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CHAPTER I

INTRODUCTION

Condensers are heat-exchange equipment in which one or more ofthe condensable

components ofa vapor or vapor-gas mixture undergoes phase change into a liquid, due to

heat exchange with a coolant fluid stream. They can be broadly classified, according to the

contacting mechanism between the streams, into two types :

(a) Direct contact condensers, in which the liquid coolant stream is brought in direct

contact with the vapor-gas mixture.

(b) Surface condensers, in which the coolant receives heat from the vapor-gas mixture

across a wall, causing condensation to occur on the vapor-side wall surface. These

condensers come in a variety ofdifferent configurations - from the simple double pipe

heat exchanger and the widely used shell and tube heat exchanger to the more recent

plate type heat exchanger.

Reflux condensers belong to the class of surface condensers. Specifically, in a reflux

condenser, the vapor-gas mixture flows upwards, with the condensate draining downward

under the influence ofgravity. Reflux condensers are widely used in the chemical process

industries and the pharmaceutical industry for the control ofchemical reactors, as internal

condensers in distillation columns and also individually for the purpose ofrough

rectification. When used as partial condensers, they are also known as dephlegmators.

Configurations ofReflux Condensers

Reflux condensers are seen in a variety ofconfigurations. Their most common

configuration is the 1-1 type vertical shell and tube heat exchanger, shown in Fig. 1.1. In

it, the vapor-gas mixture flows upwards inside the tubes and condenses on the side walls

while the coolant stream flows in the shell. The condensed phase drains downward under

1
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Fig. 1.1 A typical reflux condenser.



the influence ofgravity, countercurrent to the rising vapor stream and the noo

condensable gases leave the condenser through the vent nozzle at the top. In this

configuration, they are mostly found mounted directly on (or sometimes even internal to) a

reactor or a distillation column.

Two other configurations of reflux condensers are shown in Figs. 1.2 and 1.3. Fig. 1.2

shows a reflux air-cooled overhead condenser, in a V-shaped arrangement. It is custom

designed for use as an integrated portion ofa distillation column. Its V-shaped

configuration pennits a large induced draft fan on top. The tubes are arranged

symmetrically around the column in four sets ofinclined bundles. Dehne (1969) discusses

its use as a simple condenser arrangement over a distillation column.

Fig. 1.3 shows a horizontal shell side reflux condenser. In the paper by Steinmeyer and

Mueller (1974), Bell discusses such a condenser, which is used for partially removing a

condensable vapor or vapor mixture from a non-condensable gas. The condensable vapor

mixture is composed oftwo fractions - a heavy tarry material which is deposited on the

lower tubes and a light component which drains downward and removes the tarry material

by solution.

Though all the configurations discussed above show reflux condensers ofthe shell and

tube type, it should be noted that they can be ofother types also, e.g., a simple double

pipe exchanger or a plate fin heat exchanger.

Applications ofRetlux Condensers

A reflux condenser mounted on a reactor with a boiling solvent returns the condensate

at a temperature close to that ofthe inlet vapor stream vaporized from the reaction

mixture. The returned condensate serves as extra material added to the reactor at the

reaction temperature, which is capable ofabsorbing the heat ofreaction and vaporizing,

only to be condensed and returned by the reflux condenser. This operation in conjunction

3
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with insignificant pressure losses helps to stabilize the operating temperatures and

pressures of the reactor.

Mounted on a distillation column, a reflux condenser condenses wholly or partially the

vapor mixture leaving the column, returning it as reflux to the column. In this process, it

obtains additional rectification of the vapor-mixture for partial condensation. Because of

the way it operates, it helps maintain a smooth and stable operation of the column.

In addition to the above uses, reflux condensers are also used as separation equipment

in the hydrocarbon processing industry. The horizontal shell side reflux condenser of

Fig.1.3 is such a condenser. The process of dephlegmation or partial reflux condensation

(Chiu (1990» is considered today a novel separation technique that offers good

capabilities for separating gas mixtures. It combines mass transfer and heat exchange to

achieve the desired separation. Air Products and Chemicals Inc. (Bernhard et al. (1988),

Bernhard et al. (1986» have been using the dephlegmator on a commercial scale in a wide

variety of cryogenic gas separation applications, including selective removal of methane in

the purification ofH2 - CO synthesis gas and recovery of ethylene and other valuable

hydrocarbons from FCC (fluid catalytic cracking), oil gasifier and dehydrogenation gas

sources. They find the dephlegmator processes to be economical, reliable, efficient and

also easy to operate and control.

Operational Characteristics and Advantages ofReflux Condensers

The basic traits of a reflux condenser operation are :

(a) The condensate stream is returned at a temperature near that of the inlet vapor stream,

which is the hottest temperature of the system.

(b) The countercurrent nature ofthe vapor-condensate flow places an upper limit on the

operating vapor velocity that can be used for a smooth reflux condenser operation.

Thus, the operating vapor velocity is low.

5



(c) The pressure loss in the system is very small due to the low operating vapor velocity.

Traits (a) and (c) offer the following advantages for a reflux condenser compared to

conventional condensers in which the vapor-condensate flow is cocurrent :

(i) The reflux condenser provides excellent thermal and mechanical stability ofthe system

with which it operates, with relatively few or no controls.

(ii) Returning the condensate stream at a warmer temperature facilitates removal of

smaller amounts oflow boilers and also minimizes the quantity ofdissolved light

hydrocarbons and inerts. Thus, the reflux condenser provides enhanced separation

capability compared to conventional condensers.

Trait (b) limits the vapor-handling capacity ofa reflux condenser.

Reflux condensers are mostly used mounted on a reactor or a fractionation equipment.

In this mode, they offer specific merits over conventional ground-mounted condensers,

which include :

(i) Elimination ofthe reflux pump and the related pumping costs

(ii) Reduction ofthe requirements of piping and the attendant joints between the pipes -

This reduces or eliminates the leakage problems and also minimizes pressure loss.

(iii) Saving ofground space and thus real estate cost

However, they are also limited by the following :

(i) Requirement ofextra support structure, ifunits are large

(ii) Possible higher maintenance costs, due to their location

(iii) Higher installation costs, except for small units which can be prefabricated in one

piece

Design Problems ofReflux Condensers

Despite the wide use ofreflux condensers in the chemical process industries, they are

poorly understood from a theoretical point ofview, compared to conventional condensers.

6



Consequently, the design methods for these condensers are also poorly developed.

Currentlyt the main problems associated with the design ofreflux condensers are :

(a) Uncertainty in the correct prediction ofthe flooding point.

Flooding is one ofthe major disadvantages of reflux condensers. The flooding point

denotes the upper physical limit ofa steady countercurrent two-phase flow operation.

Many experimental and analytical studies have been made ofthe flooding phenomena in

vertical tubes. Both adiabatic and condensing cases have been studied. The result is a wide

variety ofcorrelations which can be used to predict the flooding velocity in countercurrent

two-phase flow. The problem is however in the large disagreement between the

correlations, as noted by several investigators, in predicting the flooding point for similar

operating parameters. The reasons for this include (a) differences in the criteria used to

define the flooding point, and (b) differences in the test-section entrance and exit

geometries employed. As a result, no single correlation can be clearly identified which can

predict the flooding point accurately for a wide range ofthe operating parameters.

(b) Poor understanding ofthe fluid mechanics. heat transfer and mass transfer as.pects of

the reflux condensation process.

Several studies have been made on the fluid mechanics ofvertical countercurrent two

phase flow. Correlations have been developed to predict the key parameters ofany gas

liquid flow, viz. pressure drop, mean film thickness and interfacial shear stress. Also, as

mentioned earlier, correlations have been developed to describe the flooding point.

However, the knowledge ofthe film flow hydrodynamics ofa steady reflux condensation

process is still limited.

The heat transfer aspects ofthe reflux condensation process are also not well

understood. A survey ofthe literature shows that no study has yet been made specifically

7



to evolve an empirical method ofevaluating the condensing heat transfer coefficient in

vertical countercurrent vapor-liquid flow.

Knowledge ofthe mass transfer aspects ofthe reflux condensation process is almost

non-existent.

This thesis study is an attempt to address the above problems to the extent possible

and then devise an approximate generalized design procedure for reflux condensers. It is

limited to the most common configuration of reflux condensers, i. e. vertical vapor-in-tube

reflux condensers. In Chapter IT, the different flooding correlations and the comparative

studies carried out on them are reviewed and a suitable strategy ofpredicting the flooding

vapor velocity for any reflux condenser design problem as accurately as possible is

evolved. In Chapter III, a survey is carried out ofthe different correlations available in the

literature to predict the fluid mechanics and the heat transfer aspects ofthe reflux

condensation process. Then, a suitable method ofestimating the local heat transfer

coefficient in the vapor core and in the condensate film is developed. In Chapter IV, the

different design methods currently in use for pure vapor and multicomponent condensers

are reviewed and their application to the design of reflux condensers is discussed. Then,

the approximate design procedure developed specifically for multicomponent reflux

condensers similar to the Silver-Bell-Ghaly method is presented. In Chapter V, the

complete design procedure for a vertical vapor-in-tube reflux condenser is summarized.

Also, some important mechanical design features are discussed. Finally, in Chapter VI,

conclusions ofthis work and recommendations for future work are presented.

8



CHAPTER II

FLOODING PHENOMENON IN REFLUX CONDENSERS

Introduction

One of the major disadvantages of reflux condensers is their capacity limitation due to

flooding. Flooding occurs when the inlet vapor velocity to the condenser is sufficient to

reduce or even prevent the liquid from draining from the bottom of the condenser.

A number of analytical and experimental studies have been made of the flooding

phenomenon in vertical tubes. The result is a wide variety of correlations which can be

used to predict the flooding velocity in countercurrent gas-liquid flow. Correlations to deal

with both adiabatic and condensing cases have been developed. Some of these correlations

work very well for a limited range of fluid properties, equipment configurations and

operating conditions. The problem is however in the ability of these correlations to predict

consistently well for a wide range of the above parameters. Reviews of the flooding

literature published by Deakin (1977) and Bankoff and Lee (1983) describe the limitations

of the correlations. They also show wide disagreement in the relative predictive

performance of the correlations for similar operating parameters. The main reasons for the

latter include :

(a) Differences in the criteria used to define the flooding point.

(b) Differences in the test-section entrance and exit geometries employed.

It is evident that there exists no correlation today which can describe the phenomenon

offlooding in vertical tubes completely and accurately, or even predict sufficiently well the

conditions under which flooding will occur.
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The objective ofthis chapter is to study the different flooding correlations and the

comparative studies carried out on them to devise a suitable strategy to predict the

flooding velocity for any reflux condenser design problem as accurately as possible.

Mechanism ofFlooding

A simple description ofthe mechanism offlooding, as taken from Bankoffand Lee

(1983), is as follows:

Vertical countercurrent two-phase flow is opposed by interfacial friction between the

two ph~es. As the relative countercurrent mean velocity ofthe phases increases, the

interfacial friction also increases monotonically. Hence, for a given geometry and liquid

gas pair, there is a maximum relative velocity that can be sustained in countercurrent flow.

This point which describes the physical operating limit ofcountercurrent two-phase flow is

known as the onset of flooding. Further increases in gas/vapor or liquid input rates result

in only partial delivery ofthe liquid out ofthe bottom. Eventually, ifthe gaslvapor velocity

becomes sufficiently high, none ofthe liquid is delivered at the bottom, and fully cocurrent

upward flow is established.

The term "flooding" has been used by different investigators to describe various

aspects ofthis transition from countercurrent flow to cocurrent flow. A more detailed

look at the different aspects ofthe transition is provided by the description ofthe flooding

mechanism in a reflux condenser, as suggested by Deakin (1977) from visual observation.

See Fig. 2.1

(1) At low vapor velocities a smooth falling film is observed.

(2) On increasing the vapor velocity small disturbance waves appear on the film, which are

particularly marked at the vapor inlet.

10
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(3) A further increase in velocity causes the waves at the vapor inlet to bridge across the

tube and an intennittent chum flow is established; however the reflux rate is still

constant.

(4) Eventually, a vapor velocity is reached which is sufficient to eject liquid from the top

ofthe tube; this is accompanied by a dramatic rise in the pressure drop across the tube.

(5) Ifthe vapor flow is increased further, climbing film annular flow is eventually

established.

The relationship between pressure loss across a vertical tube and superficial vapor

mass flux at inlet, observed by Deakin (1977), is shown in Fig. 2.2. This graph shows the

wide transition region (A-B) between a fully countercurrent flow and a fully cocurrent

flow. The pressure fluctuations in this region, particularly near the maximum, are worth

noting. Associated with this transition region are a number ofphenomena that have been

used by different investigators to define their flooding point. Some ofthe definitions are

listed below (Howell, 1987) :

(1) Onset of liquid entrainment.

(2) Sudden rise in liquid entrainment rate.

(3) Onset of liquid bridging.

(4) Sudden rise in the pressure drop across the tube.

(5) Flow pattern observations: As evident from the graph, in the transition region, the

liquid in the tube has an unsteady chaotic flow pattern. Definitions ofthe flooding

point based on visual observations ofthe flow pattern include (Howell, 1987) :

(a) " the point where the liquid film becomes chaotic....."; (Wallis, 1961).

(b) " where the film is disrupted....."; (Hewitt and Wallis, 1963).

(c)" the hydrodynamic state ofthe system loses stability "; (Alekseev, 1972).

(d) " the liquid film loses stability, ceasing to exist as such "; (Imura, et al., 1977).

(e) " the appearance oflarge disturbance waves at the gas-liquid interface.....";

(Bankoffand Lee, 1983).

12
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(6) Film reversal : The point at which any ofthe liquid is in upward motio~ even ifthe

overall liquid flow is downward.

(7) Climbing film annular flow.

With such varied definitions offlooding, it is not surprising to see the large scatter in

the data obtained from 22 different investigators, as reported by McQuillan and Whalley

(1985). But, it is important to note here that besides differences in the definitions ofthe

flooding point, there are several other factors which contribute as much or even to a

greater degree to the scatter in the total flooding data. These include differences in the

test-section geometrical parameters, particularly the entrance and exit geometries, and

differences in the fluid properties.

Classification ofthe Flooding Correlations

In a vertical vapor-in-tube reflux condenser, the highest gas and liquid rates offlow

occur at the bottom ofthe tubes. Hence, flooding begins at this location. This is not

necessarily true for adiabatic countercurrent flow systems. Likewise, other differences can

be noted between countercurrent condensing and adiabatic flow systems. But it is not

clear whether these differences have any significant effect on the mechanism offlooding.

