
ANALYSIS OF QUANTITY SPACE

mERARCHY IN CC

By

SHASHI V. KOWDLE

Bachelor of Engineering

Bangalore University

Bangalore, India

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1994

OKLAHOMA STATE UNIVERSITY

ANALYSIS OF QUANTITY SPACE

HIERARCHY IN CC

Thesis Approved:

--~~-----.

QaAf:r:adf~

ii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Blayne E. Mayfield for his

guidance and advice throughout my research work. Without his guidance

completion of this thesis would have been difficult.

My special thanks goes to my mother Kamala, father Viswamurthy,

brother Ashok and Sujaya for their encouragement and support throughout

my graduate studies.

I would also like to thank Drs. Paul D. Benjamin and John P.

Chandler for their useful suggestions while serving on my committee. I

would like to express my gratitude to Dr. Mansur H. Samadzadeh for his

advice and encouragement.

Finally, I would like to thank my friends Sujatha and Raghu for their

help. Last but not the least I wish to express my gratitude to my friend

Abdul for his encouragement and support.

111

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION · .. . 1

1.1 Background1
1.2 Problem .. . 4
1.3 Outline of the Thesis 4

II.LITERATURE . . 5

2.1 Modeling and Simulation. . 5
2.1.1 Comparison of different Simulations. . 6
2.1.2 Quantitative Simulation 6
2.1.3 Analytical Simulation 8
2.1.4 Qualitative Simulation 9
2.1.5 Qualitative Modeling and Simulation 10

2.2 QSIM 16
2.2.1 Definitions and Terms in QSIM. . 17

2.3 CC 17

III.SOFTWARE AND IMPLEMENTATION 20

3.1 Background of Research. . 20
3.1.1 Inheritance and CC. . 20

3.2 Software Methodology 25
3.2.1 Specialization. . 26
3.2.2 Generalization 26
3.2.3 Multiple Inheritance 26

3.3 Software Implementation 27
3.3.1 Add New Landmark Value 28
3.3.2 Delete Landmark Value 29
3.3.3 Combine Landmark Values of Two Quantity Spaces 30

3.4 Results and Discussion. . 33
3.5 Advantages and Disadvantages of Inheritance 36
3.6 Advantages of the Package 37
3.7 Limitations of the Package37

IV

Chapter Page

IV CONCLUSIONS 38

4.1 Future Work . . 38

BIBLIOGRAPHY. . 40

APPENDIX A Example Of Inheritance Of Quantity Space. . 42

APPENDIX B Resistor Capacitor Circuit. . 47

APPENDIX C Program Listing. . 49

APPENDIX D Example Showing Inheritance Operations. . 66

v

Figure

LIST OF FIGURES

Page

1. Simulation-Behavior of Variable VIS Time 5

2. A Simple Heat-Flow System . . 7

3. Behavioral Description ofNumerical Simulation 8

4. Behavioral Description of Analytical Simulation. . 9

5. Behavioral Description of Qualitative Simulation 11

6. Steps Involved in Modeling and Simulation of a Physical System . . 12

7. CC Quantity Space Hierarchy 1 .. . 21

8. CC Quantity Space Hierarchy 2 .. . 22

9 Ordering of Landmark values 23

10. Qualitative Simulation of Example in Appendix A. . 24

11. Voltage Across Battery Before Inheritance and After Inheritance . . 25

12. Function Performed by the Preprocessor 27

13. Qualitative Simulation of Example in Appendix D without Inheritance 34

14. Qualitative Simulation of Example in Appendix D with Inheritance
Operations. . 35

15. Resistor-Capacitor Circuit.. . 48

VI

CHAPTER I

INTRODUCTION

1.1 Background

Computers are used widely in science and engineering for data analysis

and simulation [1]. Computer simulation is an expensive field of

experimentation. It requires considerable system analysis, program

development work, and long computer run times [1]. Nevertheless, application

of computer simulation has grown extensively in the last two decades and

covers a wide range of areas. An important factor for its extensive use is its

flexibility. There are many other approaches to generate the behavior of a

physical system, such as mathematical programming, analytical approach, and

others. In mathematical programming problems derived from the real world

have to be transformed into an idealized model with certain specific structure

[1]. By using analytical approach, it is possible to construct such models

without significant compromise from the true nature of actual systems.

Analytical approach produces optimal solutions. The simulation approach, on

the other hand, usually imposes less stringent constraints on modeling and the

actual systems. One of the objectives of simulation is to develop functional

relationships which use simulation to obtain insights into relationships among

variables. Instead of looking for a solution to an individual numeric problem,

it searches for general relationships among variables.

1

2

Computers can be exploited in a grander way. One such exploitation is to

build systems capable of reasoning about the physical world, much as

engineers or scientists do. This led to the model based diagnosis, which is used

to develop symbolic computational methods for representing knowledge. In

model based diagnosis, models have to be built for physical systems and

computer simulation can be carried out on those models. In order to build

models for physical systems, the following has to be considered [2]:

1. The model should express only the information known about the

system.

2. The model should not require assumptions beyond what is known about

the system.

3. From the model, it must be mathematically and computationally

feasible to derive predictions.

4. From the model, it should be possible to match predictions against

observations.

Computer simulation carried out on the physical system generates the

system's behavior. The behavior describes the change in a variable's value over

time. There are different types of simulations:

1. Quantitative Simulation

2. Analytical Simulation

3. Qualitative Simulation

One important representation for the model of a physical system is

qualitative description of continuous variables, their directions ofchange, and

constraints among them. The qualitative description of the variables led to the

research on qualitative simulation ofphysical systems from the model based

diagnosis [2]. Much research has been carried out on qualitative simulation.

3

Qualitative simulation solves certain drawbacks ofquantitative and analytical

simulation. In qualitative simulation the variables can be in symbolic form or

linguistic form. In qualitative simulation, by fITst examining the physical

structure, a set of differential equations (constraint equations) that describe the

structural relationships among different variables ofa system may be derived

(variables can have values such as Tall, Very Tall, etc.). Then, the possible

behaviors of the system can be predicted using the constraint equations and the

initial state. QSIM is a software tool for using and exploring qualitative

simulation [10].

Qualitative simulation may produce multiple solutions since qualitative

reasoning schemes approximate and abstract variable values and constraint

relationships. In this regard, Kuipers (Kuipers and his research group are

working on qualitative simulation at University of Texas, Austin) proved that

qualitative simulation may generate spurious (i.e., impossible); also, they are

not suitable for all domain models. In certain physical systems it is necessary

to know an individual component's behavior along with the behavior of the

entire physical system (e.g., Simulation of Electrical Circuits). For simulation

of such complex physical systems, it is necessary to extend Kuiper's method of

qualitative simulation. Component-Connection modeling is one such

extension.

In the Component-Connection modeling approach the physical system is

modeled in terms of its components and their interconnections. Component

Connection modeling is very useful in certain simulations. For example, in the

fault analysis of an electrical circuit, the behavior of each component must be

known as well as the behavior of the entire circuit. CC is a software package

that is used for the simulation ofComponent-Connection models [11], [12].

4

1.2 Problem

In the CC software package [12] quantity spaces (explained in the later

chapters) are defined as a set of landmarks arranged in a partial order, where

landmarks are the possible qualitative magnitudes for a variable. The CC

documentation [12] by Franke and Dvorak mentions that the quantity spaces

can be arranged in an inheritance hierarchy. Initially it appeared that in such

hierarchies only the conservation correspondences (lists of landmarks whose

sum is zero) were inherited and not the landmark lists. After running a few

examples it was observed that both the conservation correspondences

(explained later in Chapter II) and the landmark lists are inherited, but only a

simple inheritance of landmark values is possible. Inheritance operations

cannot be performed on the inherited values. Moreover, the landmark values

and the conservation correspondences that are inherited override the previous

landmark values and conservation correspondences of the quantity space.

1.3 Outline Of The Thesis

In this thesis a software program is developed which performs inheritance

operations on the quantity spaces. Qualitative simulation can then be

performed on the output obtained from the software program. Also, an

analysis is carried out to obtain the advantages and disadvantages of

performing the inheritance operations on the quantity space.

The software program was created in "C" programming language in

Sequent Symmetry S/81 environment. The implementation was performed on

QSIM and CC package which is written in common lisp. Finally, X window

system was used to view the output behavioral plot obtained by QSIM.

CHAPTER II

LITERATURE REVIEW

2.1 Modeling and Simulation

Modeling primarily deals with the relationship between physical systems

and creating models for the systems. The model for a physical system can be

used to generate the behavioral data plot of state variable's value versus time

[15] as shown in Fig. 1.

Variable
(x)

Time (t)

Figure 1: Simulation - Behavior of Variable V/S Time

The basic categorization of a model relates to the time base on which

model events occur. A model is a continuous time model if time is specified to

flow continuously, in that time advances smoothly through real numbers. The

model is a discrete time model if time flows in a jump, in that time advances

periodically. The continuous time models are further classified into discrete

event and differential equation classes [15]. In a discrete event model, time

flows continuously, but the event changes from one state to another at specific

5

6

time intervals. A differential equation model is a continuous time, continuous

state model in which state changes are continuous and the time derivatives

(rate ofchange of time) are governed by differential equations. Models built

for physical systems are often expressed by differential equations.

A second categorization of a model relates to the range of the model's

descriptive variables [15]. The model is a discrete state model if its variables

assume a discrete set of values. It is a continuous state model if their ranges

can be represented by continuous numerical values. If the variables considered

are qualitative in nature, the model is termed as qualitative state model. A

qualitative state model can be a continuous time model or a discrete time

model, where the variables can take on both numeric values and symbolic

values. Simulation of some models can be performed using a software

program which generates the behavior of the model.

2.1.1 Comparison of different simulations

There are various approaches to simulation of physical systems:

1. Quantitative Approach

2. Analytical Approach

3. Qualitative Approach

2.1.2 Quantitative Simulation

A variety of systems can be represented by a mathematical model in the

form ofdifferential equations. Reasoning of such physical systems can be

performed by describing the structure ofa physical system with differential

equations and determining its behavior by solving the differential equations

either analytically or quantitatively. Consider an example ofa physical system

7

[7] (Fig. 2) consisting ofa closed container filled with gas (at temperature T)

receiving heat from a source (at temperature Ts)'

A description of this system is "the temperature ofthe gas increases until

it is equal to the temperature ofthe source".

