
TOWARDS A GRAPIDCAL QUEUEING NETWORK TOOL

By

JAGANATH DABBI

Bachelor of Technology (Honors)
Indian Institute of Technology

Kharagpur, India
1985

Master of Business Administration
Oklahoma State University

Stillwater, Oklahoma
1993

Submitted to the faculty of the
Graduate -College of the

Oklahoma State University
.in partial fulfillment of

the requirement for
the Degree of

MASTER OF SCIENCE
May 1994

OKLAHOMA STATE UNIVERSITY

TOWARDS A GRAPHICAL QUEUEING NETWORK TOOL

Thesis Approved:

Dean of the Graduate College

11

ACKNOWLEDGE:MENTS

I wish to express my appreciation and gratitude to my advisor Dr. Mansur H.

Samadzadeh for accepting to be my major advisor, his advice, intelligent guidance, and

assistance. His constructive criticism, direction, wisdom, and counsel during my graduate

study have been a constant source of inspiration and motivation that helped me gain

confidence. I also 'wish to thank Drs. Blayne E. Mayfield and D. Paul Benjamin for

serving on my graduate committee.

Additionally, I wish to thank Ms. Kathy Adkins, my supervisor at the Office of

Business and Economic Research, College of Business, Oklahoma State University, for

her support by employing me as a Graduate Research Assistant. I would also like to

thank Mr. Tariq Hassan for the many tips and insights that he provided during all phases

of this project.

Last but not the least, I would like to express my sincere gratitude to my parents,
, :

Mallikarjuna Rao and Saraswathi Rao, for their continued support and encouragement

without which this endeavor would not have been successful.

III

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

II. LITERATURE REVIEW 4

2.1 Definitions 4
2.2 Characterization of Queueing Networks '. 8

2.2.1 Erlang's Model 10
2.2.2 Poisson Distribution .. '0 •• 11
2.2.3 Distribution of Interarrival Times 12
2.2.4 Aggregation and Bran_ching of Paths 13
2.2.5 Analysis of an MIMI1 System 15

2.3 Modeling with Queueing Networks .18
2.4 Issues in Queueing Networks 19

2.4.1 Single Queueing Systems: .. ,.. 19
2.4.2 Open Network of Queues 19
2.4.3 Close.d Network of Queues " i ",', • '; '0 •• 20

ill. IMPLEMENTATION ISSUES
• ._. I ~ • ; ..

23

3.1 Implement~#on ;Pla~o~and_Environ~ent . '.' . ' ',' "." :~3

3.1.1 Sequent Symmetry S/81 23
3.1,~2. The ~ Window Syst~m 'j:' • '.' '.' • ~ • • • • • • • • •• 24
3.1.3 OSF/Motif Toolkit 25

3.2 ~mple~entation: ..-0 ' 30
3.2.1 Program Structure 30
3.2.2 User..Inte~ace '. .~4

3.2.3 Other Implementation Details 55

! • ~ - ~. !. : ; .. . "\.. ..

IV. EVALUATION OF THE TOOL 58

4.1 Sample Systems Modeled by the Tool 59
4.2 Observations ,. 63

V. SUMMARY AND FUTURE WORK ~ 65

IV

Chapter Page

5.1 Summary 65
5.2 Future Work 66

REFERENCES 68

APPENDICES 72

APPENDIX A - GLOSSARY AND TRADEMARK
INFORMAnON 73

APPENDIX B - USER GUIDE FOR QNT ,.... 79

APPENDIX C - SYSTEM ADMINISTRATOR GUIDE FOR
QNT 94

.. l"

v

Figure

1. Parameters of a queue

LIST OF FIGURES

Page

7

2. An open queueing network for a simple computer system 9

3. A queueing model for a uniprocessor multiprogrammed system 10

4. Aggregation of paths 14

5. Branching of paths 15

6. An MIMII queueing model without feedback 16

7. An open queueing network model of a terminal-oriented distributed
computing ·system 0.."..............".......................... 18

8. Layers in the X Window System 25

9. Architecture of OSFlMotif 0 o. 0 0 0 •• o. .27

10. A class inheritance hierarchy for .the Motif widget set ... 0 0 • • .' 0 0 • • 0 • • •• 28

11. The four .regions of QNT interface 0 0 .' ••••••• 0 • 0 • 00 •••• 36

12. A queueing network model of·the USE system "0 ••.••• 0 •• 00 .• 0,4.' ••• , 60

13. A software-level queueing network model 0 ••••• 0 •••• o. 61

14. A hierarchical .closed queueing network model of a- timeshared
computer system 62

15. The initial screen of QNT

VI

80

CHAPTER I

INTRODUCTION

An important goal in the design of a computer system is to ensure that the design

conforms to the requirements and the expected behavior of the system. The performance

of an existing or proposed computer system can b.e evaluated or predicted by a number

of techniques. A proposed system could be built and then evaluated based on experience

from its actual use. Empirical data about the various system parameters can be gathered

and performance measures of the system can be obtained. The performance of the system

can also be measured by benchmarking the system with a predetermined set of jobs

similar -to those in the "real world".

The approach mentioned above entails a great deal of effort and cost. Alternately,

a system could be modeled. Modeling a computer system i~ an important stage in its

development. A system cO.uld be designed on the drawing board but. its dynamic behavior

is generally difficult to analyze. Modeling involves the. construction of an abstraction .of

a system that reflects and responds to various system and job flow parameters. The

model should also be able to exhibit performance measures that· have a predictive value

[Maekawa87].

One approach to modeling involves the software simulation ofa proposed

computer system with an elaborate .internal structure representing the actual system being

1

2

modeled [Maekawa87]. Such models are accurate representations of the system and hence

provide reliable information about the actual system performance. However,- the

construction of a software simulation model can. be expensive and time consuming. It

may also require a large number of executions with different sets of inputs to collect

performance data of substance.

Another approach is analytical modeling of a computer system based on queueing

theory [Maekawa87]. These techniques can be used to model complex computer systems.

They have the advantage of being low in cost and flexible, but have the inherent

disadvantage of being unable to truly reflect the detailed characteristics of a real system.

The popularity of modeling on computers has been made possible by the

emergence of automated tools for different categories of problems. These tools could be

used to depict and analyze computer systems. A complex computer system can be

divided into logical sub-systems of manageable complexity, each of which can be

modeled independently. The components of the sub-systems can be depicted using simple

graphical shapes. Communication among sub-systems can be achieved and illustrated as

needed. Each sub-system would .need inputs which could result from other sub-systems.

Using a top-down approach', it is possible to design and model· the behavior of any

sub-system assuming that the initial conditions are satisfied... As the .next step ~in the

modeling process, the model'could be analyzed for.confonnity··with the expected behavior

and performance characteristics. The system design could then be refined based on the

results of the analysis of the performance data collected. The iterative analysis and

modification procedure can be utilized to construct a model with a desired behavior and

performance characteristics. Finally, the sub-systems can be put together to model the

3

complete system, which can then be implemented.

In order to graphically represent a model, we can use a directed graph with nodes

signifying various sub-systems or parts of a sub-system, and paths signifying interaction

between different components of the system. The problem with this approach is that it

is difficult to depict parallelism and synchronization among the different components of

a system.

A queueing network [Gelenbe87] is a versatile modeling tool that can answer the

problems mentioned above. A queueing network is an abstract model of the flow of jobs

in a system. It is an analytical tool that can be applied to different classes of systems.

A queueing network can describe a concurrent and/or asynchronous system. It can be

analyzed for different performance characteristics such as throughput, turnaround time,

and waiting time.

The main objective of this thesis was to develop a tool that can help in the

development of a queueing network model of a system. Chapter II of this thesis provides

a review of the current literature on queueing networks. Chapter ITI provides a discussion

on the design and implementation details of the software that was developed as part of

this thesis. The testing and evaluation of the software developed are discussed in Chapter

IV. This thesis· ends with Chapter V-that provides a summary, the conclusions drawn

from the study, and some suggestions for .future work.

CHAPTER II

LITERATURE REVIEW

2.1 Definitions

This section contains some of the fundamental definitions about queueIng

networks. These definitions are mostly based on five major references [Lipsky77]

[Trivedi82] [KendalIS1] [Maekawa87] [Gelenbe87].

A queueing network is an interconnected collection of service centers in which

jobs proceed from one center to another to satisfy their service requirements. Formally,

a queueing network is a quadruple QN = (Q, S, 0, P), where Q = {q1' q2, ... , <In} is a

finite set of queues, each of some non~negative size, S = {S1' S2, ... , sn} is a finite set of

servers, 0 = {Ol' O2, ... , On} is a finite set of environments or outsides, and P c {Q X Q}

U { S X S} U {Q X S} U {S X Q} U {Q X O} U {O X Q} U {S X O} U {O X S} is

a set of directed edges. Edges of type S X S can be used in modeling pipelined systems

and edges of type Q X Q can be used in modeling subdivision of a gestalt queue into a

number of queues based on priorities.

A queue in a queueing network is a node that is represented by an open rectangle.

Each queue q has a preset and a postset. The preset ofa queue can be defined as *q =

{x I (x, q) & P}, where *q represents the preset of queue q and x can be a queue, a server,

or an outside. The postset ofa queue can be defined as q* = {x I (q, x) £ P}, where· q*

4

5

represents the postset of queue q and x can be a queue, a server, or an outside. The

interconnection of a queue with a set of queues, servers and outsides is defined by the

preset and postset of that queue.

A server in a queueing network is a node that is represented by a circle. Each

server s has a preset and a postset. The preset ofa server can be defined as ·s = {x I (x,

s) e P}, where ·s represents the preset of server s and x can be a queue, a server, or an

outside. The postset of a server can be defined as s* = {x , (s, x) e P}, where s·

represents the postset of server s and x can be a queue, a server, or an outside. The

interconnection of a server with a set of queues, servers, and outsides is defined by the

preset and postset of that server.

An outside or environment in a queueing network is a node that is represented by

a square. Each outside 0 has a preset and a postset. The preset of an outside can be

defined as *0 = {x I (x, 0) e P}, where ·0 represents the preset of outside 0 and x can

be a queue, a server, or an outside. The postset ofan outside can be defined as 0* = {x

I (0, x) e P}, where o· represents the postset of outside 0 and x can be a queue, a server,

or an outside. The interconnection of an outside with a set of queues, servers, and

outsides is defined by the preset and postset of that outside.

An Open queueing network is a queueing network that has one or more sources

of job arrivals from outside the system and one or more sources of job departures to the

outside of the system. A Closed queueing ·network is a queueing network that is

characterized by jobs that circulate indefinitely within the network with no interaction

with the outside of the system [Trivedi82].

The Kendall notation [KendalI51] is an abbreviation for the parameters that

6

describe a queueing system [Maekawa87]. A queue can be characterized with a notation

of the form

AlB/c/k/m/Z

where

A = arrival process
B = service process
c = number of identical servers
k = queue capacity
m = customer population
Z = queueing discipline

The notation generally used for the arrival process or service process is one of the

following [Gelenbe87].

GI = general independent distribution
G = general distribution
H k= hyperexponential distribution of order k
Ek = Erlang distribution of order k
M = exponential distribution
D = constant distribution

The common queueing disciplines are

FIFO = first come, first served
LCFS = last come, first served
FIRO = first in, random out

An arrival process is one that is characterized by jobs that arrive at random

independently of each other at times that are unknown. The length of the time interval

between arrivals is a random variable, taking values from one of the distributions

mentioned above, with an average of A, [Lipsky92].

A service process is one that is characterized by one or more identical servers

serving jobs in a queue. The service time is a random variable, taking values from one

of the distributions mentioned above, with an average of fJ..

Arrival
Process

-.~

Queue
Capacity

..........,

Queue
Discipline

Figure 1. Parameters of a queue

Number of
Servers

Service
Process
_.~

Service Time
Distribution

7

The common performance measures used in evaluating a computer system are

listed below.

• Mean queue length, n, is the average number of jobs in the queue including the one
being served at the steady state.

• Mean waiting line length, w, is the average number of jobs in the system that are not
being served at the steady state.

• Mean waiting time, tw' is the average time ajob waits for service excluding the service
time at the steady state.

• Mean turnaround time, tt' is the average time a job spends in the system from the

8

time it enters the system to the time it exits the system. It is the sum of the mean
service time and the mean waiting time.

• Processor utilization, p, is the ratio of A to J..l or the ratio of the average arrival rate
to the average departure rate.

A queueing network can be defined as a tripartite graph with three types of nodes:

circles representing servers, open rectangles representing queues, and squares representing

outsides or environments. The connection between queues, servers, and outsides is

through directed paths.. Queues directly connected .together, ·servers directly connected

together, ·or outsides directly connected together can be considered as a single queue, a

single server, or a single outside respectively. Hence, a queueing network can be

considered as a tripartite graph. A sample queueing network is given in Figure 2. The

queueing network can be defined·,as .QN = (Q,. S,.'O"P);'where.Q =·{ql, Q2, q3}' S = {S1'

2.2. Characterization of Queueing Networks

Modeling computer systems· involv.es .dealing with multiple resources such as

CPU's, memories" channels, and disks. The complexity· of modeling computer systems

leads to the use of queueing networks rather than a single queue with a single server.

However, an understanding of the·single: :queue model· is necessary .for the following

reasons [Gelenbe87]. , -,
·1 . ~ , ." .,

• Understanding queueing theory is easier when a model with a single queue with a
single model is. considered.

• It is a useful framework for the development of mathematical tools for analyzing
complex queueing networks.

Outside 0 1 Server 8 1
J.i1

9

Server 82

-c----y

Figure 2. An open queueing network for a simple computer system

• The entire computer system can be considered as an unique server with a complex
queue discipline.

The behavior of a system can be analyzed using queueing theory. The behavior

'. 1 •

of such a system can be categorized as follows [Maekawa87].

• The system characteristics are' based on its steady state behavior, i.e., the probabilities

and distributions are invariant with respect to time.

• The processes in the system are stochastic with probabilistic distributions and are

independent of each other. The stochastic behavior of the processes is obtained from

empirical studies of real systems.

• The population of jobs requesting service is either infinite or finite.

• The jobs follow the Markov process as they move within the system.

10

• The distribution of service times is exponential.

• The capacity of the individual queues in the system is either finite or infinite.

• The average performance characteristics of the system converge to those at steady state,

i.e., it is an ergodic system.

2.2.1 Erlang's Model

A basic model for studying queueing systems is Erlang's model. Figure 3 provides

a queueing model for a uniprocessor multiprogrammed system.

'. t" '.

CPU Queue CPU

I/O Device I/O Queue

------I--'"
Figure 3. A queueing model for a uniprocessor multiprogrammed

system

Based on Figure 3, Erlang's model suggests that any queueing model consists of

three components.

• Servers are the centers where a job receives servtce. The indiVidual servers are

11

characterized by a time distributional service. This represents a probability

distribution function that describes the time required to service a job. The mean

service time is J..l. The most common probability distribution function for a service

process is exponential since it most closely .represents a real computer system

[Maekawa87].

• Queues are the centers where jobs line up for service. The individual queues are

characterized by a queue capacity, arrival process, and a queue discipline. The queue

capacity may either be finite or infinite. The arrival process is one in which jobs

arrive at intermittent times from within or outside the network. The precise time of

arrival of these jobs is unknown. The arrival process continues indefinitely. The

arrival process can be represented by a probability distribution function that describes

the number of jobs arriving in an interval of time. The mean rate of arrival of jobs

into a queue is represented by A. The most common probability distribution function

for an arrival process is the Poisson distribution since it provides an accurate

representation of the rate of arrival of jobs in a computer system. The queue discipline

represents the order in which jobs.in a-queue are serviced by one or more servers. The

most common queue discipline is first-come, first-served. due to its inherent simplicity

in analyzing computer ·systems.

• Paths are directed arcs between nodes in .a· queueIng network. Each path lIS

characterized by a probability value y that- a job moves along .it. " . J •

2.2.2 Poisson Distribution

The distribution of the arrival of jobs for most systems follows a Poisson

12

distribution. A Poisson distribution is characterized as follows [Maekawa87].

• The number of jobs arriving in an interval of time is a random number taken from a

probability distribution function.

• In a "short" interval of time, the pro1?ability of one arrival is proportional to the length

of that time interval, At, or

P [1 arrival in time At] = Mt

where Ais the mean rate of arrival of the jobs.

• The probability of more than one arrival in a "short" interval of time is negligible, i.e.,

the chance of a spike in the distribution is very low, or

P [more than 1 arrival in time ~t] = O(At)

The property of O(~t) can be mathematically expressed as follows: any function of ~t,

f(At), has the O(~t) property if

• The Poisson distribution is a discrete distribution. The probability of exactly n jobs

arriving in an interval of time' At is given by:

P [N = n]
= e -lAt(,\4 t)1I

n!

where A is the mean rate .of arrival of jobs.

2.2.3 Distribution of Interarrival Times

The distribution of interarrival times is related to the Poisson distribution of

arrivals and has the following properties.

13

• The distribution of interarrival times is an exponential distribution.

• The probability distribution function for the interarrival times can be expressed as

P [T ~ t] = 1 - e -141

where A is the mean rate of arrival of jobs. The mean of this distribution is If').., and

the variance of this distribution is 1fA}.

• The exponential distribution is memoryless, i.e., the number of arrivals in one state of

the system does not depend on the previous state(s). This implies that, after a

suffjcient leng$ of time, the initial transient behavior of the system will be_forgotten

and systems with an exponential interarrival time distribution will approach their steady

state.

• Every Poisson arrival process has an exponential distribution of interarrival times.

2.2.4 Aggregation and Branching of Paths

An important issue in qu~ueing networks is the branching and aggregation of

paths. Consider the aggregation of paths into one path as depicted in Figure 4.

