ON THE MODELING AND SCREENOUT DETECTION
BASED ON A SIMPLIFIED MODEL OF

HYDRAULIC FRACTURING

By
JORGE CHIRIBOGA
Bachelor of Science
Pontificia Universidad Catolica del Peru
Lima, Peru

1990

Subbmitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfiliment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1994



ON THE MODELING AND SCREENOUT DETECTION
BASED ON A SIMPLIFIED MODEL OF

HYDRAULIC FRACTURING

Thesis Approved:

}é?%‘im o~—

z;ﬁdﬁéér
» ) > 'j\ .
4 /'
M%{ M

VI y Bt 7 e o7

“~"Dean of the Graduate College

i



ACKNOWLEDGMENTS

I wish to express my sincere appreciation and thanks to my thesis adviser, Dr.
Eduardo Misawa, for his guidance, and support throughout this graduate project.
Many thanks to Dr. Gary Young, who began as my project advisor, and gave me
valuable support whenever I needed. Many thanks to Dr. Larry Hoberock for serving
on my committee.

Sincere thanks to my unforgettable friends May-Win, John Newton, Michael
Moan, and Mike Arrington who made my staying at this School pleasurable. All of
you made me feel at home.

I would like to express my deepest gratitude and admiration to my parents,
Vicky and Carlos, for being my total support through every step of my education, and
for being by my side whenever I needed them. Your teachings will never be forgotten.

I also want to thank the financial support provided by the Commission for
Educational Exchange between United States and Peru (Fulbright Program), and the
Pontificia Universidad Catolica del Peru that gave me this unique opportunity to come
to USA.

Finally I want to thank the financial support given to this project from
Halliburton Services and the Oklahoma Center for the Advancement of Science and

Technology (OCAST).

idi



TABLE OF CONTENTS

Chapter Page
1. INTRODUCTION.. ..o 1
Generalities ......o.vviniiin i 1
Scope and contribution of this thesis...............cooeoiiiii i 2
OVEIVIEW . ..eiiitiiiit et 3
2. PROBLEM STATEMENT ... ..o 5
3. TWO DIMENSIONAL FRACTURE PROPAGATION MODELS........... 9
L0277 S T O e 9
The PKN model ... 10
The GAK model.........cooeiiiiiii 13
The radial model ... 17
Effect of non-Newtonian fluids ...............c.ooi, 19
The pseudo 3-D dynamic models............cccoeiiiiiiiiiiiiinenenenn. 19
N1 11000 111 o 20
4. SIMPLIFIED DYNAMIC MODELS.........cociiiiiiiien 23
OVEIVIEW . ...ttt 23
The dynamic PKN model ... 24
The dynamic GAK model ..........c.coooiiiiiiiiiiiiiii 27

v



The dynamic Radial model ......................oi 32

SUIMMATY ..o e e, 36

5. STUDIES ON SCREENOUT DETECTION..........cccoiiviviiiiinnininnn., 41
OVEIVIEW ...ttt e e, 41

Generated PKN-type pressure profile............c..ovviiiiiiinnn .. 42

Off-line parameter eStiMation ...........oovveeiieiiiierienieeenenannnnes. 45

The sensitivity of the dynamic PKN model..................... 46

The Weighted Least Square Estimator .......................... 47

On-line parameter eStiMation.............cvuvrviiriiriniireiieneeananns. 53

Screenout deteCtiOn .........covviiiiiiiiiiiiii i 63

6. RESULTS AND ANALYSIS ... 74

7. CONCLUSIONS. ...t e .77

8. SUGGESTED FUTURE RESEARCH .........c.ccoiiiiiiiiiiiiiiiiiniinnen, 78
REFERENCES - ... it 79
APPENDIXES .. e 81
APPENDIX A - Matlab M-Files...........cooooiiiiiiiiii i 82
APPENDIX B - Job schedule.............ooiiiiiiiiiic 90
APPENDIX C - Additional simulations ............cccccooiiiiiiiiiiiiiinn.. 103



LIST OF TABLES

Table Page
I. Estimation of the generated parameters without weighting factor ......... 51
II. Estimation of the generated parameters for a triangular weigthing

12101 (o) SRR 51

vi



LIST OF FIGURES

Figure Page
1.1 The Fracturing PrOCESS .......ooviiiiiiiiiii it e eeeae e 5
1.2 Schematic of proppant blockage inside a hydraulic fracture................... 6
1.3 Theoretical fracture-propagation models vs possible

actual in-situ behavior .............coiiiiiii 7
3.1 Schematic representation of the PKN Model.........................lLl 10
3.2 Schematic representation of the GAK model .................ccoooiiiiiini, 14
3.3 Schematic representation of the Radial model .............................. ... 17
5.1 General pressure profile .........c.cooviiiiiiiiiiiiiiii 43
5.2 Input Slurry Rate into the fracture ............ccoooiviiiiiiiiiiiiiiiiiens 44
5.3 Sensitivity of the output pressure with respect to Qly.........ccoevevenenenn... 48
5.4 Sensitivity of the output pressure with respect to By......ovvevvvivninninenn. 48
5.5 Weighting factor w(k) .......ccoviiiviiiiiiiiii i e e 50
5.8 Estimated parameter f for A=1and A=0.9993...............cciviiiinn.. 55
5.9 Estimated parameter a, for A=1 and A=0.96 (without noise) .............. 57
5.10 Estimated parameter 8, for A=1 and A=0.96 (without noise) ............. 57
5.11 Generated pressure profile for two different sets of parameters ........... 59

vii



5.12

Estimated parameter a, for A=0.96 for two different sets

of parameters (ZOOMEA) .........coiiiiiiiiiiiiiiii e 60
5.13 Estimated parameter $, for A=0.96 for two different sets

of parameters (zoomed) ..........c.cooiiiiiiiiiiii 60
5.14 Estimated parameter o, for A=0.96 for two different sets

(o) 21V ¢ 111151 15 £ PSP 62
5.15 Estimated parameter B, for A=0.96 for two different sets

0] @022 221 411 (5 £ S PP PSP 62
5.16 Net Bottom Hole Pressure measured on the field............................. 63
5.17 Estimated net Bottom Hole Pressure for A=0.96............................. 65
5.18 Net Bottom Hole Pressure residual for A=0.96 .............................. 65
5.19 Parameter o for A=0.96 forthe net BHP................................. ....67
5.20 Parameter By for A=0.96 forthe net BHP......................coiiiiill. 67
5.21 Parameter a,, for various forgetting factors.............ocovevieiiieiienninen. 69
5.22 Parameter [, for various forgetting factors .............cvveiiiiiiiiiininnn, 69
5.23 Filtered and estimated pressure residuals for different values of A........ 70
5.24 Pressure residuals for different values of A................cool 70
5.25 ayversus Byfor A = 0.9990. ... i 67
5.26 a, versus pressure residual for A = 0.9990 ... 67
C-1 Parameters oy and B, for A=0.9995 ... ..o 104
C-2 Pressure residual versus parameter o, for A=0.9995....................... 104
C-3 Parameters o, and 3, for A=0.9999 ......................................... 105

viii



C-4 Pressure residual versus parameter o, for A=0.9999
C-5 Parameters o, and B, for A=1.0000....................

C-6 Pressure residual versus parameter a, for A=1.0000

.......................

.......................

.......................



NOMENCLATURE

o, stress in the horizontal plane

o, stress in the horizontal plane

Ty shear stress in the horizontal plane

U, displacement vector

u, displacement vector

w(x,t) maximum width of the fracture at x, at instant ¢
p pressure

h height of the fracture

v Poisson’s ratio of rock formation

G shear rate

q flow rate per unit time

q volume rate of fluid loss to the formation per unit length of the fracture

Ax, t) cross-sectional area of the fracture

t instant of time

T(x) time at which the filtration starts

Qo constant flow rate at fracture entrance
H Newtonian fracturing-fluid viscosity

K, overall fluid-loss coeficcient



L@)

V(o)

fracture length

uniformly distributed pressure applied to the fracture wall
wetted fracture lenght
critical-stress intensity factor
fraction of fracture length

net pressure

volume of the fracture at instant 7
spurt loss

time at which pumping stops
radial coordinate

fluid pressure at wellbore
wellbore

fracture radius

power-law consistency index
power-law flow behavior index

generalized coordinates

time derivative of g;
lumped parameter

lumped parameter

lumped parameter

net pressure at the wellbore

dimensionless flow rate



dimensionless width of the fracture
dimensionless wetted fracture length
dimensionless parameter

constant

time derivativative of the pressure

constant

estimation of pressure at step k

measured value of pressure at step k

estimated normalized pressure
normalized pressure
normalized flow rate
normalized time

maximum pressure

maximum flow rate
maximum time

normalized parameter o
normalized parameter 3

sample period
sensitivity of Py with respect to oy

sensitivity of P~ with respect to By

Xii



w(k)
e(k)

vJ

cost function
weighting factor
error

cost function gradient
regressor vector
parameter vector

forgetting factor



CHAPTER 1

INTRODUCTION

Generalities

The hydraulic fracturing process has been in practice since 1947, and there has
been a lot of research, and success in many areas related to it. One of the most
complex areas of research has always been the modeling of the fracture propagation
itself. Among these models we can find the classical two-dimensional models, the
three-dimensional models, and the pseudo-three dimensional models. But, in spite of
all the technology available today that has made possible the development of more and
more complex models, there is still uncertainty about how the fracture actually
propagates.

One of the drawbacks of the current models is that they do not control the
development of the fracture propagation itself as well as detecting, and correcting some
related problems while the process is being performed. Most of the fracturing
processes are carried out by following a given job schedule that gives the operators a
short margin of freedom. All the deviations with respect to the expected propagation
of the fracture are diagnosed by experts who base their decisions on what they have
learned by years of practice in the field.

A basic requirement to develop a system, that takes into account all of the
above, is the availability to a dynamic model that provides the time histories of both the

fracture geometry and the net fracturing pressure.



Among all of the currently available models, the pseudo-3D ones are the only
ones that provide these kinds of profiles but their accessibility, for public research, is

restricted due to proprietary rights. This thesis shall try to make a contribution to this

problem.
Scope and Contribution of this Thesis

According to what has been stated in the previous Section, we shall focus this
work on the development of a dynamic model. We shall constrain this model to grow
only in two-dimensions by assuming that we have a fixed height along the fracture.

We shall also make use of the same premises in which the classical 2-D models such as
the PKN, GdK and Radial models are based. Even though we shall use the same
approach as they did, regarding the use of the fracture mechanics and fluid mechanics
equations, we shall solve them under other criteria such that, at the end of this analysis,
we shall have available a dynamic model.

This model shall have as a unique input the slurry rate pumped into the
formation; and the predicted net Bottom Hole Pressure (BHP) as its output. It will
assume a non-Newtonian fluid, and account for in-situ parameters such as the shear
stress, Poisson’s ratio, and fluid-loss coefficient.

We chose this pressure as the main output because it can be directly measured
in the field, and, as such, provide an estimation of the accuracy of the model

The main contribution of this thesis is precisely related to this dynamic model.

By working with the classical 2-D models, we developed a dynamic model that helped



to provide a fault detection scheme to detect screenout in the hydraulic fracturing

process.
Overview

In this section we will show how this thesis is organized, and give a brief
summary of what each chapter is about.