Or, in other words, the effect ofcondensation on the mechanism offlooding in a vertical

countercurrent two-phase flow system is yet to be determined.

Secondly, the correlations developed specifically for reflux condensers are very few in

number compared to the extent ofthe total flooding literature. Many factors found to have

a significant effect on the flooding mechanism in adiabatic systems have not been properly

investigated with respect to condensing systems.

Keeping in mind the above two reasons, it is advisable to examine the entire flooding

literature, i.e., flooding correlations on both reflux condensers and adiabatic systems,

before evolving a strategy to detennine the flooding gas velocity for any design situation.
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Since this study deals with reflux condensers, it is helpful to classify the flooding

correlations as :

(1) Flooding Correlations for Adiabatic Systems.

(2) Flooding Correlations for Reflux Condensers.

Flooding Correlations for Adiabatic Systems

Analytical Correlations

A number ofanalytical models have been developed to predict the onset of

countercurrent flooding in vertical single tubes. The models differ widely in their

description ofthe onset of flooding and the additional assumptions employed. Bankoffand

Lee (1983) have classified the models into four main categories, based on their flooding

point definitions :

(1) Stationary theory ofa traveling wave: This theory considers flooding to be the

result ofinterfacial instability between two superposed fluids flowing at different

velocities. Models have been developed on this theory, after employing various

assumptions such as potential flow (Imura, et al., 1977; Tien, et al., 1980), viscous laminar

flow (Cetinbaduklar and Jameson, 1969) and finite amplitude surface waves (Zvirln, et al.,

1979).

(2) Envelope theories : This class ofmodels defines the flooding condition to be the

limit of stable operating conditions as either the liquid or gas flowrate is increased. The

latter definition suggests an envelope theory based on the steady hydrodynamic equations,

the envelope being some limiting curve in the (JI·' Jr·) plane that separates the operating

region from the unattainable region for countercurrent flow. The envelope can be obtained

by differentiating a one-parameter family ofeurves in the (jl' jr) plane, obtained by

manipulation from the one-dimensional continuity and momentum equations, with respect

15



to the parameter. The parameter is usually the void fraction or the mean film thickness.

Models based on this approach include the separated-eylinders model (Wallis, 1969), the

drift-flux model (Wallis, 1969) and the separated-flow model (Bharathan et al., 1979;

Dobran, 1981).

(3) Static equilibrium theories : This class is based on static equilibrium between

gravity, shear stress and the aerodynamic pressure force exerted by the upward gas flow

on the liquid, as shown by some form ofa stationary liquid-gas interface. The flooding

definitions in this are related to the postulated interfacial shapes. The models developed in

this category include the stationary-wave model (Shearer and Davidson, 1965), the

hanging film model (Wallis and Kuo, 1976) and the roll-wave model (Richter, 1981).

A summary ofall the analytical models for vertical countercurrent flooding is given in

AppendixA.

Empirical Correlations

A large number offlooding correlations based on experimental studies have been

developed over the past 20 years. A majority ofthese correlations can be classified into

two broad categories depending OD the dimensionless parameter they are based OD. The

two dimensionless parameters are :

(a) The Wallis parameter.

(b) The Kutateladze number.

The Wallis parameter, intrOdUced[ by Wallis]<;rl), is defined as :

J.. Pit
It =Jit gd(PI _PI)

It represents the ratio ofinertial force to hydrostatic force.

The Kutateladze number is defined as :
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(2.2)

(2.3)

(2.6)

The correlations belonging to the first category include Wallis (1961), Wallis (1962),

Hewitt and Wallis (1963), Clift, et al.(1966), Hewitt (1977), and Dukler and Smith

(1979). All ofthese are based on an equation ofthe form :

J .~ mJ·~-C
g + f -

where m and C are experimentally determined constants which depend on fluid properties,

particularly viscosity and the tube-end geometries. The value ofm is usually found to lie

between 0.8 and 1.0. The value ofC varies from 0.7 to 1.0 depending on the tube-end

geometries. Correlations ofthis type are among the most widely used flooding correlations

for adiabatic systems.

Correlations based on the Kutateladze number include Tobilevich, et al.(1968),

Pushkina and Sorokin (1969), Alekseev, et ale (1972), and Chung, et ale (1980).

Tobilevich, et ale used the number in their study offlow regimes in evaporating equipment.

In 1969, Pushkina and Sorokin used an expression similar to Eqn. 2.3, viz.

KgM+mKf~ =C (2.4)

to correlate their data. They found m =0 and C = 1.79 for the critical gas velocity. Chung,

et ale (1980) also used Eqn. 2.4 and found empirically that m = 0.65 to 0.80, with C

being a function ofthe dimensionless diameter d*, which is defined as :

d· =d[g(PI~pg)]~ (2.5)

Note the similarity between Eqn. 2.3 and Eqn. 2.4, in view ofthe following relationship

between the two parameters :

Kk =d·MJk•
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Alekseev, et ale (1972) correlated their data on flooding in regular packings for the

water-vapor - water system and also data on several other systems obtained from different

investigators, with an equation ofthe form :

Kg.crit =CFrE1BoE2 (2.7)

for the critical gas-phase Kutateladze number. In this equation C, Eland E2 are empirical

constants. Alekseev found C =0.2576, EI =-0.22 and E2 =0.26. Fr is the Froude

number, defined as :

Bo is the Bond number, defined as :

Bo =d
2 (PI - pg)g

(J

(2.8)

(2.9)

Besides the conventional Wallis and Kutateladze numbers, correlations have been

developed based on Reynolds number, Froude number and Weber number also. For a

summary ofall empirical flooding correlations, including those on reflux condensers, see

AppendixB.

Flooding Correlations for Reflux Condensers

One ofthe first papers on flooding in reflux condensers is that ofEnglish, et al. (1963).

These workers studied the flooding phenomenon associated with pure component

condensation offour fluids, viz., water, carbon tetrachloride, n-propyl alcohol and n

heptane. Experiments were performed in single vertical 0.75 in. 00 stainless steel tubes

with ends cut at 0, 30, 60 and 75 degrees to the horizontal, at the vapor inlet. The data

gathered were plotted in three ways : AP vs. G, G vs. UG and entrainment mass flowrate,

E vs. UG. A sample graph for each ofthese types is shown in Fig. 2.3. A distinct break

was noted in each graph, associated with the flooding point. English, et at. chose to define

their flooding point as the second break point on the pressure drop vs. G curve (equivalent

18



19

(c)

20

JO

e

~.ooo

(b)

1O.~r--------

'.~FP '.Qat).
).~.

'.000 .
'.000

(a)

3

2

10

•
6
5

•

0.1

Fig. 2.4 Angle oftaper
at tube end

Fig. 2.3(a) Pressure ~(ID,ofwater) Ys. superficial gas mass flowrate (lblhr.ft2)
Fig. 2.3(b) Gas f1owrate~.ft2) Ys. liquid-to-gas ratio
Fig. 2.3(c) Entrainmenl-tlowrate (lblhr.ft2) vs. liquid-to-gas ratio

(n-propyl aIcOhdwith 750 diagonally cut tube end, English et aI., 1963)

L
~

10
0.'

06
O!t
O.

OJ



(2.10)

to point M ofFig. 2.2). They correlated their data with the following equation (in SI

Units), to within +100/0 accuracy.

· - 0 1d0322PIQ.419(JQ.097 }
Jg - .28 0.462 O.lSO. o.07S

Pg 111 Jr

A taper on the tube end as in Fig. 2.4 pennitted higher vapor tlowrates before flooding.

The increases noted in the study were 5, 25, and 54% for taper angle values of30t 60 and

75 degrees respectively. The latter information is an important contribution ofthis study.

The paper by Diehl and Koppany (1969) is the next significant contribution to flooding

in reflux condensers. They developed a simple correlation, based on their data on single

component condensation and two-component wetted wall systems and also data from

several other investigators ( See Diehl and Koppany - Table I). A broad range ofphysical

properties, tube sizes and operating conditions was covered. The correlation is

where

dimensional and can be written as follows :

jg =FIF2(:')~

(
d )004

~-
I - (J/80

(2.11)

(2.12)

(2.13)

otherwise

and

F) =1

(
. )002'

'C' _ PgJg
c2 - •

PIJ.

As evident from the correlation, two physical properties, (J and PI' and two design factors

were noted to affect the flooding vapor velocity. The design factors include the effect of

tube inside diameter when smaller than a certain critical diameter and the effect ofthe ratio

ofliquid to gas flowrates.

The unique feature ofthis correlation is the critical diameter effect. From their data on

reflux conditions and the data ofVerschoor (1938) on adiabatic conditions, the authors

found that there exists a certain critical diameter above which the flooding vapor velocities
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are independent of the tube diameter. They developed a simple dimensional relationship to

estimate the critical diameter as :

dcrit =a/80 (2.14)
where a is in dynes/em and derit is in inches.

This correlation is widely accepted today because it is fairly simple and is backed by a

substantial database.

Besides the above two correlations for reflux condensers a number of correlations,

have been developed for flooding with vapor condensation by a simple analytical extension

of correlations of the type ofEqns. 2.3 and 2.4. The latter correlations are different in the

sense that they are based on experiments in which both the liquid and its vapor are injected

into the system. So, the phenomenon occurring in the above systems is not strictly reflux

condensation, i.e. the liquid flowing in the system is not a result of vapor condensation

alone. The effect ofvapor condensation has been incorporated in these correlations by

accounting for the reduction in the vapor flowrate due to condensation. It has been done

assuming that the latent heat due to condensation is balanced by the sensible heat needed

to raise the exit temperature of the liquid to saturation temperature. The dimensionless

vapor inlet flow rate in Eqns. 2.3 and 2.4 has been replaced by the effective dimensionless

vapor inlet flow rate. For example, Block and Crowley (1975) gave the following

correlation :

(J* )~ +m(J·)~ = Cg,eff 1

in which J* ff the effective dimensionless vapor inlet flow rate is given as :g,e ,

J;,eff = J; - c Ja J~,in

where Ja is the Jakob number defined as

(

p )~ Cp1 (rsat -'Ii)
Ja= _1

Pg Mt1g

Tien (1977) suggested a similar correlation based on the Kutateladze number as :

(Kg -c Ja KIY~ +mK/'~ =C
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The correlation ofBlock and Crowley (1975) has been tested against steam-water data

while Eqn. 2.18 has not been examined against any flooding data.

Particular attention has been focused on the evaluation ofthe coefficients m and C.

Attempts in this direction have been that ofRothe and Crowley (1978) and Cudnik, et

al.(1978). Wallis, et al.(1980) carried out experiments on the flooding characteristics of

countercurrent steam-water annular flow in a vertical tube for various water temperatures.

It was found that the flooding point, defined as the boundary on which water penetration

is limited by the upward steam flow, can be described by Eqn. 2.3 with C =0.69 - 0.8,

depending on the tube-end condition, with m = 1 usually.

Comparison and Discussion

A number ofarticles have been published in recent years studying the different

correlations, comparing them against each other and against experimental data. These

include Deakin (1977), Bankoffand Lee (1983) and McQuillan and Whalley (1985).

These studies have identified many factors which affect the flooding phenomenon. They

are:

(a) Tube end conditions.

(b) Tube diameter.

(c) Tube length.

(d) Fluid properties, specifically liquid viscosity and surface tension.

(e) Phase change at the two-phase boundary. (e.g. condensation)

(t) Tube inclination.

(g) Relative values ofliquid and gas mass flow rates, or in other tenns, the liquid film

thickness relative to the tube diameter.
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While the effects of some of these factors like tube diameter are clear and well accepted by

many investigators, the effects of other factors, viz. tube-end conditions, tube length, etc.,

are still far from understood.

A flooding correlation, whether developed analytically or empirically, is characterized

by the flooding definition it is based on, the tube-end conditions it is related to, the

influencing factors it has taken into account with their range considered and the way the

influence ofthe various factors has been accounted for. Differences in the above aspects

bring about differences in the flooding correlations. The following is a discussion ofthe

above characteristics of flooding correlations.

Flooding-point Definition

As pointed out earlier, several definitions have been employed to describe the flooding

point. It is difficult to ascertain whether these definitions are equivalent to each other. But,

it should be noted that most of the commonly accepted and popular correlations are based

on definitions which are quite closely related to each other. The common definitions

employed include appearance of large disturbance waves at the two-phase interface, liquid

bridging, sudden rise in the pressure drop and sudden rise in liquid entrainment. It is easy

to see how these definitions could be describing the same or almost the same flooding

point. So, as far as the widely used correlations are concerned, it can be taken that the

differences in the definition do not affect the flooding velocity significantly.

Tube Entrance and Exit Conditions

Tube-end conditions include not only the geometries ofthe tube-ends but also the

manner in which gas or liquid is introduced or removed from the tube. The different tube

end geometries used by investigators are shown in Fig. 2.5. The tube inlet geometries of

English, et al. (1963) and Wallis (1961) are the ones most commonly found in reflux
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condensers. It is evident from the figure that many different methods ofgas and liquid

injection and removal were used. Though investigators have ascertained that tube-end

conditions have a considerable effect on the flooding velocities, their effect has not been

properly incorporated in the correlations because no parameter which can uniquely

describe the end conditions has been determined. Thus, most ofthe correlations account

for the effect implicitly, making them specific for the end condition/(s) on which they are

based, which in turn are not properly quantifiable.

In the correlations ofthe type ofEqns. 2.3 and 2.4, the constants m and C assume

different values for different end conditions. However, it should be noted that these

constants also account for variation in other influencing factors like fluid viscosity and

tube diameter.

Other Factors Influencing the Flooding Phenomenon

(a) Tube diameter : The effect oftube diameter on flooding behavior has been found to

differ for large and small tubes. It has been determined that the flooding gas velocity is

independent ofthe tube diameter for dimensionless diameters d* larger than approximately

40. Not all correlations account for this effect properly. All the Wallis type correlations

account for tube diameter effect for d* < 40. For d* > 40, correlations based on the

Kutateladze number work well. The correlation ofDiehl and Koppany (1969) accounts for

the effect for all d*.

(b) Fluid properties, particularly liquid viscosity and surface tension : Liquid viscosity

and surface tension have been noted to have opposite effects on the flooding velocity. An

increase in liquid viscosity has been seen to decrease the flooding velocity. While some

investigators have noted a significant effect, others like Hewitt (1977) believe that the

effect is small. An increase in surface tension tends to increase the flooding velocity.
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Though most researchers support this view, some like Suzuki and Ueda (1977) found no

similar trend in their data.

