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CHAPTER 1

INTRODUCTION

This thesis presents the design and implementation of an object-oriented simulation
of a new scalable parallel processing architecture called TR-machine, which is based on
conventional machine model and graph reduction. The simulator for TR-machine is
implemented on a Sequent Symmetry S81 to verify structural properties. The simulator
is designed such that TR-machine processors are mapped into physical processors. There
are 24 processors (on the Sequent Symmetry machine) for the simulation, which are
divided into three levels. These levels of processors correspond to the levels of TR-
machine balanced tree structure. The top server node and a host are at the top level. In
the middle there are three server nodes which are connected to the top-server node. At
the leaf level, there are fifteen computation nodes, five nodes are connected to each mid-
level server node. There is a bi-directional dedicated bus for communication traffic
between processors in the different tree levels. The language used for the simulation is
C++, It provides the implementation with encapsulation, data abstraction and inheritance.
The simulator 1s implemented as a tool to verify TR-machine's structural properties and
behavior and to experiment with different instructions. The use of object-oriented

approach[6] in the TR-machine simulation simplifies the implementation of parallel



communication between the simulation objects.

The rest of this thesis is organized as follows: Chapter II will introduce the
environment of simulation. Chapter III will introduce the basic concepts contributing to
the TR-machine architecture and some definitions related to the TR-machine such as FP,
DelFP, BT-interpreter and reduction computation model. Chapter IV will describe the
design of the TR-machine such as structure of TR_machine organization and
communication architecture. Chapter V will introduce simulation model, Chapter VI will
discuss parallel processing scheme, and Chapter VII will provide summary and

conclusions.



CHAPTER 11

SIMULATION ENVIRONMENT

This section will introduce the simulation platform Sequent S81 machine and its

programming library which support the simulation[8].

2.1 SEQUENT SYSTEM

Sequent system is a shared memory multiprosessor system. All processors are
identical, but share a single pool of memory to improve resource sharing and
communication among processors. Since a single high-speed bus holds all processors,
memory modules and i/0 controllers, it is easy to add processors, memory, and i/0
bandwidth without change in the operating system. The sequent CPUs are general-
purpose, 32-bit, microprocessors. The symmetry series includes Sequent S27 and S81.
Sequent S81 contains from 2 to 30 processors. The available machine for the simulation
1s Sequent S81, which contains 24 processors. It can be configured with 8 to 24 Mbytes
of memory, which supports 256 Mbytes of virtual address space per processor. Each CPU

has 64 Kbytes of cache RAM. Sequent computers run the DYNIX/ptx operating system,
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which provides most utilities, libraries and system calls. DYNIX/ptx manages the system

load among available processors keeping every available processor busy.

2.2 PARALLEL-PROGRAMMING LIBRARY

In our simulation, DYNIX/ptx parallel-programming library is used to execute
loops in parallel. The program controls data flow and synchronization by using tools
specially designed for data partitioning. The tools provided include system functions and

shared varables.

2.2.1 SYSTEM FUNCTIONS

Microtasking programs create multiple independent processes to execute loop
iterations in parallel. The microtasking method has the following characters:
. The parallel processes share some data and create their own private copies of the other
data.
. The division of the computing load adjusts automatically to the number of available
processes.

The tools we used in our project are listed in Figure 1.



System call i Responsibility {
m_fork E execute a subprogram in parallel.
m_get_myid % return process identification number |
m_get_numprocs | return number of child processes. ?
m_kill_procs ' terminate child processes.

m_lock lock a lock

m_multi end single-process code section

m_next . 1ncrement global counter

m_park_procs suspend child process execution
m_real_procs resume child process execution
m_set_procs set number of child process

m_single begin single-process code section
m_sync check in at barrier

m_unlock unlock a lock

Figure 1. programming Library Microtasking Routines

2.2.2 SHARED VARIABLES

The parallel_programming library contains a set of routines for dynamic
allocation and management of shared memory. In C++, shmalloc and shafree routines

are used to allocate and release shared memory for data structures whose size is

determined at run time.

2.3 OBJECT-ORIENTED METHODOLOGY
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Object-Oriented approach, derived from Simula[6], facilitate encapsulation, data
abstraction, polymorphism, and inheritance. Because of its support for sharing code, and
interface, object-oriented approach is viewed as a solution to manage the architecture
simulation complexity[3].

In object-oriented programming, objects are used as the units of data encapsulation
and classes as the units of data abstraction. These classes typically belong to a hierarchy
of classes united via the inheritance relationship[6].

Data encapsulation, data abstraction, polymorphism, and inheritance are essential
concepts to minimize interdependencies among the simulation modules. Data abstraction
provides the ability to group simulation entities according to their common properties.
Polymorphism supports the modeling of common behavior among different object types.
Inheritance allows code sharing among classes[6].

Thus object-oriented design approach is used for the design of the simulator. The
obvious advantages are encapsulation, data abstraction and inheritance associated to the
objected oriented programming language. The TR-machine is built from sets of similar
objects. Obviously, the object oriented approach simplifies the implementation of nodes

and communication between the simulation objects,



CHAPTER I

BACKGROUND OVERVIEW

The design of the TR-machine is based on several concepts. They are Backus' FP,
graph reduction, DelFP - a sequential execution architecture for FP, and BT-Server FP
Interpreter - a parallel execution scheme for FP. In the following subsections brief
descriptions of these concepts and definitions related to the TR-machine are given. The

details of those concepts can be found in [1], [4], [5], [9], and [10].

3.1 FP LANGUAGE

Backus' FP system[l] describes the framework of a reduction programming
language. The FP system is proposed as an alternative to the conventional programming
which is based on the von Neumann model of the computer. There is no notion of a
present state, program counter, or storage in FP language. Instead, a program is just a
function in the mathematical sense and they map objects to objects. Backus' FP system
consists of four basic parts.

(1) Objects - FP has only one data type called objects. An object is either an atom or a

list of objects. Examples of objects are numbers, alphabets, and <1,2,3,<A, B, C>>. A
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special symbol L (called bottom) also belongs to the objects. This object is not
considered in the simulation.