Chapter 2 states the problem by first defining what a hydraulic fracturing
process is as well as explaining some details about the so-called screenout phenomenon.
It also gives additional background to the problems that motivated this work.

Chapter 3 outlines the main characteristics of the classical 2-D models (PKN,
GdK and Radial models) by giving the premises upon which they are based as well as
the fundamental equations from which they were developed. We shall take some of
those equations as starting points in order to develop our own models but solving them
with a different approach such that we get a dynamic model. Some of the relevant
features of each model are also outlined. In addition to these 2-D models, we also
review some relevant characteristics of the pseudo 3-D dynamic models.

Chapter 4 shows the development of the 2-D dynamic models. It shows the
fundamental equations on which they are based, and shows with some detail the steps
that led to the final equations. Intensive algebra was involved in the development of
these equations but we show here the intermediate steps that we consider could be
useful if the reader wants to go through them as an exercise. It also states the main

assumptions we took in order to develop them.



Chapter 5 shows some linear system identification techniques that we used in
order to validate the proposed PKN model. We generated a pressure profile, by using
the proposed PKN dynamic equation, as a test profile, and used it as a means to verify
the accuracy of the estimation algorithm. Once the accuracy of the estimator was
considered reasonably adequate, we applied it to field data, and modified the
parameters such that we were able to distinguish the screenout fault.

Chapter 6 analyzes the results that we obtained at each step on this work as well
as a perspective view of the results of this research.

Chapter 7 and 8 summarize the conclusions, and suggestions for future

research.



CHAPTER 2

PROBLEM STATEMENT

According to [1]," The hydraulic fracturing process consists of blending special
chemicals to make the appropriate fracturing fluid and then pumping the blended fluid
into the pay zone at high enough rates and pressures to wedge and extend a fracture
hydraulically. First, a neat fluid, called pad, is pumped to initiate the fracture and to
establish propagation. This is followed by a slurry of fluid mixed with a propping
agent (often called proppant). This slurry continues to extend the fracture and
concurrently carries the proppant deeply into the fracture. After the materials are
pumped, the chemical breaks back to a lower viscosity and flows back out of the well,
leaving a highly conductive propped fracture for oil and/or gas to flow easily from the

extremities of the formation into the well". The process is depicted in Fig. 2.1.

Fig. 2.1- The Fracturing Process. [1]



Even though the fracturing process was introduced in 1947, and has now
become a standard procedure, there are still some uncertainties to be solved in spite of
the high rate of success observed. One major problem encountered in this process is
the so called screenout phenomenon.

In the course of fracturing treatment, sometimes, the pressure needed to keep
pumping the fluid into the fracture exceeds the limitations of the injection well conduit,
wellhead equipment, or pumping units. This condition is referred to as screenout [2].
When this condition is reached, the process has to be stopped. Screenouts usually occur
because of some restrictions of the fluid flow that increase the frictional-pressure drop.

Fig. 2.2. gives a graphic representation of the problem.

P2

Fig. 2.2. Schematic of proppant blockage inside a hydraulic fracture. [2]

Rock mechanics and fracture mechanics play an important role in the study of
this complex process. Among some of the factors that have been identified for the
theoretical analysis, we have the variations of in-situ stresses existing in different layers

of the rock, variations in mechanical rock properties (elastic modulus, Poisson's ratio),



fracturing fluid's viscosity, fluid loss parameters, fluid pressure gradients, geometry of
the fracture, etc. Some of these in-situ variables, such as the geometry and the
permeability of the fracture, are not possible to measure directly in the field at the
current state of the technology. Many attempts have been made to overcome this
problem by making different assumptions that have led to different models. The
models have evolved from the very primitive Carter-type models (that completely
ignored the rock mechanics), going through the ones with known heights (PKN, GdK,
and Radial models) [3], also known as the 2-D models, until the most recent ones that
take advantage of more computer power such as the 3-D models [16] [17]. However,
experience leads us to believe that there is still a difference between the predicted

geometries and the actual ones in the field. Fig. 2.3 depicts this situation.

ACTUAL?
THEORY

Fig. 1.3. Theoretical fracture-propagation models vs. possible actual in-situ behavior. [1]



The aim of any model is to predict the geometry of the fracture (length, width,
and height). The early models assumed some geometry (by assuming the shape and the
height for example). The latest ones, such as the 3-D, do not make any geometrical
assumption, and solve the problem by using the finite elements technique.

Even though the aim of any model is to predict the geometry of the fracture, it
would also be useful if the model could give some insights about the process itself such
as the ability to predict screenout on-the-fly.

Taking all these factors into account, the aim of this work is the developing of a
fault detection algorithm that will allow to detect screenout. But, in order to do so, we
need to rely on a physically based model that could provide some insight about the
process itself, and that will be the first problem to be solved in this work, followed by

the fault detection itself.



CHAPTER 3
TWO-DIMENSIONAL FRACTURE PROPAGATION MODELS

Overview

In order to estimate the resultant geometry of a hydraulic process two different
disciplines must be combined: fluid mechanics, and fracture mechanics. The role of fluid
mechanics is to establish the pressure distribution inside the fracture, and the role of
fracture mechanics is to establish the resultant shape of the fracture. However, in the case
of the 2-D models, the fracture boundary in the plane of propagation is specified in
advance. All these models are based on the assumption that the fracture deforms in a
linear elastic manner.

In addition to that we have the compatibility condition that states that the fracture
geometry and the pressure distribution creating it must be such that each one of them will
produce the other one. However this condition is extremely hard to verify, and one must
usually assume a pressure distribution, calculate the fracture opening resulting from it,
and assume that the compatibility condition is met [4].

In this chapter we shall show the corresponding relations of the width, the length
or radius of the pre-defined fracture geometries for the 2-D models such as the PKN,
GdK, and Radial models. For details, consult the original papers [5], [6], and [7].

We shall assume a Newtonian fluid for the three cases for the sake of clearness.
Similar results can be obtained for non-Newtonian fluids by incorporating the so-called

power-law into the same analysis.



The PKN Model

This model (Fig. 3.1) was developed based on the premises published by Sneddon
[8] which later Nordgren [7] used to compute the fracture length and width, at any value
of time during the process, by solving a numerical differential equation. The assumptions
under which this model is valid are [2]

e The fracture has a constant height, A, independent of fracture length.

e The fracturing fluid pressure, p, is constant in vertical cross sections
perpendicular to the direction of the propagation, and it equals the rock stress
perpendicular to the fracture plane, o,, at the tip of the fracture.

e Each vertical cross section deforms individually and is not affected by its
neighbors.

¢ The injection rate into the fracture, q,, is constant.

In [8] Sneddon considered the distribution of stress in the interior of an infinite
two-dimensional elastic medium when a very thin internal crack -A<y<h, x=0 (Fig. 3.1) is
opened under the action of a pressure which was considered to vary in magnitude along
the length of the crack. He considered the stress in that medium described by three
components of stress Gy, oy and Txy- The corresponding components of the displacement
vector were denoted by uy and uy. Under these conditions, the differential equations
determining the stress components are

Oox aTxy

. 3.1)
i R (3.2)
x oy



PLANE OF FRACTU.&

VERTICA
CROSS-SECTIO

A

HORIZONTAL

y%#é ‘ | CROSS-SECTION
bo,t) | , :

Fig. 3.1 Schematic representation of the PKN model. 2]

The boundary conditions to be satisfied are that all the components of stress and

of the displacement vector must tend to zero as x+y? tends to infinity, and that

® Txy= 0, for all values of y,
(i) ox= - p(), Y| < A,
u=0,y|<h
For the case of a uniform pressure, p, along the vertical section of the fracture,

Sneddon solves this partial differential equations and finds,

wix,p) = & 0)(”%”)_0”) Jh -y (3.3)

where w(x,?) is the maximum width of the fracture at the distance x from the wellbore at

instant £; v is the Poisson's ratio; o is the in-situ minimum stress, and G is the shear rate.

11



The Eq. 3.3 represents the fracture mechanics of the process, and must be solved
simultaneously with fluid mechanics. In order to do that Daneshy [2] uses it in

combination with the local-continuity equation

0q(x,t) Fq(nn + OA(x,1) _
Ox ot

0 3.4
where g(x,f) represents the flow rate (volume per unit time) through a cross section; g,(x,)
is the volume rate of fluid loss to the formation per unit length of fracture, and A(x.f) is

the vertical cross-sectional area of the fracture (elliptical). They are given by

Th

A(xr) = = wx) (3.5)

2hK

q,(x,t) = —m (3.6)
where K, represents the overall fluid-loss coefficient as measured in laboratory tests and
7(x) represents the time at which the filtration starts.

The Eq. 3.6 represents the fluid-loss into the formation as proposed by Carter [2].
In his theory, he assumes that the fluid is flowing in a rectangular slit of constant height
and width as well as a constant flow rate. Only the fracture length, L(f), is assumed to be
variable. Even though Carter's assumptions differ from those assumed for this and other
models, it has been found to give a good approximation for the fluid-loss into the
formation.

These equations are combined with the fluid pressure gradient in the propagating
or x direction, determined by the flow resistance in a narrow, elliptical flow channel. For

Newtonian flow behavior we have,

12



op(x,1) _ 64 qp

—_—— 3.7
ox n w(x,t)h (3.7)
Combining the above equations we get the partial differential equation w(x,f),
G o'w'  ow 8K
LA L ) (3.8)

64(1-v)hp oOx’ o mfr-t(x)
where T[L(t")]=t', for 0<t'<t, and subject to initial conditions
w(x,0)=0
and boundary conditions
w(x,)=0, x>L

and

w0, _ 256u(1-v)g,
ox nG

for a one sided fracture. A numerical solution for this set of equations was proposed by
Nordgren [7].

The major characteristic of this model is that it predicts an increase in fracture
length with an increase in the treatment pressure. This model has been found to give
good results for long duration treatments when long fractures are obtained but gives

narrower fractures than the ones observed in the field [2].

The GdK Model

This model (Fig. 3.2) was developed based on the premises published by

Khristianovic and Zheltov [9], and the so-called equilibrium condition proposed by

13
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Barenblatt [10]. Geertsma and de Klerk combined them later in [6]. The assumptions

under which this model is valid are [2]

Fig. 3.2 Schematic representation of the GdK model. {2]

The height of the fracture, A, is fixed.

The width of the fracture, w(x,t), is constant in the vertical direction.

The injection rate into the fracture, g, is constant.

The fluid pressure gradient in the propagating direction is calculated by [3],

p0,1) - p(x,1) = 12:"" | du (3.9)

s W (u,1)

The main difference of this model with respect to the PKN model is that it
assumes an approximately constant distribution of pressure applied to most of the fracture
wall. The main pressure-fall along the fracture occurs in a comparatively narrow zone
near the tip of the fracture [9]. This is the condition established by the fracture

mechanics. Therefore the pressure distribution in the fracture can be taken as follows,

14
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p(f.0) = p(yfor0 <f, < f, (3.10)
p(fi.t) =0 for f <f, <1
where L, is the length of the wetted fracture with £, = L /L close to unity. With this
pressure distribution, the Barenblatt's condition establishes that,

L,
L

Ju, = — =sin( =+ —=) 3.11)

T C
2 p plL
where K_ is the critical stress-intensity factor.

