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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Background Information 

Sperm are highly specialized cells that have essentially one important 

function: fertilization of an egg. To fertilize an egg, however, sperm cells 

must perform many tasks as they travel through the male and female 

reproductive tracts. 

Sperm mix with seminal and epididymal fluids during their journey 

through the male reproductive tract. All fluids and sperm cells together at 

ejaculation are deposited in the lower female reproductive tract and must 

travel though the cervix, uterus, and oviducts where they reach the vicinity 

of the released egg. There are several barriers around the egg that the sperm 

must push through. The first barrier is the cumulus matrix, composed of 

cumulus cells and hyaluronic acid. Immediately surrounding the egg is the 

zona pellucid a which the sperm cell must press through before it reaches the 

egg plasma membrane. 

As the sperm reaches the zona pellucida, it undergoes the acrosome 

reaction, an exocytotic event that involves fusion of the outer acrosomal 

membrane and plasma membrane on the anterior portion of the sperm head. 
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The acrosome reaction is considered a final step in capacitation: physiological, 

cellular and biochemical changes that render the sperm capable of fertilizing 

an egg. The acrosomal contents are released and the sperm penetrates the 

zona pellucida, crosses the perivitelline space and binds to the egg plasma 

membrane. Soon, the entire sperm has entered the egg cytoplasm, and an 

egg is fertilized (reviewed by Yanagimachi, 1994). 

In many cases, a sperm is not able to fertilize an egg. There exists 

several known causes, and several unknown causes, for such cases of 

infertility. Clinical tests can sometimes find the factor causing the infertility, 

such as extremely low numbers of sperm, immotile sperm, morphologically 

abnormal sperm, or sperm that fail to penetrate eggs. In some instances, 

these problems can be c,ured, but many times clinicians cannot pinpoint the 

problem. A possible cause attributed to sperm unable to penetrate eggs is 

high sperm membrane cholesterol levels. This cholesterol could originate from 

seminal plasma or epididymal fluids, or just be a characteristic of that 

individual's lipid make-up. It is possible that sperm from these unexplained 

infertile men may not have the ability to undergo the acrosome reaction. This 

study was designed to determine if sperm cholesterol content regulates the 

acrosome reaction. 

Sperm are not capable of fertilizing eggs as they are released directly 

after ejaculation (Chang, 1951; Austin, 1951), but must first undergo further 

cellular and biochemical changes, either in the female reproductive tract or in 

vitro. These poorly understood modifications have been collectively termed 

capacitation. In males, sperm maturation occurs in the epididymis and is 
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distinguished by changes in the cell surface components and their distribution 

(Hammerstedt and Parks, 1987) as well as alterations in plasma membrane 

lipid composition. A few factors from seminal plasma or epididymal fluid 

have been identified that inhibit the acrosome reaction, fertilization of an egg 

or binding to the zona pellucida: lipids (Davis and Niwa, 1974)' proteins 

(Oliphant et aI., 1985; Coronel and Lardy, 1992), glycosides (Shur and Hall, 

1982) or spermine (Shi et aI., 1992). 

The lipid composition of the sperm can change throughout the rest of 

its transit through the male reproductive tract, and may continue to change 

in the female reproductive tract, up until the point where it reaches the 

vicinity of a released egg. During this transit, capacitation occurs before the 

sperm reaches the egg. , Once the sperm has arrived, it must undergo the 

acrosome reaction before penetrating the zona pellucida and fusing with the 

egg plasma membrane. The acrosome reaction is an exocytotic event 

involving modifications in the cell's membranes. The plasma and outer 

acrosomal membranes fuse and form fenestrations (Nagai et aI., 1986), 

causing shedding of the acrosomal contents and the disappearance of the 

plasma and outer acrosomal membranes on the anterior portion of the sperm 

cell's head. The inner acrosomal membrane is exposed, surrounding the 

nuclear envelope. For the sperm to undergo this reaction, it must be 

acrosomally responsive (able to acrosome react in the presence of a specific 

inducer). A number of molecules have been shown to stimulate the human 

acrosome reaction in vitro, including the zona pellucid a (Cross et aI., 1988), 

follicular fluid (Tesarik, 1985), progesterone (Osman et aI., 1989), the 
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cumulus oophorus (Siiteri et aI., 1988) and calcium ionophore (Russel et aI., 

1979). 

Previous Studies 

Capacitation is poorly understood, and many people have done 

extensive studies to try to understand the events that lead to it. Chang 

(1957) took capacitated sperm and suspended them in seminal plasma for a 

few hours. As these sperm were inseminated into the uterus of rabbits, 

Chang found that they were not able to fertilize eggs immediately and 

concluded that they lost their fertilizing ability. He termed this occurrence 

decapacitation. If he allowed the sperm to reside in the uterus for four to 

eight hours, however, tl1e sperm did fertilize the eggs (became capacitated 

again). He concluded that capacitation is reversible (Chang, 1957). Seminal 

plasma was therefore considered important in capacitation and could be 

involved in what initially stabilizes the sperm and renders them incapable of 

fertilization. 

Oliphant and his colleagues (1978) isolated and identified a glycoprotein 

of 360kD that inhibited follicular fluid - induced acrosome reactions. They 

found this glycoprotein in epididymal and seminal fluids, and discovered that 

it also had the ability to reversibly decapacitate sperm (Oliphant, 1978). 

Despite the lack of understanding, the major event in capacitation was 

believed to involve removal or alteration of a stabilizer or protective coat from 

the sperm plasma membrane that may have been added to the sperm during 

its exposure to the fluids of the male reproductive tract (Orgebin-Crist and 
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Fournier-Delpech, 1982; Bedford, 1967). The inhibitory activity in seminal 

plasma sedimented into two fractions (I and II) after ultracentrifugation, and 

electron micrographs of the two fractions revealed them to contain small, 

round vesicles. They were additionally viewed on the surface of epididymal 

spermatozoa (Davis, 1973). In vitro fertilization studies with rat sperm 

showed that fertilization was inhibited by incubation in seminal plasma, as 

well as both fractions I and II. Electron micrographs revealed that sperm 

incubated in medium with 4 mg/ml bovine serum albumin (controls) lost their 

plasma membranes, whereas those incubated in the seminal plasma fractions 

did not lose their plasma membranes (Davis and Niwa, 1974). Sperm 

decapacitation by seminal plasma is reversible (Chang, 1957), and both 

classes of vesicles dempnstrated the same decapacitation activity (Davis, 

1974). 

After the experiments described above, Davis and Hungund (1976) 

concluded that seminal plasma contained the factor or factors that inhibited 

sperm capacitation and they decided to characterize the lipid and protein 

composition of the seminal plasma vesicles. Phospholipids and cholesterol 

made up 41 % and 32% of the vesicles respectively, while the protein content 

was very low (Davis and Hungund, 1976). After extraction with ethyl ether, 

only 10-30% of the phospholipid content and 14-16% of the cholesterol 

content was removed, and sperm treated with this extraction did not fertilize 

eggs. On the other hand, extraction with acetone tether/water removed 50% 

of the phospholipid content and 60% of the cholesterol content. Sperm 

treated with this extract did fertilize eggs, suggesting that a reduction of 
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lipids, cholesterol or phopholipids or both, is necessary before sperm can 

fertilize eggs (Davis and Hungund, 1976). 

