
A USER INTERFACE FOR FEATURE-PAIR BASED

DESIGN AND ANALYSIS OF MECHANICAL

ASSEMBLIES

By

PENGFEI CAl

Bachelor of Engineering

Tsinghua University

Beijing, P. R. China

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1994

OKLAHOMA S'l'ATE UNIVERSITY

A USER INTERFACE FOR FEATURE-PAIR BASED

DESIGN AND ANALYSIS OF MECHANICAL

ASSEMBLIES

Thesis Approved:

Dean of the Graduate College

ii

ACKNOWLEDGrvlENTS

I would like to take this opportunity to express my sincere appreciation to my

adviser Dr. R .D. Delahoussaye for his encouragement and advice throughout my graduate

program. Many thanks also go to Dr. Spitler and Dr. Misawa for serving on my graduate

committee.

My parents, Qigui Cai and Yuehua Jiao encouraged me all the way and helped me

keep the end goal constantly in sight. Thanks go to my grandfather Zhiping Lu for

supporting me during the study. My wife Tong Zhao provided moral support and was a

real believer in my abilities. I extend a sincere thank you to all of these people.

iii

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION. . . 1

Research Problem . 1
Objective.. 2

II. LITERATURE REVIEW . 6

History of Geometric Modeller. 6
Feature Based Design Overview.. 11

Review ofFeature Modeling Work. 11
Definition ofFeature. 12
Feature Based Design System Functional .

Requirements 14
Assembly Modeller Using Virtual Link. 15
Assembly Modeler Using Assembly Features. 20
Dynamic Models for Simulation 21

III. USER INTERFACE DESIGN FOR A FEATURE PAIR .
BASED DESIGN SYSTEM . 26

System Overview. 26
Data Structure Used in The System.. 27
Concept OfFeature Pair. 32
User Interface Design.. 43

Event Driven Menu System 43
Selection Algorithm.. 44
Handles for Editing. 46

Modify a Feature Pair. 49
Visual Effect of the Graphics. 53

V. DYNAMIC MODEL AND DISTRIBUTED .
COMPUTATION FOR SThlliLATION . 54

Use Feature Pair To Speed Up The Simulation. 54
Distributed Computation For Simulation. 59

iv

Chapter

VI CONCLUSION AND RECOMMENDATION .

Page

65

Conclusion . 65
Recommendation . 66

REFERENCES . 67

v

Table

I.

II.

III.

LIST OF TABLES

Number of Calculation in General Method.

Number of Calculation with Rigid Body Concept

Number of Calculation with Feature Pair Concept ' ..

vi

Page

56

57

58

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

LIST OF FIGURES

Schematic for the Feature Based Design System .

Schematic of the Distributed Computation

Evolution of Geometric Modellers. .

Comparison ofDifferent Kind of Modellers.

Tree Structure for Assembly With Virtual Link

Constraint Change of an Object. .

Calculate the Reaction Force .

An Assembly with Two Simple Features .

The Object Linked List for Figure 8. .

The Tree Data Structure for Figure 8. . .

An Assembly with Two Components .

The Design Procedure for Figure 11 .

The Data Structure Representation ofFigure 11.

The Design Procedure Using Feature Pair Concept.

The Data Structure ofFigure 11 with Feature Pair Definition

A Complicated Mechanical System with Several Components. . . .

The Schematic for Figure 16 .

The Assembly Representation of the System

vii

Page

3

5

7

8

17

22

22

28

30

31

34

3S

36

37

38

40

41

42

Figure

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

The Selection Algorithm Demonstration.

The Handles of a Circle or Pin .

Handles of a Block. .

Handles of a Polygon or a Curve. .

Handles of a Rigid Body .

Relative Movement in a Feature Pair .

Move a Feature Pair with No Relative Movement .

Move All Connected Feature As a Rigid Body .

Move a Feature Pair in a Rigid Body

A Simple Mechanical System .

Speed Up the Simulation with Feature Pair .

Server-Client Model .

Flow Chart of the Server .

Flow Chart of the Client .

viii

Page

45

47

47

48

49

51

52

52

53

55

55

61

62

63

1

CHAPTER I

INTRODUCTION

Research Problem

In modern industry, there is a general need for better quality designs of

manufactured products and their parts. It is widely believed that 70% or more of the life

cycle cost of a product is determined during the early design process (DeFazio, 1988). It is

very important to develop design tools and aids that will make designs more effective.

Commercial CAD/CAM software today supporting engineering functions, such as

mass properties calculations, interference checking, geometry definition for drafting, and

finite elements are currently implemented at a level that require large amounts of human

interaction. Also, current CAD systems can only capture an instance of the design. The

system then has no general basis for managing constraints later, when changes are made.

The result is a system which requires the designer to attend to all details associated with

the design changes. Even if features can be successfully extracted from the geometry later

(Kumer, 1988), the designer's intent will have been lost. So further automation of

engineering tasks is not possible unless there are fundamental changes made in the

underlying geometric modeling schemes.

Recently, the concept ofusing features for design and manufacturing has gained

much attention and research interest. That is because a large amount of information about

features automatically comes from the feature database. Very little input is needed from

the designer. Feature-based design captures the designer's intent about a single part. A

CAD system with the designer's intention included in the representations of the in-progress

2

design will be a helpful tool, not just a graphics recording systems. This allows users to

use minimal information input to get a high quality design output.

In this thesis, based on the concept of features, we will develop a concept of

feature pair. Features capture the designer's intent about a rigid body. Feature pairs

capture the designer's intent about the assembly. We will develop a graphical user interface

(Gill) to support the feature pair based design. Because the feature pairs represent a

mechanical system at assembly level, feature-based design becomes a special case for the

feature pair based design. That means the Gill supports the feature-based design too. Our

Gill allows the user to use feature and feature pairs to construct a mechanical system.

Then with a simple dynamic model, we will do a simulation on the system. In the

simulation, we will implement distributed computation to speed up the calculation. The

schematic of the system is shown in figure 1.

Objective

Although many research works have been reported, there is no commercial

product based entirely on feature-based design. The purpose of this thesis is to implement

the concept of feature pair based design to a design system, which is written in C language

running on Silicon Graphics. The reason we selected the Silicon Graphics is that Motif and

GL (a graphics library) mixed model is supported on operating system 2.1. Motif provides

a very good user interface and GL provides the quality and high speed graphics. For future

work, we will incorporate a solid modeller to the system. GL can provide a good lighting

model and Non-Uniform Rational B-Spline (NURBS) function which is very difficult to

implement in other tool boxes. But the calculation speed of Silicon Graphics is not fast. So

when there are many features in the system, the simulation becomes slow. To solve this

problem, we use the distributed computation method to speed it up. We use the RS6000

3

designer

features

...---. ~__.:--.....\V-----. _ ~.._._Ii_br_ary_ ___'

primary K interface r
represention

'" secondary
t---..

" represention
...-_'".. simulator

"

operation
library

create
edit
delete
group
ungroup

'- visual
t---/~ display

graphics
'-,/ system

Figure 1. Schematic for the Feature Based Design System

which has a faster floating point processor to do the computation work. Then we use the

interprocess communication to transfer the result back to Silicon Graphics. For

interprocess communication, we use BSD socket as the transfer protocol. The schematic

of the distributed computation is shown in figure 2.

The modeling system is developed in 2D space. This simplifies the developing

work. It can handle many mechanical systems, especially the planer system. But it is

ambiguous in representing some problems. So it is better to represent the features in 3D

space.

From the above discussion, we know we will develop a system including the

following parts:

1) A graphical user interface which allows users to create, modify, and delete the

features and feature pairs interactively or group features into a rigid body rapidly.

2) A hierarchical data structure to support the feature based design and feature

pair based design.

3) Use the feature pair concept to a dynamic simulation system.

4) A distributed computation protocol using interprocess communication with

BSD socket, and implement it to speed up the dynamic simulation.

4

SOCKET

RS6000

CALCULATION

DISPLAY

SILICON GRAPHICS

SOCKET

RS6000

CALCULATION

Figure 2. Schematic of the Distributed Computation

SOCKET

RS6000

CALCULATION

5

6

CHAPTER II

LITERATURE REVIEW

History Of Geometric Modeller

Geometric modellers have undergone tremendous changes over the twenty years

of their existence, as depicted in figure 3 (Shah, 1988a). Each phase of this evolution has

been propelled by the inadequacies of contemporary techniques available at that time. The

fundamental difference between each generation of modellers is the information level

supported. Early wireframe systems supported only two types ofgeometric entities (points

and straight line segments), which made them unsuitable for anything but drafting of

simple parts. These systems have evolved into today's Boundary Representation (B-Rep)

modellers, which support all geometric and topological entities right up to the volume

level. Figure 4 (Shah, 1988a) compares the capabilities of each modeller type to the

application needs that were responsible for further development.