~T = Ts - T

inflow = ~T/k

dT/dt = inflow

where: Ts = Source temperature

T = Gas temperature

~T = Temperature difference between source and gas

inflow = rate of flow of heat into gas

k = Cp (constant)

where: Cp = Coefficient of specific heat

Gas(T)

Source (T)s

Figure 2. A Container of Gas Receiving Heat from a
Source [7]. A Simple Heat-Flow System

Quantitative simulation of this physical system (Fig. 2) requires a

complete description, in that the values ofeach parameter at each point of time

considered must be given as a numerical value. That is, in the above example

the values ofTs and T must be measured in the experiment in order to perform

8

the quantitative simulation. If these values are not measured the value ofaT

cannot be calculated. The relationship between aT and inflow must also be

specified precisely. The output of the quantitative simulation requires further

interpretation to recognize and classify important events in the system's

behavior (e.g. at what temperature the container breaks down etc.). The

fundantental problem with this kind ofsimulation is the values of the

parameters must be known. The simulation cannot run with incomplete

knowledge of the system parameters. The behavioral description produced by

quantitative simulation of a simple heat-flow system [7] is as shown in fig. 3:

t

T

Ts

at

o
300

1000

700

1

370

1000

630

2

433

1000

567

3

490

1000

510

Figure 3. Behavioral Description ofNumerical Simulation [7]
(the value of constant k in the description is 10)

2.1.3 Analytical Simulation

In the case of analytical solution of a differential equation, the relationship

between variables must be specified explicitly; then it can be solved

analytically. Quantities can be represented as symbols instead of real numbers

and a symbolic vocabulary of relationships can be asserted between quantities.

In spite of this descriptive power, analytical solution of differential equations

require global and knowledge-intensive operations such as indefinite

integration.

9

The behavioral description produced by the analytical approach of

simulation is shown in Fig. 4.

dldt T = inflow = kat = k (Ts - T)
IdTffs-T = Ikdt
In (Ts - T) = Ikt + C
Ts - T = C' e-kt

T = Ts - C' e-kt

Figure 4: Behavioral Description of Analytical Simulation [7]

Quantitative simulation treats quantities as real numbers but requires

sophisticated interpretation to understand the structure of the system and derive

the differential equations that describe the behavior of the systems. Analytical

solution treats parameters as real-valued continuous function and yields an

interpretable solution, but it requires sophisticated mathematical techniques to

solve the differential equations. In quantitative simulation all the numerical

values of the parameters must be known: only then can the behavior of the

system be determined. However, in analytical simulation, even if the

numerical values of some parameters are not present, the differential equations

can be solved and the simulation can be carried out. Also in analytical

simulation the variables can be symbolic (declarations such as Tall, Very Tall

can be given to the variables), but in quantitative simulation only numeric

values can be given.

2.1.4 Qualitative Simulation

The fundamental problem faced by quantitative simulation and solved by

analytical simulation is that the variables in analytical simulation need not have

10

a numeric value as in quantitative simulation; they can also be symbolic.

However, analytical simulation requires immense computational and

mathematical skills (as observed in the example in Fig. 4). Qualitative

reasoning about physical systems is capable of using incomplete knowledge,

such as a weakly specified functional relationship, or non numerical initial

parameter values, and they do not require extensive mathematical skills.

Similar to the analytical approach qualitative reasoning of physical system

operates on symbolic descriptions of real numbers and relations between them.

But, the qualitative structure and behavioral descriptions offer simplicity of

mechanism, in that the qualitative simulation process depends on the ability of

the user to create and match simple assertions, rather than on arithmetic

operations or symbolic integration. In qualitative simulation, the values of the

variables and functional relationships among variables are constrained to lie in

the qualitatively specified classes. The behavioral description of the simple

heat-flow system (Fig. 2) produced by qualitative simulation is shown in ·

Fig. 5.

Fig. 5 shows the behavior of the system when T, liT, and inflow vary

according to the constraints specified until they reach their limits, i.e., T

increases until it is equal to Ts. It also shows the behavior of the mechanism

when the initial condition is T =Ts, liT =0, and inflow = 0; i.e., the system is

steady.

2.1.5 Qualitative Modeling and Simulation

Qualitative reasoning methods provide more expressive power for states

of incomplete knowledge than ordinary differential equations [2]. Research in

reasoning with qualitative models has been motivated by such concerns as

11

1. initial condition:
constant(Ts)
T<Ts

constraints (relationships among variables):
~T > 0
inflow> 0
increasing (~T)

decreasing (~T)

decreasing (inflow)
2. initial condition:

T = Ts
~T = 0
inflow = 0

Constraints:
steady (T)
steady (~T)

steady (inflow)

Figure 5: Qualitative Behavior of A Simple Heat-Flow System [7]

providing programs with the ability to reason about the physical world in the

face of incomplete knowledge [3,4].

Model-building (necessary for building the qualitative models) starts with

the description of a physical situation and builds an appropriate simplified

model (as a qualitative differential equation described in the next section) [5].

Generally, the linear path through the model building is as shown in

Fig. 6.

The various stages in building a model and predicting the behavior of a

physical system can be described as

1. :

From a physical scenario of a system the elements that are not

related to the specific qualitative behavior considered, are abstracted.

This depends on the type of model that is being constructed.

12

Physical

Scenario

Model Selection

Abstract

Elements

Closed World
Assumption Model Building

QDE

Qualitative Simulation

Qualitative

Behaviors

Figure 6. Steps Involved in Modeling and Simulation of
a Physical System

2. :

Using the closed world assumption the differential equation for the

physical system can be obtained. CC and QPC are two of the software

packages available for generating qualitative differential equations to

describe the physical system. In turn this is used by QSIM to perform

the qualitative simulation.

3. Qualitative Simulation:

The qualitative simulation of the system produces its qualitative

behaviors. QSIM is a software tool for performing qualitative

simulation.

13

Three modeling ontologies are:

1. Device oriented approach (component-connection):

The device oriented approach models a physical system in terms of its

components and their interconnections. This approach ofmodeling

models the physical systems directly.

2. f[Qcess-centered approach:

The process-centered approach models a physical system in terms of a

set of processes that govern the dynamic behavior of the system. This

approach of modeling does not directly model the physical system, but

describes it in terms of processes.

3. CQnstraint-~ apprQach: The constraint-based approach models

interactions among quantities that describes the behavior of the system.

Interactions are described in terms of the qualitative constraint

equations. This approach does not directly model the physical

system.

Regardless of which approach is being used, "system behavior" is derived

from the structure of the model using qualitative simulation [4]. System

behavior is defined as changes in the system's state over a time interval.

Qualitative models incorporate qualitative functional relations to specify

constraints among quantities.

Using these modeling ontologies, the differential equation model for the

physical system can be built. Once models (which are QDE Le., qualitative

differential equations) are obtained, qualitative simulation can be performed

using QSIM. The differential equation model for QSIM can be given directly

as QSIM input, or it can be obtained either from CC which produces a QDE

model from a given set of components and connections or QPC which

14

produces a QDE model from a given set ofprocesses. CC and QPC are two

compilers available for obtaining QDE models.

1. CC provides the necessary QDE structure suitable for QSIM input. It

takes as input a physical system described in terms ofexplicit

connections among instances ofcomponents defined in the component

library.

2. QPC builds QDE models after the qualitative process theory by

identifying sets of active views and processes in a view library and

applying the closed world assumption to transform influences into

constraints.

These approaches to model-building differ in the nature of the knowledge

supplied by the modeler and in the way closed world assumption is applied.

Specifically, when describing a device with a CC model, the modeler asserts

that all relevant interactions between the components take place via explicit

connections. In QPC, the system is responsible for determining the set of

relevant interactions and deciding when to apply Closed World Assumption

[5]. Given a qualitative model expressed as parameters, quantity spaces, and

constraints, QSIM generates possible behaviors of the model.

Qualitative simulation incorporates qualitative representations of quantity

values. Qualitative simulation starts with a set ofqualitative constraints (a set

of differential equations) and an initial state, and predicts the set of possible

behaviors of the system. It applies in situations where knowledge of the

system is imprecise or incomplete. Qualitative simulation requires two things:

1. Representations of the qualitative structure and behavior of the

mechanism.

2. Algorithms for deriving behavior from structure and initial

condition.

IS

The structure ofa mechanism is described in terms of sets ofparameters

and constraints among them. In a QDE the set of parameters are expressed as

quantity spaces (as described below). The structural and behavioral

representation for qualitative simulation could be shown as an abstraction of

ordinary differential equations (ODE) and their solutions. A QDE is described

as a set of ordinary differential equations with two essential abstractions.

First, quantity space is an abstraction of the real number line to an

ordered set of landmark values. It is a collection of numbers which forms a

partial order when compared to the real number line. Quantity space provides

a means to partition numerical values and thus express boundary conditions for

the behavior. A landmark value is a qualitatively interesting point in the range

of variables. There are two distinct semantics for landmark values. They are

temporally generic if they refer to a behavior in general and temporally specific

if they refer to a single behavior [9]. Examples of temporally generic and

temporally specific landmarks are: the script of a drama is temporally generic,

because it describes the entire scenario of the drama and not any particular

scene, and a specific scene in the drama is temporally specific, as it narrates the

happenings in a particular scene.

Second, the arithmetic and differential constraints in the ordinary

differential equations are augmented by a monotonic function constraint which

describes a fixed but unknown function in terms of its direction of change

An example, of a monotonic function constraint:

1. M+ X Y i.e., As X increases Y also increases.

2. M- X Y i.e., As X decreases Y also decreases.

16

2.2 QSIM

QSIM provides the representations and algorithms necessary for deriving

the behavior ofa system from its structure and an initial state. QSIM uses the

device oriented approach for modeling the physical system. QSIM takes as

input a QDE and the description of its state, at time to and then predicts a set of

possible behaviors, which is interpreted as [2], [7]

QSIM: QDE, Qstate(to) -> or(QBeh1 --- QBehn)

That is, starting in state (to), QSIM predicts that one of the behaviors

QBeht ...QBehn will describe the actual behavior of the system.

The different tasks that can be performed by QSIM are[IO]:

1. QSIM allows the user to define the structure of a mechanism as one or

more QDE. The constraints necessary for determining the behavior

of the system are defined here.

2. The user can specify the initial condition or state for the simulation.

3. QSIM generates the behavior tree of states from the initial state.

4. The user can use the behavior tools to explore these behaviors.

A QSIM model is expressed as a QDE. A QDE specifies the structure of a

mechanism with a set of variables (continuously differentiable), quantity space

(qualitative abstraction ofa variable), and constraints. A QSIM variable takes

on a qualitative value which includes a qualitative magnitude and a change of

direction qdir, which can be increasing (inc), decreasing (dec), steady (std) or

ignore (ign). When qdir is ignore it indicates that change in direction is

unknown. In that case, simulation is performed with all possible change of

directions.

17

2.2.1 DefInitions and Terms in QSIM

The QDE is frrst created in QSIM, which generates a structure with the

following specifications:

Quantity space: Defines the set of parameters used to describe the structure of

the physical system.

Constraints: Consists of a set of parameters and a set of axioms stating

relationships between the variables and derivatives of the parameters.

Layout: Specifies the format in which the output of the simulation is

displayed.

The overall simulation is performed by using a built-in function. It

performs the simulation from the initial state specified. The behavior tree is

displayed from the initial state specified using a built-in function.

Given a model, QSIM generates the system's possible behaviors. Each

behavior is represented as a sequence of states where each state describes the

qualitative values of all the variables. Graphically, a behavior is shown as a

collection of plots, one for each quantity in the model [11]. The plot depicts

how a variable changes its value qualitatively from one time point to another.

The value of a number or magnitude is described in terms of its quantity space.

A quantity space is a collection of numbers which form a partial order. A

quantity space of a number one point to the following interval and to the next

time point and so on.

