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ABSTRACT 

 

As part of continuous modernization of operational weather radar systems, 

several government agencies have explored adding polarimetric capability to existing 

networks. Polarimetric measurements of rain have been previously shown robust with 

respect to drop size distribution variations, hail contamination, and offer improved 

echo classification capabilities. Other advantages of polarimetric measurements of 

rain include an immunity to radar miscalibration, attenuation in rain and partial beam 

blockage.  

Whereas the existing literature overwhelmingly recommends polarimetric 

methods for weather radar applications, the majority of dual-polarization studies have 

been conducted on datasets collected at relatively close distance to the radar. 

However, it is well-known that the quality of radar measurements and rainfall 

estimates degrades with distance due to factors including beam broadening, the effect 

of Earth curvature and the overshooting of precipitation.  

This study is motivated by the lack of validation for polarimetric rainfall 

applications with respect to coverage and accuracy demands of the operational 

weather community. To address these concerns, the quality of polarimetric 

measurements and rainfall estimation is investigated over a broad range of distances. 

Several new methods to identify regions of known radar bias and improve radar 

rainfall measurements in operations are provided. 

 

 xx



 

 

1. INTRODUCTION 

 

 The importance of accurate precipitation estimation is well known.  Real-time 

rainfall observations impact weather forecasting operations and aid in the 

initialization of broad-scale hydrologic models. Since the earliest applications of 

weather radar, researchers have sought precipitation measurements from widespread 

radar networks. Radar rainfall estimation techniques provide rapid observations and 

extensive coverage which distinguish these methods from the limitations of surface-

based gage data.                

 Despite known advantages, the reliability of radar-based rainfall 

measurements remains a fundamental concern. The pitfalls of radar rainfall methods 

that utilize reflectivity factor Z are well documented (e.g., Wilson and Brandes 1979; 

Fabry et al. 1992; Doviak and Zrnic 1993; Ryzhkov and Zrnic 1995, Smith et al. 

1996; Fulton et al. 1998). Modest calibration errors may produce severe deficiencies 

in the accuracy of radar products such as rainfall estimation and hydrometeor 

classification (e.g., Ryzhkov et al., 2005a). Blockage and attenuation of the radar 

beam further exacerbates the problem of accurate precipitation measurements from 

radar. 

 Domestic and foreign meteorological agencies mandate accurate radar rainfall 

estimation over large coverage areas to ensure the safety of life and property. In 

particular, the United States National Weather Service (NWS) requires estimates of 

rainfall at ranges up to 230 km from the radar (e.g., WSR-88D System Specification, 

Section 3.7.2.2.1). In addition to the aforementioned deficiencies in reflectivity 
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factor-based rainfall measurements, the quality of radar rainfall estimates degrade 

with distance as a result of beam broadening, the effect of Earth curvature and the 

overshooting of precipitation (e.g., Doviak and Zrnic 1993). Radar rainfall estimation 

at longer distances is further complicated by radar resolution volumes that are more 

likely filled with mixed-phase or frozen hydrometeors, which may be loosely related 

to the rainfall reaching the surface.  

 Several studies discuss the quality of conventional (single polarization) radar 

measurements of rainfall to far distances and over complex terrain (e.g., Koistinen 

1991, Fabry et al. 1992, Andrieu and Creutin 1995, Smith et al. 1996, Andrieu et al. 

1997, Kitchen 1997, Seo et al. 2000, Dinku et al. 2002, Kucera et al. 2004, Langston 

and Zhang 2004, Krajewski and Ciach 2005). These studies indicate that accurate 

radar rainfall estimation to longer distance is challenging and necessitates the 

concurrent application of several techniques to overcome the fundamental limitations 

of conventional radar systems. Emphasis is placed on reducing the errors in radar 

rainfall estimates associated with drop size distribution (DSD) variability, melting 

layer and hail contamination, and radar beam blockage from larger-scale 

topographical features. Recommended conventional methodologies to improve radar 

rainfall estimation include the vertical profiling of the radar reflectivity factor (VPR), 

‘mean-field’ gage bias adjustments, and the use of digital terrain models to determine 

the blockage of the radar beam. Validation of these techniques is limited as it requires 

long-term comparisons between radar rainfall estimates and sparse surface rain gage 

network accumulations. 
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 The above techniques to improve conventional radar rainfall estimates to long 

distance remain the subject of ongoing research and are not without limitation. For 

example, VPR techniques are sensitive to precipitation variability including changes 

in storm type (e.g., stratiform versus convective) and temporal/spatial changes in the 

VPR (Zawadzki 2006). Similarly, partial beam blockage (PBB) correction contingent 

on digital terrain models is questionable for significant blockages (> 60% beam 

occultation), as the degree of beam blockage depends on atmospheric refractive 

conditions (e.g., Bech et al. 2003). In addition to the large-scale terrain features 

captured by terrain models, unresolved smaller-scale anthropogenic structures (e.g., 

towers, buildings) and nearby trees cause additional occultation of the radar beam.  

 Polarization diversity promises to mitigate conventional radar shortcomings 

for rainfall estimation as numerous theoretical and validation studies show (e.g., 

Ryzhkov and Zrnic 1996; May et al. 1999; Bringi and Chandrasekar 2001; Brandes et 

al. 2002; Matrosov et al. 2005; Ryzhkov et al. 2005a). Polarimetric rainfall relations 

are more robust with respect to DSD variations and the presence of hail than 

conventional relations. Measurements of specific differential phase KDP, which is 

immune to radar miscalibration, attenuation, and PBB, benefit precipitation 

estimation by providing methods to correct Z bias or through the direct estimation of 

rainfall using R(KDP) relations (e.g., Zrnic and Ryzhkov 1996). In addition, 

polarimetric radar is uniquely suited for discriminating between different classes of 

meteorological and nonmeteorological echo (e.g., Zrnic and Ryzhkov 1999).  

 As part of continuous modernization of the nationwide network of the 

Weather Surveillance Radar- 1988 Doppler (NEXRAD WSR-88D) weather radars, 
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the NWS has decided to add polarimetric capability to existing operational radars. 

The operational proof-of-concept was held on the National Severe Storms 

Laboratory’s (herein, NSSL) prototype polarimetric KOUN WSR-88D radar in 

Norman, Oklahoma (herein, KOUN). A primary selling point for the nationwide 

deployment of polarimetric weather radar was the demonstration of enhanced radar 

rainfall estimation capabilities within existing radar coverage areas.  

 Although the strengths of polarimetric measurements have been previously 

established and successfully sold to government agencies including the NWS, the 

majority of dual-polarization studies (rainfall or otherwise) have been conducted on 

data collected during warm season precipitation (characterized by strong or hail 

producing storms and high freezing levels) and at distances within 100 km of the 

radar. Because of the stringent NWS range requirements for the delivery of 

operational radar rainfall products to ranges of 230 km, a primary motivation of this 

study is to investigate and verify the quality of polarimetric rainfall estimation over a 

broad range of distances. The study is further motivated to improve upon the quality 

of existing polarimetric methods for operational rainfall estimation through the 

exploration of new methods that further capitalize on the unique microphysical 

insights afforded by polarimetric radar measurements. 
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1.1 Overview of Polarimetric Radar and Measurements  

 

 The primary data source for this study is the KOUN dual-polarization S-band 

radar maintained by the NSSL. To determine the merits of polarization diversity, it is 

important to understand the governing measurands of radar rainfall estimation. This 

overview addresses four fundamental polarimetric variables measured by the KOUN 

radar: the reflectivity factor Z, differential reflectivity ZDR, correlation coefficient 

ρHV(0), and differential phase ΦDP.  

 

1.1.1 Reflectivity Factor, Z 

 Noting historical significance and relevance to forecasting applications, 

perhaps the most widely recognized radar quantity is reflectivity factor, Z.  

Reflectivity factor is proportional to the backscattering cross-section per unit volume. 

A generalized form of the reflectivity factor for horizontal or vertical polarizations is 

∫+−
= dDDNmmmZ VHVH )(

)2/()1(
]/[ ,25

4
36

, σ
εεπ

λ , (1) 

where σ is the backscatter cross-section of individual drops at two orthogonal 

polarizations, λ is the radar wavelength, ε is the dielectric constant, and N(D) is the 

drop size distribution (Doviak and Zrnic 1993). The backscatter cross-section in (1) 

may be expressed as 

2
,

2
, 4][ VHVH fmm πσ = , (2) 
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with fH,V denoting the backscattering amplitudes of individual hydrometeors for the 

two orthogonal polarizations. The expression in (2) is valid for equioriented drops 

with an axis of rotation along the vertical. 

 For a Rayleigh scattering regime in which the equivalent-volume diameter of 

raindrops, De, is much smaller than the radar wavelength (De << λ, a condition 

suitable for most weather radar scatterers at S-band), 

VH
e

VH
Dmmf ,2

32

, 6
][ ζ

λ
π

= , (3) 

where ζH,V is the polarizability factor 

1
1

1

,

,

−
+

=

ε

ζ
VH

VH

L
, 

(4) 

with LH,V representing the horizontal and vertical factors depending solely on the 

shape of the scatterer. For oblate spheroids with axis ratio b/a, where a is the minor 

axis and b is the major axis, these shape factors can be expressed as 

2
)1(),arctan1(1 1

2

2
V

HV
LLL −

=
Α

Α
−

Α
Α+

=
−

, (5) 

 
where 

1)/( 2 −=Α ab . (6) 

Assuming spherical raindrops with an axis ratio of unity, (5) reduces to one-third. 

Applying this assumption by substituting these shape factors into (4), and replacing ζ 

in (3) with (4) 

2

2

4

65
2

2
1

][
+

−
==

ε

ε
λ

πσσ e
VH

Dmm . (7) 
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Therefore, for spherical drops under the Rayleigh approximation (denoted in (7)), (1) 

simplifies to  

dDDNDZmmmZ eeVH )(]/[ 636 ∫== , (8) 

highlighting the familiar dependence of reflectivity factor on diameter raised to the 

sixth power. Because reflectivity factor measurements span many orders of 

magnitude for weather scatterers, a logarithmic scale 10 log10 Z is commonly adopted 

(Doviak and Zrnic 1993).  

 Reflectivity factor is directly linked to the received backscattered power for an 

illuminated volume through the weather radar equation (e.g., Doviak and Zrnic 1993). 

Blocked or attenuated waves will exhibit diminished power returns. These returns 

produce lower Z measurements, thereby impacting subsequent precipitation and 

hydrometeor classification applications.                   

