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Introduction

Environmental concerns have focused attelltion on tIle interaction of strealllS witll

groundwater and led to the developmel1t of botll aIlaljrtic and nUlnerical groulld water

models. Analytic models are of particular illterest because they provide qualitative

solutions as well as numerical data, alld avoid maI1Y of the difficulties inherellt ill

descretization that is required in the use of nUInerical Illodels. Olle such 1110del, the

B · .}( a (h 8h ) Soh. I· · 1 d-.tr - I -oussmesq equatIOn, ax ax = at' IS a non mear partla luerentla equatIon

whicll describes Olle dimensional flow ill a phreatic aquifer. Several solutions illClud-

ing a separable solution first reported by DurnIn in 1954 have been presented since

its introduction in 1907 (Boussillesq, 1907]. However, exact solutions are available

only for specialized initial and boundary conditions. Some nUlnerical solutions are

available, and attempts have been made to find analytic solutiollS by cOIlllecting the
a2/~ a/~

equation with linear equations; specifically the heat equation, ax2 = (3 at as ex-

plained by McWllorter in 1979. Otller illvestigations, [I<irkllam, 1964] for example,

include approaches to this problen1 using potential theory_

TIle objective of this paper is to analyze existing aIlalytic solutiollS of tIle Boussi

nesq equation alld to develop a tool that can })e used to solve this equation for

arbitrary initial conditio11S. Metll0ds of linearizillg to the heat equation and exam

ples USiIlg the one alld two draill probleIll are })fovided.

Derivation of the Boussinesq Equation

Darcy's Law relates the ground water velocity to the hydraulic properties of the

porous mediulll,

q = _/{ah
ax

1

(1)



q is the Darcy velocity, !( is hydraulic conductivity, and h(x, t) is the llead at

location x and time t. The volume of water per unit width, Q, is the integral over

the vertical line (see figure 1) of the velocity q. If we adopt the Dupuit-Forchheimer

assumption, then this is just qh, so that

Q = -1<h:~ . (2)

We consider water flowing through the control volume displayed in Figure 1. We

can calculate the change in water in the control volume over a time period 6.t in two

ways. Using Darcy's law as stated in equation (2), the volume of water per unit width

flowing into the box is 1<h(x +~x,t):~(x + ~x,t)~t, and the volume of water per

unit width flowing out of the box is 1<hex, t) :~ (x, t)~t. Thus the total change in

volume per unit width in the box is approximated by

h(x+~x,t)
~.-----.----

h(x,t)

x x+~x

Figure 1: Cross sectional view of water flow in an aquifer

8h ah
(1<h(x + ~x, t) ax (x +~x, t) - I<h(x,t) ax (x, t))~t · (3)

Alternatively we can approximate the change in volume of water as the change in

2



head from time t to time t + 6.t, times the width, 6.x, of the box all multiplied by

the specific yield, S. This is gives,

S(h(x, t + ~t) - h(x, t))~x.

Equating equations (3) and (4) and dividing by ~x~t yields

(4)

J( h(x + 6.x, t)~(x + 6.x, t) - h(x, t)~(x, t) '" Sh(x, t + 6.t) - h(x, t) (5)
~x ~ ~t ·

Taking the limit as ~x and C1t go to zero yields the Boussinesq equatioll,

J(~(hah) = sah.
ax ox at

Or, if (} = :' the Boussinesq equation takes the form

~(hah) = (}ah .
ax ax at

(6)

(7)

Alternative derivatiolls of this equation as it relates to water flow may be found in

[McWhorter, 1977] or [Bear, 1972].

Dupuit-Forchheimer: As is noted in [Youngs, 1966], it is difficult to arrive

at a usable mathematical model without the assumption that water flow is in the

horizontal direction and at a constant velocity over the elltire depth; however, this

implies that the water table is fiat. Therefore it can only be used when ~~ is near

zero. We should be aware that whenever this assumption is applied to a water table

with steep slopes in the x direction, the extent of the error built into the model may

be difficult to determine.
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The Two Drain Problem

One application for the Boussinesq eCluation that has received attention ill tIle

literature is the Two Drain Problem [DUIIU11, 1954, 1964]. T11is problelll cOllsiders

water table fluctuation in a phreatic aquifer witll a llorizontal base lying bet\Veell

parallel drains as ShOWI1 in Figure 2.