(c) Phase change (condensation) : Though a condensing countercurrent flow system

differs widely in operational characteristics from an adiabatic system, the effect of

condensation on the flooding phenomenon is not clearly understood. It has been noted that

condensing flow does not differ much from adiabatic flow ( Bankoffand Lee, 1983) when

flooding takes place at the bottom ofthe tube and the exit liquid is close to saturation

temperature as in a reflux condenser.

The empirical correlations developed specifically for reflux condensers) e.g.) English,

et al.(1963) and Diehl and Koppany (1969), account for the effect ofcondensation

implicitly. Other correlations for condensing cases have accounted for the effect by using

an effective vapor flux to describe the reduction in the vapor flow up the tube.

It is worthwhile to note here that it is extremely difficult to individually determine the

effect ofeach factor on the flooding phenomenon as it is not always possible to vary one

factor alone while keeping all other factors constant.

The next objective was to compare the various flooding correlations with each other

to devise a suitable strategy for determining the flooding velocity accurately for a wide

range offlow conditions. The criteria for the comparison were simplicity ofuse, versatility

ofapplication and accuracy ofprediction. With the first criterion, some ofthe analytical

correlations like Shearer and Davidson (1965) and Cetinbudaklar and Jameson (1969)

were eliminated from consideration as they require the use ofcomplicated solution

techniques.

For comparing the remaining correlations with the latter two criteria, the comparison

study ofMcQuillan and Whalley (1985) was primarily utilized. These workers compiled a

data bank of2762 experimental flooding data points from 24 different sources ofdata and
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used it to test the perfonnance of 17 empirical and 5 theoretical flooding correlations.

Their data bank is biased towards air-water flow (68% ofthe data) and against flow in

large diameter tubes (78% ofthe data is for tubes ofdiameter less than 50mm.). When

compiling the data bank, the authors were very careful in using the same conversion

methods as the original work so as to bring all the data to the same fonn. The authors

ignored differences in the flooding point definition and the tube-end conditions when

comparing the correlations with the contents ofthe data bank as it was not possible to

devise criteria by which the above factors could be suitably accounted for.

Figs. 2.6 - 2.9, as taken from McQuillan and Whalley (1985), show the flooding

curves predicted by 22 different correlations for air-water flow in a 0.032 m diameter tube.

The discrepancies between the correlations are considerable, even for correlations using a

particular dimensionless group. A comparison among the correlations for reflux

condensers alone, together with the generalized Wallis (1961) correlation, is shown in

Figs. 2.10 and 2.11 (Deakin, 1977). The Andale correlation shown in these figures cannot

be found in the open literature but it has been listed by English, et ale (1963), Deakin

(1977) and Diehl and Koppany (1969) as a flooding correlation commonly used in

industrial reflux condenser design. The poor agreement between the correlations is evident

again in these figures. Since no fixed pattern can be observed in the figures to attribute to

the discrepancies, it can probably be said that none of the 'quantifiable' factors like tube

diameter, fluid properties or phase change are individually responsible for the differences

in the graphs. A combined effect ofthe differences in accounting for these quantifiable

factors might be significant but it is more likely that the random and unquantifiable factor

oftube-end condition will be the main culprit responsible for the wide discrepancy.

The statistical quantities used by McQuillan and Whalley (1985) to evaluate the overall

predictive ability ofthe correlations were number ofdata points that could be reasonably

represented by the correlation, weighted percentage error (WE), weighted root mean

27
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square error (WRMSE) and average deviation (AD). The weighted percentage error (WE)

was defined as :

(
.. )1/2

WE = .!.L exp in ~~caIc - 1.0 ·1()()O~
n Jg,expt

(2.19)

Similarly, the weighted root mean square error (WRMSE) and the average deviation (AD)

were defined as :

WRMSE should be low for low scatter in the data and AD should be ideally equal to zero.

The study found that empirical correlations were generally more successful than the

theoretical correlations. Also, the correlations based on dimensionless superficial velocities

were noticeably less successful than the other empirical correlations, particularly for high

liquid velocities and for non air-water systems. The most successful correlation was found

to be that of Alekseev, et ale (1972) which gave a weighted percentage error, WE = 28%

with WRMSE =46% and AD =0.07%. English, et ale (1963) was the second best

correlation which gave WE = 300-4 with WRMSE =44% and AD =-0.07%. The

correlation ofFiend, et ale (1960) was found to be equally accurate compared to the above

correlations (WE = 28%, WRMSE =45%, AD = 0.15%) but it could represent only 2619

data points out ofa total of2762 data points. A modified fonn of the correlation of

Bharathan, et ale (1979) was noted as the most successful theoretical correlation. The

Diehl and Koppany (1969) correlation was not as consistent and accurate in its predictions

as any ofthe above correlations. The predictions ofthe correlations ofGrolmes, et ale

(1974) and Hewitt and Wallis (1963) were comparable to that ofDiehl and Koppany

(1969).
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(2.22)

The authors found that Alekseev, et ale (1972) over-predicted the flooding flowrates

for high liquid viscosities. They corrected this deficiency ofthe correlation by a small

modification, giving the new correlation :

{ }

-d18Kg =O.286Bo°.26Fr~.22 1+11:
The performance ofthis modified correlation was evaluated against the entire data bank. It

was found to give the most successful prediction ofthe data with WE = 26%, WRMSE =

400A» and AD =O.OOA».

Recommended Procedure for Predicting Flooding Velocity in a Reflux Condenser

The strategy for calculating the flooding vapor velocity for any reflux condenser

design situation is as follows :

(a) First, compare the designed inlet geometry and the method ofvapor injection to be

used with the tube end conditions used in the literature. Pick out the correlation

developed specifically for similar tube end conditions, irrespective ofwhether the

correlation is for reflux condensation or adiabatic flow. Determine the flooding vapor

velocity using this correlation.

(b) Use the modified Alekseev, et al. correlation, as proposed by McQuillan and Whalley

(1985) to determine the flooding vapor velocity. This correlation was chosen for being

the most successful correlation out of23 flooding correlations, in predicting a wide

range oftlooding conditions, as determined by McQuillan and Whalley (1985).

(c) Use the English, et al. (1963) correlation to determine the flooding vapor velocity.

This correlation was chosen as it was developed specifically for reflux condensers and

also was found to be as accurate as the original Alekseev, et ale (1972) correlation in

predicting a wide range offlooding conditions.

31



(d) Determine the flooding vapor velocity using the Diehl and Koppany (1969) correlation

also, as it is the most widely used correlation today for reflux condenser problems.

(e) Compare the values obtained in parts (a), (b), (c) and (d) and take the lowest value as

the flooding velocity.
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CHAPTER ill

FLUID MECHANICS AND HEAT TRANSFER

The objective ofthis chapter is two-fold :

(i) to survey the different correlations available in the literature to predict the fluid

mechanics and the heat transfer aspects of the reflux condensation process.

(ii) to devise a suitable method of predicting the heat transfer coefficients in the vapor core

and in the condensate film.

It is necessary to understand the fluid mechanics ofany problem before its heat transfer

aspects can be studied. Following is a discussion ofthe fluid mechanics ofthe reflux

condensation process.

Fluid Mechanics

The hydrodynamics ofvertical countercurrent two-phase flow was discussed to a

certain extent in Chapter ll. It was seen how the flow pattern changed as the gaslvapor

flowrate was increased gradually till upward cocurrent annular flow was established. Refer

to Fig. 2.1. Other observations made include :

(a) variations in the pressure drop across the tube, and

(b) variations in the liquid entrainment rate

However, the other key parameters ofany gas-liquid flow, including mean film thickness

and the interfacial shear stress, were not discussed.

The mean film thickness is an important parameter ofcountercurrent two-phase flow.

The effect ofa cocurrent or a countercurrent gas flow on the mean film thickness has been

studied by several investigators including Hewitt and Wallis (1963), Collier and Hewitt

(1964) and Hawley and Wallis (1982). Their results indicate that the mean film thickness
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(3.1)

in cocurrent two-phase flow tends to decrease as the gas flowrate is incr~ owing to

the interfacial shear, while it has an opposite effect in countercurrent two-phase flow.

Hawley and Wallis (1982) observed that ifa steady countercurrent flow was

maintained before the onset offlooding, the effect of interfacial shear on the mean film

thickness was not significant. This was because in this region the interfacial shear was

sufficiently small compared to the wall shear stress. Their data on the mean film thickness

at low liquid Reynolds numbers and for low gas flows was seen to be well approximated

by the traditional Nusselt (1916) equation :

0* = 2.289 Rer3

where the dimensional mean film thickness and the liquid Reynolds number are defined as:

0* =o(PI(PI-~~)gSina Jf3 (3.2)

~ )ReI =4- (3.3
111

See Fig. 3.1.

Several correlations have been developed to determine the interfacial shear stress in

adiabatic/condensing countercurrent two-phase flow. In an adiabatic flow, the interfacial

shear stress can be represented, similar to single-phase flow, by the interfacial friction

factor defined by :

(3.4)

(3.6)

(3.5)

34

This can be approximated for thin films in circular pipes as :

fi,. =O.OOs(1+75(1-£))

where the interface velocity viis generally small compared to the mean gas velocity VI

and thus is often ignored. Wallis (1969) correlated the interfacial friction faetorbased on

air-water data in wavy annular flow as :

fi,. =O.oos(1+300 : )
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An alternative empirical correlation was proposed by Bharathan et ale (1979) viz.

( )

8
d* Bfi,. =0.005+A 2 (1-JE)

where A and B are constants given as :

togA = -0.56+ 9.07
d*

B = 1.63+ 4.74
d*

(3.7)

(3.8)

(3.9)

(3.10)

In condensing flow, the interfacial shear stress is altered due to the momentum transfer

from the vapor to the liquid phase at the vapor-liquid interface. Silver and Wallis (1965)

attempted to account for the effect ofcondensation by using the Reynolds flux concept in

It is interesting to note that both Eqns. (3.13) and (3.14) indicate that f i is approximately

equal to • when' is large. Equating Eqns. (3.12) and (3.13) for large', the following

the vapor phase and d~~ed ~e fonowm(.g ~ua)tion :
_I =_+exp __
f i,. fi,a 2fi,a

Mickleyet al.(1954) used the film theory to develop the equation:
f j _ '/fi,.

fi,. - l-exp(-,/fi,a)

expression is obtained for ~i :

-l~
'tj =VB~
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(3.12)

(3.13)

(3.14)

(3.15)



(3.17)

(3.16)

which means that the interfacial shear stress is equal to the product ofthe condensation

rate and the mean vapor velocity when the condensation effect is dominant (large. ).

Linehan (1968) proposed a linear equation in • based on this result, postulating that the

adiabatic shear stress is augmented by an amount exactly equal to the condensation rate

times the mean vapor velocity :
f· ~
_I =1+-"-
fi,. fi,a

p V 2 dr
and ~. =£ g I +V _I

1 t,a 2 8 dz

The above correlations for estimating the mean film thickness and the interfacial shear

stress in a vertical countercurrent two-phase flow - adiabatic or condensing - situation

will be used later in the chapter.

Heat Transfer

The heat transfer part ofthe reflux condensation problem consists ofdetermining

suitable methods ofestimating the heat transfer coefficient at any point along the

condenser tube both in the vapor core and in the condensate film. The latter case of

estimating the condensing heat transfer coefficient is discussed first.

Condensate Film

A survey ofthe literature shows that no significant experimental effort has yet been

made ofmeasuring the condensing heat transfer coefficient in a reflux condensation

situation and correlating the data with an equation. In this chapter, all the correlations

available in the literature to predict film condensation on a vertical surface are studied.

Then, based on them, a suitable strategy ofpredicting the local condensing heat transfer

coefficient for a reflux condensation situation is developed.
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The problem offilm condensation on a vertical surface was first analyzed by Nusselt

(1916a,b). The main assumptions ofhis model were:

(1) The condensate film is in creeping laminar flow

(2) Only gravity forces are acting on the film.

He gave the following expression for the local coefficient, a z, at a distance z from the top

ofthe plate or tube :

where Rec,z is given by Eqn. (3.3).

Kutateladze (1963) suggested a correction to the above equation to detennine a z more

accurately in the laminar wavy region, i.e. for Rec,z > 30. The resulting equation is :

a z [ 11~ ]1/
3

= O. 756Rec z-0.22 (3.20)
AI PI{PI -Ps)g ,

This equation may be used till the onset ofturbulence in the condensate film. For films

falling under gravity, there is some controversy as to the Reynolds number at which

turbulence begins. The general consensus is that turbulence starts at a Reynolds number of

about 1600-1800.

Condensing heat transfer coefficients for turbulent falling films were first studied by

Kirkbride (1934), who proposed an empirical correlation. Colburn (1934) contributed a

more fundamental analysis ofKirkbride's data and presented his results in the form ofa

graph ofthe average coefficient against the condensate Reynolds number at the bottom of

the tube. See Fig. 3.2. Labuntsov (1957) suggested the following semiempirica1

correlation for the local coefficient :
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(3.23)

(3.22)

(3.21)

where 'tw is the shear stress in the laminar sublayer. This is the same as the wall shear

stress due to the assumption of a linear velocity profile. The shear stress, 1. was assumed

to be affected by three factors - gravity, momentum and friction - and they were

combined as follows :

The above relation between the forces for a cocurrent vapor-condensate flow situation is

shown graphically in Fig. 3.3. 1:
8

, the gravity contribution was evaluated by an expression

which required trial and error. 1:m was considered to be the momentum change in the

condensing vapor and 1:£ was based on the frictional pressure drop data ofCarpenter

The effect of interfacial shear on condensation was studied by several investigators.

The earliest study was that ofNusselt (1916b) who derived a correlation for the heat

transfer coefficient which applies only when the condensate is in laminar flow.

The next significant study was that ofCarpenter and Colburn (1951). They obtained

experimental data for local and average coefficients while condensing steam, methanol,

ethanol, toluene and trichloroethylene inside a 0.459 in. 10, 8 ft. long vertical tube with

inlet vapor velocities upto 500 ftIs downward. On the basis oftheir experimental data,

they hypothesized that (a) due to vapor shear the condensate film becomes turbulent at

much lower values ofReynolds number than in the absence ofvapor shear, and (b) the

major thermal resistance occurs in a laminar sublayer ofthe condensate film, whose

thickness can be calculated from generalized velocity distributions developed for one

phase flow in pipes. By assuming a linear velocity profile in the laminar sublayer, they

arrived at the following expression for the local heat transfer coefficient :
A, p 1/2't 1/2

a z =0.043 Pr,1/2 " w
111
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(1948). Reasonable agreement was found between the predictions ofEqns. (3.22) and

(3.23) and experimental data.