 

1.1.2 Differential Reflectivity, ZDR 

 The definition of Z in (8) assumes spherical, equioriented drops that are small 

relative to radar wavelengths. While this assumption is sufficient for general weather 

radar applications, deviations from this ideal situation are common, particularly as 

drop sizes increase. Several forces alter falling hydrometeor shape, with drops 

becoming oblate with increased volume (e.g., Doviak and Zrnic 1993). Because 

larger drops are often associated with heavier rainfall, knowledge of these deviations 

in drop shape may provide complementary information for rainfall and hydrometeor 

classification applications.    
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 The literature provides several estimates of axis ratio behavior. An estimate of 

the axis ratio response to increasing equivalent volume drop diameter provided by 

Beard and Chuang (1987) is 

432 677.1682.3628.20057.00048.1/ eeee DDDDba −+−−= , De[cm]. (9) 

Differential reflectivity is defined as    

drDR ZZ log10= , (10) 

where Zdr is the ratio of reflectivity factors measured at the horizontal and vertical 

polarizations 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=
∫
∫

dDDN

dDDN
Z

V

H
dr )(

)(

σ

σ
. (11) 

Herein Zdr is expressed in linear units and ZDR is expressed in dB. Through inspection 

of (2)-(6), it is apparent that the expression for Zdr is predominantly influenced by 

changes to the backscatter cross-section of individual drops, and therefore directly 

linked to individual axis ratio and dielectric constant of the scatterers.     

 The connection between differential reflectivity and the canting, axis ratio and 

dielectric constant of the scatterers provides useful links between the measured ZDR 

and select hydrometeor populations. For example, liquid precipitation is characterized 

by higher dielectric constants than frozen precipitation and larger raindrops have 

larger axis ratios than smaller raindrops. It follows that the expected value of ZDR 

should differ predictably in response to these changes in the apparent axis ratio and 

dielectric constant. Hydrometeor orientation also impacts ZDR, as randomly oriented 

scatterers produce a net spherical appearance resulting in an apparent axis ratio of 

unity.  
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 A classic example of ZDR application is the discrimination of hail from large 

rain scatterers. It has been suggested that hail tumbles while falling to the surface, 

rather than maintaining a net oblate form. The tumbling produces a random hail 

orientation that presents a net spherical appearance relative to radar polarizations. 

Reflectivity factor measurements of large raindrops and small hail for a horizontal 

polarization are typically similar given the comparable horizontal dimensions. 

However, following (11), the net spherical shape for hail results in low expected ZDR 

value relative to large raindrops with net oblate shapes, allowing delineation of hail 

using ZDR and Z fields.  

   

1.1.3 Correlation Coefficient, ρHV

 Correlation coefficient ρHV measures the correlation between the horizontally 

and vertically polarized signals at zero lag time. Qualitatively, ρHV may be interpreted 

as a measure of the particle diversity in the radar resolution volume. ρHV characterizes 

the differences in size, shape, orientation, and refractive index of the particles, and is 

very informative for classification of meteorological and non-meteorological 

scatterers. A simplified expression for the magnitude of the correlation coefficient is  

∑ ∑

∑

= =

=≈=
N

i

N

i
ViHi

N

i

j
ViHi

s
V

s
H

s
V

s
H

HV

ie

EE

EE

1 1

1

22

*

σσ

σσ
ρ

δ

, (12) 

where Es represents a scattered electric field component, with denotations for both 

horizontal and vertical polarization, and δ is the differential phase upon scattering 

(e.g., Bringi and Chandrasekar 2001). The expression in (12) is valid for equioriented 
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drops with an axis of rotation along the vertical. ρHV remains unaffected by blockage 

or attenuation due to the division of like-biases during its calculation.       

 Factors influencing the correlation coefficient include dielectric properties of 

scatterers, differential phase shifts upon scattering, canting angles, irregular 

hydrometeor shapes, and hydrometeor mixtures. Spherically shaped hydrometeors 

exhibit higher ρHV approaching unity. Mixtures of hydrometeors such as rain and hail 

lower the correlation coefficient. Non-meteorological scatterers including insects, 

birds, and ground clutter are characterized by substantially lower ρHV than 

hydrometeors (e.g., Zrnic and Ryzhkov 1999).  

 

1.1.4 Differential Phase, ΦDP, and Specific Differential Phase, KDP

 EM waves undergo phase shifts caused by particles impeding forward wave 

propagation. Hydrometeor concentration and sizes along the propagation path directly 

cause this phase shift. Isotropic scatterers equally affect microwave radiation at 

orthogonal polarizations. Non-spherical raindrops exhibit a larger net physical 

dimension in the horizontal perspective, therefore horizontally polarized waves 

experience an increased phase shift relative to vertically polarized waves when 

propagating through rain. Differential phase, ΦDP, tracks the phase discrepancy that 

accumulates during two-way wave propagation in such medium. An expression for 

differential phase is  

∫+=Φ
r

DPDP drrK
0

)(2[deg] δ  (13) 

where 
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dr
ddDDNDfDfkmK DP

VHDP
Φ

=−= ∫
∞

−

2
1)()]()(Re[180][deg

0

1

π
λ , (14) 

and fH and fV in (14) are the forward scattering amplitudes at the horizontal and 

vertical polarizations (identical to the expression in (3) if the Rayleigh approximation 

is valid). Once again, expressions (13) and (14) are applicable for oriented drops with 

an axis of rotation along the vertical.    

 ΦDP is related to the drop concentration, shape, and the orientation of drops. 

Subsequently, ΦDP is also related to rainfall along the radial (e.g., Jameson 1985; 

Sachidananda and Zrnic 1986). Specific differential phase KDP in (14) is defined as 

the range derivative of the differential phase, e.g., whereas ΦDP represents the 

cumulative phase change, KDP describes the phase change per unit range interval. It 

follows from (3), (13), and (14) that KDP is related to the concentration and shape of 

particles associated with phase changes within a select range interval. Therefore, KDP 

has important implications for estimating rainfall (e.g., Ryzhkov and Zrnic 1995a; 

Ryzhkov and Zrnic 1996; Vivekanandan et al. 1999) and attenuation losses (e.g., 

Bringi et al. 1990; Ryzhkov and Zrnic 1995b, Smyth and Illingworth 1998).  

 

1.1.5 Radar Measurands for Canted Hydrometeors 

 Although the radar variable expressions outlined in the previous section are 

useful for illustrative purposes, it is known that meteorological scatteres are canted 

and that the orientation of particles has an impact on polarimetric variables. In 

particular, an increase in the canting of particles will result in a drop of ZDR and ρHV. 

For more sophisticated radar calculations as in chapter 5 of this study, expressions 

 11



 

valid for canted hydrometeor populations are required. These expressions are as 

follows  

∑ +−=
j

jjjjj
h IAIAICZ ]Re2[ 34221 , (15) 

∑ +−=
j

jjjjj
v IAIAICZ ]Re2[ 33211 , (16) 
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where ‘j’ is the index of the species, Zh,v are expressed in [mm6 m-3], Zdr is equal to 

Zh/Zv and KDP is in [deg/km]. In the above expressions, the constants C and C’ are 

defined as  

2
4

4

2
1

4

+
−

=

ε
επ

λC , 
(19) 

π
λ18.0

=′C , (20) 

where λ is the radar wavelength [in mm]. In expressions (15) - (18), the moments 

denoted with ‘I’ are related to the scattering amplitudes and the particle size 

distribution as     

dDfDNI b

2

1 )(∫= , (21) 
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( )dDfffDNI abb∫ −= ∗)(2 , (22) 

dDffDNI ab

2

3 )(∫ −= , (23) 

( ) DdffDNI ab∫ −= )(4 , (24) 

where the scattering amplitudes in (21) - (23) correspond to backward scattering 

amplitudes and the scattering amplitudes in (24) are forward scattering amplitudes 

(function of diameter). The angular moments A1 – A7 in (15) – (18) are defined 

following Ryzhkov (2001) as 

αψ 22
1 cossin=A , (25) 

αψ 22
2 sinsin=A , (26) 

αψ 44
3 cossin=A , (27) 

αψ 44
4 sinsin=A , (28) 

ααψ 224
5 sincossin=A , (29) 

αψ 2sinsin 2
6 =A , (30) 

αψ 2cossin 2
217 =−= AAA , (31) 

where the angle α is the canting angle and angle ψ  is the orientation angle with 

respect to the direction of propagation k, as illustrated in Fig. 1.  

 Radar calculations in chapter 5 assume a two-dimensional axisymmetric 

Gaussian distribution of particle orientations 
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where the angles <ψ> and <α> determine the mean orientation of particles and 

parameters σ and 

ψ
σσα sin

=  (33) 

define the width of the angular distribution along ψ and α directions, respectively. 

The approximation of the axisymmetric Gaussian distribution of orientations allows 

averaging over angles ψ and α independently, therefore angular moments Ai can be 

expressed as products of the following factors: 

( )ψψ 2cos1
2
1sin 2 r−= , (34) 

ψψψ 4cos
8
12cos

2
1

8
3sin 44 rr +−= , (35) 

( )αα α 2cos1
2
1cos2 r+= , (36) 

( )αα α 2cos1
2
1sin 2 r−= , (37) 

ααα αα 4cos
8
12cos

2
1

8
3cos 44 rr ++= , (38) 

ααα αα 4cos
8
12cos

2
1

8
3sin 44 rr +−= , (39) 

( )ααα α 4cos1
8
1sincos 422 r−= , (40) 

αα α 2sin2sin r= , (41) 

where,  

( )22exp σ−=r , (42) 

and 
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( )22exp αα σ−=r . (43) 

At grazing angles for a zero mean canting angle of hydrometeors (<α> = 0) and mean 

axis of symmetry (N in Fig. 1) along the vertical  
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The radar calculations in chapter 5 utilize (44) for different values of the canting 

angle distribution σ that vary contingent on the type (rain, mixed-phase, frozen) of 

hydrometeor. A typical value of σ in rain is 10-20°. In wet snow/hail/graupel, values 

for σ may vary between 5° and 50°  

 

 

1.2 Processing Polarimetric Data 

 

 An important consideration for the interpretation of polarimetric radar 

measurements is radar data collection and processing. For this study, raw KOUN 

measurements of Z, ZDR, ΦDP, and ρHV were measured at a radial resolution of 0.250 - 

0.267 km using a short dwell time (48 radar samples) to satisfy NEXRAD antenna 

rotation rate (3 rpm) and azimuthal resolution (1°) requirements. Volume update time 

for polarimetric rainfall and echo classification products varied between 2 and 6 

minutes. Data processing includes a radial (boxcar) smoothing procedure using a 3-

gate averaging window for Z (0.5 km) and a 5-gate window for ZDR and ρHV (1.0 km).   
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  Due to the noisiness inherent in phase measurements of precipitation, these 

measurements require stringent processing routines. Two smoothed radial profiles of 

ΦDP are obtained: a “lightly filtered” ΦDP with an approximate 2 km radial resolution 

(9 range gates) and a “heavily filtered” ΦDP with roughly 6 km radial resolution (25 

gates). ΦDP de-aliasing complicates phase measurement processing, however the task 

was simplified following an upgrade of the KOUN radar to an RVP8 processor 

(2004) with an aliasing interval of 360º. Measurements of ΦDP rarely exceed 360° at 

S-band, although aliasing may occur if the system differential phase drifts with time. 