In the early 1980's, a solid model was considered to be an "informationally

complete" representation of the physical object ofwhich some properties, like volume or

surface area, could be calculated automatically without human help. It is unambiguous

compared with the previous modellers, but it has some problems.

Solid modellers can only be used to define the nominal geometry. Information

regarding surface finish, tolerances, material properties, surface conditions, etc., are

7

Feature-based application

Feature modellers

--------_ .
Solid modellers

--------_ ---_ --

--------_ - .

Surface modellers
-------------_.-_ .

---._-----------_ _-----------
Wireframe modellers

----._ _-----------

1965 1970 1975 1980 1985 1990

Figure 3. Evolution of Geometric Modellers

8

Modeller Application Limitations

20 wireframe Drafting No viewing transfer

Not a solid representation

Nonsense geometry

3D wireframe Drafting Not a real solid representation

Nonsense geometry

Ambiguous images

Surface modeller Graphic art f\bnsense geometry

Visualization of complex Not a real solid representation

geometry

NC programming

Solid modellers Constructive building with Nominal geometry
Boolean operator Low level of abstraction

Mass properties calculate cannot be used to drive

automated applications

Figure 4. Comparison ofDeferent Kind ofModellers

9

important parts of the definition ofmechanical parts, but these cannot be incorporated in a

solid modeller database.

Solid modellers store data in terms of low level entities such as vertices, edges,

faces, etc., or binary trees that contain primitives and Boolean operators. It is difficult to

extract the engineering meaning of this data from the solid model database. For example, it

is not a trivial task to recognize from the database that a body is rotational and has a

stepped-through hole. Yet, this is the level of information that many application programs

operate on. The feature recognition community is currently engaged in extracting this

information from solid models. The method, however, is laborious and so far has only

been demonstrated for simple features.

Shah (1988a) thought "solid modellers do not provide an environment conducive

to creativity in design." The user must 'know' the design before a solid modeller can be

used because modifications are difficult. Suppose a part has a hole on which a groove has

been defined. The user wishes to reduce the hole diameter without changing the shape or

depth of the groove. If the user was using a solid modeller, he would need to first 'fill' the

space of the hole and groove, then create primitives for the cylinder and torus with new

dimensions, and then carry out the necessary Boolean operations to create the new object.

According to Shah "This illustrates that solid modellers do not allow changes to be made

easily and all parameters have to be input explicitly when creating each primitive object,

even if the parameter has been defined previously." Design is an iterative process and as

such requires numerous alterations in the model before a satisfactory solution is obtained.

Feature-based design provides a solution to these problems. For the database

problem, other than to provide a single form feature database which describes the

geometry and topology of an object, feature-based design provides precision, material, and

several feature databases which can be used to define objects. For the low level

representation problem, feature-based design provides a design with features mechanism.

Instead of extracting the feature after the design phase, the feature is used to design

10

objects. All the information about the features is stored in the database. If a body of a part

is rotational and has a stepped hole in it, we just define it as "feature rotational body + a

stepped hole." It is easy and clear. The only requirement is that the definitions of

"rotational body" and "stepped hole" are in your database. Feature-based design also

provides a very good design environment. The user only needs to take care of the feature

he wants to use, and the system knows how to generate the edge table and surface table

according to the feature parameter user input. Referring back to the part which has a hole

on which a groove has been defined. When the user wishes to reduce the hole diameter

without changing the shape or depth of the groove, he needs to input the new diameter to

the system. The system knows how to deal with the geometry and topology itself (Shah,

1988b).

From the above discussion, we know that feature-based design provides a

complete database, a high level representation of a single rigid body, and a very good

design environment. It is also a new approach to the old problem ofattempting to link

CAD with CAM and process planning. The features approach constrains the designer or

process planner to working with a set of features which have significance for either

design, analysis, or manufacturing. Instead ofusing a model consisting ofgraphics

primitives, the designer is asked to use a set of features from which manufacturing

operations can be derived. When both the designer and process planner have finished the

design and process plan, more information has been entered into the model than if the part

had been created on a traditional CAD system. However, the designer and planner have

entered the information not at the geometric level but at a higher level (Unger and Roy,

1988).

11

Feature Based Design Ovenriew

Review of Feature Modelling Work

In the past decade, a large amount of research work has been done in the area of

feature-based design. Several systems have been developed for research purposes. Dixon

(1988) has worked on several feature based design systems in the area of extrusions,

injection moldings, and castings. He tried to apply artificial intelligence to mechanical

engineering. He viewed features as a way to represent 3D design and manufacturing

geometry. He also feels that features are a good approach for representing design

knowledge in AI systems.

Shah (1988b) developed an expert fonn feature modeling shell. In this shell three

modellers worked separately; form feature modellers, precision features modellers, and

material features modellers. After the form features are created, other features are created

independently, and then networked together. He also implemented group technology for

formalizing geometric reasoning for GT coding and building a GT knowledge base using

the generic mapping shell.

Turner and Anderson (1988) have developed an object-oriented approach to

feature based design. They implement the approach to Quick Turnaround Cell project.

The project is to create an environment where one-of-a-kind parts can be designed and

manufactured "immediately" with human input required at only the design and machine

setup stages. The QTC tightly couples feature based design, automatic fixturing, process

planning, NC code generation, and visual inspection into a manufacturing system that

quickly produces parts using little operator knowledge or intervention.

Faux (1988) reconciled earlier work done within CAM-I (Computer Aided

Manufacturing International) in the area of form features and dimensional tolerances. A

feature hierarchy was defined along with sets of rules. The lowest level indivisible units are

termed primitive features that are sets of connected faces that obey certain declared rules.

12

These, in turn, could be used for defining compound features and patterns. This

decomposition into low-level elements is suited to tolerancing.

Hirschtick (1986) has developed a system called ItThe Extrusion Advisor." It is a

system designed to advise a user in the domain of aluminum extrusions. The system

examines a geometric model of a part to be manufactured by an extrusion process. It

extracts features and then identifies features which will cause manufacturing difficulties.

Hirschtick uses "characteristic patterns" to find an instance of a feature. The geometric

definition of the part is searched for one or more characteristic patterns. Several ofthese

patterns are combined to form a characteristic pattern set or feature. He concludes that

feature based design and feature extraction will both be necessary. He calls feature based

design "feature descriptor modeling ."

Definition Of Features

The term "feature" has been used for more than a decade. But the definitions of it

differ because each researcher considers different ideas significant. Some researchers are

interested in designing with features, such as Dixon (1988). He defined a feature as Ita

geometric form or entity that is used in reasoning in one or more design or manufacturing

activities (i.e., fit, function, manufacturabilityevaluation, analysis interfacing, tool and die

design, inspectability, serviceability, etc.)." Here he considered the features as a geometric

form because he worked on a design-with-feature system at that time. Henderson (1988)

defined a feature as "a part 'characteristic,' including material type, functionality and other

pieces of descriptive information. It Henderson devised a feature recongnizer program to

produce a list of primitive features from boundary representation model. Hirschtick (1986)

said "a feature of a geometric model in a given context is a descriptor ofthat model whose

presence and/or size is relevant within the given context." Hummel (1986), who worked in

the area offeature representation for process planning, told us "features are regions ofthe

13

part that have some degree of manufacturing significance. Put another way, features form

reoccurring geometric and technologic patterns for which the process engineer has

acquired years of manufacturing experience."

From the above, we can see that the definition of a feature is dependent upon its

use. This is the unfortunate aspect of current feature definitions. A features representation

is not unique. A designer and a manufacturer working with a feature model must agree on

the same feature definitions and interpretations. If one considers current CAD models, a

large amount of the information on the drawings is not geometric and requires consistent

interpretations between manufacturing and design. Interpretation is required because some

manufacturing attributes cannot be passed geometrically. So we need a unique definition

on features and on both design and manufacturing that can easily work with the model.