Specifically, there are n paths-that are merging into one path. The n paths represent

Poisson processes with mean rates of AI, ~, ..., or An. There is one "merged" path with

a mean departure rate of A. The relation between Aand AI'~' ..., An is

n
A = E Ai

i=1

Further, the resulting aggregate path is also a Poisson stream.

The branching ofpaths is depicted in Figure 5. Specifically, there is one path that

14

--------~A

Figure 4. Aggregation of paths

has a Poisson distribution with a mean rate of A. To receive service, a job must choose

one of the n branches ·with rates AI, ~, ... , or~. The probability of joining any of the

n paths is Y1' Y2, ... , or Yn = 1 - (Yl + Y2 + ... + Yn-l)· The relation between A, and AI, ~,

..., ~ is the following, for i = 1 to n,

Ai = YiA

Each of the resulting output paths is also a Poisson stream.

15

A
1

------~

A-
2

A­
n

Figure 5. Branching of paths

2.2.5 Analysis of an MIMIl System

The behavior and performance characteristics.of an· MIMIl system without the

details of the derivation process are considered in this subsection. Figure 6· depicts an

MIMII queue without feedback.· :'

Mean ValueAnalysis is used .extensively while analyzing que-q,eing networks. The

mean value analysis of an MIMIl queueing. model is characterized as follows.

• A Poisson arrival process with a mean arrival rate-of A'jobs per unit time.

• An exponential interarrival time distribution with an average of 1/'}.., time units.

• An exponential service time distribution with a mean service time of J.1 time units.

16

Queue q Server s

_~~ I----~-I.L~~

Figure 6. An MIMIl queueing model without feedback

• An average service rate (or departure rate) of l/ll jobs per unit time.

A steady state system is a necessity for accurate prediction of the behavior of a

system using mean value analysis. It is to be noted that being in the steady state does not

imply that the system is constant.

Little's law states that the average queue length, Ii, is proportional to the average

waiting time for a jobtw [Little61].

11 = Atw

The system utilization, P, is the product of the mean arrival 'rate and the mean

service rate, or

p =

Utilization is an important measure of the performance of a system. If p > 1, the system

will never reach the steady 'state since there are more jobs arriving' into the system than

the server can handl~, and the queue .length will· grow indefinitely. If p< 1, the system

will attain the steady state·quickiy.Further, p is the percentage of time the server

remains busy. If p is close to 1, the system may eventually reach the steady state

[Maekawa87]. Utilization is an important measure since we desire that the system be

17

stable and reach the steady state quickly.

The steady state queue length prfJbability, Sn, is the probability that there are

exactly n jobs in the queue at the steady state. It has been shown that at the steady state

we have [Maekawa87]

s" = p" (1 - p), n ~ 0

00

assuming that p < 1 and E SIt = 1
n=O

The expected number of jobs in the system, n, including the job being served is

n .=

The mean queue length,

W =

P
1 - P

W ,IS

. ,. ~. ., .

The average waiting time for a job, tw' is

p

The average s~~ice time for ~.job, ts ' ~s

The average turnaround time for a job, t" is .

-
tt =

1

18

2.3. Modeling with Queueing Networks

Queueing networks are commonly used to model different systems. Queueing

networks capture the potential parallelism effectively. The open queueing network shown

in Figure 7 is a model of a terminal-oriented distributed computing system [Trivedi82].

Figure 7. An open queueing network model of a terminal-oriented distributed
computing system

A multiple bus configuration computer system can be repres~nted by a closed

queueing netw~rk [Lavenb~rg88]. ~ this class of queueing ne~orks, jobs neve~ enter
• • '. ". ..' I

or lea~e the system.

Queueing networks can represent different computing .sy~tems su~h as time sharing

systems [Klienrock64], round robin scheduling [Klienrock76], machine ~e~~r lD:0d~1 of

a time. sharing system [Scherr67], multiprogramming systems [Gaver67] [Lewis7!],
.. . '.

central server model [Jackson63] [Gordon67], I/O sub-systems [Fuller75], priority queu~s

[Byrant84], exclusive and shared locks [Mitra85], asynchronous parallelism

[Heidelberger82] [Thomasian86], fork/join parallelism [Heidelberger83], and load sharing

19

systems [Wang85] and flow of control in computer programs containing different

constructs such as DO-WHILE, IF-THEN-ELSE, CASE, and PARBEGIN-PAREND.

2.4. Issues in Queueing Networks

In this section, some of the issues in modeling complex computer systems are

briefly considered.

2.4.1 Single Queueing Systems

There are several versions of the M1M11 queueing system such as MIMIc, MlMloo,

MlG/l, and MlGI/oo. These systems have been analyzed in a manner analogous to that

presented in Section 2.2.5 for an M1M11 queue.

2.4.2 Open Network of Queues

When modeling a central server computer system, it is necessary to develop the

model as an open network of queues since any job submitted by a user to the system can

be considered as entering from outside the system [Maekawa87]. In such a network, there

are K queues. Each queue is characterized by feeding many identical servers and an

arrival process that can be described by a Poisson distribution with an average rate of

arrival of~. A job from queue i, after being serviced, joins queue j with the probability

of 'Yij' The routing probabilities among the queues can be represented by a K x K matrix t

. .. " .

where K is the total number of queues. A job from queue j leaves the system with

probability [Maekawa87]

20

K
1 - E y ..

k=1 f1

A requirement for this type of network is that the network must be totally

interconnected and the K x K matrix cannot have all the rows summing to one. This is

to ensure that jobs leave the system. Jackson obtained a solution for an open network of

queues [Jackson57]. Jackson's solution assumes that all arrivals (from outside the system

and from one queue to another) are Poisson distributed with the service times being

exponentially' distribut~d. Later, Jackson demonstrated a solution that removed this latter

restriction [Jackson63]. The elegant nature of these solutions is the fact that the.

performance results for open networks can be derived from thos.e for an MIMIc queue.

2.4.3 Closed Network of Queues

When modeling interactive systems that have a fixed number of terminals, each

with an user entering commailds requiring processing by the CPU and ~ combination of

one or more devices, we need to resort to a closed network of queues [Maekawa87]. In

a closed network of queues, there are no arrivals from or departures to the outside of the

system. The. total number of jobs in the system is constant at n. A closed network is

similar to an open network except that:

• The sum of each of the rows in the product-form matrix (a square matrix of size K,

the number of queues in the system, in which each element of the matrix indicates the'

probability that a job in a queue i after being served joins queue j) is 1 since there are

no departures from the system.

21

• The service rate, in general, depends on size of the queue(s) that feed it.

The analysis of closed queueing networks can be performed by using the two

different techniques of normalization constants and mean value analysis as outlined below

[Maekawa87].

As·thename implies, the normalization constant method requires the computation

of a normalization constant to ensure that the steady state probability of each state sums

to one. Unfortunately, this computation requires exponential time which is not practical

[Maekawa87]. Buzen developed an algorithm' that can compute the constant in

polynomial time [Buzen72]. There are ~well-known techniques that permit one to

compute the queue length probabilities for load dependent and load independent systems

along with the performance measures for these systems [Maekawa87].

The mean value analysis technique computes the performance measures without

requiring the time intensive computations of the normalization constant method.

However, it has a higher space complexity [Maekawa87].

Finally, certain" restrictions on closed queueing networks can be removed to

analyze generaliz~d J.letwor~ known as BCMP (Baskett - Chandy - Mains - Palacios)

networks [Baskett75]. These generalizations are. listed b~low [Maekawa87].
. .

• There are multiple job classes and each of these job classes may have a different

service time. These jobs may change classes and different job classes may have

different routing probabilities.

• Some jobs may come from outside the system while some may not. Thus, jobs can

fall into open and closed network classes and may also switch classes.

• There may be many queueing disciplines in the system.

22

• General service time distributions are permitted.

Such queues have been analyzed using the normalization constant method, which

requires an exponential computation time [Baskett75]. A tree convolution method was

presented by Lam and Lien that is computationally efficient both in terms of time

complexity and space complexity [Lam83]. BCMP networks have also been analyzed

using the mean value analysis method [BrueI180] [Zahorjan81]. The tree convolution

method mentioned earlier has also been adapted for the mean value analysis technique

[Hoyme68].

CHAPTER ill

IMPLEMENTAnON ISSUES

3.1 Implementation 'Platform and Environment

3.1.1 Seguent Symmetry S/81

The Sequent Symmetry S/81 is, a mainframe class computer system with a

multiprocessor architecture that was developed by Sequent Computer System, Inc. The

multiprocessing and shared memory architecture consists of the following elements

[Sequent90]:

• A parallel architecture that utilizes multiple industry-standard microprocessors.

• Either the DYNIX v3.0 operating system or the DYNIX/ptx operating system. Both

options are UNIX system ports.

• A standard set of interfaces to the network such as Ethernet, SCSI, VMEbus, and
" ':_' •. ; .,it '

MULTIBUS.

The operating system of the Sequent Symmetry S/81 has been engineered to

incorporate features that support the parallel architecture. In addition, software that has
" ,.-., .,.... 110.:

been built for the UNIX operating system can run on the Sequent Symmetry S/81 with

little or no modification. In the case of multi-user applications, the operating system of

the Sequent Symmetry S/81 automatically distributes the tasks to multiple processors in

an attempt to reduce response time and increase system throughput [Sequent90].

23

24

DYNIX v3.0 operating system supports the two major command sets of UNIX,

namely, the Berkeley UNIX and UNIX System V. On the other hand, the DYNIXlptx

operating system is compatible with AT&T System V v3.2 only [Sequent90].

3.1.2 The X Window System

The X Window System is a soft~are environment that was used to develop the

graphical user interface (GUI) for the queueing network design tool developed for this

thesis research. X's device independent graphics permit software developers to engineer

portable GUIs [Young90]. The only requirement for complete portability is that the X

protocol should be supported by the hardware platforms to which the software is to be

ported. The interaction· between a client an-d a server is defined by the X protocol.' The

X Window System follows a client-server architecture. An application acts as a client

and the responsibility for all input and output devices is with the server [Young90].

The interaction between an application and the X Window System is provided by

the X library. An example of a library of C language functions, which provide the user

access to the device independent graphics of X and interface routines, is Xlib [Johnson90]

[Bakrabati91] [Keller90]. Toolkits are easier to use than Xlib for developing GUIs. The

standard toolkit for the X Window System is the X Toolkit. It consists of two modules:

The Xt Intrinsics, which is a layer that directly, interacts with the X Window System, and

the widgets, which are a set of user interface building blocks [Johnson90]~ -Many ipopular

widgets are supported by Xt Intrinsics. One of the more popular widget sets' is' the· Mo·tif

widget set by Open Software Foundation .(OSF). The Motif wi'dget set supplies the Gill

components such as windows, menus, buttons, scroll bars, icons, and bitmaps. The

25

relationship between the various layers in the X Window System is shown in Figure 8.

User

Window Manager
o'

1.1

-------------------------~
I

Cli~t
I
I
J.
I

.,

I .Motif Widgets .~
' fl....

Xt ~trinsics

4. .X Window'System ... " , ,

'. '.

Operating sYstem and Network
, ; "

. , :71.. . .

Hardware Platform

Figure 8. Layers in the X Window System

3.1.3 OSFlMotif Toolkit

, , " :" t • . • . . :' , " • . , . ,. i ~", . '. • , j

The OSFlMotif Toolkit was' designed by' Operi Software Foundation (OSF) and is

, . , 0't', , I,". , , : ,~, . . .

based on the X Toolkit'Intririsics (Xt). 'The OSFlMotif'toolkit is' a' set of functions and

procedures that provides quick and eaSy·' access to the· lo~er layers of the X Windo~

System. The OSFlMotif functions and procedures provide user-interface objects knoWn

as widgets. OSFlMotifis a specification rather th~an impleme~tation,maldrigIt entireiy

implementation independent [Heller'91].

The complete architecture of the OSFlMotif Toolkit consists of anumber' of

important modules that are shown in Figure 9 [B~i-Iage91]. ·From Figure 9, it is apparent

26

that the hardware independent nature of the X Window System stems from its acting

as the lower layer. The primary window functions such as resizing, closing, moving,

and iconizing 'are managed by the Motif Window Manager (MWM). In achieving

its tasks, the Motif Window Manager .follows the Inter-Client Communication

Conventions (Ieee) that enable it to· manage X applications developed using different

toolkits [Berlage91]. The Motif Window Manger also manages other functions such as

controlling the input focus to determine which application window should receive input

and'maintaining the stacking. order of overlapping windows [Berlage91].

.", -·The presentation details of the user-interface. elements ·are specified in the User

Interface Language~(UIL)~ The·UIL compiler translates the presentation·details specified

and loads it into memory' at run time'.. However; the develo'pmentof a Motif application

does not require the UIL component [Berlage91].

The Motif Toolkit which provides a set of widgets is 'the most important module

of the OSF/Motif architecture shown in Figure 9. The Motif Toolkit provides widgets for

such' common user-interface objects such·as push buttons, menus, labels, dialog boxes,

scroll bars, and' text entry' or .display areas. In addition; there are . widgets! known as

managers that perform the function. of controlling the layout of other widgets. A widget

operates, to a large 'extent, independently· of the 'application. ·A ·widget's actions are

determined by the events dispatched-to' it by the Xt Intrinsics..For example, a cascade

button ·knows how to draw itself, how to highlight itself, and. how to -respond1oa:mollse

click (or an 'user-defined action) by executing an application procedure [Nye90]

[Heller91].

The class inheritance hierarchy of the Motif widget set is shown in· Figure 10.

27

Motif
Window
Manager

Library

Application U.I.L.

. .

~ r
. ,

Motif U.I.L.
Toolkit

llllIllI

~ Compile

Library

I

Motif

X
Window
System

X·Display

Legend:

U.I.L.: User Interface Language "

Figure 9. Architecture of OSF/Motif (Source: [Berlage91])

Some of the classes shown in Figure 10 are ·defined by the Xt Intrinsics. Some

of the base classes in the class inheritance hierarchy are defined -by' ,··th'e Xt Intrinsics.

Their behavior can be inherited by widgets that are derived directly from the Xt

Intrinsics defined base classes. They also provide a common· behavior for all widget

classes based on them.

I A~=cm II r:: I

(.

CCore I
~T ._· _____

I·~;:]I';;:]. "' " '

Figure 10. A class inheritance hierarchy for the Motif widget set (SoUrce: [Nye90)

N
00

29

The root of the widget class hierarchy is the Xt Intrinsics Core widget class. It

is the super-class for all widget classes derived from it, and provides a set of common

resources such :as the size and the position that is inherited by all the other classes.

The Primitive widget class is the highest ,level Motif widget class. It is derived

from the Core widget class. It inherits some of its resources from the Core widget class

and adds some of its own resources such as control of·the three-dimensional.shadows.

The Label widget class is derived from the Primitive widget class and hence inherits some

resources from it while·:it adds some features of its own, such as' its ability to display a

pixmap tor ,a string of text, as well as the ~mechanisms ,for ·positioning .of the string and

displaying -·of the string in a ,variety -of ·fonts. All the sub-classes of the· Label widget

class, i.e., the PushButton class, 'the Dr.awnButton .class, the ToggleButton :class, and the

CascadeButton class, inherit features together with the resources added by, them.

;", .The Composite widget 'class iS~'an Xt Intrinsics widget class th'at is sub-classed

from the Core widget class.. ~It·adds·features that provide it-the ·capability·to manage its

geometry. The Constraint widget class: is alSO" an Xt Intrinsics widget class that is derived

from the Composite widget class':and' is'a .refinement upon; the Composite widget.class.

It provides the user or the application a method to manage the position and size of the
. .: " ~ '.... .. i

widget. The Manager widget class pro'vided "by Motif is sub-classed from the .Constraint

widget class. It is the super-class for all the widgets that can manage the geometry of

their children such as the· RowColumn widget class, the DrawingArea widget .. 'class,. the

Scale widget class, and the BulletinBoard widget class [Nye90]~ .

The Shell widget class is an Xt Intrinsics widget class that is a sub-class of the

Composite widget class. Shell widgets provide an interface between the window manager

30

and other widgets. The functions of the Shell widget class are to handle the window

manager protocol for the application and to set the resources required by the window

manager. There are a number of Shell widget classes since the function of·interacting

with the window -manager is very complex. The OverrideShel1 widget class is derived

from the Shell widget class and provides a temporary window that completely bypasses

interaction with the window.manager. The MenuShell widget class is derived from the

OverrideShel1 widget class and was introduced by Motif to handle the special interface

requirements of the OSF/Motif architecture. The -WMShell widget class that is sub-

classed from the'Shell:.widgetclass is a set of simple, wire bed-frame widgets that has no

special attributes.. T:he V.endorS'hell. -widget class is sub-classed from the WMShel1 widget

class that vendors :c'an'use-to define their "own attributes;-thatare specific to their own

window managers. The TransientShel1 widget class is 'used by the Xt Intrinsics to create

dialog boxes. The TransientShellwidgets may not be iconified separately by the window

manager. However, if an' application' is' iconified, all the child widgets of the application

that belong to the TransientShel1 :Widget class are automatically iconified by the window

manager. -,The DialogShell"widget.:class is'sub~classed from the TransientShell widget

class and was created by OSF/Motif. The functions of the TopLevelShell widget class

and the ApplicationShell'widget 'class provide various applications with their top-level

windows [Nye90] [Young90] [Heller91].

3.2 Implementation '

3.2.1 Program Structure

The code for QNT has been divided into 22 C program modules. Three modules

31

of the program are used· to set up the initial environment of QNT. The remaining

modules are used to implement the various options provided by QNT. Each module

includes functions necessary to implement one or more options available in the software

tool. This method of modularization has.' been used so that modifications to the

functionality ·of the program can be restricted to one module and can be performed

independently of the remaining modules. .-The different modules of the program are

briefly described below. .

