

sizeof(int»:
Queues[i] .waiting = TRUE:
sent++;
<L.count-- ;
serve_queues = TRUE:

}
}

92



if ( !build_queues && ! serve_queues )
(
stop_time = mclock();
printf(·\nUpdate \d Complete\n·,j):
if( new_request.op == RBBAL )

(
print_ttmes( j, 8Operations· );
/* printf(8Inserts = %d Deletes = %d Accesses %d\n 8,

ins_count,del_count,acc_count); */
ins_count =del_count = acc_count = 0;

/* for(i=l: i<=numLProcs-l; i++)
( printf(8Queue %d has max_count = %d\n·,i,Queues{i).max_count);

Queues[i].max_count = 0;
} */

redist(&root_count);
for(i=l; i<=n~rocs-l; i++)

(
rec_id = irecv(100+i,&r~rep,sizeof(r~rep»;
msgwai t ( rec_id );

}
/* printf(·~count = %d sent = %d reed = %d\n·,~count,sent,recd); */
tot_stop_time =mclock();
print_tot_times( j, 8Total Time- );
sent = 0;
<L-count = 0;
recd = 0:
j++:
signal = REBAL;
sn~id = isend(SIGNAL,&signal,sizeof(int),myhost(),HOST_PID);
build_queues = TRUE;
msgdone( snd-id ):

}
else if( new_request.op == EXIT)

(
signal = EXIT;
csend(SIGNAL,&signal,sizeof(int),myhost(),HOST_PID);
exit (0) :

}

/* Close Endless For */

/* End Main */

struct ~head *pick-proc_q( new_request, root_count )
struct req new_request;
int *root_count;
(
int searcn-val,pos:

search-val = search-Pseudo( new_request.key,&pos,*root_count );

if( search_val == LEFT )
return ( &Queues[pos] );

if( search-val == FOUND )
return ( &Queues[pos] );

if( search-val == HERE )
(

pseudo_root [pos] = new_request. key;
(*root_count) ++:
return ( &Queues[pos] );

}
else /* if( search-val == RIGHT) */

return ( &Queues[num-procs-l] );

void enqueue( proc_q,new_request
struct q.,head *proc_q:
struct req new_request;
(

if( proc_q->empty )
(

proc_q->front = new_~item():
proc_q->front->request = new_request:
proc_q->front->next = NULL:
proc_q->tail =proc_q->front;
proc_q->empty = FALSE;

93



else
{

proc_q->tail->next =new_~item():
proc_q->tail->next->request =new_request;
proc_q->tail->next->next =NULL:

}proc_q->tail =proc_q->tail->next;

(proc_q->count)++:

if( proc_q->count > proc_q->max_count
proc_q->max_count =proc_q->count:

struct req dequeue ( proc_q
struct qJ1ead *proc_q:
{
struct CL-req *temp;
struct req act_req;

temp =proc_q->tront:
proc_q->front = temp->next;
act_req = temp->request;
(proc_q->count)--;

if( proc_q->count == 0 )
proc_q->empty =TRUE;

free ( temp );

return ( act_req );

void init_q( Queues )
struct CL.head *Queues;
(
int i:

for(i=O: i<num-procs; i++)
(

Queues[i].empty = TRUE;
Queues[i].waiting = FALSE:
Queues(i].front = NULL;
Queues(i).tail = NULL;
Queues[i].count = 0;
Queues[i].max_count = 0;
Queues[i].proc_num = i;
Queues[i].proc_req = 100 + i:
Queues[i].proc_rep = 100 + i;

struct ~req *new_~item()

{
struct CL.req *local_req:

local_req = (struct ~req *)malloc( sizeof(struct ~req) );
if( !local_req )

( printf(eMemory allocation error in new_~item function\n·);
exit(l);

}
return ( local_req ):
}

int searc~seudo( key,pos,root_count
long int key;
int *pos, root_count;
{
int tempi

temp = (root_count/2) + 1:
if( key < pseudo_root[temp]

temp = 1:

for (*pos=temp; *pos<=root_count; (*pos)++)
(
if( key < pseudo_root(*posl )

return ( LEFT ):
if( key == pseudo_root[*posl )

94



return ( POUND );
)

if( root_count < num-procs-2
return ( HERE );

else
return ( RIGHT ):

void redist{root_count)
int *root_count;
{
int i,nodes-per-proc,total_nodes,cp;
struct t-head *tree-heads;
struct tJ1ead temp;

total_nodes = 0:

tree_heads = (struct t_head *)calloc(num-procs,sizeof(struct t_head»;

for(i=1; i<=num-procs-l; i++)
(
crecv(BAL_STATS,&temp,sizeof(temp»;
treeJ1eads[(temp.proc_num)] = temp;
total_nodes = total_nodes + (temp.nodes);

)

nodes-per-proc = total_nodes / (num-Procs-l);

for(i=1: i<=nUDLProcs-l; i++)
tree_heads[i].trans_info.nodes-per-proc = nodes-per-proc;

dist_stats(tree_heads,nodes-per-proc);

if ( STATS )
(
for(i=1; i<=num-procs-l; i++)

print_stats(&tree_heads[i],i);

for(i=l; i<num-procs-l; )
{
if( tree_heads[i].give > 0 )

{
sen~right(tree_heads,i,nodes-per-proc);

i++:
)

else
(
cp = i;
whilst tree_heads[cp].requests > 0 )

cp++:
send_left(tree_heads,cp,i,nodes-per-proc);
if( i == cp )

cp++:
i = cp;

)
}

temp.trans_info.op = EXIT:

for(i=l: i<=num-Procs-l; i++)
csend(BAL_STATS,&temp,sizeof(struct t_head),i,SUB_PID);

(*root_count) = 0:
for(i=1; i<=num-Procs-2; i++)

( pseudo_root[i] = tree_heads[i].max_key;
if( tree_heads[i].nodes > 0 )

(*root_count)++: . .
/* printf(-psuedo_root[%d] = %ld\n·,1,tree_heads[1].max_key); */

}
free ( tree_heads );
}

void sen~right(tree_heads,from,nodes-per-proc)
struct t_head *tree_heads;
int from,nodes-per...proc;
{
int i,to;
struct trans trans_info:
struct t_head fro~roc, to-proc ;

95



fro~roc = tree-heads{fram);
to-proc = tree-heads[from+l);
to = from + 1;

trans_info. from = fram;
trans_info.to = from + 1;
trans_info. direction = RIGHT;
trans_info.nodes-per-proc = nodes-per-proc:

trans_info.op = ACCEPT;
tree-heads[to].trans_info = trans_info:
csend(BAL_STATS,&tree-heads[to],sizeof(struct t_head),to,SUB_PID);

trans_info.op = GIVE:
tree-heads[from].trans_info = trans_info:
csend(BAL_STATS,&tree_heads[froml,sizeof(struct t_head),from,SUB_PID);

crecv(BAL_SND,&tree_heads[from],sizeof(struct t_head»;

crecv(BAL_RBC,&tree-heads[to],sizeof(struct t_head»;

void sen~left(tree_heads,from,to,nodes-per-proc)
struct t_head *tree_heads;
int from,to,nodes-per-proc;
(
int i,inter_to;
struct trans trans_info;
struct t_head from-proc, to-proc;

while ( from> to )
(
inter_to = from - 1;

from-Proc = tree_heads[from];
to-proc = tree_heads[inter_to);

trans_info. from = from;
trans_info.to = inter_to;
trans_info.nodes-per-proc = nodes-per-proc;
trans_info.direction = LEFT;

trans_info.op = ACCEPT;
tree-neads[inter_to).trans_info = trans_info;

csend(BAL_STATS,&tree_heads[inter_to),sizeof(struct t_head),inter_to,SUB_PID);

trans_info.op = GIVE;
tree_heads(from].trans_info = trans_info;
csend(BAL_STATS,&tree_heads[from],sizeof(struct t_head),from,SUB_PID);

crecv(BAL_SND,&tree_heads[from),sizeof(struct t_head»;

crecv(BAL_REC,&tree_heads[inter_tol,sizeof(struct t_head»;

from = from - 1:
}

}

void dist_stats(tree_heads,nodes-per-proc)
struct t_head *tree_heads;
int nodes-per-proc;
(
int i=l, given_from_left;

tree_heads[i].r~from-left= 0;

for(i=l; i<n~rocs-l: i++)
{

given_from-left = «i > 1) ? tree
7
heads[i-l].give : 0);

tree heads[i].given from left = g1ven_from_left;
tree-heads[i].requests =-«nodes-per-proc + tree_heads[i].r~from_left) -

- (tree_heads(i].nodes + given_from_left) );
if( (tree_heads[i].requests) < 0 )

{tree_headS[il.giVe = {-(tree_heads[i].requests»;
tree_heads[i] . requests = 0;

}
else

tree_heads[i].give = 0;

96



tree-beads{i+l].r~fram_left = tree-beads[i).requests;

given_tram_left = tree-neads[num-procs-2).give:
tree-heads(num-procs-l].given_fro~left= given_fr~left;
traa_heads[num-procs-l].requests =