We assume that the head at each of two drains rell1ains constaIlt, alld tllat the

water table between the two drains is illitially given by a fUllction f(x). TIlus f(O) =

f(L) = D. Furthermore it is reasonable to assulne that f is sYlll1netric about tile

line x = ~ so that 1'( ~) = O. We will consider a falling water table so that the water

level begins at the level of I(x) and decreases over time. It follows that ~: (x, t) is

always llegative except at the draillS where it is zero. rI'he two draill })roblell1 is tllUS

expressed as,

~(hah)=aah ,
ax ax at

h(x , 0) == f (x) , (In it ia1 con(1 iti()n)

/!(O, t) = D == h(L, t) for all t, (Boundary COllditioll) alld

L 8h L
h(-,O) = Al -a (-2,0) == 0 (SYlllIlletry aSSUlllptions) .

2 x

A Separable Solutioll

(8)

(9)

(10)

( 11 )

A separable s()lutioll for the case D == 0 was obtailled by Boussillesq [Boussinesq,

1907] and by Glover as reported by Dumm [Dumm, 1954]. Jan van Schilfgaarde

[van Schilfgaarde, 1963] purports to generalize this solution to the case D > 0, but

later 1110dified tllis result because the solution \vas not COllsistent \vith tile })oundary

conditions [van Scllilfgaarde, 1964].

Separability assumes that h(x,t) = W(x)V(t). We can choose this separation so

that yeO) = 1 which gives h(x,t) = W(x) at t = o. (If h(x,t) = W*(x)V*(t) is any

4



0 x U2 L

D

> , >' » > >' ,. >' » ., > IF » ,.. » » >' >' » ,.. >' >'

Figure 2: The two drain problem

separation of h, we can define W(x) = V*(O)W*(x) and V(t) = ~:i~~ to obtain the

condition V(O) = 1.) TIle conditions 011 h can be summarized in terms of V and W

as,

V(O) = 1 , (Separation assumption) (12)

W(x) = f(x) , (Initial condition) (13)

W(O) == 0 = W(L) , (Boulldary condition) (14)

L W'(~) = 0 , (Sylnmetry COllditions) and (15)W(-)==M
2

V'(t) < 0 (Decreasing water table assumption) . (16)

We note tllat the initial condition., W(x)

5

f (x), will not be used in obtain-



ing the solution; only the separation assumption, boundary assumption, symmetry

conditions, and decreasing water table assumption are used. This is because the sep

arability assumption is not consistent with all arbitrary initial condition; in fact these

assumptions and conditions determine the initial COlldition.

Proceeding with the solution we replace h by VW ill the Boussinesq equatioll,

~(WVdWV)
dx dx

_1~(WdW) _
Wdx dx

dV
aW dt ,and

a dV
V 2 dt ·

(17)

(18)

Since the left-hand side of this equation depends only on x, the right-llalld side

depends only on t, and they are equal for all values of x aIld t, both Inust be constant.

Furthermore, since V'(t) is negative, there is a positive constant A that satisfies,

aV'
V 2

_1~(WW')
Wdx

-A ,and

-A.

(19)

(20)

Q'

Equation (19) can be integrated directly to yield V = C + At I and the condition

V(O) = 1 gives C == a, so tllat

Q'

V(t) = A.a+ t
(21)

The ordinary differential equation (20) does not have a closed form solution, but

we can evaluate the constant, A, alld express W in implicit form:

~WW' -AW (22)
dx

WW/~WW' - -AW2W' (23)
dx
(WW')2 W3

(24)(;-A-
2 3
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One's initial thought might be to determine C by evaluation of equatioll (24) at

x = O. This gives C = 0, and (WW')2 = -A W
3

• The left side is nonnegative,
2 3

and since the water table never dips below the level of tIle drains, the rigllt side

is nonpositive. It follows that W = 0 leading to the trivial solution, h = o. The

difficulty with this substitution is that it tacitly assumes that W'(O) is not 00, but if

the water table begins with nonzero 11ead, a vertical tangent at x = 0 is exactly what

is expected. More interesting results are obtained if we evaluate at x = t. Since

