
AN OBJECf-ORIENTED PARALLEL SIMULATION

OF TR-MACHINE ARCHITECfURE

By

JUAN DUAN

Master of Philosophy

University of Oklahoma

Norman, Oklahoma

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in Partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE

July, 1994

OKLAHG:\!A STATE UNIVERSITY

AN OBJECT-oRIEN1ED PARALLEL SIMULATION
OF 1R-MAClllNE ARCID1ECIURE

Thesis Approved:

ii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Dr. K. M. George,

for his intelligent supervision, constructive guidance, inspiration, encouragement, and

instruction through my thesis research work. My sincere appreciation extends to Dr. Hui

Zhu Lu, and Dr. Paul Benjamin for serving on my graduate committee. Their scientific

guidance, suggestions and support were very helpful throughout my study. Without their

support, motivation, and patience, it would have been difficult to complete this work as

it is now.

Moreover, I wish to express my sincere gratitude to those who provided

suggestions and assistance for this study. I am also thankful to my respected parents and

my friends for their love and support. A special thanks goes to my husband and darling

daughter, for their love, their understanding, their strong encouragement at times of

difficulty, and sacrifices.

Finally, I would like to thank the Department of Computer Science for supporting

me during these two years of study.

iii

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION .. 1

II. SIMULAnON ENVIRONMENT 3
2.1 SEQUENT SYSTEM .. 3
2.2 PARALLEL-PROGRA1vfMING LIBRARY. 4

2.2.1 SYSTEM FUNCTIONS .. 4
2.2.2 SHARED VARIABLES .. 5

2.3 OBJECT-ORIENTED ?\ffiTHODOLOGY .. 5

III. BACKGROUND OVERVIEW .. 7
3.1 FP LANGUAGE. .. 7
3.2 COMPUTATION MODEL. .. 9
3.3 DelFP ARCIDTECTURE .. 14
3.4 BT-SERVER FP INTERPRETER ARClllTECTURE 14

IV. TR-MACIDNE ARCIDTECTURE 16
4.1 TR-MACIDNE INSTRUCTION SET .. 16

4.1.1 TR-MACIDNE INSTRUCTION TYPES. 16
4.1.2 THE INSTRUCTION SET 19

4.2 TR-MACIDNE ORGANIZATION .. 21
4.2.1 MAJOR COMPONENTS .. 22
4.2.2 TREE NODES' FUNCTIONS 23

V. SIMULAnON MODEL .. 28
5.1 COMMUNICATION BETWEEN NODES. 28
5.2 OBJECT-ORIENTED SIMULATION ARClllTECTURE , 31
5.3 INSTRUCTION EXECUTION , 32

VI. PARALLEL PROCESSING SCHE?\ffi 34

VIT. SUMMARY AND CONCLUSION 37

REFERENCES 39

APPENDICES .. 41
SIMULAnON MODEL 42

IV

CLASSES OF THE SIMULAnON 45
EXAMPLE PROGRAMS 52

v

LIST OF FIGURES

Figure 1. programming Library Microtasking Routines. 5

Figure 2 a. Apply Primitive Function.. 10

Figure 2 b. Apply a Construction.. . . . 11

Figure 2 c. Apply ALPHA.. ... 11

Figure 2 d. Composition of * and (ALPHA +).. 12

Figure 2 e. Active Computations.. .. 12

Figure 3. Representation of Active Computations.

Figure 4. Conditional form. . ..

Figure 5. Opcode matching table.

Figure 6. The Instruction Fonnat .

Figure 7. Tags and meanings . . .

Figure 8. FP-TR instructions mapping. .

Figure 9. a TR -program.

Figure 10. TR-machine Structure..

Figure 11. Information stored in Top S-node and Interior S-nodes.. .

Figure 12. C-node Organization.

Figure 13. Communication Packages...

Figure 14. Communication Between Nodes.

Figure 15. Using shared variables for communication...

Figure 16. programs size and execution time

vi

. . .. 13

13

18

19

20

20

21

22

24

25

. 27

30

. 35

. . .. 38

CHAPTER I

INlRODUcnON

This thesis presents the design and implementation of an object-oriented simulation

of a new scalable parallel processing architecture called TR-machine, which is based on

conventional machine model and graph reduction. The simulator for TR-machine is

implemented on a Sequent Symmetry S81 to verify structural properties. The simulator

is designed such that TR-machine processors are mapped into physical processors. There

are 24 processors (on the Sequent Symmetry machine) for the simulation, which are

divided into three levels. These levels of processors correspond to the levels of TR

machine balanced tree structure. The top server node and a host are at the top level. In

the middle there are three server nodes which are connected to the top-server node. At

the leaf level, there are fifteen computation nodes, five nodes are connected to each mid

level server node. There is a bi-directional dedicated bus for communication traffic

between processors in the different tree levels. The language used for the simulation is

C++. It provides the implementation with encapsulation, data abstraction and inheritance.

The simulator is implemented as a tool to verify TR-machine's structural properties and

behavior and to experiment with different instructions. The use of object-oriented

approach[6] in the TR-machine simulation simplifies the implementation of parallel

1

2

communication between the simulation objects.

The rest of this thesis is organized as follows: Chapter II will introduce the

environment of simulation. Chapter ill will introduce the basic concepts contributing to

the TR-machine architecture and some definitions related to the TR-machine such as FP,

DeIFP, BT-interpreter and reduction computation model. Chapter IV will describe the

design of the TR-machine such as structure of TR_machine organization and

communication architecture. Chapter V will introduce simulation model, Chapter VI will

discuss parallel processing scheme, and Chapter VII will provide summary and

conclusions.

CHAPTER n

SIMULAnON ENVIRONMENT

This section will introduce the simulation platform Sequent S81 machine and its

programming library which support the simulation[8].

2.1 SEQUENT SYSTEM

Sequent system is a shared memory multiprosessor system. All processors are

identical, but share a single pool of memory to improve resource sharing and

communication among processors. Since a single high-speed bus holds all processors,

memory modules and i/o controllers, it is easy to add processors, memory, and i/o

bandwidth without change in the operating system. The sequent CPUs are general

purpose, 32-bit, microprocessors. The symmetry series includes Sequent 827 and 881.

Sequent S81 contains from 2 to 30 processors. The available machine for the simulation

is Sequent S81, which contains 24 processors. It can be configured with 8 to 24 Mbytes

of memory ~ which supports 256 Mbytes of virtual address space per processor. Each CPU

has 64 Kbytes of cache RAM. Sequent computers run the DYNIX/ptx operating system,

3

4

which provides most utilities, libraries and system calls. DYNIXlptx manages the system

load among available processors keeping every available processor busy.

2.2 PARALLEL-PROGRAMMING LffiRARY

In our simulation, DYNIXlptx parallel-programming library is used to execute

loops in parallel. The program controls data flow and synchronization by using tools

specially designed for data partitioning. The tools provided include system functions and

shared variables.

2.2.1 SYSTEM FUNCTIONS

Microtasking programs create multiple independent processes to execute loop

iterations in parallel. The microtasking method has the following characters:

• The parallel processes share some data and create their own private copies of the other

data.