( (nodes-per-proc + tree_heads[n~rocs-l).r~fro~left) ­
(tree-heads[num-procs-l).nodes + given_fr~left) );

if( (tree_heads[num-procs-l].requests) < 0 )
{
tree-heads(num-procs-l).give = (-(tree_heads(n~rocs-l).requests»;
tree_heads[num-procs-l].requests = O·} ,

else
tree-neads(num-procs-l].give = 0;

void print_stats( tree_head,id
struct t_head *tree_head;
int id;
(
char fname[30]i

sprintf(fname, ·stats.%d·,mynode(»;

if( tree_head)
(
qout = fopen(fname,·a·);
fprintf(qout, ·\n******************·*****.·.·.······**··*·······\n·);
fprintf(qout,· Qserv Update %d \n·,id);
fprintf(qout, ···*··*·········································\n·);
fprintf(qout,· Maximum Key ====> %ld\n·,tree_head->max_key);
fprintf(qout,·tree_head->nodes =========> %d\n·,tree_head->nodes);
fprintf(qout,·tree_head->extra =========> %d\n·,tree_head->extra);
fprintf(qout, ·tree_head->requests ======> %d\n·,tree_head->requests);
fprintf(qout, ·tree_head->r~from_left=> %d\n·,tree_head->re~from-left);

fprintf(qout,·tree_head->given_left ====> %d\n·,tree_head->given_from-left);
fprintf(qout,·tree_head->give ==========> %d\n·,tree_head->give);
fprintf(qout, • trans_info. from =====> %d\n·,tree_head->trans_info.from);
fprintf(qout,·trans_info.to =======> %d\n·,tree_head->trans_info.to);
fprintf(qout, ·trans_info.op =======> %d\n·,tree_head->trans_info.op);
fprintf(qout,·trans_info.direction > %d\n·,tree_head->trans_info.direction);
fprintf(qout, ·trans_info.npp ======> %d\n\n·,tree_head->trans_info.nodes-per-proc);
/* fprintf(qout,· tree_head->root\n·);
print_node ( tree_head->root );
fprintf(qout,· tree_head->tail\n·):
print_node ( tree_head->tail ); ./
fflush( qout );
fclose( qout );

}
}

void get_request( new_request, rec_count, build)
struct req *new_request;
long int *rec_count;
int ·build;
{
static int count = 0;
static double range = 1000000.0;
double key_val;
int limit;

if( (*build) )
(

if( (*rec_count) == 0 )
start_time = tot_start_time

if( (*rec_count) < BASE)
(

mclock();

new_request->key = rndm() • range;
new_request->op = INSERT;

ins count++;
(*rec_count)++;

)
else

97



a =
m =
q =
r =

{
rebal( new_request,&count );
"rec_count = 0;
"build = FALSE;

}
}

else
{
if ( «*r8C_count) < UDSIZE) && (count <= UDNUM)
(
if( ("rac_count) == 0 )
start_time = tot_start_time = mclock();

key_val = rndm();
if ( (key_val < 0.5) )
(
new_request->op = ACCESS;
new_request->key = rndm() • range:
ins_count++:

}
else
{
new_request->op = «key_val> 0.75) ? DELETE
if{ (new_request->op == DELETE) )

(
new_request->key = rndm() * range:
del_count++;

}
else

{
new_request->key = rndm() * range:
ins_count++;

}
}

(·rec_count) ++;
}
else
(
rebal( new_request,&count );
*rec_count = 0;
}

}

}

void rebal( new_request,count
struct req *new_request;
int *count;
(

if( (·count) <= UDNUM )
{
new_request->key = REBAL;
new_request->op = SPECIAL;
(·count)++;

)
else
{
new_request->key = EXIT;
new_request->op = SPECIAL;

}

}

double rndm ( )

{double a,m,q,r,lo,hi,test;

16807.0:
2147483647.0;
127773.0:
2836.0:

hi = (int) (seed/q);
10 = seed - q·hi:
test = a*lo - r*hi:

if( test> 0.0 )
seed = test;

else
seed = test + m;

98

INSERT) ;



return seed/m;

}

void print_times (id, desc)
int idi
char *desc;
{
FILE *tmsi
char fname[30];
unsigned long elapsed;

sprintf(fname,·'d-%d.%d·,num-procs,BASE,id);

tms = fopen(fname,·w·):

elapsed = stop_time - start_time;
/* fprintf(tms, ·Start Time =======> %u\n-,start_time);
fprintf(tms,·Stop Time =======> %u\n·,stop_time); */
fprintf(tms,·'d %d %u\n-,num-procs,UDSIZE,elapsed);

fflush( tms ):
fclose( tms );
}

void print_tot_times(id, desc)
int id;
char *desc:
(
PILE *tms:
char fname[30]:
unsigned long elapsed:

sprintf(fname,·t-%d-%d.%d·,num-procs,BASE,id):

tms = fopen(fname,·w·);

elapsed = tot_stop_time - tot_start_time;
/* fprintf(tms, ·Start Time =======> %u\n·,tot_start_time);
fprintf(tms, -Stop Time =======> %u\n·,tot_stop_time); */
fprintf(tms, -'d %d %u\n·,num-procs,UDSIZE,elapsed);

fflush( tms ):
fclose( tms ):
}

void mem-error( routine)
char *routine;
{
printf(-'n\n **************.*.* MEMORY ERROR *********************\n-);
printf(· %s\n\n·,routine);
exit(O);
}

99



SUbroot Processor Program

,*******.****.**********************************************************************/
/* *1
/* Subtree Scheme SUbroot Processor Source Code *'
/* March 20, 1994 * I
/* */
/* This is the code that runs on the subroot processor processors. */
/* This program waits for a request to arraive and processes that request in the */
/* appropriate manner for an M-way tree. The communication involved is as *1
/* explained in Chapters 3 & 4. */
/* *1
/***************************************************** ******************************1

'include <cube.h>
'include <stdio.h>
'include <string.h>
'include <math.h>

'include ·locdefs.h·
.include ·locstructs.h·

'define DEBUG 0

void rebalance():

void tree_to_vine():
void vine_to_tree();

int leftmost():
void pack();
void parcel () ;
void newnode():
void rotate();
void compress():
void movekey () :
void move();
void leftshift();
void rightshift();
void tidyup();

struct t_head *create_tree():
int insert():
int ins();
void dele);
void del_opt ( ) :
void del_in_node();
void del...pred();
struct node *blank_node();
int srch():
void add.-new():
void insert_key();
void ins_at_root():
int search-node();
void fillspine();
void radist();
void accept();
void give():
void clean_up ( ) :
void delte():

void print_tree();
void prt_tree():
void print_vine();
void inord();
void print_node();
void print_vnode();
void inorder():
void print_stats();
void mem-error():

FILE *dlout, *out, *iocheck, *dbout;

del_count, dup_count, rec_count, acc_count;int ins_count,

void maine)

Int proc_req, proc_rep, repl, signal, status;

100



int first =TRUE;
int count = 0:
char filename[20);
long int rec_id, sn4-id:
struct req act_req;
.truct tJwad *treeJwad;

proc_req = 100 + mynode();
proc_rep = 100 + mynode();

ins_count = 0;
del_count = 0;
acc_count = 0;
dup_count = 0;
rec_count = 0:

tree-head =create_tree():

csend(READY,&signal,sizeof(signal),ROOT,QSERVER);

for( ;
{

rec_id = irecv(proc_req,&act_req,sizeof(act_req»;
if( !first )

msgdone ( snCLid );
msgwait( rec_id ):

switch( act_req.op ) (
case INSERT status = insert ( tree_head,act_req );

break;
case DELETE delte( tree_head,act_req.key );

break;
case ACCESS status = srch( tree_head->root,act_req.key );

break;
case REBAL sn~id = isend(proc_rep,&repl,sizeof(repl),ROOT,QSERVER);

rebalance ( count,tree_head );
/* printf(·Node %d made it back from rebalance\n-,mynode(»; */
msgdone (snd_id) ;

count++;
break;

default printf(·No match for %d\n·,act_req.op);
dup_count++:
break;

repl = status;
snd-id = isend(proc_rep,&repl,sizeof(repl),ROOT,QSERVER);
first = FALSE;

/* Close of Endless For Loop */

int insert( tree_head,act_req
struct t_head *tres_head:
struct req act_req;
{
int result, pos;

result = 0:

if( !tree_head->root )
ins_at_root( tree_head,act_req.key );

else
result = ins( tree_head->root,tree_head->root,act_req.key,pos );

if( result == FOUND )
return ( DUPLICATE );

else
return ( 0 );

void ins_at_root( tree_head,key
struct t_head *tree_head;
long int key;
{
struct node *local;