Dukler (1960) studied the problem offluid mechanics and heat transfer in thin liquid

films in a detailed manner. He developed new equations for velocity distribution and film

thickness, and from these, on the basis ofthe principles ofthe analogies, derived

expressions for the local heat transfer coefficient. To determine the average coefficient,

knowledge about the path ofcondensation along the tube is essential. Dukler devised a

method ofestimating the condensing path in a cocurrent downward flow condensation

system with interfacial shear, for the special case oftotal condensation and a saturated

inlet vapor. Based on this, he derived graphs ofthe average coefficient for several Prandtl

numbers ranging from 0.1 to 1.0. Good agreement was found between his theory and the

Carpenter (1948) data. The numerical work ofDukler was limited to the case ofa vertical

cocurrent downward flow falling-film system. It can be reworked for a countercurrent

system, but the problem would be extremely involved mathematically and cannot be

justified, considering the scope ofthis work.

Soliman et ale (1968) worked on the same lines as Carpenter and Colburn (1951) and

presented a general heat transfer correlation for annular flow condensation. They derived

new equations for the friction, momentum and gravity forces from a differential

momentum balance analysis ofan annular flow model and suggested ways ofevaluating

them. They also examined the relative magnitudes ofcontribution ofthe above forces to

the wall shear stress, 1w . Finally, a Carpenter-Colburn type correlation was suggested for

the heat transfer coefficient viz. :
A, p 1/21 1/2

a z = 0.036Prlo.6' I I • (3.24)
11.

In this equation, the wall shear stress 't. is to be evaluated from Eqn. (3.23) using the

derived expressions for 't
8

, 'tm and 'tf . This correlation was found to be in agreement with

experimental data on both horizontal condensation and vertical downward condensation,
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over a range ofvapor velocities from 20 ftJs to 1000 ftJs, a range ofPrandtl numbers from

1 to 10, and a range ofqualities from x=O.99 to x=O.03.

Other correlations developed for a vapor-shear dominated condensing situation

include those by Traviss et ale (1971), and Boyko and Kruzhilin (1967).

All the correlations discussed above have been developed for a condensation process

in which the vapor and the condensate flow together in the same direction. They may have

to be modified before they can be applied to a reflux condensation problem. In this regard,

the following observations on a reflux condensation flow situation would be very useful :

(1) Analogous to the analysis ofSoliman et ale (1968) and Carpenter and Colburn (1951),

the different forces acting on the condensate film ofa reflux condensation process can

be identified as shown in Fig. 3.4. They are related as :

'tw ='t& -('tr+'tm) (3.25)

As evident, the forces ofvapor shear and gravity act opposite to each other. They are

both maximum at the bottom ofthe tube and they decrease continuously towards the

top ofthe tube, where they are very small. The force due to momentum change, ~ID'

does not vary much along the condenser tube. For a steady countercurrent two-phase

flow to be maintained, the shear stress, 'tw should be positive, i.e., the force ofgravity

per unit area, 'tg , should be greater than the combined force per unit area due to vapor

shear and momentum change, ('tr + 'tm), throughout the condenser tube. This means

that 'tg should dominate through the entire condensation process. The condition at

which ('tr +'tm) becomes equal to 'tg , i.e. 'tw becomes zero, is equivalent to the onset

offlooding.

(2) The gas flooding velocities observed in countercurrent annular two-phase flow for

liquid to gas flowrate ratios (same as reflux ratio for a reflux condensation process)

less than or equal to 1.0, range from close to zero to about 35 ftJsec. The higher

flooding velocities are obtained for low values ofUG, i.e. low values ofliquid

flowrate at the bottom ofthe tube, which correspond to low rates ofheat removal in
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(3.26)

(3.27)

reflux condensation. Reflux condensers are nonnally operated with the vapor velocity

well below the flooding velocity - usually 0.6-0.7 times the flooding velocity - so that

a steady countercurrent operation can be maintained. The operating vapor velocities of

reflux condensers [0 - 20 ftIsec] are usually small compared to the vapor velocities

seen normally in vertical downward forced convection condensation processes. The

data used by Soliman et ale (1968) to test the validity oftheir correlation covered a

range of inlet vapor velocities from 20 - 1000 ftIsec.

The above points (1) and (2) suggest that vapor shear might be too low to affect the

condensate film throughout the normal condensation process. However, since in a reflux

condenser, the forces ofvapor shear and gravity act opposite to each other and they are

both maximum at the bottom ofthe tube, it is instructive to examine the relative

magnitudes ofthe forces and then detennine their relative importance accordingly. The

values ofthe forces, 'ts' 'tf and 'tm can be estimated from expressions derived by a

differential momentum balance analysis, similar to that of Soliman et ale (1968), ofa

countercurrent two-phase condensing flow situation. Following is a discussion ofthe

derivation. The assumptions made include : (a) steady countercurrent flow, and (b) no

radial pressure gradients.

Consider a differential element dz ofthe vapor core, as shown in Fig. 3.5. The

momentum balance states that the summation ofthe forces acting on a control volume in

the axial direction is equal to the difference between the rate ofmomentum leaving and

entering the control volume, i.e.

LFz =L(mv)z,out - L(mv)z,ia

Applying this equation to the differential element ofthe vapor coregi::
- ~ (PAg)-'tigSg -pgAgg=~ (VSMg)-VBi dzS

Similarly for the condensate layer shown in Fig. 3.5, the following equation arises :

, -~(PAI)+'tiiSS +'twS-PIAlg=~(Vlml)-VIi dmdz·I (3.28)
dz dz

4S
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Ifzero slip is assumed to exist between the vapor and the liquid at the vapor-liquid

interface, then (i) 'tig ='tiJ ='tj, and (ii) vgi =vli. Further, since the vapor and the

condensate flow in opposite directions, the velocities vgi and vIi should be taken equal to

zero for the zero-slip condition to be satisfied. Ifvariations in AI and AI over the element

dz are assumed to be negligible, then they can be taken out ofthe derivative in the first

term ofEqns. (3.27) and (3.28). The resulting equations can, then be combined to

eliminate the pressure gradient to give :

[( )Alg] ['tiSa ( AI) (AI d (. _) 1 d ( . - ))]
'tw = PI-Pg S - S 1+ A

g
+ SAg dz mgvg - S dz mivi (3.29)

and

This equation is equivalent to Eqn. (3.25) such that :

'tg =(Pl-Pg)A~g

't ='t. Sg(I+~)
f I S A

B

(
AI d (. _) 1 d (. _))

't = --- m v --- m.v.
m SA dz I B S dz

I

(3.30)

(3.31)

(3.32)

'tg represents the effect ofthe gravitational field, 'tf the effect oftwo-phase friction and

't
m

the effect ofmomentum changes in the flow on the wall shear stress, 'tw • In terms of
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(3.35)

(3.34)

and

void fraction and tube diameter, the Eqns. (3.30), (3.31) and (3.32) can be written as :

( )
,g{1-e)di

'tl = PI -PI 4 (3.33)

1
'tf = 'ti .Ji,

(1(1-£) d (. _) 1d ( . -))t = - - - m v --- m.v.
m mi. £ dz I I mi· dz

I I

Various correlations have been developed to predict local void fraction for cocurrent

vapor-condensate annular flow. Evaluations ofthese correlations in the literature have

found the correlation ofZivi (1964) to be the most successful (Soliman et al., 1968):
1

e= 2/3 (3.36)

1+(1~x)(~:)



This correlation can be assumed to hold good for countercurrent vapor-condensate

annular flow.

where x is the local quality defined as :
ril

x= I

rita + rill
(3.37)

(3.17)

(3.38)

It is worthwhile to note here that the maximum range ofvalues oflocal quality) x for

any reflux condensation problem is : 0.5 ~ x ~ 1. The range ofvalues of the void fraction,

£, is still less as PI )pg . See Table 3.1.

From Eqns. (3.36), (3.37) and (3.33), the shear stress 'tg can be readily evaluated. For

1 f , the interfacial shear stress t i can be evaluated using the linear equation proposed by

Linehan (1968), Eqn. (3.17) :
p V 2 dr

'to = £ I 8 +v _8
I .. 2 I dz

In this equation, the first term gives the adiabatic interfacial shear stress and the second

term gives the effect ofcondensation mass flux on it. The latter cannot be evaluated as the

condensation rate is not known a priori. For low condensation rates, the second term is

small and can be neglected but for high condensation rates, it is dominant. Ifit is assumed

that the first and the second term contribute equally to the interfacial shear stress

(moderate condensation rates), then Eqn. (3.17) can be reduced to :

'ti =fi..(Pgvg
1

)

This equation would underpredict 't j when the condensation effect is dominant and it

would overpredict for low condensation rates. These effects can be checked suitably, as

explained later.

In Eqn. (3.35) for 'tm , the first term is always negative while the second term is

positive and they tend to offset each others' effects. For countercurrent two-phase flow,

the values ofthe above terms would be ofthe same order ofmagnitude. Soliman et al.

(1968) found that for cocurrent two-phase flow, the term representing the addition of
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Table 3.1 Values ofvoid fraction, £, as a function of local quality, x, for

different PI values
PI

x

0.5

0.9

PI =_1_
PI 1000

£

0.990

0.999

x

0.5

0.9

PI =_1_
PI 100

49

£

0.960

0.995

x

0.5

0.9

PI =..!
PlIO

£

0.820

0.977



momentum to the liquid film by the condensing vapor was dominant for most ofthe

condensing length. In countercurrent flow, this tenn would be close to zero as the

interfacial velocities are very small (for zero slip at the interface, the interfacial velocities

are equal to zero). Thus, for reflux condensation, the shear stress 1
m

can be neglected.

Eqn. (3.25) would then reduce to

'tw ='tg - tf (3.39)

where 'tg and 'tf can be estimated from Eqns. (3.36), (3.37), (3.33), (3.38) and (3.34). ~..

in Eqn. (3.38) can be found using the correlation ofWallis (1969) [Eqn. (3.6)] or

Bharathan et a1. (1979) [Eqns. (3.7) - (3.10)].

The following strategy can be used to detennine the local condensing heat transfer

coefficient :

(1) Estimate 'tg and 'tf as described above.

(2) Using the criterion stated by Carpenter and Colburn (1951), ifthe value of'tf is less

than, say , half the value of 'tg , then consider the effect ofvapor shear negligible.

Estimate the local condensing heat transfer coefficient using the appropriate gravity

controlled correlation, depending on the value ofthe local condensate Reynolds

number, i.e., if Rec,z ~ 30, use Eqn. (3.19); for 30<Rec,z<1600, use Eqn. (3.20) and

for Rec,z ~ 1600, use Eqn. (3.21) or Fig. 3.2.

(3) Ifvapor shear is significant, as detennined by the above criterion, then estimate 'tw

from Eqn. (3.39) and use the correlation suggested by Soliman et ale (1968), viz. Eqn.

(3.24), to detennine the local condensing heat transfer coefficient, assuming it holds

good for reflux condensation. To ensure that the value obtained above for the

coefficient is reasonable, compare it with the value obtained from the appropriate

gravity-controUed correlation for the same conditions. Ifthe former value is very high

compared to the latter, which might arise if1 f is significantly underpredicted (high

condensation rate), then take the arithmetic average ofthe two values. Otherwise,

choose the higher ofthe two values as the condensing heat transfer coefficient.
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(3.41)

(3.42)

Vapor Core

The vapor-phase heat transfer coefficient is calculated in the literature as follows :

First, the coefficient is calculated assuming single-phase vapor flow in a smooth conduit

using the correlation ofChilton and Colburn (1934) viz.

as =jCPB(:~ )Prf2/3 (3.40)

where the Colburn j-factor is given by :

(

4- )-0.2
j=0.023~

ndj l1

The single-phase coefficient is then corrected for :

(a) the effect ofcondensation, and

(b) the presence ofthe condensate layer.

Heat transfer in the vapor core is understood to occur by two parallel processes : (i)

sensible heat transfer due to a temperature gradient, and (ii) diffusion ofvapor molecules,

because ofa concentration gradient from the bulk vapor stream to the condensate surface,

which carry sensible heat and condense at the interface giving up their latent heat.

The process ofcondensation affects the no-condensation heat transfer process in two

ways:

(i) The condensation mass flux distorts the temperature profile in such a way that the

sensible heat flux is reduced.

(ii) The condensing vapor molecules release sensible energy as they travel from the bulk

stream which is at a higher temperature to the interface which is at a lower temperature.

Colburn and Drew (1937) and Ackennann (1937) derived a correction factor, 8. to

account for both effects simultaneously. It is given as :

8 = a
a l-e-a

where the term a is defined as :
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(3.43)

The expression for 9. can be split into two terms to show the effects (i) and (ii)

independently.
a

8. =-.-+a =9. +a (3.44)
e -1

The first term 8. shows effect (i). Its value lies between zero and unity. It is to be used

alone, when the temperature variation ofthe bulk gas-vapor mixture is to be determined.

The value of 9. is always greater than unity. It represents a correction to the heat transfer

coefficient corresponding to total sensible heat flux from the vapor stream to the

condensate surface.

It should be noted here that the term a in 8. and 9. depends on the condensation

molar flux, which is not known a priori. Thus, the correction factors 9. and 8. to the

single-phase heat transfer coefficient cannot be determined directly. They have to be

obtained by iterative calculation together with the heat and the mass balance equations.

Refer to Chapter IV.

The presence ofthe condensate layer is expected to increase the heat transfer rate at

the interface due to increased turbulence and effective roughness. According to Sardesai

et ale (1983), this enhancement may be accounted for by a multiplier C, as the interface

enhancement factor. The term Cr would have a minimum value of 1.0 corresponding to a

smooth interface at very low velocity. For shear-controlled flow, it would be greater than

unity. However, it would be difficult to quantify Cf theoretically and experimental data

would be required to estimate it. It might be interesting to note here that for condensation

inside a vertical tube with low vapor shear, the experimental studies ofOwen et ale (1980)

have shown the value of Cr to be close to unity.