( L ) M d '( L ) · A M
3

f C (2) dW 2" = an W "2 = 0, we obtam C = -3-· Substituting or in 4 an

simplifying we have

WW'

2:(M3 _ W 3 ), and

J2; ·

(25)

(26)

Integrating as x goes from 0 to x yields

[W(x) W dW = xJ2A .
10 JM3 - W3 3

W
With the substitution z = -, this beconles

M

W(%) {¥AJM [ M Z dz = x -.
10 Jl - z3 3

We can now determine A by evaluating (27) at x = ~ where W = M. Thus,

JM [1 Z dz = LJ2A .
io Jl - z3 2 3

Integrating equation (28) and solving for A, we obtain

The gamma function is defined by

7

(27)

(28)

(29)



l'(x) = 1°C tx-1t:-t dt .

It can be tllought of as a Silloothing of tIle fa.ctorial fUllctioll since it is it dif

ferentiable function that is defined for all positive x, and for positive integers 11,

f(n+l)==nL

Now, using this value of A in equations (21) and (27),

1 .1

V(t) == (30)
1 +4.46209 ~t~ t ~

",'( x)

x 0.579797 L foAl :; d-,- and (31 )
o VI - Z3 ~,

h(x, t) W(x)\/(t) . (:~2 )

An example: For a sandy soil, we can take 5; to be 0.2 allel }( to lJe 2 Illeters IJer

day. We will look at graIJhs for M == 2 111eters and L == 25 Ineters. With this data,

1
V(t) = 1 + 0.142786t' and W(~) = M = 2. Thus at a point midway between the

two drains, h( ~ ,t) = 1 +0.:42786( The graph in Figure 3 shows the height of the

L
water table in meters at the lllidl)oillt., -, as a function of til11C in clays.

2

Even thougll we call1l0t calculate W(x) in c}ose<l fornl, \ve can use a trick to get

tIle grapll of h(x, t) for Sl)ecific values of t. Giving the rigllt 11and side of equation

(31) a functioll 11alne, we cal1 write x == P(\V), or W == p-l(X). That is., the right

hand side of equation (31) call be considered the inverse of the fUllction W. In order

to recover a fUllction fronl its inverse~ we need to reverse the roles of the indeIJendent

alld dependent variables. TIllis if we lllake a l)arametric gralJh of the ordered pairs

(P(W), W) we Ilave a grapll of \tV(x). Plotting tIle right hand sicle of equation (:31)

requires tIle use of Si1TIl)son's rule (or SOllle other integral alJproxiJl1ation techni(ple) at

many points. Fina,lly~ the nature of the functioll 1l1akes it difncult t() get an accurate

grapll by evaluatillg at evel1ly Sl)aced points~ an adaptive graphing technique that

samples InallY POillts wllere the grapll changes raI)idly needs to be used. Any of the

most popular computer algebra systems will do all this automatically and produce



meters

2 ~,r--------"'-----~-----",-----"",-,

1.5

1

0.5

Ot-t------~------------------Idays

o 5 10 15 20

Figure 3: Head at the midpoint given by the separable solution

the graplle In Figure 4 we llave plotted h(x,t) for t == 0,5,10,- .. ,30 days.

Limitations of the separable solution: We 11ave already 110ted tllat a separable

solution is llot COllsistellt with tIle selection of an arbitrary iIlitial COllditioll. TIle

functiollS W(x) alld V(t) are deterll1ined by the separability condition alld synllnetry

assumptions, and the initial COlldition, f(x) == h(x,O) == W(x), is forced after tIle fact

by separability rather thal1 from any consideratioll of natural pllenolnena. For most

initial conditions, j, tilere is no separable solution.

Even the small generalization of placiIlg the drain above the impermeable layer as

proposed by van Schilfgaarde [van Schilfgaarde, 1963] has difficulties which he later

noted and corrected [van Schilfgaarde, 1964]. The difficulty is that the assumption

that h(O, t) = Do = h(L, t) is not consistent with the existence of a separable solution.