2.3 CC

CC is a software tool for compiling the Component-Connection model of

a device into variables and constraints which are necessary to build a QSIM

18

QDE [11,12]. The output obtained from CC (a QDE model) is used as an input

to QSIM to obtain the qualitative behavior ofthe physical system. CC uses the

device oriented ontology to build the differential equation models.

1. The variables from the component instances provide the variables of

the QDE.

2. The constraints from component instances provide the constraints of

the QDE.

3. The connections imply additional constraints.

Two important concepts of model definition in CC are component

definition and component abstraction [12]. Component definition permits

components to be defined in terms of components and connections between

these components; it also describes the relationships among QSIM constraints

and other components. Component definition expressed in terms of other

components is called composed component definition, and component

definition expressed only in terms of QSIM constraints and variables is called

primitive component definition.

Component abstraction defines the internal structure of the component.

Component abstraction has two parts; component-interface and component

implementation.

Component-interface defines a component type (example: electrical,

hydraulic, etc.) and an interface for that type. An interface description contains

the terminals (input and output ports of a component) and parameters ofthe

components. The terminals and parameters are used in both primitive and

composed implementations.

Component-implementation provides the decomposition ofcomponents

into simpler (sub) components. It also specifies the variables used by the

components and the constraints among these variables. Component-

19

implementation dermed in terms ofthe QSIM constraint equations is called

primitive component implementation. In primitive component implementation

variables are declared either as terminal variables (variables associated with the

terminals ofa system) or component variables (additional variables to specify

the behavior of a system).

On the other hand, composed component implementation is defined as

connections among sets of primitive and composed components. The

composed component implementation [11,12] describes a model of a physical

system as being constructed from a set of components (variables with their

constraints) and connections (which specifies relationship among terminals)

among the terminals of these components.

It is possible to predict the behaviors of a system by compiling a CC input

to QSIM QDE and simulating the behavior of QDE with QSIM.

During model building, the structures of component-interface, component

implementation and component-configuration are accessed. The hierarchy of

component definitions is processed until a primitive implementation is reached.

At this point model variables (list ofvariables in the current QDE) are

generated for the component variables in the definition, and the list of

constraints is added to the global list of constraints. When variable

declarations are encountered, the quantity space for the variable is determined

from any explicit quantity space in the variable declaration and default

quantity spaces (if there are any such declarations) specified in the component

implementation, component interface. The variables ofthe model and the

constraints are passed on to the QDE that is built.

CHAPTER III

SOFTWARE AND IMPLEMENTATION

3.1 Background of the Research Problem

3.1.1 Inheritance and CC

When component models are constructed in CC, many variables in the

model have identical or related quantity spaces. The landmark values and

conservation correspondences of identical quantity spaces can be defined

independently from the components in CC. These landmark values and

conservation correspondences can be inherited by other quantity spaces, and

various inheritance operations can be performed on them. The various

inheritance operations are: generalization, specialization, and multiple

inheritance.

Consider, for example, voltage variables in the component definitions of

electronic components [12]. For a specific model, the quantity space for a

voltage source can be represented as (0 Vhi), where Vhi represents some

positive voltage. A resistor component defines voltage variables as the voltage

difference between one terminal and the other. This voltage variable can range

from (Vhi- .. Vhi), and its quantity space can be represented as (Vhi- 0 Vhi),

where Vhi- = -Vhi. For a transistor component, an additional threshold

voltage is required. The quantity space of the transistor can be represented as

(_Vhi 0 Vth Vhi), where Vth is the threshold voltage. In the example, the

20

21

quantity space ofthe electronic components (source, resistor and transistor) can

be arranged in an inheritance hierarchy as shown in Fig. 7.

(0 Vhi)

I
I

(-Vhi 0 Vhi)

I
I

(-Vhi 0 Vth Vhi)

(Voltage Source)

(Resistor)

(Transistor)

Figure 7. CC Quantity Space Hierarchy 1 [12]

The hierarchy above exhibits specialization operation on the quantity

space of the electronic components. In specialization, a new quantity space is

made to inherit the landmark values and conservation correspondences of ail

existing one. Then the new landmark values are added to the quantity space.

In the above hierarchy, the quantity space of the resistor can be obtained

by inheriting the landmark values of the quantity space of the voltage source

and adding the landmark value Vhi- to it. Since the quantity space of the

voltage source does not contain any conservation correspondences, only the

landmark values are inherited. Similarly, the quantity space of the transistor is

obtained by first inheriting the landmark values and the conservation

correspondences of the quantity space of the resistor and then adding the

landmark value Vth to it. In this example the conservation correspondences

are not added to the quantity space; only the landmark values are added to the

quantity space.

22

In the hierarchy observed in Fig. 7, the quantity space ofthe resistor is

modified in such a way that any voltage source with the same quantity space as

the resistor can no longer exist; however, there can be some resistors with the

same quantity space as the voltage source. Similarly, in the second and third

level of the hierarchy there can be some transistors with the same quantity

space as the resistor, but there cannot be any resistors with the same quantity

space as the transistor. Also, in the hierarchy in the example above, as the

level ofhierarchy increases, the number of electronic components that can

occur with the same quantity space as the element is restricted. That is, in the

first level there can be some voltage sources or resistors or transistors with the

same range of quantity space 0 Vhi (source quantity space). In the second

level, only some resistors or transistors can exist with the same range of

quantity space Vhi- 0 Vhi (resistor quantity space). In the third level only

transistors can have the same range of the quantity space Vhi- 0 Vth Vhi

(transistor quantity space).

Figure 8 shows another inheritance hierarchy of the quantity space of the

(-Vhi 0 Vth Vhi)

I
I

(-Vhi 0 Vhi)

I
I

(0 Vhi)

(Transistor)

(Resistor)

(voltage Source)

Figure 8. CC Quantity Space Hierarchy 2 [12]

23

electronic components. The hierarchy in Fig. 8 exhibits the generalization

operation on quantity spaces. Generalization is exactly opposite to

specialization.

Quantity spaces in CC and QSIM have two characteristics: conservation

correspondences and landmark lists. Conservation correspondences are two or

more landmark values enclosed in parentheses, whose algebraic sum is made to

be zero. The landmark values are the totally ordered qualitatively interesting

points enclosed in parentheses. If the landmark values of all electronic

components are considered, the landmark values of a specific quantity space

are partially ordered. Figure 9 shows the ordering of landmark values.

Electronic Components

Resistors

QSl

Voltage Source Transistors

total order total order

QS2 QS3

Partial Order

QS 1 =Quantity Space of Resistor
QS2 =Quantity Space of Source
QS3 =Quantity Space of Transistor

Figure 9. Ordering of Landmark Values

In the example of electronic components considered in Appendix A (refer to

appendix B also) the voltages (Vhi- Vhi) is a conservation correspondence in

the quantity space of the resistor element. It was initially observed that during

inheritance in CC only the landmark lists were inherited and the conservation

correspondences were not inherited. But after running some examples (refer

24

Appendices A and B) it was observed that both the conservation

correspondences and the landmark lists are inherited. However, the landmark

value and conservation correspondences inherited override the earlier landmark

values and conservation correspondences of the quantity space. The output

obtained by the simulation is shown in the Fig. 10.

v*

v

o '-- _
time

Voltage across battery

inf

o

minf '-- _

time

Voltage across capacitor

inf

o

minf "'-- _

time

Voltage across resistor

inf

o

minf "'-- _

time

Voltage across switch

inf

o

minf '--__--
time

Voltage across ground

Figure 10. Qualitative Simulation of the Example in
Appendix A

2S

Initially the quantity space ofthe battery is (minfO inf). After inheriting

the landmark values and conservation correspondences of the quantity space

battery-volt (-V* 0 V*), the quantity space of the battery becomes (-V* 0 V*).

This shows that the inherited landmark values and conservation

correspondences override the earlier landmark values and conservation

correspondences of the battery (minf 0 int). If the new landmark values and

the conservation correspondences do not override the old ones, the quantity

space of the battery after inheritance must be the combination of the quantity

spaces (minf 0 int) and (-v* 0 V*). Figure 11 shows the quantity space of

battery voltage before and after inheritance.

inf

voltage

o

ml

time

v·
voltage

o

time

Figure 11. Voltage Across Battery Before Inheritance and Voltage
Across it After Inheritance

3.2 Software Methodology

Inheritance represents a taxonomic hierarchy or is-a relationship. In CC

the quantity space of the electronic or mechanical or hydraulic components can

be arranged in an inheritance hierarchy. In order to arrange quantity spaces in

a hierarchy the following inheritance operations are necessary.

26

3.2.1 Specialization

Assume that the quantity space ofa voltage source is (0 Vhi). Consider a

resistor element with the quantity space (Vhi- 0 Vhi). The quantity space of

the resistor element can be obtained by inheriting the landmark values (0 Vhi)

of the source and adding the landmark value Vhi- to it. After adding the new

landmark value, the landmark values must be arranged in total order. Then the

quantity space of the resistor becomes (Vhi- 0 Vhi). Adding a landmark value

to the inherited landmark value is an inheritance operation.

3.2.2 Generalization

Assume that the quantity space of a resistor element is (Vhi- 0 Vhi).

Consider a voltage source with the quantity space (0 Vhi). This quantity space

can be obtained by inheriting the landmark values and conservation

correspondences of the resistor element and deleting the landmark value Vhi

from it. Then the quantity space of the source becomes (0 Vhi). Here the

conservation correspondence is also specialized. The resistor has the

conservation correspondence (Vhi- Vhi); however, the inheritance operation

the voltage source will not have any conservation correspondence. Deleting a

landmark value from the inherited landmark values is an inheritance operation.

3.2.3 Multiple Inheritance

Multiple inheritance ofquantity space is an inheritance operation where

landmark values and conservation correspondences are inherited from two or

more quantity spaces. Then the landmark values are arranged in total order.

Assume the quantity space oftwo voltage sources are (0 Vhi) and (Vhi- 0),

27

respectively. Ifa third voltage source with quantity space (Vhi- 0 Vhi) exists,

its quantity space can be obtained by inheriting the landmark values and

conservation correspondences from both the voltage sources (0 Vhi and Vhi- 0)

and arranging them in total order.

3.3 Software Implementation

There are different approaches for implementing the inheritance

operations on the quantity spaces. One such approach is to make modifications

in the CC code to implement the inheritance operations. Another approach is

to develop a preprocessor that takes a CC input file, with the inheritance

operations to be performed on the quantity spaces, and generates an output CC

file which contains the inheritance operations being performed. The focus of

this thesis is the implementation of this sort of preprocessor and determining

the advantages and disadvantages of implementing inheritance operations on

the quantity spaces.

