
AN IMPLEMENTATION OF DIGITAL FILTERS

USING FERMAT NUMBER TRANSFORM

ON TMS320C30 DIGITAL

SIGNAL PROCESSOR

By

YEK CHONG YEO

Bachelor of Science

Oklhahoma State University

Stillwater, Oklahoma

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1995

OKLAHOMA STATE UNIVERSITY

AN IMPLEMENTATION OF DIGITAL FILTERS

USING FERMAT NUMBER TRANSFORM

ON TMS320C30 DIGITAL

SIGNAL PROCESSOR

Thesis Approved:

f-1 ~
/

~~ k 2-¥'=-

Dean of the Graduate College

I
I
[

ii J

PREFACE

Precise systems design, equipment standardization, and

stability of performance characteristics are among the many

advantages digital techniques can offer in signal

processing. Earlier research in this field of study has

contributed much to many of the modern day conveniences.

Many of these contributions focus on improving computational

efficiency of discrete Fourier transform (DFT) calculation.

However, there are many shortcomings; therefore number

theoretic transform (NTT) is proposed.

This study implements three digital filters using one

of the NTT, namely the Fermat number transform (FNT), and

DFT. It compares the execution time, number of operation,

and memory requirement for both implementations.

Implementation of both types of filters employs the radix-2

fast Fourier transform (FFT) . This study proposes a modified

diminished-one number system in implementing FNT. The

number system was originally proposed by Leibowitz.

I would like to take this opportunity to thank my major

advisor, Dr. Lu, for the encouragement she has offered over

the years. Her patience and constructive guidance has been

very helpful. Also, I would like to thank Dr. Teague for

iii

--~!.

his kindness in giving me access to his digital signal

processing laboratory, where most of the work in this study

was done. My appreciation also goes to my parents for their

continuous support

iv

L

TABLE OF CONTENTS

Chapter Page

1 . INTRODUCTION . 1

2 • LITERATURE REVIEW 3

2 . 1 INTRODUCTION • 3

2 . 2 THEORETICAL DEVELOPMENT ••••••••••••••••••••••••••••••••••• 5

2.2.1 Early Developments ..••.•..•..•••...•••.••...•••..••........... 5

2.2.2 Discrete Fourier Transform ..•••••••.••••..•••...••..••.••..... 7

2.2.3 Number Theoretic Transform ••...•••.•.•••••••••..•••.••..••... 10

2 . 3 HARDWARE ENVIRONMENT ••••••••••••••••••••••••••••••••••••. 12

2. 3 .1 TMS320C30 Evaluation Module ••..•••.•..••••.••••...•.•.•....•. 12

3. BACKGROUND INFORMATION 14

3 . 1 FOURIER SERIES AND FOURIER TRANSFORM ••••••••••••••••••••••• 14

3 .1.1 Fourier Series ...•..••...•...••..••...•...•....•...••...•.... 14

3 .1.2 Fourier Transform••.••.......••...•..•.......••. 15

3. 2 SIGNAL FILTERING AND CONVOLUTION ••••••••••••••••••••••••••• 18

3 . 3 DISCRETE FOURIER TRANSFORM • 19

3.3.1 Cooley-Tukey Algorithm •••..•••.•.•..••...••..••...••..•...... 20

3.3.2 Radix-2 Fast Fourier Transform •••.••.•••.••••...•••.....••.•• 21

3 . 4 NUMBER THEORETIC TRANSFORM • 2 2

3. 4.1 Fermat Number Transform •••••••.•••.•••.•••..•••.••.••••..••.. 22

3.4.2 Diminished-One Number System ..•..•••..••.•••..•...••.......•. 24

4 . IMPLEMENTATION .. 2 6

v

4 . 1 RADIX- 2 FAST FOURIER TRANSFORM ALGORITHM • • • • • • • • • • • • • • • • • • • 2 6

4.1.1 Decimation-In-Time Algorithm 26

4.1.2 Decimation-In-Frequency Algorithm 29

4. 2 MODIFIED DIMINISHED-ONE OPERATIONS ••••••••••••••••••••••••• 31

4.2.1 Negation ... 32

4.2 .2 Addition ... 32

4. 2. 3 Subtraction .. 34

4. 2. 4 Scaling .. 37

4.2.5 Multiplication ... 40

5. DATA ANALYSIS ... 42

5 . 1 GENERAL DATA OUTPUT • 4 2

5. 1. 1 Sample Data .. 43

5.1.2 Lowpass Filtering .. 44

5. 1. 3 Bandpass Filtering ... 4 6

5.1.4 Highpass Filtering ... 49

5 . 2 EXECUTION TIME • 51

5 . 3 MEMORY REQUIREMENT • 53

5 . 4 SUMMARY • 53

6 • CONCLUSION .. 54

6. 1 ANALYSIS •• 54

6. 1 .1 Speed .. 54

6.1.2 Memory Requirement ... 56

6 . 1. 3 Accuracy ... 57

6 . 2 CONCLUSION • 58

vi

1

BIBLIOGRAPHY ... 61

APPENDIX ... 65

APPENDIX A SOFTWARE USER'S INSTRUCTION ••••••••••••••••••••••• 6 6

APPEND IX B PROGRAM SoURCE CODE • 7 0

vii

_..J.,

LIST OF TABLES

Table 5. 1: Execution clock cycle 51

Table 5. 2: Number of operations 52

viii

_1

LIST OF FIGURES

Figure 4. 1 DIT FFT algorithm (Extracted from [10]) ... 27

Figure 4. 2 : DIT FFT pseudo code 28

Figure 4. 3: DIF FFT algorithm (Extracted from [10]) ... 29

Figure 4. 4: DIF FFT pseudo code 30

Figure 4. 5: Modified diminished-one addition 34

Figure 4. 6 : Modified diminished-one subtraction 36

Figure 4. 7: Diminished-one number A •••••••.•••.••••.•• 38

Figure 4. 8: Diminished-one number A after less than b

bits rotation 3 8

Figure 4. 9: Diminished-one number A after more than b

bits rotation 38

Figure 4. 10: Diminished-one scaling 39

Figure 4. 11: Diminished-one multiplication 41

Figure 5. 1:

Figure 5. 2:

Figure 5. 3:

Figure 5. 4:

Figure 5. 5:

Figure 5. 6:

Input data sequence 43

Input data sequence in frequency-domain ... 43

Lowpass filtered sequence using DFT 44

Lowpass filtered sequence using NTT 45

Lowpass filter sequence in frequency-domain45

Lowpass filtered output sequence in

frequency-domain 46

ix

_...

Figure 5. 7 : Bandpass filtered sequence using DFT 47

Figure 5. 8: Bandpass filtered sequence using NTT 47

Figure 5. 9: Bandpass filter sequence in frequency-domain48

Figure 5. 10: Bandpass filtered output sequence in

frequency-domain 48

Figure 5. 11: Highpass filtered sequence using DFT 49

Figure 5. 12: Highpass filtered sequence using NTT 49

Figure 5. 13: Highpass filter sequence in frequency-domain

. 50

Figure 5. 14: Highpass filtered output sequence in

frequency-domain 50

I

X
~ !

___ -'-

CCP

DFT

DIF

DIT

DSP

EVM

FFT

FNT

IDFT

IFNT

MNT

NTT

PFA

RT

TI

WFTA

NOMENCLATURE

cyclic convolution property

discrete Fourier transform

decimation-in-frequency

decimation-in-time

discrete signal processor

evaluation module

fast Fourier transform

Fermat number transform

inverse discrete Fourier transform

inverse Fermat number transform

Mersenne number transform

number theoretic transform

prime factor algorithm

Rader transform

Texas Instruments

Winograd Fourier transform algorithm

xi

CHAPTER 1

1. INTRODUCTION

C.M. Rader introduced Mersenne number transform (MNT)

in 1972 [1] . His proposal started a whole new category of

transform, generally termed as number theoretic transform

(NTT) . This opened up new possibilities in digital signal

processing. Among the many claims of number theoretic

transform are precision and accuracy, processing speed, and

a lower memory requirement compared to its complex

counterpart. As the structure of NTT is very similar to

that of DFT, FFT algorithms are most suitable for improving

efficiency. Interesting enough, FFT algorithms did not draw

much attention until a decade earlier, when Cooley and Tukey

published their paper in 1965 [2] .

This study seeks to implement lowpass, bandpass, and

highpass filters using NTT and DFT. The specific focus is

FNT and DFT, using radix-2 FFT algorithm implementations.

The software Hypersignal was used to design the filters,

producing a set of filter data sequence to convolute with

input signals. A modification of L.M. Leibowitz's

diminished-one number system used to implement FNT is

presented. The study compares the execution time and the

memory requirement for the two implementations. An analysis

1

......

of the computational accuracy is also presented. All these

implementations are run on Texas Instruments' (TI) TMS320C30

evaluation module.

Chapter 2 contains a historical account of the

development of the field of digital signal processing. The

chapter first recount early 19th century discoveries. A

description of the improvements in both NTT and DFT will

follow. Chapter 3 gives the necessary background

information regarding the implementations in this study.

Chapter 4 discusses the specific implementations. A

detailed description of the algorithm implemented in this

study, followed by a discussion of the modified diminished

one operations is also presented. Chapter 5 presents an

analysis of the results collected from the two

implementations. This paper will then end with a summary in

chapter 6. It reiterates the findings and wraps up this

study.

2

CHAPTER 2

2. LITERATURE REVIEW

2.1 Introduction

The contribution of the French mathematician Jean

Baptiste Joseph Fourier (1768 - 1830) is a major milestone

to the study of signal processing [3] . Fourier first

demonstrated the method of representing periodic functions

in infinite harmonic series. This method, now known as the

Fourier series, has become a valuable tool for the study of

digital signal processing. Later, the definition of the

Fourier transform is developed from the foundation of this

work. Just as the Fourier series describes a periodic

function in terms of the frequency-domain attributes of

amplitude and phase, the Fourier transform extends this

frequency-domain description to aperiodic functions.

However, digital signal processing did not catch on until

Cooley and Tukey published their work in 1965 [2] . Their

work was indeed a turning point in digital signal processing

and in certain areas of numerical analysis. With their

method, the order of complexity of performing DFT drops from

o{N2} to a significantly lower order at O(Nlog2N) .

3

Less known to many researchers, however, is the

treatise written by the eminent German mathematician Carl

Friedrich Gauss (1777 - 1855) [4]. This treatise described

an algorithm similar to the Cooley-Tukey FFT more than one

hundred and fifty years earlier, in 1805. As noted by H.

Burkhardt [5] in 1904 and H. H. Goldstine [6] in 1977, this

work predated even Fourier's 1807 work on harmonic analysis.

Although DFT is useful in today's digital electronic

era, time-consuming complex operations and roundoff errors

due to finite word length plague its usefulness. Many

researchers have begun to explore similar transforms

exhibiting cyclic convolution property (CCP) , which is

having the transform of the cyclic convolution of two

sequences equal to the product of their transforms. In

1971, Pollard published a paper [18] discussing the

conditions for having transforms showing CCP and defined

transforms in a finite (Galois) field. Transforms in the

rings of integers appeared after Rader proposed the

transforms in the rings of integers modulo a Mersenne number

or a Fermat number. Researchers call these transforms in a

ring of integers NTT.

This chapter first recounts the development behind

modern day digital signal processing since early 1800.

Then, an account of the progress in DFT follows.

Thereafter, the chapter discusses progress in NTT.

4

2.2 Theoretical Development

2.2.1 Early Developments

In a well-documented article [7], M.T. Heideman

referred to two earlier papers [5,6], confirming Gauss's

contribution to the study of signal processing. He quoted

Herman H. Goldstine [6], "This fascinating work of Gauss was

neglected and was rediscovered by Cooley and Tukey in an

important paper in 1965." Here, he was referring to Gauss's

treatise, "Theoria Interpolations Methodo Nova Tractata."

Gauss published this treatise, most likely written in 1805,

in 1866. H. Burkhardt, who wrote in 1904 [5], also noted

the contribution of Guass.

While a student at Gottingen, Gauss became familiar

with the works of Leonhard Euler (1707 - 1783) and Joseph

Louis Lagrange (1736 - 1813) on the analysis of

trigonometric series [7] . He later extended these works on

trigonometric interpolation to periodic functions.

Nevertheless, most of his important publications are in a

nineteenth-century version of Latin, called neo-Latin.

Unfortunately, it is difficult for a casual student of

classical Latin to translate neo-Latin accurately. Gauss's

notation in describing his method also posts an obstacle to

modern readers. As such, his work went largely unnoticed.