101



local = blank-node();

local->k = 1:
local->c[l).key = key;

tree-head->root = local:

int ins (prev,curr, key,pos)
struct node ·prev, *curr;
long int key;
int pos;
(
int search_val;

if( !curr )
adCLnew ( prev I curr I key, pos );

else
(

searc~val = search-node( curr,key,&pos );
if( search-val == LEFT )

ins( curr,curr->c[pos].left,key,pos );
else if{ search-val == RIGHT)

ins( curr,curr->right,key,pos );
else if{ search-val == HERB )

insert_key ( curr,key,pos );
else if( search_val == FOUND )

{ dup_count++:
return ( FOUND );

}

void insert_key( curr,key,pos
struct node *curr;
long int key;
int pos;
{
curr->k = curr->k + 1;
curr->c[pos].key = key:
ins_count++;

}

void ad~new( prev,curr,key,pos
struct node *prev, *curr;
long int key:
int pos;
{

curr = blank_node();

if( prev->k >= M-l && key> prev->c[prev->k].key )
prev->right = curr:

else
prev->c(pos).left = curr;

curr->c[l].key = key;
curr->k = 1:
ins_count++;

int srch(curr,key)
struct node *curr;
long int key;
{
int searcn-val, pos:

if ( !curr )
{ dup_count++;

return ( NOT_FOUND );
}

else
(
search-val = search-node ( curr,key,&pos );
if( search-val == LEFT )

srch( curr->c[pos].left,key ):
else if( search-val == RIGHT )

102



srch( curr->right,key ):
else if( search_val == HERE

{ dup_count++;
return ( NOTJOUND ):

}

else if( searcn-val == POUND
{ acc_count++:

return ( POUND ):
}

}

void delte( tree-llead, key
struct t-head *tree_head:
long int key:
(
int search-val,pos;

search-val = search-node( tree_head->root,key,&pos ):

if( (searcn-val==POUND) && (tree_head->root->k==l) && (! (tree_head->root->c[pos).left» )
{
tree_head->root = NULL;
del_count+.:

}
else

del( NULL,tree_head->root,key );

void del ( prev, curr, key
struct node *prev, *curr:
long int key;
(
int search-val, pos;
struct node *del_node:

searcn-val = search_node ( curr,key,&pos );

if( (searcn-val == LEFT) && (curr->c[pos].left)
del ( curr,curr->c[pos].left,key );

else if( (search-val == RIGHT) && (curr->right)
del ( curr,curr->right,key );

else if( search-val == HERE )
{ /* printf(·Key %ld not found in tree (Duplicate)\n-,key); */

dup_count++;
}

else if( search-val == FOUND)
(

if( curr->c[pos].left != NULL
del_opt ( curr, pos, key);

else
( del_in_node( curr,key );

if( curr->k <= 0 )
(
search-val = search-node ( prev,key,&pos ):
if( search-val == LEFT )

prev->c(pos).left =curr->right;
else if( search_val == RIGHT)

prev->right =curr->right;
free ( curr );

}

}
else

( /* printf(·\nKey %ld is a duplicate\n-,key); */
dup_count++;

void del_opt( curr,pos,key
struct node *curr:
int pos:
long int key;
{
int deleted = FALSE:

if( (curr->k > pos) && (pos < MU) )
{

if( !curr->c[pos+l).left

103



{

curr->c[pos].key =curr->c[POs+l}.key;
curr->c[pos+l].key = key.
del_in-node ( curr, key );'
deleted = TRUE:

}
}

it ( ldeleted )
de1...pred ( curr, pos , key );

void del_in.-node( curr,key
struct node ·curr:
long int key;
(
int i;

for(i=l: i<=curr->k && curr->c[i).key!=key; i++):
for(i=i: i<curr->k; i++)

{ curr->c(i].key = curr->c[i+l].key;
} curr->c(i].left =curr->c[i+l].left;

curr->c[curr->k].key = -1;
curr->c[curr->k].left = NULL;
curr->k = curr->k - 1;

del_count++:

void del-pred( curr,pos,key
struct node *curr;
int pos:
long int key;
{
struct node * temp , *prev, ·save;
int searclLval:

temp = curr->c[pos).left:

prev = curr:
while ( temp->right )

{ prev = temp;
temp = temp->right:

curr->c[pos].key = temp->c[temp->k).key;
temp->c(temp->k].key = key:
save = temp->c[temp->k].left;
del_in_node ( temp, key );
if( temp->k > 0 )

temp->right = save;
else

(
search-val = search_node ( prev,curr->c[pos).key,&pos );
if( search-val == FOUND I I search-val == LEFT )

prev->c[pos].left = save;
else if( searcn-val == HERE )

printf(·Oops -- I didn't reset anything\n-);
else if( search-val == RIGHT)

prev->right = save;
free ( temp );

}

void rebalance (id, tree_head)
int id;
struct t_head *tree_head;
(
struct node ·pseudo_root;
int size:
char filename[20], delfname[20];

sprintf(delfname,-delstats.%d-,mynode(»;
dlout = fopen( delfname,·a· );

if( INORIGlNAL )

~printf(filename,·orig-%d.%d·.id,mynode(»:

104



'* printf(e********************************** ••******\ a).
printf(eThe origional tree after update "d on \d\n a i~ mYnode{».
printf(·******************************************\n\na). */ •
tnorder( tree-head.filename ); •

pseudo_root = b1ank-node():
pseudo_root->right = tree-head->root;

tree_to_vine(pseudo_root,id,tree_head);

redist(id,tree-head):
pseudo_root->right = tree_head->root;
clean_up(tree-head):

if{ VINES)
(
sprintf(filename, amuout.%da,mynode(»;
dbout = fopen(filename,.aa);

fprintf{dbout, a\n\nThe Tree I%d as a Vine\n-,id);
print_vine ( tree_head->root );

fflush( dbout );
fclose( dbout ):

}

if( INVINES )
(
sprintf(filename,·vines-%d.%d·,id,mynode(»;
/* printf(a**********************************************\n.);
printf(·A printout of the vines after redistribution\n-);
printf(-**********************************************\n\n.); */
inorder( tree_head,filename ):
}

if( STATS )
print_stats(tree_head,id):

vine_to_tree(pseudo_root,tree_head->nodes,tree_head->extra);
tree_head->root = pseudo_root->right;

if( INFINAL )
(
sprintf(filename, afinal-%d.%d·,id,mynode(»:
fprintf(dlout,·===============================================\n-);
fprintf(dlout, ·Total Inserted keys for update I%d ====> %d\n-,id,ins_count);
fprintf(dlout, ·Total Deleted keys for update I%d =====> %d\n·,id,del_count);
fprintf(dlout,·Total Accessed keys for update I%d ====> %d\n·,id,acc_count);
fprintf(dlout,·Total Duplicate keys for update I%d ===> %d\n-,id,dup_count);
fprintf(dlout,·Total Received keys for update I%d ====> %d\n',id,rec_count);
fprintf(dlout, ·===============================================\n\n l

);

fflush( dlout );
/* printf(·*******************************************\n·);
printf('The Re-balanced tree after update I%d\n-,id);
printf(·*******************************************\n\n·); */
inorder( tree_head,filename );
}

del_count = 0:
ins_count = 0:
acc_count = 0:
dup_count = 0:
rac_count = 0:

fflush( dlout ) :
fclose( dlout ) ;
}

void redist(id,tree_head)
int id;
struct t_head *tree_head:
(
int done =FALSE;
struct t_head temp;
char filename[30]:

csend(BAL_STATS,tree_head,sizeof(struct t_head),ROOT,QSERVER);

while ( !done )
{

105



case GIVE

case EXIT

default
) ;

creCV(BAL_STATS,~temp,sizeof(struct t-head»;
if( STATS ~lt <temp.trans_info.op 1= EXIT) )
print_stats(~temp,id):

switch ( temp.trans_info.op ) (
case ACCEPT : ( 1r treeJ1ead) = temp;

accept(tree-nead):
it( STATS )

print_stats(tree_head,id);
break;
(*tree-head) = temp;
give (tree_head) :
if( STATS )

print_stats(tree_head,id):
break;
done = TROB:
break:
break;

void accept(tree_head)
struct t-head * tree_head:
(
int rec_buff_size,!:
struct node *rec_buffer, *temp, *hold, *old_root:

if( tree_head->trans_info.direction == RIGHT)
{
rec_buff_size = «tree_head->given_from_left)*(siZQof(struct node»);
rac_buffer = (struct node *)malloc( rac buff size ).
if( !rec-puffer ) - - ,

roem-error( -rac_buffer- );
crecv(BAL_SND,rec_buffer,rec_buff_size);

temp = (struct node *)malloc(slzeof(struct node»;
if ( ! temp)

mem-error( -temp in accept - right- );
hold = temp;
(*temp) = rec_buffer[O];
ol~root = tree_head->root;
tres_head->root = temp;
for(i=l; i«tree_head->given_from_left)-l; i++)

{
temp = (struct node *)malloc(sizeof(struct node»;
if ( ! temp )

mem-error( -temp in accept - right- );
hold->right = temp;
hold = temp;
(*temp) = rec_buffer[i);