(2) Primitive functions - a set of primitive functions that map objects to objects; these
functions perform arithmetic, logical, or list-manipulation operations. Examples of
primitive functions are +, *, head, tail, eq, and so on.

(3) Functional forms - The functional programming style can be described as the building
of complex functions from simpler ones by using functional forms[1]. The functional
forms used in the simulation are described below:

o Composition: f.g:x=f(g(x)). This is the same as composition of functions. During
execution, g(x) is evaluated first. The result is the argument for the execution of function
f.

» Construction: A set of functions is transformed into a list of functions. The symbol used
to represent construction is [ ]. All functions are applied to the same object and can be
evaluated (executed) in parallel. Symbolically, [f,, f,,..., £ ]:x = < f;:x, f;:x,..., f:x>.

o Apply-to-all Apply a function to all elements of a list. This functional form is
represented by either ALPHA or a. Symbolically,

(a ):<x,, x,,..., Xp> = <fix,, £x,,..., fix,> The function applications can Ibe done in
parallel.

e Condition Symbolically (p — f; g):x = if p:x = T then do fix else if p:x =F then do
g:x else 1. In the simulation, this functional form has been modified to simple
comparisons and branch.

o Constant This is the same as constant function in mathematics. ¢: x =c.

(4) Application - denoted by the symbol " : " represents function application. For example
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f:x means apply the function f to the object x. Program execution computes the result.
Examples of programs and their machine language translations will be provided

in chapter IV.

3.2 COMPUTATION MODEL

The underlying computation model of the TR-machine architecture can be termed
parallel tree reduction. The reduction model can be illustrated by using a set of examples.
Each of the FP program examples is represented as a tree and the transformations to the
tree at the various levels of computation, and the result are shown.

In the examples shown in the figures 2a - 2d , the nodes labeled ":" represent
computation (or application) and the nodes labeled "." represent a list. As the examples
illustrate, the computation can be expressed as a tree and evaluation proceeds from lower
level to the root in response to a demand from the root. Computation at a level needs to
be complete before the next higher level computation can be performed (because FP uses
call-by-value semantics.) Each independent computation can be mapped into a processor.
The processor mapping is illustrated in the figure 3. using the expression of example from
figure 2d. The boxes identified as P1 and P2 represent computations that can be
performed in parallel. The result of the computation will be a list which becomes the
operand at the next level which is shown in the box labeled P.

The computations that can be performed are called active computations. As can
be seen from figures 2a - 2d, if there 1s only one active computation, one processor can
handle it. If there are several active computations mapped into several processors, we

need a mechanism to keep track of the computations and to collect the results into a list.
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Therefore, the computations can be classified into two types - "type a" and "type b" as
shown in figure 2e. In figure 2e, C, Cl, C2,..,Cn represent active computations, S
represents the mechanism to keep track of the parallel computations. Every set of active
computations can be represented by a tree with at most two levels. This organization
suggests an embedding of the computation into a balanced tree. A single active
computation is embedded into a leaf. In the case of a two level tree, leaves are mapped
into leaves and the root is mapped into an interior node.

The case of functional form condition needs special attention. A sequential
approach 1s adopted as illustrated in figure 4. The predicate p is evaluated first and then
based on the result, the appropriate function will be evaluated to produce the result.

The TR-machine organization is based on this computation model. Type a
computations can be mapped into a processor. Type b computations can be mapped into
a set of processors preserving the two level tree structure. The root of the tree will keep

track of computations and form the result as a list.

+:<2,3> — 5

Figure 2 a. Apply Primitive Function.
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[+ -]:<2,3> /®\
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FRAN

! 2/\ /\ <5,~-1>

Figure 2 b. Apply a Construction.

(o(+):<<2,1>.<3.5>/>©\

Figure 2 c. Apply ALPHA.



/@ *(0r+):<<2,1>,<3,5>>

*
T
+2/\1 3/\5

al —a
A T

24

Figure 2 d. Composition of * and (ALPHA +).
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Type a computation Type b computation
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Figure 2 e. Active Computations.
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Figure 3. Representation of Active Computations.
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Figure 4. Conditional form.
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3.3 DelFP ARCHITECTURE

The architecture DelFP[5] is designed to directly execute FP language in
conventional sequential machines. The structure of DelFP is language sensitive and
parallels the structure of FP. In FP there are no data addresses, offsets, or variables.
Since DelFP is in close correspondence with the source high-level language, the FP
language, it absorbs these features.

DelFP operators are functional forms. The operands are primitive or user-defined
functions. During the DelFP execution the value of a function is computed and its
controls are encoded in implicit format. DelFP can be defined in terms of:

- an instruction set;

- a set of residual control variables describing the interpretive environment at any
execution point

- a contour model for retention of activation records and

- a set of format rules to determine the location of data manipulation during each
computation step.

The execution of DelFP programs uses the contour model. Functions in a
construction are pushed onto a stack and evaluated one by one. A stack of object pointers

keep track of the results of the individual computations.

3.4 BT-SERVER FP INTERPRETER ARCHITECTURE

BT-sever FP interpreter[7] describes a parallel implementation scheme for a

massively-parallel FP architecture. BT-server FP interpreter's architecture is a
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massively-parallel FP computer. BT-sever has a balanced tree structure with the leaf nodes
being distinct from the internal nodes. The leaf nodes perform computation while the
internal nodes perform subtask/node management functions. BT-server uses exclusively
distributed memory and massage passing to implement the hardware communication. An

FP language is used as the machine language.



CHAPTER IV

TR-MACHINE ARCHITECTURE DESIGN

In the following sections, we briefly discuss the TR-machine instruction set
architecture, instruction types, structure of TR-machine organization, communication

architecture, and communication between nodes.

4.1 TR-MACHINE INSTRUCTION SET

The machine language of the TR-machine is based on DelFP which is designed
to execute FP in conventional sequential processor machines. Because of its close
correspondence with the FP language, it is straightforward to develop translators between
FP and TR-machine instruction. The following subsections will discuss the instruction

architecture such as instruction types, and instruction format.