Price and Bell (1974) accounted for the two-phase enhancement effect in a different

way. They assumed the relationship between the heat transfer coefficient and the pressure

gradient for two-phase flow to be analogous to that for single-phase flow such that :
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(3.45)

In this equation, the frictional pressure gradient for two-phase flow was calculated using

the Martinelli-Nelson correlation (1948) :

(:l.TP =,~x~7s(:1~ (3.46)

where Xu =(I~XX:: )ns7(~:r·1l (3.47)

and ~2 [ 1 3(1- Pr )]
"IU = 1+-+ r::- (3.48)

Xu ""Xu

In the present work, the two-phase enhancement effect is accounted for using the

multiplier Cf suggested by Sardesai et ala (1983).
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CHAPTER IV

DESIGN METHODS

The primary objective ofthis chapter is to develop an approximate design procedure

for pure vapor and muIticomponent total/partial reflux condensers. First, the literature is

reviewed for the different design methods currently in use for condensers. Their

application to the design ofreflux condensers is discussed. Then, an approximate

generalized design procedure is evolved for total/partial pure vapor and multicomponent

reflux condensers.

The case ofpure vapor condensation is discussed first.

Pure Vapors

Designing any heat exchange equipment for the condensation ofpure vapors is

relatively simple. For this case, there is no mass transfer resistance in the condensate film

or in the vapor phase, and heat transfer resistance is concentrated in the condensate film.

The design can be carried out in one step using :

QT =UEBAEB(ATbD ) (4.1)

ifan average condensing heat transfer coefficient and thus an average overall heat transfer

coefficient can be determined. The disadvantage ofusing an average condensing heat

transfer coefficient is that the variation in the wall temperature and the physical properties

along the condenser tube cannot be properly accounted for.

When the latter effects are important, the design can be carried out on a stepwise basis

by evaluating the overall heat transfer coefficien~ U, and the temperature difference

between the condensing vapor stream and the coolan~ (Tg-t) at several points along the

condenser tube as a function ofthe heat transferred from the vapor entrance to that poin~
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Q. The required heat transfer surface can then be obtained by integrating the following

equation numerically or graphically.

A --
Ql dQ

u( ) (4.2)
o Tg-t

Eqn. (4.2) is the basic heat exchanger design equation. It should be noted here that U and

A are interconnected as :

(4.3)

where the subscripts refer to a particular reference area.

In any reflux condenser design problem, the quantities usually specified are the total

condenser heat duty, QT' the flowrate and the complete thermodynamic state ofthe inlet

vapor/vapor-gas mixture stream, the fractionation requirement specified as the desired

tlowrate or composition ofone component in the outlet vapor stream and/or the tlowrate

and other conditions ofthe coolant. It should be noted here that it is not possible to

specify fractionation requirements, heat requirements and coolant temperatures

independently; only two ofthe three can be fixed independently. The condenser operating

pressure can be assumed to be constant throughout as the pressure drop ofthe vapor

stream in a steady countercurrent two-phase flow operation is usually negligible compared

to the absolute pressure.

The overall heat balance for the condensation ofa pure saturated vapor with a

countercurrent coolant is ( See Fig. 4.1 ) :

QT =(Mg,iD -Ms,out)(Mw)AhIg =rilooolCp,oooI{tout -tiD) (4.4)

where the latent heat ofcondensation, Ahlg is a function of,-·

Given QT and the inlet vapor molar tlowrate, the outlet molar tlowrate ofvapor can be

determined and the mass tlowrate ofthe coolant can be chosen such that the outlet coolant

temperature is below its allowable upper limit fixed by engineering considerations.
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Fig. 4.1 Mass and energy balances for pure component
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The quantity llU(Tg-t) can be determined as a function ofthe heat transferred, Q,

between the vapor entrance and the point where the bulk vapor and the coolant

temperatures are Tg and t respectively, as follows :

First, small steps can be chosen in coolant temperature from tm to laue at, say, equal

intervals. At each value ofthe coolant temperature, t, the quantities (Tg-t) and Q can be

readily determined as the vapor-side temperature, Tg is constant at -rat for a saturated

vapor and Q is given by :

Q=mcoolCp,cooI (tout - t) (4.5)

The overall heat transfer coefficient, based on the outside area, Uo can be obtained from :

U = 1 (4.6)o 1 (do) R (do) do In(do IdJ R 1- - + f· - + + r +-a i di ,I d
i

2Aw ,0 a
o

(4.7)-=-

In this equation, the fouling resistances, Rc.i and Rr,o can be chosen by experience. The

coolant-side heat transfer coefficient , which is also the shell-side coefficient, Q o can be

estimated from known methods depending on its importance relative to the tube-side

coefficient.

The only quantity to be determined is the vapor-side heat transfer coefficient, Qj. As

stated by Colburn (1951), it is readily calculated from the kinetic theory ofgases that

under ordinary conditions, the temperature difference between the pure vapor and the

condensate surface is negligible because ofthe high rate of molecular motion. In other

words, the vapor-phase heat transfer resistance is negligible. Thus,
1 1

(4.8)

where ac is the condensing heat transfer coefficient. a c can be detennined using the

strategy described in Chapter ill. The condensate Reynolds number at a point 'le' in the

condenser (See Fig. 4.1) is given by :
(Mg,k - Mg.out)(Mw)

Rec.k =4 7td
il1c
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(4.11a)

(4.11b)

Mg,b the vapor molar flowrate at point 'Ie' can be obtained using the incremental heat

balance equation, viz.:

Q = mooolCp,oool{tout -tlJ =(Mg,iD -Mg,k)(Mw)Ah., (4.9)

In this way, Qc' U and thus U(Tg-t) can be determined at many points along the condenser

tube as a function ofQ. The heat transfer surface can then be evaluated by integrating

Eqn. (4.2) numerically or graphically.

The vapor which is handled by a reflux condenser is usually saturated. For a saturated

vapor, the above design procedure can be used. Ifthe vapor is superheated, the problem

can be dealt with as follows. In a reflux condenser, because ofthe countercurrent nature

of flow, the entering vapor is in contact with the draining condensate film. The condensate

phase is at or below the saturation temperature ofthe component at the system pressure.

Thus, the superheated vapor condenses right from the entrance and because of

thermodynamic equilibrium at the vapor-liquid interface, the condensate surface is at the

saturation temperature. The design can be carried out similar to that for saturated vapor,

using the following equation :

A ='1 dQ (4 10)
o {Qoi(l.t -t} ·

where Qoi is the heat transfer coefficient from the interface to the coolant, based on the

outside area. The overall heat balance equation can be written as :

QT =(Mg,iD - Mg,out)(Mw)&1., +(MgCpg)in(Mw)(Tg,in - 'r-t)
QT = (mCP)cooI(tout -tin)

The molar tlowrate ofvapor at any point in the condenser tube can be determined from

the appropriate incremental heat balance equation. It is assumed that the vapor and the

liquid streams leaving the first incremental element are in equilibrium with each other at

the vapor bulk temperature. In other words, all the desuperheating is assumed to occur in

the first element. Thus, the incremental heat balance equation for any element can be

written as:
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QT =(Mg,in -Mg,k)(Mw)AhIg+(MgCpg)io(Mw)(Tp -,-a)
Qr =(rilCp)cooa(tout -tk+1)

Once the integrand in Eqn. (4.10) is evaluated as a function ofQ, the required heat

transfer surface can be readily obtained by integrating Eqn. (4.10) numerically or

graphically.

Vapor Mixtures

(4.118)

(4. 12b)

Condensation ofvapor mixtures differs from pure vapor condensation in two ways :

(a) Mixture condensation is always non-isothermal. As the heavier components are

preferentially condensed, the remaining mixture has a lower dew-point and the

temperature ofcondensation decreases monotonically.

(b) Mass transfer resistances are introduced in addition to the heat transfer ones, in the

vapor stream and in the condensate film.

A qualitative diagram ofthe mixture condensing process at a point some distance from

the beginning ofcondensation is given in Fig. 4.2. The temperature profile in it indicates

that there are sensible heat effects in both the liquid and the vapor phases and the

concentration gradients indicate that there are diffusional resistances to the transfer of

mass in each phase. The controlling resistance in the condensation ofvapor mixtures is

generally the vapor-phase resistance to heat and mass transfer.

In any condensation proble~ the resistance to heat transfer in the condensate film is

not in series with that in the vapor phase, i.e. the heat transfer resistance from the bulk

vapor to the coolant cannot be detennined by simply adding the resistances in the vapor

phase and in the condensate film. This is because ofthe condensation occuning at the

interface. Thus the overall heat transfer coefficient from the bulk vapor to the coolant is

difficult to determine.
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Models ofvarying complexity and accuracy are available in the literature to account

for the different processes that occur in the condensation ofvapor mixtures. Design

methods based on these models are oftwo basic kinds, viz. :

(1) The approximate design methods (such as those ofKem (1950), Silver(1947), Ward

(1960), Bell and Ghaly (1972) and Sardesai et al.(1983», which are based on an

equilibrium model.

(2) The more physically realistic differential methods, which are based on models such as

film theory, penetration theory and boundary layer theory.

In this chapter, the different methods currently in use are reviewed and their

application to the design ofreflux condensers is discussed. The advantages and the pitfalls

in the methods and the suitability oftheir application to different design problems is

evaluated. Only those methods which are of immediate relevance to practicing design

engineers in the chemical process industries are considered.

(1) Differential Methods

This class ofmethods includes those based on models such as film theory, penetration

theory and boundary layer theory. The latter two models are more sophisticated than the

film theory models and are relatively less investigated in the literature. They are limited to

geometries like vertical tubes and describing the condensation ofa vapor in the presence

ofa noncondensable gas or the condensation ofa binary vapor mixture. Extensions of

these models to three or more component systems are few in number. Also, these models

have not been developed to a point where they could be used for the tube-side design of

shell and tube heat exchangers. Thus, only methods based on film theory are discussed.

In the film theory methods, local heat and mass transfer rates are calculated and then

integrated numerically along the length ofthe condenser using a :. t ofone-dimensional

61



differential material and energy balances. These methods demand detailed information

about the fluid streams and their physical properties throughout the condensation process.

It would be convenient to study the film theory methods in a stepwise fashion starting

from:

(a) the condensation ofa pure vapor in the presence ofa noncondensable gas,

(b) the condensation ofa binary vapor mixture, and lastly

(c) the condensation ofmulticomponent (~ three components) vapors or vapor-gas

mixtures.

(a) Single condensable vapor with noncondensins gas : The earliest work on the

design ofheat exchangers for the condensation ofpure vapors with noncondensing gases

is that ofColbum and Hougen (1934). They formulated the equations and the design

procedure for condensing a saturated vapor mixture in a fairly rigorous form. Subsequent

studies on the subject include those ofColburn and Edison (1941), Smith (1942) and

Colburn (1951). Some ofthem suggested simplifications to the trial and error calculations

ofthe Colburn-Hougen procedure but they could not appreciably broaden the range of

application.

With the presently available knowledge on the multicomponent condensation process,

the design problem can be formulated, in fundamental terms, as follows :

The condensation molar flux is given by :

Ii =Ii In l-Yli (4.13)
1 I 1 Y- Ib

This equation is obtained by assuming all the resistances to heat and mass transfer in the

gas phase occur in a fictitious laminar layer ofcertain thickness adjacent to the condensate

film. It can be expressed alternatively as :
IiI =~lil Ylb -Yli (4.14)

I-Ylb

where
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and

~=-+-
e'-I

(4.15)

(4.16)

(4.17)

Eqn. 4.14 is useful at low condensation rates, where ~ tends to unity. The mass transfer

coefficient, Pg can be calculated conveniently using the Chilton-Colburn (1934) analogy

between heat and mass transfer :

I3g =~(~12)% =~(Pr)%
Cpg leg Cpg Sc

The heat flux equation is given by :

a oi(lj -t) =ag'(Tg-lj)+ Ii1Ahlg (4.18)

(4.19)

The form ofEqn. (4.18) was derived by Colburn and Hougen (1934). This equation is

obtained by assuming that there is subcooling in the condensate layer and that all the heat

transferred from the bulk vapor stream to the vapor-liquid interface passes through the

condensate film and the wall to the coolant. The rate ofheat flow from the vapor stream

to the condensate surface is understood to occur by two parallel processes: first., sensible

heat transfer due to the temperature gradient, and second, diffusion ofvapor molecules,

because ofa concentration gradient, from the main stream to the condensate surface,

which carry sensible heat and condense at the interface giving up their latent heat. As

noted above, the sensible heat transfer rate is enhanced by the mass transfer process. This

is accounted in Eqn (4.18) by the term a g', which is the gas phase heat transfer coefficient

corrected for mass transfer effects as :
, a

as =ag1 _ e-a

where

(4.20)
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(4.22)

(4.23)

This correction to as was derived by Ackennann (1937) and by Colburn and Drew

(1937).

Eqn (4.18) is to be used to iteratively calculate the interfacial temperature, T i , given

the state ofthe gas phase (i.e. its bulk phase composition and temperature) and the

coolant temperature, t. To solve this equation, it is necessary to assume that equilibrium

conditions prevail at the interface. The change in the temperature and the composition of

the bulk vapor phase along the condenser tube is detennined by integrating the gas phase

heat and mass balance equations along the vapor path. The heat balance equation is :
dTs a;(Ts -ti)
dA = · C (4.21)

M g PI

where a; is defined as :

• 9 a<Xg =ag • =ag -.-
e -1

It should be noted here that a; is different from as', defined by Eqn. (4.19). a.' is the

heat transfer coefficient that corresponds to the total sensible heat flux from the vapor

stream to the interface while a; corresponds only to the sensible heat flux occurring due

to the temperature gradient (i.e. the sensible heat flux due to the condensing vapor

molecules is not included in this). a; is used in Eqn. (4.21) as it is known that the

temperature change ofthe bulk gas-vapor mixture is only due to the heat flux arising from

the temperature gradient.

The mass balance equation is :
dylb __ dldA

Ylb -1 - Ms

where M is the total molar tlowrate ofthe vapor stream.
I

For using the above model for design purposes, a trial and error procedure is usually

necessary. First, a value is assumed for one ofthe design parameters. The heat and the

mass balance equations, Eqns. (4.21) and (4.23), are integrated along the vapor-flow path.

At each step ofthe integration, the conditions at the interface are obtained by iterative
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evaluation ofthe heat and the mass flux equatio~ Eqns. (4.14)and (4.18). At the end of

the above process, a value is obtained for one ofthe specified variables. This value is

compared with the specified value ofthat variable. The process is repeated for different

values ofthe design parameter till a match is obtained between the calculated and the

specified values ofthe given quantity.