This is not the purpose of this thesis, but we can find some common points in these

definitions. All definitions mentioned that features are a "geometric entity." They all

assume that features are combined to form parts or other objects. And they all imply that

features provide a higher level model of the object than does a traditional CAD geometric

model.

In this thesis, we will use Shah's (1988a) definition. It is convenient to group

product information into sets based on the meaning of the information. These information

sets will be called features. He also defines it informally as "recurring patterns of

information related to a part's description." Shah divided the features into several types,

and defined them separately.

Form Features: These are groups ofgeometric entities that define attributes of a

part's nominal size and shape. The grouping of geometric entities to define form features

depends on the task for which they are to be used, e.g. design, manufacturing, etc.

Precision Features: These are acceptable deviations from the nominal geometry.

Included in this set are dimensional tolerances and surface finish. Designers specify a range

14

of acceptable limits, datum planes, and material condition in order to ensure that

manufactured parts will assemble properly and function as desired.

Material Features: These specify material types, grades, properties, heat treatment,

surface treatments, etc. There are, of course, many other logical sets, such as assembly

features, functional features, analysis features, etc.

Through this thesis, we will work on form features. So when we mention features

in the following chapters, we mean form features except those accompanied by a special

description.

Feature Based Design System Functional Requirements

Shah (1988a) pointed out a feature based design system must satisfy the following

requirements:

All fundamental information sets related to mechanical products must be

supported. These were identified previously as form features, precision features, and

material features.

The particular features needed depend on the product being designed; thus the

needs of every organization are going to be different. It is necessary, therefore, to provide

a mechanism whereby each organization can define its own set of features.

The product definition system (the feature modeller) must provide an attractive

environment for creating, manipulation, modifying, and deleting product models. It should

be possible to define and instance form, precision, and material features individually and

define relationships between form features as well as intrafeature relationships. For

example, defining tolerances after creating the nominal geometry involves creating a

network between form features, precision features, and geometric entities.

If it is recognized that the interpretation of features is application specific, it is

necessary to create a feature mapping system to transform the design database into an

15

application specific database. The mechanism to do this must also be immensely flexible so

that it can be set up to support any application that uses the product database.

Finally, the system must have a feature database. In general, the feature geometry

database may contain the following types of information:

(1) A list of all instances of all form features and their locations and dimensions.

(2) A generic definition of each feature in terms of generic parameters, geometry,

and topology.

(3) A list of relationships between form features (dependencies and adjacencies).

(4) A geometric model of the entire part.

(5) Material properties and other nongeometric attributes.

(6) Tolerances and surface finish where appropriate.

Assembly Modeller Using Virtual Link

Several systems are available for automatic assembling for research propose. But

most of them need a preprocessor to create a geometric model. The preprocessor could be

a feature based design system or just a common solid modeller or B-Rep modeller.

Ko and Lee (1987) developed a system which can automatically generate an

assembly hierarchical structure from a B-Rep model created by a separate B-Rep

modeller. In their work, an assembly is described by its components and their relationship

in an assembly, especially the mating conditions. From the mating conditions of the

components, each component is located at a specific vertex ofa hierarchical tree. In the

system, they try to minimize the user's input. But the users still need to input the mating

condition between mating components. And the system can support only four mating

types: against, fit, tight fits, and contact.

The virtual link data structure used in Ko and Lee's system was developed by Lee

and Gossard (1985). As shown in figure 5, an assembly may be composed ofmany

16

subassemblies and components in a hierarchy, and can be stored in a graph structure using

the concept of a tvirtuallink' created by them. In the assembly data structure, any mating

pair of two subassembly, two components, or one subassembly and one component is

connected by a virtual link. If more than two components are mutually related, several

virtual links can be used so that every pair of mating components occupies one virtual link.

They define the virtual link as "the complete set of information required to describe the

relationship (e.g. rigid attachment, rotational constraints) and the mating features between

the mating pair. It They use Itmating features" here, but it is not the feature in the feature

based design. From the structure definition we can see that mating feature means face or

line. In figure 5, an assembly located at the top node is composed of one or more pairs of

subassemblies, where every pair is connected by a virtual link. A subassembly may be

composed of several pairs of subassemblies and components which are connected into

pairs by virtual links, and so on. In this way, the terminal nodes of the assembly graph will

be the components of the assembly, and the component data for each component should

be connected to these terminal nodes.

This data structure represents the mating geometry at a low level. But it has its

own advantage. First, the assembly can be automatically updated for modifications in the

size of any component in the assembly, in contrast to other structure which requires

explicit modification of transformation matrices according to the size change of some

components. Second, the structure stores only possible assemblies. If an assembly of

components which cannot be assembled together is stored in the data structure, there is

not a set of transformation matrices of all the components which satisfies all the mating

conditions. This can be detected when the transformation matrices are computed from

mating conditions. Third, the assembly data structure has a hierarchy very similar to that

of assembly procedures for components. Therefore, it is expected that the simulation for

assembly procedures can be achieved with this structure. Finally, dimension chains in an

17

assembly can be derived from mating feature information so that tolerance analysis on the

assembly can be performed.

Figure 5. Tree Structure for Assembly with Virtual Link

18

The structures they define are as follows:

ASSEMBLY:

Name of the assembly

Pointer to the first virtual link of the immediate lower level

VIRTUAL-LINK

Pointer to the next virtual link

Pointer to an assembly or a subassembly ofthe immediate upper level

Pointer to the starting location in MATING-FEATURE

Number of records in MATING-FEATURE related to the virtual link

Pointer to a component or a subassembly of the pair

Pointer to the other component or the other subassembly of the pair

Relationship provided by this virtual link, e.g. rigid attachment,conditional

attachment, translational constraint, and rotational constraint

SUBASSEMBLY:

Name of subassembly

Pointer to subassembly or assemble of the immediate upper level

Pointer to the first virtual link of the immediate lower level

Stores the derived transformation from the assembly or the subassembly of

the immediate upper level

Mass properties of the subassembly

MATING-FEATURE:

Type of mating, e.g. 'against' and 'fits'

Mating feature (planar face or centerline)

Mating feature (planar face or centerline)

Clearance between mating features

Here we focus on the assembly, so we did not show the component structure in

their work.

19

Their system is a very typical one of today's assembly modellers. They can

successfully generate assembly hierarchy in most situation, but they have some problems.

The geometric modeller is separated with the assembly modeller. In the design

phase, the designer cannot give any information about the assembly to the system so the

system does not have any idea about the assembly. If the geometric model fails in the

assembly phase, the designer has to go back to the geometric modeller to make changes.

This is not an effective methodology. It would be convenient for the user if the assembly

could be represented at design phase and if the system could finish the interference

checking automatically. If some errors exist, the designer could make changes

immediately.

The user needs to input the mating condition between components, and the system

doesn't provide an effective way for describing it. The system supports only four types of

mating conditions. They are not enough to describe a general mechanical system.

Sometimes it is difficult to describe a mating situation by only one kind ofmating

condition. Different users may give different mating conditions to the same problem

because it is hard to tell how tight belongs to "tight fits." This kind offussy logic gives the

system and user some ambiguity. Although the user input is tried to be minimized, the

input of mating condition will still bother the user.

The data structure used in their system had some geometrical information in it for

the interference checking. But the information is in the geometric level, such as face or

centerline. In practice, the mating condition actually is described by the tolerance. And

tolerance should be defined at the feature level. If two features in a component share the

same centerline, the system will have a problem describing the mating situation clearly.

20

Assembly ModeUer Using Assembly Features

Shah (1992) used the concept of "assembly feature" in a assembly modeller. He

defined the assembly feature as "an association between two form features which are on

different parts." Assembly features encode mutual constraints on mating features' shape,

dimension, position, and orientation.

His assembly modeller has two shells. The first is called Set-Up mode. In this

mode an assembly feature library is built on the top of the form feature library of individual

features. It allows the user to define assembly features with generic form features and

provides constraint rules on them. The second mode is called "Modeling mode." This

mode is "for the design of assemblies using feature-based descriptions of piece parts

modeled in the feature modeller." It allows the user to define assembly relationship

between two parts (rigid bodies) with the defined assembly features.

Shah's "assembly feature" is almost the same as our "feature pair" concept. His

also use mating features to establish the assembly hierarchy. The difference is we

concentrate on design with feature pair, capture the designer's intent in the design phase.