With the exception of the tip of the fracture, where Barenblatt's condition has to
be verified, the shape of the fracture in the horizontal plane is elliptical, and it reaches its

maximum value at the wellbore. Geertsma [2] showed a general expression for the width

of the fracture,
S
L2 d .
w(x,t) — 4(1 U) L( ) J‘ ledeZ I Ap(le) le (312)
\/ Lz = L(t ) - f Ll
where f, ,, and f,, are all fractions of fracture length, and
Ap(f)=p(fr) o, (fu) (3.13)
Now, by taking the pressure distribution established by Eq. 3.10, we get an
expression for the fracture width [2] at any position x and instant ¢
2(1-v) x Y
wet) = 299 BB -0 )1 ( L(t)) (3.14)

The Eq. 3.14, that represents the fracture mechanics for the GdK model, is now

solved simultaneously with the mass balance equation,

15



dv () dL
=g, -q(t) - 2V.h— 3.15
40 - WA (3.15)

where V(7) is the total volume of the fracture, g, is the total fluid-loss into the formation,

and V, is the spurt loss.

The total volume of the fracture, V, is evaluated taking into account the elliptical

shape of the fracture in the horizontal cross sections,

V()= % hw(0,8)L(?) (3.16)
The total fluid-loss is then evaluated according to,

dl dr
1) = 2Kh|— 3.17
g,(t) ,Ojdt = (3.17) |

This set of equations is solved [2] for the length, L, and the maximum width, w, of

the fracture at the end of the process when the pumps are shut down,

L= w(0,15) + 8V —————1+e°‘Lerfca 3.18)
v th[ (0, 1) ,,](\/_ L) (
(1-v)ug, L 5
0,¢t)=227[—"—F">~—]* 3.19
w(0,7,) [ oh ] (3.19)
with
o, = 8K,Nnt (3.20)
nw(0,2,)+8V,,

and ¢, represents the time when the pumps stop.
The outstanding characteristic of this model is that it predicts an increase in

fracture length with a decrease in the treatment pressure. On the other hand, this model

16
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predicts relatively larger fracture widths than the ones predicted by the PKN model that

seem to be closer to reality in many field cases [2].
The Radial Model

As it is the case of linear propagation for the GdK model, the situation near the tip
of the fracture is essentially the same for the radial case, depicted in Fig. 3.3. We have an
approximately constant distribution of pressure along the fracture, with a smooth closing
region of low pressure near the tip of the fracture. The considerations here are:

o The height of the fracture, 4, is fixed.

e The width of the fracture, w(r,f), is constant in the vertical direction.

¢ The injection rate into the fracture, g,, is constant.

e The fluid pressure gradient in the propagating direction is calculated by [3],

p(r.0) = po(1)——do_1p T (3.21)
nw (r,t) R,

AREA OF LARGEST FLUID
FLOW RESISTANCE

|_ APPROXIMATELY PARABOLIC
SHAPE OF FRACTURE

Fig. 3.3 Schematic representation of the Radial model. [2]
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where w represents the average width of the propagating fracture, R_ the wellbore radius,

and p, the wellbore net pressure.

The Barenblatt's equilibrium condition is expressed in this case as

I pp(p)dp (3.22)

Jazen ©

where p=r/R.

Applying the mass balance equation to this model (Eq. 3.15), the Carter's equation

for fluid-loss (Eq. 3.17), and the total volume of the fracture as,
8n 5
V)= -—l—s—ww(t)R () (3.23)

provided that R,,/R << 1, the solution of this set of equations is [9]

1

w(0)~2.15[MéL—‘§]4 - (3.24)

a, = 15K, Vnt (3.25)
4w(0,1,)+15V,

R =—0 _[4w(0,1,)+15V, 13 1 eerfe o) (3.26)
30m 21< N

where Eq. 3.24 is taken as an approximation for w(0, ¢).
This model seems most applicable only for the early stages of fracture growth, i.e,
for small values of ¢, and, as in the case of the GdK model, it predicts wider fractures than

the PKN model [2].

18



Effect of non-Newtonian Fluids

Throughout these models, the authors have assumed Newtonian fluids in the
fracturing process, and this is one of the main drawbacks of these models. We have to
take into account that most of the fracturing fluids used today exhibit a non-Newtonian
behavior, and, as such, we need to develop models that take this factor into account in
order to have a more accurate representation of this process.

These non-Newtonian fluids can be characterized by different models [11]. The
most popular among them is the so-called power-law that replaces the Newton's one-
parameter (viscosity) fluid law with a two-parameter relation, i.e., the power-law
consistency index and the power-law behavior index, that still allows adequate
manipulation of the equations. Depending on the assumed geometry in which the fluid
flows, we have a different equation that relates the fluid pressure gradient with the fluid

flow rate [12]. The equation for the power-law fluid is given by

o

=K'y (3.27)

where 7 is the shear stress (lbﬁﬁz), K’ is the power-law consistency index (lbf-sec"/ftz), n

is the power-law index and y is the shear rate (sec™).

The Pseudo 3-D Models

These models were developed from the PKN and GdK models by removing the
restriction of constant fracture height. They calculate fracture width as a function of

position and pressure, and apply a fracture propagation criterion to length and height.
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These models can be classified in two categories: [16] (1) models that divide the
fracture along its length into “cells” and use local cell geometry to relate fracture opening
with fluid pressure and (2) models that use a parametric representation of the total

fracture geometry. The following is a brief description [16] of the currently available

pseudo 3-D dynamic models.

RES (FRACPRO), [16] It uses measured values of flow rate, proppant concentration, and
fluid rheology parameters to calculate the time history of the pressure drop down at a
wellbore of variable deviation and diameter. The time history of the fracture growth is

also calculated.

Chevron 2D Fracturing Simulator, [16] This model can predict the propagation of
constant-height, hydraulically induced, vertical fractures for a power-law fluid. It
calculates mass flux, fracture width, pressure, and length as functions of time. It is based

on the PKN and the GdK models.

MFRAC-IL [16] This model calculates fracture length, upper and lower heights, width,
net pressure, fluid efficiency, and geometry parameters as functions of time. It also

includes options for the GdK and PKN models.
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Summary

In this chapter we have briefly outlined the different relations of the 2-D models.
They have given us an idea of the different assumptions in which they are based upon as
well as the different approaches taken in order to solve the corresponding fracture and
rock mechanics relations.

In the case of the PKN model, Eq. 3.8 provides a solution for the width of the
fracture at any given position and instant of time. For the GdK model, Eq. 3.18 provides
an estimate of the fracture length by the time the pumps are shut down as well as an
estimation for the width of the fracture. Also, in the case of the Radial model, Eq. 3.26
provides an estimate for the radius of the fracture after the pumps are shut down but it
must make use of an approxirﬁation (Eq. 3.24).

Note here that the authors made different assumptions in order to solve the
complex relations existing in this process, and some of them looked at first sight
incompatible with the original assumptions. A clear example of this is given by the
Carter's equation (Eq. 3.6) which was developed based on the assumption that the fluid
flows in a rectangular slit of constant height and width as well as constant flow rate. This
assumption is contrary to the different assumed geometries in each model. However, in
the absence of other relations and by the fact that it has been giving satisfactory results, it
is still in use even with more complicated models such as the 3-D ones.

All the different equations that we have shown so far provide estimates for the
geometry of the fracture (length, width or radius). But even if a given geometry is the

main goal in hydraulic fracturing, they are useless in monitoring the process because
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there is no cost effective way to monitor them on the fly at the current state of the
technology.

The main variable that is used in the field to monitor the process as well as to
detect screenout is the Bottom Hole Pressure. This variable, measured continuously
during the whole process, can provide feedback in monitoring indirectly the development
of the fracture geometry. However, none of the equations developed in the previous
models showed a direct relation to this parameter. This fact brings up the need to obtain a
new set of equations that could provide us a direct estimation of the pressure at any
instant of time, i.e., a dynamic model.

The following chapter will focus on the development of this "new model" but it
shall be based on the same considerations as the ones outlined above. However,
additional assumptions shall be made in order to convert the partial differential equations

into control-type equations (dynamic models).
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CHAPTER 4
SIMPLIFIED DYNAMIC 2-D MODELS
Overview

A dynamic model for the hydraulic process is indispensable to relate the injection
rate, time of treatment, fluid coefficients, and rock mechanics parameters with the Bottom
Hole Pressure (BHP). Together, they can provide information about the development of
the fracture as well as helping to control the process via analysis of the pressure.

In order to get sufficient and reliable information from these new models,
physically based equations should be studied, and as such, the classical 2-D models were
chosen to provide those fundamental relations.

As we have seen in the previous chapter, the classical 2-D models providé three
different approaches for the same process. Taking this fact into account, we will develop
a different dynamic model corresponding to each one of them.

The aim of this chapter shall be to transform the partial differential equations that
combine the solid/fluid mechanics relations into ordinary dynamic differential equations,
having the pressure as their output. Additional assumptions shall be made in order to do

these transformations. We shall show these assumptions throughout this chapter.
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The Dynamic PKN Model

The same assumptions outlined in the previous chapter shall be considered in
order to develdp this dynamic model. However, additional considerations are made in
order to gain some generality such as taking into account:

e A variable input flow rate into the fracture, and

¢ The use of a non-Newtonian fracturing fluid.

The equations that shall be considered are the fracture mechanics equation for the
maximum width of the fracture, the local-continuity equation, the cross-sectional area

equation of the fracture, and the Carter's equation as they follow

w(x 1), , = - ")ép("”) h 3.3)

oq(x,t) 0A(x,t) _ (3.4

T +q,(x,1) + o 0 (3.4)
Tth

A(x,t) = Tw(x,t) 3.5)

2hK, (3.6)

](x, t) = —_—

1 JE—T(x)

where Ap(x,t) = p(x,1)—c, is the net pressure acting on the fracture. For the sake of
simplicity we have not taken into account the spurt loss volume in the local-continuity

equation. On the other hand, we shall approximate t(x) by

= 4.1
. 1(x) L({)x @.1)

The fluid pressure gradient inside the fracture will be now calculated for a laminar

flow of a power-law fluid between parallel plates according to {12]
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OApP(x,t) =_2K' (4n+2 . q(x,n)"

4.2
o B n T wlenn™ 4-2)

where K is the power-law consistency index, and 7 is the power-law behavior index for a

non-Newtonian fluid.

Combining the above equations into the local-continuity equation (Eq. 3.4) we get

dq(x,1) _  2hK, _l:nhz(l—u)j|6Ap(x,t) 43)

ox ) p 4G or

t——x
L

with the boundary conditions
q(0,1) =q,(1)

q(x,t)=0, x> L(t)
where g(7) is the variable input flow rate, and

Ap(x,t) =0, x> L(¢)

In order to solve Eq. 4.3, we shall assume a linear, time-variant pressure

distribution along the fracture. In addition to that, we shall consider that the rate of
change of the net pressure, with respect to time, is the same at any point x along the

fracture. The following two equations summarize these assumptions:

a8p(x,) __ 8p(0.1) __8p()

4.4
Ox L(t) L (44)
?_[__BAP("” )} _0 4.5)
Oox ot

-Now integrating Eq. 4.3 from x = 0 to x = L(f), and taking into account the

boundary conditions for g(x,f), and Eq. 4.5, we get



L(t )aAp (x,1) (4.6)

_ 4KK, nh’ (1-v)
q.(1)= I Ly + —,=

In Eq. 4.6, two terms are still unknown. The first one is the length, L(7), of the
fracture, and the second one is the rate of change of the pressure with respect to time at
any point x along the fracture. Now we shall proceed to obtain the corresponding
expressions for both of them.