4.1.1 TR-MACHINE INSTRUCTION TYPES

TR-machine programs are similar to FP programs. The types of instructions are

chosen corresponding to different functional forms of FP language[5]. As we will see

16
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later, TR-instructions are used the same way as the FP functional forms to build
TR-programs. Instructions and data are disjoint. Data in the TR-machine simulation is
assumed to be FP objects. An object is an atom or a list of objects, where the atom is a
number or character. The instruction types implemented in this research are discussed
below (see Figure 5 for opcodes and their encoding):

APPLY (APF) An apply instruction is an application of primitive function. Its operand
is a pointer to the function being applied. The result of executing this instruction is to
evaluate the operand function with the current object as the operand. The address of the
current object will be in a dedicated register (register S).

APPLY LEFT SELECTION (ALS) This instruction selects the n™ element from the left
in the current object. The operand is an integer n encoded as the operand. The current
object is expected to be a list.

APPLY RIGHT SELECTION (ARS) This instruction is same as ALS except that the
selection is from the right of the list.

APPLY CONSTANT FUNCTION (ACS) This returns a constant object. Its operand is
a pointer to the constant object table containing the value to be returned.

CONDITION (COND) Execute the first operand P on the object, If the result is true ,
the second function F will be executed, else the third operand function G will be
executed.

CONDITION (CONDA) Execute first operand which is address of next instruction to be
executed, if control flag is true. The current object does not change.
CONSTRUCTION(BEG...END) There are two instructions "BEG" and "END". The
operand of construction instruction can be divided into two parts. One marks the

beginning of construction and the other marks the end of construction. The instruction
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between the two "BEG" and "END" are groups of instructions(functions) that can be
executed in parallel. The result of executing this construction instruction is to distribute
the computations to different computation nodes(processors). The functions are evaluated
in parallel. The "END" instruction marks the end of construction and has no operand.
APPLY TO ALL (ALPHA) The operand of this instruction is a function that can be
applied to each element of the current object. The input object is expected to be a list.
The operand function is distributed to different nodes for parallel computation with
appropriate components of the list. The semantics of construction and apply-to-all are
different from DelFP instructions because they initiate parallel computation.
JUMP(JMP) Operand of this instruction is a pointer to a local program to be executed
with the current input. This instruction is included in the architecture in order to
implement recursion and the while functional form in the FP system. This choice i1s made

so as to keep the instruction set simple.

OPCODES

APF 0
ACS 1
ALS 2
ALR 3
COND 4
ALPHA 5
BEG 6
END ‘ 7
JMP 8
CONDA 9

Figure 5. Opcode matching table
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Among the above instructions '‘BEG' and 'ALPHA' contribute to parallel

computation.

4.1.2 THE INSTRUCTION SET FORMAT

The instruction set structure of the TR-machine is represented by a packet ( the

idea of packet is originally introduced in [2] ), this packet is a record divided into several

fields as shown figure 6.

C-closure | tags | opcode | operand

Figure 6. The Instruction Format

The fields opcode and operand have the usual meaning. In the simulator, opcodes
represent functional forms. Operands are either addresses or pointers to functions. The
C-closure field is used to identify the components of a construction efficiently. It
specifies the construction to which the function belongs, (specified by the beginning and
end addresses of the construction). If C-closure of an instruction matches the operand
field of construction, then it is a member function of that construction(see Figure 9). The
tag field is used to specify the position of an instruction relative to the functional forms
composition and construction. The tag field may contain one or more of the following

tags given in figure 7.



Tag

Meaning

End of Construction

Sequential Begin

Sequential end

Construction Begin

Inside Construction

Inside Sequence

QnHO|E w1

Unary block

Figure 7. Tags and meanings
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Figure 8 illustrates the correspondence between FP functional forms and TR-

instructions. The TR-instructions are listed in the first column. The second column gives

a FP function application, and the third column lists the equivalent TR-program. The

fourth column gives the result. In the TR-instructions, the primitive function symbols

themselves are used to represent operands for the sake of clarity.

Instruction type | FP-Instruction TR-Instruction ) Result
TPPLY +:<1 3> -- APF + 4
ALS 2L:<1 2 3> -- ALS 2
ARS 3R:i<12 3> -- ARS 3 1
ACS :5 -- ACS 5
COND (eq*;-):<2 1> -- COND eq * - 1
CONDA N/A -- Control flag = t, go | address
-- to address
ALPHA + :<<1 2> <3 4>> -- ALPHA + <3 7>
BEG [+ - *]:<3 2> C- BEG pq <51 6>
I- APF *
I- APF -
I- APF +
N- END

Figure 8. FP-TR instructions mapping.
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4.2 TR-MACHINE ORGANIZATION

The organization of the TR-machine is adopted from the BT-Server FP interpreter
[7]. It 1s organized as a balanced tree structure. Each node of the tree is a processor. The
nodes of the tree belong to two distinct classes. The leaf nodes form the class of
computing nodes (or C-nodes) and the internal nodes form the class of sever nodes (or
S-nodes). The class of server nodes serve as a communication and book-keeping network.
The C-nodes perform actual computation. The root of the tree is called the top server node
and it is connected to a host. The structure of the tree used in the simulation is shown

in Figure 10.

Figure 10. TR-machine Structure.

4.2.1 MAJOR COMPONENTS

The host is the connection between the top server node (the root of the tree) and
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the user. The function of the host is to pass information back and forth between the user
and the TR-machine. Actually it is responsible to convert FP language into TR-machine
language and receive the final result from server node.

S-node responsibilities also include keeping track of function requests arriving
from the host node, sending subtasks to a free child computing node, handling subtasks
overflow, collecting the subtasks' results of a parallel task, and returning the final result
to the host.

The computing nodes (leaf nodes or C-nodes) receive and store intermediate
subtasks from their parent S-node, execute requested subtasks, send the results back to
their parent S-node, and generate new requests for subtasks of a parallel task. The C-node
1s considered as a microprocessor with its own CPU and local memory. Inter-node

communication is accomplished by using dedicated buses[3], and [4].