His system tries to recognize mating pairs after the design phase. He associates the

constraints between the assembly feature with the library in rule format. This is the biggest

success in his system. It allows the user to change it in the design phase instead of hard

code the constraint in the program. Although the rule defining and rule firing takes a little

overhead, it does give the user some flexibility. If the system provides some default

constraint, the disadvantage would be reduced. For the further development, it is easier to

be developed toward an artificial intelligence system which can handle generic assemblies

if a proper knowledge base is established. Then the work in the Set-Up mode could be

done by the system automatically. The drawback of the system is that it separates form

feature modeller and assembly modeller into two shells. It is not convenient for the user to

come back and forth in the two shells.

21

Dynamic Model For Simulation

Dynamic Model Using Penetration Between Two Rigid Body to Calculate Reaction
Force

Due to the changes in the kinematics constraints, many mechanical systems are

described by discontinuous equations of motion. In our system, we use a simple dynamic

model which can detect constraint changes automatically. This model was developed by

Hong in his master thesis (1991).

When objects move in the system, the constraints will change. In figure 6 (a)

object 1 is a free object. The only force acting on it is the gravity G. As figure 6 (b)

shows, object 1 falls down on object 2. There is a reaction force R that acts on it. So the

total force in object 1 is equal to the gravity G plus the reaction force R.

Now we try to use the collision of the objects to detect the constraint change

between the two objects. If two polygons collide, the reaction force should be created. We

first calculate the maximum collision distance. Figure 7 shows the collision. AB is the

maximum collision distance of the two objects. CD is the width of the collision.

1

,~ G

J2
7 7 7 7

I 77

(a)

22

R

1

G

2

(b)

Figure 6. Constraints Change of an Object

o

Figure 7. Calculate the Reaction Force

In figure 7, CD is the intersection line between the two objects. E is the center of

CD. AF is the normal of CD, it intersects with object 0 at A and F. 0 is the center of

object o. We take the shorter one in AE and EF as the force direction. In this example it is

AE. If the angle between EO and EA is larger than 90, the force direction is AE for

object o. Otherwise, the force direction is EA. The force for the other object is the same

amount and in the reverse direction.

We have

F =k *x *w1 1 1

F =k *x *w2 2 2

Where kl and k2 are stiffness of object 1 and object 2. xl and x2 are deformation

of object I and object 2, w is the width of the collision. Then we get:

23

F;
Xl =-k-*

IW

~X =--
2 k *2 W

So:

F F
X=X +X = __1_+ 2

1 2 k* k*
1 W 2 W

Since

F;=~

So:

k*k
F =F = 1 2 *W*X

} 2 k} + k
2

Our system is designed for 2D problem at this time, so Newton's second law is

used to generate the motion equation.

LF=m*a
LM=J*e

So we can get the acceleration and the angular acceleration from the force F1 and

F2. Using the continuous time formulas below:

24

v = va + a*t

1
S =S + V *t + -*a*t 2

a a 2

(j) = ma + &*t

1
a= a + (j) *t + _*&*t 2

o 0 2

We can get the discrete time formulas as follows:

(j) t+h = (j) t + 8 t *h

- *h!* *h 2at+h - at + OJt + 8 t2

We can see that ifwe know the previous step's at' Vt' St' 8(, OJ(' and at' we can

calculate the status of the next step.

Dynamic Model Which Automatically Generate and Numerically Solve the
Differential Equations of Motion

Differential equations of motion are the traditional and natural way to describe a

dynamic system. This model cannot handle a general mechanical system due to the

unpredictable constraint changes. l'he constraint changes must be anticipated by the user.

25

So how to automatically predict and detect the kinematics constraint changes is the main

barrier ofusing this model.

Gilmor and Cipra (1991) presented a strategy to predict the constraint changes

automatically. As they pointed out, if a point on a rigid body is constrained to remain in

contact with a surface of another rigid body, the point is restricted to move in the direction

of the direction tangent of the surface. For a line segment on a rigid body, ifboth

endpoints of it contacts a line segment on another rigid body, then the two bodies are line

contact. In a planar system, each body is represented by line segments. So they simplify a

planar system to several point to line constraints. A constraint between bodies may be

formed as the result of a collision where the collision is viewed as a boundary interference

but not a boundary penetration (like Hong's method). If two bodies collide and remain in

contact, the one or more point to line constraints are added or deleted to the equations of

motion. The constraints change in the following conditions:

1. Constraint formation due to boundary interference.

2. Constraint break due to the restitution of an impact.

3. Constraint break due to the insufficient closing force.

4. Constraints break due to relative sliding.

This model is designed to handle a planar system. It works better than Hong's

model, especially for line constraints problems.

26

.CHAPTER III

USER INTERFACE DESIGN OF A FEATURE PAIR
BASED DESIGN SYSTEM

System Overview

Last chapter we discussed the concept and history of feature-based design in

detail. In this chapter we will propose a concept of feature pair on the top offeature-based

design. It gives the user more alternatives in the design phase, and allows the system to

represent assembly at a higher level.

The following will be implemented in the system:

(1) Develop a data structure which can support a hierarchical group ofobjects, and

support feature pair design.

(2) Develop a concept offeature pair and implement it in a dynamic simulation

system.

(3) Develop an event driven graphical user interface in which the user can create,

manipulate, modify, and delete features and feature pairs very easily.

(4) Implement a simple dynamic model in the simulation. This model should be

able to detect the constraint change automatically.

(5) Implement the distributed computation to the system to speed up the

simulation.

27

Data Structure Used In The System

The feature pair is developed on the top offeatures. It gives the user more

opportunities to represent the assembly at the design phase. Furthermore, it allows the

user to modify any feature, even after the assembly is constructed. To have a better

understanding about the feature pair concept, we need to introduce the hierarchy data

structure used in the system first.

Feature Data Structure

In the system, each feature has its own representation. The data structures used in

the system are as follows.

typedef struct p3d{

double *point;

struct p3d *next;

} P3D;

typedef struct Slot{

double *center;

double *dir;

struct p3d polygon;

} MY_SLOT;

typedef struct Pin{

double *center;

double r;

struct p3d polygon;

} MY_PIN;

typedef MY_PIN MY_HOLE;

typedefMY_SLOT MY_BLOCK;

28

In the pin, slot, block, and hole data structures, there is a field "polygon". That is

the secondary representation of the feature. The primary representation give a full

description of the geometry, but it is an abstraction of a mathematical model. For example,

the pin is stored as the center and radius. This saves space. But it is not convenient to

calculate the intersection between features, because we have to construct a different

intersection model for each two different features. Here when we need to calculate

intersection, we first convert features to polygon, and store them in the polygon field. This

conversion is done by the system automatically. After calculation, we release the space, so

we need only one model to calculate the intersection; that is the intersection between two

polygons.

Group Data Structure

In the real world, most parts consist of more than one feature. So we need to

group features into a rigid body. Figure 8 shows an assembly with two very simple parts.

One consists of a block feature and two hole features. The other is a pin feature. The data

structure for representing a rigid body is as follows. We call the rigid body a group.

1

o
Figure 8 An Assembly with Two Simple Features

typedef struct Group{

double *left, *right;

MY_OBJECT *head;

29

} MY_GROUP;

The right and left field is for group handle. We will discuss that later. The "head"

field is the head of an object linked list. This object linked list is the list of objects in the

rigid body. The objects could also be a group offeatures. So this is a hierarchy data

structure.

Object Data Structure

Object is a feature or a feature group.

typedef Object{

int id;

int type;

int select_flag;

int fix_flag;

double VX,vy,w;

void *field;

sturct Feature_Pair *f--'pair;

struct Object *next;

struct Object *group_next;

struct Object *group;

} MY OBJECT;

The object is the most important data structure in the system. Each item in the

system is an object, including single feature and hierarchy groups. This is realized by the

generic pointer "field." This pointer points to the actual data field, such as pin, hole,

group, etc. All the objects are stored in an object linked list. For the objects in figure 8, the

representation ofthe system is shown as figure 9. It is a linear linked list. In each object,

there is a pointer which points to the next object in the same group, ifit is in a group.

30

There is a "group" pointer in each object which points to the higher level group object.