• The division of the computing load adjusts automatically to the number of available

processes.

The tools we used in our project are listed in Figure 1.

System call

m_get_numprocs

Responsibility

execute a subprogram In parallel.

return process identification number

return number of child processes.

terminate child processes.

lock a lock

5

I
I rn_multi I end single-process code sectionI

I In_next 1 increment global counterI
I
i

I In-parkJ)rocs suspend child process execution
I

I In_realJ)rocs I
resume child process execution

I m_set-procs I set number of child process
I 1

I In_single i begin single-process code section
I I

! rn_sync check in at barrierI

unlock a lock

Figure 1. programming Library Microtasking Routines

2.2.2 SHARED VARIABLES

The parallel_programming library contains a set of routines for dynamic

allocation and management of shared memory. In C++, shmalloc and shafree routines

are used to allocate and release shared memory for data structures whose size is

determined at run time.

2.3 OBJECT-ORIENTED METHODOLOOY

6

Object-Oriented approach, derived from Simula[6], facilitate encapsulation, data

abstraction, polymorphism, and inheritance. Because of its support for sharing code, and

interface, object-oriented approach is viewed as a solution to manage the architecture

simulation complexity[3].

In object-oriented programming, objects are used as the units of data encapsulation

and classes as the units of data abstraction. These classes typically belong to a hierarchy

of classes united via the inheritance relationship[6].

Data encapsulation, data abstraction, polymorphism, and inheritance are essential

concepts to minimize interdependencies among the simulation modules. Data abstraction

provides the ability to group simulation entities according to their common properties.

Polymorphism supports the modeling of common behavior among different object types.

Inheritance allows code sharing among classes[6].

Thus object-oriented design approach is used for the design of the simulator. The

obvious advantages are encapsulation, data abstraction and inheritance associated to the

objected oriented programming language. The TR-machine is built from sets of similar

objects. Obviously, the object oriented approach simplifies the implementation of nodes

and communication between the simulation objects,

CHAPTERm

BACKGROUND OVERVIEW

The design of the TR-machine is based on several concepts. They are Backus' FP,

graph reduction, DelFP - a sequential execution architecture for FP, and BT-Server FP

Interpreter - a parallel execution scheme for FP. In the following subsections brief

descriptions of these concepts and definitions related to the TR-machine are given. The

details of those concepts can be found in [1], [4], [5], [9], and [10].

3.1 FP LANGUAGE

Backus' FP system[1] describes the framework of a reduction programming

language. The FP system is proposed as an alternative to the conventional programming

which is based on the von Neumann model of the computer. There is no notion of a

present state, program counter, or storage in FP language. Instead, a program is just a

function in the mathematical sense and they map objects to objects. Backus' FP system

consists of fOUf basic parts.

(1) Objects - FP has only one data type called objects. An object is either an atom or a

list of objects. Examples of objects are numbers, alphabets, and <1,2,3,<A, B, C». A

7

8

special symbol .L (called bottom) also belongs to the objects. This object is not

considered in the simulation.

(2) Primitive functions - a set of primitive functions that map objects to objects; these

functions perform arithmetic, logical, or list-manipulation operations. Examples of

primitive functions are +, ., head, tail, eq, and so on.

(3) Functional forms - The functional programming style can be described as the building

of complex functions from simpler ones by using functional forms[1]. The functional

forms used in the simulation are described below:

• Composition: f.g:x=f(g(x». This is the same as composition of functions. During

execution, g(x) is evaluated first. The result is the argument for the execution of function

f.

• Construction: A set of functions is transformed into a list of functions. The symbol used

to represent construction is []. All functions are applied to the same object and can be

evaluated (executed) in parallel. Symbolically, [f1, f2, ... , fn]:x == < f}:x, f2:x,..., fn:x>.

• Apply-to-all Apply a function to all elements of a list. This functional form IS

represented by either ALPHA or a. Symbolically,

(a f):<x1, x2, ..• , Xm> == <f:x1, f:x2,.··, f:"m>. The function applications can be done in

parallel.

• Condition Symbolically (p ~ f; g):x == if p:x = T then do f:x else if p:x =F then do

g:x else 1-. In the simulation, this functional form has been modified to simple

comparisons and branch.

• Constant This is the same as constant function in mathematics. c: x = c.

(4) Application - denoted by the symbol It : " represents function application. For example

9

f:x means apply the function f to the object x. Program execution computes the result.

Examples of programs and their machine language translations will be provided

in chapter IV.

3.2 COrvlPUTATION MODEL

The underlying computation model of the TR-machine architecture can be termed

parallel tree reduction. The reduction model can be illustrated by using a set of examples.

Each of the FP program examples is represented as a tree and the transformations to the

tree at the various levels of computation, and the result are shown.

In the examples shown in the figures 2a - 2d , the nodes labeled ft:" represent

computation (or application) and the nodes labeled ft." represent a list. As the examples

illustrate, the computation can be expressed as a tree and evaluation proceeds from lower

level to the root in response to a demand from the root. Computation at a level needs to

be complete before the next higher level computation can be performed (because FP uses

call-by-value semantics.) Each independent computation can be mapped into a processor.

The processor mapping is illustrated in the figure 3. using the expression of example from

figure 2d. The boxes identified as PI and P2 represent computations that can be

performed in parallel. The result of the computation will be a list which becomes the

operand at the next level which is shown in the box labeled P.

The computations that can be performed are called active computations. As can

be seen from figures 2a - 2d, if there is only one active computation, one processor can

handle it. If there are several active computations mapped into several processors, we

need a mechanism to keep track of the computations and to collect the results into a list.

10

Therefore, the computations can be classified into two types - "type a" and "type btl as

shown in figure 2e. In figure 2e, C, CI, C2,... ,Cn represent active computations, S

represents the mechanism to keep track of the parallel computations. Every set of active

computations can be represented by a tree with at most two levels. This organization

suggests an embedding of the computation into a balanced tree. A single active

computation is embedded into a leaf. In the case of a two level tree, leaves are mapped

into leaves and the root is mapped into an interior node.

The case of functional form condition needs special attention. A sequential

approach is adopted as illustrated in figure 4. The predicate p is evaluated first and then

based on the result, the appropriate function will be evaluated to produce the result.

The TR-machine organization is based on this computation model. Type a

computations can be mapped into a processor. Type b computations can be mapped into

a set of processors preserving the two level tree structure. The root of the tree will keep

track of computations and form the result as a list.

+:<2,3>

+

--... 5

Figure 2 a. Apply Primitive Function.

[+ -]:<2.3>

+

Figure 2 b. Apply a Construction.

Figure 2 c. Apply ALPHA.

11

n.~

24

Figure 2 d. Composition of • and (ALPHA +).

12

en

Type a computation

(a)

Type b computation

(b)

Figure 2 e. Active Computations.

•

13

Pi P2

A. ~
3 8

p

Figure 3. Representation of Active Computations.

(p->f;g):x

p

Figure 4. Conditional form.

14

3.3 DelFP ARCHITECTURE

The architecture DeIFP[5] is designed to directly execute FP language in

conventional sequential machines. The structure of DelFP is language sensitive and

parallels the structure of FP. In FP there are no data addresses, offsets, or variables.