The function performed by the preprocessor is as shown in Fig. 12.

cc input file

with the pre- cc input file
inheritance processor
operations

Figure 12. Function Performed by the Preprocessor

28

The code for the preprocessor is given in appendix C. The main functions

performed by the preprocessor are:

3.3.1 Add a new landmark value

In the input file the syntax for adding a new landmark value is

(add new-landmark-value quantity-space variable new-quantity-space)

where the definition of the syntax is :

add Function name to add a new landmark
value

variable

quantity-space

new-landmark-value

new-quantity-space

New landmark value to be added to the
quantity space

Quantity space to which the new landmark
value has to be added

An electrical or mechanical or
hydraulic variable

Name of the new quantity space to be
created

Consider the following example which adds a new landmark value to a

quantity space:

(define-quantity-space vsl (0 v· inf))
(R resistor (add vI vsl voltage new-volt))

In the above example the quantity space of the voltage variable vsl is (0 v·

inf)o A new voltage v1 has to be added to the quantity space vs1. When such

an input is fed to the preprocessor, the output generated by the preprocessor is

as follows:

The quantity space to which the new landmark value is to be added is

(0 v* inf)

Give the position of the new landmark value:

29

If the user specifies a position below 1, the new landmark value is added at the

first position. If the user specifies a position above 3, the new landmark value

is incorporated in the end. Ifthe position of the new landmark value specified

by the user is 2, the preprocessor creates a new quantity space new-volt with

the landmark values (0 vI v· inf)o The quantity space ofthe resistor is made

to inherit this new quantity space with the landmark values (0 vI v· inf). Since

the user specifies the position of the new landmark value, the landmark values

will already be arranged in total order. The user could also have been given the

flexibility of specifying the two landmark values between which the new

landmark value has to be incorporated. A user-friendly environment is created

by not giving this flexibility to the user. Also, if the user specifies the position

of the new landmark value, the possibilities of the user giving erroneous values

is greater.

3.3.2 Delete a Landmark Value

In the input file the syntax for deleting a landmark value is

(delete landmark-value quantity-space variable neW-Quantity-space)

where the definition of the syntax is :

delete Function name to delete a landmark
value

landmark-value

quantity-space

Variable

new-quantity-space

Landmark value to be deleted from the
quantity space

Quantity space from which the landmark
value has to be deleted

An electrical or mechanical or
hydraulic variable

Name of the new quantity space to be
created

variable

new-quantity-space

30

Consider the following example which deletes a landmark value from a

quantity space:

(define-quantity-space vsl (0 vI v· int))
(R resistor (delete vI vsl voltage new-volt))

In the above example, the quantity space ofthe voltage variable vs1 is

(0 vI v* int). The landmark value vI has to be deleted from the quantity space

vs1 so that the quantity space of the resistor R after inheritance operation is (0

v* int). When such an input is fed to the preprocessor, a new quantity space

new-volt with the landmark values (0 v* int) is created. The quantity space of

the resistor R is made to inherit the new quantity space new-volt.

3.3.3 Combine Landmark Values of Two Quantity Spaces

In the input file the syntax for combining two quantity spaces is

(combine quantity-space1 quantity-space2 variable new-quantity-space)

combine Function name to combine two quantity
spaces

quantity-space1 Name of the quantity space which has to
combined with the other

quantity-space2 Name of the quantity space which has to
combined with the other

An electrical or mechanical or
hydraulic variable

Name of the new quantity space to be
created

There are different cases that can occur when combining landmark values

and conservation correspondences of two quantity spaces.

The first case is inheriting from two quantity spaces that do not have any

common landmark values between them. An example is:

31

(defme-quantity-space vsl (0 v* int))
(defme-quantity-space vs2 (v2 vI·))
(R resistor (combine vsI vs2 voltage new-volt)

In the above example, quantity space for the voltage variable vs1 is (0 v· int)

and that ofvs2 is (v2 vI *). These two quantity spaces do not have any

landmark values in common. When such an input is fed to the preprocessor,

the output generated by the preprocessor is as follows:

The two quantity spaces to be combined are

(0 v* int)
(v2 vI)

MENU

1. User sets the partial ordering
2. Preprocessor sets the partial ordering

Select your choice:

If the user sets the partial ordering the following output is generated by the

preprocessor:

Give the ordering among the quantity spaces
(0 vI v* int)
(v2 vI)

Once the user sets the order, a new quantity space new-volt is created with the

ordering of landmark values specified by the user. If the ordering of landmark

values set by the user is (0 v* v2 vI int), a new quantity space new-volt with

the landmark value specified is created. The quantity space ofthe resistor is

made to inherit this quantity space. If the preprocessor sets the order the

following output is generated by the preprocessor:

32

The quantity spaces to be combined are

(0 v· inf)
(v2 vI)

The ordering set by the preprocessor is (v2 v 1 0 v· int)

Do you want to change the ordering among the quantity spaces:

If the user opts to change the ordering, the ordering of landmark values is

queried and a new quantity space new-volt is created with the landmark

ordering specified by the user. Otherwise, a new quantity space new-volt is

created with the landmark ordering specified by the preprocessor.

The second case is inheriting from two quantity spaces that have some

common landmark values. An example is:

(defme-quantity-space vsl (0 vI v* int))
(define-quantity-space vs2 (v2 vI vI· int))
(R resistor (combine vs I vs2 voltage)

In the above example, quantity space for the voltage variables vs1 and vs2 are

(0 vI v· int) and (v2 vI vI· int), respectively. These two quantity spaces have

landmark values vI and infin common between them. When such an input is

fed to the preprocessor, the output generated by the preprocessor is similar to

the output generated when landmark values are inherited from two quantity

spaces, which do not have any common landmark values between them.

However, here if the user sets the ordering, the user is queried to set the

ordering of landmark values between 0 and v2 and then the preprocessor adds

the common landmark value v1. Again the user is queried to set the total order

between the landmark values vI * and v*. Then the preprocessor adds the

common landmark value inf in the end. Finally if the order set by the user

between 0 and v2 is (v2 0), and between v* and vI * is (v* vI·), the landmark

33

values ofthe new quantity space created is (v2 0 vI v* v 1* int). Ifthe

preprocessor sets the ordering the following action takes place:

The ordering set by the preprocessor is

(0 v2 vI v* vI· in!)

The user can again change the ordering of landmark values ifnecessary.

The quantity space of the resistor R is made to inherit the quantity space new

volt.

3.4 Results and Discussion

The example shown in appendix D was run on the package and the

following results were observed:

In the example a resistor-capacitor circuit is considered (appendix B). In

the circuit there are two voltage quantity spaces vsI (vI V v*) and vs2

(-v* V v2). The battery voltage is considered as a combination of the quantity

spaces vs I and vs2. A new quantity space newbvolt is created by combining

the landmark values and conservation correspondences of vs 1 and vs2. At the

output file generated by the preprocessor, a new quantity space newbvolt, with

the landmark values (-v* vI V v2 v*) (this is the order set by either the user

or the preprocessor) is created. Ifit is assumed that the capacitor charges only

on the positive side of the battery voltage, its quantity space can be obtained by

inheriting the battery voltage and deleting the landmark value -v* from it. The

voltage across the capacitor then becomes (vI V v2 v*). The voltage across

the resistor will be similar to the battery voltage (assuming negligible

resistance). The resistor voltage can be directly obtained by inheriting the

battery voltage. In order to show the adding operation, the capacitor voltage is

34

inherited and the landmark value -v* is added to the inherited quantity space.

The voltage across the resistor then becomes (-v* vI V v2 v*). The

following example demonstrates the multiple inheritance, specialization and

generalization operations performed by the preprocessor. The output obtained

by simulating the example with the default quantity space (minf 0 inf) across

the battery, resistor and capacitor is shown in Fig. 13.

inf

o

minf ""-- _

time
minf

Voltage across the battery

inf

o
minf '-- _

time

inf

o
minf _

time

Voltage across the capacitor

Voltage across the resistor

Figure 13. Qualitative Simulation of Example Shown in Appendix 0 with
Default Quantity Space Values Across the Components.

The output obtained by simulating the same electrical circuit with the

inheritance operations mentioned in the example given in appendix D is shown

in Fig. 14.

35

v2

v

vI
-v* _

time

Voltage across the battery

v2

v

vi

time

Voltage across the capacitor

-v· ...-- _

time

Voltage across the resistor

Figure 14. Qualitative Simulation of Example Shown in Appendix D with
Inheritance Operations.

3.5 Advantages and Disadvantages of Inheritance

Some of the Advantages of Inheritance are:

Reusability is the ability of software products to be reused. In CC there

are many variables that have common quantity spaces. Instead of declaring the

same quantity spaces repeatedly, they can be inherited from the declared

quantity spaces. Since the code will be reused, the reliability increases (the

likelihood of discovering the errors will be greater), and therefore the

maintenance cost is reduced.

36

In CC some quantity spaces are similar to the declared quantity spaces

with a few added or deleted landmark values. In such cases, instead of

declaring a new quantity space, the landmark values and conservation

correspondences are inherited from another quantity space. Thus extendibility

of software is possible.

Since the identical quantity spaces can be constructed by inheriting the

landmark values and conservation correspondences of the quantity spaces that

are already defined, development time can be spent on understanding the

portion of the CC package that is new or unusual.

Some of the Disadvantages of Inheritance are:

1. One of the disadvantages is the overhead of software code.

2. The compilation of an external program increases the total compilation time

and thereby decreases the execution speed.

3. Since the input file to the preprocessor requires the user to specify some

inputs, the output generated depends on the accuracy of the input provided.

4. In qualitative simulation of the output file, the number of possible states

produced increases as the number landmark values of the quantity spaces

Increase. Because of this reason the run time also increases.

3.6 Advantages of the Package

1. It provides the various inheritance operations: generalization, specialization,

and multiple inheritance.

2. The user need not specify the ordering among landmark values during

multiple inheritance. The user is given the flexibility ofchanging the

ordering of the landmark values if necessary.

3. The program complexity is reduced. During multiple inheritance the user

37

need not specify all details of the new quantity space.

4. The user need not know the details of creating a new quantity space ifit

is identical to a quantity space already existing; only the differences in the

landmark values or conservation correspondences between the already

existing quantity space and the new quantity space must be specified.

3.7 Limitations of the Package

1. When adding a new landmark value, the user has to specify the position at

which it has to be incorporated. If the user specifies an incorrect position,

the simulation result will also be erroneous.

2. When combining two quantity spaces in multiple inheritance the user can

specify the ordering of landmark values. Since input is specified by the

user, if the partial order is specified incorrectly, the output produced will

vary.

3. Only one landmark value can be added or deleted. Also, only two quantity

spaces can be combined in multiple inheritance.

CHAPTER IV

CONCLUSIONS

Systems are not born into an empty world. Almost always, new software

expands on previous developments. Inheritance provides the extendibility of

software. In the CC package, inheritance of quantity spaces is possible. This

thesis focuses on an approach to provide inheritance operations on the quantity

spaces in CC and determining the advantages and disadvantages of performing

inheritance operations on the quantity spaces.

The software package, developed in C, acts as a preprocessor. An input

file similar to a CC input file is fed to the preprocessor. The input file contains

the specialization operations necessary for the CC input. The preprocessor

performs these inheritance operations and writes the result to an output file.

This file is then fed as an input file to CC. The different inheritance operations

performed are: addition of a new landmark value, deletion of a landmark value

and combination of two quantity spaces (multiple inheritance). In addition to

the inheritance operations, the advantages and disadvantages of performing

such operation is analyzed.