The group object has a pointer in the "field" which points to the head of the lower level

object linked list of the group. When we traverse recursively from the head pointer in the

"field" ofa group object with "group_next" pointer, we can find that we are traversing a

tree. We represent figure 8 with group concept as figure 10, it is clearly a hierarchy tree

structure. In figure 10, there are two top level objects: group 2 and pin 4. Pin 4 is not in

any group. In group 2, the head pointer of the lower level object list points to groupIe The

"group_next" pointer of group 1 points to the same level object blockl. The head pointer

of the lower level object list in group 1 points to object hole 2. The "group_next" pointer

in object hole 2 points to object hole 3. In this way, we represent the hierarchy data

structure of a rigid body.

type id , type id , type id , type id

block 1
/ hole 2 ~ hole 3 / pin 4

type pointe~ type pointe]
/

groupl 2 r" group2 group "

Figure 9. The Object Linked List For Figure 8

type pointe r
"

type id
/ pin 4

group~ groupl

I
,1/

type pointer , type id

group 1 hole 2
~ block 1

I
,1/

type id , type id

hole 2 / hole 3

Figure 10. The Tree Data Structure For Figure 8

31

32

Concept of Feature Pair

In real world, a mechanical system consists ofmany components. So the assembly

of a system needs to be represented. A data structure represents assemblies in a database

that can be divided into two parts. The first part is the data structure used to store

topological and geometric information. The second part is the data structure used to store

information on how all the components in an assembly are connected. Above we discussed

how to represent a component with features. Here, we will propose a feature pair data

structure to represent assemblies and implement it in the design system.

In chapter II, we discussed the success and problems of the VIRTUAL-LINK data

structure developed by Ko and Lee. Their problems cannot be solved without using other

design methodology such as feature based design. But a single feature can only describe

the topology and geometry of itself: it is not enough to describe an assembly. So we

propose a feature pair methodology to solve these problems.

After analyzing the VIRTUAL-LINK data structure, we can find that a virtual link

is actually a pointer which connects the immediate level of the nodes in a tree structure. So

it is possible to change the content of the virtual link so that it could include the feature

information which we need without changing the hierarchical tree. Next, we will develop a

concept of feature pair, which works just as the virtual link, and implement it in our object

data structure to develop a hierarchy tree for representing an assembly. The layout of the

tree looks almost the same as Lee's hierarchical tree. But we build up a higher level

structure on the base offeatures in the feature based design. This provide a powerful tool

to the users and allows them to represent the assembly at a higher level.

Use ofthe feature captures the designer's intent for component design. The feature

pair captures the designer's intent about assembly in the design phase. We define the

feature pair as follows:

33

Feature pair is the complete set of information required to describe the mating

features (pin-hole, pin-slot etc.) between two mating components.

In the traditional design procedure, assembly is the first step of a system design.

To represent an assembly, we need to provide the following information:

(1) What kinds of components are in the system.

(2) The position of each component in the system.

(3) How components are connected with each other.

Then, according to the assembly, we design the detail of each component.

But in today's CAD systems, the procedure is in the reverse order. The designer

needs to start with component design. After all components are finished, the assembly

could be generated from these components.

Figure 11 (a) shows the assembly of two components, component 1 (b) and

component 2 (c). Component 1 is a block with a pin. Component 2 is a block with a hole.

In a feature-based design system, the design procedure shows as figure 12.

After four features are created, we attach hole 2 to block 1 to form a rigid body,

and attach pin 3 to block 4 to form a rigid body. Finally, there are six objects in the

system, four features and two rigid bodies (feature groups). The data structure of the

system shows as figure 13. Although we know that two groups are connected by the pin

and hole, we cannot represent it at this time, because there is no way to represent

assembly in present design-with-feature system. We need to move this model to an

assembly modeller to represent the assembly.

Now let's discuss how the feature pair design represents the assembly in the design

phase. In figure 12, when we create the hole 2, we do know that this hole will mate with

the pin 3. So rather than create the single hole, we create hole 2 and pin 3 together. At the

same time, we create a 'feature pair' data structure automatically to hold these two

features. The procedure shows as figure 14. The most important part is that we represent

the assembly automatically although it looks like figure 14 only combine the (b) and (c) in

34

figure 12. When hole 2 is attached to block 1, and pin 3 is attached to block 4, the pointer

in the 'feature pair' structure will point to these two components. The data structure shows

as figure 15, the difference between figure 15 and figure 13 is very clear here. We can see

that the feature pair works just as the virtual link. It links the two components together.

The design procedure is almost the same as what we did in the feature based design. But

we represent the assembly automatically in a very natural manner when we create the

components with the feature pair.

1

(a) The Assembly ofthe Two Conponents

1

(b) Conponent 1 (c) Conponent 2

Figure 11 An Assembly with Two Components

1

1

(a) Create a Block 1

(c) Create a Hole 3

1

1

(b) Create a Pin on the Block 1

(d) Create Block 4

35

Figure 12 The Design Procedure for Figure 11

Figure 13 The Data Structure Representation ofFigure 11

36

1

1

37

(c) Create Block 4

3~

(a) Create a Block 1

Figure 14 The Design Procedure Using Feature Pair Concept

(b) Create a Pin Hole Feature Pair

1

Figure 15 The Data Structure ofFigure 11 Using Feature Pair Concept

38

39

We define the feature pair data structure as follows:

FEATURE-PAIR

Feature-pair ID.

Feature-pair type (pIN_SLOT, PIN_HOLE, etc.).

The pointer points to the first feature in the pair.

The pointer points to the second feature in the pair.

As we mentioned before, our object data structure is also a hierarchical tree. The

feature pair points to the feature in a component, not the component itself Ifwe traverse

the hierarchy from the feature up, the top-level group of it would be the component where

the feature attaches. Figure 16 shows a complicated mechanical system with several

components. In this figure, "p" stands for feature pair, "c" stands for component

(component is the top level group of a feature group hierarchy, it is not in any other

group). Due to the space limitation, we cannot demonstrate all the features on the

components. Figure 17 is the schematic of the figure 16. It shows the hierarchy of the

system. We suppose there are other features that exist in the components. We use "fit to

stand for feature, "g" for group. When we consider the assembly of the system, we only

want to know how each component is connected. Ignoring all the detail of a component,

we get the assembly representation as figure 18.

40

cl

Figure 16 A Complicated Mechanical System with Several Components

p

g

cl

41

f f

Figure 17 The Schematic for Figure 16

42

__----.... p11--_--.

cl

Figure 18 The Assembly Representation ofthe System

43

User Interface Design

Event Driven Menu System

The system implements event driven algorithms. In the traditional character-based

interfaces, once the application starts, it is always in control. It knows just what kind of

input it will allow, and may define exclusive modes to limit that input. For example, the

application might ask the user to input with a menu and use the reply to go down a level

to a new menu, where the actions that were possible at the previous level are no longer

available. Or a text editor may operate in one mode in which keyboard input is interpreted

as editor commands and another, in which it is interpreted as data that is to be stored in an

editor buffer. In any case, only keyboard input is expected.

In an event driven system, multiple graphic applications may be running

simultaneously. In addition to the keyboard, the user can use the pointer to select data,

click on buttons or scrollbars, or change the keyboard focus from one application to

another. The user can suddenly switch from the keyboard to the mouse, or from one

application area to another. Furthermore, as the user moves and resizes windows on the

screen, application windows may be obscured or redisplayed. The application must be

prepared to respond to anyone of many different events at any time.

Event driven programming reduces modes to a minimum, so that the user does not

need to navigate a deep menu structure and can perform any action at any time. The user,

not the application, is in control. The application simply performs some setup and then

goes into a loop from which application functions may be invoked in any order as events

arnve.

To realize the event driven, the system provides two application windows. One is

the main window which is for display purposes, and the other is a tool box, which contains

several groups of icons. When an icon is chosen, a callback function is called, and the

system interprets the mouse action according to the current mode. All parameters about

44

features are figured out by the system through the mouse action. The tool box includes the

following groups of icons:

(1) Create features or feature pairs.

(2) Select, edit, or delete features or feature pairs.

(3) Group and ungroup for assembling a rigid body.

(4) To start the simulation.

The system is designed for a very general purpose. Items are very easy to add on

the tool box. To interpret the meanings of these items, the corresponding knowledge base

needs to be added. The system is designed toward the direction of the object-oriented

methodology. So a feature can be added to the system without any influence to other

features in the system.

Select Algorithm

When the user wants to edit an object, he or she needs to tell the system which

object needs to be edited. Some systems use the object ID to identify the object. So the

user has to remember each object's ID. The user may have a hard time when there are

many objects in the system. Once the user knows the ID, he or she needs to input it from

the keyboard. This is not a convenient way to make a selection.