(b) BinaIy vapor mixture~ : The classic formulation ofthe local transport rate

equations in binary vapor condensation is by Colburn and Drew (1937) .This model has

been used by many investigators for the design ofcondensers (downdraft, horizontal and

updraft or reflux condensers) for binary vapor mixtures. The work ofKent and Pigford

(1956) is one ofthe first to use the Colburn-Drew model in a design mode They studied

experimentally and theoretically the performance of reflux condensers in comparison to

conventional equipment for adiabatic distillation plus total condensation. The design

procedure they developed for reflux condensers was obtained solely from the point of

view ofmass transfer by an adaptation ofthe transfer-unit concept to partial condensation.

It consists ofequations relating the number oftransfer units to liquid and gas -phase

resistances, surface area and amount ofcondensation. It is based on the assumption that

the heat transfer rate or the rate ofcondensation is constant throughout the condenser.

Like the work ofKent and Pigford (1956), many studies (pressburg and Todd (1957),

Estrin et ale (1965» experimentally confinned the Colburn-Drew model but they did not

extend it appreciably to a design mode. In 1974, Price and Bell presented a complete

design procedure based on the Colburn-Drew model for binary vapor condensers. The

mass transfer resistance in the liquid phase was neglected, i.e., a well-mixed condensate

film was assumed. The procedure employed mass and energy balances in an incremental

fashion to compute the change in the temperature and the composition ofthe bulk vapor

stream, which are different from the differential equations ofthe Colburn-Drew model.

The predictions ofthis design procedure were not compared with any experimental data;
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they were compared with those ofthe approximate design method ofBeD and Ghaly

(1972). It was found to be less conservative (in the sense ofarea required to remove a

certain amount ofheat ) compared to the latter method, as expected.

One ofthe first significant works to use the Colburn-Drew theory completely in a

design mode is that ofCave et ale (1987). They developed a rigorous mathematical model

specifically for the design ofdephlegmatorslreflux condensers. Mass transfer resistances in

the liquid phase were included. Also, the changes in the temperature and the composition

ofthe vapor phase were computed using differential material and energy balance equations

similar to those proposed by Colburn and Drew (1937). The proposed model was

validated by testing against five series ofexperimental runs carried out with two different

binary systems. The agreement between the predicted and the measured values for all the

variables - compositions, temperatures and heat transfer surface - was found to be

satisfactory.

The complete binary vapor condensation design problem can be expressed as follows :

The condensation molar flux and the heat flux expressions are similar to those in part (a).

The total condensation molar flux is given by :

Ii =P In z-Yli (4.24)
T g Z Y- Ib

The alternative expression for nt is :

Ii =~P In Ylb -Yli (4.25)
T g Z Y- Ib

where ~ is given by Eqn. (4.15) and • is defined as :

• = liT (4.26)
PI

Unlike part (a), in binary vapor condensation, there is mass flux occuning in the

condensate film also. This can be expressed, analogous to Eqn. (4.24), as:
• -A In Z-X1b (4.27)
DT - 1-'8 z-xli

The heat flux equation is :
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aoi(lj -t) =as' (Ts -lj)+ riTAh..

The term, a, in the expression for a; (Eqn. (4.19» is defined here as :
DTCpeva= '

a.

(4.28)

(4.29)

(4.31)

where Cp,cv is the specific heat capacity ofthe condensing vapor mixture, obtained by :

Cp,cv =zCpgl +(I-z)Cpg2 (4.30)

As in part (a), the conditions at the interface (1j,Yi,Xj) are determined by using Eqns.

(4.25), (4.27) and (4.28) and assuming that equilibrium conditions prevail at the interface,

given the state ofthe gas phase and the coolant temperature.

The heat balance equation to be used to determine the change in vapor temperature

along the condensation path is Eqn (4.21), with the term a in the expression for a;
defined as in Eqn. (4.29). To evaluate the change in the bulk vapor phase composition,

the mass balance equation for the vapor phase is to be used viz.
dYlb _ DTdA

Ylb- z - Ms

For change in the bulk liquid phase composition, the mass balance equation is :
dx1b _ ti,.dA

X1b-Z - M1

(4.32)

Eqns. (4.21), (4.31) and (4.32) have to be numerically integrated to determine values of

'fg,Ylb and x1b at any point along the condensation path.

Common simplifications made to the above problem are :

(i) The condensate phase is assumed well-mixed, i.e. there are no diffusional resistances to

mass transfer in the liquid phase. In this case, Xli can be assumed equal to X1b· This

situation is equivalent to one with very high liquid phase mass transfer coefficients.

This assumption is usually made when the liquid phase mass transfer coefficients are

difficult to determine due to lack ofexperimental data. (Butterworth, 1984; Colburn

and Drew, 1937).
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(ii) There is little mixing in the liquid phase so that the liquid composition near the

interface is the same as the condensing fraction i.e. "t=z . This situation is equivalent

to one with very low liquid phase mass transfer coefficients. (Butterworth, 1984;

Colburn and Drew, 1937).

(iii) Constant heat flux or condensation rate is assumed throughout the condensation path

(Kent and Pigford, 1956; Honda et al., 1992).

The design procedure for binary vapor condensers based on this film model is similar

to that discussed in part (a).

(c) Multicompooent mixtures : The Colburn-Drew equations were first extended to

multicomponent vapor or vapor-gas mixtures by Toor (1964) and Stewart and Prober

(1964). A corrected version ofthe multicomponent film model incorporating a generalized

matrix method for the solution ofthe Stefan-Maxwell equations was presented by Krishna

and Standart (1976) and Krishna et ale (1976). The above two models are commonly

referred to as "interactive" models ofmass transfer because they allow for diffusional

interactions, where the diffusional behavior ofa constituent depends on all independent

concentration gradients. In the noninteractive film model, also known as the effective

diffusivity mode~ an effective diffusion coefficient is defined for constituents with respect

to the mixture as a whole. In this mode~ the mass transfer calculations are effectively

based on the approach ofColburn and Hougen (1934).

The multicomponent condensation design problem, as described by the above models,

will not be presented here as it is extremely complicated and beyond the scope ofthis

work.

Krishna et al. (1976) compared the interactive models in their ability to predict the

condensation ofa five component hydrocarbon vapor mixture accompanied by hydrogen

as the inert gas flowing down inside a vertical tube heat exchanger cocurrent to the

condensate. They demonstrated that the deviations ofthe calculated separation for the
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simpler models compared to the matrix model was about 200..10. Webb and Sardesai (1981)

presented a comparative study ofthe interactive and the noninteractive models with

experimental data for multicomponent condensation inside a vertical tube. They found that

the Krishna-Standart method predicted the experimental condensation rates within an

accuracy of+1OOA» They also found that the predictions ofthe Krishna-Standart method

and Toar's linearized theory were within ±1% ofeach other for a range ofexperimental

conditions. The difference between the Krishna-Standart method and the effective

diffusivity method was found to be less than 1()oA».

Summarizing the papers, it can be said that the interactive models are more complex

than the noninteractive model, that the interactive models are of roughly equal quality and

that the matrix model ofKrishna-Standart gives the most precise description of

multicomponent mass transfer but it also requires the most computing time.

Rohm (1980) applied the matrix model ofKrishna-Standart and developed a

generalized macroscopic model to simulate the steady state behavior ofa

dephlegmator(reflux condenser) for multicomponent vapor systems. He used this model

and the other known mass transfer models for calculating the dephlegmation ofa ternary

vapor mixture ofmethanol, ethanol and water with specific operating conditions. He

found the differences in the calculated separation rate between the models to be

insignificant with respect to practical condenser design.

The above described film theory methods give a precise description ofthe

condensation process. However, they are very complicated and therefore time consuming

to use. They demand detailed knowledge about the fluid streams and their physical

properties. A particular problem is the lack ofdata on diffusion coefficients, which are

required.
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(2) Approximate Metho<b

These methods are useful when knowledge about the physical properties ofthe two

phases, particularly diffusion coefficients, is not complete and when a preliminary (rough)

design ofthe condenser is required. In these methods, the condensation process is

assumed to follow the equilibrium condensation curve. This assumption eliminates the

problem ofcalculating mass transfer coefficients and the interface conditions, simplifying

the calculation procedure considerably as compared with the film theory methods.

Several authors have published methods ofthis type. The earliest among them is that

of Silver (1947), who developed a general purpose method for the design ofcoal gas

condensers. Subsequently, Ward (1960) and Bell and Ghaly (1972) described procedures

similar to Silver's method. The general method of Silver-Ward-Bell-Ghaly can be

described as follows.

The sensible heat flux, qsv for cooling ofthe bulk gas-vapor mixture core is given by :

qlV =ag( Tg -li) (4.33)

The total heat flux, qt is given by :

qt =aoi(li -t)

This equation makes the minor assumption that all the heat released in cooling the

condensate layer crosses all ofthat layer. Eliminating the interface temperature, ~

between Eqns. (4.33) and (4.34) gives:

qt =(_1+(qlV)_1)-l(Tg_t)
(Xoi qt 0,1

(4.34)

(4.35)

IfU is defined as the effective overall heat transfer coefficient ofthe process from the
o

bulk vapor to the coolant stream such that

qt =Uo(Tg-t) (4.36)

then, from Eqns. (4.35) and (4.36),
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_1 _ ( 1 + (qlV) 1 )
Do - <Xoi ~ <Xg

Bell and Ghaly define the ratio qlV as a factor Z .
qt

z= qlV
qt

From the above equations, the fina1 design equation can be written as :

1 Zaoi
Q +--

Ao = J <X
g dQ

o <xoi{Tg -t)
Q

or, Ao =J {I )dQ
o Do Tg-t

(4.37)

(4.38)

(4.39)

(4.40)

This reduces to the appropriate form for the extreme values ofZ. Z =0 corresponds to the

case ofa pure component condensing isothennally and Z = 1 corresponds to cooling ofa

gas without condensation.

As stated by Sardesai et ale (1982), Eqn. (4.39) is rigorous except for the minor

assumption concerning the heat released in cooling the condensate layer. Loss ofrigor

occurs, when the following assumptions are made in order to simplify the evaluation ofthe

terms in Eqn. (4.39) :

(a) The condensation process is assumed to follow the equilibrium condensation curve i.e.

the liquid and the vapor phases are assumed to be in equilibrium at the vapor bulk

temperature. This is the most important assumption as this is what makes the design

methods approximate. Z and (Tg - t) are conveniently evaluated using this assumption.

(b) <XI is calculated from a correlation for convective heat transfer to a dry wall assuming

that the vapor-gas mixture flows alone. Any possible enhancement ofthe coefficient

due to the presence ofa rippled film rather than a dry wall is ignored.

(c) <XI is not corrected for mass transfer effects.

The latter two assumptions can be suitably relaxed without making the design method

very complicated. McNaught (1979) has suggested a method for correcting <XI for the
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(4.42)

(4.41)

where ale is defined as in Eqn. (4.22). This correction to a accounts for the effect of
I

condensation molar flux on the heat transfer rate. Ifthis equation is used instead ofEqn.

(4.33), the following design equation is obtained :
Za ·

1+--.Q!.
QT a e

Ao = J g s dQ

o a oi( Tg -t)

effect ofsimultaneous mass transfer from film theory. According to film theory, the

sensible heat flux for cooling ofthe bulk gas-vapor mixture is given by :

qlV =age(Tg-TJ

Since 8. is always less than 1, the modification always gives a lower overall heat transfer

coefficient.

The difficulty in applying Eqn. (4.42) compared to Eqn. (4.39) is the evaluation ofthe

term a in the expression for e., which depends on the condensation molar flux, DT . Since

tiT is not known a priori, an iterative calculation ofthe correction together with that ofthe

local heat transfer rates is essential. McNaught (1979) has expressed a in tenns ofthe

interfacial temperature, ~, and has suggested a method for the iterative calculation.

McNaught has also presented numerical comparisons ofthe Silver-Bell-Ghaly method,

the Colburn-Hougen method and his modified method for two vapor-noncondensing gas

examples. His main observations include :

(i) The film theory correction term is particularly significant where the mass flux is

comparatively high and the gas phase is tending to control the heat transfer rate.

Where larger fouling factors are applied, the differences between the methods are less

marked.

(ii) The original Silver-Bell-Gbaly method can, in some circumstances, underestimate the

required heat transfer surface compared to film theory. This is in contrast with the

studies ofPrice and Bell (1974) and Krishna et ale (1976) which observed consistent
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conservative prediction by the approximate method. The suggested modification was

found to correct this underestimation.

Sardesai et al.(1983) presented a complete design method incorporating analytical

corrections to account for both two-phase flow effects and mass transfer effects on «•. In

their paper, they have termed the Silver-BeU-Ghaly method as a resistance proration

method as it involves proration ofthe condensate and the gas phase resistance to obtain

the overall resistance to heat transfer. The enhancement in «. due to the presence ofthe

condensate has been accounted for by introducing a multiplier, Cr as the interface

enhancement factor. The term Cr has a minimum value of 1.0 corresponding to a smooth

interface at very low velocity. In shear-controlled flow regime, it is likely to be greater

than unity. However, it is difficult to theoretically quantify the value of Cr , and hence,

experimental data are required to correlate it. For multicomponent condensation with low

vapor shear inside a vertical tube, Cr has been found to be close to unity by the

experimental studies ofOwen et aI. (1980).

Condensation mass flux has been shown by Sardesai et aI. (1983) to distort the

temperature profile in such a way that the sensible heat flux is reduced. (See Fig. 4.3).

This effect has been accounted for in a way similar to McNaught (1979). Thus, the final

equation for qsv is :
(4.43)

(4.44)

As noted earlier, an iterative calculation is again required to determine the correction

factor 9., together with the local heat transfer rates. Sardesai et aI. (1983) have suggested

a self-converging procedure which involves converging on 8•. They have tested the

perfonnances ofthe original resistance proration method and the modified method against
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experimental data for binary and multicomponent condensation ofgas-vapor mixtures in

downflow inside a vertical tube. The modified method was found to predict all data within

+300A». Other observations include:

(i) The original resistance proration method overpredicts the overall heat transfer

coefficient, U0 increasingly as 8. decreases. This trend has been eliminated by the

modified method.

(ii) When 9. is close to unity, the difference in the predictions of Uo between the original

and the modified method is not significant.

To use the design equation (Eqn. (4.44» to detennine the required heat transfer

surface, the stepwise design procedure suggested by Bell and Ghaly (1972) and the

iterative calculation method suggested by Sardesai et ale (1983) to evaluate the correction

factor 9. can be combined to give the following design procedure :

(1) Calculate the condensing curves :

(a) Total condensing stream enthalpy versus the local vapor stream temperature, t"

assuming thermodynamic equilibrium between the phases.