If Do 1= 0, then the equation W(O)V(t) = Do, guarantees that W(O) 1= 0 so that

9



meters

2

1.5

1

0.5

meters
5 10 15 20 25

Figure 4: Water levels predicted by the separable solution

D
V(i) = W(~) which is a constant. But if V(t) is constant, then the water table does

not change with time. This only occurs in the trivial case where the water table

begins at the level of the drains.

One result of tIle separable solution is that it imposes a qualitative behavior on

the solutioll. TIle equation h(x, t) = W(x)V(t) gives tIle following inforlnation about

the water table at various times.

Tilne Water table
t==O 1~=W(x)

t = 1 h = V(I)W(x)
t == 2 h == V(2)W(x)

This predicts an equally proportional drop in the water table at any point between

tIle two drains. Thus, if at allY point the water drops to half its original level in two

days, then the water table at all points between the two drains drops to half its level

10



in two days. This phenomena can be seen in Figure 4.

Connections with the Heat Equation

Nonlinear partial differential equations are notoriously difficult to aIlalyze, alld a

common method of dealing with them is to COllnect them with linear partial differ

ential equations which are easier to solve. As it develops, the Boussinesq equation

· 1 lIt d t h h·'8
2
H aaH Th· .. 1· ..18 C ose y re a e 0 t e eat equatIon, -- = fJ-. IS equatIon IS Inear, It ISox2 at

important in many areas of mathematics and engineering, and its solutions are well

known. It is interesting to consider just how importallt tIle comparisoll of water flow

with heat dispersion may be.

W ·d h h h B· . a (h 8h,) 8h. he conSl er ere ow to connect t e oussmesq equatlOn, ax ax = 0: at WIt

initial condition h(x, 0) = f (x) with the heat equation. We shall for tlle moment ig-

nore boundary conditions though it is not llecessary to do so. In succeeding sections

we will look at the structure of solutions of the lleat equation.

The Standard Connection: One way to get to tIle Ileat equatioll is to follow

the method used in [McWhorter, 1976]. Tile idea is to replace h in tile expression

:x (h ~:) by its average value, A with the condition that h' is small relative to h:

~(h ah) ok
(33)(}-ax Ox at

~(Aah) 8h
(34)- a-ax ax at

a2h 8h
(35)Aa 2 a-

x at
a2 h oah

(36)
8x2 A at

Thus to obtail1 all approxilnate solutiOI} of the Boussinesq equatioll by this method,

. a2
h f30h · h· · · 1

we should use the solution, h(x, t), of the heat equatlOn, ax2 = at ,WIt ImtIa con-

11



dition, h(x,O) = j(x), where f3 = ~' and A is the average value of h.

What is the average value of h? Since we begill witll 110 explicit formula for h, its

average value is not likely to be knowil. We will follo\\1 the lead of [Dumm, 1954]

and [Brooks, 1961] who use this equation as a model for agricultural drainage, and

assign an intuitive value to A that lnay be derived frol11 tIle illitial COllditioll. For

example, in case f is a squ~re wave with lleigllt 2, we would take A = 1. It sllould be

emphasized that we llave no way of kllowing if tllis is ill fact tile true average value of

h, but the clloice will be Inade consistently so that our later comparisoll of metllods

remains valid.

Difficulties with the standard connection: A cardillal rule of nUlnerical analysis

has been violated here. Whenever possible, approximations should not be made

before derivatives are taken. This is because fUllctions tl1at are point-wise very close

may have vastly different derivatives as the following example illustrates. Let f(x) =
sin(1OOOOx ) . .
-----. NotIce that tIle absolute value of f IS never greater than 0.001, and we

1000
may feel comfortable approximating it with the zero function. But the derivative of

f is f'(x) = 10cos(1000x), a functioll that varies between -10 and 10. In Figure'5

the graph of f(x) cannot be distinguished from the x-axis, but f'(x) is not close to

the zero fUIlctioll.

This type of bellavior call be expected froIll any function that changes rapidly. In

cases such as the example described above, while the rate of change in head may be

sinall some distance from the draill, near the drain tIle rate of change could be very

steep.
a 8h a2 h . .