The separation of “data” from “noise” gates is performed along a radial by identifying 

locations where raw ρhv values exceed 0.9. Valid smoothing intervals for ΦDP contain 

at least 9 successive gates classified as data in the case of light filtering and 25 

successive data gates for heavy filtering. A median filter is used for smoothing of ΦDP 

values in these intervals. Filling in the gaps between valid intervals in ΦDP profiles is 

accomplished by linear interpolation using the valid ΦDP values at the beginning and 

ending gates of gaps.  

 Two estimates of KDP are obtained from the lightly and heavily filtered radial 

profiles of ΦDP, KDP
(9) and KDP

(25), as a slope of a least squares fit for two range 

averaging intervals corresponding to 9 and 25 gates, respectively. To determine the 

value of KDP at any particular range gate, the estimate KDP
(9) is selected if Z > 40 

dBZ, otherwise KDP
(25) is used. 

 Radar reflectivity measured by KOUN for this study was matched with Z 

obtained from the nearby KTLX WSR-88D radar, which was assumed to be well 

calibrated. ZDR was calibrated using polarimetric signatures of dry aggregated snow 
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above the melting level following Ryzhkov et al. (2005b). Attenuation correction of Z 

and ZDR was performed using values of differential phase and the relations: ΔZ(dB) = 

0.04 ΦDP (degrees) and ΔZDR(dB) = 0.004 ΦDP (degrees) (Ryzhkov and Zrnic 1995). 

Measurements of ZDR and ρHV are affected by noise if the signal-to-noise ratio (SNR) 

is below 20 dB. A simple correction is applied for both measurements in such low 

SNR regions.    

 Texture parameters SD(Z) and SD(ΦDP) characterize the intensity of small-

scale fluctuations of Z and ΦDP along the radar ray. These measurements are useful in 

radar echo classification to discriminate meteorological from nonmeteorological 

echo. To obtain SD(Z), raw Z data are averaged along a radial using a 5-gate 

averaging window. The smoothed estimates of Z are then subtracted from the original 

Z values and the texture parameter is determined as the standard deviation of the 

difference. A similar procedure is used for computing SD(ΦDP), however the 

averaging window is two times wider. 

 

 

1.3 Review of Radar Rainfall Estimation Techniques 

  

 Despite the limitations of radar-based rainfall measurements, a strong 

connection exists between rainfall rate and radar parameters (Doviak and Zrnic 1993). 

Conventional techniques solely involve reflectivity factor, whereas proposed 

operational techniques capitalize on polarization diversity. 
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1.3.1 Conventional Z-R Relations 

 Conventional methods use radar reflectivity factor to measure rain. While 

there is no universal relation between these quantities, a strong association exists 

between regions of mutual high values (Doviak and Zrnic 1993). Current operational 

radars exploit this connection for real-time rainfall estimation practices.  

 The development of single parameter Z-R rainfall estimates is straightforward. 

Making the proper assumptions, the reflectivity factor from (8) is related to the 

number concentration of drops and the equivalent volume diameter of these drops to 

the 6th power. The rainfall rate is measured as the depth of water per unit time, which 

may be expressed as 

( ) ( ) ( )dDDwDNDR t∫
∞

=
0

3
6
π , (45) 

where wt is the terminal velocity of a raindrop (Doviak and Zrnic 1993).  

 Typically, a DSD is approximated by a Gamma function (e.g., Ulbrich 1983) 

 

)exp()( 0 DDNDN Λ−= μ , (46) 

where slope (Λ) is related to the median volume diameter D0  by  

0

67.3
D

μ+
≈Λ , (47) 

with parameter μ typically having values between –3 and 8, and D0 is the solution of 

the equation  
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Assuming an empirical terminal velocity relation of the form (see Doviak and Zrnic, 

1993)  

67.078.3 Dwt = , (49) 

obtained through a best-fit of experimental data, (8) and (45) may be combined to 

form a power-law relation 

baRZ = , (50) 

with coefficients a and b primarily depending on the type of  DSD. Historically, the 

first Z-R relation was suggested by Marshall and Palmer (e.g., Marshall et al. 1947; 

Marshall and Palmer 1948) 

6.1200RZ = , (51) 

where Z is in mm6 m-3 and R is in mm hr-1. Z-R relations similar to (51) are often 

determined empirically as DSDs are rarely known. Battan (1973) cited no fewer than 

69 empirically derived Z-R relations, which vary with region, storm structure, and 

cloud microphysical properties. Changes to the coefficients can be considerable, 

particularly in response to stratiform, convective, tropical, and different rain regimes 

(e.g., Battan 1973). Current NWS WSR-88Ds operate with two distinct default 

empirical Z-R relations (Fulton et al. 1998) 

⎟
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4.1

250

300
. (52) 

In addition to errors associated with DSD uncertainty and variability of terminal 

velocities, conventional Z-R relations are prone to contamination due to ground 
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clutter, anomalous propagation, hail, partial radar beam blockage, incomplete beam 

filling, and radar miscalibration. 

 For this study, convention relationship performance is assessed using the 

relation 

R(Z) = 1.7 ×10-2 Z0.714. (53) 

The conventional relation in (53) is the inversion of the standard NEXRAD 

continental formula from (52) where Z is in mm6 m-3 and R is in mm hr-1. Although 

commonly referred to as the ‘conventional’ relation, it is noted that the Z 

measurements to be utilized in (53) capitalize on polarimetric methods for calibration 

and quality control prior to rainfall estimation. 

 

1.3.2 Polarimetric Rainfall Estimation  

 Polarimetric methods for rainfall estimation have been introduced during the 

past few decades and utilize different combinations of polarimetric measurements 

including the differential reflectivity factor ZDR and specific differential phase KDP 

(e.g., Ryzhkov et al. 2005a). Rainfall relations have been obtained for different radar 

wavelengths using simulated or measured DSDs and various assumptions about the 

size and shapes of raindrops. Estimate performance has been tested on extensive data 

sets from Oklahoma (Ryzhkov and Zrnic 1996, Ryzhkov et al. 2002, Ryzhkov et al. 

2005b), Colorado and Kansas (Brandes et al. 2001), Florida (Brandes et al. 2002) for 

S-band radars, Australia (May et al. 1999) for C-band radar, and Virginia (Matrosov 

et al. 2002) for X-band radar. These studies demonstrate that there is an improvement 

in rainfall estimation if dual-polarization radar is used. Further, it has been 
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demonstrated that polarimetric rainfall estimation techniques are more robust with 

respect to DSD variations than conventional relations.  

 The following polarimetric R(KDP) and R(Z,ZDR) relations have been selected 

for analysis in this study 

R(KDP) = 44.0|KDP|0.822sign(KDP), (54) 

and  

R(Z,ZDR) = 1.42 ×10-2  Z0.770 Zdr
-1.67

. (55) 

where R is in mm hr-1 and KDP in (54) is expressed in ° km-1. The sign(KDP) term 

allows negative values of R. Polarimetric relations (54) and (55) are selected because 

of their optimum performance in rain for central Oklahoma during the JPOLE field 

campaign (e.g., Ryzhkov et al. 2005a). Coefficients in (54) and (55) were determined 

using collected disdrometer data for the central Oklahoma region and assuming drop 

shape characteristics specified by (9) (e.g., Schuur et al. 2001, Ryzhkov et al. 2005a). 

 It is unlikely any single conventional or polarimetric radar relation will 

produce high quality precipitation estimates at different distances from the radar and 

for different types of hydrometeors filling the radar resolution volume. The idea of 

using multiple polarimetric relations to optimize rainfall estimation was explored by 

Ryzhkov et al (2005a). According to the “synthetic” approach developed in that 

study, the choice of a polarimetric rainfall relations is determined by the radar 

reflectivity Z or R(Z), i.e., rain rate computed from Z. Chapter 3 expands on the idea 

of a polarimetric “synthetic” approach and tests a new formulation that capitalizes on 

the results of echo classification (e.g., Zrnic 1996).  
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1.4 Review of Polarimetric Echo Classification 

 

 In addition to anticipated improvements in quantitative precipitation 

estimation (QPE), another primary selling point of the operational polarimetric WSR-

88D upgrade is the ability to automatically distinguish echo type. Several studies 

have demonstrated that polarimetric signatures are useful in pinpointing hail and 

graupel regions in convective storms, for delineation of meteorological and 

nonmeteorological scatterers including tornadic debris, melting layer designation, and 

determining ice crystal type. Echo classification may also be beneficial for optimizing 

QPE and forecast/warning applications.  

 

1.4.1 Fuzzy Logic Classification    

 A fuzzy logic approach has been adopted for the initial deployment of 

operational polarimetric echo classification (e.g., Straka et al. 1996, Vivekanandan et 

al. 1999, Straka et al. 2000). The JPOLE field campaign validated the performance of 

this approach for discrimination of nonmeteorological echoes and the designation of 

hail (Ryzhkov et al. 2005). As opposed to classification based on conditional 

statements (if-then-else) or rigid boundaries between echo classes, fuzzy logic 

schemes allow boundaries between classes to overlap through the use of weighting 

(membership) functions (e.g., Straka et al. 1996, Liu and Chandrasekar 2000). 

‘Fuzzy’ boundaries are particularly useful for weather echo that feature similar 

polarimetric signatures across several polarimetric measurement fields.  
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 In the fuzzy logic approach adopted for this study, we identify a radar echo by 

selecting the echo class type with a maximal aggregation score. Aggregation values 

(or scores) for each of i-th class are determined as 
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where P(i)(Vj) is a membership function of the ith class and jth variable. Wij is a weight 

between 0 and 1 assigned to the ith class and jth variable that characterizes the 

importance or rank of each variable for a particular class. More sophisticated 

classification schemes may incorporate quality control devices to devalue radar 

measurements with known biases. Maximal aggregation values may be below a 

predetermined critical threshold or the difference between the maximal aggregation 

value and that of the next highest aggregation value too small. In these situations, 

confidence in the results of echo classification may be low and the classification 

deemed unreliable. 