Further detailed investigation was undergone to determine the specific 

factor in seminal plasma that inhibits acrosomal responsiveness of sperm. As 

seminal plasma was removed at 24 hr, incubation allowed sperm to become 

responsive to progesterone at a time dependent rate (Cross, 1993). When 

sperm were incubated 6 hr without seminal plasma, and then seminal plasma 

was added, the sperm eventually became unresponsive to progesterone 

(Cross, 1993). Incubating sperm with phosphatidlycholine (PC) accelerated 

the development of acrosomal responsiveness which was detectable in as 

little as 6 hr (Cross, 1994), suggesting that PC may act as cholesterol 

acceptors in the mediurp, enhancing cholesterol efflux from the sperm. 

Adding different dilutions of seminal plasma to the incubation medium 

prevented sperm from becoming acrosomally responsive in a dose-dependent 

manner. Seminal plasma contained 17.2 mg/ml protein, and treating this with 

pronase reduced it to 34 pg/ml but did not reduce the inhibitory effect. The 

inhibitory activity was also heat stable, indicating proteins are not responsible 

for preventing acrosomal responsiveness. Thin layer chromatography showed 

that cholesterol copurified with the inhibitory activity of seminal plasma, 

providing further evidence that cholesterol is the inhibitory factor in seminal 

plasma. In addition, cholesterol in the incubation medium reduced acrosomal 

responsiveness depending on the dose added. (Cross, unpublished 

observations) . 

Medium containing albumin promotes capacitation in rat, mice, and 
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guinea pig sperm cells (Toyoda and Chang, 1974; Toyoda et al. 1971). 

Cholesterol binds to albumin during sperm capacitation (Davis, 1974), so lipid 

exchange between the sperm plasma membrane and albumin was a suggested 

process. Davis examined sperm incubated in medium lacking albumin and 

found that no eggs were fertilized after insemination (Davis, 1976a). In 

contrast, 81 % of the eggs became fertilized in vitro by epididymal 

spermatozoa in medium containing 10 mg/ml of albumin, and even more eggs 

were fertilized with defatted albumin than with regular albumin. Albumin 

saturated with cholesterol prevented fertilization (Davis, 1976a). These 

results suggested that albumin enhanced sperm fertilizing capacity by 

removing lipid (cholesterol) from the cell membrane (Davis, 1974). Davis 

postulated that replacem~nt of the depleted cholesterol could account for the 

inhibition of fertilization by the seminal plasma membrane vesicles (Davis, 

1973). 

Uterine capacitated rabbit sperm fertilized significantly fewer eggs when 

incubated in medium containing dipalmitoylphosphatidlycholine and 

dimyristoyl- phosphatidylcholine vesicles with 10 to 40% (w/w) cholesterol 

compared to incubating sperm in the vesicles without cholesterol (Davis, 

1976b). Cholesterol alone at 0.4 to 4 mg/ml added to the medium also 

inhibited fertilization (Davis, 1976b). This evidence indicates that sperm 

fertilizing capacity is influenced by cholesterol. Membrane fusion of 

myoblasts and phospholipid vesicles was inhibited by cholesterol (Van der 

Bosh et aI., 1973; Papahadjopoulous et aI., 1974), showing further evidence 

for this theory. 
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Toyoda et al. (1971) reported the first successful in vitro fertilization of 

mouse eggs with a "chemically defined medium", a modified Tyrode's solution 

with additives (glucose, lactate, pyruvate) and albumin. Davis et al. (1979) 

provided evidence for the transfer of phosphatidyl [14C] choline and [3H] 

cholesterol between bovine serum albumin and rat spermatozoa in a similar 

medium which promoted capacitation. During incubation in vitro phospholipid 

levels in albumin decreased and increased in sperm cells, while cholesterol 

increased in the albumin and decreased in the sperm (Davis et aI., 1979). 

Plasma membranes isolated from rat sperm cells after five hours incubation 

in 4 mg/ml bovine serum albumin (BSA) showed a significant increase in 

phospholipid levels, while cholesterol levels decreased, but not significantly. 

This resulted in a lower, cholesterol/phospholipid ratio, altering the plasma 

membrane composition of the sperm (Davis et aI., 1980). The concentration 

of cholesterol in lipid suspensions and their inhibitory effect on the fertilizing 

capacity of uterine capacitated rabbit sperm were directly correlated (Davis, 

1980; Go and Wolf; 1985). Defatted BSA increased spontaneous (not 

physiologically induced) acrosome reactions by 40% while BSA plus 

cholesterol reduced spontaneous acrosome reactions by 10% (Davis, 1980). 

Freeze fracture analyses using filipin, which binds to p-hydroxyl sterols 

determined the distribution of cholesterol on the sperm's surface. A high 

amount of cholesterol was seen in the peri-acrosomal plasma membrane of 

uncapacitated human sperm. After five hours in vitro incubation the 

concentration of filipin concentration decreases over the acrosomal portion of 

the plasma membrane, indicating that cholesterol is lost (Suzuki and 
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Yanagimachi, 1989; Tesarik and Flechon, 1986). It has been suggested that 

these areas which lose cholesterol serve as points of fusion during the 

acrosome reaction (Bearer and Friend, 1982). One other study revealed that 

labeled cholesterol moved out of bovine sperm and into liposomes in a time­

dependent manner (Ehrenwald et aI., 1988). 

The time needed to capacitate (1.5-7 hr) sperm cells in different species 

is closely correlated to their plasma membrane's cholesterol/phospholipid 

ratios (0.35-0.99) (Davis, 1981). A higher cholesterol/phospholipid ratio is 

related to a slower capacitation (Davis, 1981; Hoshi et aI., 1990). Mack et 

al. (1 986) isolated human sperm plasma membranes and reported a 

cholesterol/phospholipid ratio of 0.83, while other labs have found the ratios 

to be 0.99 (Darin-Benett ~nd White, 1977; Davis, 1981). A study comparing 

fertile and infertile men's cholesterol/phospholipid ratios found that infertile 

men had a much higher ratio (1.04) than fertile men (0.52) in their freshly 

ejaculated sperm. After Percoll washing of this sperm, the ratios lowered to 

0.80 and 0.40 respectively (Sugkraroek et aI., 1991). The uterus may serve 

as a negative sterol gradient, having a mean cholesterol/phospholipid ratio of 

0.16-0.26 whereas the cholesterol/phospholipid ratio for sperm and seminal 

plasma is 0.52 and 0.55 respectively (Davis, 1981). Cholesterol from rabbit 

sperm has been shown to bind to uterine fluid proteins after insemination, and 

one sterol acceptor in the uterus has been identified as serum albumin (Davis, 

1982). 

A concern for many experts is whether or not this cholesterol efflux 

from sperm occurs in vivo. Many compounds in biological fluids of the female 
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reproductive tract have been shown to have capacitating activity. The include 

estrus serum, follicular fluid, and uterine and oviductal fluid (Langlais and 

Roberts, 1985; Davis, 1982; Langlais et aL, 1988; Ehrenwald et aL, 1989). 

An extensive study on cholesterol and phospholipid concentrations in the 

bovine oviduct found that isthmic oviductal fluid had a high cholesterol 

concentration and a lower phospholipid concentration described as a higher 

cholesterol/phospholipid ratio than in ampullary oviductal fluid. It was 

postulated that the isthmus provided a stabilizing environment for the sperm's 

membranes as they travel toward the egg, and as they reach the ampulla, 

their membranes experience a possible cholesterol efflux due to the lower 

cholesterol/phospholipid ratios (Grippo et aL, 1994). 