Since DelFP is in close correspondence with the source high-level language, the FP

language, it absorbs these features.

DelFP operators are functional forms. The operands are primitive or user-defined

functions. During the DelFP execution the value of a function is computed and its

controls are encoded in implicit format. DelFP can be defined in terms of:

- an instruction set;

- a set of residual control variables describing the interpretive environment at any

execution point

- a contour model for retention of activation records and

- a set of format rules to determine the location of data manipulation during each

computation step.

The execution of DelFP programs uses the contour model. Functions in a

construction are pushed onto a stack and evaluated one by one. A stack of object pointers

keep track of the results of the individual computations.

3.4 BT-SERVER FP INTERPRETER ARCmTECTURE

BT-sever FP interpreter[7] describes a parallel implementation scheme for a

massively-parallel FP architecture. BT-server FP interpreter's architecture IS a

15

massively-parallel FP computer. BT-sever has a balanced tree structure with the leaf nodes

being distinct from the internal nodes. The leaf nodes perform computation while the

internal nodes perform subtask/node management functions. BT-server uses exclusively

distributed memory and massage passing to implement the hardware communication. An

FP language is used as the machine language.

CHAPTER IV

TR-MAOIINE ARCHITECfURE DFSIGN

In the following sections, we briefly discuss the TR-machine instruction set

architecture, instruction types, structure of TR-machine organization, communication

architecture, and communication between nodes.

4.1 TR-MACmNE INSTRUCTION SET

The machine language of the TR-machine is based on DelFP which is designed

to execute FP in conventional sequential processor machines. Because of its close

correspondence with the FP language, it is straightforward to develop translators between

FP and TR-machine instruction. The following subsections will discuss the instruction

architecture such as instruction types, and instruction format.

4.1.1 TR-MACmNE INSTRUCTION TYPES

TR-machine programs are similar to FP programs. The types of instructions are

chosen corresponding to different functional forms of FP language[S]. As we will see

16

17

later, TR-instructions are used the same way as the FP functional forms to build

TR-programs. Instructions and data are disjoint. Data in the TR-machine simulation is

assumed to be FP objects. An object is an atom or a list of objects, where the atom is a

number or character. The instruction types implemented in this research are discussed

below (see Figure 5 for opcodes and their encoding):

APPLY (APF) An apply instruction is an application of primitive function. Its operand

is a pointer to the function being applied. The result of executing this instruction is to

evaluate the operand function with the current object as the operand. The address of the

current object will be in a dedicated register (register S).

APPLY LEFf SELEcrION (ALS) This instruction selects the nth element from the left

in the current object. The operand is an integer n encoded as the operand. The current

object is expected to be a list.

APPLY RIGHT SELEcrION (ARS) This instruction is same as ALS except that the

selection is from the right of the list.

APPLY CONSTANT FUNcrION (ACS) This returns a constant object. Its operand is

a pointer to the constant object table containing the value to be returned.

CONDmON (COND) Execute the first operand P on the object, If the result is true,

the second function F will be executed, else the third operand function G will be

executed.

CONDmON (CONDA) Execute first operand which is address of next instruction to be

executed, if control flag is true. The current object does not change.

CONSTRUcrION(BEG•••END) There are two instructions "BEG" and fiEND". The

operand of construction instruction can be divided into two parts. One marks the

beginning of construction and the other marks the end of construction. The instruction

18

between the two "BEG" and "END" are groups of instructions(functions) that can be

executed in parallel. The result of executing this construction instruction is to distribute

the computations to different computation nodes(processors). The functions are evaluated

in parallel. The "END" instruction marks the end of construction and has no operand.

APPLY TO ALL (ALPHA) The operand of this instruction is a function that can be

applied to each element of the current object. The input object is expected to be a list.

The operand function is distributed to different nodes for parallel computation with

appropriate components of the list. The semantics of construction and apply-to-all are

different from DelFP instructions because they initiate parallel computation.

JUMP(JMP) Operand of this instruction is a pointer to a local program to be executed

with the current input. This instruction is included in the architecture in order to

implement recursion and the while functional form in the FP system. This choice is made

so as to keep the instruction set simple.

OPCODES

APF 0 I
ACS 1

ALS 2

ALR 3

COND 4

ALPHA 5

BEG 6

I

IEND
1
7

JMP 8

CONDA 9

Figure 5. Opcode matching table

19

Among the above instructions 'BEG' and 'AIJ»HA, contribute to parallel

computation.

4.1.2 THE INSTRUCTION SET FORMAT

The instruction set structure of the TR-machine is represented by a packet (the

idea of packet is originally introduced in [2]), this packet is a record divided into several

fields as shown figure 6.

Ie-Closure I tags I opcode I operandi

Figure 6. The Instruction Format

The fields opcode and operand have the usual meaning. In the simulator, opcodes

represent functional forms. Operands are either addresses or pointers to functions. The

C-closure field is used to identify the components of a construction efficiently. It

specifies the construction to which the function belongs, (specified by the beginning and

end addresses of the construction). If C-closure of an instruction matches the operand

field of construction, then it is a member function of that construction(see Figure 9). The

tag field is used to specify the position of an instruction relative to the functional forms

composition and construction. The tag field may contain one or more of the following

tags given in figure 7.

20

Taq Meaninq
N End of Construction
B Seauential Beqin
E Seauential end
C Construction Beqin
I Inside Construction
S Inside Seauence
U Unary block

Figure 7. Tags and meanings

Figure 8 illustrates the correspondence between FP functional forms and TR-

instructions. The TR-instructions are listed in the first column. The second column gives

a FP function application, and the third column lists the equivalent TR-program. The

fourth column gives the result. In the TR-instructions, the primitive function symbols

themselves are used to represent operands for the sake of clarity.

Instruction type FP-Instruction TR-Instruction Result

APPLY +:<1 3> -- APF + 4

ALS 2L:<1 2 3> -- ALS 2

ARS 3R:<1 2 3> -- ARS 3 1

ACS :5 -- ACS 5

COND (eq*;-):<2 1> -- COND eq • - 1

CONDA N/A -- Control flag = t, go address
-- to address

ALPHA + :«1 2> <3 4» -- ALPHA + <3 7>

BEG [+ - *]:<3 2> C- BEG P q <516>

1- APF •
1- APF-

1- APF +

N- END

Figure 8. FP-TR instructions mapping.

22

4.2 TR-MACHINE ORGANIZATION

The organization of the TR-machine is adopted from the BT-Server FP interpreter

[7]. It is organized as a balanced tree structure. Each node of the tree is a processor. The

nodes of the tree belong to two distinct classes. The leaf nodes form the class of

computing nodes (or C-nodes) and the internal nodes form the class of sever nodes (or

S-nodes). The class of server nodes serve as a communication and book-keeping network.

The C-nodes perform actual computation. The root of the tree is called the top server node

and it is connected to a host. The structure of the tree used in the simulation is shown

in Figure 10.

Figure 10. TR-machine Structure.