First of all, in order to obtain the length of the fracture, L(r), we shall substitute
Egs. 3.3 and 3.4 into Eq. 4.2. Then, we shall evaluate the remaining expression at x=0,
and from that, the fracture length can be expressed in terms of the input flow rate, the net

BHP and the remaining known parameters as follows

n _ 2n+l 7. 3n+l 2(n+1)
L(t)=[ n }(1 L) W ap (4.7)
4n+2 G 2K q,(t)

Now, regarding the rate of change of the net pressure, with respect to time, along
the fracture, we have to take into account Eq. 4.5 that implies that this rate is independent
of the fracture position. Therefore we can assume that it changes in the same fashion as

the change in time of the net BHP, Ap(0,#), according to

0Ap(x,1) _ 6Ap(0,1) _ Ap (4.8)
ot ot

Finally, substituting Eqs. 4.7 and 4.8 into Eq. 4.6, we are able to solve for the net

BHP as follows

. 3 qi(t)m»l ) L 49
Ap =aQ Apz(m]) B \/; ( . )

with the lumped parameters o and B as follow
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ot=1<51<[4n+2“ G } 4.10)

n n R*(1-v)?
8GK,
e T 4.11)

The resulting Eq. 4.9 is a nonlinear, time-variant, ordinary differential equation
for the net BHP, Ap and it is linear in its parameters . and . This equation represents a
simplified model of the PKN process, and by no means pretends to provide more accurate
results than the original model equation. However it shall facilitate the analysis of the

process from the fault detection point of view as we shall see later.
The Dynamic GdK Model

The development of this dynamic model shall be based on the same premises as
the ones outlined in Chapter 3. As it was the was for the dynamic PKN model, the
following are the additional considerations for this case:

e A variable input flow rate into the fracture, and

¢ A non-Newtonian fracturing fluid is considered.

In order to develop this dynamic model a different approach will be used with
respect to the one outlined in Chapter 3. We shall use the local-continuity equation
instead of the mass balance equation so as to solve simultaneously the solid/fluid
mechanics equations.

Now, if we express the Eq. 4.2 in terms of the partial fracture length, f= x/L, we

obtain
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oAp(f,1) _ 2K |:4n+2}" L) q(f,.0)"

. ——e 4.12
o, h w(f,,0)*" )
Integrating Eq. 4.12 from f= 0 to f, we have
2K L(1) [4n+2}" q(0,0)" "t O(u,1)"
Ap, () — A )= ~—d. 4.13
p ( ) p(fL ) hn n w(O,t)ZrH-l ; W(u’t)-nH u ( )

where 0< f, <f, , and f,, representing the fraction of the wetted fracture length, with f,,

close to unity, and

_qu,t)
Q(uat) - q(O,t)

In Eq. 4.13, if we let f=f,, , we get Ap(f,,,/)=0, and obtain an expression for the

net Bottom Hole Pressure

' n n Juo n
ap.(t) = 2K L(t)li4n+2} q(0.1) f ow,n)" @.14)

hn n W(O,I)ZMH W(u’t)Zm-l

0
Dividing Eq. 4.13 by Eq. 4.14, taking the derivative with respect to f,, and

evaluating the resulting equation at /=0, we get

Ap(fu1) _ ) _ A1)
o, ¥, 1(f,0)

(4.15)

where

Jro n
O(u,1)
I(f) = Jm—l
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represents a constant expression given the value of f,,. Therefore the gradient of the
pressure along the fracture follows a linear distribution that depends only in the net BHP.

Now substituting Eq. 4.15 into Eq. 4.12, and evaluating the resulting expression at f, =0

Ap. (1) _ 2K [4n + 2]" L) g(0,6)"
n

1(f10) h" W00 (4.16)

In Eq. 4.16, recall that ¢(0,f)=¢q(f), and that w(0,) is given by Eq. 3.14. Therefore,
substituting these relations into the above equation, we get an estimation for the fracture
length as follows

1

Ly = | IwX [4n+2}"( G_yane 7,)" ”
2m L on J1-vT A, (0(p() -0 )

4.17)

Eq. 4.17 provides the length of the fracture in terms of the process parameters, the
input flow rate, the net BHP as well as the assumed, statistically equivalent, constant
pressure in the fracture. The problem here is that we have two pressures that we have to
deal with and, in the field, we only measure one so we shall make use of the
approximation proposed by Geertsma [6] that assumes that

Ap, (1) = p(~c,
simplifying the final expression for the fracture length as follows

L) =C, V4, ()

(p()-c,) "

(4.18)

with

L

¢ _[I(fLo)K' 4n+2 GU)ZM,]»

P ) G
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Now, by substituting Eq. 4.18 into Eq. 3.14, we get an equation for the width of

the fracture in terms of variable the input flow rate

w(x,t)zzc,(é-u) iq,(f) 1\/1—(1,();)2) (4.19)
(p() -0 y)"

The Eqgs. 4.18 and 4.19 provide expressions to evaluate the length, and the width
of the fracture if the pressure is known (the input flow rate is considered a known
parameter). A dynamic equation of this pressure shall be found by combining these
equations with the ones provided by the fluid mechanics. Recall that the local-continuity

equation is given as follows

oq(x,t) O0A(x,t)
—_ 4+ ,t + =
5 g,(x,1) o

0 (3.4)

In order to transform the local-continuity equation into an ordinary differential
equation for the pressure, we shall integrate it along the fracture length. But, before
doing that, we shall find an equivalent expression for the rate of change of the
crossectional area A(x,f) that is now given by

A(x,1) = hw(x,t) | (4.20)

Now, by substituting Eq. 4.19 into Eq. 4.20, we can express the third term of the

local-continuity equation as

OA(t)

— - F(x)+G(x)+ H(x) 4.21)
where
Fx) = _2hC(1-v)ygq, (1) P - (=X
(x)= nG - Al L(¢)
(p-oy) "
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Gix )_ZhC(l o),/q,(z L) x?

GL(tY (p-o )" \/1 (f(t—))

He < 2HGA-V) g.(t) L [ = R
G 2,q,(1) L(t)

(p-o )"

On the other hand, recall that Carter's equation is expressed as

q,(x,1) = = (3.6)
with
q(0,1) =q,(1)
q(x,t) =0, x= L)
where g(?) is the variable input flow rate. Now substituting Egs. 4.21, and 3.6 into the

local-continuity equation (Eq. 3.4), and then integrating the resulting equat'ion from x=0

to x=L(¥), we get

4hKL(t) 7hC, (1-v):/g, (1) L(r)p nhC,(1-v),q, L(t) , TG, (1- u)q, L(t)

—q,~ \/; n+l O
2nG(p~06,) " 2G(p- o,,)" 4G(p-o,)" JZ

(4.22)
an expression that is independent of x.
We now need to replace L() and its derivative in Eq. 4.22 in order to have an
ordinary differential equation for the pressure. Therefore, substituting Eq. 4.18, and its

derivative, into Eq. 4.22, and solving for the pressure, we get

(I_)—GH)T gL o 4.23
+B_——J6L(—tﬁ +Yqi(P Cy) (4.23)

2(n+1)

p- ~o(p-cy) "
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where

n+l1

8n?(1-v) "

a=

1 n+1

n(n+2)(4n+2)K'I1(f,))"G "

_ 16nK,  hn );( 1-v )g

n(n+2) 4n+2" "KI1(f,))G
y = 3n
2(n+2)

The above resulting Eq. 4.23 is again a nonlinear, time-variant, ordinary
differential ;quation for the estimated pressure. Notice that it is also linear in its
parameters o, 3 and y. The predominant term in this equation is the one corresponding to
o, and it is negative so we should expect that the response of the pressure with respect to

time should show a negative slope when the pressure reaches high values.

The Dynamic Radial Model

This model is based on the same premises as the ones outlined for the previous
model. Therefore a similar approach shall be taken in this case. The local-continuity
equation, provided by the fluid dynamics, will be used in conjunction with the fracture
mechanics fundamental relations. However, these relations shall be also modified as we
did for the GdK dynamic model.

Now, for a radial flow, the pressure gradient of the flow of a power-law fluid

between two parallel plates is given by [12]

oAp(r.t) _ 2K [4n+2]" q(r.1)" (4.24)

or " n riw(r,t)*!
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Following the same procedure as the one shown for the GdK model, we obtain an

expression for the radius of the fracture, R(¢), as follows

(4.25)

R@) = ,1 (=" )W(fw,t) ”Ap(,) o
2KI(f) 4n+2” q,()

with

./ﬂ n
1) = | 1 _o(,.0)

— d
; fr" W(f”t)2n+l ff

_q(f..1)
Q(f,1) T

w(f,.1)
w(fost)

W(f,.t)=
Ap(t)=p,(t)-oy
Recall that /(f,) represents a constant expression as it was the case for the GdK
model.
The Eq. 4.25 relates geometry, R(f) and w(f,,t), with the fracturing process
parameters, Ap(f) and g, from the fluids dynamics perspective. Now, we need to relate
this equation to the ones provided by the fracture mechanics. In order to do that, we shall

use the following expression for the maximum width of the fracture [12]

4(1-v)
nG

w(f,,1) = R(1)Ap(1) (4.26)

Combining Egs, 4.25 and 4.26 we get more convenient expressions for R(f), and

w(f,,t) as follows
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Ry =GN 4.27)

2(n+1)

Ap(t) >

w(f,.t) = C, ¥a.(0) (4.28)

2-n

Ap—Bn_

with

2n+l n
- B T

4(1-v)
nG

C, = C,

We can now extend Eq. 4.28 into a more general form taking into account that the

radial fracture can be taken as an ellipsoid of revolution [13]

w(r,) = w(f,,t) /1_(12; r))2 (429

We shall now substitute Eq. 4.29 into the local-continuity equation for a radial

fracture. The local continuity equation can be expressed in this case as follows

oq(r,t) OA(r.1) _ 0

+q,/(rt)+ 4.30
. q,(r.t) Py (4.30)
This equation can be now rewritten as
oq(r,t) + 2nrk, + ow(r,t) _ 0 @.31)

or t ot
[ ———r
R(t)

In the same way as we did for the dynamic GdK model, we shall integrate Eq.
4.31 along the radius of the fracture. But, before doing that, we shall find the partial

derivative of the width of the fracture with respect to time. By doing that, we get



ow(r,t)

Py = E(r)+ F(r)+G(r)+ H(r) (4.32)
with
2(n+]) .
__8(n+D(-v) Ap > Apr2
i =y \/
RU)
qc g 1 r
T w \/1_<—5~>2
R(1)
2-n)C,
Ap 3n
_Q q.i ERARY:
H(r)= 3 L (R(t))

Yaiap™
Now substituting Eq. 4.32 into Eq. 4.31, and integrating from r =0to r = R, and
recalling that
q(0,1) =g,
qg(R1)=0

we get a first order differential equation for the net BHP as follows

2n+1) .
2n+1)
Ap=—a Ap " + P AjLI ry i"—Ap (4.33)
with
L 3n? | [2(1—0)]"%1
(n+2(@n+ DK I - ¢
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n+2 K'I(fo)(l—u 4n+2

n
n+2

The Eq. 4.33 is a nonlinear, time-variant, first order differential equation for the
net BHP. As in the previous models, it is linear in its parameters o, 8, and y. Notice
again that the predominant term is the one corresponding to o which shall produce

negative slopes which is the main characteristic of the radial model.