 Membership functions P(i)(Vj) in the operational echo classification algorithm 

are trapezoidal in shape and exhibit a maximal value of 1 and minimal value of 0. An 

example of a trapezoidal membership function is illustrated in Fig. 2. Each 

trapezoidal function is described by 4 parameters, denoted on Fig. 2 as: x1, x2, x3, 

and x4. Parameters of the membership functions are often experimentally determined 

and still a subject of ongoing research.  
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1.4.2 Class Designation 

 Membership functions for several classes including light rain and dry 

aggregate snow are significantly overlapped because of small polarimetric contrasts 

between these media. In these situations, consistency checks of the designated class 

with ancillary information including melting layer location and Doppler velocity 

signatures may alleviate glaring discrepancies. For example, rain (dry snow 

aggregates) identified above (below) the melting layer is apparently an incorrect 

designation.  

 The proposed operational echo classification algorithm distinguishes between 

10 classes of radar echo, including AP and Ground Clutter (AP / GC), Biological 

Scatterers (BS), Light to Moderate Rain (RA), Heavy Rain (HR), Rain/Hail (RH), Big 

Drops (BD), Graupel (GR), Wet Snow (WS), Dry Snow (DS), and Ice Crystals (CR). 

In order to properly designate these classes, it is necessary to identify the slant ranges 

Rb and Rt corresponding to the bottom and the top of the melting layer. These ranges 

are defined as  
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where the heights Hb and Ht represent the heights of the bottom and top of the melting 

layer [in km] and are inputs to the classification routine. These heights are often 

azimuthally dependent. θ in (57) is the elevation angle and ae = 8500 km is equivalent 

Earth radius. 

 The slant ranges Rb and Rt in (57) correspond to simple geometric projections 

of the melting layer onto the current tilt provided that the antenna beam is 

infinitesimally small. However, melting layer contamination occurs over a broad 
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range interval if the antenna beam has a finite width (as illustrated in Fig. 3). The 

ranges Rbb and Rtt for a finite beam width of 1° are determined as 
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 To determine a final echo classification in the proposed echo classification 

scheme, particular subsets of classes are allowed within the five slant range intervals 

established in the relations (57) and (58) as 

0 < R < Rbb  GC/AP, BS, BD, RA, HR, RH 

Rbb < R < Rb             GC/AP, BS, WS, GR, BD, RA, HR, RH  

Rb < R < Rt                  GC/AP, BS, DS, WS, GR, BD, RH                . 

Rt < R < Rtt            GC/AP, BS, DS, WS, CR, GR, BD, RH 

R > Rtt             DS, CR, GR, RH. 

(59) 

 In general, the class designation outlined in (59) allows liquid and biological / 

nonmeteorological classes near or below the freezing level and frozen hydrometeor 

categories aloft. Big drops and hail echo are allowed at all slant ranges (e.g., allows 

for convective updrafts extending above environmental freezing level). In addition to 

these designations, GC/AP is assumed stationary. If GC/AP is identified, the absolute 

value of mean Doppler velocity V is checked for consistency. If this value is larger 

than 1 m/s, the class designation is made for the echo with the next highest 

aggregation score. 
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1.5 Outline of the Study 

  

 Whereas the existing literature overwhelmingly recommends polarimetric 

methods for weather radar applications at close distance to the radar, the primary goal 

of this study is to investigate and improve the performance of polarimetric rainfall 

estimation to longer distances. This work is motivated by the lack of studies that 

validate polarimetric rainfall applications with respect to the coverage and accuracy 

demands of the operational weather community. The four chapters of the study 

contain the four major research themes used to drive improved polarimetric rainfall 

estimation and subsequent algorithm transition into operations.  

 In order to investigate and automatically adjust operational radar rainfall 

measurement fields for the effects of ‘bright band’ contamination, the boundaries of 

the melting layer should be known in real-time. Melting layer boundary designation is 

also necessary for successful delineation of rain from mixed-phase and frozen 

hydrometeor regions in operational echo classification routines. Chapter 2 presents a 

new melting layer detection algorithm suitable for operational implementation on the 

polarimetric WSR-88D. Melting layer designations are validated using radiosonde 

and model temperature analysis.  

 Chapter 3 examines the quality of current conventional and polarimetric radar 

rainfall estimation for a broad range of distances from the polarimetric prototype of 

the WSR-88D radar. The results of polarimetric echo classification have been 

integrated into the study to investigate the performance of radar rainfall estimation 

contingent on hydrometeor type. A new methodology for operational rainfall 
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estimation that capitalizes on the results of polarimetric echo classification (EC 

method) is suggested. It is shown that this new approach exhibits better performance 

than the conventional WSR-88D algorithm and several popular polarimetric 

algorithmic formulations to distances of 200 km from the radar. 

 Melting layer contamination and beam blockage are two primary sources of 

error in radar rainfall estimates to longer distances. For conventional radar rainfall 

algorithms, there is often a tradeoff between observing Z at low elevation angles to 

extended the slant range of observations in rain below the melting layer and the Z 

bias attributed to surface beam blockage. Since polarimetric measurements of KDP are 

immune to partial beam blockage, it may be possible to capitalize on KDP 

measurements from lower tilts for direct rainfall estimation or the calibration of other 

radar measurements. Chapter 4 explores these issues and further refines the 

operational rainfall strategy to optimize rainfall algorithm performance to longer 

distance and in blocked regions.  

 High resolution modeling of the melting layer may provide valuable insight 

into the microphysical processes that affect the vertical profiles of polarimetric 

variables. Another approach for future improvements to rainfall estimation at or 

beyond the melting layer may be to incorporate polarimetric measurement insight into 

current VPR techniques. Chapter 5 explores the value of polarimetric VPR techniques 

through basic physical modeling efforts and comparisons with radar observations for 

various rain regimes.   
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2. AUTOMATIC DESIGNATION OF THE MELTING LAYER AND 

POLARIMETRIC ECHO CLASSIFICATION 

  

Accurate melting layer (ML herein) designation is useful for several 

operational radar applications. ML identification is needed for accurate QPE because 

mixed-phase and frozen hydrometeors may contaminate radar rainfall estimates at 

longer distances from the radar. Knowledge of ML location is also important for 

microphysical characterization of the cloud, including the separation of liquid from 

frozen hydrometeors and evaluation of icing potential.  

Melting hydrometeors often produce a discernable signature in conventional 

radar reflectivity factor Z known as the radar “bright band”. Gourley and Calvert 

(2003) describe an operational technique for bright band detection that scans columns 

of Z for spatially consistent maxima. The technique is recommended for stratiform 

precipitation events in which bright band signatures are often well-pronounced and 

associated with melting snow aggregates. However, the transition between frozen and 

liquid hydrometeors in convective regions featuring melting graupel or hail is not 

well-marked with a pronounced Z signature. The lack of pronounced signatures is a 

significant challenge to conventional radar-based ML designation in convective 

situations. 

Polarimetric radar provides a unique capability to delineate the ML. 

Polarimetric measurements including ZDR, ρHV, KDP, and linear depolarization ratio 

LDR exhibit well-pronounced ML signatures both in stratiform and convective 

situations (e.g., Zrnic et al., 1993). Moreover, polarimetric measurements are 
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sensitive to melting hydrometeors in situations where Z alone does not exhibit bright 

band signatures. It is known that the ML in stratiform clouds is characterized by a 

drop in ρHV and peaks in ZDR and LDR measurements. Brandes and Ikeda (2004) 

capitalize on these strong and complementary polarimetric signatures in stratiform 

precipitation for freezing level designation with accuracy to within 200 m. The 

Brandes and Ikeda (2004) technique matches observed polarimetric radar 

measurement profiles with idealized model profiles of Z, LDR and ρHV expected in the 

ML. Tabary et al. (2006) present a similar technique for operational ML identification 

capitalizing solely on profiles of ρHV.                    

ML designation is an integral part of product generation for the KOUN radar. 

The current fuzzy logic hydrometeor classification algorithm (HCA) mandates 

accurate ML designation for successful delineation of several hydrometeor types. 

QPE for the polarimetric WSR-88D may also be contingent on reliable radar echo 

classification such that different rainfall relations are utilized for different classes of 

hydrometeors in the radar resolution volume. 

This chapter presents an algorithm for operational polarimetric ML detection 

(MLDA). The technique differs from the Brandes and Ikeda (2004) and Tabary et al. 

(2006) methodology in that the algorithm does not attempt to match model profiles or 

rely on measurements of the linear depolarization ratio LDR. The MLDA utilizes ZDR 

instead of LDR since the KOUN radar does not measure LDR in its primary mode of 

operation for which H and V waves are transmitted and received simultaneously 

(SHV mode). The proposed method designates a ML top and bottom rather than 

 29



 

producing a single estimate of the freezing level height. The MLDA is integrated with 

the HCA in the operational system.  

Verification of the proposed MLDA was performed for 18 events observed by 

the KOUN radar using 136 hours of comparisons with Rapid Update Cycle (RUC) 

model output and National Weather Service radiosonde data when available.  

 

 

2.1 Description of the MLDA 

 

The proposed algorithm capitalizes on radial dependencies of Z, ZDR and ρHV 

at elevation angles between 4° and 10° to estimate the boundaries of the ML. These 

radial dependencies reflect vertical profiles of the three radar variables which exhibit 

well pronounced maxima in Z and ZDR and minima in ρHV. The heights of these 

signatures generally do not coincide. Typically, the maximum of Z is observed at a 

higher altitude (i.e., at a larger slant range) than the maximum of ZDR and minimum 

of ρHV. This can be explained by the fact that Z depends on concentration of melting 

snowflakes whereas ZDR and ρHV measurements do not. Indeed, the vertical profile of 

Z within the melting layer is determined by three factors: (1) a change in particle size, 

(2) a change in particle refractive index, and (3) a change in particle concentration. As 

melting snowflakes fall through the melting layer, their size may initially increase due 

to possible aggregation and eventually decreases when a snowflake melts into a water 

drop. Concurrently, refractive index monotonically increases while concentration 

decreases as a result of a rapid increase in terminal velocity. Since ZDR does not 
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depend on concentration, the decrease in concentration does not offset the increase in 

ZDR due to possible aggregation and wetting of snowflakes. Hence, the maximum of 

ZDR is observed closer to the bottom of the melting layer than the Z maximum. 

Similar considerations can be applied to ρHV. 

Examples of ML signatures at the elevation 4.5° are presented for a PPI and 

for a mean radial profile from the May 13, 2005 event in Figs. 4 and 5. These 

examples confirm that the ρHV signature provides the most effective discrimination of 

melting hydrometeors. ML signatures are explored in greater detail in chapter 5 of 

this study.   