TIle standard connectioll replaces -(h-) by Aa 2· If we dIfferentIate first weax ax x
8h a2 h a2 11.

see that tllis is replacing (_)2 +h- by A- and that the true effect not only re-ax 8x2 8x2

places h by A but also to discards the term (:~) 2. Two methods for approximating

12



-0.001

-10

0.001

Figure 5: Close functions whose derivatives are not close

this expression follow; both avoid tIle difficulties discussed here.

The Logarithm Connection: We linearize the equation in two steps. First

expand the derivative, :x (h :~) to obtain

and replace the occurrence of h ill equation (37) by A so that

(8h)2 Aa2h = ah
ax + ax? Q at .

(37)

(38)

8h law
For the second step we make the substitution h = A In w. Then ax = Aw- ax'
a2h 1 82W -2 8w 2

and - = Aw- - - Aw (-).
8x2 8x2 ax

Plugging this into equation (38) and simplifying, we obtain

13



82 w Q' 8w
a~r2 = A at . (39)

Thus to obtain an approximate solutioJ1 of the Boussinesq equatioIl by this Inetllod,

we should use the solution, h(x, t) = A III w(:r, t), where w is tIle solutioll of the heat
. 82w 8w

equatIOn, ax2 = f3 at ' with initial condition, w(x,O) = e¥, where f3 = ~, and A

is the average value of h.

A Square Root Connection: Notice first of all that .!!-(hBh )ax ax
TilliS:

82 11,2
- ax2 (2)'

h 8
2

(h
2

) I Bh (40)- Q~-ox2 2 at
82 J~2 a h2

/~-(-) 0' 8t (2) (41 )
8x2 2

h 8
2

h2 Bh2 (42)- Q-
8x2 at

Let z = h2 , theI}

(43)

Since z == h2 , its average value sl10uld be near A2
. Thus we replace VZ in (43) })y

A:

az
(k-at
Q oz
A at

(44)

(45)

TIllis to obtaill all aPI)roxilllate solution of the BOllssinesq equation ))y this Inethod~

82 z
we should use, h(x, t) = !z(x, t), where z is the solution of the heat equation, 8x2 =

f3: ' with initial condition, z(x, 0) = F(x), 13 = ~, and A is the average value of h.

Werner uses a square root transformation in [vVerner, 1957].

14



A comparison of these three methods must await our development of at least one

solution of the heat equation.

One Solution of the Heat Equation: The Boltzman Transformation

The Boltzman transformation provides a way to turn some partial differential equa-

- -I d- h h . 8
2
h 8h. d· dOff · I ·tIOns, mc u mg t e eat equatIOn ax2 = 0' at' mto or mary I erentla equatIOns.

We look for a solution of the {orin h(x,t) = y(xt-~). We first calculate the needed

partial derivatives of h:

ah 1 1

(46)- t- 2 y'(Xt- 2 )ax
a2h

C1y"{xC t ) (47)ax2

ah 131
(48)at --xt-2"y'(xt-2")

2

If we put u = xt- ~ , substitute into tIle heat equation, and simplify, we obtain the

ordinary differential equatioll,

") a '()y (u = --uy tt .
2

Or puttillg , := ~, we obtaill

" ,y = -,uy ·

We can separate tIle variables alld solve the equation:

(49)

(50)

y"
-I'll (<<51 )-

y'
2

11l(Y') i U C (52)--+
2

, ~ (53)y De- 2

y Eerf (ulf) +F (54)

15



Reversing the substitution, u = -=-- and 'V = 0 we obtain tIle solution h -o I 2' . , -

(xva) . a2h ah
Eerf 2 fit +F to the heat equation, - = (}'- Notice tllat Sillce erf( -00) - -1

VL 8x2 at· - ,
erf(O) = 0, and erf(00) = 1, the solution h has the property that, h(x,O) = -E + F

if x < 0, h(x, 0) = E + F if x > 0, and h(0, t) = F.