4.2.1 MAJOR COfvIPONENTS

The host is the connection between the top server node (the root of the tree) and

23

the user. The function of the host is to pass information back and forth between the user

and the TR-machine. Actually it is responsible to convert FP language into TR-machine

language and receive the final result from server node.

S-node responsibilities also include keeping track of function requests arriving

from the host node, sending subtasks to a free child computing node, handling subtasks

overflow, collecting the subtasks' results of a parallel task, and returning the final result

to the host.

The computing nodes (leaf nodes or C-nodes) receIve and store intermediate

subtasks from their parent S-node, execute requested subtasks, send the results back to

their parent S-node, and generate new requests for subtasks of a parallel task. The C-node

is considered as a microprocessor with its own CPU and local memory. Inter-node

communication is accomplished by using dedicated buses[3], and [4].

4.2.2 TREE NODES' FUNCTIONS

The host node stores the instruction set in the instruction memory, objects (data)

in the data memory, and sends request package, and reports final results. In order to

avoid the bottle-neck problem as a result of the communication of several C-nodes trying

to use the same object in-site in the global data memory (in a parallel computation), the

instruction set is designed to pass a copy of the appropriate object to be made available

to the C-nodes. This design is expected to have better performance.

Top sever node and child server nodes use a list of request packages, a list of

mark packages, and a list of join packages for communication. These packages may be

stored in local memory. The server nodes have status registers of its children nodes. The

24

status registers indicate whether the C-nodes are free. The top server node also keeps

track of the id of its children server nodes whenever it sends massages (see Figure 11).

It also has a control flag to keep track of which child node is working for which level and

which subtask is being executed. Type a computation involves only one C-node. But, type

b computation involves several C-nodes. So The root of the computation tree (refer to

Figure 2e) will be associated to an S-node which will have the responsibility to collect

the results of the subtasks.

U.t ot request packalea

lJ.8l Of mark packales

List of Join packalell

Status of

C Nodes
Server Node=

Top Server Node~# ot available C Dode.
I 0 .. 5 I

wbtuk thread

object pointer

IMARK PACKAGE I

REQUEST PACKAGE

Figure 11. Information stored in Top S-node and Interior S-nodes.

The C-nodes are responsible for computation. They are mIcroprocessors. The

components of a C-node include a primitive function table, primitive function units,

source-pointer, D-pointer, instruction pointer, control flag, list of request packages, join

package, mark package, and local memory to store the object and intermediate results

2S

during performing the computation. Figure 12 illustrates the primary components of a C-

node.

listOf~reql req2 ...
reque.

packales

primitiye
function

table

primitive
unit

+.-./••

ID.8trucUon poiDter

Icontrol naF 0 or 1 I

S=8ource data
pointer

D=reault pointer

local memorY
object relult

pm

Figure 12. C-node Organization.

4.3 COMMUNICATION ARCmTECTURE

The basic idea of the TR-machine is that: programs are executed part of the time

sequentially and part of the time in parallel. As long as parallel computation is not

required, computation can be limited to one processor. When execution reach the point

which need parallelism, the programs and corresponding data are sent to available

computing nodes. These sub-tasks are routed to different computing nodes through a

S-node which keeps track of computation. The S-node collects the results from C-nodes,

and constructs a list which will be the argument to the next function to be executed.

S-node also keeps track of available children C-nodes.

There is no intra-level communication between nodes. Inter-level communication

26

is accomplished by synchronized message passing. The simulation in this thesis assumes

the top server node has three child server nodes, and each child server node has five

C-nodes (refer to Figure 10). There are three types of information buses, also called

packages, that are used to provide communication among nodes. Each package identifies

a different event in the computation process and carries appropriate values.

4.3.1 TYPES OF PACKAGES

The communication packages used are called request package, join package, and

mark package. Next subsections will give brief description of request package, join

package and mark package. The features of the packages are shown in Figure 13.

4.3.1.1 REQUEST PACKAGE

Request package is a message used to initiate computation. Request package will

carry Job id (lid), source data which contains the objects (data to perform the task from

the data memory location), instructions, address of data or result for the next instruction

in C-node local memory, pointer to the address of the first instruction of this subtask in

the global memory (program begin or pbeg), the address of the last instruction of this

subtask in the global memory (program end or pend) and process id (Pid).

4.3.1.2 MARK PACKAGE

A mark package contains necessary information to form lists from results of

27

subtasks. Mark package will carry previous job id (ex_lid), Jid~ number of expected

results, list of locations for expected results, program counter for the parallel instruction,

and previous beginning and end of the task to be forked to parallel subtasks.

4.3.1.3 JOIN PACKAGE

Join package is used to send results of subtasks. Join package will carry Jid which

is equivalent to the current request package's lid, expected result from C-node, and the

location of the result relative to the expected results in the mark package.

JID

pm

I·aurae data I

pbil

pend

I nn I
I IEX-nn

I'of re·u1t.a1 1
prorram

I
u.t of

counter e~ect.ed

relult.8

pre-pbil II
I pre-pend I

lID=
current
requeltd

nn

EJ
1):::11I I
relult in the
mark pack&Ie

REQUEST PACKAGE MARK PACKAGE JOIN PACKAGE

Figure 13. Communication Packages.

CHAPTER V

SIMULATION MODEL

This chapter will outline the simulation. Internode communication, simulation

architecture and instruction execution scheme are described. The simulation model in

pseudo code format is given in appendix A.

5.1 COMMUNICATION BETWEEN NODES

The conceptual communication scheme between nodes is shown in figure 14.

Once the host node gets a task (instruction set or sets and objects), a new request package

with nD Gob identifier) is created. The top server node will pass the request package

from host to the leftmost free child S-node, say S1, with its id to', and S1 in tum will send

the request package to leftmost available C-node of its children with its id tIt, say CI. The

C-node CI, which has id 'I t and parent id '1', will check whether the task is sequential or

parallel according to the information the request package provided.

If the instruction is 'APF' for example, which is apply primitive function, then CI

will finish computation sequentially, put the result into a join package, and ship it back

28

29

to its parent S1, where it will not find a mark package with the same id; so it will

continue up to the root S-node and then to the host node.

If the request package contains instruction set that can run in parallel, then a mark

package will be created for this task and a new request package will be created for each

parallel subtasks. The mark package will keep a record for the expected number of results.

C1 node will keep the first request package to compute, and send the other request

packages and mark package to S1. When C1 completes execution of its request package,

it will send a join package with the result to its parent S1. S1 will receive the remaining

request packages and it will send them to other free child C-nodes. If no child is free at

that time, S1 will send the remaining request packages to the root S-node to try to send

them to other C-nodes under other S-nodes. At the same time S1 will send the mark

package to the root S-node.

The S-node Sl will start to receive the join packages from Cl and other C-nodes

with the expected results. These join packages will put their results in the mark package

which has the same id. When all expected results arrive in the mark package, a new

request package will be created with the ex_id, eX"'pbeg, and ex...pend (stored in the mark

package). S1 will send this request package to Cl to continue the main task execution.