• main.c: This module of QNT :is the main -program file~ .The initial user interface of
QNT is set up by the various external functions called from this module. The
functions in the program module "initialize.c" are called to initialize the environment
variables used in QNT. The functions in the module "gui.c" are used to build the
various components. 'of the user interface.-· -', . .." ".?',' .~: •

• allocate.c:" This module consists of functions that allocate the ~memory for"a queue,' a
server, an outside (or environment node), or a path. There is one function to allocate
memory for a QUEUE data structure that contains· :all -the 'relevant data for
manipulating a queue. This function also initializes the various fields of the data
structure QUEUE. Similarly, there is one function' each to handle the data 'structure
SERVER, the data structure OUTSIDE, and the data structure PATH.

• analyze.c: The functions in this module implement the "Analyze" option in the tool
box. This module consists of ·functions -to- display the' dialog box used to prompt the
user for the subnet to be analyzed, check if it is a valid subnet, display a dialog box
for the user to edit the parameters:of the subnet selected, and: display. in a dialog·:box
the steady state system characteristics of the subgraph being analyzed.

• check.c: This module consists of the functions necessary to check and validate the
queueing network' .drawn· by' a· user. It checks to ensure ,that the ·constraints of a
queueing network are satisfied. If certain nodes do not satisfy the constraints, they are
listed by the type of the node in a dialog-box.. In -addition, .this module consists of
functions that enable the user to select a node that is not satisfying a constraint and
edit its characteristics to ·bring it within the limits of'the definition of a "queueing
network.

• close.c: This module consists of functions necessary to implement the "Quit" and
"Close" options in the "File" pull down menu. Among ·its many responsibilities, it
provides an "Exit" dialog box as a safety measure when the "Quit" option is selected,
to verify if the user really wants·to exit from the application. It also contains functions
to display a dialog box that prompts the user to save the file, when the user selects the

32

"Close" option from the "File" pull down menu or selects "Close" from the system
menu associated with the dialog shell of the canvas or the top-level shell of the
application.

• cursors.c: The' functions in this module create the different cursor shapes, assign one
of them as the shape of the current cursor for a particular window, and reset the shape
of the: cursor if. required.' The cursor shape used depends not only on the action
selected but also the window with which the cursor is associated.

• delete.c: This module comprises functions that are necessary to implement the "Delete
Element" option in the "Edit" pull down menu. It primarily consists of two functions,
one for selecting the object to be deleted and the other for deleting the selected object.

• draw.e: This module consists of functions that aid in drawing the queue, server, outside
(or environment node), :path including .the .arrow head, and labels. These ·functions
make use of the different Xlib drawing routines such as XDrawSegments, XDrawLine,
XDrawPolyLine, XDrawArc, XDrawString, and XDrawFilledArc.

• expand.c: -This module oonsists offun'ctions necessary to expand a ~ode in any level
of the network to the next higher level. If the higher level already exists, the queueing
network 'at this level is displayed -in a new canvas on top 'of the existing dialog shells.
Otherwise, an empty drawing area is displayed within a dialog shell. The file name
is displayed as the title of the 'window in .which the canvas is displayed. If the file
name has not already been provided, it is displayed as "Untitled".

• gui.c: This module consists of functions that are called from the module "main.c" for
establishing the initial user interface. The elements of the initial user interface consist
of pull down menus, a window for displaying the current action selected, a panel for
the toolbox, and an empty ·area ·where the.1ogo for .QNT is .displayed. When the user
selects the "New" option or the "Open ..." option from the "File" pull down menu, a
canvas is displayed' in a dialog. box on' top of the -logo .for drawing ,the· queueing
network. The file name is displayed as the title of the window in which the eanvas
appears. Since initially no :action is selected, the current action selected is displayed
as "None".

• help.c: This file contains the various help messages associated with each option in the
"Help" pull down menu. :It-also contains a fun:ction to display the "Help" dialog ·box
with the appropriate help message in it.

• initialize.c: This module initializes the various global variables and data structures used
in.QNT. To perform the initialization,·this program file implements different functions
that are called from the module "main.c". The functions declared in this module also
create the different· cursors used by the software tool.'

• jobs.c: This module consists of functions necessary to implement the "Place· Jobs"
option in the toolbox. When this option is selected, a dialog box is displayed to

33

prompt the user for information. The dialog box management and other operations
associated with the "Place Jobs" option are handled by the functions in this module.

• label.c: The functions in this module implement the "Edit Label" option from the
"Edit" pull down menu. This option, when selected, displays a dialog box that prompts
the user for the old label that is to be changed as well as for the new label. The
functions in this module also check to ensure that the old label exists and is valid. It
also ensures that the new label is unique.

• messages.c: This file contains the functions for processing the different error codes
generated by QNT. It also displays an error dialog box along with the appropriate
error message in it.

• open.c: This module consists of functions necessary to implement the "New" and
"Open ... " options from the "File" pull down menu. The file selection for opening a
file is done through the use of the FileSelectionDialogBox widget provided by Motif.
This module also contains functions to read and display an existing file on" the canvas.
The file name is displayed as the title of the window in which the canvas is displayed.
If the' file name has not already been provided, it is displayed· as "Untitled". t l '

• path.c:The functions necessary to draw.' a 'path are included in ·this module. When the.
"Path" option is selected from the toolbox, a function in this module is called to
display a dialog box. It prompts the user for the label of the source and destination
nodes between which the path is to be drawn. The module also includes functions to
check the validity of establishing a path from the source node to; the destination node.

• print.c: This module consists of functions necessary to implement the' "Print ..."option",
in the "File" pull down menu and the "Dump ..." option in the "Performance
Characteristics" dialog box. ,The fonner option creates a postscript image of the QNT
window and the queueing network in the drawing area and saves it to a file. The latter
creates a text file of the performance characteristics of the system being analyzed by·
the user.

• save.c: This module consists of functions necessary to implement the "Save" and "Save
As ..." options in the "-File" pull down menu.. It also contains functions to write'-the~­

information, pertaining to the drawing displayed in the canvas, to a file.

• specification.c: The functions in this module implement the "Show Specification" and
"Edit Specification" options in the toolbox~ -;:They create:a dialog ·box and provide the;
user with an editable text area to describe the interpretation of the node or path, and
enter the parameters of the node or path. One function is also provided to' decide'
which node or path has been selected by the user.

• undo.c: The functions in this module implement the "Undo" option provided in the
"Edit"· pull down menu. Alternately, the "Undo" operation can be selected by clicking
the third button of the mouse with the cursor placed inside the canvas.

34

• utilities.c: This module includes various functions that are used by the software tool
. such as those for encoding a file, decoding a file, displaying the action selected by the
user in the message bar, and redrawing the queueing network in the canvas when it is
uncovered by another window.

Each module contains a header file. For the purpose of consistency, each header

file has the same name as the module in which it is included with a ".htl extension. For

example, the header file for the module "gui.c" is "gui.h". Each header file contains

declarations for including the various Motif header files required to use the Motif and

Xlib functions. A header file associated with a module also declares all the external

functions created in other modules and called by the module. The function prototypes for

the functions in a module are also declared in its header file.

In addition, two header files are declared, called "global.h tl and "structures.h lt
• The

former contains all the global variables used by the software tool and the latter declares

the various data structures and constants that are shared by all the program modules.

All the modules mentioned above are managed by a makefile called "Makefile".

The various modules are compiled separately and then linked together.
\ ... 1

3.2.2 The User Interface \ .. ' : .. "- .. :. "-",. ' \

..
Various Motif widgets were used to develop QNT. All the necessary function

'1:

calls to display the user interface of QNT are were made from the C program module

"main.c". These functions are in the module "gui.c". The initial user interface for QNT
'.1. •• tt '-, ' .

is shown in Figure 11.
. to; t :.,.

The user interface of QNT is divided into four different regions. Each region

along with all the elements present in that region are discussed below.

• Region 1 of QNT comprises a blank area in which the logo for QNT is displayed. On

35

top of this area, a drawing area called the canvas is popped up inside a dialog shell

when the user selects the "New" or "Open ... " option from the "File" pull down menu

or the "Expand" option from the toolbox. The canvas consists of a Motif widget of

the class XmDrawingAreaWidgetClass. It is placed inside a Motif shell widget of the

class XmDialogShellWidgetClass. The canvas is created as a child of the dialog shell

widget with a default width of 840 pixels and a height of 614 pixels. Elementary

queueing network objects such as: queues, servers, outsides, paths, and labels can be

drawn in the canvas. The file name is' displayed as the title of the window in which

the canvas is displayed.

• Region 2 is the .window in which the current action selected is displayed. It is located

at the bottom·of the user interface and below Region 1. The action selected could be

anyone of those that can be selected either from the four pull down menus or from

the toolbox. If no action has been selected, the current action selected is displayed as

"None". ! ,

• Region 3 of the user interface consists of three pull down menus. The three pull down

menus are labeled "File", :"'Edit'\ .and "Help". The "File" pull down ·menu consists of

sevenoptions:'~'!New","'Open ...", "Close", "Save", "Save As~.~~', "Print ...", and "Quit" .

.The '~New" option· in the "File" pull' down menu permits·the user' to create anew

file. A new file with a default file name of "Untitled" is created; opened, and a canvas

that is empty is displayed' provided ,no drawing has been performed· in the current

session by the user. Otherwise, the user is prompted to save the current file(s) through

a "Save File" dialog box. - The "Save File" dialog box provides three options to the

user in the form of push buttons: "OK", "No", and "Cancel". If the "OK" push button

".,

Figure 11. The four regions of QNT w
0\

37

is selected by the user, the current file is saved and a new file named "Untitled" is

opened (see page 39 for detailed information on saving a file). If the "No" push

button is selected by the user, the current file is not saved, the canvas is cleared, and

a new file named "Untitled" is opened. Selecting the "Cancel" push button ensures that

the "New'" option chosen from the "File" pull down menu is cancelled.

The "Open ..." option in the "File" pull down menu permits the user to open an

existing file. Selecting this option when no file is open displays a "File Selection"

dialog box that 'contains two separate scrollable widgets. One of these widgets

contains a list· of: directories while the 'other contains a list of files in the' current

directory. The current directory-maybe changed by using the' "Filter" push button,in

the'dialog box or by selecting the directory required from the scrollable Text widget

that lists the directories. The filter option may also be used to display the list of files

that satisfy a regular expression using wild .cards (as 'in UNIX) in the scrollable' Text

widget that displays the file names. To change the current 'directory, the TextBox

widget for :the "Filter" should contain'a valid path and the "Filter" push button in the

dialog box should be selected.:; :To select a file for opening, the filename can. be typed

in the I TextBox widget for the "Selector", if the file is in the current directory.

-·Otherwise, the full path starting from the root directory needs to' ·be specified. ; A 'file

can be opened either by selecting it from the scrollable List Box widget that' displays

the file names and. clicking on the "OK" push .button in the' dialog box, by typing:the

file name in the TextBox: :widget for' the "Selector'~ and clicking on ·the "~OK" push

button in the dialog box, or by double clicking on a file name .in the scrollable ListBox

widget. The file is then opened, the information in the file is read, and the

38

corresponding queueing network is displayed for the top-level queueIng network

provided the file is in the correct format. However, if the file selected is not in the

correct format, a dialog box is displayed with an appropriate error message. The user

must respond to the error message in the dialog box by selecting the "OK" push button

before taking any other action. Then, the "Error Message" dialog box pops down and

another file may be selected. When a file has been opened successfully, the "File

Selection" dialog box is removed from the screen. Otherwise, it'remains visible. The

"Cancel" push button in the "File Selection" dialog box has been provided to pop down

the "File Selection" dialog' 'box.without opening a file, thus' effectively negating the

"Open .:." option in the "File"'pull down'Jmenu selected by the user. If there are file(s)

open when the user selects the "Open,.:." option from the:file pull do'wn menu,'the user

is prompted to save the current file(s) through a "Save File" dialog box. The "Save

File" dialog box provides·thre'e options to the user in the form of push buttons: "OK",

"No", and "Cancel". If the ",OK" push button is selected by the user, the current file(s)

are saved and the "File Selection" dialog ,box is displayed- (see' page 39 for detailed

information on saving a file). If the "No" -push button is selected by the user, the

current file(s) are not -saved, the"canvas is cleared, and the ,"File Selection" dialog box

is displayed. Selecting the "Cancel" push 'button 'ensures that the "Open ..." option

chosen from the "File" pull down menu is cancelled. ' ~

The user can select the "Close" option in the "File" pull down, menu to remove the

active canvas. QNT then presents the 'user with a "Close" dialog box. The "Closet.

dialog box contains three push button: "OK", "No", and "Cancel". If the user selects

the "OK" push button in the "Close" dialog box, QNT displays a "Save" dialog box to

39

the user if this layer of the queueing network has already been given a filename. The

program then functions in a manner similar to that explained for the "Save" option in

the "File" pull down menu (see page 39). If no file name has been provided, the "Save

As ..."dialog box is presented to the user and QNT functions in a manner analogous

to that;explained for the "Save As ,.. " option'in the "File" pull down menu. If the user

selects the "Cancel" push button in the "Save" or "Save As ... " dialog box, the "Save"

or "Save As ... " dialog box is popped down and control is returned to the "Close"

dialog box. Hnwever, if the user selects the "OK" push button in the "Save" or "Save

As ... " dialog box, both the "Save" -dialog box or the "Save As ... " dialog box as well

as·the· ,"Close'" dialog box aretpopped' down. If the user 'selects the "No" push ,button

from the "Close" dialog box, the "Close" dialog box pops down and the active canvas

is removed from ·the screen without saving any changes made to that canvas. If the

user selects the "Cancel" push button'in the "Close" dialog box, the dialog box pops

down and the "Close" option in the "File" pull down menu selected by the user· is

cancelled.. : I'

To 'Save the. changes made to any layer of a queueing network, the user can select

the "Save" option in the "File~' pull,down menu. This option ,does not close the file

being saved. If an unnamed file (i.e., 'a queueing ,network with a file name "Untitled")

is to be saved, a "Save" dialog box is displayed to the user that· prompts for >a, file

name. If;the user selects the "OK" push button after entering the file name' and· no .file

name is entered by the user (i.e., a blank for a file name is considered invalid),. or· i·f

the file name entered already exists for another file, an "Overwrite File" dialog box is

displayed. It asks the user if he or she wants to overwrite the file. -It .provides two

40

push buttons: "OK" and "Cancel". If the user selects the "OK" push button in the

"Overwrite File" dialog box, the "Save" and "Overwrite" dialog boxes are popped down

and the file is overwritten· with the data of the queueing network being saved. If the

user selects the "Cancel" push button in the "Overwrite File" dialog box, it is popped

down and the "Save" dialog box once again.receives control to receive a new file name

from the user. If the file name is valid, the file is written with the data of the queueing

network being saved and the "Save" .dialog box is: popped down. The "Cancel" push

button in the "Save" dialog box has been provided to pop down the "Save" dialog box

and cancel the "Save" option in the "Filett pull down menu selected by the user.

The "Save As ... " option in the "File" pullidown menu permits the user to save· the

current version of the queueing network ;under .a new file name while 'retaining· the old

version 'under .the existing file name. Upon selecting this option, a "Save As" dialog

box is displayed .to the user. It contains a TextField. widget wherein the current file

name is displayed. The text .displayed,in.this widget is in read-only·:mode (i.·e., the file

name cannot be edited). The' dialog box also provides another TextField widget to

enter the· new file name. Upon' entering. the new file ·name and selecting the "OK"

pushbutton in. the dialog box, the curr.ent queueing network ~will be saved under the

new file' name, the old file willb.e closed without saving the current changes, and the

new file will be opened in the canvas. If the ol.d filename- is t~Untitled", it implies -that

the old file was not named or save.d. In this case the· user is·presented. a -~'Save" ..dialo.g

box instead of a "Save As" dialog box that prompts the user for a·file name.. Upon

entering the ·file name and selecting the "Save" push button~ the current drawing is

saved under the new name. In both cases, the -dialog boxes contain a "Cancel" push

41

button. When the user selects the "Cancel" push button, the "Save As ..." option in the

"File" pull down menu selected by the user is cancelled. If the new file name provided

by the user is the same as an existing file, an "Overwrite File" dialog box is displayed

(see the explanation under the "Save" option from the "File" pull down menu on page

39 for details).

The user can select the "Print ... " option in the "File" pull down menu to print the

QNT window and all drawing areas that are visible to a postscript file. When this

option is sele.cted by the user, QNT displays a "Print File" dialog box that prompts the

user for the file name. If the user selects the "OK" push button after entering the file

name-and no filename is entered by the user-(i.e~,a 'blank for a-file name is ,considered

invalid), or the file name' entered already exists for another file, an '.!'Overwrite File"

dialog box is displayed. It asks the user if he or she wants to overwrite the ·file. It

provides two push buttons> "OK" and "Cancel". If the user selects the "OK" push

button in the "·Overwrite··File" dialog box, the "Print File" and '~Overwrite" dialog

boxes are 'popped down and the file is overwritten with al postscript dump of the QNT

window and the visible drawing areas in it. If the user selects the "Cancel" push

button in the "Overwrite File" dialog -box, .it is popped down and the It'Print File" dialog

box once again receives control to receive a new file name from the user. .If the ·file

name is valid, the file is written with a postscript dump .of the QNT window ·.and the

visible drawing ,areas· in·:it and the "Print" dialog box, is popped down., The '~Cancel"

push button in the "Print File"dialog box has been provided to pop down the dialog

box and cancel the "Print ... " option from the "File" pull down menu selected -by the

user.