Heideman wrote, "Burkhardt pointed out this algorithm in

5

1904 and Goldstine suggested the connection between Gauss

and the FFT in 1977, but both of these went largely

unnoticed, presumably because they were published in books

dealing primarily with history." So, the world did not

benefit from Gauss's method until Cooley and Tukey came

along in 1965.

~Gauss's algorithm is as general and powerful as the

Cooley-Tukey common-factor algorithm and is, in fact,

equivalent to a decimation-in-frequency algorithm adapted to

a real data sequence," wrote Heideman. Although Gauss did

not go on to quantify the computational requirements of his

method, clearly his algorithm performs in the order of

complexity at the now familiar ~Nlog2N}.

Although Gauss's contribution precedes that of Fourier,

Fourier's work in harmonic series commands more attention.

It is fascinating to see that the knowledge acquired in one

field of study became useful in another. In fact, Fourier

was studying and analyzing the heat flow in metal rods when

he discovered the trigonometric series representation of a

periodic function. He did not know the importance of his

work to modern day signal processing. Essentially, Fourier

showed that any periodic function is expressible as a

function of harmonic frequencies of the fundamental

frequency, which we now refer to as the Fourier series.

Such mathematical abstraction of periodic functions is a

6

useful tool for objective observation of periodic signals.

Beside the physical interpretation to view periodic

functions as a sum of component functions with harmonic

frequencies, Fourier series allow us to describe such

functions in their frequency-domain attributes. Further

development introduces the idea of Fourier transform, giving

us the abstract mathematical tools to study aperiodic

functions.

Over the years, independent works that were unrelated

to Gauss's work appeared, but were not as general or as well

formulated as his work. Many of the methods did not handle

computation above the fourth harmonics until Runge published

his work [7] in the early 1900's.

2.2.2 Discrete Fourier Transform

At the turn of the century, Runge proposed an algorithm

for lengths equal to powers of two [7], which was later

generalized to powers of three as well. Apparently, his

work was well known and was cited in the popular textbook

written by Whittaker and Robinson [8] . His influence did

not survive after the war, however.

After the war, in 1958, another important contribution

appeared. Good developed an index mapping that facilitated

the division of a problem into subproblems of smaller length

[9] . This mapping itself is an application of the Chinese

7

__ l

remainder theorem, which dates back to the Chinese

mathematician Sun-Tsu some time between 200 BC and 200 AD

[10] . When Cooley and Tukey presented their fast Fourier

transform in 1965, they claimed to base their work on Good's

mapping, apparently unaware of Gauss's algorithm that the

world had forgotten more than a century ago. However, there

are major differences between Good's algorithm and the

Cooley-Tukey FFT. The former does not require auxiliary

complex multiplications, referred to as twiddle factors,

while the later does; thus, the two different classes of

FFT.

The development of FFT, without twiddle factors, did

not become popular with Good's algorithm, which is suitable

when factors of the transform length are coprime, or are

indivisible by each other. Good's algorithm requires a set

of efficient small-length DFT algorithms. Paradoxically, in

1968, Rader published a paper that showed how to map a prime

length N DFT into circular convolution of length N -1 [11]

Yet, not until Winograd's study on complexity theory [12]

that the two foundation works above are ready for efficient

applications on signal processing. Winograd published his

paper in 1977, presenting his complex theory, particularly

on the number of multiplications required for computing

polynomial products or convolution. His work is crucial to

this class of FFT. With Good's mapping, coupled with

8

_l

Rader's fast convolution scheme, a first algorithm makes use

of the intimate structure of these convolution schemes to

obtain a nesting of the various multiplications. This

algorithm is now known as Winograd Fourier transform

algorithm (WFTA) . If the nesting is not used, the resulting

algorithm is known as prime factor algorithm (PFA) .

The development in FFT with twiddle factors took off

with the Cooley-Tukey FFT. Unlike Good's algorithm, the

Cooley-Tukey FFT can have transform length of any composite

length. With the growing interest in the theoretical

aspects of digital signal processing motivated by technical

improvements in the semiconductor industry, and the

availability of reasonable computing power, the Cooley-Tukey

FFT quickly became an interest of research. They employ the

divide and conquer approach by separating input sequences to

process. When the sequence length is a power of two, their

algorithm becomes what is known as the radix-2 decimation-

in-time (DIT) algorithm. Emphasis on a dual approach leads

to decimation-in-frequency (DIF) algorithm. Later, Bergland

noted that the algorithm can be more efficient with higher

radices like radix-8 [13] . In 1984, there were four

proposals [14,15,16,17] submitted at about the same time

that leads to split-radix algorithm. This approach uses a

different radix for the even part (radix-2) and the odd part

(radix-4) .

I

.1_ 9

J.

This research uses a radix-2 algorithm for comparison

with the NTT implementation. Thus, it is the author's

intention to leave the rest of the development in this

thread, for example polynomial transform, to the reader to

explore. This discussion will continue with the motivations

and history of NTT.

2.2.3 Number Theoretic Transform

In his paper published in 1971 [18], J.M. Pollard

defined a transform in finite (Galois) field analogous to

the DFT. Replacing the complex roots of unity in DFT with

rk, where r is a member of any field F, of order d and k is

an integer, he showed that CCP holds for the transform in

F. This is under the condition that r has finite order d

in the multiplicative group F. of F. Generalizing his

definition, he suggested transforms in a ring of integers

modulo m, where m is an integer. C.M. Rader picked up from

here and introduced a transformation defined in the rings of

integers modulo a Mersenne number [1] . We now call this

transform Mersenne number transform (MNT) .

Unlike DFT, the only arithmetic operations MNT needs

are that of additions and circular shifts of bits within a

word. One other advantage the MNT has over DFT is the

accuracy of the transformation it can attain; virtually no

10

..1.

-"

roundoff errors. Rader also suggested a transformation

using Fermat numbers. In time, researchers coined the term

'number theoretic transform' to refer to similar

transformations. Later in 1974, R.C. Argarwal and C.S.

Burrus [19] worked on a transform using Fermat numbers,

named Fermat number transforms (FNT). In their paper, they

formalized the conditions for CCP and showed its relation to

the transform length. Unlike Rader, they defined the roots

of unity as a' instead of 2'. Thus giving more flexibility

to the transform. Since these transformations are similar

to the DFT, therefore FFT algorithms are perfectly suitable

on NTT to achieve better efficiency. As the topic of

interest is on implementation of FNT, many of the later

developments in NTT are left to the readers to explore. The

emphasis will now turn to issues in the implementation of

FNT.

Argarwal and Burrus proposed implementations of the

various basic arithmetic operations modulo a Fermat number,

~=2h+l, in their paper [19]. However, this method does

not have the convenience of circular shifts of bits when

performing scaling. The method also involves the

representation of the number -1, requiring b+l bits. The

integer b is equal to 2t . Argarwal and Burrus decided to

ignore this extra bit in order to simplify modular

arithmetic operations. While McClellan developed a

11

_ ____l

.....L_

technique of exact computation using a new binary code

representation of b+l bits in 1976 [20], L.M. Leibowitz

proposed a similar binary representation he called

diminished-one number system the same year [21] . His method

shows less mathematical complexity than that of McClellan.

It also allows circular bit shifts for scaling by powers of

2. This paper builds on the foundation of Leibowitz's

diminished-one number system and presents modifications to

the various diminished-one number operations.

2.3 Hardware Environment

2.3.1 TMS320C30 Evaluation Module

The TMS320C30 Evaluation Module (EVM) is a tool for

application development. This module allows the execution

and debugging of application programs. With one of the

fastest digital signal processors (DSP), the 33-MFLOP

TMS320C30 floating-point DSP, this EVM provides a lot of

computing power. This section will give a brief description

of the hardware environment used in this study.

As mentioned earlier, the TMS320C30 EVM employs the TI

TMS320C30 DSP for its brain power. This DSP has a 60-ns

single-cycle instruction execution time (33Mhz) . The

processor has one 4K x 32-bit single-cycle, dual-access on

chip ROM block, and two 1K x 32-bit single-cycle dual-access

12

____l

on-chip RAM blocks. It also includes a 64 x 32-bit

instruction cache. The instruction and data words are 32-

bit, while the addresses are 24-bit. Both the multiplier

and the ALU have 40-bits floating-point operations and 32-

bits for integer operations. It has a 32-bit barrel

shifter. Among the many advances in this processor, it can

perform parallel multiply and ALU operations on integer or

floating-point data in a single cycle. Another main feature

of this processor is its internal dual-access memory

capability.

In addition to the TMS320C30 DSP, this EVM has 16K

words of zero wait-state SRAM on the primary bus. It also

has a voice quality analog data acquisition circuitry, with

standard RCA jacks for line-level analog input and output.

Beside an external serial port, it also has a 16-bit

bidirectional PC host communication port. The unit is built

on an IBM PC/AT compatible 8-bit half card that fits onto

any PC compatible computer.

With this computing power, the EVM represents one of

the latest technologies available in the market. It is,

therefore, a suitable platform to test and to compare the

various implementations for use in this study.

13
_ _l

CHAPTER 3

3. Background Information

3.1 Fourier Series and Fourier Transform

3.1.1 Fourier Series

What Fourier discovered in his experiments on heat flow

is that a periodic function is expressible as the sum of an

infinite number of sinusoids with a period that is the

multiple of the fundamental frequency. The equation below

is the mathematical realization of this discovery.

() a oo [2;mt . 2;mt]
X t = - 0 + L an cos--+bn sm--

2 n=l p p

Here, x(t) is a periodic time function that is

integrable over its period P. The a's and b's are the

Fourier coefficients, while 2ffjP is the fundamental

frequency of the x(t) . The integral multiples of the

fundamental frequency are the harmonic frequencies of x(t) .

Mathematically, Dirichlet's conditions ensure a

convergent Fourier series. These conditions, as noted in

[3] , are

1. x(t) is single-valued;

14

_ _l

2. x(t) has a finite number of discontinuities in the

periodic interval;

3. x(t) has a finite number of maxima and minima in the

periodic interval; and

4. The integral fo+Pjx(t)~t exists.
to

These are all sufficient conditions and not necessary

conditions. Therefore, Fourier series can express any

periodic functions meeting these requirements. However,

periodic functions not meeting these conditions may still be

expressible in Fourier series.

Fourier series leads to the definition of Fourier

transform. Note the frequency-domain attributes in Fourier

series in the next section, which discusses the development

of Fourier transform.

3.1.2 Fourier Transform

Strictly speaking, Fourier transform is not a new

transform. J.W. Nilsson [3] wrote, "It is a special case of

bilateral Laplace transform with the real part of the

complex frequency set equal to zero." Nevertheless,

understanding the evolution from Fourier series to Fourier

transform gives tremendous insights to the physical

significance of this transform.

l.S

_ _l

By replacing the sine and cosine terms in the Fourier

series equation

)
a QO [2:mt . 2:mt] x(t = - 0 + L an cos--+bn sm--
2 n=l p p

with the identities

cosB = He10 + e-10
),

sinB = L (e 10
- e-10

), and collecting like terms, the Fourier

series equation becomes

x(t) = n~ ~ [aini - jsign(n)bini]/m~,Vp ,

{
l,n;::: 0

where sign(n) = -l,n < 0

Then let

X(n) = ~hni- jsign(n)binl]

such that the equation becomes

x(t) = fx(n)e2m~jp
n=-oo

Therefore, IX(n~ is the frequency magnitude at 2:mt/ P,

where VP is the fundamental frequency of the original

function. Note that the exponential functions are

orthogonal as in

1 fP/2 -j2trl!t/P -j211it/P dt = 8 - e e k1 p -P/2

where 8/d is the Kronecker delta function given by

16

_l

s: -{ l,k=l
u kJ -

O,otherwise

The summation index in the above equation can be

changed to l . Then multiplying both sides of the equation

by e-i2
7rkzfP , integrating from - P/2 to P/2 , and applying the

orthogonality equality gives the following equation.

%
X(k) = _!_ J x(t)e-ndt/P dt

P_Ih

Following this, by multiplying each side with P, and

taking limit on P, we get the following

X(f)= [x(t)e-2'!fldt

This is the Fourier transform of x(t) . The inverse

Fourier transform is therefore defined as

x(t) = J: X(J)?i2
1!fl df .

It becomes clear that the Fourier transform of a time

function represents its frequency domain counterpart, as

X(n) determines the frequency magnitude. The roles of the

exponential terms clearly relate the Fourier transform to

the frequency domain.