For example, when an alpha-instruction or BEG instruction is encountered, several

sub-computations are possible. One subtask is done by the C-node currently executing the

program and other subtasks will be sent to the parent sever node to be distributed to

available computing nodes. The address of the instruction following the scope of alpha

or END instruction will also be sent to the parent S-node. If a S-node does not have any

free computing node under it, the subtask will be forwarded upwards. When parallel

30

execution is completed the results will be collected by the server node and computation

will be started from the instruction following the scope.

In the simulator we were limited by the available machine which has 24

processors (with maximum 20 processors to use in any single program). Simulation

machine was built as a tree structured architecture consisting of the host, one root server

node, three server children nodes, and fifteen computation nodes as the tree leaves in

addition to one processor for the main simulation driver function. Each node is considered

as an object.

. . .

Host

FP iD.tructiolUl

FP instructions

FP fp Instructionprorram

Figure 14. Communication Between Nodes.

31

5.2 OBJECT-ORIENTED SIMULATION ARCHITECTURE

C++ programming language supports the efficiency of simulation modules.

Simulation objects are modeled by c++ classes. Object-oriented methodology has been

chosen as the basic paradigm for the simulation, because it processes the necessary

characteristics to achieve facilitating sequential and parallel processing environment,

increasing the simulation design maintainability, extendabiltity and reuseability.

In the simulation design, request package, mark package, and join package as

well as the data list are constructed as objects that interact with one another by sending

messages. They may be executed in parallel. In the shared-memory multiprocessor

environment the object messages are mapped to shared variables which are network

channels among nodes.

Package class contains three subclasses which are request package, mark package

and join package, all these three different package classes inherit the features of the

package class. In the simulation design, there are host, C-node, and S-node classes which

inherit from node class, each of the classes contains subclasses, such as data object class,

request package class, mark package class, and join package class. C-node class describes

15 parallel computation instances of C-node or objects. Since any feature of node class

inherited can be renamed or redefined in object-oriented methodology, C-node and S-node

are inherited from node class, each of the two classes redefines the gettop, recv_req,

send mark, sendjoin, and send_req methods. Object-oriented method provides the

simulation useful constructs for representation of simulation entities. Both design and

implementation of the simulator is done in the object-oriented framework.

The implemented simulator consists of the following classes (detailed description

32

of classes are provided in appendix B):

REQUEST CLASS matches request package,

JOIN PACK CLASS matches the join package and

MARK PACK CLASS matches mark package.

HOST ClASS represents the host node. It is responsible for loading instruction

sets and data into memory and receiving and displaying final result from join package.

C-node ClASS matches C-node. It gets data object from request package sent

by the parent S-node, executes the instruction sets, calculates primitive functions,

determines which instruction sets are sequential or parallel, creates and sends join

package upwards, creates and sends mark package up, creates and sends request package

up.

S-node CLASS implements S-node. It creates list of request packages, mark

packages and join packages, It receives join package, puts result in mark package,

receives mark package, sends request package, sends join package, and sends mark

package up.

5.3 INSTRUCTION EXECUTION

The instruction execution cycle consists of two major steps, namely decode and

execute. The actions performed are described below:

CASE (a) opcode=APF: check the operand to find the primitive function code and apply

the primitive function on the object in the local memory and return the result in the local

memory, using the primitive functions unit table.

33

CASE (b) opcode=ALS or ARS: execute them by selecting the nth element from left (or

right), where n is the operand, from the current object.

CASE (c) opcode=ACS: return the constant value that the operand points to.

CASE (d) opcode=COND: execute the first operand function P on the object, if the result

is true the second operand function F will be executed, else the third operand function

G will be executed. All the operand functions are executed depending on their type,

primitive, ALS, ALR, ACS, ALPHA, or Construction.

CASE (e) opcode=CONDA: execute the first operand user-defined function P, which is

the address of the next instruction set, if control flag is true.

CASE (f) opcode=BEG: check the tag to find instructions that can run in parallel until

we arrive at the instruction END. Create a mark package with ex_Jid = the current Jid,

and Jid = Pid. Create a new request package for each of these subtasks all with Jid = the

current Pid, send the mark package to the parent S-node, keep the left most request

package to be executed in this C-node, and send the other request packages to the S-node.

CASE (f) opcode=ALPHA: check number of items in its object in the local memory

to find the number of new request packages needed, create a mark package with

ex_Jid=the current Jid, and Jid=Pid and create a new request package for each of these

subtasks all with lid= the current Pid, send the mark package to the parent S-node

and keep the right most request package to be executed in this C-node, and send the

other request packages to the S-node.

CHAPTER VI

PARALLEL PROCESSING SCHEME

One of the important characteristics of the simulator is parallelism. The simulator

models parallelism in the TR-machine using the system provided features. Using

DYNIX/pts function m_fork, 20 processes are created, one for each node with its own id

(pid). Every process has its parent id (parent id) so as to send message to its parent

process. A set of two dimensional array (Sharedvalue) is designed as bus to send and

receive the three packages back and forth through different nodes (see figure 15). In figure

15, PI represents processor's own id, while PPI represents the parent's processor ide There

are four flag values in sharedvalue that are used to identify the different messages[3].

If sharedvalue.flag = 0, request package sending or receiving,

if sharedvalue.flag = 1, mark package sending or receiving,

if sharedvalue.flag = 2, join package sending or receiving and

if sharedvalue.flag = -1, no active package.

34

3S

Figure 15. Using shared variables for communication

Figure 15 shows that 'HOST' represents the host node processor with id '20' and

with no parent ide TS means Top S-node processor with its id '0' and parent id '20'. Top

S-node is connected with three S-node processors with their ids 'I', '2" or '3' and their

parent is Top S-node with id '0'. S1 means first S-node with its id '1 '. Each S-node is

connected to five C-nodes. C-nodes have parent ids '1' for SI, '2' for S2, and '3' for 83.

The C-nodes which are children of SI have their own ids '11' for CI, '12' for C2, '13' for

36

C3, '14' for C4, and 'IS' for CS. C-nodes children of 82 have their own ids '21' for C6,

'22' for C7, '23' for C8, '24' for C9, aDd '25' for ClO, etc.

The first step of communication and message passing in parallel among nodes

is to identify the processor's id 'PI' and its parent processor id 'PPI', to decide which

sharedvalue should be used to send or receive packages. For example, S-node S I with its

id PI = "1" and parent node id "Oft, uses sharedvalue[l][O] to receive packages from its

parent (top S-node), and uses sharedvalue[O][I] to send packages to its parent (top S

node). On the other hand, S1 has five child C-nodes with id PI= 11 to IS. If S1 tries to

communicate with its C-nodes, sharedvalue[n][l] is used to send packages to its nth child

C-node, and sharedvalue[l][n] is used to receive packages from its nth child C-node. Cl

has its id PI=ll, and its parent SI has id PPI=I. C1 uses sharedvalue[ll%lO][O] to

receive packages from its parent, and uses sharedvalue[l][ll%IO] to send packages to its

parent. '%' method is used to match the C-node child location related to its parent. For

example, CI is the first child for Sl, Cl has id PI=ll, so its PI=II%IO=I. It uses

shardvalue[l][l]. C2 is the second child for SI, C2's id 12, so its PI=12%IO=2. The

shardvalue[I][2] is used by C2. If Cn is the nth child for SI, Cn's id is IO+n; so its

PI=(IO+n)%IO=n, and shardvalue[1][n] is used.