42

Selecting the "Quit" option In the "File" pull down menu terminates the

application. Before exiting from the application, QNT presents the user with a "Quit"

dialog box that prompts the user to save the current drawing. The "Quit" dialog box

contains three push buttons: "OK", "No",. and "Cancel". If the "OK" push button is

selected by the user, the current drawing is saved, provided the drawing has already

been named, and QNT terminates. If the drawing has not been named, the "Save"

dialog box (see page 39) is displayed to the user. Note that all Qpen canvases will be

closed recursively. Hence, the push button selected applies to all the windows. If the

"No" push button is selected by the user, QNT exits without saving any changes made

to the current drawing. The "Cancel" ·push ,button: ensures that the "Quit" option in the

"File" pull down .menu selected by~ the user is cancelled.

The "Edit" pull down menu provides three options, namely; "Undo", "Edit Label

... ", and "Delete Element". The "Undo" option in the "Edit" pull down menu permits

the user to reverse th.e last drawing action· performed. This action. can either be

performed by selecting the "Undo~' ~ption from .the :"Edit" pull down menu or by

clicking the third button of the mouse while it is located inside the canvas. As

mentioned before, only drawing actions, .can be rev~rsed ,b.y, this option. :" Thus, the

"Open ... " option in the "File" pull down menu is not undoable. For example, if an

element in the queueing network has been deleted, selecting the "Undo" option would

restore the element onto the canvas along with the data asso,ciated with. that element.

Performing an "Undo" operation once again would delete that .element-again. .:

The user can change the label of a node (i.e., a queue, ·a server, or an outside) by

selecting the "Edit Label ..." option from the '.'Edit" pull down menu.. This option

43

displays an "Edit Label" dialog box that prompts the user for the old label of the node

as well as the new label. When this information has been entered and the "OK" push

button has been clicked by the user, the software tool checks to ensure that the old

label entered actually exists, is valid, and the new label does not match one of the

existing labels. If the validity check succeeds, the old label is changed. Otherwise, an

"Error Message" dialog box is displayed with an appropriate error message in it. The

user must respond to the error message in the .dialog· box by selecting the "OK" push

button before taking any other action.

To delete.an element in the queueing network, the user would need to select the

"Delete Element" option from the "Edit" pull down menu. The cursor would -then

change to an "X" while in the canvas.·' ·T·he user can now'position the cursor over any

element in· the canvas and press the first button of the mouse to delete an element.

The element could be a queue, server, outside, or a path. However, all paths that

connect to' or from the -queue, 'server or outside that is to be deleted must first be

deleted. If this is not done, an '''Error Message" dialog. box 'is .displayed informing the

user of this constraint. The user must respond to the error message in the dialog box

by selecting 'the "OKJI push .button before taking any· other ~action.

. The tlHelp" pull down menu provides options, namely, "On Help .. ~,t., "Index .. .'.~,

and "About QNT ... ". The "On Help optioninthe.ttHelp" pull down menu displays

an "On'iHelp" dialog box providing the.user.with information on how. to: use-the. help

system of QNT. It also provides an "OK" push button. When the user selects the

"OK" push button, the "On Help" dialog box is 'popped down.

The "Help Index" dialog box is displayed when the user selects the "Indextt

44

option from the "Help" pull down menu. It provides a scrolled list box in which the

list of help topics are displayed. When the user clicks on one of the topics with the

left mouse button, the information pertaining to it is displayed in the scrolled text

widget in the dialog box. ·It also provides an "OK" push button. When the user selects

the "OK" push button, the "Help Index" 'dialog box is popped down.

The "About QNT" .dialog box is displayed when the user selects the "About QNT

... " option from the "Help". pull down menu. It displays the copyright information for

QNT. It also provides an "OK" push button. When the user selects the "OK" push

button, the "About QNT" dialog box is popped down.

• Region 4 of the user interface consists of a !toolbox with ten action push ·buttons. It

is located to the left of the canv·as- and below the pull -down. menus. The actions

provided in the toolbox are used very frequently. The ·ten action push buttons are:

"Queue", "Server", "Outside",. ":Path",. "Place Jobs", "Edit. .Specification", "Show

Specification", "Check", "Analyze", and "Expand"~

The "Queue" option is selected' by the user by pointing the mouse to the push

button and clicking on it with the first button 'of the .mouse. -Immediately, the current

action displayed in Region.2 ·of the ,user' interface .is updated to display '~Drawa

Queue". The user can now draw a queue represented by an ,open rectangle. The width

of the open rectangle is fixed~- .When the user moves the 'mouse to the canvas and

clicks the first· button of the mouse, the ~curr-entmouse .coordinates; are taken as the

upper left comer of the queue. The user can now·move the mouse to· any location

desired on· the canvas, in effect stretching the open rectangle. During the stretching

operation, the queue is shown as a dotted line. When the desired. size of the queue has

45

been determined, the user can press the second button of the mouse to make the queue.

The queue is provided with a default label that is displayed above the queue and the

default parameters of the queue are set. To change the default label and parameters

of the queue, the user can select the "Edit Label" option in the "Edit" pull down menu

(see page 43) and the "Edit Specification tt option in the tool box (see page 49),

respectively.

The "Server" option is selected by the user by pointing the mouse to the push

button and clickin"g on it with the first button of the mouse. Immediately, the current

action displayed ,in. Region 2 of the user interface' is updated to display "Draw a

Server..·. The· user can now draw!a -server represented by a circle. The radius of the

circle is fixed. When the user moves the -mouse to the canvas' and clicks' the first

button of the mouse, a dotted circle is made with the current mouse coordinates as the

center of the server. Moving the mouse, moves the circle along with it, so that the

server may be placed at any -location desired in the canvas~' When the· user presses the

second button of- the mouse, the server· is drawn permanently. The server is .provided

with a default label that.is displayed above the server, and the default parameters for

the server characteristics are set. - To change the default label.and parameters of the

server, the user can i select the,'!Edit Label" option in the ~'~Edit" pull down menu (See

page 43) ·and the "Edit Specification" option in the tool box (see page 49) respectively.

The "Outside" option is. selected by the user by pointing the mouse to the push

button and clicking on it with the first button of the mouse. Immediately; .the current

action displayed. in Region 2 of the user interface is updated to display "Draw an

Outside". The user can now draw an outside represented by a double line-square with

46

an liE" inside it. The dimensions of the square are fixed. When the user moves the

mouse to the canvas and clicks the first button of the mouse, a dotted double line

square is made with the current mouse coordinates at the center of the outside.

Moving the mouse moves the square along with it, so that the outside may be placed

at any location desired in the canvas. When the user presses the second button of the

mouse, the outside is drawn permanently. The outside is provided with a default label

that is displayed abo~e the outside and the default parameters for the outside

characteristics are set. To change the default label and parameters of the server, the

user can select the "Edit Label" option in the "Edit" pull down menu (see page 43) and

the '.'Edit Specification" option in the tool box (see page 49) respectively. '

The "PathIt option may be selected by the user in the same manner as that

described for the "Server" option. Immediately, the current action displayed in Region

2 of the user interface is updated to display "Draw a Path". When the "Path" option

is selected, a "Path Characteristics" dialog box is displayed. In the upper half of the

dialog box, the user is prompted through'-two TextField widgets for the label of the

source node and the label of the· destination node between which the path· is to

established. The user is also prompted through a third TextField widget for the

probability that a job' moves along this path. If the user does not enter a value in this

TextField widget, ·QNT .assumes a default value of 1.0. The software tool checks for

the validity of the labels entered once the user selects the ".OK" push button in the

dialog box. It does so by making sure that the source node label. and the destination

node label are valid, and a path does not -already exist from the source node to the

destination node. A valid label for the source node is in the set of existing queues,

47

servers, and outsides already drawn in the queueing network and a valid label for the

destination node is not in the set of existing queues, servers, and outsides already

drawn in the queueing network. In case the labels of the source node and/or

destination node are invalid, an "Error Message" dialog box is displayed that informs

the user of the error though an appropriate error message. The user must respond to

the error message in the dialog box by selecting the "OK" push button before taking

any other action. The program also checks for the validity of the probability that a job

moves along this path by ensuring that it is greater than zero and less than or equal to

one. In case the validity check fails, an "Error Message" dialog box is displayed that

informs the .user of the error though an appropriate error message. The user must

respond to the error message in' the dialog' box by selectin'g the "OK" push button

before taking any other action. If the path characteristics are valid, the dialog box pops

down. The "Cancel" push button has been provide in the dialog box to cancel the

"Path" option selected by the user. To draw a path, the user moves the mouse to the

boundary of the source node and 'clicks the first mouse button. If the user clicks the

mouse either inside or outside the boundary of a node, an "Error Message" ,dialog box

is displayed that informs, the user of the error though an appropriate error message,

while providing the source ,node 'and destination node labels for the path. The user

must respond to the error message in the dialog box by selecting the "OK" push button

before taking any other action. When a valid source node has,been selected, the mouse

may be moved to the destination node. The path is made when the mouse hits the

boundary of the destination node. The path between the source node and current

mouse position is depicted by a dotted line. It is made permanent by drawing it as a

48

continuous line once the mouse hits the destination node. The direction of the path can

be changed by the user by clicking the second button of the mouse and dragging the

mouse. The path drawing action can be cancelled by the user at any time by clicking

the second button of the mouse before the mouse touches the boundary of the

destination node. Thereafter, the path may be deleted by selecting the "Undo" option

in the "Edit" pull down menu or by clicking the third button of the mouse while it is

in the canvas and before any other operation has been performed. If the user selects

any other operation during the drawing of the path, the path drawing operation is

automatically cancelled and no path is made. A path may have any number of

segments and all the segments will have an arrow head attached to them.

The "Place Jobs" option, as the name suggests, permits the user to put jobs into

a queue by pointing the mouse to the push button in the toolbox and clicking on it

with the first button of the mouse. The user, upon selecting this option, is presented

with a dialog box titled "Place Jobs". The current action displayed in Region 2 of the

user interface is also updated to display "Place Jobs". The user is prompted for the

label of the queue where the jobs are to be placed. The dialog box consists of four

push buttons: "Increment", "Decrement", "OK", and "Cancel". Each time the user

presses the "Increment" push button, the number of jobs in the designated queue -is

increased by one. Similarly, the "Decrement" push button reduces the number of jobs

in the queue by one. When a queue is created, the number of jobs in the queue is set

to zero. Upon clicking the nOK" push button in the dialog box, the software tool

performs a number of validity checks. The primary checks include avoiding no label

for the queue, a label for which no queue exists, a label that corresponds to a server

49

or an outside, and a negative number of jobs in the queue. In each case, an "Error

Message" dialog box is displayed that informs the user of the error though an

appropriate error message. The user must respond to the error message in the dialog

box by selecting the "OK" push button before taking any other action. If there are no

errors, the "Place Jobs" dialog box -is popped down and the number of jobs in the

queue is updated.

The "Edit Specification" and "Show Specificationtt options provided in the toolbox

perform similar functions. The specification for any node (queue, server, or outside)

or path consists of the node or path label, the parameters specific to the node, the brief

description of the node or path, and an interpretation for the functions represented by

the node or path. The "Edit Specification" or the "View Specification" option is

selected by the user by pointing the mouse to the push button in the tool box and

clicking on it with the first button of the mouse. The current action displayed in

Region 2- of the user interface is also updated to display "Edit a Specification" or

"View a Specification". The "Edit Specification" option in the toolbox permits the user

to enter and edit the parameters for a node or path, their brief description, and the

interpretation for the node -or path. On the other hand, if the "Show Specification"

option has been selected -by the user, the node or path label, its brief description, its

interpretation, ·and the parameters of the node or path can be viewed only. When the

user selects either of these options and the- mouse is moved into the canvas, the cursor

changes to a pencil. When the user selects a node or a path, the specification for that

node is displayed in the "Edit Specification" or "Show Specification" dialog box.

Depending on the option selected by the user, the information in the dialog box may

50

or may not be edited. The "Edit Specification" dialog box consists of two push

buttons: "OKIt and "Cancel" while the "Show Specification" dialog box contains only

the "OK" push button. In either case, clicking the "OK" push button will save the

specification for the node or path and pop down the dialog box. If the user selects the

"Cancel'~pushbutton, the "Edit Specification" dialog box is removed from the screen

without saving the current changes in the specification for the node.

The "Check" option in the toolbox may be selected by the user by pointing the

mouse to the push button in the toolbox and clicking on it with the first button of the

mouse. The current action selected is immediately updated in Region 2 of the user­

interface to ItValidate the Queueing Network". The application then checks whether

each node satisfies the constraints of a queueing network. I More specifically, it checks

if for each node in the queueing network, the sum of the probabilities associated with

each path to each node in its postset totals to 1.0. It also checks if there are any

isolated nodes in the queueing network. If all nodes pass the validity test, it displays

a "Validation Results" dialog box that informs the user that the queueing network being

modeled is valid. Otherwise, is displays a dialog box with three scrolled Lists, one

each for queues, servers, and outsides. Under each node 'type, it lists the labels of the

nodes that did not pass the validity test. The dialog box also provides an "'OK" push

button for the user to pop down the dialog box if the user does not desire to correct

the erroneous nodes or has already corrected them. If the user desires to correct an

erroneous node, the user can double click on the label for that node in the List widget.

This would display the nPostset Probability Correction" dialog box. This dialog box

gives the label of the erroneous node and in a Scrolled Window the label of each node

51

in its postset and the probability associated with the path connecting the erroneous

node to the node in the postset. The label of the node in the postset cannot be edited,

but their associated probabilities can be edited by the user. The dialog box also

provides an uneditable TextField widget where the total probability is shown. The user

can move to the next TextField widget in the Scrolled Window by pressing the uTab"

key and can move to the previous TextField widget by pressing the "<Shift> Tab"

key. Each time the user moves to the next or previous TextField widget, the total

probability displayed in the dialog box is updated. The dialog box provides two push

buttons: "OK"and "Cancel". If the user selects the "Cancel" push button, the changes

made to the probabilities are not updated and the dialog box is popped down. If the

user selects the "OK" push button, the changes are updated in the appropriate data

structures and a validity check is once again performed on this node. If it now passes

the validity test, its label is removed from the corresponding List widget in the

"Validation Results" dialog box-.· Otherwise, it is retained in the List widget.

The "Analyze" option in the toolbox may be selected by the user by pointing the

mouse to the push button in the toolbox and clicking on it with the first button of the

mouse. The current action selected is immediately updated in Region 2 of the user

interface to "Analyze the Performance of the Queueing Network". This option is used

in order to analyze the queueing network as a whole, or only subnets of it. The

application then displays the "Sub-graph Specification" dialog box that prompts the

user for the label of the source node and destination node of the subnet that is to be

analyzed. Since the current version of QNT is capable of analyzing only MIMII

systems, QNT checks the validity of the subnet specifications entered by the user after

52

he or she has selected the "OK" push button in the "Sub-graph Specification" dialog

box. A valid subnet is one in which there is a single direct path between the source

and destination nodes and neither of these nodes have been expanded. The dialog box

also provides a "Cancel" push button if the user decide not to go ahead with the

analysis. In either case, the "Sub-graph Specification" dialog box is popped down. If

the user selects the "OK" push button, QNT displays a "Sub-graph Characteristics"

dialog box that displays the characteristics of the source and destination node in the

subnet selected by the user as well as the characteristics of the path connecting them.

The user can review these characteristics and edit them if desired. This dialog· box

also provides two push buttons: "OK" and "Cancel". If the user selects the "Cancel"

push button, the changes made by the user are not updated, the dialog box is popped

down, and the subnet is analyzed for its steady state performance characteristics. If the

user selects the "OK" push button, the changes are updated in the relevant data

structures (provided the changes are valid, otherwise appropriate error messages are

displayed in dialog boxes), the dialog box is popped down, and the subnet is analyzed

for its steady state performance characteristics. QNT then displays a "Performance

Characteristics" dialog box that provides the user with characteristics of the different

components of the subnet analyzed by the tool and .its steady state performance

characteristics. This dialog box provides four push buttons: "OK", "New", "Change

...", and "Dump ... ". If the user selects any of the four push buttons, the dialog box

is popped down. If the user selects the "OK" push button, no further analysis is

performed. If the user selects the "New" push button, the "Sub-graph Specification"

dialog box is displayed again for the user to enter the specifications of the new subnet

53

to be analyzed. If the user selects the "Change ..." push button, the ttSub-graph

Characteristics" dialog box is displayed for the user to analyze the same subnet but

with a different set of characteristics for the nodes and path in the subnet. If the user

selects the ttDump ... It push button, the "Print" dialog box is displayed that functions

in the same manner as that for the "Print ... II option in the "File" pull down menu (see

page 41). The "Dump ... tt push button creates an ASCII text file of the information

displayed in the "Performance Characteristics" dialog box.