4.1 Future Work

In CC the concept of inheritance is a relatively new field. Although much

research is done on CC and QSIM, not much research has been done in the

field of inheritance of quantity space. This package provides the basic

38

39

inheritance operations on the landmark values and conservation

correspondences of quantity spaces. The inheritance operations are limited to

adding or deleting only one landmark value at a time. The preprocessor can be

developed to add or delete more than one landmark value at a time. Multiple

inheritance also can be carried on more than two quantity spaces. As the

preprocessor uses object oriented programming concepts, it can be

implemented using "C++" instead of "C".

Instead of using a preprocessor, the inheritance of quantity spaces can be

incorporated into the CC package itself. This reduces the software overhead

and also decreases the compilation time.

BIBLIOGRAPHY

1. Nabil R. Adam, Ali Dogramaci, (1979). Current Issues in Computer
Simulation, , 101-107.

2. Benjamin Kuipers, (1989). Qualitative Reasoning: Modeling and Simulation
with incomplete Knowledge, Autornatica, 25(4), 571-585.

3. Biswas G., Manganaris S., and Yu X., (1992). Extended Component
Connection Modeling for analyzing Complex Physical Systems,
ll.clmical Report. CS-92-Q2. Vandmillt University, 1-27.

4. Biswas G., Manganaris S., and Yu X., (1993). Extended Component
Connection Modeling for analyzing Complex Physical Systems, IEEE
Expert. 8(1),48-57.

5. Benjamin J. Kuipers, (1993). Qualitative Models, ArtificiallntdJi~encep
59(1-2), 125-132.

6. Paul A. Fishwick, Paul A. Luker, (1991). Qualitative Simulation Modeling
and Analysis, Sprioier-Verlag. 51-71.

7. Kenneth D. Forbus, (1985). Commonsense Reasoning about Casuality,
Qualitative Reasoning about Physical System e~by DanieLG...
llilbrow,~I Press Cambridge, Massachesetts, 169-190.

8. Benjamin Kuipers, (1993). Qualitative Simulation now and then, Artificial
IntclJigeoce, 59(1-2), 133-140.

9. Kenneth D. Forbus, (1989). Qualitative Physics: Past Present and Future,
Qya1itatiye Reasoning Group. Department ofComputer Science.
University QfUrbana Campai~, 242-260.

40

41

10. Farquhar A., Kuipers B., Rickel J., and Throop D., QSIM: The Program
and its Use, !nternaLDQcumentation. Department of Computer Science,
Unjversin' o(Iexas at Austin, 1-128.

11. Franke D. W., and Dvorak D. L., (1993). CC: Component-Connection
Models for Qualitative Simulation, A User's Guide, Internal
documentation, Department of Computer Science, University of Texas at
Austin, 6-47.

12. Franke D. W., and Dvorak D. L., (1991). CC: Component-Connection
Models for Qualitative Simulation, A User's Guide, Internal
documentation, Department of Computer Science, University of Texas at
Austin, 5-32.

13. Kuipers Benjamin, (1986). Qualitative Simulation, Artificial..ln1dligence,
22, 289-306.

14. Kuipers Benjamin, (1992). Component-Connection Models, Draft, 1-23.

15. Bernard P. Zeigler (1976) Theory of Modeling and Simulation,~
lnterscjence Publication, 1-51.

APPENDIX A

EXAMPLE OF INHERITANCE OF QUANTITY SPACE

42

43

EXAMPLE OF INHERITANCE OF QUANTITY SPACES

;;; -*- Syntax: Common-Lisp; Package: QSIM -*
(in-package :qsim)
;;; Copyright (c) 1991, Benjamin Kuipers.
;;; Assumes that /u/kuipers/cc/lib/simple-interface.lisp already loaded.

;;; defining the quantity space
(define-quantity-space battery-voltage (0 V V* »

;;; component definition of resistor-capicitor circuit
(define-component-interface RC "R-C" electrical

(terminals t 1 t2»

;;; component implementation of the resistor capacitor circuit
;;; in the component definition the battery initially has the default quantity
;;; space voltage i.e, (minf 0 inf). The battery voltage is made to inherit the
;;; voltage defined at volt i.e, (0 V V*)
(define-component-implementation Basic RC

"Resistor-Capacitor Circuit"
(components (B battery (quantity-spaces (voltage battery-voltage»)

(R resistor)
(C capacitor)
(S switch)
(G ground»)

... the connections among various components and the terminals
'"

(connections (nl (R tl) (S tl»)
(n2 (R t2) (C tl)
(03 (C t2) (B t2) (G t»)
(n4 (B tl) (8 t2))

... Battery - one of the electronic components used in the electrical circuit
'"(define-component-interface battery "battery" electrical

(terminals t 1 t2)
... component implementation of the battery with the voltage across it
'"·.. (minf 0 inf)
'"

44

(define-component-implementation Basic
battery "battery"
(terminal-variables (tl (vI voltage independent)

(i 1 current))
(t2 (v2 voltage independent)

(i current display»)
(component-variables (voltage voltage independent display))
(constraints «ADD voltage v2 vI)) ; Voltage measured across

terminals
«MINUS iiI) (0 0) (inf mint)) ; Battery current has opposite

sign of outflow at t1
)

;;; Capacitor - one of the components used in the resistor-capacitor circuit
(define-component-interface capacitor "capacitor" electrical

(terminals t 1 t2»)
;;; component implementation of the capacitor with the voltage across it
;;; (minf 0 int)
(define-component-implementation Basic

capacitor "capacitor"
(terminal-variables (tl (vI voltage)

(i current display»
(t2 (v2 voltage)

(i2 current»)
(component-variables (voltage voltage display)

(c capacitance independent display)
(q charge display»

(constraints «ADD voltage v2 vI)) ; Voltage measured across
terminals

«MULT voltage c q)) ; Charge is product of
Voltage and Capacitance«dldt q i)) ; Current is first derivative of Charge

«MINUS i i2) (minfint) (0 0) (infmint)) ; Current at termainls

has opposite sign
)

)

... Resistor - one of the components used in the resistor-capacitor circuit
'"

4S

(define-component-interface resistor "resistor" electrical
(terminals t 1 t2))

;;; component implementation of the resistor with the voltage across it
;;; (minf 0 inf)
(define-component-implementation basic

resistor "resistor"
(terminal-variables (tl (vI voltage)

(i current display»
(t2 (v2 voltage)

(i2 current»))
(component-variables (voltage voltage display)

(r resistance independent display»
(constraints «ADD voltage v2 vI» ; Voltage measured across

terminals

«MULT i r voltage» ; Ohm's Law
«MINUS i i2) (minf int) (0 0) (inf mint) ; Current at

terminals has opposite sign
)

)

;;; Switch - one of the components used in the resistor-capacitor circuit
(define-component-interface switch "switch" electrical

(terminals tl t2)
;;; component implementation of the switch
(define-component-implementation basic Switch

"Switch: externally opened or closed"
(mode-variables (mode open closed»
(terminal-variables (tl (vI voltage)

(i I current»
(t2 (v2 voltage)

(i current»)
(component-variables (v voltage»
(constraints «add v v2 vI»

«minus iiI»)
«mode open) -> «constant i 0»)
«mode closed) -> «constant v 0»»)

... Ground- one of the components used in the resistor-capacitor circuit
'"

(define-component-interface ground "ground" electrical
(terminals t»)

;;; component implementation of the ground
(define-component-implementation basic Ground

"Ground: constant voltage (current sink)"
(terminal-variables (t (v voltage)

(i current»)
(constraints «constant v 0))

«constant i 0»))

;;; This is a function used for getting an initial state and running the
;;; simulation with the initial state. Also the parameters are initialised
(defun test-rc()

(declare (special rc_basic))
(let «init (make-initial-state rc_basic

(translate-cc-name-alist rc_basic
'«(rc B v) «0) std)

«rc r v) «O)std))
»»)

(qsim init)
(qsim-display init)

»

46

APPENDIXB

RESISTOR-CAPACITOR CIRCUIT

47

Resistor-Capacitor Circuit

48

Resistor
Capacitor

Ground

Switch
Battery

Figure 15. Resistor Capacitor Circuit

APPENDIXC

PROGRAM LISTING

49

•

VITA L
Shashi V. Kowdle

Candidate for the Degree of

Master of Science

Thesis: ANALYSIS OF QUANTITY SPACE lllERARCHY IN CC

Major Field: Computer Science

Biographical:

Personal Data: Born in Mysore, India, January 4, 1969, daughter of
K.S.Viswamurthy and H.K. Kamala.

Education: Recieved Bachelor of Engineering Degree from B.M.S.
College of Engineering, Bangalore University, India in August
1990; completed the requirements for the Master of Science at
Oklahoma State University in May 1994.

Professional Experience: Software Engineer, Hindustan Computer
Limited, India, August 1989 to March 1991

50

PROGRAM LISTING

/ .

This is a program in C to implement the hierarchy of quantity spaces in ee.
In the CC documentation by Franke and Dvorak it is mentioned that the quantity spaces can

be arranged in a hierarchy. Quantity spaces can be made to inherit landmark values and conservation

correspondences of other quantity spaces. But in such inheritance the landmark values inherited

overrides the land mark values that existed before in the quantity spaces considered. More over

no inheritance can be perfonned on the inherited quantity spaces. This program takes in a CC input
file with the specialization operations that has to be perfonned and gives out a final CC input file with the

specialization operations perfonned. The three different operations that can be: perfonned are

1. Add a new landmark value to the quantity space specified

2. Delete a landmark value from the quantity space specified.

3. Combine landmark values from two different parent

quantity spaces.

the input fannat of this file is

qsimconvert <input-file> <output-file>

The output file can be used as a CC input file .

••••••••••••••••••....•... /

#include<stdio.h>

#define FALSE 0

#define TRUE 1

main(argc, argv)
int argc;
char ·argv[];
{

FILE ·inp,·out;

char qspace(200);

'*opening of input and output files·;

inp =fopen(argv[l),"r");
out = fopen(argv[2),"w");

if(argc=1){
printftltlnput and Output Files Are Not Specified \0");

exit(l);
}

else if{argc=2){
printftltOutput File Not Specified '0");

exit(l);
}

else{
process_file(inp,ou~qspace);

printf("\n\n\t\tThe Output is wrinen to the file o/oS\n\n",argv[2]);
fclose(inp);

}

}

,...••.•..•...••...

Function: process_file

Purpose:

This is the main function that is used to add delete and combine land

mark values of quantity spaces specified. This function calls three main

functions for this purpose. The new quantity spaces that are obtained are
written onto a new file and the other contents of the input file are "'rinen

to a different file. Finally the two files are combined to obtain the output

file .