Summary

In this chapter we have developed control-type equations for the 2-D models, and
some assumptions were made in order to solve the partial differential equations.
Basically we assumed a certain pressure distribution along the fracture because it is still
uncertain how the fracture actually develops, and, at our best, we can only guess. Other
considerations were put aside as was the case of the spurt loss volume or the building of
the filtercake on the walls of the fracture because the main goal of this work was to keep
the models as simple as possible but giving them some physically based characteristics.

Even though all the dynamic models are nonlinear and time-variant, they are
indeed linear in their parameters. This characteristic makes them suitable for system
identification purposes.

Regarding the lumped parameters a, 3, and y, we must notice that they contain
important information about the process such as the fluid's parameters, » and X', the in-

situ parameters, G and v, the height of the fracture, 4, and the fluid loss coefficient, X,
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For this reason, we could expect that, by running an appropriate identification algorithm,
it will be able to show the signatures of the fracturing process provided that the proposed
models adequately represent it.

The following is a brief summary of the hypothesis and results for each one of

these models:

The Dynamic PKN Model. The assumptions for this model are:

o The fracture has a constant height, 4, independent of fracture length.

e The fracturing fluid pressure, p, is constant in vertical cross sections
perpendicular to the direction of the propagation, and it equals the rock stress
perpendicular to the fracture plane, ¢, at the tip of the fracture.

e Each vertical cross section deforms individually and is not affected by its
neighbors.

e The injection rate into the fracture, g, is variable in time.

e The fracturing fluid is non-Newtonian (power-law fluid).

The equation that calculates the pressure is:

. _ qi(t)n«l»l 1
Ap = a Ap2(n+l) - B f

with

a_léK‘[4n+2}" ¢ T
on n R’ (1-v)?

8GK,

P = hioo
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The fracture length and width are calculated by

n n 1 -V 2n+l h3n+l 2(n+1)
L(t)= [ :I ( 2n)+l ' % n
4n+2 G 2K q,(1)

(1- v)h

w(0,1) e

Ap

The Dynamic GdK model. The assumptions for this model are:
e The height of the fracture, A, is fixed.
o The width of the fracture, w(x,!), is constant in the vertical direction.
¢ The injection rate into the fracture, g, is variable in time.
e The fracturing fluid is non-Newtonian (power-law fluid).

The equation that calculates the pressure is:

n+l

2{n+1)

S . L
p= —-o(p-ocy) + P m +7qi(p Cy)
with
o= 8'72(1-\))"—:_ 1 n+l
n(n+2)(4n+2)KI(f,,)"G "
16nK, ~ hn 5 1-v 5
p= 1t(n+2)(4n+2) (K'I(fLO)G)
. 3n
VY—Z(n+2)

The fracture length and width are calculated by
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n+l

1 L0 K 4 n n+l % i
L(t)=[ Julh (312 Sy } a.0)

(M“GH)T
wix,n) = 2AC=0) AT TG
(p(t)-oy,)"

The Dvnamic Radial Model. The assumptions for this model are:
e The height of the fracture, A, is fixed.
e The width of the fracture, w(x,t), is constant in the vertical direction.
o The injection rate into the fracture, g, is variable in time.
e The fracturing fluid is non-Newtonian (power-law fluid).

The equation that calculates the pressure is:

2(n+1)

. 2(n+1) T3n A
Ap=-a Ap " + B ?pf vy Lipp
Yq. i g,

with

n+l

3n’ {2(1 —U)]T
a= T G
(n+2)@n+ DK IS - "

1
nkK, | 2" G ., mm _, >
' [ ( )" ) ]

b= KI(f,) 1-v" ‘4n+2

T n+2

n
n+2

The radius and the maximum width of the fracture are calculated by
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CHAPTER §
STUDIES ON FAULT DETECTION
Overview

In this chapter, we shall apply some system identification techniques to the
developed PKN-type dynamic model. We shall concentrate our analysis in this model
because we have the chance to apply the outcomes of this research to a real data profile.
As we shall see later in this chapter, the data that we have available corresponds to a
PKN-type data profile.

Throughout most of this chapter, we will develop estimation algorithms, both off-
line and on-line, for the dynamic PKN model. In an effort to validate these estimation
algorithms, we shall generate our own PKN-type profile and use it as a test case.- This
pressure profile shall be generated by using real values for the fracturing process related
parameters. These parameters, in turn, shall generate fixed values for the lumped
parameters, o and f, as indicated in the Eqs. 4.10 and 4.11, that we will try to recover by
using linear system identification techniques in a reverse process.

After developing this estimation algorithm, we shall adequately manipulate its

parameters in order to get a clear signature of the screenout fault.
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Generated PKN-Type Pressure Profile

In order to run our simulations for system identification purposes, we need to
generate our own data with well-known parameters. This model shall serve as a test case
in order to validate our results so that we can later apply them to the field data.

As it has been mentioned, we decided to generate our data by using the dynamic
PKN differential equation (Eq. 4.9). In addition to that, we shall add a screen-out type
behavior at the end of that profile. The main idea is just to generate a different profile
with respect to the one provided by Eq. 4.9.

The following are the assumed values for the corresponding parameters of Eq. 4.9.
Most of these values have been taken from the well’s profile provided by Halliburton

Services (see Appendix B) while others have been taken from the literature.

K, =0.00046 m/ v min

G =1.45e6 psi

v =02

n =0.715

K =0.00056/60" psi.min"
h =39 m

For this set of parameters, the corresponding values for o and B are (see Egs. 4.10

and 4.11)
2043 n
psi® “min
a =1449 x 10‘0 —W
B=5444 =
min
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In order to generate and plot the PKN-type pressure profile, a Matlab algorithm

(PK.M) was written. This algorithm is included in Appendix A. The following is the

resulting plot of this generated pressure profile.
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Fig. 5.1 Generated pressure profile

As we can see from Fig. 5.1, the first part of this plot represents a PKN-type

pressure profile; while, the second part, a screen-out type behavior. The orders of

magnitude of the pressure, and time values agree with the ones observed in the field. In

addition to that, in order to simulate some perturbations in the process (such as noise in

the measurements), random noise was added on top of the generated profile but not

exceeding 3% of the maximum generated pressure. Another important profile that we
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shall use for our simulations will be the one corresponding the input slurry rate to the

fracture (see Appendix B), and that is shown in Fig. 5.2.
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Fig. 5.2 Input Slurry rate to the fracture

In Fig. 5.2 we can see that the input slurry rate is kept approximately constant
around 7.5 m*/min. However, we should notice that there has been a change in the job
schedule at approximately =6000 sec. At this time in the process, the proppant
concentration is increased, and it causes some perturbations as well as a slight increase in
the input Slurry rate. It is very important to point out that the effect of the proppant
concentration has not been modeled in the dynamic PKN model, and as such we expect
that the model should be able to show this change in the behavior in some fashion. A

profile of the proppant concentration can be seen in Appendix B.



Off-line Parameter Estimation

As a first step, in order to develop an on-line estimation algorithm, we shall first
develop an off-line estimation algorithm that will be later made recursive for fault
identification purposes.

First of all, we shall analyze the sensitivity of the model with respect to its related

parameters, a and 8. Recall that the dynamic PKN model is expressed as

Ap = w Z’;Q.m B f 4.9)

In order to speed up the simulation time, avoiding to solve directly the continuous
time differential equation, we shall now discretize Eq. 4.9 by replacing the derivative

term with a backward difference. By doing so, we get

Vi

where ?’(k) represents the predicted value for the net Bottom Hole Pressure (BHP) for

f)(k)= o _q,.(_k-—_L"”_Atk - B

O +P(k-T1) (5.1

the step k, P(k-1), the last measured value at the step k-1, and Ar, the sampling rate. In
addition to that, we should take into account that in a hydraulic process, the pressure,
P(k), and the time, #,, exhibit a large range of variation. Therefore, we need to normalize
this equation in order to make it more suitable to such large variations. The Eq. 5.2

shows this new normalized equation

qN(k _l)n-l»l 1

N PN(k_l)Z(n+l) - BN m-*-PN(k—l)

P, (k)= (5.2)

with
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n Pk -
P~<k>=’;,”, gy =25y e

b

max max max
a n+l
0y = am Ar,
Pmax
B
By =——t— Af
N P P k

max max

P, and 1, have been taken from the generated PKN-type pressure profile, and

4 from the provided field data. The corresponding values for them are

P =1541psi

q.. =7944 m’ / min
s = 233 min

Ar, =1sec

For this set of values, the normalized exact parameters a, and B, are:

a, =50375 -5
By =38545¢-5

Before we proceed to estimate these parameters in an off-line fashion, we shall

analyze the sensitivity of Eq. 5.2 to find out how sensitive that equation is with respect to

its normalized parameters.

The Sesitivity of the T i PKN Model

Recall that the sensitivity, S, of any function F with respect to its parameter x is

expressed as

(5.3)

&5
| =
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By applying Eq. 5.3 to the normalized Eq. 5.2, we get the sensitivity of the

normalized output pressure with respect to o

Py 1
S (k) - - BN [ P (k 1)2(n+l) [PN (k_ 1)2n+3] (54)
aN qN(k__l)n+1 ,N(k 1 aN qN(k_l)nH
NOVV‘, with respect to By
SP (k) = 5.5
BN( ) aN[qN(k_l)n-H /N(k__l 1 [P (k—l) t (k—l)] ( )
By Pk Y '

The above Egs. 5.4 and 5.5 evaluate the sensitivity of the function at each time
step k. Figures 5.2 and 5.3 show the corresponding sensitivity values for a, and ,. The
algorithm (SENS.M) that was used to calculate these sensitivities is shown in Appendix
A. We have computed the sensitivity values up to £=14000 because that is the range in
which the PKN dynamic model was used to generate that data. |

We can see, from Figs. 5.3 and 5.4, that the sensitivity of Eq. 5.2 with respect to
its parameters o,y and B is very poor after /=2000 sec. Moreover the sensitivity of this
equation, before this time, is not the kind we would like to have as they are indicating
very low values. This leads us to the conclusion that we must get an estimation of the
parameters at the beginning of the simulation otherwise no major contribution to the

estimation will be made after that.