As explained in the previous chapter, the Fourier

transform exhibits CCP. This means that the product of the

transforms of two time functions is equal to the transform

of their convolution. This property has no apparent

1.7

_1.

usefulness unless a more efficient computation of the

Fourier transform becomes available, which is very crucial

to the study of signal processing as noted in the later

sections. One other invaluable contribution of Fourier

transform is the transformation of a time function to the

frequency counterpart of the function. This essentially

allows the ability to perform frequency analysis of any time

function, an essential operation in most signal processing

studies.

With the development in microelectronics technology,

today's computing power increases many fold compared to that

of only three decades ago. Combining these advances, and

the many advantages of digital filter characteristics, it is

undeniably practicable to conceive a digital form of the

Fourier transform. Thus, the conception of DFT is a natural

progression.

3.2 Signal Filtering and Convolution

The process of filtering signals involves modification

of the frequency attributes of the signal. In most cases,

such processes include removal or intensification of a

certain range of frequency components of the signal. These

processes can best be described as the multiplication of a

filter sequence with the signal in the frequency-domain.

l.8 I

--~-- _l

Assume x(t) is the sampled signal and h(t) is the filter.

The transform of x(t), X(f) , and the transform of h(t) , H(f),

are in the frequency-domain. Clearly, a term-wise

multiplication of H(/) to X(/) modifies the frequency

attributes of the signal x(~. The results can then be

reverse transformed to time-domain to produce the desired

signal modification. This process is called convolution.

3.3 Discrete Fourier Transform

DFT is an adaptation of Fourier transform in situations

where discrete quantization of a continuous function is

necessary. This adaptation is most useful in digital signal

processing where discrete numbers are processed. Without

going into the details of the derivation, the following

equation represents the DFT

1 N-1

X(k) = -L:x(n)e-12=k/N,k = 0,1,2, ... ,N -1
N n=O

The inverse discrete Fourier transform (IDFT) is also a

summation, similar to DFT. This is shown as

N-1

X(n) = L X(k)eJznnk/N ,k = 0,1,2, ... ,N -1
n=O

19

----'-

3.3.1 Cooley-Tukey Algorithm

Starting with the DFT equation, as shown below, Cooley

and Tukey employed a divide and conquer strategy to simplify

the computation of the transform.

} N-1

X(k) = -L:x(n)wnk,W = e-i2
tr/N

N n=O

They first divide the transform length N into smaller

length, as in N = N1 • N2 • Letting

n = n2 N1 + ~.~ = 0,1,2, ... ,N1 -l,n2 = 0,1,2, ... ,N2 -1

k = kn1N 2 + k2 ,k1 = 0,1,2, ... ,N1 -l,k2 = 0,1,2, ... , N2 -1

Cooley and Tukey defined their FFT algorithm as follows.

N 2 -l

V = ~X W,n,k,
..-nt,kz L...J nzNI+nl N2

n 2 =0

_ W,n1k 2 Yn 1 ,k2 - Yn 1 ,k2 N

N1-l
X _ ~ ' W,n1k 1

k1N 2 +k2 - L...JYn1 ,k2 N1

n1 =0

This modification breaks up the computation of DFT into

two smaller pieces, Yn,,kz and xk,N,+k, • Each of the smaller

pieces can then be further broken up into even smaller

pieces. In this way, the computational time complexity

reduces from o(N2
) to O(NlogN)

20

__L

3.3.2 Radix-2 Fast Fourier Transform

The radix-2 FFT is a special case of the Cooley-Tukey

FFT. This type of FFT has transform length N = 2n .

Assuming that N is the product of N 1 and N 2 , where N1 = 2 ,

and N2 = N/2, we get the following:

N/2-1 N/2-1

X " W,n 2k2 + W,k2
" W,n2k2

k2 = .LJX2n2 N/2 N .LJX2n2 +1 N/2
n 2 =0 n2 =0

N/2-1 N/2-1

X " W,n2k2 W,k2 " W,n2k2
N/2+k2 = .LJX2n2 N/2 - N .LJX2n2 +1 N/2

n2 =0 n 2 =0

This form of radix-2 FFT is termed as decimation-in-

time (DIT). However, owing to the transform structure, it

is necessary to rearrange the order of the input sequence.

This process is called bit-reverse procedure. Essentially,

the order of the input sequence is arranged such that the

index has its bits reversed. For example, an N = 4

transform sequence will have an input sequence of 0,2,1,3

(00,10,01,11).

By emphasizing the duality principle, taking N1 = N/2

and N2 = 2, we get the decimation-in-frequency (DIF) radix-2

FFT algorithm.

N/2-1

X2k, = L:w;;~'(xn, +xN/2+nJ
n 1=0

N/2-1

x2k,+1 = L w;;~'W;'(xn, -xN/2+nJ
n1=0

21

.........

Somewhat different from the DIT algorithm, the output

of this algorithm is in bit-reversed order when the input is

in ascending order.

3.4 Number Theoretic Transform

When Pollard published his paper in 1971 [18] , he had

in mind analogous transforms to Fourier transform that also

exhibit the CCP. Yet, these transforms are defined in

finite field. As transforms defined in the rings of

integers appeared since Argarwal and Burrus published their

important paper in 1974 [19] , the motivation had been an

attempt to do away with the inaccuracy of complex operations

due to limited word length. One other motivation had been

the complete removal of multiplications that such transforms

promised. Today, these motivations are still as credible.

Such transforms in the rings of integers are now termed as

number theoretic transform. Among the more popular NTT is

Fm.

3.4.1 Fermat Number Transform

Fm is defined over the rings of integers modulo a

Fermat number, ~,defined as 2b+l, where b=21
• This

22

_ __..

transform and its inverse transform are defined as follows.

The FNT is defined as

X.t = /''fx"a(".t;b) ,where k = 0,1,2, ... ,N -1
\n=O F,

aN= (l)F ,and N =2m
t

while the inverse Fermat number transform (IFNT) is defined

as

\

N-1 (-nk)b)
x" = qLxka

k=O
F,

q = rm = (-2 b-m) F,

a is an integer of order N, transform length. If a is

taken as the number 3, it will have an order N = 2b.

However, if a is taken as 2, it has an order of N = 2b. In

this case, the transform is also called the Rader transform

(RT) . The transform is most efficiently implemented in this

case, since most digital devices are designed to function in

base 2.

When Argarwal and Burrus proposed Fermat number

transform, they also suggested a set of arithmetic

operations to make this transform possible. However,

multiplication by powers of 2 is not as simple. Later, L.M.

Leibowitze introduced a simplified binary number system

named diminished-one number system to simplify arithmetic

operations in the rings of integers modulo a Fermat number.

The next section describes this number system.

23

~ _....I..

3.4.2 Diminished-One Number System

Leibowitz defined a number A to be represented by

[ah , ... ,aPao] where 0:::; A:::; 2h . In this representation, the number

zero is represented by ah = 1, and a; = 0 for i = 0,1,2, ... ,b-1. All

other numbers are represented by the normal binary

representation of (A -1).

To add two numbers in this system involves taking the

sum of the two numbers and adding the complement of the

carry to the sum. However, if any of the numbers to be

added is zero, the sum is set to the other number.

Negation in this number system is much simpler.

Remembering that all operation in this number system is to

modulo a Fermat number, negation of a number is simply the

binary complement of the number. The only exception in this

operation is, again, the number zero. In this case, the

operation is inhibited.

Subtraction in this number system is defined as a

combination of the above two operations. It involves a

negation of the subtrahend and an addition to the minuend.

One of the more frequently used operations in Fermat

number transforms is scaling. Scaling involves the

multiplication with the roots of unity. In this case, the

root is always a number that is a power of 2. Thus,

multiplication by powers of 2 becomes an important operation

24

~_____I.

in ensuring an efficient algorithm. Fortunately, this

operation involves only left bit shifts and an addition of

the complement of the carry bit. In other word, "for each

factor of 2, a left-circular shift of the b-lsb's is

required and the bit circulated into the lsb is

complemented."

The last operation that Leibowitz proposed was general

multiplication. Here, he offered 3 methods. The first

method involves multiplication of the two diminished-one

numbers. This result is then added to the b-lsb of the

diminished-one sum of the two numbers. Then one must

perform a residue reduction of the result by a diminished

one subtraction of the b-msb's from the b-lsb's. The

same rule regarding the number zero applies.

The second method requires translation to normal binary

coding. The two numbers are then multiplied and a residue

reduction as described above is applied. The result is the

desired product.

The third method requires a translation of one of the

numbers to normal binary coding and then doing a general

diminished-one addition.

25

--'-

CHAPTER 4

4. Implementation

4.1 Radix-2 Fast Fourier Transform Algorithm

4.1.1 Decimation-In-Time Algorithm

As presented earlier, the DIT FFT equation is as

follows:

N/2-1 N/2-1

X "" W,"zkz + W,k2 "" W,"zkz
k2 = "'-" X2n2 N/2 N "'-" X2n2 +1 N/2

n2 =0 n2 =0

N/2-1 N/2-1

X "" W,"zkz W,k2 "" W,n2k2

N/2+k2 = "'-" X2n2 N/2 - N "'-" X2n 2 +1 N/2
n2 =0 n 2 =0

This form of the Cooley-Tukey FFT divides a transform

sequence into two smaller sequences, containing either the

set of odd, or the set of even sequences. This corresponds

to the first and second term of the above equations.

Recursive application of the equation leads to further

division of the two sequences into smaller sequences. This

continues until each set has only one element remaining.

Essentially, this requires recursive application to the

first and second term in the equation.

Taking a cue from this, the algorithm for DIT FFT

begins by pairing two elements at a time. This produces

N/2 two element pairs. To perform this operation, called

26

.l.

the butterfly operation, multiply a root of unity to the

second element, add and subtract from the first, and then

store the results. The result produces N/2 terms.

Combining two terms at a time, and repeating the same

processes, results in N/4 terms. Continue this until only

one term remains. The following figure illustrates this

process using a length eight transform sequence.

z~ 0

z:gzM:
' ~'

z K h 7' 6>'•1 0 \ • :

:><::' 7 "
p ~ Ffft7

" p
0

ow; ~ a ws' ~ 0

Figure 4. 1: DIT FFT algorithm (Extracted from [10])

As such, the construct of the following algorithm shows

the iterative process. Each iteration corresponds to one

layer in the above figure, that is a recursive application

of the equation on itself. Within each iteration, perform

butt~rfly operations on each element of the separate sets in

27

the sequence. This is how we get the two loops as shown in

the algorithm below.

n =length

for l = l,log 2 n{

m=2 1

wm = root of unity

W=l

for j = O,m/2 -1{

}

for k = j,n -l,m{

t = Wx(k +m/2)

u = x(k)

x(k) = u+t

x(k +m/2) = u- t}

W=WWm}

return X

Figure 4. 2: DIT FFT pseudo code

Since this algorithm works best with bit reversed

input, it makes sense to implement it on IFFT and allow the

DIF algorithm to take care of FFT. In this way, there is

less wastage in resources to modify input sequence and gives

a more efficient implementation.

28

===~~ ·-· . ·-·-~--- ___l

4.1.2 Decimation-In-Frequency Algorithm

The DIF algorithm is similar to that of the DIT except

for the emphasis on duality. Instead of separating the

transform sequence into sets of odd and even sequences, the

algorithm pairs up elements of the set.

N/2-1

x2k, = Lw;;~'(xn, +xN/2+n,)
n1 =0

N/2-1

x2k,+l = L w;;~'W;'(xn, - XN/2+n,)
n 1=0

The above equations show the pairing of elements half the

sequence length apart. Repeated application of the equation

to itself leads to the efficient DIF FFT algorithm. The

figure below depicts this process.

•. ~ f """ X ,.:><
" " " .. ,, . ~ ~rvin, o~

,,, . '.. "" .~ ,WoT <n<o~

08
I. 3 r J '"o ~ n W. ~ 0

Figure 4. 3: DIF FFT algorithm (Extracted from [10))

29

J.

Again, taking cue from the figure, the following

algorithm begins by performing butterfly operations that are

half the sequence length apart. The butterfly operation in

this case consists of addition and subtraction of the two

elements, followed by the multiplication of the root of

unity to the difference of the two elements. This same

process continues as the algorithm proceeds to the next

layer.

n =length

for I= l,log2 n{

m = n/21-I

wm = root of unity

W=l

for j = O,m/2 -1{

for k = j,n -l,m{

u = x(k}- x(k +m/2}

x(k) = x(k) +x(k +m/2)

x(k +m/2) = uW}

W= WW"'}

}

return X

Figure 4. 4: DIF FFT pseudo code

30

Note that this algorithm will produce a bit reversed

output sequence. It is, therefore, more suitable to

implement the FFT. When performing a convolution, this bit

reversed output sequence is fed into IFFT implemented in DIT

algorithm. Such is a perfect combination that takes

advantage of the characteristic of both DIT and DIF FFT

algorithms.