In our system, we provide a select-operate algorithm. When we want to operate an

object, we first select it. The selection is done by a mouse click. When the mouse is close

enough to an object, the object is selected. To do this, the system calculates the distance

between the mouse position and the object. If the distance is small enough, the object is

selected. Otherwise, all the objects are unselected. The system is smart enough to tell the

difference between the distance between a point to an object and the distance between a

point and a line. In figure 19, d' is smaller then d, but obviously the object 1 should be

selected.

45

2

1

d d'l
...........\ .. j

mouse position

Figure 19. The Selection Algorithm Demonstration

We also provide a multiple selection algorithm. This is used when we want to

group some features into a rigid body. When we do multiple selection, we need to select

an object (a feature or a group) first, then holding the "shift" key, we select the next object

with the mouse. If the "shift" key is not pressed when we select the second object, the first

object will be unselected.

The "select_flag" field in the object data structure is used for selection. When an

object is selected, the "select_flag" will be set to 1. But if the object is in a group, we

always set the flag at the highest level of this group. In figure 19, ifobject 1 or object 2 is

selected, other than set the flag in the object or group 1, we set the flag ofgroup 2. That

means the select information will be propagate to the top level.

After we do multiple selection, the selected objects behave as a rigid body. If one

object moves, other objects will move together. But it is not a group until the "group"

button in pressed. Then a new group object is generated. All the objects selected become

the members of the group.

46

Here we need to address the ungroup operation. When a group is selected and

"ungroup" button is pressed, the group object will be deleted from the object list, and the

members within this group become "free" objects. But this kind ofungroup only happens

for one level. If a member is also a group itself: nothing will change in this group. After

the ungroup operation, all these members are multiple selected.

Handles For Editing

After an object (a feature or a group of features) is selected, the handles of it will

show up. We can edit the object through these handles. Handles are several sensitive

points generated from the object data. Each of them relates with one or more parameters

of the object. Different handles are designed for different objects because each object has

different data structure. The parameter of the object changes according to the handle's

behavior.

When the mouse is close enough to a handle, the handle will be selected. The

selected handle will move with the mouse. The system will interpret the coordinate change

of the handle to the parameter change of the object. The object will be updated by the new

parameter. New handles will be generated from the updated object. The result is when we

drag a handle, it looks like we are dragging the object. This gives the user an opportunity

to see the editing procedure animated on the screen.

Handles of a Feature. Each feature in the system has its own handle definition.

(1) Handles of a circle or a pin. Because a pin and a hole use the same data

structure, the handles of them are the same. As figure 20 shows, there are two handles for

the circle. When we drag one of them, the radius ofthe circle will change with the distance

between the mouse position and the center of the circle in x direction.

47

o~__~~__-..

1

Figure 20. The Handles of A Circle or a Pin

(2) Handles of a block or a slot. A block and slot share the same form ofhandles.

Figure 21 (a) shows the handles for resizing the block. Handle 0, 2, 4, and 6 will resize

both length and width of the block. Handle 1 and 5 relate with the length of the block.

And 3, and 7 relate with the width of the block. The selected handle is dragged in the

mouse direction, and the handle in the opposite side will remain unchanged. Figure 21 (b)

shows the handle to rotate a block. This is a submode of the editing. The right mouse can

pup up a menu. The rotate entry could be selected for rotating a block. After a handle is

selected, the direction of the block will change with the angle between OA and the

horizontal line.
7

o 188ll88I'---I8888l!!I----oC88888I

1

2

6

5

4

o
o

center

A

1

3

(a) (b)

Figure 21. Handles of a Block

48

(3) Handles of a polygon and sketch. There are two modes to resize a polygon.

Figure 22 (a) shows the handles of the first mode. In this mode, we can scale the polygon.

The handles 0, 2, 4, and 6 scale both x and y directions. Handles 1, 3, 5, and 7 scale only

one direction. We can get a mirror image ifwe move handle 5 to the left side of handle 1.

Figure 22 (b) shows another mode for resizing a polygon. The handles are the same point

as the vertexes of the polygon. This mode allows the user to edit a single vertex of the

polygon.
7

o ~-----~Rt------~!1881 6

1

2
3

(a)

5

4

3

(b)

Figure 22. Handles of a Polygon or a Curve

Handles Of A Rigid Body. A rigid body consists of several features. We define a

scale operation on the rigid body. That means when a rigid body is scaled, all the features

in the body will be scaled. Figure 23 shows the handles of a rigid body. It is a block which

49

fits in all the features in the body. The handles are stored as the upper left comer (handle

0) and lower right comer (handle 4) in the group data structure.

7
o~ ~ _

1

D
2

3

Figure 23. Handles of a Rigid Body

6

5

4

Same as the scaling of a block, handles 0, 2, 4, and 6 scale both x and y directions,

Handles 1, 3, 5, and 7 scale only one direction. This works fine for block, slot, and

polygon, but there is a problem for the hole and pin. After scaling, the hole and pin should

remain in a perfect circle. It is not possible to resize a circle in two directions. So we

resize circles according to the x direction.

Modify The Feature Pair

To satisfy the requirement of a feature-pair based modeller, the system must also

provide an attractive environment for creating, manipulating and deleting a feature pair.

Creating and deleting a feature pair is the same as that of a feature. However, the

modifying of a feature pair is a little tricky.

In modifying a feature, the user's intent is to change the parameter of a feature and

keep its geometry and topology remaining unchanged. And the user's intent in modifying a

50

feature pair is to change the parameters ofthe feature pair or the position of it and keep

the remaining mating situation unchanged.

Because we try to use the mouse as the only input device, we need to give a

correct interpretation for each mouse action. In modifying a feature pair, there are several

possible interpretations for one mouse action. So we need to discuss each possibility in

detail. But in any situation, we need to remember that the mating situation ofthe feature

pair must be maintained.

Change The Parameter of a Feature Pair.

The handle discussed above is used here. And we also use the select-edit method

for editing feature pairs. The difference is that when a feature in a feature pair is selected,

the other feature in the feature pair will also be selected. When we edit a feature, to

maintain the mating situation of the feature pair, the corresponding parameter of the other

feature needs to be changed accordingly. We take the figure 12 as an example. After strain

analysis, it might be necessary to increase the radius of the pin. Ifwe do not change the

radius of the hole, the mating restraint will be violated. Also, the pin could not be too

large to exceed the block 4 because it is not a valid mating pair if the pin is larger than the

hole. The interference between features is not allowed in the system. In a pin-slot feature

pair, we also need to take care of the interference problem. The diameter of the pin should

be the same as the width of the slot. And the length of the slot should not be smaller than

the width of it.

Change The Position Of A Feature Pair.

Change The Position Of A Feature Pair Whose Feature Is Not In A Group.

There are two possibilities that exist here. The first is that the relative movement is

allowed between the two features in the feature pair. In figure 24, slide 1 and square slot 2

51

are a slide-slot feature pair. At the beginning, the user hopes the bar AB could start at the

angle a. Then he or she might want to decrease a. We need to move slide 1 to the right in

slot 2. At this point, the system should know that slide 1 can only move in the slot

direction. And right side of slide cannot exceed GF, left side cannot exceed HE. So when

relative movement is allowed in a feature pair, one feature could be moved with some

restraint. After it is moved, the interference should be checked. To do this modification,

we add another handle at point D in the slider. When this handle is moved, the slider is

moved with the described restrain.

___.... G

E F

Figure 24. Relative Movement in a Feature Pair

The second possibility is that relative movement is not allowed between the two

features. Figure 25 shows a pin-hole feature pair. The hole 1 should be on block 3. We

need to move the hole to the dotted circle position on block 3, then attach hole 1 to block

3. For mating condition, the pin 2 needs to be moved together with the hole 1. So when

relative movement is not allowed in a feature pair, the two features in the feature pair are

always moved together.

52

3

....)
...............

Figure 25. Move a Feature Pair with no Relative Movement

Change The Position Of A Feature Pair Whose Feature Is In A Group. When

features in a feature pair are in groups, we need consider not only the movement of the

feature pair but also the other features in the same group. There are two possibilities here.

When two features are all in groups, that means the features have been already in rigid

bodies. After moving them, we need to keep the features in the right position in the rigid

body, and the two rigid body are in the right mating position. So when we move them, we

move all the rigid bodies together. If there are other feature pairs in the rigid body, they

will be moved together. In figure 26, there are two holes in block 1: hole 2 and hole 3.