In the past few ye(;irs, sterol content in sperm has been under extensive 

investigation as one of the determinants of capacitation. Benoff and 

colleagues (1 993a) found substantial inter-individual variation in sterol content 

of human sperm, ranging from 0.41 to 2.32 pmol sterol per 109 sperm. After 

18 hours incubation in capacitating medium, this total sterol content 

decreased and free membrane cholesterol decreased to 0.001pmol per 109 

sperm (Benoff et aL, 1993a). When 1 mg/ml cholesterol-saturated bovine 

serum albumin was added to sperm's incubation medium, the free cholesterol 

content of sperm was significantly greater than that of control sperm 

incubated in capacitating medium (Benoff et aL, 1993a). In measuring non­

esterified cholesterol in the sperm membranes of "responders" (sperm that 

showed increases in the number of spontaneous acrosome reactions after 18 

hr incubation) and "non-responders" (no increase in spontaneous acrosome· 
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reactions) the cholesterol content decreased in responders after 1 8 hr 

incubation while no change in cholesterol content occurred in non-responders 

(Benoff et aI., 1993b). 
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CHAPTER II 

MATERIALS AND METHODS 

Objectives of Study 

This study was conducted in an effort to understand how the induction 

of acrosome reactions is controlled, or more specifically, what role cholesterol 

may have in acrosomal responsiveness. The working hypothesis states that the 

loss of sperm cholesterol during in vitro incubation causes sperm to become 

acrosomally responsive. The unanswered questions are: (1) Does sperm 

cholesterol decrease during incubation in vitro? (2) Does inhibiting the loss of 

sperm cholesterol prevent the development of acrosomal responsiveness? (3) 

Does accelerating the loss of sperm cholesterol accelerate the development of 

acrosomal responsiveness? (4) Do cholesterol loss and acrosomal 

responsiveness function in a time- and dose- dependent manner? 

General Sperm Preparation 

The semen was collected by masturbation from human donors and was 

used within an hour. To remove the seminal plasma and immotile sperm, the 

ejaculates were centrifuged on a two-layer Percoll gradient (Siiteri et aI., 1988). 

The concentration of motile sperm was then determined using a hemacytometer 
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and adjusted to 1 x 107 sperm/ml in a modified Tyrode's solution (Suarez et aI., 

1986) containing 26 mg/ml bovine serum albumin (BSA) which is used as 

incubation medium. 

Each ejaculate was used for one experiment throughout the study. The 

early experiments were run as a simple test to determine if cholesterol content 

changes after 24 hr incubation in incubation medium. For the ensuing 

experiments, the sperm were exposed to various treatments that might have 

effects on cholesterol content and acrosomal responsiveness of the sperm. 

Next, a time course study of cholesterol loss and acrosomal responsiveness 

was conducted. And finally, cholesterol content and acrosomal responsiveness 

was determined when different doses of cholesterol were added to the 

incubation medium (dose-response test). 

After the ejaculates were prepared, each sample went through 

cholesterol extractions and gas chromatography to obtain its cholesterol 

content. In addition, each sample's acrosomal responsiveness was assessed. 

Sperm Preparation for Cholesterol Measurement 

The suspension of Percoll washed sperm was split in half to be analyzed 

twice - once immediately (0 hr) and once 24 hrs later (24 hr). 

Zero hour samples were suspended in 1.2 ml incubation medium. The 

samples were centrifuged (10 min, 1000 g) and the supernatant was collected 

and stored at -20 0 C. The pelleted sperm were resuspended in 1.2 ml 

Dulbecco's phosphate-buffered saline (DPBS) and centrifuged again in order to 

wash out remaining incubation medium. The pellets were then stored in 1.2 ml 
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DPBS at -20 0 C. 

The samples to be analyzed 24 hr later were adjusted to a concentration 

of 2 x 106 sperm/ml and were incubated in Falcon 60 x 15 mm tissue culture 

dishes (catalog number 4-3002-3, Benton Dickinson, Lincoln Park, NJ) at 37 0 

and 5% C02/95% air. After 24 hr, the samples were centrifuged, washed and 

stored as described above for later use. 

The samples described above were also prepared and used as controls 

in later experiments using cholesterol, phosphatidylcholine (PC), and seminal 

plasma (SP). In these experiments, the sperm samples were suspended in 

incubation medium containing 0.5 pg/ml cholesterol (sonicated with PC)' 0.5 

mg/ml PC liposomes, or SP at a 1: 1 50 dilution (which contained approximately 

2.0 pg/ml cholesterol)~ These samples underwent the same protocol as 

described above and were stored for later use. For the time-course study, 

sperm were placed in incubation medium at 2x1 06 sperm/ml. At intervals of six 

hours, two samples of 107 sperm were removed, centrifuged, washed and 

stored for extraction, while acrosomal responsiveness was scored. The 

cholesterol loss (% of total loss over 24 hr) and acrosomal responsiveness (% 

of total responsiveness over 24 hr) were compared for correlation. In the dose­

response test, 1000 nM, 300 nM, 125 nM and 50 nM cholesterol was added 

to different samples. After 24 hr their cholesterol loss (% of total loss) and 

acrosomal responsiveness (% of total responsiveness) were assessed and 

compared for correlation. 
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Sperm Preparation for Acrosome Reaction Assay 

To prepare sperm for the acrosome reaction assay, a small fraction of the 

Percoll washed sperm was adjusted to 106 sperm/ml incubation medium. In a 

96-well plate (catalog number 25880-96, Corning Glass Works, Corning, NY), 

75 pi aliquots of this sperm suspension were placed in each of 12 wells. 

Additional wells containing sperm with the appropriate concentrations of 

cholesterol, PC or SP were also set up on days these treatments were being 

examined, and the above mentioned wells served as controls. The wells 

containing sperm to be analyzed after 24 hr were incubated at 37° C, 5% 

CO2/95% air. The remaining wells were analyzed immediately. 

Inducing and Assaying the Acrosome Reaction 

Acrosome reactions were induced with progesterone (Meizel et aI., 

1990). To three wells of the 75 pi sperm suspension was added 50 pi of a 

solution consisting of 2.5 pg/ml progesterone and 1.25 pg/ml Hoechst 33258 

in incubation medium. Hoechst 33258 is a supravital stain which allows 

distinction between cells that have died and are acrosome reacted and cells that 

have physiologically acrosome reacted due to an inducer. The stain labels dead 

cells with ruptured plasma membranes (Cross et aI., 1 986). 

To the three control wells, 50 pi of a solution containing 2.5 pg/ml 

dimethylsulfoxide and 1.25 pg/ml Hoechst 33258 in incubation medium was 

added. After 10 min of exposure, 100 p I of DPBS was added to all the wells. 

The contents of each well were layered on top of 150 pi of a Nycodenz solution 

(65% (v/v) DPBS and 35% (v/v) of a solution containing 0.3 M 5-(N-2,3-
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dihydroxypropylacetamido) -2,4,6- triiodo -N,N'- bis (2,3 - dihydroxypropyl) 

isophthalamide) in a 16-well chamber slide. Chamber slides are microscope 

slides with a removable, 16-well chamber attached to one side (Nunc, Inc., 

Naperville, IL). The chamber slides were then centrifuged (10 min, 40 g) to 

sediment the sperm onto the slide. After centrifugation, the supernatant was 

discarded and the sperm were fixed and permeabilized with 95% ethanol. The 

slide was dried and the sperm were labelled with fluoresceinated Pisum sativum 

agglutinin (Cross, 1993). Two hundred Hoechst 33258-negative sperm in each 

well were scored to determine acrosomal status. 

Lipids 

Liposomes of PC were prepared by sonication. Under N2 10 mg PC was 

dried for at least 10 min at 37 0 C. Two ml of incubation medium lacking BSA 

was added, and the solution was placed in a 37 0 water bath to hydrate the PC. 