(b) Vapor molar flowrate, Mg versus Tg.

(c) Total heat removed from vapor from inlet to given point, Qversus t,.

(d) Coolant temperature, t versus Tg.

(2) Calculate as a function ofQ, dQIV =-MgdHg, or in finite increments

AQ = (M) AH, where AQ.v is the vapor sensible heat removed in the
IV \ aava 8

increment (M) is the mean vapor molar flowrate in the increment and AH. is the
, I .va

decrease in the vapor enthalpy per unit mole in the increment.

(3) Calculate Z as a function ofQ.

(4) Calculate a
c

and a g as functions ofMg and M, respectively, and then as functions of

Q. Calculate aoi as a function ofQ.

(5) Assume C
f

equal to unity, unless it can be estimated from available experimental data.

(6) Assume 9. = 1.
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1+ Zaoi

(7) Calculate ag9. .. 1
(T )' which IS the same as ( )' as a function ofQ.

aoi g -t U T-to g

dx Uo(Tg-t)-(rilgCpg +rilICpl) dT.
(8) Calculate - dA = ril All dA as a function ofQ. The value

T 1&

dTg •
of dA can be obtained from the condensation curve as follows :

dTg =(dQ)(dTg
)_ (dTg )_ ( (dTa)

dA dA dQ -qt dQ - Uo T.-t) dQ

· ( dx)cmT --dA PI
(9) Calculate a = and 9. from Eqn. (4.22) as a function ofQ.

ag

(IO)For each value ofQ, compare the present value of9. and the earlier value of9•. If9.

is not converged for a certain value ofQ, repeat steps (7) to (9) for that Q, with the

last calculated value of 9•.

(11)Once 9, is converged at all values ofQ, calculate the heat transfer area by integrating

numerically or graphically the final values ofthe function ofstep (7) from Q= 0 to Q

= QT·

Equilibrium condensation CUlVes, required in step (1) ofthe above procedure, are of

two types : integral and differential. In calculating the integral curve, it is assumed that

condensate and vapor keep together as they flow through the condenser and that they are

intimately mixed. In the differential type, it is assumed that the condensate, once fonned, is

separated from the vapor although it continues to flow parallel to it and, it is assumed,

brought to the same temperature. There is no clear evidence as to which type ofcurve

should be used in a given circumstance. In practice, most condensers, whether shell-side

or tube-side, are designed assuming integral condensation. Butterworth (1984) clearly

discusses the calculation ofthe integral and the differential condensation curves. However,

his calculation method is limited to condensers in which the vapor and the condensate flow

together in the same direction.
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For reflux condensers, the equilibrium condensation curves cannot be calculated like

those discussed by Butterworth (1984). This is because, the vapor and the condensate

flow in opposite directions in a reflux condenser. The following general design procedure

has been developed specifically for reflux condensers.

The assumptions made are similar to those ofthe Silver-Bell-Ghaly type ofmethod.

They include :

(1) The condensation process is assumed to fonow the equilibrium condensation curve,

i.e., at any point in the condensation path, the liquid and the vapor phases are assumed

to be in equilibrium with each other at the vapor bulk temperature and the system

pressure.

(2) Condensation is assumed to occur at constant pressure.

The overall component and total mole balances for n components, can be written as :

TOTAL: Mg.in =Mg.out +M••out (4.45)

COMPONENT:

j=l

j=k

(4.46a)

(4.46b)

j = n-l Mg.inYo-l.in = Mg.outYo-l.out + M••outxo-t.out (4.400)

The component mole balance for the nth component, i.e. j =n, can be obtained by

subtracting the sum ofall the component mole balance equations for j = 1 to n-l from the

total mole balance equation.

The overall energy balance equation can be written as :

QT = Mg.inHg.in - Mg.outHs.out - M1.outHt.out (4.47)

h H H and H are mixture entha1pies which are functions ofthe temperature
were g.in ,g,out "out
, the pressure and the composition ofthe mixture. The latter can be obtained from
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thennodynamic tables directly or from component enthalpy values assuming a certain

mixing rule. They can also be estimated by equation-of-state evaluations.

As mentioned earlier, the quantities usually known in a reflux condenser design

problem are:

(1) The flowrate and the complete thermodynamic state ofthe inlet vapor stream, i.e.,

Ms.in,Tg.ia,yj,in(j =1, .. n).

(2) The condenser operating pressure, P, assumed constant.

(3) The fractionation or heat removal requirement specified as :

(i) Reflux ratio, R = ~I.out , or
M·&Ill

(ii) The composition in the outlet vapor stream ofthe most volatile component or the

component of interest, or

(iii) The total condenser heat duty, QT; and

(4) The inlet temperature ofthe coolant stream, tin.

First, the terminal conditions ofthe condenser can be determined from the overall mass

and energy balance equations. With available knowledge about yj,in(j =1,.. n) and P, and

the assumption ofequilibrium between the phases, the composition ofthe outlet

condensate stream i.e. Xj.out(j = 1, .. n) and the saturation temperature ofthe inlet vapor

stream can be determined from equilibrium dew-point calculations.

When (1), (2) and (3(i) or 3(ii» are specified, the calculations are simple. The n mass

balance equations can be solved for Ms.out and the outlet vapor stream compositions,

y';'0111 (j =1, .. n) [if3(i) is known] or the unknown outlet vapor compositions and MI,out [if

3(ii) is known]. To determine Qr from Eqn. (4.47), the temperature ofthe outlet vapor

stream should be known. This can be obtained from dew-point calculations at the top of

the condenser, given P and Y,;.out(j =1, .. n), known from mass balance calculations.
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When QT and (1) and (2) are specified, the mass balance and the energy balance

equations should be solved simultaneously to det · th unkn · · Thiermme e own quantities. s

would require an iterative prOcedure, considering the nature ofEqn. (4.47) viz. :

(a) Assume a certain reflux ratio, R

(b) Solve the mass balance equations to determine M&out and Yj,out(j = I, .. n).

(c) Detennine T&out from equilibrium calculations using Yj,out (j = 1, .. n) and P.

(d) Solve the energy balance equations to determine M and thus the reflux rau·o R
~~, ,

(e) Check ifR(calculated) =R(assumed). Ifno, go to (a) and continue calculations until

the above condition is satisfied.

The total heat transfer rate, QT' is related to the coolant conditions as :

QT =rilClOOlCp,ClOOl(tout -til.) (4.48)

Using this equation, the mass flowrate ofthe coolant can be chosen such that tout is less

than its allowable upper limit fixed by engineering considerations.

The next step is to carry out incremental mass and energy balances with equilibrium

dew-point calculations through the condenser from the vapor entrance to the top. The

increment size is fixed as small steps in the coolant temperature, t from tout to tiD. The

mass balance equations for the first increment i = 1 can be written as (See Fig. 4.4) :

TOTAL:

COMPONENT:

j=l

j=k

(4.49)

(4.50a)

(4.SOb)

j = n-I M&oYn-l,O +M1,2xn-l,2 = M&lYn-l,l +Ml,lXn-l,l (4.SOc)

· the known quantities are M&o(= Mp ), Yj,o(j = I, ..n),In the above equatiOns,
.., calculations) and M... (= M..out)[from overall mass and

xj,1(j = 1, .. n)[from equilibnurn
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(4.51a)

energy balance equations]. For each increment, it is assumed that the condensate and the

vapor leaving the increment are in equilibrium with each other at the temperature ofthe

increment. Thus, for the first increment, Yj.l(j = 1, .. n) should be in equilibrium with

x j.l(j = 1, ..n) at T1 and P. It has also been assumed before that x j.l(j = 1, .. n) are in

equilibrium with Yj.o(j = 1, ..n) at T1 and P. This means that Yj.l(j =1,.. n) are the same as

Yj,o(j = 1, .. n), i.e. there is no change in the composition ofthe vapor stream in the first

increment. In other words, the composition ofthe condensing mass at i = 1 is the same as

the composition ofthe vapor stream.

Ifthe given value of Tp is greater than T1 (the saturation temperature), the inlet

vapor stream is superheated; ifTp is equal to TI , the inlet vapor stream is at its dew-

point.

The incremental energy balance for i =1 can be written as :

Ql =Ms.oHg,o +M1,2HI,2 - Ms.1Hg,l - Ml,lHI.1

In terms ofcoolant conditions (assuming a countercurrent coolant stream),

Q1 =mcoolCp,oool(tl-t2 ) (4.S1b)

Ql' the heat transferred in the increment i = 1, can be obtained from Eqn.(51b). In Eqn.

(51a), the term HI,2 depends on Xj,2(j =1, .. n), T2 and P.

Also, by assumption, it is known that Xj,2(j =1, .. n) are in equilibrium with

Yj,2(j = 1, .. n) at 12 and P, i.e.

Xj,2(j =1, .. n) = f{Yj,2(j =1, .. n), T2 and P} (4.52)

Thus, for i = 1, there are (n+2) unknowns and (n+2) equations relating them.

Simultaneous solution ofthe equations is required to evaluate the unknowns. The form of

Eqn. (4.52) suggests that an iterative calculation method is essential. The following

iterative scheme can be used :

(a) Guess a value for MI,2'

(b) Evaluate Mg,l from Eqn.(4.49).

(c) Evaluate Xj,2(j = 1, .. n) from Eqns.(4.5~ ..b,..c)
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(d) Evaluate ~ from equilibrium dew-point calculations using xj.2(j =1, .. n) and P.

(e) Calculate MI,2 from Eqn. (4.51a). Check ifthis value is equal to the assumed value. If

no, go to step (a) and rework the above steps. The above calculation is carried out

until the assumed and the calculated values of MI,2 match.

Similarly, for i = In, the incremental mole and energy balance equations with the

equilibrium equation can be written as :

Mole balances :

TOTAL:

COMPONENT:

(4.53)

j=I

j=k

(4.54&)

(4.S4b)

j = n-l

Energy balance :
Qm= Mg.m-lHBom-1+M1.m+lHI,m+1 - Mg.mHBom - MI,mHl,m (4.55a)

Qm = rilcootCp.oooI(tm -tm+l) (4.55b)

Equilibrium condition:
Xj.m+I(j =1, .. n) =f{Yj.m+l(j =1, .. n), Tm+l and P} (4.56)

In Eqns. (4.54a,..b,..c), Yj.m(j =1, .. n) can be obtained from equilibrium dew-point

calculations using xj.m(j = 1,.. n) and P. The (n+2) unknowns include MI,m+l,Mg.m, T..l

d ( . - 1 n -1) They can be evaluated by an iterative scheme as descnbed above
an Xj,m+l J - ,.. ·

for i = 1.
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In this way, calculations can be carried out until the last incremental element i = p. The

values obtained from the evaluations at i =P for M..out (= Mg.p) and Yj,p(j = 1, .. n) should

match those obtained from overall balance equations. Ifa match is not found, either the

increment size is too large and needs to be reduced or the accuracy ofthe calculations

needs to be checked.

Once the above incremental calculations are completed, the term to be integrated in

the design equation can be obtained as a function of Qo-.m, the heat transferred from the

vapor entrance till the end ofthe element i =m, as follows:

For i =m, t = tm+1, Tg =~
Q(Hm = mcootCp,oooI (tout - tm+l) (4.57)

_1_= 1+(wall +fouling resistances) + _l_(do ) (4.58)
aoi,m aoool~ ac.m di

a is obtained from the strategy described in Chapter IlL depending on the value ofthee,m

condensate Reynolds number, Ree,m·

Re =4 rm=4 Ml.m(Mw) (4.59)
c,m n 7td.n

-Ie I-Ie

a is obtained from the correlation by Chilton and Colburn (1934) [Refer to Chapter llI]

u:~g (Mg,m-1
2
+M

g,m ). Zm is calculated as follows:

(
Mg.m- I +M..... UH -H)

2 1 .....-1 g,m
Z = qlV = (4.60)

m qt mcoolCp.cool(tm -tm+l)

C
f
is assumed to be unity unless related experimental data are available to estimate it. This

is justified as it has been shown by Owen et al.(1980) that Cf is close to unity for

condensation inside a vertical tube with low vapor shear.

To determine 8s,m, the following procedure needs to be followed :

(a) Assume 91,01 = 1
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(4.63)

, which is the same as ( (1 _ ))
Do Tg t .

I=m
i=m

(c) Calculate the condensation molar flux, DT,m from :

· _ Mg,m-l-Mg,m
DT,m - AA (4.61)

o

where M o , the area ofthe increment can be detennined as:

AA = Qm =mcoo1Cp,oooI(tm-tm+1)
o () (4.62)

qt,m Uo T&JD -tm+1

(d) Calculate 9a,m from 9a,m =(+-) (Eqn. (4.22», where 8m is given by
e -1 i=m

DTmCpg
am = ' (Eqn. (4.23».

ag,m

(e) If 9a,m is not converged, go to step (b) with the last calculated value of 9a,m.

1+ Zaoi

a g9.
Thus, the value of ( ) with the converged value of 9a.m is obtained as a

a oi Tg-t

i=m

function of Qo-.m·

In the above manner, calculations are carried out for all the increments (i = 1 to p) to

obtain _1_ as a function of Qo-+i. The required heat transfer surface can then be
qt,i

determined by integrating _1 numerically or graphically with respect to Q.
qt

The above described design procedure is for the case ofpartial condensation, where

M&out ~ O. The problem oftotal condensation has to be dealt with differently.

For M&out =0, the overall total and component mole balance equations, Eqns.(4S} and

(46a,b,c) reduce to :

TOTAL:

COMPONENT:

j=l,n-l
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(4.66)

This means that the molar tlowrate and the composition ofthe vapor-gas mixture and the

conde.nsate are identical to each other at the vapor entrance. The reflux ratio, R, defined as

R
M 1out •= · ' IS always equal to unity.
Mg,in

The overall energy balance equation, Eqn. (4.47 ) reduces to :

QT =Mg,inHg,in - M1.outH1,oul (4.65)

To determine QT using this equation, the temperature ofthe outlet condensate stream

should be known. Assuming the condensate stream is saturated, this can be obtained from

equilibrium calculations using xi.out0 =1, .. n) and P. Once QT is determined, the mass

flowrate and the outlet temperature ofthe coolant stream can be fixed suitably such that

Eqn. (4.48) is satisfied.