4.2 Modified Diminished-One Operations

The idea behind the diminished-one number system is

useful because it simplifies arithmetic operations when

implementing FNT. This system eradicates the need to

perform multiplication. Although not true in most modern

digital signal processing processors like the one in use

with this research, multiplication is usually the most

expensive operation in most processors. All operations in

this system consist of simple additions and bit shift

operations. However, one of the disadvantages of

diminished-one number system is the need to convert from an

ordinary binary number before any such operations are

useful. Moreover, scaling operations or multiplication by

powers of 2 requires multiple steps to produce the desired

result for higher powers of scaling factor. It defeats the

purpose of employing FNT when this most frequently used

31

_l

operation in a transform demands expensive processing

resources.

The modified diminished-one algorithm employs the best

of both worlds, normal binary and diminished-one arithmetic

operations. Although the theoretical foundation is based on

the diminished-one number system, this method attempts to

solve the shortcomings of the diminished-one number system

by turning back to ordinary binary operations whenever it is

most convenient. Scaling has become a multiple bit rotation

operation instead of a series of single bit rotations.

These are explained in the following sections.

4.2.1 Negation

Negation of a number remains the same as in the

diminished-one number system operation. Performing a binary

complement on all the bits of a diminished-one number

produces its negative counterpart.

4.2.2 Addition

This modification to diminished-one addition eliminates

the need to check for the number zero. Therefore reducing

the number of branching operations, which is the most

expensive operation for the digital signal processor used in

32

J.

this research. The operation assumes all numbers are in the

rings of integers modulo a Fermat number, ~· Therefore,

the algorithm disregards all cases of adding negative

numbers. An addition begins with normal binary addition and

a condition check to determine if the number is indeed

greater than or equal to the modulo. When the result is

indeed greater than, or equal to the modulo, a conversion to

the diminished-one number system enables easy modulo ~

operation. The following equation shows that the sum of two

numbers is one more than the value of the sum in the

diminished-one number system.

A+B=[(A+B)-1]+1

With this insight, and taking that the range of any

addition is no larger than twice the modulo, adding one to

the diminished-one number is equivalent to adding the

complement of the msb to the b lsb's of the number. Since

the maximum number of bits is b+l, and that the msb is 2b,

the above conclusion is true as (2b)~ = -1.

33

_ ______....

k=l+m

if(k ~ 2b){

k = k-1

(subtract 1 to get diminished-one

representation)

complement msb and add to b lsb's

}

(perform conversion from diminished-one to

binary)

return k

Figure 4. 5: Modified diminished-one addition

Therefore, the algorithm for this operation is shown

above in Figure 4.5.

Notice the saving of one conditional check compared to

the original diminished-one algorithm. This algorithm also

has the advantage of not needing to convert a number into

diminished-one number system in order to obtain the desired

result.

4.2.3 Subtraction

The subtraction algorithm is similar to the addition

algorithm. The rationale is the same, except that this

algorithm is much simpler to implement. Like the addition

algorithm, the following equation shows the connection

34

-~ __.._

.1

between normal binary representation and the diminished-one

representation of the difference of two numbers.

A-B=[(A-B)-1]+1

This algorithm assumes that all inputs are in the ring

of integers modulo ~~ as in the addition operation. Thus

the largest difference is ~-1 and the smallest difference

is -(~-D. When the difference is a positive number, the

algorithm does nothing more. When the difference is a

negative number, the algorithm retains only the b lsb's of

the number.

Employing the same rationale as the addition algorithm,

theoretically this algorithm converts the difference to

diminished-one representation when it is negative. This

eliminates the conditional checks for the number zero and

thus the inevitable branch operations. When using the

diminished-one representation, a residue reduction on the

number accomplishes the modulo ~ operation. Residue

reduction involves the addition of the complement of the b

msb's to the b lsb's.

Since a negative number has all b msb's equal to 1,

its complement is always zero. For all possible negative

numbers except the smallest, this involves subtracting one

from the b lsb's and adding zero. Following this is a code

conversion to normal binary nu~er, which is the addition of

35

I

the complement of the b+lth bit to the b lsb's. For this

case, it is the addition of the number one. This algorithm

removes the redundancy of subtracting and later adding one

to the b lsb's by simply retaining the b lsb's of a

negative number. For the smallest possible negative number,

such as the binary number with b ones followed by b zeros,

it is different. After converting to diminished-one

representation and performing residue reduction, all bits

except the b+lth bit are one. A code conversion to normal

binary representation gives the same results as in retaining

the b lsb's. Therefore, the algorithm is as shown below.

k =1-m

if(k < 0)

k = b lsb' s of k

return k

Figure 4. 6: Modified diminished-one subtraction

As in the addition operation, this algorithm also

removes the need for number system conversions and the need

to check for the number zero.

36

·-----'----

4.2.4 Scaling

The scaling operation is essentially an extension to

the diminished-one scaling operation. Noted in the previous

chapter, scaling in the diminished-one number system

involves rotating the complement of the msb to the lsb.

This is easily seen in the following equality.

(2A- 1) = 2(A- 1) + 1

However, this operation is a single bit operation.

Therefore, a multiplication of higher powers of 2 requires

several scaling operations to accomplish. The proposed

algorithm extends the diminished-one scaling operations to

multiple bit operation. Noting that the maximum power of 2

in the multiplication of the scaling factor is 2b, or the

maximum transform length for FNT. This operation needs only

be concerned with a maximum of 2b bit rotations.

Subsequent paragraphs will explain the operation using a

combination of bit shift, 'xor', and 'or' logic operations.

This is so because rotation is not a native operation of the

digital signal processor used in this research, .

Referring to the following figures, the left figures

represent a number while the right figures represent the

same number, d2, with bit extension, dl. A single bit

rotation in the left figures is equivalent to a left bit

shift and an addition of the complement of the bit shifted

37

----.L

into the dl field. Thus a multiple bit rotation in the left

figures is then the same operation as multiple bit shift and

addition of the complement of the bits shifted into dl to

d2. The scaling algorithm takes advantage of the above idea

to simplify the diminished-one scaling operation.

Assuming scaling by 2x, and that m~k=2b-, the

following figures show the inner working of this algorithm.

dl d2

Figure 4. 7: Diminished-one number A

• X •

dl d2

Figure 4. 8: Diminished-one number A after less than b bits rotation

X

dl d2

Figure 4. 9: Diminished-one number A after more than b bits rotation

In the above figures on the left, the shaded areas are the

complemented bits rotated. The shaded areas in the right

figures represent the original bit sequence. When a

rotation is less than b bits, figure 2 shows that the msb's

38

-----'-

of a number is rotated into the dl zone. However, when the

bit rotation is more than b bits, the lsb's of the number

gets into the dl zone. Whenever the bits are in zone dl,

take their complement, and 'or' them to the bits in zone d2

to give you the diminished-one result of the scaling

operation.

convert A to diminished-one representation

dl = d2 left shift x-b bits

mask= mask left shift x-b bits

dl = dl xor mask

if (bit shift <b)

d2 = d2 << X

else

d2 = d2 < < X- 2b

d2 = dl or d2

convert d2 to normal binary representation

Figure 4. 10: Diminished-one scaling

Therefore, the above algorithm first converts a number

into its diminished-one representation. A left shift of

x-b bits gives the bits shifted into zone dl. Perform the

same number of bit shifts to the mask and then do a 'xor'

with it to produce the complements of the bits shifted into

zone dl. The result is stored in a register conveniently

named dl. In the case when the number of bit rotation is

more than b, the msb's will have been complemented twice.

39

___ _L

...

Therefore, this method does not perform these complements

and simply left shifts the original number by x-2b. Take

note that a negative left shift implies a right shift. The

result is then stored in register d2. This is then 'or'

with the value in d1 to produce the desired result.

4.2.5 Multiplication

Multiplication remains the same as method 2 proposed by

Leibowitz. A normal binary multiplication result in a

product, which is the desired product in diminished-one

representation. This is followed by a residue reduction.

The last step in this algorithm is a code conversion of the

product to obtain the normal binary product. Figure 4.6

shows the process of this operation.

Since the algorithm is essentially the same as

Leibowitz's diminished-one algorithm, the author will not

discuss the algorithm any further. However, as this

implementation involves 33 bit operation, note that this

implementation assumes three 16 bit parts in a number. This

is because the multiplication operation in the digital

signal processor used involves 16 bits numbers and produces

a product with 24 bits. By separating a number into three

16 bit parts, multiplication becomes a multiple process.

40

l

Figure 4. 11:

A2 A1 A0

X B2 B1 B0

A
0

oB
0

A1 o B0

A
0

oB1

A
1

oB1

BIBO 0 A2
+ A1A0 oB2

c~C4 C2 C1 co
~--c4 c2

+ c

+

D~Do
D2

E2 El Eo
Diminished-one multiplication

The figure above shows the process of multiplying two

numbers. Each part of a number is multiplied to the

components of the other number. The results are combined to

produce the actual product. A residue reduction follows,

giving the diminished-one product. This number then goes

through a code conversion to obtain the binary

representation of the desired result.

41

__ _j_

CHAPTER 5

5. Data Analysis

As described in the preceding chapter, the filter

implementations use both NTT and DFT. Both implementations

use the Texas Instruments' TMS320C3X digital signal

processor. The three filters are lowpass, bandpass, and

highpass filters. Applying these signals to a filter, as

presented in the subsequent section, modifies the signal

accordingly. The following sections will look at these data

and compare them, in the frequency domain, with the original

signal. This serves to verify the validity of the

algorithm. Analysis of execution time and memory

requirements of each implementation will then follow.

5.1 General Data Output

The following sub-sections will look at an input sample

and the filtered samples, both in time-domain and in

frequency-domain. The input signal obtained via the input

port of the TMS320C3X evaluation module has a transform

length of 64 words. Performing convolution with the three

filter sequences produces the filtered outputs. These

output sequences are then compared with the original input

data.

42

---'-

5.1.1 Sample Data

The following diagram shows the input data in its time-

domain representation. Performing a Fourier transform on

this data sequence produces the frequency-domain sequence of

the input data, as shown in the next figure. Both figures

show the real and the imaginary portion of the signal.