CHAYfER VII

SUMMARY AND CONCLUSION

An object-oriented simulation of a multiprocessor computer architecture TR

machine has been presented, which is based on conventional machine model and graph

reduction. The simulator has been implemented on Sequent Symmetry SSl running

DYNIX/ptx operating system which provides microtasking environment to support parallel

simulation to achieve high performance. The object-oriented language C++ has been used

to implement the simulation. From our experience of simulation, we noticed that the TR

machine is built from sets of similar objects, therefore, object-oriented approach matches

the structure of simulation very well. It simplifies the implementation of nodes and

parallel communication between the simulation objects and makes the communication

between node much easier. Parallel programming has supported simulation to achieve

high degree of performance in terms of validation, as observed by others, object-oriented

approach seems to be a good solution to manage the architecture simulation complexity.

Object-oriented technique adopted to design the simulation, helped to develop a

flexible simulation model which supports its changeability and reuseability. The user of

the simulation can easily implement different formats of instruction sets, instruction types

37

38

and receive expected results. We have used the simulator to try different instruction types

and formats. If these variety of changes were implemented by using conventional method,

it would be very time consuming and may cause design changes. Besides, the classes

and objects provided the facility to manage the time clocks on different nodes and

maintain the output correctly. Several example programs are run on the simulator to

verify correctness. A sample set of programs is provided in appendix C. Results from a

performance study is shown in Figure 16. Program size is measured as instructions

modulo parallelism. For example, if two instructions are executed in parallel, they are

counted as one. The CPU time does not include communication cost. Figure 16 shows

good performance. Development of a performance model that includes communication

cost is considered for future work.

Benchmark

/
//

/
/

/
/

~

10

•
10

o
o • 6 • • 10

lDatnlatiOD Co1lDt
II 16

Figure 16. programs size and execution time

REFERENCFS

[1] Backus, J. "Can Programming be Liberated from the von Neuman style? A Functional

Style and its Algebra of Programs:' CACM, August, 1978, pp.613-641.

[2] Cripps, M.D., Darlington J., Field A.J., Harrison, P.G., and Reeve, M.J., "The Design

and Implementation of ALICE: a parallel Graph Reduction Machine'·, Proceeding of the

Workshop on Graph Reduction, 1987, pp. 300-322.

[3] Duan J., George, K. M., and Lu H. Z., "Object-Oriented Simulation of Multiprocessing

Architecture", to be published, proceeding of the Summer Computer Simulation (SeSe)

Conference ,San Diego, July, 1964.

[4] George, K. M., and Duan, J., "TR-machine Architecture", to be published,

proceedings of the Massively Parallel Computing Systems (MPCS) Conference, Ischia,

Italy, May 1994.

[5] Huynh, T., Hailpem, B., Hoevel, L.W. " An execution Architecture for FP", ffiM J.

RES DEVELOP, VOL. 30 NO.6 November 1986, pp. 609-616.

[6] Kirkerud, B., "Object-Oriented Programming with Simula", Addison-Welsey

Publishing Company, Inc., Reading, MA, 1989.

[7] Ong, Teng, E., George, K.M., Teague, Keith, A. ItBT-SERVER FP Interpreter", The

Fifth Distributed memory Computing Conference, April, 1990, pp.1147-1151.

[8] Rochkind, M.J. "Guide to Parallel Programming", Prentice-Hall, 1985.

[9] Steven R. Vegdahl, itA Survey of Proposed Architectures for the Execution of

Functional Languages", IEEE Transaction Computer, Vol C-23, Number 12, December

1984, pp.l050-1071.

[10] Tsanakas P., Alendridis N., and Parakonstantinou G., "An FP-based Design

39

40

Methodology for Problem-oriented Architecture", The Computer Journal» vol. 32, no. 5

1989, pp. 453-460.

APPENDICES

41

APPENDIX A

SIMUlATION MODEL

SIMUlATION DRIVER

begin
initial shared variables for communication between node;
initial list of request package;
initial list of mark package;
initial list of join package;
rn_set-procs (number of processors = 20)
Ilcreate 20 parallel processors for simulation
m_fork (simulation module, data memory, instruction memory)
m_killprocs(processors);

end;

SIMUlATION MODULE

simulate 20 processors to match TR-machine tree structure
begin

m~et_myid(get process id);
switch(process id)

case HOST:
create host(host_id,no parent node)
while TRUE do
rn_Iock()

if_new-program_arrives
load_into_instruction memory(program
instructions)

load_into_datamemory(program objects)
create_request-package(new program)
send_request-package()

else
check_receivejoin-package(program result)

m_unlock();
endwhile

case TOP S-node:
cr;ate top_S-node(top_S-node_id,host id)
// set up status of available C-nodes under each child S-node

42

43

while TRUE do
rn_Iock()

if receive_requestJ)8ckage(newJ)rogram_from_host)
try_send_requestJ)ackage(to_avai1able_chiId_S-node)

check_receive_markJ)ackage(from_child_S-node)
if receivejoinJ)ackage(from_child_S-node)

if find_markJ)ackage(joinJ)ackage)
put_result_in(markJ)ackage)

else try_sendjoinJ)ackage(to_host)
if receive_request-package(from_child_S-node)

try send_requestJ)ackage
to_available_child_S-node

else keep_in(requestJ)ackage)
m_unlock()

endwhile.

case MID_S-node:
create mid_S-node(mid_S-node_id,parent_S-node id)

II set up status of available C-node under this mid_S-node
while TRUE do

rn_lock()
if receive_request-package(from-parent_S-node)
try_send_request-package(to_available_child_C-node)
if receive_request-package(from_child_C-node)
try_send_request-package(to_available_child_S-node)

else if part_of parallel
try_send_markJ)ackage(to-parent_S-node)
try_send_request-package(toJ)arent_S-node)
check_receive_mark-package(from_child_C-node)

if receivejoin-package(from_child_S-node)
if find_markJ)ackage(join-package)

put_result_in(markJ)ackage)
else try_sendjoinyackage(toJ)arent_S-node)

m_unlock()
endwhile.

c~e C-node:
create C-node(C-node_id,parent_S-node_id)
while TRUE do

m_Iock()
if receive_requestJ)ackage(fromJ)arent_S-node)

if parallel_instruction
create_markJ)ackage()

send_markJ)ackage()
for(parallel_elements-I)

m_unlock()
endwhile.

create_request..J)ackage()
send_request..J)ackage()
create_request..J)ackage(last_instruction)
do_computation(last_request..J)ackage)

else do_computation
createjoin..J)ackage(resuIt)
sendjoin..J)ackage()

44

APPENDIX B

ClASSES OF 1HE SIMUlAnON

The implememted simulator consists of following classes which build the
architecture of the simulation:

II instruction set structure
structure of instruction {

int closure[2]~ lito identify the components of a construction;
char flag[2]; lIto specify the position of an instruction related to

II the functional forms composition and construction;
int opcode; Iisuch as auf, apf, als, ars, cond, insert etc;
int operand[3]; Ileither addresses pointer to functions or primitive functions.
};