After 1 hour, the suspension was sonicated with a microprobe (Branson Model 

200 Sonifier, output setting 7, 80% duty cycle, pulsed) for 4 min and placed 

on ice for 4 min. This was repeated for a total of 3 times. The suspension was 

then centrifuged at 10,000 g for 60 minutes and the supernatant was 

recovered. To the supernatant was added 26 mg/ml BSA and the final 

suspension was stored at -20 0 C. 

Sonication was also used to prepare a cholesterol suspension consisting 

of 1.0 mg/ml cholesterol and 1.9 mg/ml PC. The above method was used for 

sonication, and the final supernatant was measured for cholesterol using a 

cholesterol assay kit (Sigma Chemical Co .. , Catalog number 352-20) to 
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determine the actual concentration of cholesterol in the sonicate. 

Extraction of Cholesterol 

The samples were thawed and sperm concentrations were determined. 

One ml of each sample was transferred to 12 ml glass centrifuge tubes for 

extraction, and 500 ng of an internal standard, stigmastadienone, was added. 

To extract cholesterol out of the sperm and incubation medium samples, a 

chloroform/methanol/water system designed by Bligh and Dyer (1959) and 

modified by Kates (1986) was employed. The lipids were dried down under a 

N2 stream while immersed in a 37 0 C water bath. After dissolving in 

approximately 1.0 ml chloroform, the lipids were passed through a glass wool 

filter to remove any particles that may contaminate the sample or be harmful 

to the gas chromatograph equipment and were collected in a 1.0 ml micro-vial. 

The lipids were dried, solubilized in 10 pi chloroform, capped, and set on ice to 

prevent evaporation. 

Gas Chromatography 

A Tracor 565 chromatograph, a 0.53 pm Ld., 30 m long DB-17 column 

(J & W, Folsom CAl with helium as carrier was used to measure cholesterol 

content. The column and flame ionization detector were maintained at 185 0 

C, and the inlet was at 200 0 C. A Spectra-Physics SP4290 Integrator 

determined and recorded peak areas. A standard curve was generated, and 

consisted of the internal standard, stigmastadienone, and pure cholesterol in 

chloroform. Cholesterol content was measured by injecting 1.0 pi of each 
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sample into the GC. 

Intra-assay precision was determined by measuring five replicates of 107 

sperm. Interassay precision was determined by measuring identical samples in 

three assays that were conducted on different days. The intra-assay coefficient 

of variation and interassay coefficient of variation were 17% and 12% 

respectively. 

Statistics 

Paired data were compared using a randomized block design for ANOVA. 

Percentages for acrosomal responsiveness were transformed (arcsine 

[%/100]1/2) and then analyzed as above. SYSTAT (SYSTAT, Inc., Evanston, IL) 

was used for these anlyses with significance denoted by P<0.05. Mean and 

standard error of the mean were determined by InPLOT (GraphPad Software, 

San Diego, CA). 
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CHAPTER IV 

RESULTS 

The objectives of this study were: (1) to determine if sperm cholesterol 

decreased during incubation in vitro; (2) to determine if inhibiting the loss of 

sperm cholesterol prevents the development of acrosomal responsiveness; (3) 

to determine if accelerating the loss of sperm cholesterol accelerates the 

development of acrosomal responsiveness; (4) to determine if cholesterol loss 

and acrosomal responsiveness are time-and dose-dependent. 

Sperm cholesterel content was measured before and after 24 hr 

incubation in medium containing 26 mg/ml bovine serum albumin. Sperm 

cholesterol content decreased by 27% (P<O.001) after 24 hr (Fig 1). 

Sperm cells were incubated for 24 hr total, and sperm cholesterol content 

and acrosomal responsiveness were determined at 6 hr intervals. Cholesterol 

loss, represented as a percent of the total cholesterol loss after 24 hr, increased 

in a time dependent manner as did acrosomal responsiveness, represented as 

a percent of total acrosomal responsiveness after 24 hr (Fig 2). Cholesterol 

loss slightly preceded development of acrosomal responsiveness. 

Seminal plasma, in a dilution containing 2.0pg/ml cholesterol, was added 

to the incubation medium in an effort to inhibit the loss of sperm cholesterol 

and to see if acrosomal responsiveness was also inhibited. The controls lacked 
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seminal plasma. Sperm cholesterol content did not change significantly 

(P>0.20) from 0 hr to 24 hr when seminal plasma was present in the medium 

(Fig 3). Acrosomal responsiveness was also inhibited compared to the control 

after 24 hr. 

Cholesterol was added to the incubation medium at a concentration of 

0.5 pg/ml in an effort to inhibit the loss of sperm cholesterol and to see if 

acrosomal responsiveness was also inhibited. The controls lacked added 

cholesterol. Cholesterol content and acrosomal status were determined before 

and after 24 hr incubation. The addition of cholesterol caused an increase in 

the sperm cholesterol content compared to the 24 hr control by 48% 

(P<0.015) (Fig 4). The development of acrosomal responsiveness was 

prevented compared to,the control as well (P<0.001). 

Different doses of cholesterol were added to sperm samples in an effort 

to: (1) determine if sperm cholesterol loss decreased as a function of the dose 

added, (2) determine if acrosomal responsiveness and cholesterol loss after 24 

hr are correlated depending on the dose added, and (3) calculate the dose 

effective in inhibiting acrosomal responsiveness and cholesterol loss by 50% 

(EDso). Sperm cholesterol content is dependent on the concentration of 

cholesterol added to the incubation medium (Fig 5). The development of 

acrosomal responsiveness also was inhibited as the dose of added cholesterol 

increased. The EDso for cholesterol loss was 180 nM and the EDso for 

acrosomal responsiveness was 221 nM, which were not significantly different 

(P>0.10). 

Phosphatidylcholine (PC) liposomes were added to the incubation medium 
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Figure 3. Seminal plasma prevents the loss of sperm cholesterol and the 
development of acrosomal responsiveness. Sperm cholesterol 
content did not change significantly (P>0.20) from 0 hr to 24 
hr with the addition of seminal plasma. Acrosomal 
responsiveness significantly increased in controls after 24 hr 
(P < 0.001), but was prevented in seminal plasma. The bars 
represent mean.±. standard error of the mean (n = 6). 
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at 0.5 mg/ml in an attempt to accelerate the loss of sperm cholesterol and see 

if acrosomal responsiveness is also accelerated. The controls lacked PC 

liposomes. Incubating sperm for 24 hr with PC decreased the sperm cholesterol 

content compared to the 24 hr control by 53% (P<O.001) (Fig 6). The 

development of acrosomal responsiveness was enhanced by 53% as well 

(P<O.05). 
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Figure 6. Accelerating the loss of sperm cholesterol accelerates the 
development of acrosomal responsiveness. Sperm cholesterol 
content decreased significantly (P < 0.001) and acrosomal 
responsiveness increased (P < 0.05) compared to 24 hr 
controls. Bars represent mean.±. standard error of the mean 
(n = 6). 
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CHAPTER IV 

DISCUSSION 

Cholesterol plays a central role in acrosomal responsiveness of sperm, 

and therefore, may also' play an important role in sperm capacitation. 