The "Expand" option in the toolbox may be selected to develop the next higher

level of the queueing network. The "Expand" option is selected by the user by

pointing the mouse to the push button and clicking on it with the first button of the

mouse. The current action selected is immediately updated in Region 2 of the user­

interface to "Expand a Node in the Queueing Network". If the user now moves the

mouse on the canvas, the mouse cursor changes to .a hand lens. When the user selects

a node for expansion, the software tool first checks to see if it is a valid node for

expansion. A valid node is a queue, a server or an outside. If an invalid node is

selected, no expansion is performed. If a valid node is selected, an "Expansion

Filename" dialog box appears with a text widget for entering the name of the file, for

the next level of expansion, for the node selected by the user and two push buttons:

"OK" and "Cancel". If this the first time this node is being expanded, the text widget

would be empty, otherwise, it would display the name of the expansion file already

provided. In the former case, the user can enter a valid file name and select the "OK"

push button. The software tool would then pop down the "Expansion Filename" dialog

box and open a new canvas in a dialog shell on top of all the existing canvases. The

S4

title of the dialog shell would give the name of the file, for this level of expansion, for

the node selected by the user. The newly opened canvas would be empty if this is the

first expansion at this level of the queueing network for the node being expanded. If

the file name entered is not valid, an "Warning" dialog box is displayed that informs

the user of the reason for the invalid file name. This dialog box contains an "OK"

push button that would need to be selected by the user before any other action. When

the user selects the "OK" push button in the "Warning" dialog box, it is popped down

and control is returned to the "Expansion Filename" dialog box for entering a valid file

name. If this is not the first time the node selected by the user is being expanded, the

text widget in the "Expansion Filename" dialog box will contain the expansion file

name previously provided. The user can choose to open this file by clicking on the

"OK" push button. Alternately, the user can provide a new file name for the next level

of hierarchy, for the node being expanded. The user can then click on the "OK" push

button. If a new expansion file name is given by the user, a "Warning" dialog box is

displayed that asks the user to confirm if he or she wants to change the expansion file

name. This dialog box provides two push buttons: "OK" and "Cancel". If the user

selects the "OK" push button in the "Warning" dialog box, this dialog box as well as

the "Expansion Filename" dialog box are popped down and a new canvas is opened

in a dialog shell on top of all the existing canvases. The title of the dialog shell would

give the name of the file, for this level of expansion, for the node selected by the user.

The newly opened canvas would be empty if the file name provided is a new one,

otherwise it would contain any queueing network drawn at this level of the queueing

network for the node being expanded. If the user did not provide a new file name but

ss

desired to open the existing expansion file and selected the "OK" push button in the

"Expansion Filename" dialog box, this dialog box would be popped down and a new

canvas would be opened in a dialog shell on top of all the existing canvases. The title

of the dialog shell would give the name of the file, for this level of expansion, for the

node selected by the user. The newly opened canvas would contain any queueing

network drawn at this level of the queueing network for the node being expanded. If

the user selected the "Cancel" push button in the "Expansion Filename" dialog box, the

dialog box is be popped down effectively negating the "Expand" option selected by the

user from the toolbox. The user can make'only one canvas active (completely-visible)

at one time. The user can do so by clicking on the canvas that needs to be made

active. The QNT software tool would perform all operations (either from the toolbox

or the menu) only on the active canvas except the "Quit" option in the "File" pull

down menu. Selecting the "Quit" option in the "File" pull down menu would

recursively close all the canvases and exit the application in ,a manner analogous to that

explained under the "Quit" option. To close only the active canvas, the user may

select the "Close" option in the "File" pull down menu (see page 39) or the "Close"

option in the system menu of the dialog shell in which the canvas appears. There is

a limit on the number of levels to which a node may be expanded. Since -the canvases

appear within dialog shells, they cannot be iconified separately. Further, ·they would

be minimized if ,the application (QNT) is iconified.

3.2.3 Other Implementation Details

This subsection briefly discusses the implementation details associated with the

56

drawing of the arrow head for a path and some of the known limitations of QNT.

The drawing of the arrow head based on the direction of the path was a tricky

implementation task. The code for drawing the arrow head was adapted from a similar

application [Hassan93]. This section of the code is located in the "draw.e" module. The

basic outline for drawing the arrow head is given below.

Let the end points for the path on which the arrow head needs to be drawn be (Xl'

Y I) and (X2, y 2)' These are mouse coordinates in pixels. An arrow head is made of two

lines A and B whose end points are (X3, y 3) and (X4, Y4), and (Xs, Y 5) and (X6, y 6)'

respectively. The coordinates of the two line segments A and B may be computed as

given below.

X 3 = X 2

Y 3 = Y2

X 4 = Length • Cos (a. - ~)

Y4 = Length • Sin (a. - ~)

X s = X 2

Y s = Y2

X6 = Length • Cos (a - (3)

y 6 = Length • Sin (a. - P)

where

Length = length of line A or line B

a = Tan-1 «Y2 - Y 1) / (X2 - XI»

f3 = 20.0 * K

K = 0.01745329

57

The length of the line in pixels could either be fixed or proportional to the length

of the path segment connecting the destination nodes. QNT uses the fixed version to

draw the arrow heads. The length is set to be 15 pixels. The C language library function

atan2 () is used to compute a. Line A and Line B are drawn using the Xlib function

XDrawSegmets () to complete the arrow head drawing operation.

A limitation of QNT is that the maximum number of elements that can be drawn

at any level of the queueing network is 2000. This limit is determined by the array size

of the BUFFERELEMENT structure. The array size has been defined to be 2000 in the

header file "global.hu
. This may be changed if desired. The default size of the canvas

for any level of the queueing network has been set at 840 by 614 (width by height) pixels.

This may also be changed if desired. Another limitation of QNT is that it is capable of

analyzing only MIMII queueing systems, and cannot analyze subnets containing nodes

which have been expanded. The individual canvases cannot be individually iconified.

Further, multiple queueing network files cannot be opened at the same time if they are

not related to one another in a hierarchical manner.

CHAPTERN

EVALUAnON OF THE TOOL

The testing and evaluation of the software tool, QNT, developed as part of this

thesis are discussed in this chapter along with some comments on the drawbacks of this

tool and suggestions for improvement based on the experience gathered in using the tool.

About 4S students of the graduate level Operating Systems II class of Spring 1994 used

QNT for two class assignments to design, develop, and analyze a timeshared system. It

was observed that on the average 12 students used QNT simultaneously by running

multiple copies of the tool. The evaluation of QNT was also performed by

simultaneously running 10 copies of QNT to design and develop a queueing network

model of an existing simulation package known as the Unified Simulation Environment

(USE). The USE system is capable of prototyping and evaluating computer architectures

and operating systems [Jhun92] [Hassan92] [Daily93] [Hassan94].

Useful feedback was received during the evaluation process that was used to

improve the tool. The feedback indicated that there was a communication gap in the way

the various options in QNT worked. Consequently, the help system of QNT was

improved by providing detailed documentation on each of the options. Feedback also

indicated that the "Save" and "Save As ..." options in the "File" pull down menu did not

perform correctly when the full path was not specified along with the filename. This was

corrected. A problem was also detected when QNT was run from a directory for which

58

59

the user had no write permission. This was corrected by creating the queueing network

file in the users' home directory. As discussed in the next section, a number of smaller

systems were also modeled using QNT.

4.1 Sample Systems Modeled by the Tool

As mentioned in the introduction to this chapter, one of the major systems

modeled using QNT was the USE system. Figure 12 shows the queueing network model

for a part of the USE system. The MlMJl subnets of the system modeled were analyzed

for their steady state performance characteristics. It was observed that the performance

of the model was close to that expected from the actual system.

Other smaller systems were modeled using QNT and analyzed for their steady

state performance characteristics. Figure 13 represents a closed queueing network model

of a timeshared computer system (originally from [Lazowska84]) developed in a

hierarchical manner. As is evident from the figure, the computer system modeled has

three CPU's, Sl' S2' and S3. Jobs from the various users enter the queue Q2 and after

receiving service enter the queue Ql from where they go to the outside 0. which

represents the users of the computer system.

The closed queueing network shown in Figure 14 represents a software-level

model (originally from [Lazowska84]). This model represents the .steps involved· in the

development of a program using a high-level language.

It is to be noted that these models do not represent all· the possible types of

systems that can be modeled using queueing networks, or QNT for that matter, but are

an indication of the range of systems that can be modeled.

E

Q7

57

J<0>

<0>

(0)

Q12

514

~<O)I ~,

Q13

J ... (0)1 ~.

y
E

Q6 S5 QS

<0) ~~)
Q3 53 Q4

Q2

<0>

GiO

Q1~ S13 Q15

<0) I ~ <0)

Fiaure 12. A queueing network model of the USE system 0\o

Ql

<0>
!!!
E

Fisure 13. A hierarchical closed queueing network model of a timeshared computer system 0\....

Figure 14. A software-level queueins network model 0\
N

63

4.2 Observations

Based on the feedback received from the users of QNT (see Section 4.1 for

details), several limitations of the software tool became apparent. Consequently, a number

of improvements were incorporated into QNT. Two major improvements to the tool are

described below.

• It was observed that one of the most heavily used option was the "Undo" option.

Consequently, an attempt was made to minimize the number of actions required from

the user to perform the "Undo" operation. Hence, in addition to selecting the "Undo"

option from the pull down menu, a translation table was added to the software. The

user can now perform the "Undo" operation with one mouse click by pressing

and releasing the third mouse button with the pointer inside the canvas.

• A modification was made to the method of drawing a path between two nodes in a

queueing network model. Initially, only single segment straight lines could be drawn

between two nodes. This led to the problem of intersecting paths and paths that pass

through nodes. Further, once a path was drawn there was no easy way to change its

direction to avoid a node or an intersecting path. This resulted in a complicated and

cluttered queueing network model that was unpleasant to view and difficult to

understand. Hence, the path drawing algorithm was modified to enable the user to

draw multiple segment paths between two nodes. There is no limit to the number of

segments a path may have. To facilitate drawing multiple segment paths, the user can

initiate the path drawing by pressing the first button of the mouse with it positioned

inside the source node. The user can then move the mouse to any position on the

64

canvas and press the second button of the mouse to indicate the end of a segment.

When the user points and clicks inside the destination node, the path is completed. In

the case of a multiple segment path, the arrow will be made at the end of each

segment.

CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

The importance of queueing networks as models of systems and the main objective

of this thesis were discussed in Chapter I. Chapter II presented a survey of the CWTent

literature on queueing networks. The chapter provided an introduction to queueing

networks by reviewing the fundamental definitions necessary to understand queueing

networks. Chapter II also presented the characteristics of queueing networks; Erlang's

model, Poisson distribution, and distribution of interarrival times~ aggregation and

branching of paths; analysis of an MIMII queueing network; modeling with queueing

networks; and other related issues in queueing networks such as open networks of queues

and closed networks of queues. The implementation details of the software tool

developed, QNT (Queueing Network Tool), were discussed 10 Chapter ill. The

implementation platform and run-time environment including an introduction to the

Sequent Symmetry S/81, the X Window System, and the OSF/Motif widget set were

discussed in the earlier sections of Chapter ill.. Other sections in Chapter ill considered

the program structure of the software, the graphical user interface, and other

implementation issues. Chapter IV provided the testing and evaluation methodology

utilized for the software tool.

65

66

The main objective of this thesis was the development of a graphical software tool

that can aid in the building of a queueing network model of a computer system and

analyzing the steady state performance characteristics of the resulting queueing network

or a sub-graph of the queueing network based on the movement of processes in the

computer system. The current version of the tool is only capable of analyzing a queueing

network or its sub-graphs that correspond to MIMIl systems.

This tool can be used to design and construct systems of virtually any size and

complexity. When the system to be designed is large and complex, it can be constructed

using the tool in a hierarchical manner utilizing a top-down design approach. The

graphical user interface was implemented using the OSFlMotif widget set (see Chapter

III for a discussion of the X Window System and the Motif Toolkit). This tool was used

to design computer systems of reasonable size and complexity in an academic

environment. Based on the experience in using the tool and the difficulties encountered

during its evaluation, steps were taken towards its improvement.

5.2 Future Work

The improvements mentioned below should be incorporated into the future

versions of QNT.

• The cut, copy, and paste options can be implemented to provide additional flexibility

in designing queueing networks and to reduce the planning required in drawing

queueing networks using the tool. This would bring to the fore issues such as

determining whether the subnet being cut or copied is a valid sub-graph.

• Options could be provided for the computation and analysis of various performance

67

measures of a queueing network or its sub-graph that are more complex than the

simple MIMII system that the tool is currently capable of analyzing. It could also be

capable of analyzing queueing networks that are designed in a hierarchical manner.

• The dialog shells, in which the canvases are displayed for drawing the queueing

network in a hierarchical manner, could be provided a "Minimize" button so that they

can be iconified separately. Further, QNT could be given the capability to access

multiple queueing network files at the same time even if they are not related in a

hierarchical manner.

• The software tool could be integrated into an existing simulation package called the

USE system (the Unified Simulation Environment) designed for prototyping and

evaluating computer architectures and operating systems [Jhun92] [Hassan92] [Daily93]

[Hassan94], as was done in the case of DrawPetri (a graphical Petri Net modeling

software tool) [Hassan93], not only to model different systems but also to use the

resulting queueing network as an executable specification of the desired system.

REFERENCES

[Bakrabati91] N. Bakrabati, X Window System Programming, Macmillan Computer
Publishing, Carmel, IN, 1991.

[Baskett75] F. Baskett, K. M. Chandy, R. R. Mains, and F. G. Palacios, "Open,
Closed, and Mixed Networks of Queues with Different Classes of Customers",
Journal of the ACM, vol. 22, no. 2, pp. 248-260, 1975.

[Berlage91] Thomas Berlage, OSFlMotif: Concepts and Programming, Addison­
Wesley Publishing Company, Reading, MA, 1991.

[BrueI180] S. C. Bruell and G. Balbo, Computational Algorithms for Closed Queueing
Networks, North Holland Publishing, Inc., New York, NY, 1980.

[Buzen72] J. P. Buzen, "Computational Algorithms for Closed Queueing Networks
with Exponential Servers", Communications of the ACM, vol. 16, no. 9, pp.
527-531, 1972.

[Byrant84] R. M. Byrant, A. E. Krzesinski, M. S. Lakshmi, and K. M. Chandy, tiThe
MYA Priority Approximation", ACM Transactions on Computer Systems, vol.
2, no. 4, pp. 335-359, 1984.

[Daily93] S.R. Daily and Mansur H. Samadzadeh, "Object-Oriented Simulation of
Capability Based Architectures", The Twenty-Sixth Annual Simulation
Symposium, Sponsored by SCS, IEEE-CS, and ACM, in conjunction with The
1993 Simulation Multi-Conference, pp. 258-266, Washington, DC, March 29­
April 1, 1993.

[Fuller75] S. H. Fuller and F. Baskett, "An Analysis of Drum Storage Units", Journal
of the ACM, vol. 22, no. 1, pp. 83-105, 1975.

[Gaver67] D. P. Gaver, "Probability Models for Multiprogramming Computer
Systems", Journal of the ACM, vol. 14, no. 3, pp. 423-438,1967.

[Gelenbe87] E. Gelenbe and G. Pujolle, Introduction to Queueing Networks, John
Wiley and Sons Ltd., New York, NY, 1987.

[Gordon67] W. J. Gordon and G. F. Newell, "Closed Queueing Systems with

68

69

Exponential Serverslt
, Operations Research, vol. 15, no. 2, pp. 254-265. 1967.

[Hassan92] Khaled M. Hassan and Mansur H. Samadzadeh, It An Object-Oriented
Environment for Simulation and Evaluation of Architectures", Proceedings of
IEEE Twenty-Fifth Annual Simulation Symposium in conjunction with The 1992
SCS Simulation Multi-Conference, Orlando, FL, pp. 91-97, April 1992.

[Hassan93] M.T. Hassan, "Toward a Graphical Petri Net Tool", Master of Science
Thesis, Computer Science Department, Oklahoma State University, Stillwater,
OK, 1993.

[Hassan94] K. Hassan and Mansur H. Samadzadeh, "Adding Virtual Memory to the
USE Object-Oriented Simulation Environment", Proceedings of the
Object-Oriented Simulation Conference (ODS 1994), Simulation Series,
Volume 26, Number 2, pp. 31-34, Tempe, Arizona, January 1994.

[Heidelberger82] P. Heidelberger and K. S. Trivedi, "Analytic Queueing Models for
Parallel Processing with Asynchronous Tasks", IEEE Transactions on
Computer Systems, vol. C-31, no. 11, pp. 1099-1108, 1982.

[Heidelberger83] P. Heidelberger and K. S. Trivedi, "Analytic Queueing Models for
Programs with Internal Concurrency", IEEE Transactions on Computer
Systems, vol. C-32, no. 1, pp. 73-82, 1983.

[Heller91] Dan Heller, Motif Programming Manual, O'Reilly and Associates, Inc.,
Sebastapol, CA, 1991.

[Hoyme68] P. K. Hoyme, S. C. Bruell, P. F. Afshari, and R. Y. Kain, "A Tree­
Structured Mean Value Analysis Algorithm", ACM Transactions on Computer
Systems, vol. 4, no. 2, pp. 178-185, 1968.

[Jackson57] 1. R. Jackson, "Networks of Waiting Lines", Operations Research, vol. 5,
no. 4, pp. 518-521, 1957.

[Jackson63] 1. R. Jackson, "Jobshop Like Queueing Systems", Management Science,
vol. 10, no. 1, pp. 131-12, 1963.

[Jhun92] Ik-Jeong Jhun, Khaled M. Hassan, and Mansur H. Samadzadeh, "Simulation
of a Computing Environment Using Stochastic Processes and the Object­
Oriented Technology", Proceedings of the Twenty-Third Annual Pittsburgh
Conference on Modeling and Simulation, Vol. 22, Part 3, Edited By: William
G. Vogt and Marlin H. Mickle, Pittsburgh, PA, pp. 1579-1585, April 30-May 1,

1992.

[Johnson90] E. F. Johnson and K. Richard, Advanced X Window Application

70

Programming, Advanced Computer Books, Management Information Source,
Inc., Portland, OR, 1990.

[Keller90] B. J. Keller, A Practical Guide to X Window Programming, eRC Press,
Inc., Boca Raton, FL, 1990.