II class of object (input data)
class Object {
private:

void traverse(Object· Ob,Object Obviously);11 function for search the
II objects

public:
Object() {list=NULL;} II class of object

int count; Ilcount number of objects or list
int type; Iidatatype could be char or integer or list of list

II list of char, list of integer
char atom; Ilobject as character
int atomi; Ilobject as integer
Object· list; II list of objects

Ilvoid operator=(Object Obviously);
void clear(); II clear the memory
-Object() {

if(list!=NULL) clear();
}

}; Ilend of Object class
shared t Object datamem[MAX]; Ilglobal memory of objects
shared=t instruction insmem[MAX]; II global memory of instruction
class package {
public:

long Jid; II job id
void operator=(package pk);

};

45

class reqpack:public package{ I/class of request package
public:

Object s; /1 objects
int pc; II program count
int pend; 1/ program end
int pbeg; II program begin
int cond; II check flag for condition od parallel
iot mylocation; II program job location
long pid; 1/ process id
void operator=(reqpack pk); II function to be operated

};
class joinp: public package{ II class of join package
public:

Object result; II result of computation
int location; II location of result in mark package
void operator=(joinp pk);

};
class markpack: public package{ II class of mark package
public:

Object result; II result of one job
long exjid; II provirus job id
iot numresult; II number of results to be expected
int progcount; II program count
int prevbeg; II previous job begin
int prend; Ilprevious job end
void operator=(markpack pk);

};

class nodes{
public:

reqpack req; II define request package
markpack mark 1; II define mark package
joinp join1; Iidefine join package
int flag; II control flag
int sendnodeid; II send node id
nodes() { flag=-l; sendnodeid=-l; II class of node

req.s.list= new Object[2]; II create the new request package
markl.result.1ist= new Object[2]; Ilcreate a new mark package
joinl.result.list=new Object[2]; II create a new join package

"}
-nodes() II clear the memory

};
shared t nodes sharedvalue[36][4]; II define two dimensional shared value
shared=t Object localdata(lO]; II define local data memory
shared_t int mid[lO]; II define nodes id
shared_t int loc[IO]; IIdefine shared location

#endif

46

Host.h class:

II· This part of program is related to host.c, which is class of host .c
II· in host.h contains .h liberay and simulatS.h , it defines isdigit,
II· isalpha , isascii and shed pointer shmalloc; Host class contains following: II
II intialization of instruction counter number host, processor id and top S-node id;
II reqI for C-node.c;
II newlist for C-node.c, and functions in host.e which are load inst; show_inst;
II receicvjoin into_men; LOAD_DATA; show_data; -

class host{ II class of host node
public:

int instruct no,count; II instruction count number
int id,parentid; II processor id and its source processor id
host(int i,int j){ II int i= processor id, int j=parent or child id
id=i; parentid=j;instruct_no=O;count=O;old=O;

}
void load_inst(); l!load instruction set function
void show_inst(); Ildisplay the instruction set loaded
void recvjoin(int); Ilreveive join package function
void into_mem(char*, iot, int, int);
void load_data(Object* ,int·)~ II load data objects to data memory;
iot old;
void show_data(Object); Ildisplay data objects loaded already;
void data2mem(char*) ;
reqpack* reql; II used for host.c request package
Object· newlist(void);

};
extern shared_t int fg; II fg used to define

C-node.h class:

// This part program uses class to declare all the structure of c-node,
1/ and all the package <request, join, marked> transfer between
1/ all the s-node and c-node. Also there are 24 the primitive function
1/ is used in the c-node.
class C-node

~UbliC: //variables used in C-node.c are defined in public
iot location; II define node location
int vaIue,my_flag; Iidefine value and flag
int id,parentid,ffg, g; //define node id, parent node id and control flag
void get_object(); II function to be used to get objects
void computation(int); //for calculate different primitive functions
shared t static markpack mark1[15];/Imark package is used in C-node5.c
joinp.Joinl; //join package is used i C-node5.c

47

48

shared_t static reqpack reql[IO); /lrequest package is used to C-node5.c
shared_t static Object temp; /lobject temp variable is used to C-node.c
shared_t static reqpack tempreq[15];/ltemprequest is used in C-node5.c
C-node(int i, int j){ //initial integers, objects location functions used in C-

node
ffg=O;

g=O;
id=i;
value=O;
my_flag=O;
parentid=j;
location=O;
joinl=new joinp;
join l->result.list=new Object[2];
temp.list=(Object*) shmalloc(sizeof(Object)*2);

for(int rr=O;rr<MAX;rr++)a Ilinitial the list of objects
temp.list[rr].list=(Object*) shmalloc(sizeof(Object)*2);
for(rr=O;rr<15;rr++) initial the list of results
mark! [rr].result.list=(Object*) shmalloc(sizeof(Object)*2);
}

void EQ(int);
void NUL(int);
void REVERSE(int);
void LENGTH(int);
void ADDITION(int);
void SUBTRACT(int);
void MULTIP(int);
void DIV(int);
void TRANS(int);
void AND(int);
void OR(int);
void NOT(int);
void ATOM(int);
void excutefp();
void Ars();
void Als();
void Apf();
void Cond();
void APNDL(int i);
void APNDR(int i);
void ROTL(int i);
void ROTR(int i);
void DISTL(int i);
void DISTR(int i);
void MID(int i);

lfEQ is used to calculate primitive function 'eq';
I/NUL is used to compute primitive function'nul'

llREVERSE is used to computer reverse function~

IILENGTH is used to computer length of objects
/IADDITION is used to computer adding two objects
IISUBTRACT is used to subtract two objects

/IMULTIP is used to computer mutiple two objects
IfDIV is used to computer divide two objects

IrrRANS is used tranform two objects
/IAND is used to define T or F condition

IIOR is used to define T or F condition
I/NOT is used to define T or F condition

//ATOM is used to define object is atom or not
//excutefp is used to execute primitive functions

lIARS is used to select left object of the list
//ALS is used to select right object of the list
//apf is used to decide weather use primitive function or not
/ICond is used to define two situations

I/APNDL is used to append a object to left of list
I/APNDR is used to append an object to right of list

I/ROTL is used to rotate the left object of list
I/ROTR is used to rotate the right object of list
IfDISTL is used to distribute left object of list
IfDISTR is used to distribute right object of list

II MID is used to copy the object of list

void HD(int i); IIHD is used to chose the first object of the list
void TL(int i); 1m is used to chose the last object of list
void TLR(int i); ImR is used to chose right last object of the list
void sendjoinO; II sendjoin is used to send join package up
void send_mark(int); II send_mark is used to send mark package up
void send_req(int); IIsend_req is used to send request package up
void Acs(); II Acs is used to select constant as variable
void gettopO; Ilgettop is used to get request package from top node
int ctrfla; Ilctrfla is used to decide
};
extern shared_t int fg; II shared value flag

S-node.h class:

49

struct rlist {
reqpack req;
rlist· next;

} ;
struct mlist {

markpack mk;
mlist· next;

II structure of request package link list
II define request package
II next of request package