Numerous studies have suggested that cholesterol has an inhibitory effect on 

spontaneous acrosome reactions (Davis and Niwa, 1974; Yanagimachi, 1975) 

and fertilization (Davis, 1976b). In addition, cholesterol is the major agent 

inhibiting acrosomal responsiveness in seminal plasma (Cross, unpublished 

observations). Although these previous studies point towards cholesterol as 

the factor inhibiting the development of acrosomal responsiveness, many 

questions were still unanswered. The experiments in this paper were designed 

to answer these questions and to tie up the relationship cholesterol has with 

acrosomal responsiveness. Up until the late 1980's, most work in this area 

was done on mouse or rabbit sperm. Only recently have researchers began 

experimenting with human sperm, as in this thesis. The work involving human 

sperm has certainly not been complete. Benoff et al. (1993b) reported a 

decrease in sperm cholesterol content after incubation in vitro, but determined 

the percent responsive sperm by spontaneous acrosome reactions. However, 

numerous factors have been shown to induce acrosome reactions. For 

example, the zona pellucida, from the egg's outer coating, can induce 
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acrosome reactions (Cross et aI., 1988), highly suggesting that the fertilizing 

sperm is the one that encounters the egg and is induced to undergo the 

acrosome reaction. In the present study, acrosomal responsiveness describes 

the percent of sperm that have undergone the acrosome reaction when 

exposed to progesterone, and therefore compares cholesterol loss with 

sperm's capacity to undergo the acrosome reaction. This agrees with the 

common thinking today that acrosomal responsiveness is more closely related 

to fertilization potential than spontaneous acrosome reactions. 

Sperm capacitation involves the following functions: (1) increased 

permeability to ions, especially Ca2 + (Tirana et aI., 1980), (2) loss of 

components from seminal plasma that might have been adsorbed by sperm 

(Bedford and Chang, 1962)' (3) modifications in lipid composition (Davis et aI., 

1979; Evans et aI., 1980; Go and Wolf, 1985), and (4) hyperactivation of 

motility (reviewed by Yanagimachi, 1981). 

Cholesterol can affect plasma membrane functions such as passive 

transport, permeability, mobility of intramembranous components, and activity 

of membrane bound enzymes (reviewed by Yeagle, 1985)' thereby having a 

variety of roles in membrane function. Cholesterol contains a planar steroid 

ring system, a 3-p-hydroxyl function, making it polar, and a hydrophobic tail. 

This amphipathic molecule inserts itself into membrane systems with its polar 

hydroxyl head facing outward towards water, with the hydrophobic steroid 

ring parallel to and buried in the hydrocarbon chain of the membrane 

phospholipids (reviewed by Yeagle, 1985). Approximately 90% of the total 

cell cholesterol content is contained in the plasma membrane (Lange and 
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Ramos, 1983). Cholesterol is not distributed among membranes uniformly, 

especially in sperm cells, cholesterol concentration is higher over the 

acrosomal and tail regions than the rest of the plasma membrane (reviewed by 

Myles and Primakoff, 1985). 

Individual lipid molecules can diffuse freely within lipid bilayers. A 

liposome is a type of synthetic bilayer that has been useful in many 

experimental studies. Synthetic liposomes made up of a single type of 

phospholipid can be used to determine the fluidity of the membrane. 

Membranes composed of unsaturated hydrocarbon chains with cis-double 

bonds have increased fluidity while saturated straight hydrocarbon chains 

make it easier to pack the chains together, rendering the membrane more 

viscous, or less fluid. In this study, liposomes composed of 

phosphatidylcholine were used. Lipid molecules readily exchange places with 

adjacent molecules within these synthetic bilayers giving rise to rapid lateral 

diffusion (reviewed by Alberts et aI., 1989). 

The amount of cholesterol in a membrane also influences the 

membrane's fluidity. Plasma membranes of eucaryotic cells contain numerous 

cholesterol molecules which situate themselves in the membrane with their 

polar head groups in line with the polar head groups of the phospholipids. 

Cholesterol has a rigid planar steroid ring structure (Fig. 7) and a long nonpolar 

hydrocarbon tail. This rigid steroid ring structure serves to partially immobilize 

the portions of the phospholipid hydrocarbon chains close to it and to 

decrease the fluidity of the phospholipid bilayers (reviewed by Alberts et aI., 

1989). Cholesterol also decreases the permeability of the bilayer, preventing 
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small water-soluble molecules from passing through the membrane (Alberts et 

aI., 1989). 

Although phospholipids freely diffuse laterally along a layer of the 

membrane, they can rarely migrate from one monolayer to another, called 

"flip-flop" movement. Cholesterol, on the other hand, can easily redistribute 

among different monolayers of membranes (Kornberg and McConnell, 1971). 

Studies using human erythrocyte membranes showed that vesicles 

enriched in cholesterol incubated with the erythrocytes increased plasma 

membrane cholesterol content by a net cholesterol flux. When vesicles 

without cholesterol were incubated with the erythrocytes, the erythrocyte's 

plasma membrane cholesterol levels were depleted (Rooney et aI., 1984). 

Cholesterol, preincubated with myoblasts, prevented their fusion as well 

(Horwitz et aI., 1978). Cholesterol and phospholipids can be incorporated into 

liposomes in a 1: 1 ratio. Cholesterol caused a strong reduction in the 

permeability and fusion of these liposome systems (Demel and Dekruyff, 

1976: Papahadjopoulous et aI., 1974), and prevented Ca2 + -induced fusion of 

muscle cells (Van der Bosch et ai, 1973). The decrease in permeability was 

proportional to the concentration of cholesterol, and Demel and DeKruyff 

(1976) postulated that this decrease is due to the increased packing and 

decreased mobility of the hydrocarbon chains of the phospholipids. 

Cholesterol has also been shown to have an effect on protein function. 

For example, at high cholesterol levels, the activity of Na+/K+ ATPase was 

inhibited, but at low cholesterol levels, this enzyme activity was enhanced 

(Shouffani and Kanner, 1990; Yeagle et aI., 1988). In summary, cholesterol 
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plays an important role in biological membranes, but this role is still undefined. 

High concentrations of cholesterol in membranes has had an influence on 

functions such as passive transport, carrier-mediated transport and enzymatic 

activity of membrane-bound enzymes. 

Many experts have tried to explain the role of sterols in capacitation, 

and one explanation seems to remain the predominant model. During passage 

through the epididymis, sperm sterol and phospholipid composition changes 

as the sperm matures (Hammerstedt and Parks, 1987). Agents (cholesterol, 

other sterols, proteins, surface coating components) may adsorb onto the 

sperm surface to stabilize it for its journey through the female tract. After 

sperm pass through the cervix, they are freed of most seminal or epididymal 

fluid and are surrounded by uterine fluids. Sterol acceptors, such as albumin, 

may be present in this environment which can cause a net efflux of cholesterol 

out of the sperm plasma membrane, rendering the membrane more fluid. The 

consequences of this. cholesterol loss could be many. One possibility is that 

cholesterol efflux increases membrane permeability to extracellular calcium. 

An influx of calcium could activate the activity of phospholipases which may 

trigger the acrosome reaction (Langlais and Roberts, 1985). Another 

suggestion is that cholesterol comes out of the sperm plasma membrane and 

leaves "fusion points" where the plasma membrane and outer acrosomal 

membrane can fuse together, one of the steps in the acrosome reaction. A 

cholesterol efflux could also alter receptor-mediated cell functions or 

membrane bound enzyme activities by enhancing lateral displacement of the 

proteins within the bilayer of the plasma membrane (Yeagle, 1989). The 
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acrosome reaction may be receptor mediated by ligands from the zona 

pellucida (Bleil and Wassarman, 1983). 