4.2.2 TREE NODES' FUNCTIONS

The host node stores the instruction set in the instruction memory, objects (data)
in the data memory, and sends request package, and reports final results. In order to
avoid the bottle-neck problem as a result of the communication of several C-nodes trying
to use the same object in-site in the global data memory (in a parallel computation), the
instruction set is designed to pass a copy of the appropriate object to be made available
to the C-nodes. This design is expected to have better performance.

Top sever node and child server nodes use a list of request packages, a list of
mark packages, and a list of join packages for communication. These packages may be

stored in local memory. The server nodes have status registers of its children nodes. The
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status registers indicate whether the C-nodes are free. The top server node also keeps
track of the id of its children server nodes whenever it sends massages (see Figure 11).
It also has a control flag to keep track of which child node is working for which level and
which subtask is being executed. Type a computation involves only one C-node. But, type
b computation involves several C-nodes. So The root of the computation tree (refer to
Figure 2e) will be associated to an S-node which will have the responsibility to collect

the results of the subtasks.

List of request packages lfe 1Jre2[ [ [ l l

List Of mark packages mijm2] | | [ |
List of join packages lj 1 ]jz I I ] l l
Status of ServerNode[lJllll1[1J
C Nodes

Top Server Node nnn' :f .;-‘ﬁubla C nodes

Restart Instruction MARK PACKAGE
Pointer

subtask thread

REQUEST PACKAGE

object pointer

Figure 11. Information stored in Top S-node and Interior S-nodes.

The C-nodes are responsible for computation. They are microprocessors. The
components of a C-node include a primitive function table, pnimitive function units,
source-pointer, D-pointer, instruction pointer, control flag, list of request packages, join

package, mark package, and local memory to store the object and intermediate results
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during performing the computation. Figure 12 illustrates the primary components of a C-

node.

list of

request] reql|req2 | .. gﬂmi;lve primitive
unction unit
packages table o)
flag| opcode | operand |... s=.;‘;ri::zg‘h

D=result pointer

local memo
Instruction pointer object relulrz

control flag= 0 or 1 PID

Figure 12. C-node Organization.

4.3 COMMUNICATION ARCHITECTURE

The basic idea of the TR-machine is that: programs are executed part of the time
sequentially and part of the time in parallel. As long as parallel computation is not
required, computation can be limited to one processor. When execution reach the point
which need parallelism, the programs and corresponding data are sent to available
computing nodes. These sub-tasks are routed to different computing nodes through a
S-node which keeps track of computation. The S-node collects the results from C-nodes,
and constructs a list which will be the argument to the next function to be executed.
S-node also keeps track of available children C-nodes.

There is no intra-level communication between nodes. Inter-level communication
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is accomplished by synchronized message passing. The simulation in this thesis assumes
the top server node has three child server nodes, and each child server node has five
C-nodes (refer to Figure 10). There are three types of information buses, also called
packages, that are used to provide communication among nodes. Each package identifies

a different event in the computation process and carries appropriate values.

43.1 TYPES OF PACKAGES

The communication packages used are called request package, join package, and
mark package. Next subsections will give brief description of request package, join

package and mark package. The features of the packages are shown in Figure 13.

4.3.1.1 REQUEST PACKAGE

Request package is a message used to initiate computation. Request package will
carry Job id (Jid), source data which contains the objects (data to perform the task from
the data memory location), instructions, address of data or result for the next instruction
in C-node local memory, pointer to the address of the first instruction of this subtask in
the global memory (program begin or pbeg), the address of the last instruction of this

subtask in the global memory (program end or pend) and process id (Pid).

43.1.2 MARK PACKAGE

A mark package contains necessary information to form lists from results of
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subtasks. Mark package will carry previous job id (ex_Jid), Jid, number of expected
results, list of locations for expected results, program counter for the parallel instruction,

and previous beginning and end of the task to be forked to parallel subtasks.
43.1.3 JOIN PACKAGE
Join package is used to send results of subtasks. Join package will carry Jid which

is equivalent to the current request package's Jid, expected result from C-node, and the

location of the result relative to the expected results in the mark package.

JID JID D=
current
PID EX-JID requestd
JID
source data #of resulta I
result
program program Uist ::d
counter counter °::::lu
pbig pre-pbig location I
of the
pend pre—pend result in the
mark package
REQUEST PACKAGE MARK PACKAGE JOIN PACKAGE

Figure 13. Communication Packages.



CHAPTER V

SIMULATION MODEL

This chapter will outline the simulation. Internode communication, simulation
architecture and instruction execution scheme are described. The simulation model in

pseudo code format is given in appendix A.

5.1 COMMUNICATION BETWEEN NODES

The conceptual communication scheme between nodes is shown in figure 14.
Once the host node gets a task (instruction set or sets and objects), a new request package
with JID (job identifier) is created. The top server node will pass the request package
from host to the leftmost free child S-node, say S1, with its1d '0', and S1 in turn will send
the request package to leftmost available C-node of its children with its id '1’, say C1. The
C-node C1, which has id 'l' and parent 1d '1', will check whether the task is sequential or
parallel according to the information the request package provided.

If the instruction is 'APF' for example, which 1s apply primitive function, then C1

will finish computation sequentially, put the result into a join package, and ship it back
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to its parent S1, where it will not find a mark package with the same id; so it will
continue up to the root S-node and then to the host node.

If the request package contains instruction set that can run in parallel, then a mark
package will be created for this task and a new request package will be created for each
parallel subtasks. The mark package will keep a record for the expected number of results.
C1 node will keep the first request package to compute, and send the other request
packages and mark package to S1. When C1 completes execution of its request package,
it will send a join package with the result to its parent S1. S1 will receive the remaining
request packages and it will send them to other free child C-nodes. If no child is free at
that time, S1 will send the remaining request packages to the root S-node to try to send
them to other C-nodes under other S-nodes. At the same time S1 will send the mark
package to the root S-node.

The S-node S1 will start to receive the join packages from C1 and other C-nodes
with the expected results. These join packages will put their results in the mark package
which has the same id. When all expected results arrive in the mark package, a new
request package will be created with the ex_id, ex_pbeg, and ex_pend (stored in the mark
package). S1 will send this request package to C1 to continue the main task execution.