II structure of mark package link list
II define mark package
II next of list

II class of list
II link list of request package

II link list of mark package

} ;
class list {

rlist· r;
mlist· m;

public:
shared t static mlist· temp; Ildefine temporary mark package
listO Cr=NULL; m=NULL; II initial request package and mark package

mlist· temp=(mlist*) shmalloc(sizeof(mlist»; II add to front of list
}

~list() { if(m!=NULL) delete m; if(r!=NULL) delete r; } II clear the memory

void radd(reqpack tm) { I/add new req pack in the list
I/add new req pack in the list
II function is to add a new request package
II to the link list, if the link list is empty
/1 put the request package in the head of list

rlist· rtemp=new rlist;
rtemp->req=tm;
if (r==NULL) {rtemp->next=NULL; r=rtemp;}
else{
rtemp->next=r;
r=rtemp;
}

}

int rdel(long pid) {

II function is to search pid =jid in request
II package in the link list, and delete it
II from the link list

rlist· prev=r;
rlist* rtemp=r;
while«rtemp!=NULL)&&(rtemp->req.Jid!=pid» {

prev=rtemp;
rtemp=rtemp->next;
}

if(rtemp==NULL) return -1;
if (prev--rtemp) {r=NULL;}
else prev->next=rtemp->next;
delete rtemp;
retum(O);
}

reqpack* rfind(long pid) {
II function is to search pid = jid in request
1/ package in the link list, if found, return
1/ the request package pointer

rlist* rtemp=r;
while«rtemp!=NULL)&&(rtemp->req.Jid!=pid»

rtemp=rtemp->next;
retum(& (rtemp->req»;
}

void rpr_list()
II this function prints out jid of request
II package of link list

{
rlist* rtemp = r;
while(rtemp!=NULL){

cout« rtemp->req.Jid;
rtemp=rtemp->next;
}

cout<<"\0";
}

void madd(markpack mk); II
int mdel(long p)

markpack* mfind(long pid);
void mpr_Iist();

};

class S-node { Ilclass of S-node
Ilinitial all integers functions variable used to S-node

public:
list mylist; //define link list

so

// define join package
1/ define request package
//define 5 location of C-node
// for restart flag

/Isend result function
II get package from top node function

II check status node function
II receive join package function
II receive request package function
II receive mark package function
Iisend join package function
I/send request package function
//send mark package function

};

JOlnp JOIn;
reqpack rq;
int stat_node[5];
iot restart-p;
int sub_thread;
int sz; II size of C-node
Object ob-p; Iidefine objects list
int id; II define node id
long my_flag; II job flag
int parentid; II parent id
shared_t static markpack snew_mark[4];

shared_t static markpack* tt;
S-node(int i,int j);
void put_result(intjoinp*);
void gettop();
int check_node();
void recvjoin(int fl);
void recv_req(int fl);
void recv_mark(int fl);
void sendjoin(long);
void send_req(long Pid,int fl);
void send_mark(long Pid);

1/ define mark package

51

class TS-node :public S-node{
public:

TS-node(int i,int p);
};

extern shared_t int fg;

//top S-node class

II top S-node function

/Ishared variable for checking flag

input data:
output:
time clock:

APPENDIX C

EXAMPLE PROGRAMS

FP: [tl, hd]. 0*,

TR-machine program:

o BOO ALPHA • -1 -1
o 0 E C BEG 1 1 4
1 4 U I APF hd -1 -1
1 4 U I APF tl -1 -1
o 0 N 0 END -1 -1 -1 -1
< < 15 15 > < 14 14 > > -1
«196,>,225>
2

(Factorial):
FP: fact = eq.[s12,O] _> s11;

[*.[sI1, fact], -. [sI2, 1]]

TR-machine program:
o 0 B C BEG 2 0 7
o 7 B C BEG 1 1 4
I 4 U lACS 0 -1 -1
1 4 U I ALS 2 -1 -1
o 0 N 0 END -I -1 -1
o 7 E I COND eq -1 -1
o 7 U I APF id -1 -I
o 0 N 0 END -1 -1 -1
o 0 S 0 CONDA 19 -1 -1
o 0 S 0 ALS 1 -1 -1
o 0 0 C BEG 2 10 17
1 0 17 B C BEG 1 11 14
II 14 U lACS 1 -1 -1
11 14 U I ALS 2 -I -1
o 0 N 0 END -1 -1 -1
10 17 E I APF - -1 -1
10 17 U I APF • -1 -1
o 0 N 0 END -1 -1 -1
o 0 S 0 JMP 0 -1 -1
o 0 S 0 ALS 1 -1 -1
o 0 E 0 ALS 1 -I -1 -1

52

input:
output:
time clock:

< 1 9 > -1
362880
69

53

input:
output:
time clock:

input:
output:
time clock:

input:
output:
time clock:

input:
output:
time clock:

FP: trans. reverse
TR-machine program:

o 0 B 0 APF reverse -1 -1
o 0 E 0 APF trans -1 -1 -1
< < 5 6 > < 7 8 > > -1

< 7,5> <8, 6> >
4

FP: or.[oull, eq]
TR-machine program:

o 0 B C BEG 1 0 3
o 3 U I APF eq -1 -1
o 3 U I APF NUL -1 -1
o 0 N 0 END -1 -1 -1
o 0 E 0 APF or -1 -1 -1
< 4 4 > -1
1
2

FP: [tl, hd, 0*]
TR-machine program

o 0 B C BEG 1 0 4
o 4 U I ALPHA * -1 -1
o 4 U I APF hd -1 -1
o 4 U I APF tl -1 -1
o 0 N 0 END -1 -1 -1 -1
< < 15 15 > < 14 14 > > -1
< < < 14, 14> < 15,15> > < 225, 196»

1

FP: •. 0+. trans
TR-machine program:

o 0 B 0 APF trans -1 -1
o 0 S 0 ALPHA + -1 -1
o 0 E 0 APF • -1 -1 -1
< < 4 3 > < 5 6 > > -1
81
4

FP: [512, -. [11, 1]]

/

VITA

Juan Duan

Candidate for the Degree of

Master of Science

Thesis:

Major Field:

Biographical:

AN OBJECT-ORIENTED PARALLEL SIMULATION OF
TR-MACHINE ARCHITECTURE

Computer Science

Education: Received Master of Science Degree in Philosophy from
Graduate School of Chinese Academy of social Science, Beijing,
China 1987; Received Master of HR in Human Relations, University of
Oklahoma, Dec,1990; Completed the requirements for the Master of
Science degree at Oklahoma State University in July 1994.

Experience: Teaching Assistant, Computer Science Departmen~ from 1993
to present. Data Analyst, Entomology Department, from 1992 to
present Oklahoma State University; Teaching and research Assistant,
Philosophy and Human Relations Department, 1987 to 1990 the
University of Oklahoma.

Professional Membership: Member of honor society of PHI KAPPA PHI at
OSU Member of ACM and IEEE-CS. Dean's list, the Graduate School
of the Chinese Academy of Social Science. Member of the Chinese
Association of Sociology, Social Psychology and Philosophy.

	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	006.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	022.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif
	055.tif
	056.tif
	057.tif
	058.tif
	059.tif