The results of this thesis fit the model described above. Sperm 

cholesterol content decreased after 24 hr incubation in medium containing 26 

mg/ml bovine serum albumin, a putative sterol acceptor in uterine fluids. In 

an effort to determine if a direct relationship between the induction of the 

acrosome reaction and the loss of sperm cholesterol exists, a time-course 

study was conducted. The results showed a direct relationship, and sperm 

cholesterol efflux occurs about four hours upstream from the development of 

acrosomal responsiveness. This suggests that cholesterol loss is not the only 

determinant for sperm to develop acrosomal responsiveness, but other 

unknown functions may be taking place. Despite the close relationship 

between cholesterol loss and the development of acrosomal responsiveness, 

no correlation between cholesterol content and acrosomal responsiveness was 

seen among the different donors. In other words, initial sperm cholesterol 

content does not determine the percent of responsive sperm that will be 

observed after 24 hr incubation. 

When seminal plasma was added to the medium, it prevented the 

cholesterol loss after 24 hr incubation. Acrosomal responsiveness was 

prevented in these sperm as well, which follows the studies that indicated 

seminal plasma prevented sperm from fertilizing eggs (Chang, 1957). One 

explanation for this could be that albumin, the sterol acceptor in the medium, 

could become saturated with the cholesterol from seminal plasma, giving 

cholesterol from the sperm plasma membrane no place to bind. This may be 
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one reason why the ~sperm demonstrated no 'cholesterol loss. 

When sperm were incubated in medium with the addition of cholesterol, 

sperm cholesterol content increased. The same suggestion could apply here, 

but these results also support theories on the dynamics of cholesterol in 

membranes: Cholesterol exchanges freely from one membrane to another, 

causing an influx and efflux of cholesterol within the sperm plasma membrane. 

Adding cholesterol to the medium increases the rate of cholesterol influx. If 

enough cholesterol is added to the medium, the rate of influx of cholesterol 

will exceed the rate of efflux, and the cholesterol content in the sperm 

increases. 

Cholesterol and acrosomal responsiveness are concentration dependent. 

As higher concentrations of cholesterol were added to sperm suspensions, 

less percent cholesterol loss and fewer acrosome reactions were observed, 

and these two functions were not significantly different. 

On the other hand, as PC liposomes were added to the incubation 

medium, sperm cholesterol loss was enhanced after 24 hr. PC also increased 

the number of sperm that acrosome reacted when exposed to progesterone. 

PC liposomes function as artificial membranes, and therefore may serve as 

additional cholesterol acceptors, increasing the net efflux of cholesterol from 

sperm (Cross, 1994). 

It is apparent that cholesterol plays a central part in the control of the 

human acrosome reaction. This evidence may be clinically important for 

infertile men that have passed all routine clinical tests for fertility. Some of 

these couples may have "unresponsive" sperm (cannot acrosome react), 
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explaining why, eggs are never fertilized. Cholesterol levels in these sperm 

may be' abnormally high. Infertile men in one study did have heightened 

cholesterol/phospholipid ratios (Sugkraroek et ai, 1991) compared to fertile 

men. Incubating these sperm in medium with increased concentrations of 

sterol acceptors such as bovine serum albumin or PC liposomes for a few 

hours before artificial insemination is a possible technique which clinics could 

consider to increase their in vitro Fertilization rates with these unresponsive 

sperm. 

36 



CHAPTER VI 

REFERENCES 

Alberts, B., Bray, D., Lewis, T., Raff, M., Roberts, K., Watson, J.D. (1989) 
Molecular Biology of the Cell, Garland Publishing, New York. p. 275-
336. 

Arvidson, G., Ronquist, G., Wilander, G., and Ojteg, A.C. (1989) Human 
prostasome membranes exhibit very high cholesterol/phospholipid ratios 
yielding high molecular ordering. Biochim. Biophys. Acta. 984: 167-173. 

Austin, C. R. (1951) Observations on the penetration of sperm into the 
mammalian egg. Aust. J. Sci. Res. 4:581-596. 

Babcock, D.F., Singh, J.P., Lardy, H.A. (1979) Alteration of membrane 
permeability to calcium ions during maturation of bovine spermatozoa. 
Deve/op. Bio/. 69:85-93. 

Bearer, E.L. and Friend, D.S. (1982) Modifications of anionic-lipid domains 
preceding membrane fusion in guinea pig sperm. J. Cell. BioI. 92:604-
615. 

Bedford, J.M. (1967) The importance of capacitation for establishing contact 
between eggs and sperm in the rabbit. J. Reprod. Ferti!. 13: 365-367. 

Bedford, J.M. and Chang, M.C. (1962) Removal of decapacitation factor from 
seminal plasma by high speed centrifugation. Am. J. Physiol. 202: 179-
181. 

Benoff, S., Cooper, G.W., Hurley, I., Mandel, F.S., and Rosenfeld, D.L. (1993a) 
Antisperm antibody binding to human sperm inhibits capacitation induced 
changes in the levels of plasma membrane sterols. A. J. Reprod. 
Immunol. 30: 113-130. 

Benoff, S., Hurley, I., Cooper, G.W., Mandel, F.S., Rosenfeld, D.L., Hershlag, 
A. (1 993b) Head-specific mannose-ligand receptor expression in human 
spermatozoa is dependent on capacitation-associated cholesterol loss. 
Human Reprod. 8:2141-2154. 

37 



Bleil, J.D. and Wassarman, P.M. (1983) Sperm-egg interactions in the mouse: 
sequence of events and induction of the acrosome reaction by a zona 
pellucida glycoprotein. Dev. BioI. 95:317-324. 

Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and 
purification. Can. J. Biochem. Physiol. 37:911-921. 

Byrd, W. and Wolf, D. (1986) Acrosomal status in fresh and capacitated 
human ejaculated sperm. BioI. Reprod. 34:859-869. 

Chang, M.C. (1951) The fertilizing capacity of spermatozoa deposited into the 
fallopian tubes. Nature 168:697-698. 

Chang, M.C. (1957) A detrimental effect of seminal plasma on the fertilizing 
capacity of sperm. Nature 179:258-259. 

Coronel, C.E. and Lardy, H.A. (1992) Functional properties of caltrin proteins 
from seminal vesicle of the guinea pig. Mol. Reprod. De vel. 33:74-80. 

Cross, N.L. (1993) Multiple effects of seminal plasma on the acrosome reaction 
of human sperm. Mol. Reprod. Dev. 35:316-323. 

Cross, N. L. (1 994) Phosp~atidylcholine enhances the acrosomal responsiveness 
of human sperm. J. Androl. 15:484-488. 

Cross, N.L., Morales, P., Overstreet, JW, Hanson, FW. (1988) Induction of 
acrosome reactions by the human zona pellucida. BioI. Reprod. 38:235-
244. 

Darin-Bennet, A. and White, I.G. (1977) Influence of the cholesterol content of 
mammalian spermatozoa on susceptibility to cold-shock. Cryobiology 
14:466-470. 

Davis, B. K. (1971) Macromolecular inhibitor of fertilization in rabbit seminal 
plasma. Natl. Acad. Sci. 68:951-955. 

Davis, B.K. (1973) Occurrence of vesicles in rabbit seminal plasma. Experienta. 
29: 1484-1487. 

Davis, B.K. (1974) Decapacitation and recapacitation of rabbit spermatozoa 
treated with membrane vesicles from seminal plasma. J. Reprod. Fert. 
41 :241-244. 

Davis, B. K. (1 976a) Influence of serum albumin on the fertilizing ability in vitro 
of rat spermatozoa. Proc. Soc. Exp. BioI. Med. 151 :240-243. 

Davis, B.K. (1976b) Inhibitory effect of synthetic phoshpolipid vesicles 

38 



containing cholesterol on the fertilizing ability of rabbit sperm. Proc. 
Soc. Exp. BioI. Med. 152:257-261. 