One Solution of the Heat Equation

a2}~

ax2

Initial Conditiol1 I~(x., 0)

Boundary Conditioll h(O, t)

Solution /~(x, t)

8h
- °fii

P,x> 0

Q

(p-Q)erf(~~) +Q

Applications of the solution above might seem to be limited by the nature of its

initial condition. In fact its initial condition amounts to a heavyside or step function

whose derivative is a Dirac Delta function. As we shall see, this will allow us to

construct solutions of the heat equation for any initial condition. For the moment, it

will at least allow us to explore some examples of the connections of the Boussinesq

equation with the heat equation discussed in the previous section.

Comparing Routes from the Boussinesq to the Heat Equation

In order to compare tIle tllree routes that we have discussed from the Boussinesq

to the Heat Equation, we need to look at a problem that has a closed form solution.

One suell is tIle Orte Drai1~ P1'oble111.. It is the same as tIle two draiIl l)roblelTI, except

we consider the water table to extend a.cross the entire positive x-axis with a single

drain at the origin. We will use the same initial data as we did with the two drain

problem. That is, we take S = 0.2, f( = 2 meters per day, and the initial height of

16



the water table to be 2 meters. We take the average value, A, of h to be 1. Thus we

wish to solve:

!-(hah) 8h
(55)0.1 atax ax

Initial Condition h(x,O) { 0 if x=o (56)- 2 if x>O

Boundary Condition h(O, t) - 0 (57)

a2 h 8h
Solution given by the standard connection: We solve ax2 = 0.1 at with

h(x,O) = 2 for x > 0 and h(O, t) = o.

h

h(x, t) = 2erf ( Jwt) ·
2 lOt

x

(58)

Figure 6: Solution of the one drain problem given by the standard method

· W 1 8
2
z 8z. h

Solution given by the square root connectIon: e so ve ax2 = 0.1 at Wit

17



z(x,O) = 4 for x > 0, and z(O, t) = 0, and take the square root of the solution to

obtain

h(x, t) = 2 erf ( x )2v'iOi · (59)

1.5

h

0.2
x 0

Figure 7: Solution of the one drain problem given by the square root
method

82w 8w.
Solution given by the logarithm connection: We solve ax2 = 0.1 at ' wIth

w(x,O) = e2, for x > 0, and w(O,t) == 1. The solution is IllW(X,t), or

h(x, t) = In (e2
- l)erf (2Jrot) + 1) · (60)

Comparing three solutions: The tllree Figures, 6, 7, and 8, show graphs that

are similar in sllape, but it call be seen tllat the standard method predicts somewhat

faster drainage than do either the square root or logarithm methods.

18



1.5

h

0.2
x 0

li'igure 8: Solutioll of the one draill problell1 givell by tile logaritilin
111etllod

III Figure 9 we fix t at 0.2 da.)!s and COlllparp the t.hrec' so)uti()llS as :r varIes. 'l'h(ll

bottOlll curve is the stanclarcl solutioll~ the curve that is on top Ileal' the ()rigill is the

square root s()lutioll,! a.nd the loga.rithlll s()lutioll begins bel\\'et·n the square r()()t and

standarcl solutions btlt beCOl1leS the largest of the three for about ~r > 1. ()l)serve that

tIle logaritll111 an(l square root solutions aTe very close'\ but both I)redict a significantly

slower dra,ina,ge tha.ll (loes the stancla.rd solutioll.

In Figtlre 10 ,ve fix :r a.t ~ Illeters and COlllpare the three s()luti()ns as 1, increa~es.

TIle stallcla,r(l soilltion is the })ottOtl1 curve'! the l()garithnl soluti()ll is the Illi(l(lle curve,

a.nd the square root solution is 011 top. These show tilat tlw standard solutioll predicts

much faster drainage at .r = 2 meters than does either of tilt:' other two. The logarithm

SOltltioll shovvs SC)111evvhat fa.ster dra.inage than <ioes the square rc)ot S()llltioll.

To 111a.ke a, further COl111)a-rison of tb~ til ree s()lutions .. \\'~ caJculate the \rol\lllle per
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1.5

1.25

0.5

0.25

0.5 1 1.5 2
Distance x, (m)

Figure 9: Standard, square root, and log solutions for t = 0.2 days

unit width of water that eacll of the three solutions predict will have entered the drain

by time t = 0.2 days. This is given by

V(x = 0, t = 0.2) =100

2 - h(x,0.2) dx .