9,...,

~~~-:gn-yl 

4 

"""""~~M 
Figure 5. 1: Input data sequence 

1.4 

1.2 I ~~-:gklrf I 

0.8 

0.8 

0.4 

0.2 

... \i \I 

.0.2 ,_/\ -- ·- _., . 

.0.4 

Figure 5. 2: Input data sequence in frequency-domain 

43 

.... __ ........ 



..J.._ 

Note that the frequency-domain data sequence shows a 

significant amount of lower frequency components. Also note 

the symmetry in the figure. Referring to the definition of 

the Fourier transform in chapter 2, one can find the term 

lnl, and that the summation spans from negative n to 

positive n. This accounts for the symmetry seen here. 

Thus, the center of this figure represents the highest 

frequency components. 

5.1.2 Lowpass Filtering 

Having looked at the original input sequence, the 

following figure presents the lowpass filtered sequence. 

1=-=--=-:~1 
4 

_, 

Figure 5. 3: Lowpass filtered sequence using DFT 

44 
_l 



Figure 5.3 shows the filtered sequence using DFT and 

Figure 5.4 shows the filtered sequence using NTT. Notice 

the similarity of the two figures. 

350000 

3)0000 

250000 

200000 

150000 

100000 

50000 

.6000() 

-100000 

Figure 5. 4: Lowpass filtered sequence using NTT 

The values of the output from the NTT version are 

significantly higher. However, this is due to the fact that 

the lowpass filter for the DFT method is scaled to unity, 

while that for the NTT remains in its original form. 

0.02 

--Reol 

0.015 
-- --· -·lonagirwy 

0.01 

0.005 

,.. 1\~ 

.0.005 

.0.01 

.(),015 

.(),02 

Figure 5. 5: Lowpass filter sequence in frequency-domain 

45 

~ _ _J_ 



.....&....__ 

The above figure shows the lowpass filter in frequency-

domain. This filter has significantly larger low frequency 

components and tapers towards the higher frequency. 

Therefore, the filtered result of the input sequence is 

expected to contain a fair amount of lower frequency 

components, while the higher frequency components diminish 

after filtering. 

Looking at the filtered sequence below, the results are 

just as expected. The higher frequency components of the 

input sequence are diminished, while the lower frequency 

region remained. 

1.4 

1.2 1~:-:gl~l 

0.8 

0.6 

0.4 

0.2 

·,h-,., d 
.tl ~.I .L'-..J-1,. !...• . ...!~ I 

~.2 

~.4 

~.6 

Figure 5. 6: Lowpass filtered output sequence in 
frequency-domain 

5.1.3 Bandpass Filtering 

The following two figures show the bandpass filtered 

output using DFT and NTT convolution respectively. Again, 

46 

__l 



....... 

the output sequences have exactly the same shape, with 

varying amplitudes. The range of the data value is, again, 

different since the DFT bandpass filter is scaled to unity. 

1.5 

1 =-=::~naryl 
0.5 

.().5 

·1 

~.5 

.;! 

.;!.5 

Figure 5. 7: Bandpass filtered sequence using DFT 

100000 

!0000 

.6000() 

·100000 

·150000 

Figure 5. 8: Bandpass filtered sequence using NTT 

After observing the similarity between the above two 

outputs, the following two figures present the frequency-

47 

.....L 



--' 

domain output for analysis. The bandpass filter shows a 

large amount of mid-range frequency components and a fair 

amount of these components consist of lower frequencies. 

This being so, the filtered output should show a significant 

decrease in high frequency components, while retaining most 

of the mid-range and some of the lower frequency components, 

which is demonstrated in figure 5.10. 

0.015 

0.01 

0.005 

/ 
<1.005 

<1.01 

<1.015 

i l 
,;·!·\ :; ;1 
i: II 
! i I; 
I \ ~ ;I 

1=-=:~1 

Ji 
II 

Figure 5. 9: Bandpass filter sequence in frequency-domain 

Q.2 

0.1 

Figure 5. 10: Bandpass filtered output sequence in 
frequency-domain 

48 
_..J_ 



5.1.4 Highpass Filtering 

As in the above figures, the following figures show the 

highpass filtered output from both DFT and NTT convolution 

methods. Again, note that the NTT convolution methods do not 

produce the imaginary portion. However, although the ranges 

of the data values are different for the same reason as 

above, the shape of these sequences are the same. 

1.5 

1:-=~-:Qinoryl 

0.5 

-6.5 

~ 

~.5 

~ 

~.5 

Figure 5. 11: Highpass filtered sequence using DFT 

100000 

9lOOO 

-60000 

~00000 

~50000 

Figure 5. 12: Highpass filtered sequence using NTT 

49 

---'-



The following figure shows the highpass filter in the 

frequency-domain. This particular highpass filter consists 

of some low frequency components and has a large portion of 

its components in the higher frequencies. Therefore, the 

filtered output is expected to contain mostly high frequency 

components and the mid-range frequencies will be absent or 

filtered off. This is shown in figure 5.14, which is the 

filtered output in the frequency-domain. 

0.02 

0.015 I =-==gilwyl 
0.01 

0.005 , ;':II:; 

~.005 

~.01 

~.015 

~.02 

Figure 5. 13: Highpass filter sequence in frequency-domain 

0.3 

0.2 

0.1 

~.1 
II 

.. 
~-2 

~.3 

~-4 

Figure 5. 14: 

" ' :i 

l 
1\ 

'1' I; 
; \ 

1=-==~1 

Highpass filtered output sequence in 
frequency-domain 

so 



The results from the above data show that the filters 

perform as they are designed to do. The exact shape of both 

implementations shows consistency in the two 

implementations, therefore, laying the groundwork for 

comparison of both implementations. 

5.2 Execution Time 

The following table shows the number of clock cycle to 

execute each operation in both NTT and DFT implementations. 

NTT DFT 

Clock Cycle Lowpass Bandpass Highpass All cases 

Filtering 16302 16308 16298 6832 

Transformation 8806 8806 8806 3560 
L___ -------- -- ---L_ - ----

Table 5. 1: Execution clock cycle 

The data indicates significantly lower number of clock 

cycles for DFT implementation. The conclusion is, 

therefore, favorable towards DFT implementation compared to 

NTT implementation in this environment. 

A similar conclusion prevails when using the number of 

operation as a measure. Table 5.2 shows that the NTT 

implementation accounts for a significantly larger number of 

operations, which include addition, subtraction, 

51 



multiplication, 'and', 'or', 'xor', 'not', and shift 

operations. 

NTT DFT 

No. Operations Lowpass Bandpass Highpass All cases 

Filtering 15112 15085 15077 3852 

Transformation 5159 5159 5159 1790 

Table 5. 2 Number of operations 

This finding differs from many research literatures on 

NTT. The difference is due to two reasons. Firstly, the 

DSP chip in this research environment performs real 

multiplications with 1 clock cycle, which are the same as 

real additions and subtractions. This is contrary to the 

general belief that multiplication is more expensive than 

other operations. Secondly, even though complex operations 

take a few real operations to complete, they are still 

better off compared to operations in modulo arithmetic. The 

reason is that existing DSPs do not perform modulo 

arithmetic. Therefore, for example, a simple modulo 

addition will consist of a number of integer additions, 

shifts, and 'xor' operations. Until there is efficient 

hardware implementation to modulo arithmetic in the market, 

NTT is not a better solution compared to DFT. 

52 



5.3 Memory Requirement 

Memory requirement in the case of DFT requires a 32-bit 

word for the real and the imaginary portion of a complex 

number. Therefore, it requires 2 memory locations for each 

data point. An additional array of L25n words, where 11 is 

the sequence length, is required for the DFT. This array 

stores the scaling factors, thew's, in order to increase 

computational speed to complete the DFT. While FNT requires 

33 bit data point, it takes up 2 memory locations for each 

data point in practice. The msb of a data point will occupy 

one memory location, which is a waste of memory resources. 

However, future development may lead to more efficient use 

of memory. In view of this, the FNT uses less memory space 

compared to the DFT. 

5.4 Summary 

In summary, this chapter verifies the correctness of 

the implementations of DFT and FNT in this study. The time, 

or number of clock cycle taken in the FNT implementation is 

significantly higher than that of the DFT implementation. 

When counting the number of operations needed to perform the 

two operations, FNT shows the same disappointing results. 

The amount of memory requirement for the FNT, however, is 

lesser compared to the DFT. 

53 



CHAPTER 6 

6. Analysis and Conclusion 

6.1 Analysis 

6.1.1 Speed 

Referring to table 5.1 and table 5.2 on the number of 

execution clock cycle and the number of operation 

respectively, this study consistently indicates the poorer 

execution time performance of the FNT. This is contrary to 

the general belief that the FNT takes shorter computational 

time. 

Agawal and Burrus commented in their 1974 paper [19], 

"To compute the convolution using the FFT, most of the time 

is taken in computing the complex multiplications required 

to compute the transform." They also said that, "A 

comparison with the RT reveals that these complex 

multiplications are replaced by bit shifts and subtractions 

which are much faster operations." This assumption that 

complex multiplications have poorer time performance than 

bit shifts and subtractions was valid in the 1970's. It is 

rightly so, especially when their comparison was verified on 

the IBM 370/155. Nevertheless, technological advances over 

54 

--~~ ---



the past twenty years have changed the validity of these 

statements. The results from this study strongly indicate 

the repercussion from this improved technology. There are 

two reasons the results from this study deviate from Agawal 

and Burrus's conclusion. 

Firstly, multiplications are no longer expensive and 

time consuming operations. In the TMS320C30 hardware 

environment where this study does most of its computation, 

multiplications take only one clock cycle. This is the same 

number of clock cycle as operations like additions, 

subtractions, bit shifts, etc. One complex multiplication, 

therefore, takes only six clock cycles; four 

multiplications, one addition, and one subtraction. Compare 

this to implementing diminished-one multiple-of-two 

operation in the TMS320C30 environment, which takes three 

shifts, one 'xor', and an addition. This will take five 

clock cycles. Multiplication is now comparable to bit 

shifts and subtractions in terms of time complexity. 

Secondly, the traditional practice of considering only 

multiplications in time complexity analysis is not 

justifiable. This is because multiplications need to be of 

equal weighting with the other arithmetic operations in time 

complexity analysis, since they all take the same amount of 

time to execute. All types of operations need to be 

considered in the analysis. As such time complexity 

55 



~ 

analysis will also include additions, subtractions, bit 

shifts, etc. Since these operations are taken into 

consideration, and the FNT uses a lot of such operations, 

the time complexity of the implementation of the FNT becomes 

much higher compared to the DFT. The FNT clearly stands out 

to be more time consuming. This is verified in table 5.1 

and table 5.2. 

6.1.2 Memory Requirement 

Memory requirement for the DFT is more than that of the 

FNT implementations. Since the DFT is in the complex field, 

it requires one word each for the real and the imaginary 

component. Therefore, a total of two words is needed for 

each element in the transform sequence. In addition to this 

memory requirement, the DFT implementation requires an array 

of scaling factors, them's, to speed up execution time. 

This array occupies 2.5n, where n is the sequence length, 

words. In this implementation, the word length of the FNT 

is 33 bits. Since a word occupies 32 bits in this case, 

each element in the transform sequence for the FNT requires 

2 words. Future work may aim at improving space complexity 

of FNT. This is because most of the bits in the most 

significant word are not needed. Therefore, the 

56 

__j_ 



implementation of FNT in this study requires less memory 

space as the DFT implementation. 

6.1.3 Accuracy 

The most attractive advantage of the FNT is the degree 

of accuracy it offers in computing convolution. There are 

two sources of error in digital signal processing. They are 

the quantization error and the computation roundoff error. 

When sampling a signal, the equipment used introduces 

limitations caused by the finite precision of the arithmetic 

units and the limited capacity of the memory. Since the 

sampling devices and the memory have limited word length, 

the sampled data in the memory represent approximations to 

the actual signal. These are the causes for quantization 

errors. Both the DFT and the FNT suffer from quantization 

errors. For all practicality, it is unavoidable. The degree 

of approximation depends on the word length of the equipment 

used. 

Among the limitations of the FNT is the requirement 

that all values of the final outcome for the transform must 

not exceed the modulo. This limitation requires scaling of 

the input data in order to prevent any overflow. Errors are 

introduced in this scaling process. However, there are no 

computational roundoff errors. This is because the 

57 

_ _I.. 



transforms are computed in rings of integers modulo a Fermat 

number. In computing the DFT, some processes of additions, 

subtractions, and multiplications increases the number of 

bits in representing the resulting complex numbers of these 

operations. However, the number of bits available remains 

unchanged within the machines. This makes it necessary to 

limit the wordlength throughout the calculations. As such, 

rounding off the results from the operations becomes 

necessary too. Roundoff errors occur at every operation 

that produces results exceeding the wordlength of the 

machine. Therefore, errors can be introduced at all stages 

of computing the transform. This lack of roundoff errors 

during computation for the FNT is an advantage over the DFT. 

The FNT has its advantages and disadvantages. When 

execution speed is crucial, the DFT is a better choice than 

the FNT. With the current hardware technology, implementing 

the FNT will increase the amount of time taken to perform 

the transform. However, when accuracy is important, the FNT 

offers highly accurate results compared to the DFT. 

6.2 Conclusion 

The field of signal processing has matured tremendously 

over a little less than two centuries, most especially 

during the last three decades. Coupled with the advances in 

microelectonic industry, the many advantages in digital 

58 

~~~~~~~~~~~~~~~~;;~~~~~~~~====~~~~~~==========~========================================================~====~ 


filtering techniques have spurred the study of digital

signal processing.

Over this time, the paper published by Cooley and Tukey

set an important landmark. Their method increased

computational efficiency of calculating the Fourier

transform many folds. Other researchers have also

introduced improved algorithms to their method over the last

few decades. However, in 1974, Rader introduced a new

transform, generally referred to as the number theoretic

transform, in the hope of eradicating the shortcomings of

the Fourier transform. Number theoretic transform uses

integer modulo arithmetic instead of complex arithmetic.

Thus, it is possible to perform the transform without the

use of multiplication, which is a traditionally expensive

operation using the Fourier transform.

This study takes a look at the many claims of number

theoretic transform, specifically FNT. Comparisons in

execution time, number of operation, and memory requirement

by both DFT and FNT using radix-2 FFT algorithm are done.

All these methods are implemented on the Texas Instruments'

TMS320C3X digital signal processing chip. This study also

presents an analytical comparison of computational accuracy

of the DFT and the FNT.