 

2.1.1 Input Radar Data 

For the WSR-88D precipitation volume coverage pattern (VCP-11), the 

MLDA incorporates six elevation angles: 4.5°, 5.5°, 6.5°, 7.5°, 8.7° and 10.0°. Such a 

choice of elevation angles is dictated by a compromise between radar resolution and 

areal coverage for observing melting signatures. At elevation angles lower than 4°, 

ML signatures are smeared due to beam broadening and may be contaminated by 

nonuniform beam filling (NBF) or partial beam blockage (e.g., Sanchez-Diezma et al. 

2000, Ryzhkov 2007, Giangrande and Ryzhkov 2005). The widening of ML 

signatures at grazing angles due to beam broadening may be even more significant for 

polarimetric measurements (e.g., Ryzhkov 2007). The impact of beam broadening is 

discussed in further detail in section 2.1.4. At elevation angles greater than 10°, the 

expected number of range gates that reside within a typical ML decreases rapidly. In 
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addition, at higher elevation angles, the ML signature is expected at closer slant 

ranges which are more likely contaminated with ground clutter.  

Ground clutter and nonmeteorological scatterers such as birds and insects may 

exhibit signatures similar to melting hydrometeors in the fields of Z, ZDR and ρHV. 

Therefore, the results of radar echo classification obtained with the HCA are used to 

minimize spurious designations from nonmeteorological media. Doppler clutter 

filtering (not currently performed on KOUN) will also mitigate spurious designations 

associated with precipitation mixed with nonmeteorological echo.      

 

2.1.2 Identification of Melting Snow      

The MLDA searches for gate locations exhibiting polarimetric signatures of 

melting snow. Identification is performed on preprocessed radial data. Data 

preprocessing for the KOUN radar is standard as outlined in section 1.2. 

Identification of melting snow is performed as follows 

1. For each radial, the algorithm identifies gates where ρHV falls between 

0.90 and 0.97. These gates may not necessarily belong to the ML. Ground 

clutter and biological scatterers may exhibit similar ρHV signatures. To 

mitigate contamination from scatterers other than melting snowflakes, 

locations with polarimetric signatures of nonmeteorological echo are 

filtered.  A climatological ML height constraint is enforced to ensure 

melting snowflakes are not identified above 6 km (adaptable threshold).  

2. The ρHV ML signature should be consistent with Z and ZDR maxima in the 

vicinity of the gate where the ρHV drop occurs. The algorithm searches for 
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Z and ZDR maxima in a 500 meter window above gate locations matching 

the ρHV signature from step (1). The equivalent slant range distance for 

this window varies with elevation angle.          

3. If the maximum value of Z falls between 30 dBZ and 47 dBZ and the 

maximum value of ZDR is within the interval 0.8 dB to 2.5 dB for the 500 

m window, then the gate of the ρHV signature is considered a ML point.  

4. The corresponding azimuth and height of the ML points are stored in a 

two- dimensional array which contains the total number of ML points in a 

height-azimuth grid. The proposed MLDA utilizes a grid resolution of 0.1 

km in height and 1° resolution in azimuth for this array.  Fig. 6 provides 

an example of the ML point locations on a height-azimuth plane after all 

azimuths and elevations between 4° and 10° are examined for a single 

radar volume (13 May 2005 event from the dataset, 0848 UTC).   

5. ML signatures at higher elevations are less smeared by the radar beam and 

thus better pronounced. The total number of possible ML points is smaller 

at higher elevations. In light of this, the MLDA can be modified to weight 

data collected at higher elevation angles more than the data collected at 

lower elevation angles. 

6. Although censoring of ground clutter at lower heights is performed for 

regions with nonmeteorological polarimetric signatures, we found it useful 

to further mitigate possible contamination from ground clutter by 

removing ML points detected more than 1 km below the ML bottom 

height of the previous scan.     
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2.1.3 Designation of the Melting Layer Boundaries 

Designation of ML boundaries is performed if the total count of ML points in 

the array exceeds a predetermined threshold (currently 1500 ML points). Typically, a 

high threshold produces more accurate results, but requires a longer time for data 

accumulation. ML boundaries are determined using the following methodology: 

1. In order to capture azimuthal variability of the ML boundaries, the height-

azimuth array of ML points is partitioned using a running (boxcar) 21° 

sector window (±10° around the azimuth of MLDA designation). If the 

total number of ML points in a sector exceeds an adaptable threshold, then 

ML designation will be performed for that particular sector. If not, 

designation is not possible for this sector.  

2. The heights that encompass a majority of the ML points are determined. In 

the proposed algorithm, the ML top is determined as the height below 

which 80% of ML points reside. Similarly, the ML bottom is determined 

as the height below which 20% of the ML points reside. Example ML 

boundaries are presented with solid lines in Fig. 6.   

3. Missing designations (e.g., directions not meeting the threshold 

requirements) are filled using valid ML radar retrievals. For example, if 

only a single sector qualifies for a valid designation, that designation is 

utilized for all azimuths.         
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2.1.4 Justification of the Thresholds in the MLDA Procedure 

The ρhv thresholds serve as the primary criteria for ML point identification 

along a radial. The lower MLDA ρhv threshold of 0.90 mitigates contamination from 

nonmeteorological scatterers. The upper ρhv threshold was selected to ensure the best 

discrimination between wet snow (within the melting layer) and light-to-moderate 

rain (below the melting layer) or dry snow (above the melting layer). The separation 

between these three categories of hydrometeors in terms of ρhv, as well as Z and ZDR 

is illustrated in Fig. 7. The histograms in Fig. 7 summarize the results of polarimetric 

hydrometeor classification for a large set of the KOUN data including 29 hours of 

observations for 6 storm events in central Oklahoma (Park et al. 2007). Fig. 7a 

presents normalized histograms of ρhv for the two types of snow and rain. It is evident 

from Fig. 7a that the best separation of wet snow (ML) from dry snow and rain is 

achieved if the demarcation value of ρhv = 0.974 is used. This value is very close to 

the upper ρhv = 0.97 threshold. The Z and ZDR histograms for the three classes in Fig. 

7bc also substantiate the choice of the relevant Z and ZDR thresholds in the MLDA.    

We also consider the impact of radial smoothing and antenna beam 

broadening on the vertical profile of ρhv in justification of the ρhv thresholds. In order 

to evaluate such an impact, we take a model profile of intrinsic ρhv (solid line in Fig. 

8) and compute the corresponding profiles modified by radial smoothing and beam 

broadening for elevation angles 4.5° and 10° (dotted lines in Fig. 8) following the 

methodology suggested by Ryzhkov (2007). The shape of the model profile was 

obtained from KOUN measurements at very high elevation angles (between 10° and 

45°) without any radial smoothing for the case on April 7, 2002 (see Ryzhkov et al. 
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(2005b)). The height of the melting level (3.7 km) is adjusted to be more consistent 

with an average climatological value for central Oklahoma. 

Although the model ρhv profile is almost symmetric, there is more broadening 

on the upper side because of very different vertical gradients of radar reflectivity 

factor above and below the melting layer. As expected, the broadening is more 

significant at elevation 4.5°. If the vertical profile of ρhv is not widened at all, then 

using the MLDA threshold of 0.97 (dashed vertical line) would result in about 0.25 

km underestimation of the melting level height. Beam broadening and radial 

smoothing at elevations of 10° and 4.5° for this example causes about 0.1 km of 

underestimation and overestimation of the freezing level height, respectively. Hence, 

at least a fraction of the ML points from a typical melting layer are expected at 

heights above the melting level. If all ML points are counted, overestimation of the 

melting level height is inevitable. This is one of the reasons for discarding ML points 

above the 80% percentile for estimation of the ML top. 

The choice of the cutoff percentiles in the height distribution of ML points is 

quite subjective. Apparently, retaining too many ML points in the distribution tails 

leads to increasing statistical errors in determination of the ML top and bottom. On 

the other hand, decreasing the interval between the two cutoff percentiles too much 

would produce an artificially narrow melting layer (however, mitigating the impacts 

of beam broadening and radial smoothing). We believe that 20% and 80% is a 

reasonable compromise. Ultimately, an empirical correction is likely needed for any 

choice of the cutoff percentiles (see section 2.3). 
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2.1.5 Additional Considerations 

In addition to the use of multiple elevation angles to improve ML designation, 

the MLDA procedure retains information from previous volume scans to alleviate 

sparse data intervals in time and space and improve time continuity of the 

designation. This is accomplished by combining arrays of ML points corresponding 

to the current and two previous radar volume scans. With update times of 5 minutes, 

this translates to approximately a 15-minute averaging window.  From operational 

testing, the 15-minute window reflects the shortest time averaging interval which 

consistently produces spatially continuous ML boundaries.  Previous studies by 

Gourley and Calvert (2003) indicate success with the use of a 30-minute window.     

For some events, it is possible that no pronounced ML signatures exist, the 

lowest radar tilt in the MLDA may overshoot storms/ML signatures at distance 

greater than 60 km, or the ML signature may be embedded in ground clutter 

hindering proper interpretation with KOUN. Because the MLDA capitalizes on the 

polarimetric signatures of melting snowflakes and not those associated with melting 

graupel or hail, ML designation is not available in convective events with an absence 

of surrounding regions of melting snow. For situations where a ML cannot be 

determined, model output temperatures, radiosonde and surface temperature data, or 

user-defined values are necessary to supplement the operational products or until 

sufficient radar melting signatures can be accumulated. Such considerations allow for 

uninterrupted application of ML designation for generation of other polarimetric radar 

products. 
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2.2 Validation of Melting Layer Designation 

  

Following the Glossary of Meteorology, the melting layer is defined as the 

altitude interval throughout which ice-phase precipitation melts as it descends. The 

melting level is defined as the lowest 0°C constant temperature surface and the top of 

the melting layer (Glickman 2000). In stratiform and widespread precipitation events, 

it is expected that the retrieved ML top should coincide well with the location of the 

melting level since the onset of snowflake melting is typically at temperatures of 0°C 

or slightly warmer. The height of the ML bottom is variable and may be several 

hundred meters below the melting level at temperatures warmer than 5°C depending 

on humidity, particle concentration or density (e.g., Stewart et al. 1984, Pruppacher 

and Klett 1998, Willis and Heymsfield 1989, Fabry and Zawadzki 1995). The 

thickness of the ML has been observed close to 500 meters according to long-term 

ML observations (e.g., Fabry and Zawadzki 1995).   