Davis, B. K. (1978) Inhibition of fertilizing capacity in mammalian spermatozoa 
by natural and synthetic vesicles, In Kabara, J.J., ed., Symposium on the 
Pharmacological Effects of Lipids, The American Oil Chemist's Society, 
Champaign, Illinois. pp. 145-157. 

Davis, B. K. (1980) Interaction of lipids with the plasma membrane of sperm 
cell. I. The antifertilization action of cholesterol. Archiv. Andrology 
5:249-254. 

Davis, B.K. (1981) Timing of fertilization in mammals: sperm 
cholesterol/phospholipid ratio as a determinant of the capacitation 
interval. Proc. Natl. A cad. Sci. USA 12:7560-7564. 

Davis, B. K. (1982) Uterine fluid proteins bind sperm cholesterol during 
capacitation in the rabbit. Experientia 38: 1 063-1 064. 

Davis, B.K. and Niwa, K. (1974) Inhibition of mammalian fertilization in vitro by 
membrane vesicles from seminal plasma. Proc. Soc. Exp. BioI. Med. 
146: 11-16. 

, 

Davis, B.K. and Hungund, B.J. (1976) Effect of modified membrane vesicles 
from seminal plasma on the fertilizing capacity of rabbit spermatozoa. 
Biochem. Biophys. Res. Commun. 69:1004-1010. 

Davis, B.K., Byrne, R., Hungund, B.J. (1979) Studies on the mechanisms of 
capacitation. II. Evidence for lipid transfer between plasma membrane 
of rat sperm and serum albumin during capacitation in vitro. Biochem. 
Biophys. Acta. 558:257-266. 

Davis, B.K. and Gergely, A.F. (1979) Studies on the mechanism of 
capacitation: changes in plasma membrane proteins of rat spermatozoa 
during incubation in vitro. Biochim. Biophys. Res. Commun. 88:613-
618. 

Davis, B.K., Byrne, R., Bedigan, K. (1980) Studies on the mechanism of 
capacitation: albumin-mediated changes in plasma membrane lipids 
during in vitro incubation of rat sperm cells. Proc. Natl. A cad. Sci. 
77:15-46. 

Davis, B.K. and Davis, N.V. (1983) Binding by glycoproteins of seminal plasma 
membrane vesicles accelerates decapacitation in rabbit spermatozoa. 
Biochem. Biophys. Acta. 727:70-76. 

39 



De Lamirande, E., Eiley, D., and Gagnon, C. (1993) A positive role for the 
superoxide anion in triggering hyperactivation and capacitation of human 
spermatozoa. Int. J. Androl. 16:258-266. 

Demel, R.A. and DeKruyff, B. (1976) The function of sterols in membranes. 
Biochem. Biophys. Acta. 457: 1 09-132. 

Ehrenwald, E., Parks, J.E., Foote, R.H. (1988) Cholesterol efflux from bovine 
sperm. I. Induction of the acrosome reaction with lipophosphatidlyl­
choline after reducing sperm cholesterol. Gamete Res. 20: 145-157. 

Ehrenwald, E., Foote, R.H., Parks, T.J. (1989) Cholesterol efflux from bovine 
sperm: bovine oviductal fluid components and their potential role in 
sperm cholesterol efflux. J. Adrol. 10:21-23. 

Evans, R.W., Weaver, D.E., Clegg, E.D. (1980) Diacyl, alkenyl, and alkyl ether 
phospholipids in ejaculated, in utero-, and in vitro-incubated porcine 
spermatozoa. J. Lipid Res. 21 :223-228. 

Go, K.J. and Wolf, D.P. (1983) The role of sterols in sperm capacitation. Adv. 
Lipid Res. 20:317-330. 

Go, K.J. and Wolf, D.P., (1985) Albumin-mediated changes in sperm sterol 
content during capacitation. Bioi. Reprod. 32: 145-153. 

Grippo, A.A., Anderson, S.H., Chapman, D.A., Henault, M.A., Killian, G.J. 
(1994) Cholesterol, phospholipid and phospholipase activity of ampullary 
and isthmic fluid from the bovine oviduct. J. Reprod. Fert. 102:87-93. 

Hammerstedt, R.H. and Parks, J.E. (1987) Changes in sperm surfaces 
associated with epididymal transit, In Niswender G.D., Baird, D.T., 
Findlay, J.K., Ewir, B.J., eds. Reproduction in domestic ruminants, Great 
Britain, Dorset Press. p.133. 

Horwitz, A.F., Wight, A., Ludwig, P., Cornell, R. (1978) Interrelated lipid 
alterations and their influence on the proliferation and fusion of cultured 
myogenic cells. J. Cell Bioi. 77:334-357. 

Hoshi, K., Aita, T., Yanagida, K., Yoshimatsu, N., Sato, A. (1990) Variation in 
the cholesterol/phospholipid ratio in human spermatozoa and its 
relationship with capacitation. Human Reprod. 5: 71-74. 

Kanwar, K.C., Yanagimachi, R., and Lopata, A. (1979) Effects of human 
seminal plasma on fertilizing capacity of human spermatozoa. Ferti!. 
Steril. 31 :321-327. 

40 



Kates, M. (1986) Laboratory techniques of lipidology: isolation, analysis and 
identification of lipids, 2nd edition. New York, Elsevier. p. 100. 

Kornberg, R.D. and McConnell, H.M. (1971) Lateral diffusion of phospholipids 
in a vesicle membrane. Proc. Natl. A cad. Sci. 68: 2564-2568. 

Lange, Y. and Ramos, B. V. (1 983) Analysis of the distribution of cholesterol in 
the intact cell. J. BioI. Chem. 258: 1 51 30-1 51 34. 

Langlais, J. and Roberts, K.D. (1985) A molecular model of sperm capacitation 
and the acrosome reaction of mammalian spermatozoa. Gamete Res. 
12: 183-224. 

Langlais, J., Kan, F.K., Granger, L., Raymond, L., Bleau, G., Roberts, K.D. 
(1988) Identification of sterol acceptors that stimulate cholesterol efflux 
from human spermatozoa during in vitro capacitation. Gamete Res. 
20: 185-201. 

Myles, D.G. and Primakoff, P. (1985) Sperm surface domains In Spungir, T.A., 
ed. Hybridoma Technology in the Biosciences of Medicine, Plenum, New 
York. p. 239. 

Nagai, T., Yanagimach!, R., Srivastava, P.N., Yanagimachi, H. (1986) 
Acrosome reaction in human spermatozoa. Fertil. Steril. 45:701-707. 

Oliphant, G. and Eng., L.A. (1978) Rabbit sperm reversibly decapacitated by 
membrane stabilization with a highly purified glycoprotein from seminal 
plasma. BioI. Reprod. 19: 1 083-1 094. 

Oliphant, G., Reynolds, A.B., Thomas, T.S. (1985) Sperm surface components 
involved in the control of the acrosome reaction. Am. J. Anat. 174:269-
283. 

Orgebin-Crist, M.C. and Fournier-Delpech, S. (1982) sperm-egg interaction: 
evidence for maturational changes during epididymal transit. J. Androl. 
3:429-433. 

Osman, R.A., Andria M.L., Jones, A.D., Meizel, S. (1989) Steroid induced 
exocytosis: the human sperm acrosome reaction. Biochim. Biophys. Res. 
Commun. 160:828-833. 

Papahadjopoulous, D., Poste, G., Schaeffer, B.E., Vail, W.J. (1974) Membrane 
fusion and molecular segregation in phospholipid vesicles. Biochem. 
Biophys. Acta. 352: 1 0-27. 