The values for the three methods are

Standard

Logarithlll

Square root

3. 191531113
,

2.070311113
, alld

Therefore we can see that the standard solution predicts approxilnately 50% Inore

drainaue in tIle first .2 days tllall eitller of the other solutiollS.
o
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Time (days)

1.9

1.8

]=t:: 1.7

1.6

.Figure. 10: Standard, square root, and log solutions for x = 2 meters

Solution of the Heat Equation with Arbitrary Initial Condition

One of the features of nonlinear equations, such as the Boussinesq equation, that

makes them difficult to handle is that falniliar techniques for solving ordinary differ..

ential equations do not apply. In particular, any challge in the boundary or initial

conditions results in an entirely new problem, and solutions corresponding to differ

ent boundary COllditions l1ave no elenlentary connection. With ordina~y differential

equations, we call oftell obtaill a general solution of the eCluation alld tllen apply the

initial condition to that. A simple exanlple will illustrate this. Let's solve tIle differ-

ential equation y' = 2x subject to the initial conditioI} y(O) == 2. TIle gelleral solution

of the equation is y = x 2 +C, where C is an arbitrary constant. The initial condition

tells us that C = 2 so that the solution of the initial value problem is y = x 2 + 2.

If we change the initial condition to y(O) = 5, we can still use the general solution

y = x 2 +C to get the solution, y = x2 +5. For nonlinear partial differential equations,
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this technique is in general inapplicable; if you cllange the boulldary conditiol1, you

have an entirely new problem. But for lillear I)artial differelltial equatiollS Inucll of

the spirit of the technique used above call be gelleralized ill tIle sense that it is sonle

times possible to obtain a particular solution, known as the Green's functio71, of tIle

equation that can be used to generate solutions correspolldillg to any illitial colldition.

Consider a linear partial differential equation L( It) = O. Witll initial conditioll

h(x,O) = f(x). The Green's fUllction, G(x,t), for £(h) = 0 is a solution of tIle

equation such that G(x,O) is tIle Dirac DeltafuIlction. Tllat is G(x,O) is idelltically 0

for x =I 0, but G(O,O) = 00. The following are the important properties of a Green's

function [Friedman, 1956].

Let h(x,t) i:f(u)G(x-u,t)du.

Then h(x, t) is a solution of L(h) 0, and

h(x, 0) - f (x)

A Green's function for the heat equation: For lillear equations such as the

heat equation, if we take the partial derivative of a solutioll, we get a110tller solution.

We note tllat the solu tiol1 of tIle lleat equation tllat we obtained earlier, h( x, t) =

erf (xva) satisfies the illitial cOlldition, h(~r, 0) tlle heavyside fUl1,ction; that is,
20 '

h(x,O) is -1 for x < °and 1 for x > 0. Its derivative is the Dirac Delta function.

Thus, we can take the partial derivative with respect to x of this solution to obtain

a Green's function for the 11eat equation [Friedtnan, 1956].
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Green'8 function for the heat equation

G(x, t)

ah
Q-at
/l;i _0%2

-e 4t

4 iT' l

. 82 h 811.
The solutIon of - = (}-

Ox 2 at
wit}1 illitial condition, h(x,O) = j(x),

is i: j(u)G(x - u, t) du

Initial conditions on the x-axis alld symmetry: If we wish to use the Green's

function to provide an alternate Inethod for solving tile one draill problem, we im

mediately encounter a probleln; tile Green's functioll that we Ilave let's us specify

an initial condition f(x) that is valid on the elltire x-axis, but it does not directly

allow us to address the boundary conditioIl on the line, x = O. A SiIl1ple trick using

symmetry will allow us to fix the problem. If we insist tllat h(x,O) be 2 for x > 0 and

-2 for x < 0, symmetry will insure that the boundary cOlldition, 11,(0, t) = 0 holds

for all t. Tillis, for this problelll, we need to use the initial COIldition

The solution is

j(x) = { 2, x > 0
-2, x < 0

(61 )

h(x t) - jO -2G(x - u t) du + [00 2G(x - u,t) du = 2erf ( Jwt). (62)
, - -00 '10 2 lOt

We note tllat this is identical witll the standard solution we obtained earlier.