For example, when an alpha-instruction or BEG instruction is encountered, several
sub-computations are possible. One subtask is done by the C-node currently executing the
program and other subtasks will be sent to the parent sever node to be distributed to
available computing nodes. The address of the instruction following the scope of alpha
or END instruction will also be sent to the parent S-node. If a S-node does not have any

free computing node under it, the subtask will be forwarded upwards. When parallel
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execution is completed the results will be collected by the server node and computation
will be started from the instruction following the scope.

In the simulator we were limited by the available machine which has 24
processors (with maximum 20 processors to use in any single program). Simulation
machine was built as a tree structured architecture consisting of the host, one root server
node, three server children nodes, and fifteen computation nodes as the tree leaves in
addition to one processor for the main simulation driver function. Each node is considered

as an object.

FP program fp Instruction

Host

FP instructions

Figure 14. Communication Between Nodes.
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5.2 OBJECT-ORIENTED SIMULATION ARCHITECTURE

C++ programming language supports the efficiency of simulation modules.
Simulation objects are modeled by C++ classes. Object-oriented methodology has been
chosen as the basic paradigm for the simulation, because it processes the necessary
characteristics to achieve facilitating sequential and parallel processing environment,
increasing the simulation design maintainability, extendabiltity and reuseability.

In the simulation design, request package, mark package, and join package as
well as the data list are constructed as objects that interact with one another by sending
messages. They may be executed in parallel. In the shared-memory multiprocessor
environment the object messages are mapped to shared variables which are network
channels among nodes.

Package class contains three subclasses which are request package, mark package
and join package, all these three different package classes inherit the features of the
package class. In the simulation design, there are host, C-node, and S-node classes which
inherit from node class, each of the classes contains subclasses, such as data object class,
request package class, mark package class, and join package class. C-node class describes
15 parallel computation instances of C-node or objects. Since any feature of node class
inherited can be renamed or redefined in object-oriented methodology, C-node and S-node
are inherited from node class, each of the two classes redefines the gettop, recv_req,
send_mark, send_join, and send_req methods. Object-oriented method provides the
simulation useful constructs for representation of simulation entities. Both design and
implementation of the simulator is done in the object-oriented framework.

The implemented simulator consists of the following classes ( detailed description
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of classes are provided in appendix B):

REQUEST CLASS matches request package,

JOIN PACK CLASS matches the join package and

MARK PACK CLASS matches mark package.

HOST CLASS represents the host node. It is responsible for loading instruction
sets and data into memory and receiving and displaying final result from join package.

C-node CLASS matches C-node. It gets data object from request package sent
by the parent S-node, executes the instruction sets, calculates primitive functions,
determines which instruction sets are sequential or parallel, creates and sends join
package upwards, creates and sends mark package up, creates and sends request package
up.

S-node CLASS implements S-node. It creates list of request packages, mark
packages and join packages, It receives join package, puts result in mark package,
receives mark package, sends request package, sends join package, and sends mark

package up.

5.3 INSTRUCTION EXECUTION

The instruction execution cycle consists of two major steps, namely decode and
execute. The actions performed are descnibed below:
CASE (a) opcode=APF: check the operand to find the primitive function code and apply
the primitive function on the object in the local memory and return the result in the local

memory, using the primitive functions unit table.



33

CASE (b) opcode=ALS or ARS: execute them by selecting the n™ element from left (or
right), where n is the operand, from the current object.

CASE (¢) opcode=ACS: return the constant value that the operand points to.

CASE (d) opcode=COND: execute the first operand function P on the object, if the result
is true the second operand function F will be executed, else the third operand function
G will be executed. All the operand functions are executed depending on their type,
primitive, ALS, ALR, ACS, ALPHA, or Construction.

CASE (e) opcode=CONDA: execute the first operand user-defined function P, which is
the address of the next instruction set, if control flag is true.

CASE (f) opcode=BEG: check the tag to find instructions that can run in parallel until
we arrive at the instruction END. Create a mark package with ex_Jid = the current Jid,
and Jid = Pid. Create a new request package for each of these subtasks all with Jid = the
current Pid, send the mark package to the parent S-node, keep the left most request
package to be executed in this C-node, and send the other request packages to the S-node.
CASE (f) opcode=ALPHA: check number of items in its object in the local memory
to find the number of new request packages needed, create a mark package with
ex_Jid=the current Jid, and Jid=Pid and create a new request package for each of these
subtasks all with Jid= the current Pid, send the mark package to the parent S-node
and keep the right most request package to be executed in this C-node, and send the

other request packages to the S-node.



CHAPTER VI

PARALLEL PROCESSING SCHEME

One of the important characteristics of the simulator is parallelism. The simulator
models parallelism in the TR-machine using the system provided features. Using
DYNIX/pts function m_fork, 20 processes are created, one for each node with its own 1d
(pid). Every process has its parent id (parent id) so as to send message to its parent
process. A set of two dimensional array (Sharedvalue) is designed as bus to send and
receive the three packages back and forth through different nodes (see figure 15). In figure
15, PI represents processor's own id, while PPI represents the parent's processor id. There
are four flag values in sharedvalue that are used to identify the different messages[3].
If sharedvalue.flag = 0, request package sending or receiving,
if sharedvalue.flag = 1, mark package sending or receiving,
if sharedvalue.flag = 2, join package sending or receiving and

if sharedvalue.flag = -1, no active package.
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Figure 15. Using shared variables for communication

Figure 15 shows that 'HOST' represents the host node processor with id '20' and
with no parent id. TS means Top S-node processor with its id ‘0" and parent id '20'. Top
S-node is connected with three S-node processors with their i1ds '1', '2', or '3' and their
parent is Top S-node with id '0". S1 means first S-node with its 1d 'l". Each S-node is
connected to five C-nodes. C-nodes have parent ids 'l' for S1, '2' for S2, and '3' for S3.

The C-nodes which are children of S1 have their own ids '11' for C1, '12' for C2, '13' for
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C3, '14' for C4, and '15' for C5. C-nodes children of S2 have their own ids ‘21' for C6,
'22' for C7, '23' for C8, '24' for C9, and '25' for C10, etc.