}
if( tree_head->given_from-left > 1 )
{
temp = (struct node *)malloc(sizeof(struct node»;
if ( ! temp )
mem-error( -temp in accept - right- );

( 1r temp) = rec_buffer[(tree_head->given_from-left)-l];
hold->right = temp:

}

if( old-root
temp->right = old-root;

else
{ tree_head->tail = temp;

tree_head->tail->right =NULL;

tree head->max-key = tree_head->tail->c[tree_head->tail->k).key;
tree-head->nodes = tree_head->nodes + tree_head->given_from_left;
tree-head->requests = «tree_head->trans_info.nodes-per-proc +

- tree_head->r~from_left) - (tree_head->nodes) );
if( tree_head->requests < 0 )

{ tree_head->give = -(tree_head->requests);
tree_head->requests = 0;

}
else

tree_head->give = 0;
} ° f dO t' LEFTelse if( tree_head->trans_1n o. 1rec ~on ==

106



{

rec-buff_size = «tree-bead->requests)*(sizeof(struct node»);
rec-buffer = (struct node *)malloc( rae buff size)·
if( lrec-buffer ) - - ,
me~error( -rec-buffer· );

crecv(BAL_SND,rec_buffer,reC-buff_size);

temp = (struct node *)malloc(sizeof(struct node»;
if( !temp )

me__error( -temp in accept - left- );
hold = temp;
(*temp) = rec-buffer(O];
old.-root = temp;
f(r(i=l; i«tree-head->requests)-l; i++)

temp = (struct node *)malloc(sizeof(struct node»;
if ( ! temp )
mem_error( -temp in accept - left- );

hold->right = temp;
hold = temp;
(*temp) = rec_buffer[i);

}
if( tree_head->requests > 1
{
temp = (struct node *)malloc(sizeof(struct node»;
if ( ! temp )
mem_error( -temp in accept - left- );

(*temp) = rec_buffer(tree_head->requests)-l];
hold->right = tempi

}

if( tree_head->tail )
tree_head->tail->right =old-root;

else
tree_head->root = old_root:

tree_head->tail = temp;
tree_head->tail->right = NULL;
tree_head->max_key = tree_head->tail->c[tree_head->tail->kl .key;
tree_head->extra = MU - (tree_head->tail->k);
tree_head->nodes = tree_head->nodes + tree_head->requests;
tree_head->requests = (tree_head->trans_info.nodes-per-proc +

tree_head->re~from-left) - tree_head->nodes;
if( tree_head->requests < 0 )

{ tree_head->give = -(tree_head->requests);
tree_head->requests = 0;

}
else

tree_head->give = 0;
}
free ( rac_buffer );
csend(BAL_REC,tree_head,sizeof(struct t_head),ROOT,QSERVER);
}

void give(tree_head)
struct t_head *tree_head;
(
struct node *new_tail,*temp, *disp;
int sn~buff_size,i;

struct node *sn~buff;

if( tree_head->trans_info.direction == RIGHT)

{sn~buff_size = ({tree_head->give)*{sizeof(s~ruct node»));
sn~buff = (struct node *)malloc( snd_buff_s1ze );
if ( ! sn~buff )
me~error( -snd-buff- );

new_tail = tree_head->root; .
for(i=l; i«tree_head->nodes)-(tree_head->g1ve); i++)

new_tail = new_tail->right:
temp = new_tail->right:
i = 0;
while ( temp && (i < snd_buff_size)

{
sn~buff[i] = (*temp);
disp = temp;
temp = temp->right;
free ( disp );
i++i

c~end(BAL_SND,sna-buff,snd_buff_size,tree_head->trans_info.to,SUB_PID);

107



new_tail->right =NULL;
tree-head->tail = new_tail;
tree-head->extra = NO - (tree-head->tail->k);
tree-head->max~ey= tree_head->tail->c(tree_head->tail->k).key;
tree-nead->nodes = tree_head->nodes - tree_head->give:
tree-head->give =0:

}

else if( tree-head->trans_info.direction == LEFT )
{

sn~uff_size = «tree_head->r~from-left)*(sizeof(struct node»);
snd-buff = (struct node *)malloc( sn~buff size );
if( !sn~ff ) -
me~error( ·snd_buff- );

temp = tree-head->root;
for(i=O; i«tree_head->r~fro~left);i++)

{
sn~buff[i] = (*temp);
disp = temp;
temp = temp->right;
free (disp) ;

}
tree-head->root = temp;
csend(BAL_SND,sn~uff/snd_buff_size,tree_head->trans_info.to,SUB_PIO);

tree_head->max_key = tree_head->tail->c[tree_head->tail->k).key:
tree_head->nodes = tree_head->nodes - tree_head->r~from-left;

tree_head->r~from_left = 0:
tree_head->requests = tree_head->trans_info.nodes-per-proc - tree_head->nodesi
if( tree_head->requests < 0 )

{ tree_head->qive = -(tree_head->requests);
tree_head->requests = 0;

}
else

tree_head->give = 0:
}
csend(BAL_SND,tree_head,sizeof(struct t_head),ROOT,QSERVER);
free( sn~buff );
}

void tree to vine(x,tree_num,tree)
struct node .x;
int tree_num;
struct t_head *tree:
{
struct node *u, *v:
int n,j,extra:

if( !x->right )
(

tree->nodes = 0:
tree->tail = NULL:
return:

/* Locate leftmost non-nil pointer in U. */
j = leftmost ( u ):
if ( j > u->k )

{
if( n > 0 )

pack ( x, &u );
if ( u == NULL )

newnode( &x,&u,O,&n);
else if( u->k <= MU )

newnode( &x,&u,l,&n);
else

parcel( x,u,&n );

u = x->riqht:
n = 0;
j = 1;

while ( u )
{

}
else

{
v =u->c[j].left:
rotate( u,v,i );

}
extra = MU - x->k:

tree->max-key = x->c(x->k].key;

108



tree->nodes = n;
tree->extra = extra;
tree->numjeys = (n*MU) - extra:
tree->tail = x:

void vine_to_tree(x, n, extra)
struct node *Xi
int n,extra;
{
struct node *x1;
int lambda, ncomp, ncomp1, excess, i;
int ordinary = FALSE;

lambda = floor ( log«float)MU*n) / log«float)MU+1) );

ncomp = {pow ( (float)MU+l, (float) lambda ) - 1) I MU;

excess = n - ncomp;
1f( excess> MU*ncomp )

ordinary =TRUE;
if( ordinary == TRUE)

excess = excess - 1;

ncomp1 = excess / MU;

excess = excess % NO;

}
if( excess> 0 )

compress ( &x,MU,excess,extra,ordinary );
ncomp = ncomp / (MU+1);
while ( ncomp > 0 )

(
x = xl;
for(i=l; i<=ncomp; i++)
compress ( &x,MU,MU,O,TRUE );

ncomp = ncomp / (MU+l);
}

xl = x;
for(i=l; i<=ncompl; i++)

{
if( (i < ncomp1) I I (excess> 0) )
compress (&x, (int)MU, (int)MU, (int)O, (int)TRUE);

else
compress(&x,MU,MU,extra,ordinary);

if( (extra> 0) && ( n > 1)
{

tidyup ( &x );

void compress( x,locmu,ml,extra,ordinary)
struct node **x:
int locmu,ml, extra, ordinary:
{
struct node *u, *Vi
int i,j,offset;

u = (*x)->right;
(*x)->right = blank_node():
*x = (*x)->right:
(*x)->k = 0:

if( ml == 1 )
rightshift( u,·x,extra+(u->k-locmu»:

for(i=l: i<=ml; i++)
{
v = u->right;
j = (*x)->k:
if( (i < ml) I I (ordinary == TRUE)

{
leftshift( u,&v,locmu-u->k );
leftshift( *x,&v,l );

}
else

{
offset = extra + (u->k-locmu);
if( offset> 0

109



rightshift( u,*x,offset );
else

leftshift( U,&v,-offset );
leftsb!ft( *x,&v,locmu-«*X)->k) );

}

u->right = (*x)->c[j+l].left;
if( ml == 1 )

j = 0;
(*x)->c(j+l].left = U;

u = V;
)

if( u->k == 0 )
{

(*x)->right = u->right;
free( u );

}
else

(·x) ->right = u;

void leftshift( U,v,count
struct node *u, ·*v;
int count:
{
int i;
struct node *temp;

if( count> (*v)->k
(
for(i=l; i<=(*v)->k; i •• )

u->c[u->k+i] = (*v)->c[i];
u->k = u->k + (*v)->k;
count = count - (*v)->k;
temp = ·v;
(*v) = (*v)->right;
free ( temp );

}
for(i=l; i<=COunti i+.)

u->c[u->k+i] = (*v)->c[i);
if( count> 0 )

{
u->k = u->k • count:
(*v)->k = (*v)->k - count:
for{i=l; i<={*v)->k; i.+)