•••••••••...••.•••.•.. /

process_file(inp,ou~qspace)

FILE ·inp;
FILE ·out;

char qspace[];

{
char line[82],fword[40],word(40),qs I[40J,qs2[401,qs(40J~

char ·new_qs,wordl [40];
char wI [40),w2[40),w3[40],new_q[15j,qname(15),\'ar[40),oper[401~

char components[][40] = {"battery","resistor","capacitor":'inductor'"
"INDUCTOR-Btl,"TANKII,"SOURCE","SINK"};

char new_qspace_name[IO],qspace_name[821,c~

int i=Oj=O,k=O,I=O,flag = FALSE,m=O,n=O,pos,a=O;

FILE ·outl,·out2;

'.opening of two files to write the output- /

outl =fopen("main_file","w
tt

);

out2 =fopen("temp","w")~

strcpy(qspace,"")~
,. initially put to blank lines to be filled by quantity-space-/

fgets(line,82,inp);

'*while end of file is not reached- /

while (!(feof{inp»){

,. if line begins with ;;~ or if it is an empty line copy to op file· /

if(line(i) = ';')II(strcmp(line," ")=O)&&(!feof(inp»)(

fputs(line,out1);

fgets(line,82,inp);

}

'.ifthe line begins \vith any other characters do this• /

else{

i=O;

51

strcpy(fword," H);

strcpy(oper," H);

sscanf(line,No/oS",fword);

I- if the line has quantity space in it do this•,

if((strcmp(fword,"(define-quantity-space")=()&&(! feof(inp»)(
while(line[i++] != ' ');
while(line(i++) = · ');
i-',
k=O;

/-get the quantity spaces and put them in a string qspace. /
while(line[i] != ' ')

qs[k++] = line[i++];

qs[k] ='\0';
strcat(qspace,qs);

strcat(qspace,"# tI);

while(line[i++] =' ');
i--;
k=O;

I-each landmark value is ended with a $ and each quantit), space
is ended with an @-/

while(line[i] != ')'){
while(line[i] != ' '){

if(line[i) != '(')
qs 1[k++] = line[i++);

else i++;

}

qsl[k++] = '$';
while(line[i++] =' ');

i--;
}

qsl [k-l] = '@';
qs t [k] ='\0';
strcat(qspace,qs1);
fgets(line,82,inp);

strcpy(fword," ");

}

I- if the input line is define component-implementation do this • /

else if{(strcmp(fword,"(definc-component-implementation")=O)&&(!feof(inp)»(

fputs(line,out 1);

fgets(line,82,inp);

fputs(line,out 1);

fgets(line,82, inp);

flag =FALSE;

I-check to see if the implementation is not of a component

already defined-I

while«flag = FALSE) && (m!=8»{

if{strstr(line,components(m])!=NULL)

flag = TRUE;

m++;

52
-

'·ifthe implementation is of a component already defined do
this *'
if(flag = TRUE){

fputs(line,outl);
fgets(line..82,inp);
strcpy(fword," ");
}

'·else do this•/
else{

fputs(line,out 1);
fgets(line,82,inp);
fputs(line,out I);
fgets(line,82,inp);
sscanf(line,fto/oS" ,fword);

'* if the line begins with the component definition scan the
various operands from the line·'

while«strcmp(fword,tI(connections tl
) != O)&&(!feof(inp»)(

strcpy(oper, If If);

if(strcmp(fword, U(components")= 0)

sscanf(line,"%·s%·sO/o·sO/oS",oper);

/. if the line doesnot begin with the component do

this *'
else

sscanf(line,"%·s%·SO/oS",oper)~

/*if an add,delete or combine operation is to be
perfonned do this·'

if«strcmp(oper,"(addtt)=O)II(strcmp(oper,"(dcletctl)=O)

lI(stremp(oper,"(combinett)=O»{

'* if the line begins with the component definition·/
if(strcmp(fword.. "(componentstt

) = O){
sscanflline, tI%. sOlo. sO~. sO/oS",oper);

'* if it is needed to add a landmark value to a quantity space do....• /
if(strcmp(oper,"(addtt

) = 0)
sscanf(line,"o/~/oSo/~/..sO/oS°/od°/oS°/oS°/oStt .. \\' I,w2. \\'3,oper.new_q.
&pos,var,qname.new_qspace_name);

j*if it is needed to delete a landmark value from a quantity space do.... */

else if(strcmp(oper,"(deleteft
) = 0)

sscanf(line,"o/~/oSo/oSo/oSo/oS°/oSo/oS°/oS", \\' I.. \\'2. \\'3 ..oper.ne\\'_q.var,qname,
new_qspace_name);

'* if it is necessary to combine landmark values of two quantity spaces do....·'

else
sscanf(line,tto/oS°/oSo/oSo/oSo/~/~/oSo/oS".,wi.,\\'2,w3,opcr,qs I,qs2,var,new_qspace_name);

(puts(wi ,out1);
fputs(" ",outl);
}

53

54

'*ifthe line doesnot begin with the component defn*'
else(

'·(8 battery (add V 2 voltage vs)*'
if(strcmp(oper,"(add") = 0)

sscanf(line,"o/~/casO/.sO/os(Vodo/o.sO/~/oS", w2,w3,opcr.nc,,'_q.&pos,var,qname..nc"'_qspace_name);
'*(8 battery (delete V voltage vs)./
else if(strcmP(oper,"(delete") = 0)

sscanf(line,"o/oSo/asO/~/asO/asO/asO/oS" ,w2,y,'3,opel',new_q.var,qname.,nc\\'_qspacc_name);
clsc{

sscanf(line,"o/~/a.sO/~/~/~/oS",w2.\\'3,oper.qs I,qs2,var,nc\\'_qspacc_name);
}

}

'·write the output file- /
fputs(w2,out 1);
fputs(" ",out1);
fputs(w3,out I);
fputs(" ",outl);

fputs("(quantity-spaces(tI,out1);

fputs(var,outl);
fputs(tt ",out I);

a=strlen(new_qspace_name)-1 ;
while(new_qspace_name[a) = t)')

new_qspace_name[a--] ='\0';

new_qspace_narnela+ 1]= '\0';

'·call the add function to add the land mark value- /
/·(add V 2 voltage vs)·/

if(strcmp(oper,t'(add tl
) = 0)

add(qspace,new_q,qname,new_qspacc_name,out1);

'·call the delete function to delete the land mark-I

'·(delete V voltage vs)·/

else if(strcmp(oper,"(delete") = 0)
delete(qspace,new_q.qname,new_qspace_name,out I);

'·call the combine function to combine the land mark·'

else
combine(qspace,qs I,qs2,out I,new_qspace_name);

'.write the result to the output file·'

fputs(tt»)",outl);
fputs("\n tt ,out I);

fgets(line,82,inp);
strepy(fword," ");

}

,. if no operation has to be performed do this -/

else{
it(! feot(inp»{

fputs(line,out 1);
fgets(line,82,inp);
sscanf{line,"o/oS",fword);

}
}

}/·end of while· /

}

else{

if(! feof(inp» {

fputs(line,outl);

fgets(line,82,inp);

strcpy(fword," tt);

}

}

}

/·close the output file· /

fclose(out1);

i=strlen(qspace);

qspace[i-l] ='%';

i=O;

/*writing the new quantity spaces and the old quantity spaces in the

output file· /

while(qspace[i) != '\O'){

if(qspace[i] != '%'){

j=O;
fputs(tt(define-quantity-space .. ,out2);

while«qspace[i] != '#'»{

if(qspace[i] = '@')

i++;

else
qspace_name[j++] =qspace[i++);

}
qspace_name[j++] = ' ';

qspacc_name[j++) ='(';
qspace_name(j) = '\0';

fputs(qspace_name,out2);

j =0;
while«qspace(i] != '@')&&(qspace[i] != '\Ot»{

if(qspace[i] = 'S'){

qspace_name[j++] =' ';
i++;

}
else{

if«qspace[i] = '#')II(qspace[i] = '0/0 '»
i++;

else
qspace_name[j++] = qspace[i++];

}

}

qspace_namelj] ='\0';
fputs(qspace_name,out2);

fputs("»)",ouQ);

fputs("\n" ,oua);

55

}

fputs("\n",oua);
}

fclose(out2);

'·combining the contents of the two output files.'
outl =fopen("main_file","r");
oua =fopen("temp","r");
while(!(feof(out2»)(

fgets(line,82,ouQ);
fputs(line,out);
}

while(!(feof(outl »){

fgets(line,82,out I);

fputs(linc,out);
}

'·closing the opened files·/
fclose(out);
fclose(out1);
fclose(out2);

}

/••••••••••••••••..

Function: add

Purpose:

This is a function used to add a new landmark value to the quantity space
specified at the specified position. qspace is a string that contains all the
quantity space names and landmark values for the quantity spaces. The landmark
values of the specified quantity spaces is obtained from the qspace string.Then
the new landmark value is added to the quantity space. Finally a new quantity
space name is given to the quantity space for which the new landmark value is
added.

The syntax for adding the new landmark value is:

(add new-landmark-value quantity-space variable new-quantity-space-name)

•.••••••••.•.....•..,
add(qspace,new_q,qname,new_qspace_name.out}

char qspace[],new_q[],qname[],new_qspace_name[];

FILE ·out;
{

int ij,k,l,flag,m,n=O,counter=O,pos;
char a,check_qs[80],new_qspace[80],qname2[40] ~

1\:=0;
flag =FALSE;
1=0;

56

for(j=O;(qname[i] != 'O');i++)
qname2[1++]:= qname(i);

qname2[l) ='\0';

strcpy(qnamc,qname2);

'*obtain the landmark values for the specified quantity space./
fOr(I=O;«qspace[I]!=z'\O')&&.(flag!:zTRUE»;I++){

while(qspace[l] !:: '#')(

if(qspace[I] != '@')

check_qs[k++] = qspace[I);
1++;
}

check_qs[k] :: '\0';
k=O;
if(strcmp(check_qs,qname) = 0)

flag =TRUE;
if(flag != TRUE){
while(qspace[l] != '@')

1++;
}

}
i=O;
system(lttput clear");
printf("\n\n\n\nIt);

printf(tlAdd a Landmark value to the Quantity space:\n\n\t");
print_qspace(qspace,qname);
printft"\n\n");

printf{ltGive Position Of the New Land Mark Value 0/05: ",new_q);
scanf(lto/od",&pos);

'*find no of landmark values·'
counter =find_no_of_lmarks(qspace,I);

/*ifthe position specified by the user is lesser than I change

position of the new landmark value to 1·'
if(pos < 1)

pos = 1;

/* if the position specified by the user is greater than the no of landmark
values change position of the new landmark value as the last position·'

else if(pos > (counter + 1»
pos =counter+1;

printf("\n");

/*obtain the position to put the new quantity space·'

if(flag = TRUE){
while(n < (pos-l»{

while«qspace[l] != 'S')&&(qspace[I] != '\O'»{
new_qspace[i++] =qspace(l++];

}
new_qspace[i++]=qspace[I++);

n++;

}
new_qspace[i] ='\0';

57

'·add the new landmark value.'
streat(new_qspace,new_q);

i =strlen(ncw_qspace);

new_qspace[i++] = 'Sf;
while«qspace[l] != '@')&&(qspace[I] != \0'»

new_qspace[i++] =qspace[l++];
new_qspace[i++) = '@'~

new_qspace[i] ='\0';
whilc(qspace[I] != '\0') 1++;

'·put the new quantity space with the ne"' landmark value added in the
qspace string·1

strcat(qspace,new_qspace_name);
strcat(qspace,"#");
strcat(qspace,new_qspace);

fputs(new_qspace_namc,out);
}

else{

printf("Error in the input file\n");
exit(O);

}

I·· .