The first step of communication and message passing in parallel among nodes
is to identify the processor's id 'PI' and its parent processor id 'PPI', to decide which
sharedvalue should be used to send or receive packages. For example, S-node S1 with its
id PI ="1" and parent node id "0", uses sharedvalue[1][0] to receive packages from its
parent (top S-node), and uses sharedvalue[0][1] to send packages to its parent (top S-
node). On the other hand, S1 has five child C-nodes with id PI=11 to 15. If S1 tries to
communicate with its C-nodes, sharedvalue[n][1] is used to send packages to its n” child
C-node, and sharedvalue[1][n] is used to receive packages from its n™ child C-node. Cl
has its id PI=11, and its parent S1 has id PPI=1. C1 uses sharedvalue[11%10][0] to
receive packages from its parent, and uses sharedvalue[1][11%10] to send packages to its
parent. '%' method is used to match the C-node child location related to its parent. For
example, C1 is the first child for S1, C1 has id PI=11, so its PI=11%10=1. It uses
shardvalue[1][1]. C2 is the second child for S1, C2's 1d 12, so its PI=12%10=2. The
shardvalue[1][2] is used by C2. If Cn is the n™ child for S1, Cn's id is 10+n; so its

PI=(10+n)%10=n, and shardvalue[1][n] 1s used.



CHAPTER VII

SUMMARY AND CONCLUSION

An object-oriented simulation of a multiprocessor computer architecture TR-
machine has been presented, which is based on conventional machine model and graph
reduction. The simulator has been implemented on Sequent Symmetry S81 running
DYNIX/ptx operating system which provides microtasking environment to support parallel
simulation to achieve high performance. The object-oriented language C++ has been used
to implement the simulation. From our experience of simulation, we noticed that the TR-
machine is built from sets of similar objects, therefore, object-oriented approach matches
the structure of simulation very well. It simplifies the implementation of nodes and
parallel communication between the simulation objects and makes the communication
between node much easier. Parallel programming has supported simulation to achieve
high degree of performance in terms of validation, as observed by others, object-oriented
approach seems to be a good solution to manage the architecture simulation complexity.

Object-oriented technique adopted to design the simulation, helped to develop a
flexible simulation model which supports its changeability and reuseability. The user of

the simulation can easily implement different formats of instruction sets, instruction types
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and receive expected results. We have used the simulator to try different instruction types
and formats. If these variety of changes were implemented by using conventional method,
it would be very time consuming and may cause design changes. Besides, the classes
and objects provided the facility to manage the time clocks on different nodes and
maintain the output correctly. Several example programs are run on the simulator to
verify correctness. A sample set of programs is provided in appendix C. Results from a
performance study is shown in Figure 16. Program size is measured as instructions
modulo parallelism. For example, if two instructions are executed in parallel, they are
counted as one. The CPU time does not include communication cost. Figure 16 shows
good performance. Development of a performance model that includes communication

cost 1s considered for future work.
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Figure 16. programs size and execution time
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APPENDIX A

SIMULATION MODEL

SIMULATION DRIVER

begin
initial shared variables for communication between node;
initial list of request package;
initial list of mark package;
initial list of join package;
m_set_procs (number of processors = 20)
//create 20 parallel processors for simulation
m_fork (simulation module, data memory, instruction memory)
m_killprocs(processors);
end;

SIMULATION MODULE

simulate 20 processors to match TR-machine tree structure
begin

m_get_myid( get process id );

switch( process 1d)

case HOST:
create host(host_id,no parent node)
while TRUE do
m_lock()
if new_program_arrives
load_into_instruction memory(program
instructions)
load_into_datamemory(program objects)
create_request_package(new program)
send_request_package()
else
check_receive_join_package(program result)
m_unlock();
endwhile

case TOP_S-node:
create top_S-node(top_S-node_id,host 1d)
// set up status of available C-nodes under each child S-node
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while TRUE do

m_lock()
if receive_request_package(new_program_from_host)
try_send_request_package(to_available_child_S-node)

check_receive_mark_package(from_child_S-node)

if receive_join_package(from_child_S-node)
if find_mark_package(join_package)

put_result_in(mark_package)

else try_send_join_package(to_host)

if receive_request_package(from_child_S-node)
try send_request_package
to_available_child_S-node

else keep_in(request_package)

m_unlock()
endwhile.

case MID_S-node:
create mid_S-node(mid_S-node_id,parent_S-node 1d)
// set up status of available C-node under this mid_S-node
while TRUE do
m_lock()
if receive_request_package(from_parent_S-node)
try_send _request _package(to_available_child_C-node)
if receive_request_package(from_child_C-node)
try_send_request_package(to_available_child_S-node)
else if part_of parallel
try_send_mark_package(to_parent_S-node)
try_send_request_package(to_parent_S-node)
check_receive_mark_package(from_child_C-node)
if receive_join_package(from_child_S-node)
if find_mark_package(join_package)
put_result_in(mark_package)
else try_send_join_package(to_parent_S-node)
m_unlock()
endwhile.

case C-node:
create C-node(C-node_id,parent_S-node_id)
while TRUE do
m_lock()
if receive_request_package(from_parent_S-node)
if parallel_instruction
create_mark_package()
send mark_package()
for(parallel_elements-1)
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create_request_package()
send_request_package()
create_request_package(last_instruction)
do_computation(last_request_package)
else do_computation
create_join_package(result)
send_join_package()
m_unlock()
endwhile.