{*v)->c(i] = (*v)->c[cQunt+i];

void rightshift( u,v,count
struct node *u, *v:
int count;
{
int i;

for(i=l; i<=count; i+.) .
v->c[v->k+i] = u->c[(u->k)-count+1];

if( count> 0 )
{
u->k = u->k - count;
v->k = v->k + count;

}

void tidyup( x )
struct node **Xi
{
struct node *xprevi

xprev = NULL;
while ( {·x)->right

{
xprev = *Xi
*x = (*x)->right;

110



if( xprev )
(

leftshift{xprev,X,MU-(xprev->k»;
if( (*x)->k == 0 )

(
free( xprev->right );
xprev->right = NULL;

int leftmost( u
struct node "Ui
(
int i;

/* This line added November 8. 1993 */

for(i=l; i<=u->k && u->c[i].left==NULL; i++);

return(i);

void parcel ( x,u,n )
struct node *x, *u;
int *ni
(
int d, i:

printf(·I called parcel, this is bad!! !\n·);
exit(O)i

d = 0:

do (
x->right = blank_node();
x = x->right;
x->k = MU;
for(i=l: i<=MU; i++)

x->c[i] =u->c[i+d];
d = d+MU;

} while( u->k > d+MU );
x->right = Ui

u->k = u->k - d:
for(i=l: i<=u->k: i++)

u->c[i] = u->c[i+d];

newnode( &x,&u,d/MU+l,n );
}

void newnode( x,u,count,n
struct node **x, **u:
int count,*n:
(
struct node *temp;

if( count> 0 )
{

temp = *Ui
*u = (*u)->right;
*x = tempi
(*n) = (*n) + count;

)
else

{
*u = (*x)->right:

)

void rotate( u,v,j )
struct node *u, *v;
int j;
{
int i, k, 1:
struct child save;

u->c[j].left =v->right;
v->right = u->righti
u->right = Vi

111



ftr(k=j,i=l: k<=U->k; i++,k++)

save = u->c(k];
u->c[k] = v->c[l]:
for(l=l; l<v->k; 1++)
v->c[l] = v->c(l+l);

v->c[ll = .ave;
)

)

void pack( X,u )
struct node *x **u,·{ ,
int i, k, kSUlD:

if( x->k < NO
{

for (k=x->k+l; k<=MU; k++)
{

x->c[k] = (*u)->c[l];
for(i=l: i«*u)->k; i++)

(*u)->c[i] = (*u)->c[i+1);
(*u)->c[i] . key = -1;
(*u)->c[i] .left =NULL;

)
ksum = x->k + (*u)->k;
if( ksum > NO )

{
x->k = NO:
(*u)->k = ksum-MU;

)
else

{
x->k = ksum:
x->right = (*u)->right;
free ( *u ):
*u = NULL;

}

struct t_head ·create_tree()
{
struct t_head *local:

local = (struct t_head *)malloc( sizeof(struct t_head) );
if ( ! local )
mem-error( ·create tree- );

local->root = NULL:
local->tail = NULL:
local->proc_num = mynode();
local->extra = 0;
local->num-keys = 0;
local->requests = 0;
local->re~froM-left= 0;
local->give = 0:
local->max_key = -1;

local->re~count = 0:
local->run time = 0:
local->comP_time = 0:

return ( local ):

struct node *blank_node ()
{
struct node *local_node;
int i;

local node = (struct node *)malloc(sizeof(struct node»;
if( !local_node )

mam-error( -blank_node- );
local_node->k = 0;
local_node->right = NULL;
for(i=l; i<=MU: i++)

{

112



local-node->c[i].key = -1;
local-noda->c[il.left =NULL.} ,

return ( local-.node );

int searcn-node( curr,key,pos
struct node '*curr:
long int key;
int ·POSi
{

for(*pos=l: ·POs<=curr->k; (*pos)++)
(

if( key < curr->c[*pos].key )
return ( LEFT );

if( key == curr->c[*pos].key )
return ( FOUND );

}

if( (curr->k < MO) && (!curr->right)
return ( HERE );

else
return ( RIGHT );

void clean_up(tree_head)
struct t_head *tree_head;
{

struct node *curr, *next, *rmvd;
int i,count:

curr = tree_head->root;
next = curr->right;

/* line changed 11-11-93 */

while ( next )
(
if( curr->k < MU )

{
count = «next->k >= MU-curr->k) ? MU-curr->k
for(i=!; i<=count; i++)

curr->c[curr->k+i] = next->c[i];
curr->k = curr->k + count;
next->k = next->k - count;
if(next->k > 0)

(
for(i=l; i<=next->k; i++)

next->c[i] = next->c[i+Count)i
}

else
{
curr->right = next->right;
rmvd = next:
free ( next );
next =curr->right;
tree head->nodes = tree_head->nodes - 1;
if( rmvd == tree_head->tail )

{
tree_head->tail = curr;

)
}

curr = «curr->k == NU) ? next: curr)i
next = «curr) ? curr->right : NULL);

}
else

{
curr = next;
next = curr->right;

}
tree_head->extra = NO - (tree_head->tail->k);

}

void inorder< tree head,id
struct t_head * tree_head;
char ·id;
{

iocheck = fopen( id,·w· );

inord(tree_head->root);

113

next->k) ;



fflush( iocheck );
fclose( iocheck );

void inord( curr )
struct node *curr;
(
int i;

if(curr == NULL)
return:

else
(

for(i=l;i<=curr->kii++) (
inord(curr->c(i].left):
~printf(iOCheck,·'ld\n·,curr_>C(i].key):

inord(curr->right);
}

void print_tree( tree head
struct t-head *tree head.{ - ,

void prt_tree( curr
struct node *curr·{ ,

int i;

if(curr == NULL)
return:

else
(
print_node ( curr );
for(i=l:i<=curr->k:i++)

prt_tree(curr->c[i].left);
prt_tree(curr->right):

}

void print_vinet curr
struct node *curr;
(
int i:

if(curr == NULL)
return:

else
{
print_vnode( curr );
for(i=l:i<=curr->k;i++)

print_vine(curr->c[i).left);
print_vine(curr->right);

}

void print_node( curr
struct node *curr:
{
int i;

if( curr )
{

fprintf(out, -Node Address ==========> %d\n-,curr);
fprintf(out, -================================\n e

);

fprintf(out, -Node Count ==========> %d\n-,curr->k);
for(i=l; i<=curr->k; i++) (
fprintf(out,·c[%d].key ==========> %ld\n·,i,curr->c[i).key);
fprintf(out,·c[%d].left ==========> %d\n·,i,curr->c[i).left);

fprintf(out,-Node right
fprintf(out,-\n\n-);

void print_vnode( curr
struct node *curr:

==========> %d\n·,curr->right);

114



{
int i:

if( curr
{

==========> %ld\n·,i,curr->c[i).key);
==========> \d\n·,i,curr->c[i].left);

%d\n·,curr->right);==========>

fprintf(dbout,·Node Address ==========> \d\n-,curr);
fprintf(dbout'-================================\n·)·
fprintf(dbout,·Node Count ==========> %d\n.,curr-~k):
for(i=l; i<=curr->k; i++)
fprintf(dbout,·C(%d).key
fprintf(dbout,·c[%d].left

f ·}pr1ntf(dbout,·Node right
fprintf(dbout,·\n\n·);

void print_stats( tree_head,id
struct t-head *tree_head;
int id;
{
char fname(30];

sprintf(fname,·stats.%d·,mynode(»:

if( tree_head)
{
out = fopen(fname, ·a-);
fprintf(out, ·\n***********************************************\n·):
fprintf(out,· Update %d \n·,id):
fprintf(out, ·***********************************************\n·):
fprintf(out,· Maximum Key ====> %ld\n·,tree_head->max_key):
fprintf(out,-tree_head->nodes =========> %d\n·,tree_head->nodes):
fprintf(out, -tree_head->extra =========> %d\n·,tree_head->extra):
fprintf(out, -tree_head->requests ======> %d\n·,tree_head->requests):
fprintf(out,-tree_head->r~from-left=> %d\n·,tree_head->r~from-left);

fprintf(out, ·tree_head->given_left ====> %d\n·,tree_head->given_trom-1eft):
fprintf(out, -tree_head->give ==========> %d\n·,tree_head->give);
fprintf(out, -trans_info. from =====> %d\n·,tree_head->trans_info.from);
fprintf(out, -trans_info. to =======> %d\n·,tree_head->trans_info.to):
fprintf(out, -trans_info.op =======> %d\n·,tree_head->trans_info.op);
fprintf(out, -trans_info.direction > %d\n·,tree_head->trans_info.direction):
fprintf(out, ·trans_info.npp ======> %d\n\n·,tree_head->trans_info.nodes-per-proc):
fprintf(out,· tree_head->root\n-):
print_node ( tree_head->root );
fprintf(out,· tree_head->tail\n·):
print_node ( tree_head->tail ):
fflush( out );
fclose( out );

}

void mem-error( routine )
char *routine:

~rintf("\n\n ****************** MEMORY ERROR *********************\n");
printf(- %s\n\n·,routine):
printf(. *****************************************************\n·):
fflush( stdout ):
exit(O):
}

115



APPENDIXC

Pipeline Scheme Source Code

116



Host Program
/*******.**********************/* *************************************************.***,
/* */
/* Pipeline SCheme Host Source Code *,
/* March 22, 1994 */

/* This is the code *'/ * It allocates the that runs on the host computer to drive the pipel ina scheme. • /
/* the cube. cube, loads the nodes wi th the proper code, and deallocates *'
/* */
/*********** ••••• *•••• ***.... .,*•••••••• *** •• ** ••• *.* •• *•••••••••• *••••••• **********.*/

linclude <stdio.h>
'include <cube.h>
'include ·simdefs.h·
'include ·simstructs.h'

'define UDNUM 2

main ()
(
int i,j,k,signal;
int done = FALSE;
int n~rocs,prob_size;
struct cnfg config;
char response[30);
char cube_size(30);

for(k=4; k<=32; k=k·2)
(
for(j=lOOO; j<=lOOOOO; j=j+l0000)

(
if( j == 11000

j = 10000:
n~rocs = k:
prob_size = j;
sprintf(cube_size,'%d', (num-procs»;
strcat(cube_size,'sx');
printf('\n\nWaiting for cube ==> %s Prob Size ==> %d\n-,cube_size,prob_size);
done = FALSE:

while(-getcube('BarneY',cube_size,NULL,O,O»;

printf('Cube Allocated ====> %s\n\n\n-,cube_size);

setpid(HOST_PID);
load('simroot',gray(ROOT),O);
for(i=l; i<nurn-procs-2: i++)
load(·simnode·,gray(i) ,0);

load('simlgn',gray(nurn-Procs-2),O);
load('simlast',gray(nurn-procs-l) ,0);

printf(·················*······*······································\n·);
printf(' All nodes Loaded ---- Execution Begins\n');
printf('***·····*·*····*····*·*·····*···**············*·············*·\n\n·);

crecv(READY,&signal,sizeof(signal»;
config.procs = nurn-procs:
config.base = prob_size;
config.udsize = prob_size;
config.udnum = UDNUM:
csend(CONFIG,&config,sizeof(config),ROOT,O);

while ( !done )
{
crecv(SIGNAL,&slgnal,sizeof(int»;
if( signal == EXIT)

( done = TRUE;
printf(·\nRoot Received EXIT Message from Nodes ... Terminating Cube\n\n-);

}
else if( signal == UDATE )
printf('\nUpdate Completed ==> No Errors\n\n·);

killcube(ALL_NODES,ALL_PIDS);
relcube(-Barney·);

}
}
}

117



Problem size ==> %d at %d, %d\n·,NUM_PROCS,

Root Processor (P0- First Processor in the Array) Program

/********************************.***********************.****.*********************,
/* */

/ * Pipeline Scheme Root Processor Source Code *'
/* March 22, 1994 */
/* ./
/* This is the code that runs on the root processor node. */
/* This program accepts requests and passes them on in the manner described in */
/* Chapters 3 & 4 to the processor directly below it in the array. */
/* It also accepts replies from the last processor in the array_ */
/* */
/********************************** •••••••••••••••••••••••••••• ***************.**.**/

'include <stdio.h>
'include <cube.h>

linclude ·simdefs.h·
'include ·simstructs.h·

void mem_error();
void ins():
void del();
void srch ( ) ;
struct node *search.-node();
void print_stats();
void set_gray ( ) :
void print_times();
double rndm();

double seed = 1.0;

int NEXT, PREV, UDNUM, UDSIZE, BASE, NUM_PROCS;

long int ins_count, del_count, acc_count;

unsigned long start_time, stop_time;

main ()
{
int i,j,status;
long int *del_array, *srch_array;
int count = 0;
double range = 1000000.0:
double key_val;
struct re~type new_request;
struct cnfg config;
int limit;

ins_count = del_count = acc_count 0;

start_time = stop_time = 0;

csend(READY,&status,sizeof(status),myhost(),HOST_PID);

crecv(CONFIG,&config,sizeof(config»;
NUN PROeS = config.procs;
BASE = config.base;
UDNUN = config.udnum;
UDSIZE = config.udsize;

set~ray( (int) ROOT):

printf(-Executing cube ==> %dsx
UDNUM,BASE,UDSIZE);

(int) (BASE*0.25)+l,sizeof(long int) );del_array = (long int *)calloc(
if( !del_array ) _

mem-error( ·del_array );

srcn-array = (long int *)calloc (
if( !srch-array )

mem-error( ·srcn-array· );

(int) (BASE*0.5)+l,sizeof(long int) );

for(i=li i<=NUM_PROCS-1; i++)
v(READY &status sizeof(status»;crec , '.

f (i-1· i<=NUM-PROCS-1; 1++) .
or -d'(READY r~n~ PROCS sizeof(HUM-PROCS),1,O);csen , ou..un_ ' •

for(i=l: i<=HUM-PROCS-l; 1++)

118



creCV(RBADY,&status,sizeof(status»);

start_time = mclock();

for(i=l; i<=BASE; i++)
(

new_request.key = rndm() ... range:
new_request.op = INSERT;

switch ( new_request.op ) (
case INSERT: ins( new_request );

break;
case DELETE del ( new_request );

break:
case ACCBSS srch( new_request );

break;
default printf(-Unknown op on %d\n.,mynode(»;

break;
} :

if ( count > NUM_PROCS )
Crecv(ACK,&status,sizeof(status»;

else
count++;

)
for(i=l; i<=count; i++)

Crecv(ACK,&status,sizeof(status»;

stop_time = mclock();

print_times(O);

printf(·Made it through the BASE loop\n a ):

for(j=l: j<=UDNUM; j++)
{
count = 0:

start_time = mclock();
for(i=l: i<=UDSIZE; i++)

{
key_val = rndm();
if( (key_val < 0.5) )
(
new_request.op = ACCESS;
new_request.key = rndm() ... range;

)
else
{
new_request.op = «key_val> 0.75) ? DELETE
if( (new_request.op == DELETE) )
new_request.key = rndm() ... range;

else
new_request. key = rndm() ... range;

INSERT) :

switch( new_request.op ) {
case INSERT ins( new_request );

break;
case DELETE del( new_request );

break:
case ACCESS srch( new_request );

break;
default printf(aUnknown op on %d\n·,mynode(»:

break;
) :

if ( count > NUM_PROCS )
crecv(ACK,&status,sizeof(status»;

else
count++:

}
for(i=l; i<=count; i++)

crecv(ACK,&status,sizeof(status»;

stop_time = mclock();
print_times( j ):

printf(·Made it through an UPDATE loop\n a);
}

new_request.op = EXIT:

119



a =
m =
q =
r =

csend(TRANS,&new_request,sizeof(new_request),NEXT,PROC_PID):
crecv(TRANS,&new_request,sizeof(new_request»;
status = EXIT;
if ( STA'l'S )

print_stats();
~Send(SIGNAL,&status,siZeOf(statuS),myhost().HOST_PID):

void ins( new_request)
struct r~type new_request;
(
struct ins_trans_repl_type it_repl:
struct ins_type insert;
struct node curr;

new_request.p-prime = search_node(curr,new_request.key);
csend(TRANS,&new_request,sizeof(new_request),NEXT,PROC_PID);

crecv(IT_REPLY,&it_repl,sizeof(it_repl»;
csend(INS,&lnsert,sizeof(insert),NEXT,PROC_PID);

void del ( new_request)
struct reeL-type new_request;
(
struct del_trans_repl_type dt_repl:
struct del_type delte:
struct node curr;

del_count++;

new_request.p-prime = searcn-node(curr,new_request.key);
csend(TRANS,&new_request,sizeof(new_request),NEXT,PROC_PID);

crecv(DT_REPLY,&dt_repl,sizeof(dt_repl»;
csend(DEL,&delte,sizeof(delte),NEXT,PROC_PID);

void srch( new_request )
struct reCL.type new_request;
(
struct node curr;

new_request.p-prime = search_node(curr,new_request.key);

csend(TRANS,&new_request,sizeof(new_request),NEXT,PROC_PID);

acc_count++:
)

double rndm ( )
{
double a,m,q,r,lo,hi,test;

16807.0;
2147483647.0;
127773.0:
2836.0:

hi = (int) (seed/q):
10 = seed - q*hii
test = a*lo - r*hii

if( test> 0.0
seed = test;

else
seed = test + m:

return seed/m:

120



void set~ray(node-num)
int nodeJlum;
{
int *gray_code,i;

gray_code = (int *)calloc(NUM_PROCS,sizeof(int»;

for(i=O; i<NUM_PROCS: i++)
gray_code[i] =gray(i);

for(i=O; i<NUM PROCS· i++){ -,

if~ node-num == gray_code[i]