[Kendal151] G. D. Kendall, "Some Problems in the Theory of Queues", Journal of the
Royal Statistical Society, Series B, vol. 13, no. 2, pp. 151-185, 1951.

[Klienrock64] L. Klienrock, tfAnalysis of a Time-Shared Processor", Naval Research
Logistics Quarterly, vol. 11, no. 1, pp. 59-73, 1964.

[Klienrock76] L. Klienrock, Operating Systems: Computer Applications, vol. 2, John
Wiley and Sons Ltd., New York, NY, 1976.

[LamS3] S. S. Lam and Y. L. Lien, etA Tree Convolution Algorithm for the Solution
of Queueing Networks", Communications of the ACM, vol. 26, no. 3, pp. 203­
215, 1983. '

[Lavenberg88] S. S. Lavenberg, "A Perspective on Queueing Models of Computer
Performance", CWI Monographs, Edited by: o. J. Boxma and R. Syski,
Elsevier Science Publishing Co., Inc., New York, NY, pp. 59-94, 1988.

[Lazowska84] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik,
Quantitative System Performance, Prentice Hall, Inc., Englewood Cliffs, NJ,
1984.

[Lewis71] P. A. W. Lewis and G. S. Shedler, "A Cyclic-Queue Model of System
Overhead in Multiprogrammed Computer Systems", Journal of the ACM, vol.
18, no. "2, pp. 199-220, 1971.

[Lipsky77] L. Lipsky andJ. D. Church, "Applications of a Queueing Network Model
for a Computer System", ACM Computing Surveys, vol. 9, no. 3, pp. 205-221,
1977.

[Lipsky92] L. R. Lipsky, Queueing Theory: A Linear Algebraic Approach, Macmillan
Publishing Co:, "New York, NY, 1992.

[Little61] J. D. C. 'Little, "A Proof of the Queueing Formula L = 'AW", Operations
Research, vol. 9, no. 3, pp. 383-387, 1961.

[Maekawa87] M. Maekawa, A. E. Oldehoeft, and R. R. Oldehoeft, Operating Systems:
Advanced Concepts, Benjamin Cummings Publishing Co., Menlo Park, CA,
1987.

71

[Mitra85] D. Mitra, "Probabilistic Models and Asymtotic Results for Concurrent
Processing with Exclusive and Nonexclusive Locks") SIAM Journal of
Computing, vol. 14) no. 4, pp. 1030-1051, 1985.

[Nutt92] G. J. Nutt, Centralized and Distributed Operating Systems, Prentice Hall,
Inc., Englewood Cliff, NJ, 1992.

[Nye90] Andrian Nye, X Protocol Reference Manual for Version 1J of the X Window
System, O'reilly and Associates, Inc., Sebastapol, CA, 1990.

[Scherr67] A. L. Scherr, An Analysis of Time-Shared Computer Systems, MIT Press,
Cambridge, MA, 1967.

[Sequent90] DYNIXlptx User's Guide, Sequent Computer, Inc., 1990.

[Thomasian86] A. Thomasian and P. F. Bay, "Analytic Queueing Network Models for
Parallel Processing of Task Systems", IEEE Transactions on Computer Systems,
vol. C-35, no. 12, pp. 1045-1054, 1986.

[Trivedi82] K. S. Trivedi, Probability and Statistics with Reliability, Queueing, and
Computer Science Applications, Prentice Hall, Inc., Englewood Cliffs, NJ,
1982.

[Wang85] Y. T. Wang and R. J. T. Morris, "Load Sharing in Distributed Systems",
IEEE Transactions on Computer Systems, vol. C-34, no. 3, pp. 204-217, 1985.

[Young90] D. A. Young, The X Window System: Programming· and Applications with
Xt, OSF/Motif Edition, Prentice Hall, Inc., Englewood Cliff, NJ, 1990.

[Zahorjan81] J. Zahorjan and E. Wong, tiThe Solution of Separable Queueing Network
Models Using Mean Value Analysis", ACM SIGMETRICS Performance
Evaluation Review, vol. 10, no. 3, pp. 80-85, 1981.

APPENDIXES

72

APPENDIX A

GLOSSARY AND TRADEMARK INFORMATION

accelerator: Single keystrokes that are the equivalent of certain application functionality,
most commonly associated with menu selections.

aggregation of paths: The merging of two or more paths leading into a queue or a
server.

application window: The window where an application resides with its complete user...
interface.

arrival process: The distribution of arrivals into a queue either from within or from
outside of a system.

background: The area ()n which a widget resides.

background color: The color from which all widgets generate their top and bottom
shadows and their select color, and against which labels and bitmaps are created
with the foreground color.

HeMP networks: (Baskett- Chandy' - Mains ... Palacios) A generalized class of mixed
queueing networks that permits multiple job classes, allows open and closed
subnets, varied queuing ·disciplines, and general service time distributions.

tripartite graph: A graph in which the set of vertices can be divided into three disjoint
sets, and there exist no edges between any two vertices in the same set.

bitmap: An image created using only the foreground and background CQlors of th~ ~creen.

branching of paths: The division of a job stream emanating from a server, a queue, or
an outside into two or more paths.

button: Either a physical button on the mouse or a widget that simulates a real button on
the screen.

callback: A function or a procedure that is to be executed when a specific event occurs
within a widget that is in a particular state.

73

74

class: A common description for a set of similar objects with the same structure but
different attribute values. Each class has unique characteristics and any number
of instances of the class may be created.

class hierarchy: A logical ordering of classes, in which each class lower in the hierarchy
(sub-class) is a specialization of the class directly above it (super-class). Sub­
classes may inherit, add, delete, or modify attributes.

click: Pressing and immediately releasing a mouse button without moving the mouse in
between.

client: Any application that runs on the X Window System or any widget, or a set of
widgets, that is managed to be displayed in a window on the screen.

client-server model: A server process in a client-server model provides some services to
the other processes. These other processes are known as clients. In the X
Window System, the server controls all input and output devices. An application

.is a client process that utilizes the services provided by the server.

closed queueing network: A queueing network that has a fixed number of jobs
circulating in the system that neither enter or leave the network.

composite widget: A widget that contains one or more widgets as its children, and
controls their geometry.

dialog box: A collection of widgets that are displayed by an application in response to
an event when detailed information needs to be provided to the user or when input
needs to be obtained from the user.

distribution of interarrival times: The probability distribution function of the time
intervals between the arrival of two successive jobs in a queue either from another
queue within the network or from outside the system.

ergodic system: A system in which the average values converge to those in the steady

state.

Erlang model: A basic model for analyzing queueing networks. It suggests that any
queueing model consists of a set of servers, a set of queues, and the directed paths
between them.

event: .A message from the X server to an application.

event handler: A procedure that is executed in response to one or more predefined events
for a widget.

execution of a queueing network: The simulation of the dynamic movement of jobs in

75

a queueing network.

geometry management: The process of automatic negotiation of the size and relative
position of all child widgets.

graphical user interface (GUI): A visual representation of some of the functionality of
a computer that can be manipulated in a friendly, easy to use, and non­
programmatic manner.

graphics context (Ge): A data structure that contains various information necessary for
drawing graphic objects on a window such as the foreground pixel, background
pixel, line width, line style, and clipping region. A graphics context is applicable
only to drawables that have the same depth and root window as the graphics
context.

GUI: See graphical user interface.

icon: A graphical symbol of an object or an action. Selecting an icon typically results
in either selecting the object or performing the action.

indegree: The number of paths terminating in a node on a directed -graph.

inheritance: A mechanism that makes use of the characteristics of the super-class in a
sub-class without the need for duplication.

inter-client communication conventions (Ieee): A set of protocols that govern the
interaction among the clients as well as between a client and the window manager.

intrinsics: The base library of functions on which the Motif widget set has been built.
It implements the fundamental procedures for building new widget classes.

jobs: Each queue is mapped to a non-negative integer i, which is interpreted as i jobs
being present in that queue.

Kendall notation: A concise symbolism that describes the parameters of queues in a
queueing network.

Little's law: A law that provides a relationship between the average queue length and the
average waiting time for a job at the steady state.

load dependent systems: A system in which the mean service rate of a server fluctuates
depending on the lengths of the queues being serviced by the server.

load independent systems: A system in which the mean service rate of a server is fixed
and is independent of the lengths of the queues being serviced by the server.

76

Markov process: A sequence of states generated by a process that satisfies the Markov
property which states that the probability that a system will be in a particular state
at the next instant depends only on the current state.

mean queue length: The average number of jobs waiting for service including the job(s)
being serviced.

mean turnaround time: The average length of time a job resides in the system to satisfy
its service requirements.

mean value analysis: A technique for analyzing queueing networks that is based on
expected values rather that stochastic distributions.

mean waiting line length: The average number of jobs waiting for service that are
currently in a queue.

mean waiting time: The average time a job waits for having its service request satisfied.

memoryless: A property of a distribution· that indicates no effect of history on the
probability of occurrence of an event.

MULTIBUS: An industry standard for buses that may be used to connect a variety of
peripheral devices.

normalization constant method: A technique for analyzing closed queueing networks
that requires the evaluation of a normalization constant in exponential time.

open queueing network: A queueing network in which jobs enter from one or more
points from outside a system and exit to one or more sinks outside the network.

outside: A node in a queueing network that is represented by a square to which jobs
move to when leaving the system.

outdegree: The number of paths originating from a node in a directed graph.

paths: Directed arcs connecting queues, servers, and outsides that indicate the flow of
jobs.

pixel: A single identifiable point on the screen or in a pixmap. A pixel may have
different color values, or may be white or black in the case of a monochrome
monitor.

pixel values: An n-bit value, where n is the number of bit planes in a window or a
pixmap. In other words, n is the depth of the pixmap or window. In the case of
a window, it indexes a colormap to derive the actual color to be made visible.

77

pixmap: A three-dimensional array of bits that can be considered as a two-dimensional
array of pixels. The value of each pixel can range from 0 to 2n

-
1, where n is the

depth of the pixmap. Alternately, a pixmap may be viewed as a stack of n
bitmaps.

pointer: A synonym for the mouse cursor.

Poisson distribution: A common statistical distribution for the number of jobs that arrive
per unit time into a queue from either within the network or from outside the
system.

processor utilization: The fraction of time a server is busy servicing jobs.

product-form matrix: A square matrix of size K (the number of queues in a system) in
which each element of the matrix indicates the probability that a job in queue i
after being served joins queue j.

protocol: A mutually agreed set of rules of cooperation between a client and a server in
exchange for services from the server.

ready server: A server is said to be ready when one or more of the queues it is servicing
has a job and there are no jobs currently being served by the server.

server (X Window System): It offers the basic windowing mechanism. It is responsible
for handling inter-process communication connection between clients, graphic
requests, and demultiplexes and screens. It is also responsible for multiplexing
input back to the appropriate. clients.

toolkit: A low-level library of objects and functions that are available for use to the
application programmer and upon which the intrinsics are built.

tree convolution method: A technique. used to a analyze closed queueing networks that
is computationally more efficient in terms of time complexity and space
complexity when compared to the normalization constant method and the mean
value analysis technique.

widget: A user interface mechanism compriSing data structures and the associated
procedures that can be displayed in different ways such as menus, dialog boxes,
or windows.

window: A rectangular area on the screen that belongs to a particular application.

window manager: The program that manages the display of windows and their
manipulation on the screen.

X: A networked, portable, and transparent windowing system.

78

X client: An application program that makes use of the services of the X server for input
and output.

Xm: The prefix for any value assigned to a widget resource. This convention
differentiates the X Window System and Motif widget set values from values
assigned to any other variables in the source code.

XmN: The prefix for any resource attribute whose value needs to be specified.

X protocol: The protocol by which X clients communicate with the X server.

X server: A set of C language routines that exclusively control the display hardware and
service client requests.

Xt intrinsics: A synonym for X toolkit intrinsics.

X toolkit intrinsics: A library of functions, procedures, and data structures built on top
of Xlib that makes application programming much easier compared to working
with Xlib functions.

X Window System: A network transparent 'and hardware independent base layer that
provides services to the graphical user interfaces.

TRADEMARK INFORMATION

DEC is a registered trademark of Digital Equipment Corporation.

DYNIX, DYNIX/ptx, Sequent S/81, and Symmetry are registered trademarks of the
Sequent Computer System, Inc.

Motif, OSF, and OSFlMotif are registered trademarks of Open Software Foundation.

The X Window ·System is a registered trademark of the Massachusetts Institute of
Technology.

UNIX is a registered trademark of AT&T.

APPENDIX B

USER GUIDE FOR QNT

1. Introduction

The queue(ng network modeling tool, QNT, is installed on the Sequent Symmetry
S/81 computer system located at the, Computer Science Department, Oklahoma State
University, Stillwater, Oklahoma.

The QNT software tool provides a graphical environment to model a system. using
analytical techniques based on queueing theory. The OSF~otif widget set was
employed to develop the user interface for QNT.. The startup screen for QNT provides
different functions to the user through the three pull down menus and ten push buttons
in the toolbox (see Figure 15). The title of the window in which the canvas appears
indicates the name of the file being edited. The current action selected by the user is
indicated in the window located at the bottom of the canvas. The queueing network
of the system being modeled can- Tbe drawn on the canvas. To design and model
complex systems, the queueing network can be drawn in a hierarchical manner using
a top-down design approach.. ;The following section. describes all the available
functions in QNT.

2. Using Menus

'The various parts of the menu system i~ QNT consist of the menu bar, the menu
pads, the menus, and the menu options. The purpose of the .menu system is to allow
the user to .communicate with QNT.. This section des~ribes the various components of
the m~nu system in QNT. The initial screen of QNT is shown in Figure 15.

• l 4 'l,: \. - •

Menu Bar: TPe menu bar is located in the upper left comer of the initial screen.
It displays the. titles for the various pull down menus.

Menu Pad: The menu pad consists of a title in the menu bar. The pull down menu
associated with each menu pad can be displayed by the user by pointing the mouse to

it and clicking the first mouse button.

79

80

81

Menu: Each menu consists of a pull down menu pane that is displayed when the
user points the mouse to the menu pad and clicks the first button of the mouse. A
menu (also referred to as a pull down menu) is a list of options provided to the user.
The user instructs QNT the action to be performed by choosing an option from the
menu. The term "choosing" refers to the process of activating a selection (indicated
visually by a highlighted option in the menu) by pointing and clicking the first button
of the mouse.

Menu Option: As mentioned before, each menu consists of one or more options.
Each of these options is known as a menu option. The menu options in each menu
bear a logical relationship to the menu pad. The menu options within a menu that bear
a close relationship to one another are grouped together and are separated by a
horizontal line from the group or option immediately following it. The occurrence of
an action in QNT is triggered by the selection of a menu option by the user. The
action taking place may be the opening or closing of a window, the displaying of a
dialog box, the execution of a command, or the selection of an action.

There are some .menu options in QNT that are followed by an ellipsis (...). This
indicates that .. additional information is needed from the user before the action
pertaining to that menu option can be performed. A dialog box appears when such a
menu option is selected by the user to request the additional information.

Some menu options are followed by a control-key combination. The user can use
the control-key combination as a short cut for activating the corresponding menu option
without displaying the menu and selecting the menu option.

To choose a menu option with a pointing device such as a mouse, point the mouse
to the menu pad and hold the first button of the mouse down. The corresponding
menu appears. With the first mouse button still pressed, drag the pointer to the menu
'option that is to be selected. Now release the first button of the mouse. The last menu
option pointed to by the mouse, before releasing the first mouse button, is the one that
is selected. The menu now disappears automatically.

3. Using Dialog Boxes '

A user-interface object known as a dialog box appears when the user selects a
menu option that is followed by an ellipsis. QNT also displays a dialog box at other
times when it needs more information in response to an action chosen by the user. The
user is required to provide additional information to the software tool through the
dialog box and close it before taking any other action.

The user must exit the dialog box by clicking the first button of the mouse on
either the "OK" push button or the "Cancel t

• push button of the dialog box before

82

taking any other action. The terminal would beep if the user attempts to perform any
other action outside the dialog box such as clicking the mouse button in the canvas,
on the menu bar, or in any of the push buttons in the toolbox. A dialog box is a
composite widget that may consist of one or more child widgets such as push buttons,
text boxes, and list boxes. These widgets are described below.

Push Button: A push button is a small rectangle that contains text describing the
action performed by triggering the push button. The action associated with a push
button occurs immediately after it is clicked with the first button of the mouse. This
may also consist of displaying another dialog box.

Text Box: A text box is a rectangular box that is one or more lines in height and
any width. It may be scrollable to display more text than can fit in the text box. It
indicates an editable region where text may be entered. Click the first button of the
mouse at any position of the text box to position the cursor at that location, then type
and edit the text in the usual manner. There are descriptive text regions in QNT where
the displayed text mayor may not be browsed but cannot be edited, such as the
window that displays the current action or the text box in the "Save As" dialog box
that displays the current file name.

List Box: A list box consists of a list of items. The list of items could consist of
the names of files, names of directories, etc. One or more items in the list may be
selected by the user. To select an itemin the list, point the mouse to the desired item
and press the first button of the mouse. To select multiple items in the list, select the
first item as mentioned above. The remaining items' in the multiple selection list can
be chosen by keeping the "Shift" key pressed, .pointing the mouse to the item to be
selected, and clicking the first button of the mouse. If the list is too long to fit in the
list box, the user may browse through the list by pointing and clicking the first button
of the mouse in the arrow at either end of the scroll bars.

Moving within a dialog box using the mouse: The user can move within the dialog
box by moving the mouse to any control (push button or radio button), or any editable
text box, and clicking the first button of the mouse.

Moving within a dialog box using the keyboard: The user can move within the
dialog box using the keyboard only, from one control to another, by pressing the "Tab"

key.