APPENDIX B

CLASSES OF THE SIMULATION

The implememted simulator consists of following classes which build the
architecture of the simulation:
// instruction set structure
structure of instruction {
int closure[2]; //to identify the components of a construction,
char flag[2]; //to specify the position of an instruction related to
// the functional forms composition and construction,;
int opcode; /fsuch as auf, apf, als, ars, cond, insert etc;
int operand[3]; //either addresses pointer to functions or primitive functions.
b
// class of object (input data)
class Object {
private:
void traverse(Object* Ob,Object Obviously);// function for search the
// objects
public:
Object() {list=NULL;} // class of object
int count; //count number of objects or list
int type; //datatype could be char or integer or list of list
// list of char , list of integer
char atom; //object as character
int atomi;  //object as integer
Object* list; // list of objects
//void operator=(Object Obviously);
void clear(); // clear the memory
~Object() {
if(list!=NULL) clear();
}
}; //end of Object class
shared_t Object datamem[MAX]; //global memory of objects
shared_t instruction insmem[MAX]; // global memory of instruction
class package {
public:
long Jid; // job id
void operator=(package pk);

b
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class reqpack:public package{ //class of request package
public:

Object s; // objects

int pc; /[ program count

int pend; // program end

int pbeg; // program begin

int cond; /I check flag for condition od parallel
int mylocation; // program job location

long pid; // process id

void operator=(reqpack pk); // function to be operated
|
class joinp: public package{ // class of join package
public:

Object result; // result of computation
int location; // location of result in mark package
void operator=(joinp pk);

|
class markpack: public package{ // class of mark package
public:

Object result; // result of one job
long ex_jid,; // provirus job id
int numresult; // number of results to be expected
int progcount; // program count
int prevbeg; // previous job begin
int prend; //previous job end
void operator=(markpack pk);
|
class nodes{
public:
reqpack req; // define request package
markpack markl; // define mark package
joinp joinl; //define join package
int flag; // control flag
int sendnodeid; // send node id

nodes() { flag=-1; sendnodeid=-1; // class of node
req.s.list= new Object[2];  // create the new request package
mark1.result list= new Object[2];, //create a new mark package
joinl.result list=new Object[2]; // create a new join package

}
~nodes() // clear the memory
| | _
shared t nodes sharedvalue[36]{4]; // define two dimensional shared value
shared_t Object localdata[10]; // define local data memory
shared t int mid[10]; // define nodes 1d
shared_t int loc[10]; //define shared location

#endif
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Hosth class:

/1* This part of program is related to host.c, which is class of host .c

/* in host.h contains .h liberay and simulat5.h , it defines 1sdigit,

//* isalpha , isascii and shed pointer shmalloc; Host class contains following: //

// intialization of instruction counter number host, processor id and top S-node id;
// reql for C-node.c;

/I newlist for C-node.c, and functions in host.c which are load_inst; show_inst;
/I receicv_join  into_men; LOAD_DATA; show_data;

class host{ // class of host node
public:
int instruct_no,count; // instruction count number
int id,parentid; // processor id and its source processor 1d
host(int 1,int j){ // 1nt 1= processor id, int j=parent or child i1d
1d=1; parentid=j;instruct_no=0;count=0;0ld=0;
}
void load_inst(); /Ntoad instruction set function
void show_inst(); //display the instruction set loaded
void recv_join(int ); //revetve join package function

void into_mem(char*, int, int, int );
void load_data(Object*,int*); // load data objects to data memory;
int old;

void show_data(Object); //display data objects loaded already;
void data2mem(char* ) ;
reqpack* reql; // used for host.c request package
Object* newlist(void);

|5

extern shared_t int fg;  // fg used to define

C-node.h class:

// This part program uses class to declare all the structure of c-node,
// and all the package <request, join, marked> transfer between

// all the s-node and c-node. Also there are 24 the pnmitive function
// is used in the c-node.

class C-node

{

public: //variables used in C-node.c are defined in public
int location; // define node location
int value,my flag; //define value and flag
int id,parentid,ffg, g; /define node id, parent node 1d and control flag
void get_object(); // function to be used to get objects . .
void computation(int); //for calculate different primitive functions
shared t static markpack mark1[15];//mark package is used in C-nodeS.c
joinp* joinl, /fjoin package is used 1 C-node5.c
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shared_t stat?c reqpack req1{10}; //request package is used to C-node5.c
shared t static Object temp; //object temp variable is used to C-node.c
shared _t static reqpack tempreq[15];//temprequest is used in C-nodeS.c

(;-node(int 1, int j){ //initial integers, objects location functions used in C-
node

ffg=0;
g=0,
1d=i;
value=0;
my _flag=0,
parentid=j;
location=0;
joinl=new joinp;
joinl->result.list=new Object[2];
temp list=(Object*) shmalloc(sizeof(Object)*2);

for(int rr=0;rr<MAX;rr++)a //initial the list of objects
temp.list[rr].list=(Object*) shmalloc(sizeof(Object)*2);

for(rr=0;rr<15;rr++) imtial the list of results

mark1[rr].result.list=(Object*) shmalloc(sizeof(Object)*2);

}
void EQ(int); //EQ is used to calculate primitive function 'eq’;
void NUL(int), /INUL is used to compute primitive function'nul'
void REVERSE(int); //REVERSE is used to computer reverse function;
void LENGTH(int); //LENGTH i1s used to computer length of objects

void ADDITION(int); //ADDITION is used to computer adding two objects
void SUBTRACT(int); /SUBTRACT is used to subtract two objects

void MULTIP(int), //MULTIP is used to computer mutiple two objects
void DIV(int); //DIV is used to computer divide two objects
void TRANS(int); //TRANS 1is used tranform two objects

void AND(int); //AND is used to define T or F condition

void OR(int); //OR 1s used to define T or F condition

void NOT(int); //NOT is used to define T or F condition

void ATOM(int); //ATOM 1s used to define object 1s atom or not
void excutefp(); /lexcutefp is used to execute primitive functions
void Ars(); //ARS 1s used to select left object of the list

void Als(); //ALS is used to select right object of the list
void Apf(); //apf is used to decide weather use primitive function or not
void Cond(); //Cond is used to define two situations

void APNDL(int 1); //APNDL 1s used to append a object to left of list
void APNDR(int 1); //APNDR 1is used to append an object to right of list
void ROTL(int 1); //ROTL is used to rotate the left object of list

void ROTR(int 1); //ROTR is used to rotate the right object of list

void DISTL(int 1); //DISTL is used to distribute left object of list

void DISTR(int i); //DISTR is used to distribute right object of list

void MID(int 1); // MID is used to copy the object of list
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vo@d HD(int 1), /MHD 1is used to chose the first object of the list
void TL(int 1); /[TL is used to chose the last object of list