Both block 4 and block 5 have a pin attached to them. Hole 3 and pin 7 are a feature pair.

Hole 2 and pin 6 are a feature pair. When we move the feature pair 3 and 7, all of the

objects in figure 26 should be moved together. This is the only way to satisfy the mating

condition in the system.

I I
4

1
5

(t (t
I I

Figure 26. Move All Connected Feature as a Rigid Body

53

Another possibility shows as figure 27. Pin 2 and hole 3 are a pin-hole feature pair.

Hole 3 is attached to block 4. The user wants to move hole 3 to the dotted position in

block 1. We need to move pair 2, 3 together and keep block 1 unmoved.

1

4

Figure 27. Move a Feature Pair in a Rigid Body

Visual Effect of the Graphics

In a general mechanical system, there are at least two components. Each

component consists of several features. In the real world, we can distinguish them by

shape, color, and material under the real light. On the screen, how to give the user a better

visual effect is a problem.

We have several ways to solve this problem: shading, different colors, and line

styles. Another alternative is to flash the selected group or feature pair. It works only if

one group or feature pair is selected. Although shading is the best way, it is not possible at

this time because the light model is not implemented in the system. We use different colors

to represent different groups, and we use dash lines to represent feature pairs. Black is the

default color in the system. The user can change the color of a selected object or objects in

a pup up window. The window also provides a slider which allows the user to change the

stiffness of the same object(s).

54

CHAPTER IV

IMPLEMENT FEATURE PAIR AND
DISTRIBUTED COMPUTATION IN DYNAMIC SIMULATION

A simulation of a mechanical system can act as a cost effective test bed for final

designs. Due to changes in the kinematics constraints, many mechanical systems are

described by discontinuous equations of motion. In our system, we use a simple dynamic

model which can detect constraint changes automatically. This model was discussed in

chapter II. But Hong's system is designed to handle a specific mechanical problem. In our

system we use the model to handle general problems. The calculation is very complicated.

So we try to find ways to minimize the number of calculations we need to do in the

simulation.

Use Feature Pair To Speed Up The Simulation

In chapter II, we discussed the dynamic model developed by Hong. Here we try to

use the feature-pair concept to minimize the calculation needed for the dynamic

calculation. Figure 28 shows a simple mechanical system including 6 objects. The spring

initials a movement on the 1. This starts simulation of the system. For each time step, the

solver will check object 1 with object 2, 3, 4, 5, and 6. Check object 2 with 3, 4, 5, and 6.

Check 3 with 4, 5, and 6. Check 4 with 5, and 6. Finally, check 5 and 6. Ifthe system has

many objects, many calculations need to be done. This slows down the simulation speed.

5 llIJI

55

Figure 28. A Simple Mechanical System

We can see that pin 2 and block 5 are a rigid body, and so is slot 6 and block 1.

They cannot intersect with each other. Before simulation, the system will check illegal

intersection automatically. That means we do not need to calculate the intersection

between objects in a same rigid body.

We propose a feature pair concept in chapter III. It could also be used here to

speed up the simulation. In figure 29, hole 2 is in block 1. It is a feature pair with pin 3.

We need to check the intersection between the hole 2 and pin 3. It is the only possible

intersection for pin 3 and hole 2. So we can conclude that if a feature is in a feature pair,

the only possible intersection for it is the intersection within the feature pair. The following

tables shows how the calculations are reduced.

1

Figure 29. Speed Up the Simulation with Feature Pair

In the following tables, "0" stands for a calculation reduced from the previous

table. From table I to table II we decrease the calculation from 15 to 13 using the concept

56

of rigid body. In table III, the calculation decreases to 7 using the concept of a feature

pair. So we can expect to speed up the simulation twice when we use the feature-pair data

structure developed.

TABLE I

NUMBER OF CALCULATION IN GENERAL rdETHOD

object

1

2

3

4

5

6

1 2

x

3

x

X

4

x

X

X

5

X

X

X

X

6

x

X

X

X

X

TABLE II

NUMBER OF CALCULATION WITH RIGID BODY CONCEPT

57

object

1

2

3

4

5

6

1 2

x

3

x
X

4

X

X

X

5

X

x

X

6

x

X

X

X

TABLE II

NUMBER OF CALCULATION WITH FEATURE PAIR CONCEPT

58

object

1

2

3

4

5

6

1 2 3

x

4

x

x

5

x

x

X

6

x

59

Distributed Computation For Simulation

As we know, Silicon Graphics workstation is very powerful for graphics. But the

mathematics calculation speed is not fast. Having access to RS6000 which has high float

point speed, we want to use Silicon Graphics workstation for displaying, use RS6000 for

calculation, and use network to connect them. The network communication overhead will

override the speed up and even slow down the simulation than running them locally

although RS6000 is much faster then Silicon Graphics workstation.

From table I, table II, and table III, we can see that the position of an object is

calculated separately from the position of all objects' previous position. So it is possible to

run several copies of dynamic solver on several RS6000. Each solver takes care of one or

more objects. After the calculation is finished, it sends back the next position of calculated

objects to Silicon Graphics workstation. After Silicon Graphics workstation gets all the

results from the solvers, it will display new positions of objects on the screen, and send

them to all solvers.

There is more overhead here. Suppose we have n objects in the system. Ifwe do

the calculation locally, the total number of calculation is

Ifwe use n solvers, a solver for an object, the total number of calculation are

n*(n-l)

that is twice of the local operation. This is not a problem because n calculations is

performed at the same time. So the actual number of calculation is

n-l

which is smaller than the local calculation. The most important problem comes from the

data communication speed. We need to send the new position of each object n times. The

60

transferring time is a main factor here. Now we will discuss how much speed up we can

get with this distributed calculation.

Suppose we have n objects in a system. Average calculation speed for collision of

two objects on Silicon Graphics workstation is T. RS6000 is m times faster than Silicon

Graphics workstation, and each RS6000 has the same speed. Because the concept of rigid

body and feature pair affect both local and distributed method, we ignore their influence.

Then the total time needed for local method should be

n2 -n
--*T

2

We assume that the transfer speed for a double precision number is t. For 3

number, coordinate of centroid and rotation angle, is 3t. We send the new position back,

and n-l objects' new position to the solver. So total transfer time is

3n2t

The number of calculation on each RS6000 is n-l. The calculation time is

(n-l)*T/m

We get the total time for distributed method is

3n2t+(n-I)*T/m

We want distributed method is faster than local method, we need

n2 -n
3n2t+(n-l)*T/m < *T

2

Suppose m» n, we ignore (n-l)*T/m, then get

So

61

t n-l
-<--
T 6n

We have

1 1
t«---)T

6 6n

So we know if the data transfer speed is fast enough, we can speed up the

simulation with distributed method.

In the system, we use a server-client model with BSD socket as the

communication protocol. Silicon Graphics workstation works as server, and RS6000

works as client. The server connects with several clients by socket. Figure 30 shows the

client-server model.

Client Client Client

current position of all objects

the new position of the calculated object

Figure 30. Server-Client Model

When the connection between server and clients is established, the server will transfer

the current position of objects to each client and specify which object (or objects) the

client should calculate. After all clients send back the results, the server displays the new

position and sends these new positions to each client. This is shown as figure 31.

client

start clien s

connect with cleent

send data

....~ "<':.::.:~.:'...

clinet client I ~;ine~

.. : "'1

·····,·········:·::receive da:~:

display

send data

62

~ _.. -. - .:

Figure 31. Flow Chart of the Server

63

connect with se ver

receive da a

.. ---_ ,

send data

server

... _---.

calculation

Figure 32. Flow Chart of the Client

64

For the client, after the connection is established, it gets the current position of all

objects. Knowing which object it should calculate, it calculates the new position ofthe

object. Then it sends it back to the server. This is shown as figure 32.

At the beginning of the simulation, the server starts the clients on RS6000

remotely. For security reasons, there is no password in the program explicitly. The system

will go to .netrc file for checking the machine name, login name, and password. To avoid

failure to start the client, several protection procedures are added here.

We use the ttrexec" function to start the client remotely. But "rexec" returns at

once without blocking. If one client fails to start due to a machine crash, the server will

terminate. However, the started clients still try to connect with the server which is not

exist. This gives the network a heavy load and could crash the whole network. To solve

this problem, we use a timeout mechanism. In stead of trying to connect with the server all

the time, the client tries to connect with the server for several times every three seconds. If

the connection fails for more than four times the client will terminate automatically. This

avoids deadlock and reduces the load on network.