The Weighted I S Esti
Now we shall proceed to generate the off-line estimator algorithm. Taking into

account the results given by the sensitivity analysis, we shall use a WLSE such it weighs
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SENSITIVITY FUNCTION FOR ALPHA
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Fig. 5.4 Sensitivity of the output pressure with respect to By
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more the data at the beginning of the simulation. Thus, we shall start defining our cost

index function as

l n
=—Y w(k)e(k)? (5.6)
2 k=1
where w(k) is the corresponding weight at the time &, and

e(k) = Py (k)= Py (k) (5.7)

represents the error in the estimation in which P, (k) represents the normalized measured

value, and I;N (k) represents the predicted value. Now, substituting Eq. 5.2 and Eq. 5.7

into Eq. 5.6, and taking the gradient of the cost function J, we have

qN (k _ l)n+l

PN(k__I)Z(nH) ZW( )( ) /N(k_l):l

Now, by equating both elements of the row vector to zero, in order to minimize

-3 wike(k) (5.8)

the cost function, we get a set of two linear equations for o, and B,. The first equation is
aa,+bB, =c (5.9
with

" k 1 2(n+1)
“T Z”(k)[gN((k— 1)) }

k=1

& wlkgy (k=D

S P, (k-1 fr, (k=1

n k _ 1 n+l
¢= w;k)(qu L 1)2('31) [Pe (k) - Py (k- 1)
k=1 N

and the second equation is
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day+eB,=f (5.10)

 with

d= Z w(k)q  (k—1)""
ity (k=1 P, (k —1)*"D

& Wk
S Sy
(k)
=Yy ——~2 P (K- P, (k-1
f k=1m[~() N( )]

We shall solve this set of equations by using both a flat weighting factor, w(k)=1,
and a triangular weighting factor. The triangular weighting factor shall show values
between zero and one, and the early data in the simulation will be more heavily weighted.

Fig. 5.5 shows the distribution of this weighting factor.

wk) 4

0 >
14000 Time(sec)
Fig. 5.5 Weighting factor w(k)

In order to solve the off-line equations, an algorithm was created in Matlab
(OFFLINE.M). It solves simultaneously Eq. 5.9 and 5.10, and it runs a batch of N

samples. Different results were obtained for this case: ones with and without weighting
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factor, and others for batches of 1000 and 14000 samples respectively. Tables 5.1 and 5.2

show the results obtained for the normalized values, a,, and B, , in all those cases.

Time (sec) oLy By
(5.0375¢e-5) | (3.8545¢-5)
1000 2.1637¢-5 6.6538e-6
14000 2.1726e-5 6.799¢-6

Table 1. Estimation of the generated parameters without weighting factor.

Time (sec) Oy By
1000 2.1634e-5 6.7023e-6
14000 2.1686e-5 6.4663e-6

Table II. Estimation of the generated parameters for a triangular weighting factor,

As we can see from both tables, there is no significant difference when estimating
these parameters by running either a batch of 1000 or 14000 samples nor by applying a
weighting factor. Therefore, in order to show how well these parameters match the exact
values for o, and B,, we shall plot the estimated pressure profile for the parameters o,
and Py corresponding to the first row of Table 5.1. In all the other three cases, we get
very similar plots. This estimated pressure profile as well as the generated one are shown
in Fig. 5.6 (the estimated pressure profile has been only calculated until /= 14000 sec),

and we can see that they are reasonably close.
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With these results, we conclude the off-line estimation. We can see from Tables

5.1 and 5.2 that we have obtained only approximate results of the exact parameters. The

results provided by the sensitivity analysis had already indicated that it would be very

difficult to improve our estimators even if we let the simulation run a longer time unless

we obtained a good estimation of the parameters at the beginning of the simulation. The

use of the weighting factor did not improve our results either.

2000 : : ; S T :
Generated Pressure profile ' ' !

e e e e e maam
E12DD e R et SUOD! S
@ E i E :

L R VU S IS AR WA et w
@ + Estimated Pressure profile : : '

1 I S N S SRS S S S

0 2000 4000 6000 B000 10000 12000 14000 16000 18000

GENERATED AND ESTIMATED NET BHP PRESSURE PROFILES

Time (sec)

Fig. 5.6 PKN-type generated pressure profile and the estimated one for oy =2.1637e-5 and By.=6.6538¢-6

We believe that these results can be considered reasonably adequate, given the

characteristics of the dynamic equation, and as such we shall now analyze, in the next

section, whether or not we can obtain approximately the same accuracy by making this

off-line estimation algorithm recursive.
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On-line Parameter Estimation

As a first step, in order to proceed with the on-line estimation, we shall write the

Eq. 5.2 in a form that is familiar for system identification purposes
Pu(k)=¢7 (k)B(k) + P, (k-1 (5.11)
with

P [(PN(k—l)z Jiu (k-1 G2

0(k) =[ay(k) By(O] (5.13)

If we now compute the estimate that minimizes the cost index function

J= iw(k)[PN(k) ~(@" (kR(K) - Py(k-1)T (5.14)

where the weighting sequence has the following property, also known as the forgetting
factor,

wt,k)=hw(t—-1k), 1<k<t-1

-1 (5.17)

we can compute the recursive algorithm version of this estimator by just following the

same procedures suggested by Ljung [14]. After dealing with the algebra, we get the

recursive algorithm to estimate the new vector parameter 6 (k) as follows

_ R(k - Do(k)
Liky= A +¢ T (k)R - Do(k) (5.16)

0(k) =0k —1) + L(k)[PN(k) ~P (k-1 -7 (K)O(k - 1)] (5.17)
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A +o! (KR - Do(k) (5.18)

R(k) = 1| R =1y - RE= Dok (RG- D)
A

With the above equations, we are now able to compute the estimation of the

parameter vector 8(k) in an on-line fashion. However, we shall still provide adequate

initial values for both R(0) and 0 (0). We shall do so by following the recommendations
of Ljung [14] that computes these initial values by running a small batch of data

according to

R(0) = {}: Wik, k)0 (k)0 T(k)} | (5.19)
6(0) = R(0)S. w(ko, K)o (K Py (k) ~ Py (k ~ 1] (5.20)

k=1
We are now ready to proceed with the on-line estimation. An algorithm was
developed in Matlab (ONLINE.M) that evaluates Egs. 5.16, 5.17 and 5.18, and also

computes a set of initial values, according to Egs. 5.19 and 5.20, for a batch of 10 points,

and, from there on, estimates the parameter vector é(k) on-the-fly from =111 sec up to
1=14000 sec. We have chosen to run the simulation until t= 14000 sec because the PKN
pressure profile was generated for that range.

The corresponding estimated values for oy and 3, when using a forgetting factor
equal to 1, and other using 0.9993, have been plotted in Figs. 5.7 and 5.8. The reason

why such a particular value of forgetting factor was used shall be explained below.
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Fig. 5.8 Estimated parameter 3 ,, for A=1 and A=0.9993
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We can see from Figs. 5.7 and 5.8 that the estimation of the parameters diverge
when using a forgetting factor less than one, and this tendency is even worse when using

values lower than the one shown. However, when using no forgetting factor, these

parameters converge to a definite set of values (oAL ¥y =22e-5, LA% v = 8e—6) that are

close to the exact values (ay=5.0375e-5, By=3.8545e-5) but still showing an offset.

In the above results, we have to take into account that we have added a random
perturbation on top of the generated PKN-type pressure profile. This effect is more
noticeable in the case of the parameter By. The presence of this unmodeled disturbance,
in Eq. 5.2, makes the estimation of the generated parameters diverge when using a
forgetting factor less than one. This was also clear when adding less random disturbances
on top of the PKN-type generated profile. Disturbances as low as 0.5% of the maximum
pressure were also tested, and gave similar results.

Now we would like to see how well this on-line algorithm performs if we take the
disturbance out of the PKN-type pressure profile. For this case, Figs. 5.9 and 5.10 show
the estimated values of o, and B,, again, for two different values of the forgetting factor.
In these cases, we have an excellent convergence in the parameters when using a
forgetting factor equal to 0.96. Both parameters, o, and By, converge relatively fast to
their exact values with the above forgetting factor. Values bigger than 0.96 produce slow
convergence, and values lower than that do not improve very much the rate of

convergence.,
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Also, when using a forgetting factor equal to one, the performance was better than
the ones obtained when noise was added on top of the generated pressure profile,
indicating that the estimation algorithm performs relatively well in the absence of
unmodeled errors. These results lead us to conclude that the estimation algorithm is not
very reliable in the presence of unmodeled errors. For this reason, we shall continue the
analysis of this dynamic model by eliminating these random disturbances from our
generated pressure profiles from here on.

We shall now modify the generated pressure profile such that we will have two
different sets of parameters for a,, and B,. In this way, we shall be able to see whether or
not the algorithm is capable of estimating a sudden change in these parameters while the
process is running as well as to show the new signatures of the parameters. The new
pressure profile for this case is shown in Fig. 5.11, and it has been developed by using
Eq. 5.1 for two different values for » and K’ (all the other related parameters remain the
same). The algorithm (PK1.M) to generate this profile is shown in Appendix A. The

following are the sets of values for this new generated pressure profile

K,, = 000046 m//min K,, = 000046 m/ v/min

G, =145e6 psi G, =145e6 psi

v, =02 v, =02

n, =0715 n, =041

K, =0.00056/ 60" psi.min" K, =0.0375/60" psi.min”
h =39 m h, =39 m
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GENERATED PKN-TYPE PRESSURE PROFILE
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Fig. 5.11 Generated pressure profile for two different sets of parameters

The new set of normalized parameters for this profile are

oy, =58882e-7 oy, =3208e-5
By, =12813¢-5 By, =12813e-5

for

P_.. =4207 psi
g, = 79440 m’ / min
¢ =283 min

Now we shall plot the results obtained by running the estimator algorithm for a
forgetting factor equal to 0.96 because that was the one that gave the best results in our
previous analysis when we used a single set of parameters. Figs. 5.12 and 5.13 show

these results for the first 14000 sec.
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It is not difficult to understand that the accuracy in the estimation of the first set of
parameters (a y,,f3 y,) must be the same as it was for the single case. The fact that we are
using a new set of normalizing values does not affect the convergence in the first case.

Regarding the second set of parameters, we can see that they converge approximately to

oy =22e~5,and B, =5e—6. Even though we have not obtained the same accuracy

for this case, we can see a tendency in the algorithm to converge to the exact parameters

(ot y, =321e-5, B, = 1.28e - 5) even when the sensitivity of the equation is very low
at this point in the process.

Figs. 5.14 and 5.15 show the estimation of the parameters throughout the whole
pressure profile. In any of these plots, we can see that the algorithm is able to detect a
sudden change in the parameters by showing a peak of relatively large magnitude with
respect to the order of magnitude of the parameters. These peaks are located at =6000
and = 14000 seconds respectively. This kind of pattern is very important in Fault
Detection Diagnosis, and that is something that we expect to find when applying this
algorithm to the field data.

In the next section, we will precisely apply this on-line estimation algorithm to the

field data, and see whether or not it is able to show the signatures of a screenout fault.
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Screenout Detection

In order to detect screenout in a real BHP profile, we shall use the same algorithm
developed in the previous Section. The only modification will be the input pressure. In
the previous section, we used the generated pressure profile as the input pressure for this

algorithm. In this case, we shall use the field data profile that is shown in Fig. 5.16.