Function: delete

Purpose:

This is a function to delete the landmark value from the quantity space

specified at the specified position. qspace is a string that contains all the

quantity space names and landmark values for the quantity spaces. The landmark
values of the specified quantity spaces is obtained from the qspace string.Then

the specified landmark value is deleted from the quantity space.Finally the new

quantity space name is given to the quantity space for which the specified land

mark value is deleted and the new quantity space is added to the qspace string.

The syntax for deleting a landmark value is:

(delete landmark-value quantity-space variable new-quantity-space-name)

.••.•••••.•.•..••.••..•.•.../

delete(qspace,new_q,qname,new_qspacc_namc,out I)

char qspace[];

char new_q[];

char qname[];
char new_qspace_name[];

FILE ·outl;
(

int ij,k,I,flag,m,n=O,flag l,p;
char qname2(40),check_qs[80],new_qspace[80],check(80);

58

k=O;

flag = FALSE;
1=0;

for(i=O;(qname[i] !== '\O');i++)

qname2(1++) = qname[i);
qname2[l] = '\0';

strcpy(qname,qname2);

'*obtain the landmark values of the quantity space specified.j
for(I=O;« qspace[l}!='\O')&&(flag!=TRUE));1++) (

while(qspace[I] != '#'){

if(qspace[l] != '@')

check_qs[k++] == qspace[I++);
}

check_qs[k] ::: '\0';
k=O;
if(strcmp(check_qs,qname) = 0)

flag = TRUE;
if(flag != TRUE){

while(qspace[I] != '@')

l++~

)
}

i=O;
p=o;
flag 1= FALSE;

'*obtain the landmark values until the landmark vAlue specified is obtained·/

if(flag = TRUE){
while«qspace[l] != '@') && (flagl != TRUE»{

while(qspace[l] != 'S'){

new_qspace[n++] =qspace[I);
check[p++] = qspace[I++];

}
new_qspace[n++] = qspace[I];

check[p) =\0';
if(strcmp(check,new_q) = 0)

flag) =TRUE;
else{

p=O;
1++;
}

}
}

n=n-2;
1++;

'*delete the landmark value specified·/
if(flagl = TRUE){

while«new_qspace[n)!= 'S')&&(new_qspacc[nJ != '\0'»

n-;
n++;

'*copy the landmark values after deleting the specified landmark value·'

S9

while(qspace(l] != '@')

new_qspace(n++] =qspace[l++);
ncw_qspace[n++] = '@';
ncw_qspace[n] = '\0';
}

'·obtain a new quantity space name.'
fputs(new_qspace_namc,out1);

'·put the new quantity space name in the qspacc string.'
streat(qspace,new_qspace_name);
strcat(qspace,"#tt);

strcat(qspace.new_qspace);

,...•••••.•••••.•..•...•...

Function: combine

Purpose:

This is a function used for combining quantity spaces from 2 specified

quantity spaces. The land mark values of the two quantity spaces which has to

be combined is obtained from the qspace string. the ordering of the landmark

values during the combination is done with the user preference. The user is

given the preference of the landmark values. The landmark values that are

common to both the specified quantity spaces is taken once and put in a ne\\'

string. This function calls another function common_qs that giyes all the

quantity spaces that are common to both the quantity spaces.

The syntax for combining landmark values from two quantity spaces is:

(combine quantity-space-l quantity-space-2 variable new-quantity-space-name)

••.••••..••....•..,
combine(qspace,qs1,qs2,out.new_qspace_name)

char qspace[];

char qsl [];

char qs2[];

char new_qspace_nameD;
FILE ·out;

{
char common[20](40),qspace1[80],qspace2[80],temp1[20][SO],temp2(20][SO),

word[20] (80);
char temp qspace[IOO),check_qs[40)"arrange[40][40);
int 8=0,i=Oj=0,k=O,1=0,m=O,n=O,tlag,flag2,flag I,O=<>,p=O,b=O.choice;

flag =FALSE;

'.obtain the landmark values of the first quantity space that has to
combined with the other quantity space from the qspace string y,ilich

has the entire quantity spaces with their names and landmarlc values·'

for(l=O;«qspacc[l] !='\O')&&(flag!=TRUE»;I++)(

while(qspace[l] != 'j'){

60

if(qspacc[I] != '@')

check_qs[k++] =qspace[l++];
}

check_qs[k] = '\0';
if(strcmp(check_qs,qsl) = 0)

flag == TRUE;
else{

while(qspace[l] != '@')
1++;

k=O;
}

}

if(flag = TRUE){
while(qspace[I]!= '@')

qspacel[p++] =qspace[I++];
qspace1[pJ='\0';
}

else printf("error\n");

/. obtain the landmark values of the second quantity space that has to
combined with the other quantity space from the qspace string which
has the entire quantity spaces with their names and landmark values· /

flag = FALSE;
for(1=0;((qspace[l]!='\0')&&(flag! =TRUE»;1++){

while(qspace[l) != '#'){

if(qspace[I] != '@')

check_qs[k++] = qspace[I++];
}

check_qs[k] ='\0';
if(strcmp(check_qs,qs2) = 0)

flag =TRUE;
else{

while(qspace[l] != '@')

1++;
k=O;
}

}
p=o;
if(flag === TRUE){

while(qspace[l)!= '@')
qspace2[p++] =qspace[I++]~

qspace2[p] = '\0';

flag =FALSE;
}

else printfl"error\n");

strcat(qspace I,"Set);
streat(qspace I,"end");
streat(qspace2,"S");

streat(qspace2,"end"); . . • /
I-get the landmark values common among the 2 quantIty quantIty spaces

common_qs(common,qspace I ,qspace2);

flag 1=FALSE;
n=O;

61

'*take the landmark values that are before the common landmark values
in the first quantity space and put in a temperory string tempI./

k=O;
m=O;

while(strcmP{common[n),"\O") != O){
while«qspacel[i] != '\O')&.&(11agl == FALSE»{

1=0;

while«qspacel [i) != tt)&&(qspaccl [i]!=,\O'»{
check_qs[I++] =qspacel [i++];
}

check_qs[l] = '\0';

if(strcmp(check_qs,common[n) = O){
flag 1 =TRUE;
if(qspacel [i) !='\O')

i++;

}

else{

strcpy(temp1[k++],check_qs);
if(qspace1[i) !=='\O')

i++;
1=0;
}

}
strcpy(temp1[k++],common[n]);
1=0;

'*take the landmark values that are before the common landmark values
in the second quantity space and put in a temperory string temp 1·/

flag2 = FALSE;
if(flagl = TRUE){

while«qspace2[a] != '\0')&&(flag2 = FALSE»{

while«qspace2[a] != 'S')&.&(qspace2[a] != '\O'»{
check_qs[I++] =qspace2[a++];
}

check_qs[l] = '\0';
if(strcmp(check_qs,common[n) = O){

flag2 =TRUE;
if(qspace2[a] !='\O')

a++;

}

else{
strcpy(temp2[m++],check_qs);

1=0;
if(qspace2[a] !='\O')
a++;

}
}

}
strepy(temp2(m++],common(n]);

n++;
flag I =FALSE;
tlag2 =FALSE;
}

62

strcpy(temp1[Ic),"\0");

strcpy(temp2[m),"0");

/*ifthere are no landmark values before the common land mark value
in the first quantity space put the landmark values before the
common value from the second string into the new quantity space· /

if(k==O){

for(o=O;(stre11lP(telnp2[o):end") != O);o++){
strcat(temp_qspace,temp2[0]);

streat(temp_qspace,"S");

}

strcat(temp_qspace,common[n);
streat(temp_qspace,"S");
}

/*ifthere are no landmark values before the common land mark value
in the second quantity space put the landmark values before the
common value from the first string into the new quantity space· /

else if(m==O){
for(o=O;(strcmp(templ[o],"end") != O);o++){

strcat(temp_qspace,temp 1[0]);
strcat(temp_qspace,ItS");

}
strcat(temp_qspace,common[n);
strcat(temp_qspace,US")~

}

'.ifthere are no landmark values before the common land mark value
in the first and second quantity space put the common landmark value

into the new quantity space·'
else ifl(k==O)&&(m==O»{

strcat(temp_qspace,common[n);
strcat(temp_qspace,ItS");

}

'*ifthere are landmark values before the common land mark value
in the first and second quantity space the user is given a choice
to give the order of preference among the landmark values· /

else{

a=O;
j=O;

system("tput clear");
printf("\n\n\n\n\n");

printf("\t\tThese are the two quantity spaces to be combincd\n\n");

printf("\t\t\t\t(");
while(stremp(temp1U],"end") != 0) (

printf{"o/oS ",temp1[i]);

j++;

}
printf(")");
printf("\nH);

printf("\t\t\t\t(");

63

k=O;

while(strcmp(temp2[k],"end") != 0) {
printf("o/oS ..,temp2[k]);
k++;
}

printfl")");
printf("\n\n\n");

/.A menu where either the user can specify the ordering of
landmark values or the preprocessor can specify the ordering./

printf("\t\t\t\tM EN U\n\n");

printf("\t\tl. User Specifies Ordering Of Landmark Values\n");
printf(tt\t\t2. Preprocessor Specifies Ordering Of Landmark Values.\n");
printf("\n\t\tSeleet Your Choice: It);

dot
scanf(tto/od",&choice);

}while«choice!=l) && (choice != 2»;
switch(choice){

'*user specifies the ordering of landmark values.'
case 1: user_spec(common,temp_qspace,templ,temp2);

break;

/. preprocessor specifies the ordering of landmark values· /
case 2: pre_spec(common,temp_qspace,templ,temp2);

break;
default: break;
}

}

'·ifthere are no common land mark values among the quantity spaces
specified the user is given a choice to give the order of preference
among the landmark values of the 2 quantity spaces·'

if(n=O){
printft"Arrange the Quantity Spaces in the pattern abc d \nit);
printf{"Give the order of preference among the quantity spaces:\n");
strcat(qspace1t "S");
strcat(qspace1,qspace2);
i=O;I=O;
while(qspacel[i] != '\O'){

k=O;
while«qspacel [i] != 'S')&&(qspacel [i) != '\0'»

check_qs[k-H-] = qspacel[i++];
check_qs[k]='\0';
iflstrcmp(check_qs,"end") != 0)
strepy(templ[1++],check_qs);

i++;
}
strcpy(temp1[1],"end");

for(i=O;(stremp(temp1[il,"end")!=O);i++)
printf("o/oS tt,temp1[ill;
scanfl"o/oS",word);
while(stremp(word,"$") != O){

streat(temp_qspace,word);

64

streat(temp_qspace,"$");

scanf("o/es",word);
}

'·put the new landmark values to the new quantity space that is created./
fputs(new_qspace_name,out);

streat(qspace,new_qspace_name);
streat(qspace,"#");

strcat(qspace,temp_qspace);
i=strlen(qspace)-1 ;

qspace[i] = '@';

,•••••••••.•.•...

Function: common-qs

Purpose:

This function is used to obtain the landmark values that are common among the

2 quantity spaces that has to be combined to obtain the new quantity space

with the combination of landmark values from both the parents.