The performance of the MLDA has been tested for several precipitation 

events in central Oklahoma. A list of the 18 events and the validation sources for 

these events is provided in Table 1. Designations of the top and bottom of the ML 

have been checked against high frequency Rapid Update Cycle (RUC) model analysis 

output (e.g., Benjamin et al. 2004). ML top designations have also been validated 

against radiosonde observations. Areal averaged ML top heights (average ML top 

height designation from all valid azimuthal directions) retrieved from the KOUN 

radar are compared to the heights of the lowest 0°C level from these sources. 

Radiosonde data are obtained from the Norman, Oklahoma (OUN) NWS radiosonde 
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site that is within 200 meters of the KOUN radar site. RUC model analysis output 

from the closest model grid points is interpolated over the KOUN radar location.    

 

2.2.1 Comparison with Radiosonde Observations 

Radiosonde temperature and height measurements from the NWS Norman, 

OK (OUN) location are available at 0000 and 1200 UTC (Vaisala RS80 radiosonde 

equipment). The nearest valid radar-based designation (to within an hour and a half of 

the OUN sounding) is utilized for comparisons. Because of the limited sounding 

frequency, radiosonde-derived 0°C levels in close temporal proximity are not 

available for all events listed in Table 1. TELEX field campaign high-resolution 

balloon launch data supplement OUN soundings for select events during summer 

2004 (as noted in Table 1). 

Areal averaged ML top heights from the MLDA are plotted against the 

radiosonde-derived melting level heights in Fig. 9. The plot contains all available 

hours of comparison (16 hours total). The bias of the radar estimate for this dataset is 

-0.18 km with a RMS error of 0.28 km and standard deviation of 0.21 km.  The 

correlation between ML top obtained from the radar and radiosonde-derived 0°C 

height is 0.92. 

 

2.2.2 Comparison with RUC Model Analysis Output 

 Operational forecast models may provide accurate estimates of the melting 

level height to within a few hundred meters, particularly in uniform precipitation 

events (e.g., Mittermaier and Illingworth 2003). An advantage of the RUC model is 
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the high spatial and temporal resolution of its output. Hence, longer series of 

continuous radar-based ML designations can be validated.        

A comparison of areal averaged ML top height and RUC model analysis 

output 0°C height is presented in Fig. 8. The plot contains 136 hours of RUC-radar 

comparisons for the 18 events in Table 1. Although the majority of points in Fig. 10 

group very well along the 45° line, there is a separate cluster of points denoted with 

asterisks for which the radar shows a substantially lower height of the melting level 

compared to the RUC model. These points are associated with a few warm season 

convective events for which the RUC output may not be a reliable verification source. 

The reliability of RUC output is discussed in more detail in the next section. After 

these spurious hours are removed, a subset of 115 hours remains. For this subset, the 

bias is -0.16 km with an RMS error of 0.27 km and standard deviation of 0.22 km. 

The correlation between ML top heights and RUC model-derived melting level height 

is 0.93.  

Fig. 11 displays a histogram of the RUC model temperature associated with 

the heights of the ML top designations for the hours of available RUC model output. 

The histogram is plotted at 0.5°C temperature bin intervals. Similar analysis was 

performed for ML bottom designations in Fig. 12. ML bottom designation indicates a 

wider range of associated temperatures, with the ML bottom often identified between 

RUC 2°C and 6°C. Events with extremely warm ML bottom designations (e.g., RUC 

temperature greater than 5°C) are typically associated with mature warm-season 

convective line events featuring trailing precipitation regions and/or questionable 

RUC or ML retrieval performance. A histogram of MLDA ML depth (ML top minus 
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ML bottom) for the hours of the RUC model dataset is presented in Fig. 13. ML 

thickness is typically less than 500 meters, consistent with long-term ML thickness 

observations by Fabry and Zawadzki (1995). 

 

2.2.3 Temporal Dependencies  

Checking temporal and spatial continuity of ML retrievals is a simple test of 

the algorithm performance. Since the radar ML designations in the dataset were 

updated every 5 minutes for the periods of several hours, it was possible to trace 

general trends and sharp changes in the characteristics of air masses associated with 

frontal passage or convective lines (Fig. 14). Temporal dependencies of areal 

averaged ML top heights are provided in Fig. 14 for four long-duration events in the 

dataset. Crosshairs on the image indicate results of the radar retrieval. NWS 

radiosonde-derived melting level heights are denoted with an ‘S’ symbol. Melting 

level heights obtained from the RUC are shown with diamonds. Error bars for the 

radar estimates reflect the degree of azimuthal variability.     

 

 

2.3 Discussion 

 

Overall, areal averaged height of the melting level (ML top) estimated from 

the MLDA correlates very well (at the level of 0.92-0.93) with heights obtained from 

soundings or RUC model analysis output except for a few outliers typically 

associated with mature warm-season MCSs. If the outliers are excluded, then the 
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radar algorithm yields a negative bias between 0.16 and 0.18 km. Most bias is 

attributed to the cut-off percentile choice of 80% for the ML top. One may reduce or 

eliminate most bias if a higher percentile threshold is chosen. However, an increase of 

this threshold may result in noisier retrievals. Thus, we prefer to use the 80% 

percentile level for the ML top designation and add an empirically derived correction 

of 0.16 km. This would ensure the unbiased estimate and the RMS error of 0.22 km. 

An offset (although perhaps less pronounced) is expected for ML bottom retrievals, 

however limited observations are available to validate this offset.   

Several additional factors may also contribute to a discrepancy between the 

areal averaged estimates of the ML heights from radar, soundings and model analysis 

output. One of them is azimuthal variability of the ML height that is not captured by 

spatially sparse NWS soundings and quite often is not well reproduced in RUC model 

output. In the case of widespread radar echo typical for large frontal systems or 

trailing stratiform regions of MCS events, the polarimetric radar demonstrates a 

unique capability to track spatial variations in the depth and height of the ML 

including small-scale undulations of the melting level (e.g., due to localized 

convection or the passage of convective lines, as highlighted in the lower panel of 

Fig. 6). As error bars in Fig. 14 indicate, spatial variability of the MLDA-retrieved 

height exceeds 300 m for several events. The radar provides ML retrievals only in the 

areas of radar echo, whereas many soundings used for validation were collected in 

precipitation free air. 

MLDA update frequency can provide a significant improvement over RUC 

model analysis output which is available hourly with observational data assimilation 
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“cut-off” times that may delay the analysis output by 20-50 minutes after the analysis 

time. RUC model analyses rely on the previous 1-h forecast which may exhibit errors, 

particularly in convective regimes. A benefit of high resolution radar ML retrieval is 

well illustrated with an example of the 13 May 2005 event (Fig. 14d) featuring an 

intense convective line and trailing precipitation region in the vicinity of the KOUN 

radar location. As the system approaches the radar location, the RUC 0°C height and 

radar areal averaged ML heights significantly differ. By 1200 UTC, the RUC 0°C 

height and the overall temperature profile change markedly following the RUC 

assimilation of the 1200 UTC OUN sounding. The change is indicative of prior 

questionable performance of the RUC model for this event. For the 1200 UTC 

analysis time, the MLDA top height is in best agreement with RUC model 0°C height 

and the OUN sounding. It is noted that the 1200 UTC OUN sounding was most likely 

launched into a relatively precipitation-free environment behind the trailing stratiform 

region, which may account for the observed mismatch of about 400 m between the 

OUN and MLDA designations.   

 

 

2.4 Summary 

 

1. A new melting layer detection algorithm (MLDA) has been developed for 

use with the polarimetric WSR-88D radar. The algorithm estimates the top 

and bottom boundaries of the ML using radar reflectivity factor Z, 
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differential reflectivity ZDR, and cross-correlation coefficient ρHV 

measured at antenna elevations between 4° and 10°. 

2. The suggested algorithm was validated using sounding data and the output 

of the RUC model for 18 events encompassing 136 hours of observations 

in central Oklahoma. The height of the top of the ML retrieved from the 

radar was compared to the height of the lowest 0°C isotherm obtained 

from soundings and the RUC model. 

3. In 85% of cases the MLDA yields unbiased estimates of the height of the 

melting level with an RMS error of 0.22 km. The correlation coefficient 

between the radar estimates and the ones from soundings and the RUC 

model output was as high as 0.92 and 0.93, respectively, for this category 

of events (mainly widespread stratiform rain). 

4. The remaining 15% of the cases were primarily associated with mature 

warm-season mesoscale convective systems for which radar-derived ML 

heights were occasionally 1 km lower than the RUC model prediction. 

There is a strong indication that the radar might provide more reliable 

designation of the ML than the RUC model in these situations. 

5. It was found that the temperature of the bottom of the ML varies in a wide 

range from 2°C to 6°C. According to MLDA retrievals, the depth of the 

ML changed from 100 to 900 m with a median value of about 400 m in the 

dataset used for validation. 

6. The MLDA product updated every 5 minutes exhibiting solid temporal 

continuity and consistency with model output and soundings. 
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7. It is demonstrated that the MLDA captures the azimuthal and spatial 

variability of the height of the ML in the cases of widespread 

precipitation. 

8. The MLDA is considered as an essential part of the operational 

polarimetric radar echo classifier to be used with polarimetric-upgraded 

WSR-88D radars. 
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3.  ESTIMATION OF RAINFALL BASED ON THE RESULTS OF 

POLARIMETRIC ECHO CLASSIFICATION 

 

Accurate rainfall estimates are vital for most hydrologic applications. The 

U.S. National Weather Service requires estimates of rainfall at ranges up to 230 km 

from the radar. However, the quality of radar measurements and rainfall estimates 

degrades with distance as a result of beam broadening and the effect of Earth 

curvature (e.g., Smith et al. 1996; Sanchez-Diezma et al. 2000; Ryzhkov 2007). At 

longer distances from the radar (typically beyond 100 km at base tilt), the radar 

resolution volume is more likely filled with mixed-phase or frozen hydrometeors. The 

radar measurements aloft are also quite loosely related to rainfall near the ground as a 

result of drastic changes in microphysical properties of precipitation in the vertical 

due to sublimation, riming, aggregation, evaporation, coalescence, break-up and 

advection (e.g., Doviak and Zrnic 1993, Sec. 8.4) 

Contamination from nonliquid hydrometeors is especially pronounced in 

colder climates where the melting layer (or bright band) is particularly low. Even in 

relatively warm climates, this contamination generally occurs over a significant 

portion of the required NWS radar rainfall coverage area. For a typical warm-season 

melting level height in central Oklahoma (~3 km AGL), contamination of radar 

rainfall estimates at the 0.5° elevation angle due to the presence of mixed-phase and 

frozen hydrometeors  is usually  observed as close as 120 km from the radar. As a 

result, the accuracy of rain estimation may be compromised in over two-thirds of the 

radar rainfall coverage area required by the NWS.  
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Several studies discuss the quality of conventional rainfall estimation with 

single-polarization radar to large distances (e.g., Fabry et al. 1992; Smith et al. 1996; 

Seo et al. 2000; Krajewski and Ciach 2005). To obtain accurate surface rainfall 

measurements at longer distances, it is necessary to address the impact of melting 

layer and frozen hydrometeor contamination on radar measurements. For 

conventional radars, emphasis has been on establishing characteristic vertical profiles 

of reflectivity (VPR) to account for the reflectivity behavior through regions of 

melting hydrometeors (e.g., Koistinen 1991; Andrieu and Creutin 1995; Kitchen 

1997). Although methods capitalizing on the knowledge of the VPR yield improved 

rainfall estimates at longer distance, these techniques are sensitive to precipitation 

variability including changes in storm type (e.g., stratiform versus convective) and 

temporal/spatial changes in the VPR (e.g., Zawadzki 2006). In this chapter, we 

suggest an alternate approach that capitalizes on polarimetric classification of radar 

echo rather than vertical profiles of reflectivity.  