NET BOTTOM HOLE PRESSURE
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Fig. 5.16 Net Bottom Hole Pressure measured in the field

The above net Bottom Hole Pressure profile has been measured during the
hydraulic fracturing of a well at approximately 9500 ft. This pressure profile shows a
PKN-type behavior [15]. It also shows the so called screenout starting at approximately
= 14000 sec. At this time, the pressure started to increase, and the operators needed to

shut down the process so as to avoid loosing the well. This shutdown is shown at
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approximately =16000 when the pressure starts to decrease very quickly. After this shut
down, a clean up of the well was needed in order to save the process.

We are here interested in detecting sudden variations in the parameters when
screenout occurs. If the proposed dynamic PKN model represents adequately the
hydraulic fracturing process, the on-line estimator algorithm should be able to show these
variations as this phenomenon has not been modeled in the dynamic equation. Success in
detecting variations in these parameters will be very helpful for fault diagnosis purposes
because the detection of this malfunctioning in the process could now be automated.
Nowadays, only experienced field operators can diagnose screenout on-the-fly.

We applied the estimator algorithm (ONLINE.M) to the field data for a forgetting
factor equal to 0.96 because that was the maximum value that produced a good match of
the net BHP profile. Bigger values of the forgetting factor produce bigger BHP residuals.
The simulation was run with the following normalizing values

P =2743psi
q.., = 7944 m* /min

t_.. =283 min
Fig. 5.17 shows the estimated pressure profile, and Fig. 5.18 shows the BHP
residual that is the result of subtracting the estimated BHP pressure from the net Bottom
Hole Pressure profile. As we can see from both figures, we obtained a very good match
of the BHP with a very low pressure residual. However, these residual does not provide

conclusive information about the screen-out that starts at t=14000 sec.
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Regarding the parameters’ profiles (Figs. 5.19 and 5.20), we can also verify that
no conclusive information can be obtained in this case either. The plots show a big
change in their pattern at approximately /=3800 sec but it is due to a small perturbation in
the measurement of the pressure profile. Nothing is shown at r=6000 sec when the
proppant concentration is increased. Also, when screenout occurs at =14000 sec, the
estimator algorithm is not able to show this change in the process. Notice that some
negative values are returned for both parameters, but this is not that important because we
are here interested in detecting sudden variations in the parameters rather than the type of
values themselves.

As we can see from both plots, the parameters show a high rate of variation. This
may possibly indicate that the measurements are strongly affected by noise or that the
forgetting factor should be made closer to one in order to reduce the sensitivity due to
small perturbations. For these reasons, we shall filter out the measured pressure profile,
and try different values of the forgetting factor.

In order to filter the BHP profile we will use a first order filter. The criterion to
select such a filter shall be that it will eliminate most of the unwanted noise without either
distorting the pressure profile or introducing unmodeled errors into the system. This filter
will have the following Laplace transfer function

FP(s) a
P(s) s+b

(5.21)
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In order to keep a DC gain equal to one, we shall make a equal to 5. After a series
of tests, the best pair of values found were a=b=0.1. Figs. 5.21 to 5.24 show the results
obtained for this set of values and for different values of the forgetting factor.

Fig. 5.21 shows the parameter a,, for six different values of the forgetting factor.
This plot shows that values of A close to one do not provide much information about the
change in the proppant schedule nor the screen-out phenomenon. However, a value of A
equal to 0.9990 shows a clear variation of o, at /=6000 sec and r=14000 sec respectively.
We observe the same pattern in Fig. 5.22 regarding the parameter B,. These sudden
changes in the behavior of these parameters could be used to activate some alarms to
indicate a change in the process.

However, we must still be able to distinguish between a desirable change, such as
the change in the proppant concentration, and an undesirable one such as the unwanted
screenout phenomenon. None of these parameters, in the way they are presented, will be
useful for this purpose so, in order to be able to distinguish among these different events,
we also estimated the pressure profiles obtained for the corresponding parameters o, and
By. shown in Figs. 5.20 and 5.21. These results are plot in Figs. 5.23 and 5.24.

Fig. 5.23 shows the estimated BHP profile corresponding to the above tested
values of the forgetting factor. In this case we can see that a value of A equal to 0.9995
provides the best pressure residual (Fig. 5.24) without affecting the detection of
screenout. In this case we can better distinguish the changes at t =6000 sec and at ¢t =

14000 sec respectively.
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FILTERED AND ESTIMATED PRESSURES - FILTER: a=b=0.1
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In order to get clearer indications of the different situations that we are handling in
this case, we shall combine the above plots together, and see whether or not they show
some relationship with each other when the change in proppant concentration and
screenout occur. Figs. 5.25 and 5.26 depict this situation for a forgetting factor equal to
0.9990 which was the value that provided the best results in this case. Similar results for
other values of the forgetting factor are shown in Appendix C.

Fig. 5.25 shows the plot of a, vs. B,, indicating the instant of time when the
change of proppant concentration and screenout occur. We can see from this plot a
strong correlation between both parameters. This correlation varies slightly when the
change of proppant concentration (¢ = 6000 sec) and screenout (¢ = 14000 sec) occur.

However they are not showing distinctive changes that could help to characterize them.
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Fig. 5.26 shows the plot of a, vs. the Pressure Residual. As it was the case for the
previous figure, we can see here distinctive peaks starting at # = 6000 sec and ¢ = 14000
indicating a change in the process. We see that the change in the vector o,-Pressure
Residual is bigger than any other in this plot. This peak could be used to activate an
alarm warning the operators about a possible screenout. However we can not neglect the

other peak occurring at t = 6000 sec that may also activate the same alarm.
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Taking into account the above reasons, we see the need to rely on additional
information to help distinguishing between these two events. Recall that the change
occurring at = 6000 sec is related to change in proppant concentration, and as such it

modifies the density of the fracturing fluid. The measurement of the fracturing fluid’s
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density is also available in the output data. From Appendix B, we can notice a change in
density from stage 5 to stage 6. This fact could be of relevant importance because we
could correlate the event occurring at /=6000 sec with the change in density, and, in this

way, be able to identify this event.
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CHAPTER 6

RESULTS AND ANALYSIS

Throughout this work, we focused our attention on developing dynamic models,
and an estimation algorithm that could help us to detect the so-called screenout
phenomenon.

By working under the same premises proposed by the classical 2-D models, we
developed their equivalent dynamic models. These models calculated the resuiting
pressure of the process having as their main input the input Slurry Rate pumped into the
formation. Other involved parameters such as the fracturing fluid’s viscosity parameters,
the fluid loss coefficient, the in-situ stress, and the shear rate have also been added into
these models. All of them were lumped into unique parameters, o and f.

We also developed both off-line and on-line estimation algorithms for the
generated PKN-type pressure profile that served as a test case to improve our estimation
algorithms. These algorithms showed a reasonable convergence to the exact generated
parameters when the models did not take into account unmodeled errors. But they did not
prove to be very reliable in the presence of unmodeled errors. We observed this
divergence when we tried to estimate the generated PKN-type pressure profile’s
parameters by applying the on-line estimation algorithm. It was clear here that the
proposed algorithm could not perform very well in the presence of unmodeled errors.
However, this algorithm proved to provide convergent parameters when no random

disturbances were added on top of the generated profile.
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Finally, we applied the resulting estimation algorithm to a real case expecting to
detect some distinctive patterns in the behavior of the equation’s parameters when
changes in the process occurred. In this case the model showed significant changes in the
behavior of the parameters (c, and B,) and the pressure residual when the proppant
concentration and screenout occurred. However, we were not able to distinguish very
clearly between the events happening in both cases. These results proved the necessity to
rely on additional information in order to correlate these changes with the variation of
other fracture related parameters as maybe the case of the fracturing fluid’s density.

Despite of the lack of conclusive results, we believe that this model still provided
some valuable information about particular events occurred in this process such as
screenout. As it was the main concern of this research, we were satisfied with the results
obtained in this work up to this point. Further research should take into account some of
the limitations of this work.

One of the limitations of this model was the assumption that we had a fixed
height. We assumed this condition as a first step towards developing a dynamic model
but nothing in the provided field data indicated so.

Another factor that must be also taken into account is that we applied linear
estimation techniques to a model that presented unmodeled errors. We did so because
there is almost no research in system identification techniques regarding unmodeled
errors nor nonlinear systems, and this work was aware of these limitations from the

beginning of this research.
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Finally recall that we have not modeled other variables that may affect the
hydraulic process. These omissions certainly introduced unmodeled errors that affected

the accuracy in the estimation, and made the screenout detection more difficult.
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CHAPTER 7

CONCLUSIONS

The models developed in Chapter 4 are physically based models that, given a
definite set of commonly used parameters, as the ones used in the field, calculate
pressures and geometry in the same order of magnitude as the ones measured in real
life. This fact indicates that these dynamic models still modelate the hydraulic process
to some extent.

For the reasons explained above, we can verify that the additional assumptions,
such as the assumption of the pressure distribution along the fracture, did not
undermine significantly the' solution of these dynamic models.

The results obtained in this work indicate that the proposed dynamic model is
able to detect some changes in the behavior of the net BHP

The results also indicated that the availability of the fracturing fluid’s density
profile might be very helpful in identifying the change in the proppant concentration
during the process. In this way, the isolation and detection of the screenout fault would

be better accomplished.
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CHAPTER 8

FUTURE RESEARCH

As suggested research about this work, I can recommend the following:

Apply a nonlirear estimation technique to overcome the problems presented for

the unmodeled errors.

Incorporate additional considerations into the model such as to allow the models
to grow in the vertical direction.
Correlate the fracturing fluid’s density with the obtained parameters in order to

identify one of the causes of the sudden changes in the behavior of the net BHP.
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% PK.M

% This program generates a PK pressure profile using the

% PK difference equation for a given set of parameters
% indicated in this file:
%

% = PK(SLR)
%

% where P is the generated pressure (psi); and SLR is the
% input Slurry Rate (bpm).

function P = pk(SLR)

SLR= SLR(1:18700,1);

% Process parameters

Kl= 0.00046; % Over all fluid-loss coefficient {m/min”*.5]
G= 1.45¢6; % shear rate [psi]

v=0.20; % Poisson’s ratio

n= 0.715; % Power-law flow behavior index

K= 0.00056/60"n; % Power-law consistency index [psi*min”n]
h= 39; % height of the fracture [m]

% Calculate the lumped parameters alpha and beta
a= 16*K/pi*( (4*n+2)/n )*n* (G*2/h"*3/(1-v)"2)*(n+1)
b= 8*G*Kl/pi/h/(1-v)

P= zeros(17200,1);

% Sampling period
deltam= 1/60; % [min]
DELTA=1,

% Initializing sampling time
tk= 0;

% Initial guess for the pressure
P(100)= 85;

tl =clock;

for i=101:17199

% Get the Slurry Rate

q = SLR(i-1)*0.16;

tk= tk + DELTA;

if i <= 14000

P@)= [a b] * [q"(n+1)/P(i-1)"(2*n+2) -1/sqrt(tk/60)] ' *deltam+ P(i-1);

% Generate a sine plot
else
P(i) = 400 *sin(2*pi/8000*(tk-14000)) + P(14000);
end
end
etime(clock,tl)
figure(3)
plot(P),grid
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% FILE: OFFLINE.M