After the communication is finished, the kernel will not release the binding address

immediately. Ifwe use a specific port number and start a simulation immediately after a

simulation is finished, the system will indicate the address that has been used, and the

process will be terminated. So we need to try a new port number. If it works, the port

number will be pass to the client as a parameter.

6S

CHAPTER V

CONCLUSION AND RECOMMENDATION

Conclusion

This system is developed for the planar mechanical system design. It is an

integrated design environment which is very convenient to use. The user can come back

and forth among the rigid body design, assembly design, dynamic simulation, and

distributed computation interactively. This gives the user much flexibility in the iteration

design process.

In the system, we use features to capture the designer's intent for topology and

geometry on any single component. The feature-pair concept we developed successfully

captures the designer's intent about assembly. It generates assembly hierarchy

automatically at the design phase and allows the user to modify any feature even after the

assembly has been constructed. In the dynamic simulation, the feature pair works well to

reduce the number of intersection calculations and speeds up the simulation.

To support the feature pair based design, we developed an attractive graphical user

interface. The select-edit method and editing handle in this interface makes it possible to

use a mouse as the only input device. This minimizes the user's input and reduces the

possibilities of the user's error. The event driven menu system integrates all operations into

one tool box. The icons used in the tool box provide a better visualization for the user.

The dynamic model we use is simple to implement and works well in most

situations. It successfully detects constraint changes automatically.

66

The system also has some drawbacks. Because we hard code the constraints of a

feature, the user cannot define new constraints for the feature pairs. Although we allow

the user to define new feature pairs using the features, the constraints of these new feature

pairs cannot be defined by the user. The feature pair works well in a complete system

design. In an incomplete system, a feature in a feature pair may not be attached to any

rigid body. This may cause problems in the simulation.

We use distributed computation technology to speed up the dynamic simulation. It

is implemented on RS6000 through the BSD Socket. It works, but the result is not

satisfactory. The main problem is that the overhead of the communication speed slows

down the simulation.

Recommendation

In our system, only a few features and feature pairs are provided to the user and

those are not enough. We need to develop a feature and feature pair database, which can

be customized and accessed by the user.

Our system is designed for a 2D problem. We need to combine it with a solid

modeller so it can handle a 3D problem.

The dynamic model used in the system is not the best one. Our system would be

more powerful ifwe connectes it with a solver which implements the Gilmor and Cipra's

algorithm.

For distributed computation, we need a scheduler to assign jobs to each RS6000,

so their load could be balanced and work effectively. The major bottle neck to slow down

the simulation is the communication speed. Maybe we can run our system on a true

parallel architecture, such as Squent or hypercube computer.

67

REFERENCES

Cunningham J. J. and Dixon, J. R. (1988). Designing With Features: The Origin of
Features, Computers in Engineering, Transactions ofthe ASME, 1, pp. 237-243.

DeFazio, T. L., Edsall, A. C., Gustavson, J. A. and Hernandez, J. A. (1990) A Prototype
ofFeature-Based Design for Assembly. Advances in Design Automation. 23(I)pp. 9-16.

Gilmore, B. J. and Cipra, R. J. (1991). Simulation ofPlanar Dynamic Mechanical Systems
With Changing Topologies-Part 1: Characterization and Prediction ofthe Kinematics
Constraint Changes, Transactions of the ASME, 113, pp. 70-76.

Gilmore, B. J. and Cipra, R. J. (1991). Simulation ofPlanar Dynamic Mechanical Systems
With Changing Topologies-Part 2: Implementation Strategy and Simulation Results for
Example Dynamic Systems. Transactions of the ASME, 113, pp. 77-83.

Henderson, M. R. and Chang, G. J. (1988). FRAPP: Automated Feature Recognition and
Process Planning From Solid Model Data. Computers in Engineering 1988-procedings,
pp. 529-536.

Hirschtick, J. K., Gossard, D. C. (1986). Geometric Reasoning for Design Advisory
Systems. Proceedings of the 1986 Computers in Engineering Conference. pp. 263-270.

Hong, X. (1991). Concepts for Computer-Aided Preliminary Design and Modeling of
Assemblies with Moving Parts. Oklahoma State University Master Thesis.

Hummel, K., Brooks, S. (1986). Symbolic Representation ofManufacturing Features for
an Automated Process Planning System. Proceedings ofWinter Annual Meeting of the
ASME. pp. 233-243.

Irani, R. K., Saxena, M. and Finnigan, P. M. (1990). Boundary-Based Feature Modeling
Utility. Computers in Engineering 1990 Proceeding. pp. 45-51.

Ko, Heedong and Lee, Kunwoo (1987). Automatic Assembling Procedure Generation
from Mating Conditions. Computer Aided Design, 19(1), pp. 3-9.

Kumar, B., Anand, D. K. and Kirk, J. A. (1988) Knowledge Representation Scheme for
an Intelligent Feature Extractor. Computers in Engineering 1988-procedings, pp. 543-550.

68

Lee, Kunwoo and Gossard, G. C. (1985). A Hierarchical Data Structure for Representing
Assemblies: Part 1. Computer Aided Design, Jan. 1985, pp. 15-19.

Mullender, Sape (1989). Distributed System. ACM Press, New York.

Pratt, M. 1. (1988). Synthesis ofan Optimal Approach to Form Feature Modeling.
Computers in Engineering 1988-procedings, pp. 263-273.

Shah, J. J., Rogers, M. T. (1988a). Feature Based Modeling Shell: Design and
Implementation. Computers in Engineering 1988-procedings, pp. 255-261.

Shah, J. J. and Rogers, M. T. (1988b). Expert Form Feature Modeling Shell. Computer
Aided Design, 20(9), pp. 515-524.

Shah, J. J. and Bhatnagar, A. S. (1989). Group Technology Classification from Feature
Based Geometric Models. Manufacturing Review, 2(3), pp. 204-213.

Shah, J. J., Tadepalli, Ravi (1992). Feature Based Assembly Modeling. Computers in
Engineering, 1992 : Proceedings of the 1992 AS1\1E International Computers in
Engineering Conference and Exposition. pp. 253-260.

Shah, J. J. (1991). Assessment ofFeatures Technology. Computer Aided Design, 23(5),
pp.331-341.

Smith, D. A. (1973). Reaction Force Analysis in Generalized Machine Systems. Journal of
Engineering for Industry, May 1973, pp. 617-623.

Turner, G. P. and Anderson, D. C. (1988). An Object-Oriented Approach to Interactive
Feature-Based Design for Quick Turnaround Manufacturing. Computers in Engineering
1988-procedings, pp. 551-555.

Unger, M. B. and Ray, S. R. (1988). Feature-Based Process Planning in the AMRF.
Computers in Engineering 1988-procedings, pp. 563-569.

VITA 2
PENGFEI CAl

Candidate for the Degree of

Master of Science

Thesis: A USER INTERFACE FOR FEATURE-PAIR BASED DESIGN AND
ANALYSIS OF MECHANICAL ASSEMBLY.

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Beijing, P.R.China, May 21,1967, the son of Qigui Cai
and Yuehua Jiao.

Education: Graduated from No.4 High School, Beijing, P.R.China, in July 1985;
received Bachelor of Engineering Degree from Tsinghua University,
Beijing, P.R.China, in August, 1990; completed requirements for the
Master of Science degree at Oklahoma State University in May, 1994.

Professional Experience: Assistance engineer in China Daheng Co.; Research
Assistant, School of Mechanical and Aerospace Engineering, Oklahoma
State University, January, 1992, to December, 1993.

	000.tif
	001.tif
	002.tif
	003.tif
	004.tif
	005.tif
	006.tif
	007.tif
	008.tif
	009.tif
	010.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif
	017.tif
	018.tif
	019.tif
	020.tif
	021.tif
	022.tif
	023.tif
	024.tif
	025.tif
	026.tif
	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif
	053.tif
	054.tif
	055.tif
	056.tif
	057.tif
	058.tif
	059.tif
	060.tif
	061.tif
	062.tif
	063.tif
	064.tif
	065.tif
	066.tif
	067.tif
	068.tif
	069.tif
	070.tif
	071.tif
	072.tif
	073.tif
	074.tif
	075.tif
	076.tif