Repositioning a dialog box on the screen: It is possible to reposition the dialog
box to any desired position on the screen provided it is completely within the main
application window of QNT. To move the dialog box, move the mouse and point it
to the title bar of the dialog box, press and hold down the first button of the mouse,
and drag the mouse until the dialog box is in the desired location. The movement of
the dialog box is indicated by its outline. Now release the mouse button.

83

4. File Menu

The "File" pull down menu provides the user with the functionality to open a new
or an existing file, save a file, close a canvas, or exit from the application.

The "New" option in the "File" pull down menu permits the user to create a new
file. A new file with a default file name of "Untitled" is created, opened, and a canvas
that is empty is displayed provided no drawing has been performed in the current
session by the user. Otherwise, the user is prompted to save the current file(s) through
a "Save File" dialog box. The "Save File" dialog box provides three options to the
user in the form of push buttons: "OK", "No", and "Cancel". If the "OK" push button
is selected by the user, the current file is saved and a new file named "Untitled" is
opened (see page 84 for detailed information on saving a file). If the "No·' push
button is selected by the user, the current file is not saved, the canvas is cleared, and
a new file named "Untitled" is opened. Selecting the "Cancel" push button ensures that
the "New" option chosen from the "File" pull down menu is cancelled.

The "Open ... " option in the "File" pull down menu permits the user to open an
existing· file.' Selecting this option when no file is open displays a "File Selection"
dialog box that contains two separate scrollable widgets. One of these widgets
contains a list of directories while the other contains a list of files in the current
directory. The current directory may be changed by using the "Filter" push button in
the dialog box or by selecting the directory required from the scrollable Text widget
that lists the directories. The filter option may also be used to display the list of files
that satisfy a regular expression using wild cards (as in UNIX) in the scrollable Text
widget that displays the file names. To change the current directory, the TextBox
widget for the "Filter" should contain a valid path and the "Filter" push button in the
dialog box should be selected. To select a file for opening, the file name can be typed
in the TextBox widget for the "Selector", if the file is in the current directory.
Otherwise, the full path starting from the root directory needs to be specified. A file
can be opened either by selecting· it from the scrollable List Box widget that displays
the file names and clicking on the "OK" push button in the dialog box, by typing the
file name in the ·TextBox widget for the "Selector" and clicking on the "OK·' push
button in the dialog box, or by double clicking on a file name in the scrollableListBox
widget. The file is then opened, the information in the file is read, and the
corresponding queueing network is displayed for the top-level queueing network
provided the file is in the correct format. However, if the file selected is not in the
correct format, a dialog box is displayed with an appropriate error message. The user
must respond to the error message in the dialog box by selecting the "OK" push button
before taking any other action. Then, the "Error Message" dialog box pops ,down and
another file may be selected. When a file has been opened successfully, the "File
Selection" dialog box is removed from the screen. Otherwise, it remains visible. The
"Cancel" push button in the "File Selection" dialog box has been provided to pop down
the "File Selection" dialog box without opening a file, thus effectively negating the
"Open ..." option in the "Filet' pull down menu selected by the user. If there are file(s)

84

~pen when the user selects the "Open ... It option from the file pull down menu. the user
IS prompted to save the current file(s) through a "Save File" dialog box. The "Save
File" dialog box provides three options to the user in the form of push buttons: "OK",
"No", and "Cancel". If the "OK" push button is selected by the user, the current file(s)
are saved and the "File Selection" dialog box is displayed (see page 84 for detailed
information on saving a file). If the "No" push button is selected by the user. the
current file(s) are not saved, the canvas is cleared, and the "File Selection" dialog box
is displayed. Selecting the "Cancel" push button ensures that the "Open ..." option
chosen from the "File" pull down menu is cancelled.

The user can select the "Close" option in the "File" pull down menu to remove the
active canvas. QNT then presents the user with a "Close" dialog box. The "Close"
dialog box contains three push button: "OK", UNo", and "Cancel". If the user selects
the "OK" push button in the "Close" dialog box, QNT displays a "Save" dialog box to
the user if this layer of the queueing network has already been given a filename. The
program then functions in a manner similar to that explained for the "Save" option in
the "File" pull down menu (see page 84). If no file name has been provided, the "Save
As ... " dialog box is presented to the user and QNT functions in a manner analogous
to that explained for the "Save As ... tt option in the "Filett pull down menu. If the user
selects the "Cancel" push button in the "Save" or "Save As ... " dialog box, the t·Save"
or "Save As ..." dialog box is popped down and control is returned to the "Close"
dialog box. However, if the user selects the "OK" push button in the "Save" or "Save
As ..." dialog box, both the "Save" dialog box or the ttSave As ..." dialog box as well
as the "Close" dialog box are popped down. If the user selects the "No" push button
from the "Close" dialog box, the "Close" dialog box pops down and the active canvas
is removed from the screen without saving any changes made to that canvas. If the
user selects the "Cancel" push button in the "Close" dialog bo~ the dialog box pops
down and the "Close" option in the "File" pull down menu selected by the user is
cancelled.

To save the changes made to any layer of a queueing network, the user can select
the "Save" option in the "File" pull down menu. This option does not close the file
being saved. If an unnamed file (i.e., a queueing network with a file name "Untitledtt

)

is to be saved, a "Save" dialog box is displayed to the user that prompts for a file
name. If the user selects the "OK" push button after entering the file name and no file
name is entered by the user (i.e., a blank for a file name is considered invalid), or if
the file name entered already exists for another file, an ··Overwrite File" dialog box is
displayed. It asks the user if he or she wants to overwrite =the file. It provides two
push buttons: "OK" and "Cancel". If the user selects the "OK" push button in the
"Overwrite File" dialog box, the "Save" and "Overwrite" dialog boxes are popped down
and the file is overwritten with the data of the queueing network being saved. If the
user selects the "Cancel" push button in the "Overwrite Filet. dialog box, it is popped
down and the "Save" dialog box once again receives control to receive a new file name
from the user. If the file name is valid, the file is written with the data of the queueing
network being saved and the "Save" dialog box is popped doWD. The ·'Cancel" push
button in the I·Save" dialog box has been provided to pop down the "Save" dialog box

8S

and cancel the "Save" option in the "File'1 pull down menu selected by the user.

The "Save As ... It option in the "File" pull down menu permits the user to save the
curr~nt version of the queueing network under a new file name while retaining the old
versIon under the existing file name. Upon selecting this option, a "Save As" dialog
box is displayed to the user. It contains a TextField widget wherein the current file
name is displayed. The text displayed in this widget is in read-only mode (i.e., the file
name cannot be edited). The dialog box also provides another TextField widget to
enter the new file name. Upon entering the new file name and selecting the "OK"
push button in the dialog box, the current queueing network will be saved under the
new file name, the old file will be closed without saving the current changes, and the
new file will be opened in the canvas. If the old file name is "Untitled", it implies that
the old file was not named or saved. In this case the user is presented a "Save" dialog
box instead of a "Save As" dialog box that prompts the user for a file name. Upon
entering the file name and selecting the "Save" push buttoD, the current drawing is
saved under the new name. In both cases, the dialog boxes contain a "Cancel" push
button. When the user selects the "Cancel" push button, the "Save As ..." option in the
"File" pull down menu selected by the user is cancelled. If the new file name provided
by the user is the same as an existing file, an "Overwrite File" dialog box is displayed
(see the explanation under the "Save" option from the "File" pull down menu on page
84 for details).

The user can select the "Print ..." option in the "File" pull down menu to print the
QNT window and all drawing areas that are visible to a postscript file. When this
option is selected by the user, QNT displays a "Print File" dialog box that prompts the
user for the file name. If the user selects the "OK" push button after entering the file
name and no file name is entered by the user (i.e., a blank for a file name is considered
invalid), or the file name entered already exists for another file, an "Overwrite File"
dialog box is displayed. It asks the user if he or she wants to overwrite the file. It
provides two push buttons: "OK" and "Cancel". If the user selects the t·OK" push
button in the "Overwrite File" dialog box, the "Print File" and "Overwritelt dialog
boxes are popped down and the file is overwritten with a postscript dump of the QNT
window and the visible drawing areas in it. If the user selects the "Cancel" push
button in the "Overwrite File"· dialog box, it is popped down and the "Print File" dialog
box once again receives control to receive a new file name from the user. If the file
name is valid, the file is written with a postscript dump of the QNT window and the
visible drawing areas in it and the "Print" dialog box is popped down. The "Cancel"
push button in the '''Print File" dialog box has been provided to pop down the dialog
box and cancel the "Print ... II option from the "File" pull down menu selected by the

user.

Selecting the "Quit" option in the "File" pull down menu terminates the
application. Before exiting from the application, QNT presents the user with a "Quit"
dialog box that prompts the user to save the current drawing. The "Quit" dialog box
contains three push buttons: "OK", "No", and "Cancel". If the "OK" push button is
selected by the user, the current drawing is saved, provided the drawing has already

86

b~en named, and QNT terminates. If the drawing has not been named. the "Save"
dialog box (see page 84) is displayed to the user. Note that all open canvases will be
closed recursively. Hence, the push button selected applies to all the windows. If the
"No" push button is selected by the user, QNT exits without saving any changes made
to the current drawing. The "Cancel" push button ensures that the "Quit" option in the
"File" pull down menu selected by the user is cancelled.

5. Edit Menu

The "Undo" option in the "Edit" pull down menu permits the user to reverse the
last drawing action performed. This action can either be performed by selecting the
"Undo" option from the "Edit" pull down menu or by clicking the third button of the
mouse while it is located inside the canvas. As mentioned before, only drawing
actions can be reversed by this option. Thus, the "Open ..." option in the "File" pull
down menu is not undoable. For example, if an element in the queueing network has
been deleted, selecting the "Undo" option would restore the element onto the canvas
along with the data associated with that element. Performing an "Undo" operation
once again would delete that element again.

The user can change the label of a node (i.e., a queue, a server, or an outside) by
selecting the "Edit Label ... " option from the "Edit" pull down menu. This option
displays an "Edit Label" dialog box that prompts the user for the old label of the node
as well as the new label. When this information has been entered and the "OK" push
button has been clicked by the user, the software tool checks to ensure that the old
label entered actually exists, is valid, and the new label does not match one of the
existing labels. If the validity check succeeds, the old label is changed. Otherwise, an
"Error Message" dialog box is displayed with an appropriate error·message in it. The
user must respond to the error message in the dialog box by selecting the "OK" push
button before taking any other action.

To delete an element in the queueing network, the user would need to select-the
"Delete Element" option from the "Edit" pull down menu. The cursor would then
change to an "X" while in the canvas. The user can now position the cursor over any
element in the canvas and press the first button of the mouse to delete an element.
The element could be a queue, server, outside, or a path. However, all paths that
connect to or from the queue, server or outside that is to be deleted must first be
deleted. If this is not done, an "Error Message" dialog box is displayed informing the
user of this constraint. The user must respond to the error message in the dialog box
by selecting the "OK" push button before taking any other action.

87

6. Help Menu

The "Help" pull down menu provides options, namely, "On Help ...", "Index ...",
and "About QNT ...". The "On Help ..." option in the ·'Help" pull down menu displays
an '·On Help·' dialog box providing the user with information on how to use the help
system of QNT. It also provides an "OK'· push button. When the user selects the
"OK" push button, the "On Help" dialog box is popped down.

The "Help Index" dialog box is displayed when the user selects the "Index ..."
option from the "Help" pull down menu. It provides a scrolled list box in which the
list of help topics are displayed. When the user clicks on one of the topics with the
left mouse button, the information pertaining to it is displayed in the scrolled text
widget in the dialog box. It also provides an "OK" push button. When the user selects
the nOK" push button, the "Help Index" dialog box is popped down.

The It About QNT" dialog box is displayed when the user selects the "About QNT
••• fI option from the "Help" pull down menu. It displays the copyright information for
QNT. It also provides an "OK'· push button. When the user selects the "OK" push
button, the "About QNT" dialog box is popped down.

7. The Toolbox

The toolbox consists of ten push buttons. It is located to the left of the canvas
and below the pull down menus. The actions provided in the toolbox are used very
frequently. The ten action push buttons are: "Queue''. '·Server", "Outside", "Path",
"Place Jobs", "Edit Specification", "Show Specification'" "Check", ..Analyze", and
"Expand".

The "Queue" option is selected by the user by pointing the mouse to the push
button and clicking on it with the first button of the mouse. Immediately, the current
action displayed in Region 2 of the user interface is updated to display "Draw a
Queue". The user can now draw a queue represented by an open rectangle. The width
of the open rectangle is fixed. When the user moves the mouse to the canvas and
clicks the first button of the mouse, the current mouse coordinates are taken as the
upper left comer of the queue. The user can now move the mouse to any location
desired on the canvas, in effect stretching the open rectangle. During the stretching
operation, the queue is shown as a dotted line. When the desired size of the queue has
been determined, the user can press the second button of the mouse to make the queue.
The queue is provided with a default label that is displayed above the queue and the
default parameters of the queue are set. To change the default label and parameters
of the queue, the user can select the "Edit Label" option in the "Edit" pull down menu
(see page 86) and the "Edit Specification" option in the tool box (see page 90),
respectively.

88

The ··Server" option is selected by the user by pointing the mouse to the push
button and clicking on it with the first button of the mouse. Immediately. the current
action displayed in Region 2 of the user interface is updated to display "Draw a
Server". The user can now draw a server represented by a circle. The radius of the
circle is fixed. When the user moves the mouse to the canvas and clicks the first
button of the mouse, a dotted circle is made with the current mouse coordinates as the
center of the server. Moving the mouse~ moves the circle along with it, so that the
server may be placed at any location desired in the canvas. When the user presses the
second button of the mouse, the server is drawn permanently. The server is provided
with a default label that is displayed above the server~ and the default parameters for
the server characteristics are set. To change the default label and parameters of the
server, the user can select the "Edit Label" option in the "Edit" pull down menu (See
page 86) and the "Edit Specification" option in the tool box (see page 90) respectively.

The "Outside" option is selected by the user by pointing the mouse to the push
button and clicking on it with the first button of the mouse. Immediately, the current
action displayed in Region 2 of the user interface is updated to display "Draw an
Outside" . The user can now draw an outside represented by a double line square with
an "E" inside it. The dimensions of the square are fixed. When the user moves the
mouse to the canvas and clicks the first button of the mouse~ a dotted double line
square is made with the current mouse coordinates at the center of the outside.
Moving the mouse moves the square along with it, so that the outside may be placed
at any location desired in the canvas. When the user presses the second button of the
mouse, the outside is drawn permanently. The outside is provided with a default label
that is displayed above the outside and the default parameters for the outside
characteristics are set. To change the default label and parameters of the server, the
user can select the "Edit Label" option in the "Edit" pull down menu (see page 86) and
the "Edit Specification" option in the tool box (see page 90) respectively.

The "Path" option may be selected by the user in the same manner as that
described for the "Server" option. Immediately, the current action displayed in Region
2 of the user interface is updated to display "Draw a Path". When the "Path" option
is selected, a "Path Characteristics" dialog box is displayed. In the upper half of the
dialog box, the user is ~prompted through two TextField widgets for the label of the
source node and the label of the destination node between which the path is to
established. The user is also prompted through a third TextField widget for the
probability that a job moves along this path. If the user does not enter a value in this
TextField widget, QNT assumes a default value of 1.0. The software tool checks for
the validity of the labels entered once the user selects the "OK" push button in the
dialog box. It does so by making sure that the source node label and the destination
node label are valid, and a path does not already exist from the source node to the
destination node. A valid label for the source node is in the set of existing queues,
servers, and outsides already drawn in the queueing network and a valid label for the
destination node is not in the set of existing queues, servers, and outsides already
drawn in the queueing network. In case the labels of the source node and/or
destination node are invalid, an "Error Message" dialog box is .displayed that informs

89

the user of the error though an appropriate error message. The user must respond to
the error message in the dialog box by selecting the "OK" push button before taking
any other action. The program also checks for the validity of the probability that a job
moves along this path by ensuring that it is greater than zero and less than or equal to
~ne. In case the validity check fails, an "Error Message" dialog box is displayed that
Informs the user of the error though an appropriate error message. The user must
respond to the error message in the dialog box by selecting the "OK" push button
before taking any other action. If the path characteristics are valid, the dialog box pops
down. The "Cancel" push button has been provide in the dialog box to cancel the
"Path" option selected by the user. To draw a path, the user moves the mouse to the
boundary of the source node and clicks the first mouse button. If the user clicks the
mouse either inside or outside the boundary of a node, an "Error Message" dialog box
is displayed that informs the user of the error though an appropriate error message,
while providing the source node and destination node labels for the path. The user
must respond to the error message in the dialog box by selecting the "OK" push button
before taking any other action. When a valid source node has been selected, the mouse
may be moved to the destination node. The path is made when the mouse hits the
boundary of the destination node. The path between the source node and current
mouse position is depicted by a dotted line. It is made permanent by drawing it as a
continuous line once the mouse hits the destination node. The direction of the path can
be changed by the user by clicking the second button of the mouse and dragging the
mouse. The path drawing action can be cancelled by the user at any time by clicking
the second button of the mouse before the mouse touches the boundary of the
destination node. Thereafter, the path may be deleted by selecting the "Undo" option
in the "Edit" pull down menu or by clicking the third button of the mouse while it is
in the canvas and before any other operation has been performed. If the user selects
any other operation during the drawing of the path, the path drawing operation is
automatically cancelled and no path is made. A path may have any number of
segments and all the segments will have an arrow head attached to them.