NEXT = (i -- (NUM_PROCS-l» ? 0 : gray_code(i+l];
PREV = (1 == 0) ? 0 : gray_code[i-l);

}
free ( gray_code):
}

void print_stats()
{
PILB *out;
char fname (30 J;

sprintf(fname,·stats.%d·,mynode(»;

out = fopen(fname,·w·);

fprintf(out, -Insert Count ====> %d\n·,ins_count)
fprintf(out, -Delete Count ====> %d\n·,del_count)
fprintf(out,-Access Count ====> %d\n·,acc_count)

fflush( out );
fclose( out );
}

struct node *search_node ( curr,key )
struct node curr;
long int key;
{
int i;

for(i=O; i<3 && (key 1= curr.n[i]); i++);

return ( curr.child[i] );
}

void print_times (id)
int id:
{
FILE *tms;
char fname[30];
unsigned long elapsed;

sprintf(fname, ·%d-%d.%d·,NUM_PROCS,BASE,id);

tms = fopen(fname,·w-);

elapsed = stop_time - start_time;
/* fprintf(tms ·Start Time =======> %u\n-,start_time);
fprintf(tms, -Stop Time =======> %u\n·,stop_time); */
fprintf(tms, -%d %d %u\n·,NUM_PROCS,UDSIZE,elapsed);

fflush( tms ):
fclose( tms );
}

void mem-error( routine)
char *routine;
( ****************** MEMORY ERROR ****.****************\n

e
);

printf(·\n\n %s\n\n.,routine);
printf(·
exit(O);
}

121



Index Set Processor (PI through PIIN-l) Program
/******************************* •• ********* ••••• * •• *•••••••••••••••• *•• ** ••••••• * ••• /
/* *1
/* Pipeline Scheme Middle Processor Source Code .,
/* March 22, 1994 */
/* */
/. This is the code that runs on the Middle processors in the processor array. * I
/* This program exchanges messages with the processor directly above and below */
/* it in the processor array as describes in Chapters 2, 3 & 4. ./
/* */
/****************.***** •••••••••••••••••••••• * ••••••••••••••• ***.*******************/

'include <stdio.h>
'include <cube.h>

'include ·simdefs.h·
'include ·simstructs.h-

void ins();
void del();
void srch ( ) ;
void ext();
struct node *search_node();
void set~ray();

void mem-error();

long int ins_count, del_count, acc_count:
int node_num;

int NEXT, PREV, NUM_PROCS;

main ()
(
struct re~type new_request;
int done = FALSE;

ins_count = del_count = acc_count 0;
node_num =mynode();

csend(READY,&done,sizeof(done),ROOT,PROC_PID);
crecv(READY,&NUM_PROCS,sizeof(NUM_PROCS»;

set_gray ( node_num };

csend(READY,&done,sizeof(done),ROOT,PROC_PID);

while ( !done )

~reCV(TRANs.&neW_request.sizeOf(new_request»;

switch ( new_request.op ) {
case INSERT: ins( new_request };

break;
case DELETE del ( new_request );

break;
case ACCESS srch( new_request );

break:
case EXIT ext( new_request );

done =TRUE;
break;

default printf(-Unknown op on %d\n·,mynode(»:
break;

} ;
}

}

void ins( new_request}
struct reQ...type new_request;

( 1 type it_repl;struct ins_trans_rep -
struct ins_type insert;
struct node curr;

ins_count++i

d(IT REPLy,&it_repl,sizeof(it_rep!),PREV,PROC_PID);
~~:~V(INS,&insert,sizeof(insert»;

122



new_request.p-prime = searc~ode(curr,new_request.key);

csend(TRANS,&new_request,sizeof(new_request),NEXT,PROC_PID);

creCV(IT_REPLY,&it_repl,sizeof(it_repl»:

new_request.p-prime = search_node(curr,new_request.key);
csend(INS,&insert,sizeof{insert),NEXT,PROC_PID);

void del( new_request)
struct r~type new_request;
{
struct del_trans_repl_type dt_repl;
struct del_type delte:
struct node curr;

csend(DT_REPLY,&dt_repl,sizeof(dt_repl),PREV,PROC_PID);
crecv(DEL,&delte,sizeof(delte»;

new_request.p-prime = search_node(curr,new_request.key):
csend(TRANS,&new_request,sizeof(new_request),NEXT,PROC_PID);

new_request.p-prime = search_node(curr,new_request.key);
csend(DEL,&delte,sizeof(delte),NEXT,PROC_PID);

void srch( new_request )
struct re~type new_request;
{
struct node curr;

acc_count++:

new_request.p-prime = search_node(curr,new_request.key);
csend(TRANS,&new_request,sizeof(new_request),NEXT,PROC_PID);.
void ext( new_request)
struct re~type new_request;
{
FILE *out:
char fname[301i

if( STATS )
(
sprintf(fname, ·stats.%d·,mynode(»;

out = fopen (fname, ·w· ) :

fprintf(out, • Insert Count
fprintf(out, ·Delete Count
fprintf(out, -Access Count

====> %d\n·,ins_count)
====> %d\n·,del_count)
====> %d\n·,acc_count)

fflush( out );
fclose ( out );
}

csend(TRANS,&neW_request,sizeof(new_request),NEXT,PROC_PID);

void set~ray(node_num)
int node_num;
{
int *gray_code,i;

(

0 t *}calloc(NUM PROCS,sizeof(int»;gray_code = 1n -

for(i=Oi i<NUM_PROCS; i~+)
gray_code [i) =graY(1);

for(i=O; i<NUM_PROCS; i++)

123



{
if ( node_num == gray_codeli] )

{

NEXT = (1 -- (NUM_PROCS-l» ? 0 : gray_code {i+ll :
PRBV = (i == 0) ? 0 : gray_code(i-l):

}
free ( gray_code );
}

struct node *searclL,node( curr,key )
struct node curr:
long int key:
{
int i:

for(i=O; 1<3 && (key != curr.n[i)); i++);

return ( curr.child[i} );
}

void mem-error( routine)
char *routine:
(
printf(·\n\n ****************** MEMORY ERROR *********************\n·);
printf(· %s\n\n·,routine);
exit(O):
}

124



Last Index Set Processor (PIaN) Program

/************************************************************ ••*********************/
1* *1
/* Pipeline Scheme Last Middle Processor Source Code */
1* March 22, 1994 */
1* */
1* This is the code that runs on the last middle processor in the array_ *1
1* This program exchanges messages with the processor directly above and below *'
1* it in the processor array as described in chapters 2, 3 & 4. */
/* */
/********************************.*.***.***.***.****.** •• **** •• ***.******.****.*****/

'include <stdio.h>
'include <cube.h>

.include ·simdefs.h·
'include ·simstructs.h·

void ins ();
void del();
void arch ( ) ;
void ext();
struct node *search_node();
void set_gray ( ) :
void mem_error():

long int ins_count, del_count, acc_count;
int node_num;

int NEXT, PREV, NUM_PROCSi

main ()
{
struct re~type new_request;
int done = FALSE:

ins count = del_count = acc_count = 0;
nocle_num = mynode ( ) :

csend(READY,&done,sizeof(done),ROOT,PROC_PID);
crecv(READY,&NUM_PROCS,sizeof(NUM_PROCS»;

set_gray ( node_num );

csend(READY,&done,sizeof(done),ROOT,PROC_PID);

while ( !done )

~reCV(TRANS,&neW_request,siZeOf(new_request»;

switch ( new_request.op ) (
case INSERT: ins( new_request );

break;
case DELETE del ( new_request );

break;
case ACCESS srch( new_request );

break:
case EXIT ext ( new_request ):

done = TRUE;
break;

default printf(·Unknown op on %d\n·,mynode(»;
break;

} :

void ins( new_request)
struct re~type new_request:

~truct ins_trans_repI7type it_repl;
struct ins_repl_type 1ns_repl;
struct ins_type insert:
struct node curr;

ins count++:

cse:dlIT_REPLY.&it_rePl.SizeOflit_rePl),PREV,PROC_PID);