Results from this study show that the execution time,

or the number of clock cycles.1Table 5.1) for the FNT

59

__j,

implementation is considerably higher than that of the DFT

implementation. In order to have a fair comparison, the

study also look at the number of operation for both

implementations. Again, FNT shows a discouraging higher

value (Table 5.2) However, based on analytical analysis,

the FNT requires lesser memory space when compared to the

DFT. In terms of computational accuracy, the FNT also

performs much better. The only error introduced in

implementing FNT is during input quantization [21] . There

are no computational roundoff errors in FNT. This is not

the case for DFT.

This research also introduces modified diminished-one

number operations. The results from this study show the

feasibility of these operations. Future development in this

area should include hardware implementation of these

operations. An advantage of these operations over

Leibortze•s original diminished-one number system proposal

is the lack of number system conversion for both addition

and subtraction operations. Both these operations also

remove the need to check for the number zero. Scaling or

multiplication by powers of 2 operation becomes a one-step

operation instead of multi-step operation.

60

-'-

BIBLIOGRAPHY

1. C.M. Rader, "Discrete Convolution via Mersenne

Transfrom," IEEE Transactions on Computers, col. c-21,

pp. 1269-1273, December 1972.

2. J.W. Cooley and J.W. Tukey, "An Algorithm for the

Machine Calculation of Complex Fourier Series," Math.

Comprt. vel 19, pp. 297-301, April 1965.

3. J.W. Nilson, "Electric Circuits, second edition,"

Addison-Wesley Publishing Co., Inc., 1986, Ch. 18, pp.

703-704.

4. P. Duhamel and M. Vetterli, "Fast Fourier Transform: A

Tutorial Review And a State of The Art," Signal

Processing, vel. 19, pp. 259-299, April 1990.

5. H. Burkhardt, "Trigonometrische Interpolation,"

Encyklopadie der Mathematischen Wissenschften, vel. 2,

part 1, 1st half, ch. 9, pp. 643-693, Leipzig: B.G.

Teubner, 1899-1916.

6. H.H. Goldstine, "A History of Numerical Analysis from

the 16th Through the 19th Century," New York,

Heidelberg, and Berlin: Springer-Veriag, pp. 249-253,

1977.

7. M.T. Heideman, "Gauss and the History of the Fast

Fourier Transform," IEEE Transactions on

61

Acoustics,Speech, and Signal Processiing, vol. 1, No.

4, pp. 14-21, October 1984.

8. E.T. Whittaker and G. Robinson, "The Calculus of

Observations," Blackie and Sons, Limited, London, pp.

260-284, 1924.

9. I.J. Good, "The Interaction Algorithm and Practical

Fourier Analysis," J.R. Statist. Soc. B, vol. 20, No.

2, pp. 361-372, 1958. Addendum in J.R. Statist. Soc.

B, vol. 22, No. 2, pp. 272-275, 1960

10. D.F. Elliott and K.R. Rao, "Fast Transforms:

Algorithms, Analysis, Applications," Academic Press,

Inc, pp. 105, 1982.

11. C.M. Rader, "Discrete Fourier Transforms When The

Number of Data Samples is Prime," Proceedings of IEEE,

vol. 56, pp. 1008-1107, 1968.

12. S. Winograd, "Some Bilinear Forms Whose Multiplicative

Complexity Depends on The Field of Constants", Math.

Systems Theory, vol 10, No. 2, pp 169-180, 1977.

13. G.D. Bergland, "A Fast Fourier Transform Algorithm

Using Base 8 Iterations," Math. Comp., vol. 22, No. 2,

pp. 275-279, April 1968.

14. P'. Duhamel and H. Hollmann, "Split-radix FFT

Algorithm," Electronics Letters, vol. 20, No. 1, pp.

14-16, January 1984.

62

J..

15. J.B. Martens, "Recursive Cyclotomic Factorization - A

New Algorithm for Calculating the Discrete Fourier

Transform," IEEE Transactions on Accoustics, Speech,

and Signal Processing, val. ASSP 32, No. 4, pp. 750-

761, August 1984.

16. R. Stasinski, "Asymmetric Fast Fourier Transform for

Real and Complex Data," IEEE Transactions on

Accoustics, Speech, and Signal Processing, submitted.

17. M. Vetterli and H.J. Nussbaumer, "Simple FFT and DCT

Algorithm With Reduced Number of Operations," Signal

Process. val. 6, No. 4, pp. 267-278, August 1984.

18. J.M. Pollard, "The Fast Fourier Transform In a Finite

Field," Math. Camp., val. 25, pp. 365-374, April 1971.

19. R.C. Argarwal and C.S. Burrus, "Fast Convolution Using

Fermat Number Transforms With Application To Digital

Filtering," IEEE Trans. Acoust. Speech, Signal

Processing, val. ASSP-22, pp. 87-97, April 1974.

20. J.H. McClellan, "Hardware For the Fermat Number

Transform," IEEE Trans. Acoust. Speech, Signal

Processing, val. ASSP-24, No.3, pp. 216-225, June 1976.

21. L.M. Leibowitz, "A Simplified Binary Arithmetic For the

Fermat Number Transform," IEEE Trans. Acoust. Speech,

Signal Processing, val. ASSP-24, No. 5, pp. 356-359,

October 1976.

63

__.L

22. P.R. Chevillat, "Transform-Domain Digital Filtering

with Number Theoretic Transforms and Limited Word

Lengths," IEEE Trans. Acoust. Speech, Signal

Processing, vol. ASSP-26, No. 4, pp. 284-290, August

1978.

64

_.I..

----~-~------~==========================-=--·""• ·=•e~=~-=·=-=--·=-====:;;;;;;;:::::

S9

XICimldd"i

APPENDIX A

Software User's Instruction

System Requirements:

1. IBM PC or PC compatibles with Intel 80386 or above

microprocessor.

2. Texas Instruments' TMS320C30 Evaluation Module (EVM).

3. DOS 5.0 or above.

4. Windows 3.1 or above.

5. Borland custom control tools library bwcc.dll

Starting The Software:

1. Ensure that TI's TMS320C30 EVM is properly installed.

2. Ensure that the client program 'child.out', the EVM

loader 'evmload.exe', and the three initialization

files 'resvct. 001' , 'resvct. 002' , 'resvct. 004' are in

the same directory as 'host.exe'.

3. Run Windows 3.1

4. Select 'Run' from Program Manager's 'File' Menu

5. Type 'host.exe' and punch the Enter key.

6. 'host.exe' will load the TMS320C30 EVM client program,

'child.out', initiate and start the program running in

the EVM.

7. 'host.exe' will then return to the Windows environment.

66

8. If 'host.exe' couldn't locate the TMS320C30 EVM, or the

client program 'child.out', it will inform the user and

prompt for further action.

Moving Around The Software:

Figure 1: Host program's interface

1. Item 'Convert', under the 'File' Menu, allows user to

convert filter files computed from Hypersignal to data

files in the format for this program.

2. item 'About', under the 'Help' Menu, displays

information about this program.

3. Button 'F' is the filter button. User must select

filter, output, and input files before this function

67

l

will work. After the user points the mouse pointer at

this button and click it once, the program will filter

the input file using the filter file selected.

4. Button 'T' is the transform button. Selecting this

function will start a transform operation on the input

file using the type of transform selected. The

selection of the type of transform is discussed below.

5. Button 'R' is the reset button. This function will

reset the TMS320C30 EVM client program.

6. Button 'S' is the sample button. The EVM will sample

input signal from the EVM input port. This 64-word

data is then sent to the PC. The data is then saved

using the output filename.

7. Button 'N' is the name button. When selected, the

message box just below the buttons will display all the

selected filenames.

8. When 'Filter File' button is selected, the user is

prompted for a filter filename from a pop up window.

9. When the 'Output File' button is selected, the user is

prompted for an output filename from a pop up window.

10. When the 'Input File' button is selected, the user is

prompted for an input filename from a pop up window.

11. The 'Input' button, when selected, enables an input

file to be used. Otherwise, the EVM will sample from

68

its input port and use the data collected as input data

for any operation.

12. When the 'DFT(NTT)' button is highlighted, all

operations are performed using DFT algorithm.

Otherwise, all operations are performed using NTT

algorithm.

13. When the 'TI(PC)' button is highlighted, all operations

are performed using the TI's TMS320C30 EVM. Otherwise,

all operations are performed using the PC.

14. Below all the buttons is the message box. This is the

area where the program will display messages for the

user.

15. To the right of the message box is the display list

box. Pointing and clicking on the arrow will display a

list of items. Selecting an item selected from the

list box will display the item in the display area.

16. The display area is below the menu and toolbar. This

is the area where data is displayed.

69

J:.

.width

.length

.global

.global

.data

104
2000

APPENDIX B

Program Source Code

SINE, N, M
iinverse, cinverse

*===
* ADDRESSES OF CONSTANTS
*===
fftsize .word N
logsize .word M

sinetab .word SINE
IINVERSE .word iinverse
CINVERSE .word cinverse

*===
* CONSTANT VARIABLES
*===
mask .word Offffh ;mask for ffnt
mid_carry .word OlOOOOh ;carry over
shiftmask .word Offffffffh ;mask for power of 2 multiplication

.text
FP .set AR3

.ref com saddrl
*===
* GLOBAL DECLARATION OF FUCTIONS
*===

.def fft -

.def fscale -

.def ifft -

.def fmult -

.def ffnt -

.def nscale -

.def iffnt -

.def nmult -

.def bit reverse

70

-----~

==
* DFT using DIF FFT algorithm *
==
* *
* This routine performs DFT using DIF FTT algorithm. *
* *
**
fft:

push
ldi
ldi
sti

ldi
ldi
lsh
ldi
lsh
ldi
ldi

flooplf:
lsh
ldi

ldi
addi

ldi
subi
rptb

addf
subf
addf
subf
stf
II stf

flooplnf: stf

II su

ldi
mpyi
lsh
addi

floop2f:
subi
bz

ldi
addi
addi

ldf

FP ;initialize registers for
SP,FP ;c function interface
*-FP(2) ,arO ;load argument
arO,@_com_saddrl ;initialize source address

®fftsize,irO ;irO =2m
irO,ar2
l,irO
irO,ar3
-2,ar2
l,irl
®logsize,r6

-l,ar3
ar3,r7

;ar2 = N/4
;N/m
;log N

;m

@_com_saddrl,arO ;arO->x[O]
ar3,arO,arl ;arl->x[m/2]

irl,rc ;repeat N/m times
l,rc
flooplnf

*arl,*arO,rl ; rl <- x [k] + x [k+m/2]
*arl++,*ar0++,r2 ;r2 <- x[k] - x[k+m/2]
*arl,*arO,r3 ;rl <- y[k] + y [k+m/2]
*arl,*arO,r4 ; r2 <- y [k] - y [k+m/2]
r3,*ar0-- ;arO -> y [k] + y [k+m/2]
r4,*arl-- ;arl -> y[k] - y [k+m/2]
rl,*arO++(irO) ;arO -> X [k] + x [k+m/2]
r2, *arl++ (irO) ;arl -> X (k] - x [k+m/2]

®sinetab,ar4 ;ar4 -> sin(O)
irl,r7,rl
-l,rl
rl,ar4 ;ar4 -> sin[m/2]

2,r7 ;m/2 - 1
floopnf

@_com_saddrl,arO ;arO -> x[O]
r7,ar0 ;arO -> X (k]
ar3,arO,arl ;arl -> x[k+m/2]

*--ar4 (irl) ,r5 ;r5 <- sin(2*pi*j/m)

71

_......

addi

ldi
subi
rptb

subf
subf
mpyf
II actctf
mpyf
II stf
subf
mpyf
II stf
mpyf
lladdf
addf

floop2nf:
stf
II stf
br

floopnf:
lsh
lsh
subi
bp

pop
rets

ar2,ar4,ar5

rl,rc
l,rc
floop2nf

*arl,*arO,r3
+arl,+arO,r4
r3,r5,r0
+arl,+arO,r2
*ar5,r4,rl
r2, *+arO
rO,rl
*ar5,r3,r0
rl,*+arl
r4,r5,rl
*arl,*arO,r2
rO,rl

r2,*ar0++(ir0)
rl,*arl++(irO)
floop2f

-l,irO
l,irl
1, r6
flooplf

FP

;ar5 -> cos(2*pi*j/m)

;repeat N/m times

;r3 <- x(k] - x[k+m/2]
;r4 <- y[k] - y[k+m/2]
;rO <- (x(k] -x[k+m/2])sin(2*pi*j/m)
;r2 <- y[k] + y[k+m/2]
;rl <- (y[k] -y[k+m/2])cos(2*pi*j/m)
;y[k] <- y[k] + y[k+m/2]
;rl = b cos() - a sin()
;rO <- (x[k]-x[k+m/2])cos(2*pi*j/m)
;y[k+m/2] <- b cos() - a sin()
;rl <- (y[k]-y[k+m/2])sin(2*pi*j/m)
;r2 <- x[k] + x[k+m/2]
;rl =a cos() + b sin()

;x[k] = x[k] + x[k+m/2]
;x[k+m/2] =a cos() + b sin()

;m
;N/m
;decrement main loop count

72

~!:======~~~~~~~~~~~~~~==~====~==~==~

==
* Floating point scaling by 1/N *
==
*
*
*
*
*
*
*

*
This routine multiply every elements in the input sequence by *

the inverse of the transform length. The address of the input *
sequence is send to this function at location FP-2. The value of *
inverse of the transform length is stored at the memory location *
specified at CINVERSE *

*
**
fscale:

push
ldi
ldi
sti

ldi
ldf
ldi
mpyi
subi
rptb
mpyf

fscaling: stf

pop
rets

FP
SP,FP
*-FP(2) ,arO
arO,@_com_saddrl

®CINVERSE,ar1
*ar1,r0
@fftsize,rc
2,rc
1,rc
fscaling
*arO,rO,r1
r1,*ar0++

FP

;initialize registers for
;c function interface
;load argument

;ar1 gets address of constant 1/N
;rO <- 1/N
;setup repeat loop number

;begin loop
;multiply by 1/N
;store result

73

==
* IDFT using DIT FFT algorithm *
==
*
* This routine performs IDFT using DIT FFT algorithm. The
* address of the memoty location of the input sequence is stored
* at FP-2.