The "Place Jobs" option, as the name suggests, permits the user to put jobs into
a queue by pointing the mouse to the push button in the toolbox and clicking on it
with the first button of the mouse. The user, upon selecting this option, is presented
with a dialog box titled '·Place Jobs". The current action displayed in Region 2 of the
user interface is also updated to display "Place Jobs". The user is prompted for the
label of the queue where the jobs are to be placed. The dialog box consists of four
push buttons: "Increment", "Decrement", "OK", and "Cancel". Each time the user
presses the "Increment" push button, the number of jobs in the designated queue is
increased by one. Similarly, the "Decrement" push button reduces the number of jobs
in the queue by one. When a queue is created, the number of jobs in the queue is set
to zero. Upon clicking the "OK" push button in the dialog box, the software tool
performs a number of validity checks. The primary checks include avoiding no label
for the queue, a label for which no queue exists, a label that corresponds to a server
or an outside, and a negative number of jobs in the queue. In each case, an "Error
Message" dialog box is displayed that informs the user of the error though an
appropriate error message. The user must respond to the error message in the dialog

90

box by selecting the "OK" push button before taking any other action. If there are no
errors, the "Place Jobs" dialog box is popped down and the number of jobs in the
queue is updated.

The "Edit Specification" and "Show Specification" options provided in the toolbox
perform similar functions. The specification for any node (queue, server, or outside)
or path consists of the node or path label, the parameters specific to the node, the brief
description of the node or path, and an interpretation for the functions represented by
the node or path. The "Edit Specification" or the "View Specification" option is
selected by the user by pointing the mouse to the push button in the tool box and
clicking on it with the first button of the mouse. The current action displayed in
Region 2 of the user interface is also updated to display "Edit a Specification" or
"View a Specification". The "Edit Specification" option in the toolbox permits the user
to enter and edit the parameters for a node or path, their brief description, and the
interpretation for the node or path. On the other hand, if the "Show Specification"
option' has been selected by the user, the node or path label, its brief description, its
interpretation, and the parameters of the node or path can be viewed only. When the
user selects either of these options and the mouse is moved into the canvas, the cursor
changes to a pencil. When the user selects a node or a path, the specification for that
node is displayed in the "Edit Specification" or "Show Specification" dialog box.
Depending on the option selected by the user, the information in the dialog box may
or may not be edited. The "Edit Specification" dialog box consists of two push
buttons: "OK" and "Cancel" while the "Show Specification" dialog box contains only
the "OK" push button. In either case, clicking the "OK" push button will save the
specification for the node or path and pop down the dialog box. If the user selects the
"Cancel" push button, the "Edit Specification" dialog box is removed from the screen
without saving the current changes in the specification for the node.

The "Check" option in the toolbox may be selected by the user by pointing the
mouse to the push button in the toolbox and clicking on it with the first button of the
mouse. The current action selected is immediately updated in Region 2 of the user­
interface to "Validate the Queueing Network". The application then checks whether
each node satisfies the constraints of a queueing network. More specifically, it checks
if for each node in the queueing network, the sum of the probabilities associated with
each path to each node in its postset totals to 1.0. It also checks if there are any
isolated nodes in the queueing network. If all nodes pass the validity test, it displays
a ItValidation Results" dialog box that informs the user that the queueing network being
modeled is valid. Otherwise, is displays a dialog box with three scrolled Lists, one
each for queues, servers, and outsides. Under each node type, it lists the labels of the
nodes that did not pass the validity test. The dialog box also provides an "OK" push
button for the user to pop down the dialog box if the user does not desire to correct
the erroneous nodes or has already corrected them. If the user desires to correct an
erroneous node, the user can double click on the label for that node in the List widget.
This would display the "Postset Probability Correction" dialog box. This dialog box
gives the label of the erroneous node and in a Scrolled Window the label of each node
in its postset and the probability associated with the path connecting the erroneous

91

node to the node in the postset. The label of the node in the postset cannot be edite<L
but ~eir associa~ed probabilities can be edited by the user. The dialog box also
proVIdes an uneditable TextField widget where the total probability is shown. The user
can move to the next TextField widget in the Scrolled Window by pressing the "Tab"
key and can move to the previous TextField widget by pressing the II<Shift> Tab"
key. Each time the user moves to the next or previous TextField widget, the total
probability displayed in the dialog box is updated. The dialog box provides two push
buttons: "OK" and "Cancel". If the user selects the "Cancel" push button, the changes
made to the probabilities are not updated and the dialog box is popped down. If the
user selects the "OKti push buttOD, the changes are updated in the appropriate data
structures and a validity check is once again performed on this node. If it now passes
the validity test, its label is removed from the corresponding List widget in the
"Validation Results" dialog box. Otherwise, it is retained in the List widget.

The It Analyze" option in the toolbox may be selected by the user by pointing the
mouse to the push button in the toolbox and clicking on it with the first button of the
mouse. The current action selected is immediately updated in Region 2 of the user
interface to It Analyze the Performance of the Queueing Network". This option is used
in order to analyze the queueing network as a whole, or only subnets of it. The
application then displays the "Sub-graph Specification" dialog box that prompts the
user for the label of the source node and destination node of the subnet that is to be
analyzed. Since the current version of QNT is capable of analyzing only MIMIl
systems, QNT checks the validity of the subnet specifications entered by the user after
he or she has selected the "OK" push button in the "Sub-graph Specification" dialog
box. A valid subnet is one in which there is a single direct path between the source
and destination nodes and neither of these nodes have been expanded. The dialog box
also provides a "Cancel" push button if the user decide not to go ahead with the
analysis. In either case, the "Sub-graph Specification" dialog box is popped down. If
the user selects the "OK" push button, QNT displays a "Sub-graph Characteristics·'
dialog box that displays the characteristics of the source and destination node in the
subnet selected by the user as well as the characteristics of the path connecting them.
The user can review these characteristics and edit them if desired. This dialog box
also provides two push buttons: "OK" and ·'CanceP·. If the user selects the "Cancel"
push button, the changes made by the user are not updated, the dialog box is popped
do~, and the subnet is analyzed for its steady state performance characteristics. If the
user selects the "OK" push button, the changes are updated in the relevant data
structures (provided the changes are valid, otherwise appropriate error messages are
displayed in dialog boxes), the dialog box is popped down, and the subnet is analyzed
for its steady state performance characteristics. QNT then displays a "Performance
Characteristics" dialog box that provides the user with characteristics of the different
components of the subnet analyzed by the tool and its steady state performance
characteristics. This dialog box provides four push buttons: "OK", "New", "Change
...", and "Dump ...". If the user selects any of the four push buttons, the dialog box
is popped down. If the user selects the "OK" push button, no further analysis is
performed. If the user selects the "New" push button, the "Sub-graph Specification"
dialog box is displayed again for the user to enter the specifications of the new subnet

92

to be an~y~~. .If the user selects the ·'Change ..." push button, the "Sub-graph
C~araet~nstlcs dialog box is displayed for the user to analyze the same subnet but
WIth a dtfferent set of characteristics for the nodes and path in the subnet. If the user
~elects the "Dump ..." push button, the "Prinf' dialog box is displayed that functions
m the same manner as that for the "Print ..." option in the "File" pull down menu (see
page 85). The "Dump ..." push button creates an ASCII text file of the information
displayed in the "Performance Characteristics" dialog box.

The "Expand" option in the toolbox may be selected to develop the next higher
level of the queueing network. The "Expand" option is selected by the user by
pointing the mouse to the push button and clicking on it with the first button of the
mouse. The current action selected is immediately updated in Region 2 of the user­
interface to "Expand a Node in the Queueing Network". If the user now moves the
mouse on the canvas, the mouse cursor changes to a hand lens. When the user selects
a node for expansion, the software tool first checks to see if it is a valid node for
expansion. A valid node is a queue, a server or an outside. If an invalid node is
selected, no expansion is performed. If a valid node is selected, an "Expansion
Filename" dialog box appears with a text widget for entering the name of the file, for
the next level of expansion, for the node selected by the user and two push buttons:
"OK" and "Cancel". If this the first time this node is being expanded, the text widget
would be empty, otherwise, it would display the name of the expansion file already
provided. In the former case, the user can enter a valid file name and select the "OK"
push button. The software tool would then pop down the "Expansion Filename·' dialog
box and open a new canvas in a dialog shell on top of all the existing canvases. The
title of the dialog shell would give the name of the file, for this level of expansion, for
the node selected by the user. The newly opened canvas would be empty if this is the
first expansion at this level of the queueing network for the node being expanded. If
the file name entered is not valid, an "Warning" dialog box is displayed that informs
the user of the reason for the invalid file name. This dialog box contains an "OK"
push button that would need to be selected by the user before any other action. When
the user selects the "OK" push button in the "Warning" dialog box, it is popped down
and control is returned to the "Expansion Filename" dialog box for entering a valid file
name. If this is not the first time the node selected by the user is being expanded, the
text widget in the "Expansion Filename" dialog box will contain the expansion file
name previously provided. The user can choose to open this file by clicking on the
"OK" push button. Alternately, the user can provide a new file name for the next level
of hierarchy, for the node being expanded. The user can then click on the "OK" push
button. If a new expansion file name is given by the user, a "Warning'· dialog box is
displayed that asks the user to confirm if he or she wants to change the expansion .file
name. This dialog box provides two push buttons: "OK" and "Cancel". If the user
selects the "OK" push button in the "Warning" dialog box~ this dialog box as well as
the "Expansion Filename" dialog box are popped down and a new canvas is opened
in a dialog shell on top of all the existing canvases. The title of the dialog shell would
give the name of the file, for this level of expansion, for the node selected by the user.
The newly opened canvas would be empty if the file name provided is a new one,
otherwise it would contain any queueing network drawn at this level of the queueing

93

network for the node being expanded. If the user did not provide a new file name but
desired to open the existing expansion file and selected the "OK" push button in the
"Expansion Filename" dialog box, this dialog box WGuld be popped down and a new
canvas would be opened in a dialog shell on top of all the existing canvases. The title
of the dialog shell would give the name of the file, for this level of expansion, for the
node selected by the user. The newly opened canvas would contain any queueing
network drawn at this level of the queueing network for the node being expanded. If
the user selected the "Cancel" push button in the "Expansion Filename" dialog box, the
dialog box is be popped down effectively negating the "Expand" option selected by the
user from the toolbox. The user can make only one canvas active (completely visible)
at one time. The user can do so by clicking on the canvas that needs to be made
active. The QNT software tool would perform all operations (either from the toolbox
or the menu) only on the active canvas except the "Quit" option in the "File" pull
down menu. Selecting the "Quit" option in the "File" pull down menu would
recursively close all the canvases and exit the application in a manner analogous to that
explained under the "Quit" option. To close only the active canvas, the user may
select the "Close" option in the "File" pull down menu (see page 85) or the "Close"
option in the system menu of the dialog shell in which the canvas appears. There is
a limit on the number of levels to which a node may be expanded. Since the canvases
appear within dialog shells, they cannot be iconified separately. Further, they would
be minimized if the application (QNT) is iconified.

APPENDIX C

SYSTEM ADMINISTRATOR GUIDE FOR QNT

1. Description

The QNT software is a graphical tool to model computer systems using analytical
modeling based on queueing theory. To use QNT, the X Window System and the
Motif widget set are necessary. The graphical user interface of QNT has been
developed using the OSF/Motif widget set. The user interface of the tool consists of
a menu, toolbox, windows for displaying messages and drawing the model along with
dialog boxes, and other user-friendly features that make communication with the
software easy for the user.

Although QNT has been designed for use with a mouse, the menu system, toolbox,
and the various controls in the dialog boxes can also be traversed using the keyboard.
However, from the standpoint of ease-of-use, it is recommended that a mouse be used.
The startup screen of QNT consists of three pull down menus providing thirteen
actions and a toolbox consisting of ten action push buttons. The current action selected
is displayed in a separate window at the bottom of the user interface. To draw a
queueing network model of a system, a canvas has been provided. To avoid the
canvas from being cluttered, the model could be developed in a top-down hierarchical
fashion. This could be done by selecting the expand option in the toolbox and clicking
on a node in the queueing network. This would present a new canvas for drawing the
next level of detail. The filename is displayed as the title of the canvas window.

2. Maintenance

The data structures used by the software tool for storing information about various
objects drawn on the canvas are stored in the header file "structures.h".

The maximum number of nodes that any node can have in its preset is fifty. This
limit has been defined in the variable MAXIMUMPRESETSIZE in the header file
"structures.h". Similarly, the maximum number of nodes that any node can have in its
postset is fifty, as defined in the variable MAXIMUMPOSTSETSIZE in the header file
"structures.htt

• These limits may be changed as desired.

94

95

The maximum length of the message that describes the current action has been
defined in the constant ACTIONMESSAGELENGTH and is set to one hundred
characters. This constant has been defined in the header file "structures.h" that may
be changed if desired.

The maximum length of any filename has been limited to fifty characters. This
has been set in the variable FILENAMELENGTH in the header file "structures.h". It
can also be modified.

The maximum length of the label of a node has been defined in the variable
LABELLENGTH. This variable has been set to one hundred characters in the header
file "structures.h", but may be changed when and if necessary.

The maximum length of the description for a node is limited to 300 characters.
This has been defined in the variable SPECIFICATIONLENGTH in the header file
"structures.h". This may also be modified as desired.

The information about the objects drawn on the canvas are stored in the data
structure called GRAPIDCELEMENTDATA. The maximum number of objects that
may be stored in this data structure is five hundred. This limit has been set in the
variable MAXlMUMOBJECTS in the header file "structures.hlt

• This may be changed
as desired.

The help messages and the error messages are located in the files "help.e" and
"messages.c", respectively. To add additional help items and/or warning messages,
these files need to be modified by adding a function for each additional item in the
appropriate file(s).

To modify (add, change, or delete) the top-level menu system, the procedure
"CreateMenuBar" in the file "gui.c" may be changed as needed. The function
"GenerateMenuSystem" in file "gui.c" needs to be modified if the options in any of the
pull down menus need to be changed. Further, the declarations for the menu items in
the file "gui.c" also need to be modified.

The size of the main window for QNT is set to the maximum size of the screen.
This size can be changed by modifying the XmNwidth and XmNheight resources of
the form widget "Blackboard" to any desired size. It should be noted that the values
of the XmNheight and XmNwidth resources are in pixels. The settings for these
resources can be found in the file "main.e". Similarly, the size of the canvas can be
changed by changing the XmNwidth and XmNheight resources of the drawing area
widget "DrawingArea". The settings for these resources can be found in the file
"expand.c".

The default values for the parameters of the queue~ server, outside, and path are
set when the dynamic memory for these data structures is allocated and the members
of the data structure are initialized. These settings can be changed and can be found

96

in the file "allocate.c". The current default values are as follows:

Queue: Arrival Rate
Arrival Process
Queueing Discipline
Queue Capacity
Maximum Queue Capacity
Number of Jobs

Server: Service Time
Service Process

Outside:

Path: Probability

3. Options

20 jobs per second
Erlang Distribution
FSCS
Infinite
Not Applicable
o

10000
Erlang Distribution

There are no parameters for this node.

1.0

QNT is a Motif widget set based software tool. As mentioned earlier, the
Motif widget set is built upon the X Toolkit. Hence, QNT accepts all the standard X
Toolkit command line options [Young90]. The more popular options are briefly
described below.

-bg color This option can be used to change the background color of an
application window. The default background color is white.

-display display This option is used to define the X server to which an
application is to be connected.

-fg color This option can be used to change the foreground color of an
application window. The default foreground color is black.

-IconiC This option ensures that QNT is started by the window manager
as an icon rather than as a normal window.

-rv This option is used to swap the background and foreground
colors of an application.

-title string This option sets the title of an application window. This option
may be ignored by the window manager. The default window
title is the string specified after the -e command line option. If
none is specified, the application name is used.

VITA

Jaganath Dabbi

Candidate for the Degree of

Master of Science

Thesis: TOWARDS A GRAPHICAL QUEUEING NETWORK TOOL

Major Field: Computer Science

Biographical:

Personal Data: Born in Bangalore, Kamatak~ India, December 4, 1962, son of
Mallikarjuna Rao Dabbi and Saraswathi Roo Dabbi.

Education: Graduated from Hyderabad Public School, Hyderabad, India, in April
1980~ received Bachelor of Technology (Honors) Degree in Metallurgical
Engineering from Indian Institute of Technology, Kharagpur, India, in May
1985; received Master of Business Administration Degree from Oklahoma
State University, Stillwater, Oklahoma, in May 1993; completed requirements
for the Master of Science Degree in Computer Science at Oklahoma State
University in May 1994.

Professional Experience: Graduate Research Assistant, Office of Business and
Economic Research, Oklahoma State University, May 1992 to June 1993;
Graduate Instructor, Department of Management~Oklahoma State University,
August 1991 to May 1992; Graduate Assistant, Department of Administrative
Services, Oklahoma State University, August 1990 to May 1991; Executive
Officer to C.E.O., The Tata Iron and Steel Company Limited, Jamshedpur,
India, July 1985 to July 1990.

	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	022.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif
	055.tif
	056.tif
	057.tif
	058.tif
	059.tif
	060.tif
	061.tif
	062.tif
	063.tif
	064.tif
	065.tif
	066.tif
	067.tif
	068.tif
	069.tif
	070.tif
	071.tif
	072.tif
	073.tif
	074.tif
	075.tif
	076.tif
	077.tif
	078.tif
	079.tif
	080.tif
	081.tif
	082.tif
	083.tif
	084.tif
	085.tif
	086.tif
	087.tif
	088.tif
	089.tif
	090.tif
	091.tif
	092.tif
	093.tif
	094.tif
	095.tif
	096.tif
	097.tif
	098.tif
	099.tif
	100.tif
	101.tif
	102.tif
	103.tif
	104.tif