Polarimetric radar provides new opportunities to improve the accuracy of rain 

measurements. A number of different polarimetric algorithms for rainfall estimation 

have been recently validated in an operational environment during the Joint 

Polarization Experiment (JPOLE) field campaign, which was held in central 

Oklahoma in 2002-2003 (Ryzhkov et al. 2005a,b). In the JPOLE study, it was shown 

that the so-called “synthetic algorithm,” which utilizes different polarimetric relations 

depending on the value of Z, outperforms all other relations at the distances less than 

90 km from the radar (Ryzhkov et al. 2005a). The performance of the synthetic 

algorithm (as well as other rainfall algorithms) at longer ranges was not investigated 
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in that study. Preliminary analysis by Giangrande and Ryzhkov (2003) and Ryzhkov 

et al. (2005b) demonstrated statistical improvement in the accuracy of rain 

measurements at longer distances (between 100 and 200 km) if the R(KDP) relation is 

used instead of R(Z). We are not aware of any other substantial effort to validate 

polarimetric rainfall algorithms beyond the range of 100 km, and the quality of 

polarimetric rainfall measurements at longer distances (where the radar samples 

mixed-phase and frozen hydrometeors) is largely unknown. One of the major 

objectives of this chapter is to examine the performance of polarimetric algorithms 

for rain estimation up to the distance of 250 km from the radar using a large dataset 

collected with the polarimetric prototype of the WSR-88D radar (KOUN herein) and 

Oklahoma Mesonet gage network.  

Previous studies indicate that regardless of range interval it is unlikely any 

single radar relation would produce high quality precipitation estimates at different 

distances from the radar and for different types of hydrometeors filling the radar 

resolution volume (e.g., Jameson 1991; Chandrasekar et al. 1993; Cifelli et al. 2002; 

Ryzhkov et al. 2005a). According to the Ryzhkov et al. (2005a) synthetic approach, 

the segregation between different polarimetric relations is based on radar reflectivity 

factor. Following Zrnic (1996), we suggest using results of polarimetric hydrometeor 

classification for such a segregation.  

This chapter emphasizes the quality of polarimetric rainfall estimation for a 

broad range of distances from the radar. The data were collected with the KOUN 

radar in central Oklahoma. Polarimetric echo classification has been integrated into 

this study to investigate the performance of radar rainfall estimation contingent on the 
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type of hydrometeors that fill the radar resolution volume. Hourly Agricultural 

Research Service (ARS) Micronet and Oklahoma Mesonet rain gage accumulations 

are used to validate conventional and polarimetric radar rainfall measurements (e.g., 

Brock et al. 1995, Shafer et al. 2000). The ARS and Mesonet gages used in this study 

are well calibrated and located at distances between 25 km and 250 km from the 

KOUN radar (e.g., Shafer et al. 2000; Fiebrich et al. 2006; McPherson et al. 2007). 

 

 

3.1 Radar Dataset, Preprocessing and Echo Classification 

 

A total of 43 events observed by the KOUN radar between the years of 2002 

and 2005 have been selected for analysis. The dataset includes gage observations 

from over 100 Oklahoma Mesonet stations and comprises 179 hours of radar data. 

Concurrent gage observations were available from the densely-spaced ARS network 

stations located at ranges of 50-88 km from the KOUN radar. The total number of 

ARS gages with an average spacing of about 5 km is 42 (24 after 2004 when some 

gages were decommissioned). Over the ARS network, comparisons between the 

performance of radar-based rainfall retrievals are mainly affected by DSD variability 

and the possible presence of hail rather than ground clutter or contamination from 

melting layer or frozen hydrometeors (e.g., Ryzhkov et al. 2005a). A map of the 

observation network in central Oklahoma is presented in Fig. 15. A complete list of 

rain events and hours of observation is provided in Table 2. The dataset includes 

warm-season convective storms containing hail, mesoscale convective systems 
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(MCS) with intense squall lines and trailing stratiform precipitation, widespread cold-

season stratiform rain, and select tropical storm remnants. The Mesonet and ARS 

gages (shielded Met One tipping-bucket type) used in the study are unheated, 

therefore we exclude the data associated with frozen and/or mixed phase precipitation 

recorded at gage level.  

Radar rainfall estimates and echo classification results were obtained from the 

KOUN radar using data collected at the 0.5° elevation scan. Radar reflectivity 

measured by KOUN was matched with Z obtained from the nearby KTLX WSR-88D 

radar, which was assumed to be well calibrated based on the results of our previous 

studies (e.g., Ryzhkov et al. 2005c; Giangrande and Ryzhkov 2005). ZDR was 

calibrated using polarimetric signatures of dry aggregated snow above the melting 

level following Ryzhkov et al. (2005c). A minimum ρhv = 0.85 threshold was applied 

as an additional check to filter echoes of nonmeteorological origin. Radar reflectivity 

was capped at 53 dBZ to mitigate hail contamination.  

In this study, hourly gage and radar rainfall accumulations over gage locations 

within 250 km of KOUN are compared. Hourly radar accumulations are defined as an 

hourly rainfall estimate averaged over an area centered on an individual gage. Radar 

rainrates are averaged using 5 gates centered over the gage location and two closest 

azimuths separated by 1 degree. Such averaging produces a radial resolution of 1.0 

km and transverse resolution that varies with range.      

When comparing radar and gage rain estimates, one must be mindful of the 

errors of tipping bucket (TB) gage measurements (e.g., Zawadzki 1975, Wilson and 

Brandes 1979, Austin 1987, Ciach 2003). The errors in gage accumulations 
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associated with high wind undercatch and splashing may exceed 12% for intense 

MCS events in central Oklahoma (Duchon and Essenberg 2001). These errors are not 

common and/or typically have a lesser impact on the hourly rain total. Quality 

assurance meteorologists at the Oklahoma Mesonet perform regular gage 

maintenance and event-based analysis to detect and remove accumulation reports 

from malfunctioning and apparently biased gages. Thus, we believe that the intrinsic 

gage errors in the hourly rain total are well below the expected errors of radar rainfall 

measurements. 

To establish the quality of the conventional and polarimetric radar rainfall 

algorithms, absolute differences between radar and gage estimates (expressed in mm) 

are examined rather than standard fractional errors, which are heavily weighted 

towards small accumulations. Rainfall estimates are characterized by the bias B = 

<Δ> and the rms error RMSE = <|Δ|2>1/2, where Δ = TR – TG is the difference 

between radar and gage hourly totals for any given radar-gage pair and brackets 

imply averaging over all such pairs.  

A second objective is to examine the quality of radar rain measurements as a 

function of radar echo type and to explore the value of polarimetric hydrometeor 

classification for quantitative precipitation estimation. For this purpose, the type of 

scatterers in the radar sampling volume corresponding to a particular gage location 

was identified using a polarimetric classification algorithm based on fuzzy logic 

principles. The classification algorithm utilized herein is close to the one described by 

Ryzhkov et al. (2007) and Park et al. (2007) (as in Chapter 1, section 4). The 

membership functions in the fuzzy logic scheme are consistent with those in the 
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literature (e.g., Liu and Chandrasekar 2000; Lim et al. 2005). The classifier 

distinguishes between 10 classes of radar echo, including Anomalous Propagation 

and Ground Clutter (AP / GC), Biological Scatterers (BS), Light to Moderate Rain 

(RA), Heavy Rain (HR), Rain/Hail (RH), Big Drops (BD), Graupel (GR), Wet Snow 

(WS), Dry Snow (DS), and Ice Crystals (CR). The classification algorithm in this 

study utilizes four radar variables: Z, ZDR, ρHV and a texture parameter SD(Z), i.e., the 

standard deviation of small-scale fluctuations of Z along a radial. SD(Z) is primarily 

used to distinguish meteorological and nonmeteorological echo. Melting level height, 

which is required as an input into the classification scheme, is determined from the 

closest available NWS sounding in Norman, OK.  

The classification code distinguishes between 4 types of rain: RA, HR, RH, 

and BD. The membership functions in the fuzzy logic scheme for 4 classes of rain 

overlap significantly in terms of all 4 radar variables and are constructed in such a 

way that distinction between light to moderate rain (RA) and heavy rain (HR) is 

primarily based on Z using a 45 dBZ borderline. This corresponds to a rain rate of 

approximately 25-30 mm hr-1. Rain-hail mixture (RH), on the other hand, is 

recognized and distinguished from heavy rain (HR) with the same Z by significantly 

lower values of ZDR and ρhv. Rain associated with significant presence of big drops 

and/or a relative deficit of small drops is usually characterized by anomalously high 

ZDR (for a given Z) and is identified as BD in the echo classifier. Rain belonging to 

the BD category is commonly observed in the updraft areas of the storms where 

vigorous size sorting of raindrops occurs. BD designations may also be found beneath 
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mature bright bands associated with the melting of large snowflakes in the stratiform 

regions of an MCS. 

Table 3 and Fig. 16 summarize results of echo classification at Oklahoma 

Mesonet gage locations up to 250 km from the KOUN radar for the entire dataset 

containing 43 rain events and 179 hours of observation. On average, a radar echo over 

a particular gage was strong enough to be classified during 30% of the observation 

period. 

The second column in Table 3 shows the percentage of occurrence for 

different echo types at elevation 0.5° in the 250 km radius area for the whole dataset. 