*

*
*
*
*
*

**
ifft:

push
ldi
ldi
sti

ldi
ldi
ldi
lsh
ldi

floopli:
ldi
ldi
lsh
lsh

ldi
addi

ldi
subi
rptb

addf
subf
addf
subf
stf
II stf

flooplni:
stf
II stf

ldi
mpyi
lsh
addi

floop2i:
subi
bz

ldf
addi

FP
SP,FP
*-FP(2) ,arO
arO,@_com saddrl

2,ir0
®fftsize,irl
irl,ar6
-2,ar6
@logsize,r7

irO,ar3
ar3,r6
l,irO
-l,irl

@_com_saddrl,arO
ar3,ar0,arl

irl,rc
l,rc
flooplni

*arO,*arl,rO
*arl++,*arO++,rl
*arl,*arO,r2
*arl,*arO,r3
r2,*ar0-
r3,*arl--

rO,*arO++(irO)
rl,*arl++(irO)

@sinetab,ar4
irl,r6,rl
-l,rl
rl,ar4

2,r6
floopni

*--ar4(irl) ,r5
ar6,ar4,ar5

;initialize registers for
;c function interface
;load argument

;2m
;N/m

;N/4
;log N

;m/2

;m
;N/m

;arO->x(O]
;arl->x[m/2)

;repeat N/m times

;rO=x[k)+x[k+m/2)
;rl=x[k) -x[k+m/2)
;r2=y[k)+y[k+m/2)
;r3=y[k)-y[k+m/2)
;y[k) = r2
;y[k+m/2) = r3

;x[k) = rO
;x[k+m/2) = rl

;sin(O)

;ar4 -> sin[m/2)

;m/2 - 1

;r5 <- sin(2*pi*j/m)
;ar5 -> cos(2*pi*j/m)

74

t

ldi
addi
addi

ldi
subi
rptb

mpyf
mpyf
mpyf
lladdf
mpyf
lladdf
subf
subf
II su
addf
II su
subf
II stt

floop2ni:
stf

br
floopni:

subi
bnz

pop
rets

@_com_saddrl,arO
r6,ar0
ar3,arO,arl

irl,rc
l,rc
floop2ni

*+arl,*ar5,r3
*arl,*ar4,r0
*arl,*ar5,rl
rO,r3,r2
*+arl,r5,r0
*+arO,r2,r3
rO,rl,rO
r2,*+arO,rl
r3,*+ar0
*arO,rO,rl
rl,*+arl
rO,*arO,rl
rl, *ar0++ (irO)

rl, *arl++ (irO)

floop2i

l,r7
floopli

FP

;arO->x [0]
;arO -> x[k]
;arl -> x[k+m/2]

;repeat N/m times

;r3 <- y[k+m/2]*cos(2*pi*k/m)
;rO <- x[k+m/2]*sin(2*pi*k/m)
;rl <- x[k+m/2]*cos(2*pi*k/m)
;r2 <- b cos() +a sin()
;rO <- y[k+m/2]*sin(2*pi*k/m)
;r3 <- y[k] + b cos() + a sin()
;rO <-a cos()- b sin()
;rl <- y[k] - b cos() -a sin()
;y[k] <- y[k] + b cos() +a sin()
;rl <- x[k] +a cos()- b sin()
;y[k+m/2] <- y[k] -b cos()-a sin()
;rl <- x[k] -a cos()+b sin()
;x[k] = x[k] + a cos() - b sin()

;x[k+m/2] <- x[k]-a cos()+b sin()

;decrement main loop count

75

=~==
* Complex multiplication *
==

*
*
*
*

This routine performs a term-wise multiplication of the
transformed input sequence to the transformed filter sequence.

*
*
*
*

**
fmult:

push
ldi
ldi
ldi
ldi

ldi

ldi
subi
rptb
mpyf
mpyf
mpyf
II addf
mpyf
subf
stf

fmloop: stf

pop
rets

FP
SP,FP
*-FP(2) ,arO
*-FP(3) ,arl
*-FP(4) ,ar2

2,irl

®fftsize,rc
l,rc
fmloop
*+arO,*arl,r3
arO,+arl,rO
+arO,+arl,rO

nitialize registers for
;c function interface
;load input address
;load filter address
;load output address

;setup repeat loop number

;begin repeat loop
;r3 <- yl*x2
;rO <- xl*y2
;rO <- yl*y2

rO,r3,r2 ;r2 <- yl*x2 + xl*y2
*arO++(irl) ,*arl++(irl) ,rl ;rl <- xl*x2
rO,rl,rO ;rO <- xl*x2 - yl*y2
r2,*+ar2 ;store results
rO, *ar2++ (irl)

FP

76

~===

* FNT using DIF FFT algorithm *
==
* *
* This routine performs FNT using DIF FFT algorithm. All *
* operations use the modified diminished-one number operations *
* *
**
ffnt:

push
ldi
ldi
sti

ldi
ldi
lsh
lsh
ldi
ldi
ldi
ldi

nloopf: lsh
ldi

ldi
addi

ldi
subi
rptb
subi
subb

bnnd
ldi
ldi
nop

addi
and

nadd1f: addi
addc

bzd
sti
II sti

subi
subb

xor

FP
SP,FP
*-FP(2) ,aro
arO,@_com_saddrl

®fftsize, irO
irO,ar4
-1,ar4
1,ir0
irO,ar5
@shiftmask,ar7
1,ir1
@logsize,rO

-1,ar5
ar5,r7

;initialize registers for
;c function interface
;load argument

;index for increment of m
;N/2, for scaling comparison

;double irO for 2 word data
;m/2, index to 2nd number
;ar7 <- Offffffffh
;N/m, power of 2, # bits to shift
;log N, number of main loops

;update, calculate m/2
;counter from m/2-1 to 1

@_com_saddrl,arO ;arO -> x[O)
ar5,arO,ar1 ;arl -> x[m/2)

irl,rc
1,rc
nloop1nf
*arl,*arO,r3
+arl,+arO,r4

naddlf
1, ar2
O,ar3

ar2,r3
ar2,st,r4

*ar1,*arO,r1
+ar1,+arO,r2

nloop1nf
r4,*+arl
r3,*arl++(ir0)

ar2,rl,r3
ar3,r2,r4

ar2,r4

;repeat N/m times

;r3 <- binary diff, low word
;r4 <- binary diff, high word

;if diff is positive
;register ar2 <- 1
;register ar3 <- 0

;if negative, low word is d-1,
;thus d-1 mod operation

;rl <- binary sum, low word
;r2 <- binary sum, high word

;if sum< 2A32, store result
;save high word diff
;save low word diff, and increment
;index
;convert to d-1, low word
;convert to d-1, high word

;A+B = [(A+B)-1]+1. Thus d-1

77

addi
and

nloop1nf:
sti
II sti

index

nloop2f:
subi
bzd
ldi
ldi
addi

addi
ldi
subi
rptb

addi
addc

bzd
ldi
subi
subb

xor
addi
and

ndiff2f:subi
subb

bnd
sti
II sti
mpyi
lsh

subi
subb
bnn

brd
ldi
nop
nap

nscaledf:
subi

r4,r3,r1
ar2,st,r2

r2,*+ar0
r1, *arO++ (irO)

2,r7
nloopnf
1,ar2
@_com_saddrl,arO
r7,ar0

ar5,ar0,ar1
ir1,rc
1,rc
nloop2nf

*ar1,*ar0,r1
+ar1,+arO,r2

ndiff2f
O,ar3
ar2,r1,r3
ar3,r2,r4

ar2,r4
r4,r3,r1
ar2,st,r2

*ar1,*arO,r3
+ar1,+arO,r4

nscaledf
r2,*+ar0
r1,*ar0++(ir0)
r7,ir1,r1
-1,r1

ar2,r3
ar3,r4
nscaledf

ndonef
O,ar2

ar4,r1,r2

;mod operation
;save carry

;save high word sum
;save low word sum, and increment

;decrement r7
;end routine if zero
;register ar2 <- 1
;arO -> x[O]
;arO -> x(k]

;ar1 -> x[k+m/2]
;repeat N/m times

;r1 <- binary sum, low word
;r2 <- binary sum, high word

;if sum < 2A32, store result
;register ar3 <- 0
;convert to d-1, low word
;convert to d-1, high word

;A+B = [(A+B)-1]+1. Thus d-1
;mod operation
;save carry

;r3 <- binary diff, low word
;r4 <- binary diff, high word

;if diff is negtive, r3 is in d-1
;save high word
;save low word, and increment index
;# of bit shift
;adjust bit shift for double
;counting

;convert to d-1 low word
;convert to d-1 high word
;if not zero, scale

;if equal zero, make r4

;X - N/2 shift, shift d2

78

0

bnd

lsh
lsh
xor

subi

nscalef:
lsh
or

ndonef: addi
and

nloop2nf:
sti
II sti
br

nloopnf:
lsh
lsh
subi
bnz

pop
rets

nscalef

r2,ar7,r6
r2,r3,r5
r5,r6

@fftsize,r1

r1,r3
r6,r3
1,r3
ar2,st,r4

r3,*arl++(ir0)
r4,*+arl
nloop2f

-l,irO
l,ir1
l,ro
nloopf

FP

;if shift less than N/2, next shift
;X
;shift mask by X - N/2
;shift d-1 data by X - N/2
;complement r5

;shift more than N/2, adjust next
;shift
;X - N
;left shift X or X-N bits
;or register to get final d-1 result
;convert to binary low
;convert to binary high

;store results

;update irO, m/2
;update irl, N/m
;update rO, decrement

79

==
* Diminished-one scaling by inverse of transform length N *
==

* *

* This routine multiplies all terms in the input sequence by a *

* scaling factor specified in the memory location IINVERSE. *

* Since 2Ab is always the multiplicative inverse of itself *

* modulo 2Ab + 1, multiplicative inverse of all other numbers *

* require only b bits. The (b+1)th bit of the multiplicative *

* inverse of N is assumed 0 at all times to simplify calculation. *

* Ignore all calculation of Z2, since the value of Z2 does *

* not effect the result. *

* *
**

nscale:
push
ldi
ldi

ldi

ldi
ldi
ldi
ldi
ldi

ldi
ldi
ldi
subi

rptb
ldi

lsh
and
ldi
ldi

bpd
ldi
lsh
and

ldi
nmults: addi

mpyi
mpyi
mpyi

addi

FP
SP,FP
*-FP(2) ,ar1

®IINVERSE, r2

®fftsize,rc
@mask,ar7
4,ir0
2,ir1
@mid_carry,ar6

16,ar2
-16,ar3
1,ar4
1,rc

nscaling
*ar1,r1

ar3,r1,r7
ar7,r1,r6
O,r1
*+ar1,r3

nmults
r2,r0
ar3,rO,r5
ar7,rO,r4

o,ro
rO,r1

r4,r6,r0
r5,r6,r3
r7,r4

r4,r3

;initialize registers for
;c function interface
;load argument

;load multiplication inverse of ffnt
;size
;setup repeat counter
;ar7 <- Offffh
;constant 4
;constant 5