125



crecv(rNS,.1nsert,sizeof(insert));

new-request.p-prime = searcn-node(curr,new_request.key);
Csend(TRANS,knew_request,sizeof(new_request),NEXT,PROC_PID);
}reCV(INS-RBPLY,&ins_rePl,SiZeOf(inS_rePl»;

void del ( new_request)
struct r~type new_request:
{

struct del_trans_repl_type dt_repl;
struct del_repl_type del_repl;
struct del_type delte:
struct node curr;

csend(DT_REPLY,&dt_repl,sizeof(dt_repl),PREV,PROC_PID);
crecv(DEL,&delte,sizeof(delte»;

new_request.p-prime = searcn-node(curr,new_request.key);
csend(TRANS,&new_request,sizeof(new_request),NEXT,PROC_PID):
crecv(DEL_REPLY,&del_repl,sizeof(del_repl»;

void srch( new_request )
struct reeL-type new_request:
{
struct node curr;

new_request.p-prime = search_node(curr,new_request.key);
csend(TRANS,&new_request,sizeof(new_request),NEXT,PROC_PID);

void ext( new_request)
struct re~type new_request:
{
FILE *out:
char fname [30] ;

if( STATS )
{
sprintf(fname,·stats.%d·,mynode(»:

out = fopen(fname, ·w·):

fprintf(out, -Insert Count ====> %d\n·,ins_count)
fprintf(out, -Delete Count ====> %d\n-,del_count)
fprintf(out, -Access Count ====> %d\n-,acc_count)

fflush( out );
fclose( out );
}

csend(TRANS,&new_request,sizeof(new_request),NEXT,PROC_PID);

void set_gray(node_num)
int node_num;
{ .
int *gray_code,~;

d ( ' t *)calloc(NUM PROCS,sizeof(int»;gray_co e = ~n -

for(i=O; i<NUM_PROCS; i~+)
gray_code[i] = graY(1);

for(i=O; i<NUM_PROCS; i++)

{if( node_num == gray_code[i]

{ NEXT = (i -- (NUM_PROCS-l» 001 0[= ~r]aY_Code[i+l);
PREV = (i == 0) ? 0 : gray_c e ~- ;

126



)
free ( gray_code );
}

struct node *search.-node( curr,key )
struct node curr;
long int key;
{
int ii

for(i=O; i<3 && (key != curr.n[i]); i++);

return ( curr.child[i] );
}

void mem_error( routine)
char *routine:
{
printf(·\n\n •••••• ************ MEMORY ERROR *********************\n e

);

printf (. %s\n\n- I routine) ;
exit(O);
)

127



Key Set Processor (P1aN+l- Last Processor in the Array) Program

/***********************************************************************************/
/* */

/* Pipeline Scheme Last Processor Source Code *'
/* March 22, 1994 */
/* */
/* This is the code that runs on the last processor in the array. */
/* This program accepts requests and then sends an acknowledgement signal to the */
/* root processor (first processor in the array). Again the messages are as *'
/* described in Chapters 2, 3, & 4. */
/* */
/****************************************************************************.* ••••*/

'include <stdio.h>
'include <cube.h>

'include ·simdefs.h­
linclude ·simstructs.h8

void ins();
void del();
void srch();
void ext();
struct node *search-node();
void set~ray():

void mem_error():

long int ins_count, del_count, acc_count;
int node_num;

int NEXT, PREV, NUM_PROCS;

main ( )
(
struct rec;Ltype new_request;
int done = FALSE;

ins count = del_count = acc_count = 0;
node_num = mynode();

csend(READY,&done,sizeof(done),ROOT,PROC_PID);
crecv(READY,&NUM_PROCS,sizeof(NUM_PROCS);

set_gray ( node_num );

csend(READY,&done,sizeof(done),ROOT,PROC_PID};

while ( !done )

~recV(TRANS,&neW_request,sizeOf(neW_request»;

default

case EXIT

case DELETE

case ACCESS

switch ( new_request.op ) {
case INSERT: ins( new_request );

break;
del( new_request );

break;
srch( new_request );

break;
ext ( new_request );

done = TRUE;
break;

printf(8unknown op on %d\n-,mynode(»;
break:

} ;

void ins( new_request)
struct re<t...type new_request:
(
struct ins_repl_type ins_repl:
struct ack_type ack;
struct node curr;

ins_count++:
· f(· repl)PREVPROCPIO);

csend(INS_REPLy,&ins_repl,s1zeo 1ns_ ' , -

128



new-request.p..,prime = search.-node(curr new request key)·
csend(ACK,&ack,sizeof(ack),ROOT,PROC_PID);- .,

void del( new_request)
struct r8Q...type new request-{ -,

struct del_repl_type del_repl;
struct ack_type ack;
struct node curr;

CSend(DEL-REPLY,&del_repl,sizeOf(del_repl),PREV,PROC_PID);
new_request.p-prime = searcn-node(curr,new_request.key);
csend(ACK,&ack,sizeof(ack),ROOT,PROC_PID);

void srch( new_request )
struct re~type new_request;
(
struct ack_type ack;
struct node curr;

new_request.p-prime = search_node(curr,new_request.key);
csend(ACK,&ack,sizeof(ack),ROOT,PROC_PID);

void ext( new_request)
struct req..type new_request;
(
FILE *out;
char fname[30];

if( STATS )
(
sprintf(fname,·stats.%d·,mynode(»;

out = fopen(fname, ·w·);

fprintf(out, -Insert Count ====> %d\n·,ins_count)
fprintf(out, ·Delete Count ====> %d\n·,del_count)
fprintf{out, -Access Count ====> %d\n·,acc_count)

fflush( out );
fclose( out );
}

csend(TRANS,&new_request,sizeof(new_request),ROOT,PROC_PID);

void set_gray (node_num)
int node_num:
{ .
int *gray_code,1i

gray_code = (int *)calloc(NUM_PROCS,sizeof(int»;

for(i=O; i<NUM_PROCS; i~+}

gray_code[i] = graY(1);

for(i=O; i<NUM_PROCS; i++)

life node_Dum == gray_code[i]

{ NEXT = (i -- (NUM_PROCS-lll ? 0 : gray_code[i+l);
PREV = (i == 0) ? 0 : gray_code[1-1);

}
free( gray_code );
}

129



struct node "'searclLnode( curr,key )
struct node curr;
long int key;
{
int i;

for(i=O; 1<3 && (key != curr.n[i]); i++);

return ( curr.child[i] );
}

void mem_error( routine)
char "'routine;
{
printf(·\n\n ****************** MEMORY ERROR *********************\n-);
printf(· %s\n\n·,routine);
exit(O);
}

130



APPENDIX D

Gray Code Calculation

131



Gray Code Calculation

There is a simple trick to generate a gray code that can be used to give a chain
addressing to nodes in a hypercube parallel computer.

For a cube of 2 nodes, the labels are given as:

o
1

Then, as the number of nodes is increased (by a power of 2, as is required by the
hypercube architecture), simply copy the code from the previous size, invert it and
append the inversion to the end, and finally add a most significant bit each line such
that the first half of the lines get a 0 and the second half get a 1. So for a cube of 4
nodes the code is:

Binary ~ay codes Decimal Equivalent
00 0
01 1
11 3
10 2

Where 0,1 are the added most significant bit, 0,1 are the gray code from the previous
power of two, and 0,1 are the inverted code from the previous power of two.

Thus the "chain" addresses of the nodes are 0,1,3,2 decimal. This can be repeated for
the next power of 2, (8), and so on for as many nodes as are in the cube.

Binary ~ay codes
000
001
011
010
110
111
101
100

Decimal Equivalent
o
1
3
2
6
7
5
4

So the gray code labeling of the nodes would be (0,1,3,2,6,7,5,4).

132



VITA 2~

Troy H. Laramy

Candidate for the Degree of

Master of Science

Thesis:

Major Field:

Biographical:

AN ALTERNATIVE METHOD FOR PARALLEL M-WAY
TREE SEARCH ON DISTRIBUTED MEMORY
ARCHITECTURES

Computer Science

Personal Data: Born in Topeka, Kansas, On November 3, 1968, the son of
Richard and Marilyn Laramy.

Education: Graduated from Ponca City High School, Ponca City, Oklahoma in
May 1987; received Bachelor of Science degree in Computer Science from
Oklahoma State University, Stillwater, Oklahoma in December 1991.
Completed the requirements for the Master of Science degree with a major
in Computer Science at Oklahoma State University in May 1994.

Professional Experience: Teaching Assistant, Oklahoma State University,
Department of Computer Science, August 1993 to May 1994.


	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	006.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	022.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif
	055.tif
	056.tif
	057.tif
	058.tif
	059.tif
	060.tif
	061.tif
	062.tif
	063.tif
	064.tif
	065.tif
	066.tif
	067.tif
	068.tif
	069.tif
	070.tif
	071.tif
	072.tif
	073.tif
	074.tif
	075.tif
	076.tif
	077.tif
	078.tif
	079.tif
	080.tif
	081.tif
	082.tif
	083.tif
	084.tif
	085.tif
	086.tif
	087.tif
	088.tif
	089.tif
	090.tif
	091.tif
	092.tif
	093.tif
	094.tif
	095.tif
	096.tif
	097.tif
	098.tif
	099.tif
	100.tif
	101.tif
	102.tif
	103.tif
	104.tif
	105.tif
	106.tif
	107.tif
	108.tif
	109.tif
	110.tif
	111.tif
	112.tif
	113.tif
	114.tif
	115.tif
	116.tif
	117.tif
	118.tif
	119.tif
	120.tif
	121.tif
	122.tif
	123.tif
	124.tif
	125.tif
	126.tif
	127.tif
	128.tif
	129.tif
	130.tif
	131.tif
	132.tif
	133.tif
	134.tif
	135.tif
	136.tif
	137.tif
	138.tif
	139.tif
	140.tif
	141.tif
	142.tif