% This file computes the ordinary difference equation's parameters in

% an off-line fashion. It uses a triangular weighting factor. The syntaxis is:
%

% [A,B]= offline(PK,SLR,N)
%

% where A and B represent the returned parameters alpha, and beta;
% PK is the input pressure profile (psi), SLR is the input Slurry Rate (bpm),
% and N is the number of samples (sec).

function [A,B] =offline(PK,SLR,N)

T = triang(28000);
w=T(14001:28000);

% Power-law flow behavior index

n= 0.715;

% Sampling period

delta= 1/60; % [min]

% Normalizing values

pmax= 1541; % {psi]
gmax= 49.65*0.16; % [m"3/min]
tmax= 14000/60; % [min]

reRts
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% Get the initial values for the input flow rate and pressure

q_1=SLR(100)*0.16/qmax; % [m*3/min]
p_1=PK(100)/pmax; % [psil

t1 =clock;

for i=101:N % i represents [sec]

% It must be transformed to [min]
p=PK(i)/pmax;
q=SLR(i)*0.16/qmax;
tk_1= (i-100)/60/tmax;

a=a+ w(i)*(q_l/p_l‘Z)‘((n+1)*2);
b= b + w(i)*(q_1/p_1"2)"(n+1)/sqrt(tk_1);
c=c + w(i)*(q_1/p_1"2)"(n+1)*(p - p_1);

d= d + w()*(q_1/p_172)"(n+1)/sqri(tk_1);
e=e + w()* 1/tk_L;
f= f + w(i)*(p - p_1)/sqrt(tk_1);

p_l=p;



q_l=q;
end

t=etime(clock,t1)

b=-b;
e=-e;

% Solution of the linear equations
dt=det([a b;d e]);

A=det([c b;f e])/dt;

B=det([a c;d f])/dt;
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% PK1.M

% This program generates a PK pressure profile using the

% PK difference equation for a set of vector parameters
% A and B.

%

% P = PKI(SLR,A,B)
%

% where P is the generated pressure (psi), and SLR is the
% input Slurry Rate (bpm). The parameters A and B are normalized.

function P = pk1(A,B)
SLR= SLR(1:18700,1);

% Power-law flow behavior index
n= 0.715;

% Normalizing values

delta= 1/60; % Sampling period [min]
pmax= 2743 % [psi], BHP

gmax= 49.65*0.16; % [m™3/min]

tmax= 17000/60; % [min]

% Denormalizing parameters A and B
A= A*pmax*(2*n+3)/qmax™(n+1)/delta;
B = B*pmax*sqrt(tmax)/delta;

P= zeros(17200,1);

% Initializing sampling time
tk= 0;

% Initial guess for the pressure
P(100)= 85;

t1 =clock;
for i=101:17000

% Get the Slurry Rate
q = SLR(i-1)*0.16;
p=P(i-1);
tk= tk + DELTA;
P@i)= [A®) B@®)] * [(a/p"2)"(n+1) -1/sqrt(tk/60)]'*delta + P(i-1);

end
etime(clock,t1)

figure(3)
plot(P),grid
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% FILE: SENS.M

% This file computes the sensitivity values for ALPHA and BETA for

% the PK type dynamic model.

%

% [SA,SB]= SENS(PK, SLR,A,B)

%

% where SA, and SB return the sensitivity vectors for ALPHA and

% BETA; PK and SLR are the pressure (psi) and input flow rate process (bpm)
% vector profiles, and A, and B are the correspondent scalar values

% for the parameters ALPHA, and BETA.

function [SA,SB]= sens(PK, SLR,a,b)

SA = zeros(17200,1);
SB= zeros(17200,1);

% Power-law flow behavior index

n= 0.715;

% Normalizing parameters

delta= 1/60; % [min]
pmax= 1541; % [psi]
gqmax= 49.65*0.16; % [m™3/min]
tmax= 14000/60; % {min]

% Normalization of the parameters ALPHA and BETA.
A= a*gmax”~(n+ 1)/pmax”(2*n+3)*delta;
B= b/pmax/sqrt(tmax)*delta;

t1 =clock;
for i=101:14000 % 1 represents [sec]
% It must be transformed to [min]
p= PK(i)/pmax; % [psi]

q= SLR(i)*0.16/qmax; % [m"*3/min]
tk_1= (i-100)/60/tmax; % [min]

sa= 1-B/A*(p*2/q)"(n+1)/sqrt(tk_1)+1/A*(p"2/q)"(n+1)*p;
sb= 1-A/B*(g/p*2)"(n+1)*sqrt(tk_1)-1/B*sqri(tk_1)*p;
SA(@{)= 1/sa;
SB(i)= 1/sb;

end

t=etime(clock,t1)

plot(SA),grid,

pause
plot(SB), grid
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% FILE: ONLINE.M

% This file calculates the parameters of the PK-type

% model in an on-line fashion.

%

% [A,B]= online(PK, SLR,LAMBDA N)

%

% where A, and B return the vector process parameters

% alpha, and beta; PK and SLR are the pressure (psi) and

% input flow rate (bpm) profiles of the process, LAMBDA

% is the forgetting factor, and N is the number of samples (sec).

function [A,B]=online(PK, SLR,LAMBDA N)

% Process parameters

n=0.715; % Power-law flow behavior index

KI= 0.00046; % Overall fluid loss coefficient [m/min”".5]
G= 1.45¢6; % Shear rate [psi]

v=0.20; % Poisson’s ratio

K=0.00056/60"n; % Power-law consistency index [psi*min”n]
h=39; % heigth of the fracture [m]

delta= 1/60; % Sampling period [min]

pmax=2743; % [psi], BHP

gmax= 49.65*0.16; % [m”3/min]

tmax= 17000/60; % [min]

theta= zeros(2,17200);
R= zeros(2,2);
F= zeros(2,1);

% Get the initial values for the input flow rate and pressure

q_1=SLR(100)*0.16/qmax; % [m”3/min]
p_1=PK(100)/pmax; % {psi]

% Compute the initial estimates for P and theta
for i=101:110

g=SLR(i)*0.16/qmax ; % [m"3/min]
p= PK(i)/pmax; % [psi]

phil=(q_l/p_1"2)Nn+1);
phi2= -1/sqrt((i-100)/60/tmax);
phi = [phil phi2]’;

R=R + phi*phi';

F=F +phi*(p - p_1);

p_l=p;

q 1=q;

end

P=inv(R);
th=P * F;
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% Running the recursive algorithm now

ti=clock;
fori=111:N % i represents [sec]
% It must be transformed to [min]
p=PK(i)/pmax;
q=SLR(i)*0.16/qmax;
tk_1=(i-110)/60/tmax;

phil=(q_1/p_1"2)n+1);
phi2=-1/sqrt(tk_1);
phi=[phil phi2];

L= P*phi/(LAMBDA + phi"*P*phi);
th=th + L*(p - p_1 - phi**th);
P= (P - (P*phi*phi™*P)/(LAMBDA + phi"*P*phi)/LAMBDA;

theta(:,1)=th;
p_1=p;
q_l=q;

end

t=etime(clock,t1)

A= theta(l,:);
B= theta(2,:);

figure(1)
plot(A),grid
figure(2)
plot(B),grid
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APPENDIX B

JOB SCHEDULE



Customer: Date: MARCH 16, 1993
Well D?sc: 3-3 Ticket #: 30108700
Formation: COTTON VALLEY LIME Job Type: VERSAGEL HT FRAC

J0OoB SCHEDULE

STAGE INFORMAT ION

1 2 3 [} S é i
Fluid Type gel (Lord) Gel (Lord) 6el (Lord) el (Lord) Gel (Lord) Gel (Lord) el (Lord)
Planned Clean Volume {gal) 2000 6000 15000 210000 175000 80000 58000
Planned Slurry Volume (gal) 2000 6000 15000 210000 199505 95005 70230 ~
Actual Slurry Volume (gal) 1257 5701 12339 209884 198520 94436 52705 ~
Base Fluid Density (lb/gal) 15.00° 15,00 15.00 9.00 8.28 8.31 8.34
' c 0.7150 0.7150 0.7150 0.4100 0.4100 0.4100 0.4100
K' (Bss2n/ft2) 0.000560 0.000560 0.000560 0.037500 0.037500 0.037500 0.037500
Proppant Size 20/40 20/40 20740
Proppant Type Resin-coat Resin-coat Resin-coat
Abs. Proppant Voluse (gal/lb) 0.04530 0.04530 0.04530 0.00000 0.04639 0.04689 0.04689
Planned Fluid Rate (bps) 6.00 6.00 20.00 45.00 45.70 47.00 47.00
Starting Prop Conc (1b/gal) 0.00 0.00 0.00 0.00 2.00 4.00 4.00
Ending Prop Conc (lb/gal) 0.00 0.00 0.00 0.00 4.00 400 5.00
8 9
Fluid Type gel (Lord) 6el (Lord)
Planned Clean Volume (gal) 50000 10926
Planned Slurry Volume (gal) 61723 10926
Actual Slurry Volume {gal) 34 10888
Base Fluid Density (1b/gal) 8.34 9.50
n’ 0.4100 0.7150
X' (#ssn/ft2) 0.037500 0.000560
Proppant Size 20/40
Proppant Type Resin-coat
abs. Proppant Volume (gal/lb) 0.04689 0.00000
Planned Fluid Rate (bpa) 47.00 45.00
Starting Prop Conc (1b/gal) 5.00 0.00
Ending Prop Conc (lb/gal) 5.00 0.00
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Customer: Date: MARCH 16, 1963
Well D?SC: 3-3 Ticket #: 30108700
Formation: COTTON VALLEZY LIME Job Type: VERSAGEL HT FRAC

WELLBORE CONFIGURATION

Wellbore Actual Casing Casing Tubing

Tubing

Segment Length TVvD ID oD ID oD
Number (feetr) {(feet) (inch) (inch) {inch) (inch)
1 11731 11731 4.778 8.500 0.000 0.000

PERFORATIONS DAaTaA

NO DATA ENTERED FOR THIS REPORT

FPERFORATED INTERVALS

FROM T0 SPF
( feet) (feet)
9480 9578 1

RN
0
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Customer:
Well Desc:
Formation:

Date: MARCH 16,
3-3 Ticket #: 30108700
COTTON VALLEY LIME Job Type: VERSAGEL

MISCELLANEOUS JOoB PFPAaRAMETERS

Well Treated Down Casing
Static Column Available No
Gel System VERSAGEL HT
Delaved Crosslinker Used Yes
sSurface Earth Temperature 80.0
surface Slurry Temperature 60.0
Bottom Hole Treating Temp 120.0
-Initial Bottom Hole Pressure 5500
Wellbore Fluid Density 8.33
Wellbore Fluid n’ 1.0000
Wellbore Fluid K’ 0.000018
Volume used for Stage Info Slurry
Rheology Unit Fluid Type Base Gel
n’,K’ for Friction Book Values
RS232 Input Type Generic
RS232 Setup - Port TTA3
Baud Rate 1200

Parity N

Data Bits 8

Stop Bits 1

Data Signal -~ Record Length 49
Terminator Char 10

Index 1%

Index 25
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APPENDIX C

ADDITIONAL SIMULATIONS
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LAMBDA= 0.9995 - FILTER: a=b=0.1
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Fig. C-1. Parameters o and B, for A
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Fig. C-6. Pressure residual versus parameter o for A
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