;constant shift left 16 bits
;constant shift right 16 bits
;constant 1

;r1 <- Y1 YO

;r7 <- Y1
;r6 <- YO
;r1 <- X2 * Y1 YO = 0
;r3 <- Y3 Y2

; if Y2 = 1
;rO <- multiplicative inverse
;r5 <- X1
;r4 <- XO

;rO <- Y2 * X1 XO = 0
;r1 <- X1 XO + Y1 YO

;rO <- XO * YO
;r3 <- Xl * YO
;r4 <- Yl * XO

;r3 <- (Xl * YO) + (Yl * XO)

80

bncd
lsh
lsh

16 bits
mpyi

addi
nmultsnxt:

addi
and
addc

product
ldi
addi
and
addc
and
bnz

not
residue

addi
and
xor
addi

addi
and

nscaling:
sti
II sti

pop
rets

nmultsnxt
ar3,r3,r4
ar2,r3

r7,r5

ar6,r5

r3,r0
irO,st,r3
r5,r4

O,r5
r4,r1
st,r3
O,r5
st,r3
nscaling

r1

r1,r0
ar4,st,r1
ar4,r1
r1,r0

ar4,r0
ar4,st,r1

r1,*+ar1
rO,*ar1++(ir1)

FP

;r4 <- high word of r3
;r3 <- low word of r3 left shifted

;r5 <- Y1 * X1

;r5 + 65536

;rO gets low word of product
;r3 gets zero flag
;r4 gets partial high word of

;r5 to receive carry over
;r1 gets high word of product
;r3 gets zero flag
;r5 gets carry
;r3 gets zero flag

; (AB-1) = (AB) - 1, thus begin

;reduction
;save carry
;complement carry
;diminished one result

;convert to binary
;save carry

;store result

81

==
* IFNT using DIT FFT algorithm *
==

*
* This routine performs IFNT using DIT FFT algorithm. The
* starting address of the input sequence is stored in memory
* location FP-2.

*

*
*
*
*
*

**
iffnt:

push
ldi
ldi
sti

ldi
ldi
ldi
ldi
lsh
ldi
ldi

nloopi:
ldi
ldi
lsh
lsh

ldi
addi

ldi
subi
rptb
subi
subb

bnnd
ldi
ldi
nap

addi
and

nadd1i: addi
addc

index

bzd
sti
II sti

subi

FP
SP,FP
*-FP(2) ,arO
arO,@_com_saddrl

2,ir0
®fftsize,ir1
ir1,ar4
ir1,ar6
-1,ar4
@logsize,rO
@shiftmask,ar7

irO,ar5
ar5,r7
1,ir0
-1,ir1

;initialize registers for
;c function interface
;load argument

;index for increment of m
;N/m, power of 2, # bits to shift
;N/2, for scaling comparison
;ar6 <- N

;log N, number of main loops
;ar7 <- Offffffffh

;m/2, index to 2nd number
;counter from m/2-1 to 1
;update irO, m/2
;update ir1, N/m

@_com_saddrl,arO ;arO -> x[O]
ar5,arO,ar1 ;ar1 -> x[m/2]

ir1,rc
1,rc
nloop1ni
*ar1,*arO,r3
+ar1,+ar0,r4

nadd1i
1,ar2
O,ar3

ar2,r3
ar2,st,r4

*ar1,*ar0,r1
+ar1,+arO,r2

nloop1ni
r4,*+ar1
r3,*ar1++(ir0)

ar2,r1,r3

;repeat N/m times

;r3 <- binary diff, low word
;r4 <- binary diff, high word

;if diff is positive
;register ar2 <- 1
;register ar3 <- 0

;if negative, low word is d-1,
;thus d-1 mod operation

;r1 <- binary sum, low word
;r2 <- binary sum, high word

;if sum < 2A32, store result
;save high word diff
;save low word diff, and increment

;convert to d-1, low word

82

subb

xor
addi
and

nloop1ni:
sti
II sti

index

nloop2i:
subi
bzd
ldi
addi
addi

ldi
subi
rptb
subi
subb

bnd
mpyi
lsh

subi
subi

bnd

lsh
lsh
xor

subi

nscalei:
lsh
or

ndonei: addi
addc

subi
subb

bnnd
ldi
ldi
nop

ar3,r2,r4

ar2,r4
r4,r3,r1
ar2,st,r2

r2,*+ar0
r1,*ar0++(ir0)

;convert to d-1, high word

;A+B = [(A+B)-1)+1. Thus d-1
;mod operation
;save carry

;save high word sum
;save low word sum, and increment

2,r7 ;decrement r7
nloopni
@_com_saddrl,arO
r7,ar0
ar5,arO,ar1

ir1,rc
1,rc
nloop2ni
ar2,*ar1,r3
ar3,*+ar1,r4

ndonei
r7,ir1,r1
-1,r1

r1,ar6,r1
ar4,r1,r2

nscalei

r2,ar7,r6
r2,r3,r5
r5,r6

@fftsize,r1

r1,r3
r6,r3

ar2,r3,r5
ar3,r4,r6

r5,*arO,r3
r6,*+ar0,r4

nadd2i
1,ar2
O,ar3

;arO -> x[O)
; arO -> x [k]
;ar1 -> x[k+m/2)

;repeat N/m times

;convert to d-1 low word
;convert to d-1 high word

;# of bit shift
;adjust bit shift for double
;counting
;r1 <- (-r1) mod FFTSIZE
;X - N/2 shift, shift d2

;if shift less than N/2, next shift
;X
;shift mask by X - N/2
;shift d-1 data by X - N/2
;complement r5

;shift more than N/2, adjust next
; shift

;X - N
;left shift X or X-N bits
;or register to get final d-1 result

;convert to binary low
;convert to binary high

;r3 <- binary diff, low word
;r4 <- binary diff, high word

;if diff is positive
;register ar2 <- 1
;register ar3 <- 0

83

addi
and

nadd2i: addi
addc

bzd
sti
II sti

index
subi
subb

xor
addi
and

nloop2ni:
sti
II sti

index
br

nloopni:
subi
bnz

pop
rets

ar2,r3
ar2,st,r4

r5,*ar0,r1
r6,*+arO,r2

nloop2ni
r4,*+ar1
r3,*ar1++(ir0)

ar2,r1,r3
ar3,r2,r4

ar2,r4
r4,r3,r1
ar2,st,r2

r2,*+ar0
r1,*ar0++(ir0)

nloop2i

1,ro
nloopi

FP

;if negative, low word is d-1,
;thus d-1 mod operation

;r1 <- binary sum, low word
;r2 <- binary sum, high word

;if sum< 2A32, store result
;save high word diff
;save low word diff, and increment

;convert to d-1, low word
;convert to d-1, high word

;A+B = [(A+B)-1]+1. Thus d-1
;mod operation
;save carry

;save high word sum
;save low word sum, and increment

;update rO, decrement

84

==
* Diminished-one multiplication *
====================================~===============================

* *
* This routine performs term-wise modified diminished-one *
* multiplication on the transformed input and filter sequences. *
* Ignore all calculation of Z2, since the value of Z2 does not *
* affect the result. *
* Both multiplier and multiplicant are assumed non-zero *
* *
**

nmult:
push
ldi
ldi
ldi
ldi

ldi

ldi
ldi
ldi
ldi
ldi
ldi

subi

rptb
ldi
ldi
ldi

bpd
lsh
and
nop

ldi
chknxt: ldi

bpd
lsh
and
ldi

ldi
nmultm: addi

bncd
mpyi
mpyi
mpyi

FP
SP,FP
*-FP(2) ,arO
*-FP(3) ,ar1
*-FP(4) ,ar5

®fftsize,rc

16,ar2
-16,ar3
1,ar4
®mask,ar7
4,ir0
2,ir1

1,rc

nmloop
*arO,rO
*ar1,r1
*+arO,r2

chknxt
ar3,r1,r7
ar7,r1,r6

O,r1
*+ar1,r3

nmultm
ar3,rO,r5
ar7,rO,r4
®mid_carry,ar6

o,ro
rO,r1

nmultnxtl
r3,r2
r4,r6,r0
r5,r6,r3

;initialize registers for
;c function interface
;load input address
;load filter address
;load output address

;setup repeat counter

;16 bits left shift, get low word
;16 bits right shift, get high word
;constant 1
;ar7 <- Offffh
;constant 4
;constant 2

;rO <- X1 XO
;r1 <- Y1 YO
;r2 <- X3 X2

;if X2 = 1,
;r7 <- Y1
;r6 <- YO

;r1 <- X2 * Y1 YO = 0
;r3 <- Y3 Y2

; if Y2 = 1
;r5 <- X1
;r4 <- xo

;rO <- Y2 * X1 XO = 0
;r1 <- X1 XO + Y1 YO

;r2 <- X2 * Y2
;rO <- XO * YO
;r3 <- X1 * YO

85

addi
nmultnxt1:

mpyi

addi
bncd
lsh
lsh

mpyi

addi
nmultnxt2:

addi
and
addc

product
addc
addi
and
addc
and
bnzd
nop
nop
nop

not

addi
and
addi
addc
xor
addi
and

xor
addi
and

nmloop:
sti
11 sti

pop
rets

ar4,r2

r7,r4

r4,r3
nmultnxt2
ar3,r3,r4
ar2,r3

r7,r5

ar6,r5

r3,r0
ir0,st,r3
r5,r4

O,r2
r4,r1
st,r3
O,r2
st,r3
nmloop
*++arO(ir1)
*++ar1(ir1)

r1

r1,r0
ar4,st,r1
r2,r0
O,r1
ar4,r1
r1,r0
ar4,st,r1

ar4,r1
r1,r0
ar4,st,r1

r1,*+ar5
rO,*ar5++(ir1)

FP

;r2 + 1 if r0+r1 has carry

;r4 <- Y1 * XO

;r3 <- (X1 * YO) + (Y1 * XO)

;r4 <- high word of r3
;r3 <- low word of r3 left shifted
;16 bits
;r5 <- Y1 * X1

;r5 + 65536

;rO gets low word of product
;r3 gets zero flag
;r4 gets partial high word of

;r2 gets msb
;r1 gets high word of product
;r3 gets zero flag
;r2 gets msb
;r3 gets zero flag

; (AB-1) = (AB) - 1, thus begin
;residue
;reduction
;save carry
;add msb

;complement carry
;diminished one result
;save carry

;convert to binary
;binary result
;save carry

;store result

86

==
* Bit reverse routine *
==
* *
* This routine copy the data from the memory location pointed to *
* by arO into the memory location pointed to by arl in bit-reversed *
* order. *
* *
**

bit reverse:
push
ldi
ldi
ldi

ldi
lsh
ldi
subi
rptb
ldi
sti

ldi
sti

lsh
nop

bitloop:lsh

pop
rets

FP
SP,FP
*-FP(2) ,arO
*-FP(3) ,arl

@fftsize,irO
-l,irO
@fftsize,rc
l,rc
bit loop
*arO,rO
rO,*arl++

*+arO,rO
rO,*arl++

-l,arO
*arO++(irO)b
l,arO

FP

;initialize registers for
;c function interface
;load input address
;load filter address

;initialize index

;setup repeat loop

;begin loop
;read from input address
;write to output address & increment
;address

;calculate next bit-reversed address
;adjust bit reversed

87

Thesis:

VITA

Yek Chong Yeo

Candidate for the Degree of

Master of Science

An Implementation of Digital Filters
Fermat Number Transform On TMS320C30
Signal Processor

Using
Digital

Major Field: Computer Science
Biographical:

Personal Data: Born in the Rep. of Singapore, on Mar 3,
1964, the son of Kee Hing Yeo and Swee Eng Thung.

Education: Graduated from Maris Stella High School,
Rep. of Singapore, in Dec. 1980, and Hwa Chong
Junior College, Rep. of Singapore, in Dec. 1982.
Received B.S. in Electrical and Computer
Engineering and B.S. in Mechanical and Aerospace
Engineering from Oklahoma State University,
Stillwater, Oklahoma in Jul. 1990. Completed the
requirements for the M.S. degree with a major in
Computer Science at Oklahoma State University in
May. 1995.

Experience: Served in the Rep. of Singapore Armed
Forces for two years; employed by Computer
Information Service, Oklahoma State University as
technical assistant from Jun. 1991 to May 1994.