Ronquist, G., Nelson, B., and Hjerten, S. (1990) Interaction between 
prostasomes and spermatozoa from human semen. Arch. Androl. 

41 



24: 147-157. 

Rooney, M.W., Lange, Y., Kauffman, J.W. (1984) The effect of cholesterol on 
the structure of phosphatidylcholine bilayers. Biochem. Biophys. Acta. 
513:43-58. 

Russell, L., Peterson, R.N., Freund, M. (1979) Morphologic characteristics of 
the chemically induced acrosome reaction in human spermatozoa. Fertil. 
Steril. 32:87-92. 

Shi, 0., Juan, Y., Friend, D., Marton, L. (1992) Effect of spermine on sperm 
capacitation of guinea pig in vitro. Arch. Androl. 29:33-42. 

Shouffani, A. and Kanner, B.1. (1990) Cholesterol is required for reconstruction 
of the sodium-and chloride-coupled GABA transporter from rat brain. J. 

: BioI. Chem. 265:6002-6008. 

Shur, B. and Hall, N. (1982) Sperm surface galactosyl transferase activities 
during in vitro capacitation. J. Cell BioI 95:567-573. 

Siiteri, J.E., Dandekar, P., and Meizel, S. (1988) Human sperm acrosome 
reaction initiating activity associated with the cumulus oophorus and 
mural granulosa c~lIs. J. Exp. Zool. 246:71-80. 

Siiteri, J.E., Gottlieb, W., Meizel, S. (1988) Partial characterization of a fraction 
from human follicular fluid that initiates the human sperm acrosome 
reaction in vitro. ·Gamete·Res.2():25~42: ~ < <~< 

Stegmayr, B. and Ronquist, G. (1982) Promotive effect on human sperm 
progressive motility by prostasomes. Ural. Res. 10:253-257. 

Suarez, S., Wolf, D., and Meizel, S. (1986) Induction of the acrosome reaction 
in human spermatozoa by a fraction of human follicular fluid. Gamete 
Res. 14:107-121. 

Sugkraroeck, P., Kates, M., Leader, A., Tanphaichitr, N. (1991) Levels of 
cholesterol and phospholipids in freshly ejaculated sperm and Percoll­
gradient-pelleted sperm from fertile and unexplained infertile men. Fert. 
Steril. 55:820-827. 

Suzuki, F. and Yanagimachi, R. (1989) Changes in the distribution of 
intramembranous particles and Filipin-reactive membrane sterols during 
in vitro capacitation of golden hamster spermatozoa. Gamete Res. 
23:335-347. 

Tesarik, J. (1985) Comparison of acrosome reaction-inducing activities of 
human cumulus oophorus, follicular fluid and ionophore A23187 in 

42 



human sperm populations of proven fertilizing ability in vitro. J. Reprod. 
Fertil. 74:383-388. 

Tesarik, J. and Flechon, J.E. (1986) Distribution of sterols and anionic lipids in 
human sperm plasma membrane: effects of in vitro capacitation. J. 
Ultrastruct. Mol. Struct. Res. 97:227-237. 

Toyoda, Y., Yokoyama, M., Hosi, T. (1971) Studies on the fertilization of 
mouse eggs in vitro. Jpn. J. Anim. Reprod. 16:147-157. 

Toyoda, Y. and Chang, M.C. (1974) Fertilization of rat eggs in vitro by 
epididymal spermatozoa and the development of eggs following transfer. 
J. Reprod. Fert. 34:9-22. 

Van der Bosch, J., Schudt, C., Pette, D. (1973) Influence of temperature, 
cholesterol, dipalmitoyllecithin and Ca 2 + on the rate of muscle cell fusion. 
Exp. Cell Res. 82:433-438. 

Yanagimachi, R. (1975) Acceleration of the acrosome reaction and activation 
of guinea pig spermatozoa by detergents and other reagents. BioI. 
Reprod. 13:519-526 . 

. 
Yanagimachi, R. (1981) Mechanisms of fertilization in mammals In Mastroianni, 

L., Biggers, J.D., eds. Fertilization and Embryonic Developmentln Vitro, 
Plenum, New York. p. 81. 

Yanagimachi, R. (1994) Mammalian Fertilization In The Physiology of 
Reproduction, Raven Press, New York ... pp.189-254. 

Yeagle, P.L. (1985) Cholesterol and the cell membrane. Biochem. Biophys. 
Acta. 822:267-287. 

Yeagle, P.L. (1989) Lipid regulation of cell membrane structure and function. 
FASEB J. 3: 1833-1842. 

Yeagle, P.L., Rice, D., Young, T. (1988) Cholesterol effects on bovine kidney 
Na+K+ ATPase hydrolyzing activity. Biochemistry 27:6449-6452. 

43 



Thesis: 

VITA 

Renee Jean Zarintash 

Candidate for the Degree of 

Master of Science 

THE ROLE OF CHOLESTEROL IN THE ACROSOMAL 
RESPONSIVENESS OF SPERM 

Major Field: Physiological Sciences 

Biographical: 

Personal Data: Born in Winston Salem, North Carolina, On October 7, 
1971, the daughter of Dr-: and Mrs. Kim- Zarintash. 

Education: Graduated from Bishop Kelley High School, Tulsa, Oklahoma 
in May 1989; received Bachelor of Arts degree in Biology from 
Baylor University, Waco, Texas; Completed requirements for the 
Master of Science degree with a major in Physiolgy at Oklahoma 
State University in July 1995. 

Experience: Employed as an assistant technician at the Tulsa Center for 
Fertility and Women's Health, Tulsa, Oklahoma in 1993; 
volunteered at Providence Medical Center Emergency Room, 
Waco, Texas, 1990 - 1992; volunteered at Jeffrey Place Nursing 
Center, Waco, Texas, 1992. 

Professional Memberships: Alpha Epsilon Delta, Graduate Student 
Association, Physiology Journal Club, Society for Environmental 
Scientists. 



Date: 03-15-95 

OKLAHOMA STATE UNIVERSITY 
INSTITUTIONAL REVIEW BOARD 

HUMAN SUBJECTS REVIEW 

IRB#: VM-95-002 

Proposal Title: THE ROLE OF CHOLESTEROL IN ACROSOMAL RESPONSIVENESS IN 
SPERM 

Principal Investigator(s): Nicholas L. Cross, Renee J. Zarimash 

Reviewed and Processed as: Expedited 

Approval Status Recommended by Reviewer(s): Approved 

APPROV AL STATUS SUBJECT TO REVIEW BY RJLL INSTITUTIONAL REVIEW BOARD AT NEXT 
MEETING. 
APPRO V AL STATUS PERIOD VALID FOR ONE CALENDAR YEAR AFTER WHICH A CONTINUATION 
OR RENEWAL REQUEST IS REQUIRED TO BE SUBMITTED FOR BOARD APPROVAL. 
ANY MODIFICATIONS TO APPROVED PROJECT MUST ALSO BE SUBMITTED FOR APPRO V AL. 

Corrunents, Modifications/Conditions for Approval or Reasons for Deferral or Disapproval are as 
follows: 

Sign3ture: Date: M:uch 21. 1995 


	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009
	1010
	1011
	1012
	1013
	1014
	1015
	1016
	1017
	1018
	1019
	1020
	1021
	1022
	1023
	1024
	1025
	1026
	1027
	1028
	1029
	1030
	1031
	1032
	1033
	1034
	1035
	1036
	1037
	1038
	1039
	1040
	1041
	1042
	1043
	1044
	1045
	1046
	1047
	1048
	1049