vo?d TLR(int 1); /[TLR is used to chose right last object of the list
void send_join(); // send_join is used to send join package up

void send_mark(int); // send_mark is used to send mark package up
void send_req(int ); //send_req is used to send request package up

vo?d Acs(); // Acs is used to select constant as variable

yoxd gettop(); //gettop is used to get request package from top node
int ctrfla; //ctrfla is used to decide

|5

extern shared_t int fg; // shared value flag

S-node.h class:

struct rlist { /1 structure of request package link list
reqpack req; // define request package
rlist* next // next of request package
IR
struct mlist { // structure of mark package link list
markpack mk; // define mark package
mlist* next ; /! next of list
IR
class list { // class of list
rlist* r; // link list of request package
mlist* m; // link list of mark package
public:

shared_t static mlist* temp; //define temporary mark package
list() { =NULL; m=NULL; // imitial request package and mark package
mlist* temp=(mlist*) shmalloc(sizeof(mlist)); // add to front of list

}
~list() { if(m!=NULL) delete m; if(r!=NULL) delete r; } // clear the memory

void radd(reqpack tm) { //add new req pack in the list
//add new req pack in the list
// function is to add a new request package
// to the link list, if the link list is empty
// put the request package in the head of list
rlist* rtemp=new rlist;
rtemp->req=tm,
if (==NULL) {rtemp->next=NULL; r=rtemp;}
else{
rtemp->next=r;
r=rtemp,

}

int rdel(long pid) {



// function is to search pid = jid in request
// package in the link list, and delete it
// from the link list
rlist* prev=r;
rlist* rtemp=r;
while((rtemp!=NULL)& &(rtemp->req.Jid!=pid)) {
prev=rtemp;
rtemp=rtemp->next;

}

if(rtemp==NULL) retumn -1;
if (prev==rtemp) {r=NULL;}
else prev->next=rtemp->next;
delete rtemp;
return(0);
}
reqpack* rfind(long pid) {
// function is to search pid = jid in request
// package in the link list, if found, return
// the request package pointer
rhist* rtemp=r;
while((rtemp!=NULL)&&(rtemp->req.Jid!=pid))
rtemp=rtemp->next,
return(& (rtemp->req));

}

void rpr_list()
// this function prints out jid of request
// package of link list
{
rlist* rtemp =1,
while(rtemp!=NULL){
cout<< rtemp->req.Jid;
rtemp=rtemp->next,

}

cout<<"\n";

void madd(markpack mk); //
int mdel(long p)
markpack* mfind(long pid),
void mpr_list();

IR

class S-node { //class of S-node
//initial all integers functions variable used to S-node
public: o
list myhist; //define link list



joinp  join,
reqpack rq;

int stat_node[5];
int restart_p;

int sub_thread;

/ define join package

// define request package
//define 5 location of C-node
/1 for restart flag

int Sz; /I size of C-node

Object ob_p; //define objects list

int id; // define node id

long my_flag; // job flag

int parentid; // parent id

shared_t static markpack snew_mark([4]; // define mark package

shared_t static markpack* tt;

S-node(int i,int j);

void put_result(int,joinp*); //send result function

void gettop();

int check_node();
void recv_join(int f1);
void recv_req(int f1);
void recv_mark(int f1);
void send_join(long);

// get package from top node function
// check status node function

/] receive join package function

// receive request package function

// receive mark package function

//send join package function

void send_req(long Pid,int fl); //send request package function

void send_mark(long Pid); //send mark package function
B
class TS-node :public S-node{ /top S-node class
public: _
TS-node(int 1,int p); // top S-node function
|5

extern shared_t int fg;

//shared variable for checking flag
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APPENDIX C

EXAMPLE PROGRAMS

FP: [t, hd]. o*,

TR-machine program:
0B 00O ALPHA * -1 -1
OOECBEG114
14UTIAPF hd -1 -1
14UIAPF1tl -1 -1
OONOEND-I-1-1-1

input data: <<I515><1414>>-]
output; <<]196,>,225>
time clock: 2

( Factorial):
FP: fact = eq.[s12,0 ] > sll;
[*.[s]1, fact], -. [s]2, 1] ]

TR-machine program:
0O0BCBEG207
07BCBEG114
14UTACSO-1-1
14U ALS2-1-1
00NOEND -1 -1-1
07EICOND eq -1 -1
07UIAPFid -1 -1
OONOEND -1 -1-1
00S 0CONDA 19 -1 -1
00SO0ALS1-1-1
000CBEG21017
1017BCBEG111 14
1114 UTIACS1-1-1
1114 UT ALS 2 -1 -1
00NOEND -1 -1-1
10 17E 1 APF - -1 -1
1017 UTI APF * -1 -1
0O0ONOEND -1 -1 -1
00SO0OJMPO-1-1
00SO0OALS1-1-1

-1-1-

00EO0ALS1 1
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input:
output:
time clock:

FP: trans. reverse
TR-machine program

input:
output:
time clock:

FP: or.[null, eq]

<19>-1
362880
69

0 0 B 0 APF reverse -1 -1
0 0 E 0 APF trans -1 -1 -1
<<56><78>> -1
< 7,5> <8, 6> >

4

TR-machine program:

input;
output:
time clock:

FP: [t], hd, o*]
TR-machine program

input;
output:
time clock:

FP: *. o+ trans

0O0OBCBEG103
03UIAPFeq-1-1
03 UI APF NUL -1 -1
O0O0ONOEND -1-1-1
00EOAPFor-1-1-1
<44> -1

1

2

O0OBCBEG104

04UI ALPHA * -1 -1
04U1IAPF hd -1 -1
04UIAPFtl-1-1
OONOEND-I-1-1-1
<<1515><1414>> -1

< < < 14, 14> < 15,15> > < 225, 196>>
1

TR-machine program:

input:
output:
time clock:

FP:[sl2, -.[1], 1]}

0 0 B 0 APF trans -1 -1
00S 0ALPHA + -1 -1
00EOAPF *-1-1-1
<<43><56>>-1
81
4
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