.•••••••...••....•.../

common_qs(common,qspace I ,qspace2)

char common[][40];

char qspace1[];

char qspace2[];

{
int i=Oj=O,k=O,I=O,n=O,flag;

char temp[40],templ [40];

1=0;
/*compare the landmark values of the first quantity space with that

of the second·'
while(qspacel [i] != '\O'){

while«qspace1[i] != 'S')&&(qspacel [i) != '\0'»
temp[j++] = qspacel[i++];

temp[j] = '\0';

k=O;
flag =FALSE;
while«qspace2[k] != '\0') && (flag = FALSE»{

j=O;
while«qspace2[k] != 'S')&&(qspace2[k] != '\0'»

templ[j++] =qspace2(k++];

temp I [j] = '\0';
if(stremp(temp,temp1) = O){

flag =TRUE;

j=O;
}

else{
if(qspace2[k] != '\0')

k++;

65

j=O;
}

}

'·put the common land mark values to an array.'
if(flag === TRUE){

strcpy(common[1++],tempI);
flag = FALSE;
}

if(qspace1[i] != '\0')
i++;

/••...•..••...

Function: print-qspace

Purpose:

This is a function for printing the quantity spaces specified.
•.••.....•.••...•..•...,
print_qspace(qspace,qname)

char qspace[];

char qname[];

{
char check_qs[40];

int i =O,flag =FALSE,k =O~

while«qspace[i] != '\O')&&(flag = FALSE»{
k=O;
while(qspace[i++] != '#')

check_qs[k++] =qspace[i-l];

check_qs[k] = '\0';
if(strcmp(check_qs,qname~ = 0)

flag =TRUE;
else while(qspace[i++] != '@');

}

if(flag = TRUE){
printf{U(tI);
while«qspace[i] != '@') && (qspace[i] != '\O'»{

k=O;
while«qspace[i++] != 'S')&&(qspace[i] != '\0'»

check_qs[k++l = qspace[i-I);

check_qs[k] = '\0';
printf(tfo/oS It,check_qs);

}
printf(")It);

}

}

66

,••..•.•.•...••••..
Function: user-spec

Purpose:

The user specifies the ordering of the landmark values. This function is
used when combing landmark values from two quantity spaces. This displays
the landmark values that have to be arranged in a quantity space and the
user is queried for the ordering of those landmark values. Then a new
quantity space is created with the ordering of landmark values specifled
by the user.
.....•...•.••..•../

user_spec(common,temp_qspace,temp I,temp2)

char common[][40];
char temp_qspaceO,templ [][SO];
char temp2[][SO];
{

int n=Oj=O,b=O,a=O,k=O,flag = FALSE,I=O;
char word[30][40],arrange[30][40];

system("tput clear");
printf("\n\n\n\n\n");

printf("These are the two quantity spaces to be combined\n\n");

printf("\t(");
while(strcmp(templ U],"end") != 0)

printf(tfo/oS ",temp I U]);

j++;

}
printf(")");
printf(It\nlt

);

printf("\t(");

k=O;

'.print the quantity spaces to be combined·'

while(strcmp(temp2[k]:tendtt
) != 0) {

printf(lto/oS ., ,temp2[k);

k++;

}
printf(")\ntt);
printf(ttArrange Quantity Spaces:\n\n tI);

n=O;
j =0;

'*Query the ordering of landmark values*'
while(stremp(common[n],"\O")!=O){

b=O;
print!l"\t\t(");
while(strcmp(temp1U++],common[n])!=O)

strepy(arrange[b++],temp1U-l]);
while(stremp(temp2[a++],common[n)!=0)

strepy(arrange[b++],temp2[a-I]);

strcpy(arrange[b],"\0");

for(k =0; k < b; k++}

67

printf("o/oS ",arrange[k]);
printf(")");

flag =FALSE;

I·Until; the user specifies the correct input do•,
while(flag = FALSE){

I·accept the new ordering of landmark values.'
for(k=O;k<b;k++)

scanf("o/oS",word[k]);

strcpy(word[k++],"S");

strcpy(word[k],"\0");
1=0;
k=O;

I·check for wrong input specified by the user.'
while(l<b){

flag =FALSE;

while«strcmp(word[k],"S")!=O) && (flag = FALSE»{
if(strcmp(arrange[lj,word[k])=O){

k=O;
flag =TRUE;
}

else k++;

}
1++;

}
}

/*once the input is correctly specified by the user update the
qspace string./

if(flag = TRUE) {

for(k=O;k <b;k~){

strcat(temp_qspace,word[k]);
strcat(temp_qspace,"SH);
}

}

if(strcmp(common[n),"end") != O){

strcat(temp_qspace,common[n]);
strcat(temp_qspace,"S");

}
n++;

}

/..•.••..........••..
Function: pre-spec

Purpose:

The pre-processor specifies the ordering of the landmark values. This function

is used when combing landmark values from two quantity spaces. This displays

the landmark values that have to be arranged in a quantity space and the

preprocessor specifies the ordering of the landmark values. The user is queried

68

for the ordering of the landmark values if necessary. if the user opts to

change the ordering of landmark values the new ordering of the landmark values
is accepted by the program and a new quantity space is created with the
ordering of landmark values specified by the user. Else a new quantity space
is created with the ordering of landmark values specified by the preprocessor.
.••••••.••.•.•.•.•..,
pre_spec(common,temp_qspace,templ,temp2)
char common[][40];
char temp_qspace[],tempI[][50];
char temp2[][SO];
{

int i=O,n=Oj=O,b=O,a=O,k=O,flag =FALSE,l=O,t;
char word[30][40],arrange[30][40],temp3[30][40],ans(4);

system("tput clear");
printf("'o'o\n\n\ntt);

I.print the two quantity spaces to be combined·J

printf(tt\tThese are the two quantity spaces to be combined\n\n");

printf("\t\t(");
while(strcmp(tempI[j):'end tf

) != 0) {
printf(tto/oS ••,temp1[il);

j++;

}
printf(tt)");
printf("\n tt

);

printf("\t\t(");
k=O;
while(strcmp(temp2[k],"end") != 0) {

printf(tto/oS ",temp2[k]);

k++;

}
printf{It)\n\nlt

);

printf("\tThis is the ordering of the Landmark values:\n\n");

printf("\t\ttt);

1=0;
n=O;
j =0;
t=O;
i=O;

/.print the ordering of landmark values specified by the preprocesso~ I

while(strcmp(common[n],"\O") != O){
while(strcmp(temp1[i++],common[n})!= 0)

strcpy(temp3[1++],temp1[i-l]);
while(strcmp(temp2U++],common[n])!= 0)

strcpy(temp3[1++]ttemp2U-1]);
strcpy(temp3[1++],common[n]);

n++;
}

strcpy(temp3[1],"\0");
printf(tt(tt);
fOr(l=O;(stremp(temp3[11,"end") != 0);1++)

printf{"o/oS ",temp3[I]);

69

printf(")\n\n");
n=O;
j =0;

'*query if the user needs to change the ordering of landmark values.'
while(strcmp(common[n],"\Ott)!=O){

b=O;

printf("\tDo You Want To Change The Ordering Among:\n");
printf("\t\t\t[Press y or n): \net);
printf("\t\t\t\t(");
while(strcmp(temp3[j++],common[n])!=0)

strcpy(arrange[b++],temp3[j- t]);

strcpy(arrange[b),"'0");
for(k =0; k < b; k++)

printf("CYoS ",arrange[k]);
printf(")");
scanf("o/oS",ans);

j* if the user nedds to change the ordering of landmark values· /
if(strcmp(ans,"ytt)= O){

printf("\n\t\tGive Landmark Values:\ntl);
flag =FALSE;
while(flag = FALSE){

j.accept the ordering of landmark values· /
for(k=O;k<b;k++)

scanf(fto/oS",word[k]);

strcpy(word[k++),"$");
strcpy(word[k],"\0");

1=0;
k=O;

j. check for wrong input specified by the user· /

while(l<b){
flag = FALSE;
while«strcmp(word[k],"S")!=O) && (flag = FALSE»{

if(strcmp(arrange[I],word[k])=O){

k=O;
flag =TRUE;
}

else k++;

}
1++;

}

}

/. if correct input is specified by the user create a new
quantity space with the ordering specified by the use""

if(flag = TRUE){
for(k =O;k < b;k++){

strcat(temp_qspace,word[k]);

t++;
strcat(temp_qspace,"S");

}

70

t++;
}

if(strcmp(common[n],"end") != O){
streat(temp_qspace,common[n]);
strcat(temp_qspace,"$");
}

}

/.else create a new quantity space with the ordering specified
by the preprocesso~/

else{

while(strcmp(temp3[t++],common[n])!=O){
strcat(temp_qspace,temp3[t-l]);
strcat(temp_qspace,..$");
}

if(strcmp(common[n],"end tt
) != 0)

strcat(temp_qspace,common[n]);
strcat(temp_qspace,"S");
}

n++;

/ .
Function: find_no_of_Imarks

Purpose:

Find the number of landmark values in the quantity space to which
a new landmark value is to be added. This is used to specify
the position of the new landmark value if it is wrongly specified
by the user. This function is used by the add function.
•• j

find_no_of_lmarks(qspace,l)
char qspace[];
int I;
(

int count=O;

while«qspace[l] != '@')&&(qspace[l] != '\O'»{
if«qspace[l] != IS') &&(qspace[l] != '@') && (qspace[l] != '\0'»

1++;
else{

1++;
count++;

}
return(count);

}
/ ,

71

APPENDIX D

EXAMPLE SHOWING INHERITANCE OPERATIONS

72

EXAMPLE SHOWING INHERITANCE OPERAnONS

;; -*- Syntax: Common-Lisp; Package: QSIM -*
(in-package :qsim)
;;; Copyright (c) 1991, Benjamin Kuipers.
;;; Assumes that luJkuipers/cc/lib/simple-interface.Iisp already loaded.
(define-quantity-space vsl (0 V vI)
(defme-quantity-space vs2 (V* V v2 »

(define-component-interface RC "R-cn electrical
(terminals t 1 t2)

(define-component-implementation
Basic
RC

"Resistor-Capacitor Circuit"
(components (B battery (combine vsl vs2 voltage newbvolt»

(C capacitor (delete 0 voltage newbvolt newcvolt)
(R resistor (add 0 1 voltage newcvolt newrvolt)
(8 switch)
(G ground»)

(connections (nl (R tl) (S tl»
(n2 (R t2) (C tl»
(n3 (C 12) (B t2) (G t)
(n4 (B tl) (8 t2))))

Refer Appendix A for the component definitions of battery, resistor,

capacitor and ground.

73

	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	006.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	022.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	183.tif
	184.tif
	185.tif
	186.tif
	187.tif
	188.tif
	189.tif
	190.tif
	191.tif
	192.tif
	193.tif
	194.tif
	195.tif
	196.tif
	197.tif
	198.tif
	223.tif
	199.tif
	200.tif
	201.tif
	202.tif
	203.tif
	204.tif
	205.tif
	206.tif
	207.tif
	208.tif
	209.tif
	210.tif
	211.tif
	212.tif
	213.tif
	214.tif
	215.tif
	216.tif
	217.tif
	218.tif
	219.tif
	220.tif
	221.tif
	222.tif