The Green's function provides real power in dealing with different initial condi

tions for the heat equation, but it does not directly address the boundary conditions.

In practice, this difficulty can often be overcome using symmetry. Ideally we would
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like a Green's function for the heat equation that was zero on the boundary of the

rectangular region, -1 < x < 1, t > 0 except at tIle origill wllere it is infinite. So

lutions for given initial and bouI1dary conditioIlS could tllel1 be obtained by taking

a line integral over the boundary of the region. Unfortul1ately tIle author does not

know how to make such a function.

An erf Series Solution to the Two Drain Probleln

With the added power we have ill solving the Ileat equation alld connectillg witll

the Boussinesq equation, we can apply 1110re robllst metllods to the two draill }lfobleln.

We are lookillg at tIle following problen1:

~(h8h) 8h
(63)- 0'-

ax ax at
Initial Condition h(x,O) M, for 0 < x < L (64)

Boundary Conditiol1 h(O, t) = h( L, t) =0 (65)

We select the square root COllnection to the lleat equation. Thus we need to solve:

82z f38z (66)-
8x2 at

Illitial COlldition z(x,O) M 2
, for °< x < L (67)

Boul1dary Condition z(O, t) == z(L,t) =0 (68)

We will accomplish this using the Green's function, but care is needed in selecting

the initial condition, f(x). We want f(x) = AP, for 0 < x < L, and we need to

extend f across the entire x-axis so that symmetry will insure that the solution is

zero for all t at x = 0 and x = L. Thus, f needs to be an odd function about both

x = 0, and x = L. This requires that f be a square wave function that is M2 on the
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Figure 11: A square wave function

intervals, [2kL, (2k + 1)L], and -M2 on tIle intervals, [(2k + 1)L, 2(k + 1)L). (See

Figure 11).

Now i: j(u)G(x - u,t) du breaks up into an infinite series of integrals of the

form

l (k+l)L 21ft -Q(z-u)2± M -e 4C dUe
kL 41ft

These integrals evaluate to

M2 ( ((X - kL)~) ((X - (k + l)L)J¥))
- erf -erf .
22 2

If w~ use only the first three terms of the series and take the square root, we obtain

M(erf (~ (x - 4L)) - 2erf (~ (x - 3L)) + 2erf (~ (x - 2L)) - 2erf (~ (x - L))
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The graph of tllis approximate solution of the t\lJO drain }lroblel11 appears ill Figure

12. It is important to note that tllis tecllllique applies without change to otller illitial

value problelTIs. Givell any initial condition, f(x), defined on the x-axis, we get all

approximate solution of the Boussinescl equation iIllll1ediately by calculating

h(x, t) = Ji: f2(u)G(x - u, t) duo

2

1.5
meters

meters

25

days

(70)

Figure 12: An approximate solution of the two drain problem

ConclusioJl

The separable approach to the Boussinesq equation provides a direct (if implicit)

I · b t -t· everely linlited ill its al)l)lication due to restrictiollS imposed on
so utlOll, U 1 IS S
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the initial condition by the separability assumption.

One method commonly used to avoid these difficulties is to relate tIle Boussinesq

equation with a well studied linear differential equation; the heat equation. One re

lation that appears in literature cited here makes this conllection by replacillg an

occurrence of the variable head by an estimated average value prior to expanding a

partial derivative of a product. Two other relati()lls, referred to llere as tile square root

connection and the logarithm connection, avoid this numerically unsound technique.

In examples that have closed form solutions, in particular the one draifl problem, the

square root and logarithm methods provide silnilar predictions that are significantly

different from those of the stal1dard conllection.

Once the connection with tIle heat equation is establislled, there are Inany well

known methods for obtaining solutions. We use here the Green's function technique

because it is so easily adaptable to a wide range of initial conditions. In particular,

for the two drain problen1, it provides a series of erf functions that converges rapidly

enough that only a few terms are Ileeded to obt.ain accurate predictiollS.
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