The incremental mole balance equations, Eqns. (4.49), (4.50a,b,c), (4.53) and

(4.54a,b,c) reduce to :

TOTAL:

COMPONENT:

j=l,n-l Yj,i =X j,i+l
(4.67)

for all i, i = 1, p. This means that at every point ofthe condensation path, the molar

tlowrate and the composition ofthe vapor stream and the condensate are identical to each

other.

Unlike the case ofpartial condensation, for total condensation, the increments are not

fixed a priori as steps in the coolant temperature. Assuming that the liquid and the vapor

phases leaving an increment are in equilibrium with each other, the increment calculations

are carried out as follows. For i = 1, from Eqn. (4.67), it is known that :

Xj,lO =1, ..n) =Yj,o(j =1,..n) (4.68)

Yj,l(j = 1, ..n)and Tl are detennined from equilibrium calculations using x j,l(j = 1, ..n) and

P. Also, x j.2(j = 1, .. n) is obtained using :

xj.2(j =1,.. n) =Yj,l(j =l, ..n) (4.69)
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Similarly, for i = In, xj,m(j =1, .. n)[same as Yj,m-I(j =1, .. n)] are known. yj,m(j = 1, ..n)

[same as X1m+l(j = 1, .. n)] and Tm are determined from equilibrium calculations using

Xj,m(j = 1, .. n) and P.

The above calculations are repeated until, for an increment i = p, Yj.p(j =1,.. n) is

obtained very close to unity. This is the last increment and the number of increments thus

is equal to p. The range ofthe coolant stream temperature, t from tiD to tout is now

divided into p equal parts, designating the size ofeach increment. For any increment i = In,

the only unknown quantity is the molar flowrate ofthe condensate stream entering the

increment, M1,m+1 [which is the same as the molar flowrate ofthe vapor stream leaving the

increment, Mv,m]. This is obtained using the incremental energy balance equation, Eqn.

(4.55a) rewritten as :

Qm =Mg,m_I(Hg,m-I-HI,m)-M..m(Ha.m-Hl.m+l) (4.70)

where Qm is obtained from Eqn. (4.55b). The above calculation is carried out for all

increments, i = 1 to p. For i = p, M1•P+1 should be obtained as zero.

The remaining calculations to determine the integrand _1_ in Eqn. (4.44) as a function
qt.i

of Q(Hj and then the required heat transfer surface by numerical or graphical integration

are the same as for partial condensation.
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CHAPTER V

PROCESS DESIGN AND MECHANICAL DESIGN

Process Design

The overall design procedure for a vertical vapor-in-tube reflux condenser is as

follows

1. Select a tube diameter, d i . Select a suitable tube inlet geometry and a convenient

method ofvapor injection and condensate removal. See Fig. 2.5, Chapter ll. Calculate

the flooding vapor velocity using the strategy described in Chapter ll. This flooding

velocity is for a case in which the vapor flow is distributed evenly between the tubes of

a tube bundle. To correct for maldistribution effects, the design flooding velocity can be

reasonably assumed to be 70010 ofthe above value. The operating vapor velocity is then

chosen as 0.7 times the corrected flooding velocity.

2. From the total vapor flow and the operating vapor velocity, detennine the number of

tubes required using :

(ritg)T=PSVS[(~i2)Nt] (5.1)

Select a suitable tube pitch and layout and detennine the shell size required to hold Nt
tubes. Use a full tube-count ifmore tubes can be accommodated. Note that there can

only be one tube-side pass in a vertical vapor-in-tube reflux condenser.

Ifthe reflux condenser is to be mounted directly on top ofa reactor/distillation

column, it is advisable to compare the sheD diameter obtained with the diameter ofthe

reactor/distillation column. Comparable shell diameters can be obtained by adjusting the

tube diameter and the tube end conditions suitably.
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3. Carry out the appropriate design calculations described in Chapter IV depending on 

(a) whether the condensation is ofa pure vapor or a multicomponent mixture, and (b)

whether the condensation is total or partial.

Though the above design procedures refer specifically to condensation in a single

tube, they can be applied directly to a complete condenser tube bundle, as always, by

assuming that all the tubes in the bundle behave identically. In the above evaluations,

care should be taken however in calculating the tube-side heat transfer coefficients,

which should be based on tlowrates occurring in a single tube.

The shell-side heat transfer coefficient can be calculated using the Delaware

method for shell-side design or other known methods.

4. Calculate the required tube length from the heat transfer surface obtained above using :

Ao =(7tdoL)Nt (5.2)

5. Repeat the above procedure for different values ofthe design parameters such as tube

diameter and layout, tube inlet geometry, coolant stream conditions, etc., to arrive at a

'good' design.

Mechanical Design

Some ofthe important mechanical design considerations for a vertical vapor-in-tube

reflux condenser are :

1. Higher operating vapor velocities and thus a higher capacity utilization ofthe reflux

condenser can be sought by :

(a) Use oflarge diameter tubes.

(b) Use ofa suitable tube inlet geometry and a convenient method ofvapor injection and

condensate removal that can allow a smooth and steady countercurrent flow ofvapor

and condensate at the tube entrance for high relative velocities offlow. The different

tube end conditions studied in the literature are shown in Fig 2.5, Chapter ll. It is
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worthwhile to note here the relative simplicity ofthe angled tube-end design and its

proven advantages over a square tube-end design, as shown by English et al. (1963).

However, care should be taken to avoid flooding and entrainment in the connected

plpmg.

2. Venting for in-tube condensation is simple as the flow path is fixed and the point of

accumulation ofthe non-condensables is clear. For a vertical vapor-in-tube reflux

condenser, the vent nozzle should be placed at the top ofthe upper header. The sbeU

side should be vented through the upper tubesheet.

3. The differential expansions ofthe shell and the tubes ofa heat exchanger due to large

temperature differences are accounted for by suitable mechanical design features that

avoid the build-up ofthermal stress. For a discussion on the different construction

features used to deal with the thermal stress problem, refer to Bell (1993). For a

vertical vapor-in-tube reflux condenser, a fixed tubesheet with a shell-side expansion

joint or a floating head design could be used depending on the magnitude ofthe thermal

stress problem. Fixed tubesheet designs should work most ofthe time because ofthe

relatively small temperature differences involved in a reflux condenser. Among floating

head designs, the 'outside packed lantern-ring' arrangement could be preferred

considering its advantages for a single tube-side pass construction.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. There is wide disagreement between the different analytical and experimental

correlations available in the literature for predicting the flooding velocity in vertical

tubes. The principal reasons for the disagreement are - (a) differences in the criteria

used to define the flooding point, and (b) differences in the inlet tube-end conditions,

whose effect on the flooding phenomenon is difficult to account for. The effect of

condensation on the flooding phenomenon is also not clearly understood. Keeping the

above points in mind, a suitable method has been developed for predicting the flooding

vapor velocity for any reflux condenser design problem as accurately as possible.

2. The film flow hydrodynamics and the heat transfer aspects of a reflux condensation

process are not well understood. For determining the condensing heat transfer

coefficient, the available correlations for a cocurrent vapor-condensate flow situation

with zero vapor shear should work well enough, as vapor shear is expected to be

negligible throughout a normal reflux condensation process. However, a method has

been devised to estimate the relative magnitudes ofthe forces ofvapor shear and

gravity on the condensate film. Based on this, a general strategy for predicting the local

condensing heat transfer coefficient has been developed.

3. The film theory methods of condenser design are complicated to use. The accuracy of

their predictions is greatly dependent on the accuracy of the input quantities and the

relevant calculations. For a preliminary condenser design, the approximate methods

should be preferred. In this work, an approximate generalized design procedure has

been developed specifically for multicomponent total/partial reflux condensers, using
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the Silver-Bell-GhaIy design equation modified by McNaught (1979) and Sardesai et aI.

(1983) [Eqn. (4.44)].

Recommendations

1.(a) An experimental study needs to be carried out to determine the effect of different

tube end conditions on the flooding velocity in a vertical countercurrent adiabatic or

condensing two-phase flow system. A means of uniquely characterizing the tube end

conditions needs to be determined.

(b) The relation between the different flooding point definitions used in the literature has

to be established. Further studies on flooding should employ a common definition for

the flooding point. Onset of liquid entrainment would be a good definition for the

flooding point as it is the most restrictive and is likely to be the most important to a

condenser designer who cannot allow condensate loss by entrainment.

(c) The effect of condensation on the flooding phenomenon has to be investigated.

2. A complete experimental and analytical study has to be carried out to develop a reliable

method of predicting the condensing heat transfer coefficient in a reflux condensation

flow situation for a wide range of flow conditions.

3. Sample reflux condenser design problems have to be worked out using the design

procedure developed in this work to confirm its correctness and offer modifications to

it to improve it further.
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Model

APPENDIX A

SUMMARY OF ANALYTICAL MODELS FOR VERTICAL COUNTERCURRENT FLOODING

Basic Equation(s) Empirical Equation(s) Fluids Compared Flooding Equation

Potential flow
Imura et a1. (1977)

Viscous flow
Cetinbudaklar and
Jameson (1969)

Finite-amplitude wave
Zvirin et al. (1979)

Separate cylinders
Wallis (1969)

Laplace
Bernoulli

Orr-Sommerfeld

Momentum

Continuity
Momentum

Mean film thickness
Critical wavelength

None

Interfacial shear

None

Air-water
Air-ethyl alcohol
Air-n-heptane

Air-water
Air-glycerol

Air-water
Air-glycerol
Air-silicone oil

Air-water

V
g

+ VI = ~(k 1.. )Ji
Pg r-o

Vg =vg(Re, kc i , fluid properties)

Vg,crit =min(vg), when kC i > 0

1/ [ JIL
2• 72. I1, Pg 11 _ Pg-;+(-;) 1- & = Vcr (PI - p.)gd

2dJ;y 2f..(J~)2
--+ =1-£

t 2.S (1 _ £)2

(J;)Yntl +(J; )Ynt1= I,

where n is a constant

.....
o
~



APPENDIX A

(CONTINUED)

Separated flow F(E,J; ,J~) =2~(J;Y 2fw(J~ )2
(1- E) =Bharathan et a1. (1979) Momentum Interfacial shear Air-water E2.S

-
(1_ E)2

G(E,J;,J~)= ==0

Stationary wave
Ap = Ap(vg , VI' fluid propertie~

Shearer and Davidson Wave profile Pressure distribution Air-water
(1965)

d(Ap)
----+00

dVg

Hanging film
Wallis and Kuo (1976) Bernoulli None Air-water Kg•crit =1.87

Roll wave Momentum Mean film thickness Air-water
; B~J;r(no(J;J~)2 +4)+150f)J;t =IRichter (1981) Interfacial shear

(Adapted from Bankoff and Lee, 1983)
~
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APPENDIXB

SUMMARY OF EMPIRICAL CORRELATIONS FOR VERTICAL COUNTERCURRENT FLOODING

Experimental Range Flooding EquationAuthors

Kamei et a1. (1954)

Tube size, m
d = 0.019,0.0316,

0.0418
L=2.5

Test fluids
Air-water
Air-millet jelly
Air-soap solution

50 < Rei < 700
. ( )0.13( )0.'1() 2)0.231P&~& = 3~.~ ~ ~ d Pi g 00023

PdI ReI PI 111 111

Air-water
Feind (1960) d = 0.02, 0.05 Air-diethylene 0.15 < Rei < 3000 ( J4( J7S 125m:; ~ ~. +1.4*ld =130ti)L = 0.96,2.5 glycol solution

m = 58.2, n =0.33 if Rei ~ 400
m = 157.7, n = 0.5 otherwise

d = 0.0127, 0.019,
(J;)~ +(J~)~ =cWallis (1961) 0.0254, 0.051 Air-water

L = 1.22 C =0.725 - 0.875

Hewitt and Wallis
(1963) d = 0.0318 Air-water

J~ < 0.30 (J;)~ +(J~)~ = 1

Water
English et ale (1963) d = 0.019 Carbon tetrachloride

n-propyl alcohol L . { d 0.322 pf 419a O097 )
0.1~-~1.0 JI =0.28 0462 OISO -OO7S .....

n-heptane G 0PI TIl JI W



APPENDIXB

(CONTINUED)

d=0.0318 Air-water
(J;)X +0.34(J;)X =0.79Clift et al. (1966) L = 1.83 Air-glycerol 0.01 < J~ < 0.09
Kg,crit =2.24

Tobilevich et a1. d = 0.0327, 0.0525 Air-water
Fr =aexp{{:;)-0.2Kg}(1968) L=3.0 Air-sugar solution Rei < 1800

Steam-water
a =0.129, b =-14.14 ifFr > 0.012
a =0.065, b =-10.12 otherwise

Pushkina and Sorokin d = 0.31, 0.031,
(1969) 0.012 Air-water 0.005 < J~ < 0.064 Kg,crit = 3.2

L=2.5

(rs

Hydrogen-diesel oil jg =F(F2~
Diehl and Koppany d = 0.0266, 0.0525, Air-water
(1969) 0.0158 Steam-water ( f4F. = _d_ if F. < 1

G/80

F. =I otherwise

( . f2SF
2

= PI~I
PiJ)

Alekseevet aI. (1972) Steam-water J; ~ 1.0 K,.etit =O.2576Fr-o 2280°·26

......
0
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APPENDIXB

(CONTINUED)

d = 0.004-0.025
Grolmes et al. (1974) L = 0.04-1.30 Nitrogen-water 0.4 < Rei < 140 { r~- 1 1 ~ g8vg = . 044

Pg 0.006 +20082
( Tlrer ITI) .

d = 0.0127, 0.0318 Air-water
(J;)~ +(J~)~ =cHewitt (1977) L = 1.22, 2.44 Air-glycerol

O.Ol<J~ <0.275
Air-silicone oil C depends on fluid property

Suzuki and Veda d = 0.029, 0.01, Air-water (P.(v. +v.YJ=alogX+b

(1977) 0.018 Air-glycerol Plg8

L = 0.5 - 2.0

X=[0.63R~-XBOX(~J~)
a and b are tube length dependent

Dulder and Smith d = 0.051 Air-water 77.5 < ReI < 822.8
(J;)~ +(J~)~ = 0.88(1979) L = 3.94

d = 0.0159,0.0318, Air-water
Chung et ale (1980) 0.046, 0.070 Air-silicone oil 0.128 < KI < 2.265 K~ +rnK~ = c. tarn{C2d·Y4)

L = 0.914 Air-white oil m =0.65 - 0.80

C] = 1.79-2.1,C, =0.8-0.9

(Adapted from Bankoffand Lee, 1983)
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