These data indicate that about 53% of radar echoes observed at the lowest elevation 

scan are associated with liquid hydrometeors (raindrops or raindrops mixed with 

hail), while mixed-phase or frozen particles are responsible for 23% of these echoes. 

Classification performed over the ARS gages shows an absence of frozen and mixed-

phased echo over these locations for the events in the dataset.  

For the classifications over Oklahoma Mesonet gage locations, the light to 

moderate rain (RA) category is the dominant echo type and classified to the distances 

of 170 km. Although convective rain categories including Heavy Rain, Big Drops, 

and Rain/Hail only account for approximately 10% of the valid classifications, their 

contribution to total rain amount exceeds 40% (if estimated from the standard WSR-

88D R(Z) relation) because of higher rain rates. Echoes related to frozen and mixed-

phase hydrometeors are typically observed at distances beyond 100 km. Wet Snow is 

a prevalent category among nonrain class designations owing to several MCSs with 

trailing stratiform precipitation in the dataset.   
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Echo classification is performed over each gage location during every radar 

scan, whereas radar and gage rainfall accumulations are computed for each hour. 

Because classification results generally change from scan to scan at the same 

location, several class designations may be associated with a single hourly rain total. 

To quantify the accuracy of hourly rainfall estimation for individual echo classes, we 

prefer to assign the hourly rain total to a single, dominant echo class for that hour. For 

example, a particular hourly gage accumulation is associated with light and moderate 

rain (RA) if the corresponding radar echo is classified as RA for at least 70% of radar 

scans constituting this hour. We refer to this type of echo as rain type I.  

Other categories of rain (BD, HR, RH) are relatively infrequent (see Fig. 16 

and Table 3) and the number of hours and gages over which such signatures are 

dominant is too small for obtaining reliable statistics. For this reason, we combine 

these rain categories in a single class of rain called rain type II. An hourly gage total 

is associated with rain type II if either RA, BD, HR or RH (or all of them together) 

are detected for at least 70% of time and one of the three categories (BD, HR, or RH) 

are identified for no less than 20% of time. 

 

3.2 Rainfall Estimates Associated with Different Echo Types 

 

The performance of different rainfall relations is investigated contingent on 

the results of polarimetric echo classification. It is known that conventional radar 

rainfall estimates obtained from R(Z) relations deteriorate in the presence of mixed-

phase and frozen hydrometeors. Previous studies have shown that the R(Z, ZDR) 
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relation is less prone to DSD variability, but it is not immune to hail contamination 

and is not efficient in situations of melting layer contamination and precipitation 

overshooting (e.g., Aydin et al. 1990; Ryzhkov and Zrnic 1995; Brandes et al. 2002; 

Ryzhkov et al. 2005a,b). Rainfall algorithms based on KDP are more robust in the 

presence of hail, but are not optimal for light rain (e.g., Chandrasekar et al. 1990; 

Ryzhkov and Zrnic 1995). Giangrande and Ryzhkov (2003) demonstrate that R(KDP) 

outperforms R(Z) in melting layer regions, but the improvement may be fortuitous 

and requires further clarification. The results of polarimetric echo classification can 

be utilized to further investigate the nature of the errors inherent to all three types of 

rainfall relations (R(Z), R(Z, ZDR), R(KDP)) depending on the type of radar echo. We 

examine the performance of different rainfall relations separately in rain below the 

melting layer, within the melting layer where wet snowflakes are the dominant 

scatterers, and in frozen hydrometeors including graupel, hail, dry snow, and crystals 

above the melting layer where the direct application of radar rainfall relations is 

questionable. 

 

 

3.2.1 Rainfall Relation Comparisons in Rain 

Rain is most often classified at relatively close distances from the radar. For 

this reason, both Oklahoma Mesonet and ARS Micronet gage network accumulations 

are available to validate radar rainfall algorithms in rain. In this study, the offered 

relations R(Z), R(KDP) and R(Z,ZDR) follow the relations found in (53) – (55), 

respectively.  
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Scatterplots of hourly rainfall totals obtained from the radar relations (53) - 

(55) versus hourly gage accumulations are displayed in Figs. 17–20. Figs. 17 and 18 

illustrate radar – gage comparisons using Oklahoma Mesonet and ARS gages if rain 

is classified as rain type I as specified in Section 3.2. Similar plots highlighting the 

performance of the three rainfall relations for more convective and/or heavier rain 

type II (as specified in the previous section) are provided in Figs. 19 and 20 for the 

same gage networks. 

 For rain type I, the tested relations show similar performance with respect to 

both gage networks. A modest improvement in the rms errors is observed for all three 

rainfall relations if the ARS network is utilized for validation. This may be attributed 

to the improved spatial resolution of the KOUN radar measurements over these gages 

(all 42 ARS gages are located to within 88 km, as compared to 20 Mesonet gages). As 

Figs. 17 and 18 show, the R(Z,ZDR) relation is relatively unbiased and has the lowest 

rms errors over both networks, consistent with the Brandes et al. (2002) findings. The 

improvement yielded by the R(Z,ZDR) is relatively modest for rain type I and is more 

pronounced over the ARS network (Fig. 18c).  

There is a clear benefit in polarimetric rainfall estimation in rain type II. The 

sizable reduction in bias and rms error (as compared to rain type I) for the R(Z,ZDR) 

and R(KDP) relations is an indication that these relations are less susceptible to hail 

contamination and DSD variability. The conventional R(Z) relation significantly 

overestimates rain type II even though radar reflectivity is capped at 53 dBZ level to 

mitigate hail contamination. This overestimation is attributed to large raindrops 

and/or melting hailstones, which are typical for convective storms during warm 
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season in Oklahoma (e.g., Ryzhkov et al. 2005a). High values of Z in the R(Z, ZDR) 

relation from (55) are offset by large intrinsic ZDR for big drops and/or small melting 

hail.   

The performance of the R(KDP) and R(Z,ZDR) relations for rain type II is 

comparable, and network-relative performance is similar to the case of rain type I 

(Figs. 17,18). At closer distances from the radar where the radar estimates are 

validated against ARS rain gages (Fig. 20b,c), the R(KDP) relation yields slightly 

higher bias and rms error compared to R(Z, ZDR). The opposite is true in the broader 

range of distances where validation is performed using Oklahoma Mesonet gages 

(Fig. 19b,c). KDP measurements are already heavily filtered in range which may 

explain why these measurements are less sensitive to the additional beam 

broadening/filling effects in rain over Mesonet gages.  

The choice between R(KDP) and R(Z,ZDR) in rain type II is affected by the 

quality of absolute calibration of Z and ZDR, severity of the nonuniform beam filling 

(NBF) effects, and required spatial resolution of rain estimates. For example, the R(Z, 

ZDR) relation cannot be applied in rain/hail mixtures (RH) if the increase in Z is not 

compensated by the proportional increase of ZDR in (55). One has to distinguish 

between situations where rain is mixed with relatively small melting hail having high 

ZDR and large hail characterized by low ZDR. According to our classification 

algorithm, only the latter situation is qualified as hail / rain mixture. This is confirmed 

by the difference in the 2° x 1 km average values of R(Z) and ZDR for Heavy Rain and 

Rain / Hail in Table 3. In rain / hail mixture, higher Z is associated with lower ZDR 

and the R(KDP) relation produces smaller bias.  
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Specific differential phase is immune to radar miscalibration and attenuation 

in rain, making R(KDP) algorithms attractive choice for rainfall estimation.. However, 

because estimates of KDP are noisier and more prone to NBF, the fields of R(KDP) and 

even corresponding hourly totals may contain spurious perturbations and “holes” 

associated with unphysical negative rain rates or accumulations. An example of these 

“holes” in a rainfall accumulation display is presented in Fig. 21a. The reflectivity-

based relation generally produces less noisy, “hole-free” fields of rain totals and may 

be favorable for operational forecast/warning applications, which require high spatial 

and temporal resolution (Fig. 21b). The R(KDP) relation may be preferred in 

hydrological applications, which need unbiased estimates of rain integrated over large 

spatial / temporal domain.     

 

3.2.2 Rainfall Relation Comparisons in Wet Snow 

Wet Snow echoes are associated with (but not limited to) locations of 

pronounced bright band signatures in Z. Wet snow is identified with greater 

confidence if Z is supplemented with polarimetric variables ZDR and ρhv. For the 

KOUN radar, Wet Snow echoes are best characterized by values of ρhv between 0.90 

and 0.97 and ZDR values exceeding 0.7 dB.  

The comparison between hourly rain totals obtained from Eq (53) – (55) and 

Oklahoma Mesonet gages in the cases when the radar samples Wet Snow above the 

gages is illustrated in Fig. 22. Again, an hourly rain total is associated with Wet Snow 

if the radar echo is classified as Wet Snow for at least 70% of the scans within the 

hour. At elevation 0.5º, Wet Snow in the radar resolution volume is usually classified 
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at distances beyond 80 km from the radar and beyond the ARS Micronet gage 

network (Fig. 15). Thus, ARS network accumulations cannot be used for validation in 

the case of Wet Snow echoes.  

The use of a single R(Z) rainfall relation through rain, mixed-phase and snow 

regions is a common practice in conventional NEXRAD operations. However, no 

reasonable expectation exists that a single relation developed for the rain medium 

would be applicable to longer distance and through mixed phase regions. As Fig. 22a 

shows, the conventional R(Z) relation applied over Wet Snow echo gages 

significantly overestimates surface rainfall. Slight improvement in terms of the bias 

and rms error is observed if polarimetric relations are used (Fig. 22b,c). Such an 

improvement may be explained by the fact that KDP is less affected by the 

contribution from large wet snowflakes than Z. Also, because ZDR is high in wet 

snow, the combined use of Z and ZDR helps to partially mitigate the overestimation 

inherent to R(Z). However, the peaks in the vertical profiles of Z and ZDR through the 

bright band generally do not coincide in height and Z and ZDR do not correlate to the 

extent typical for ordinary rain. In addition, both KDP and ZDR are quite prone to the 

NBF effects in the presence of very strong vertical gradients in the melting layer 

(Ryzhkov 2007) and are rather noisy due to low ρhv. Thus, the use of Eqs. (54) - (55) 

in Wet Snow are not as beneficial as in rain.  

In view of these considerations, we recommend using a modified R(Z) 

relation, as opposed to polarimetric relations, if the radar echo is classified as Wet 

Snow. Such a modification implies multiplying the right side of (53) by a factor that 

can be determined empirically by minimizing the bias and rms error in the rain 
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estimate. In the case of Wet Snow for this dataset, this factor was determined to be 

0.6, i.e., the relation R = 0.6 R(Z) works the best (Fig. 22d).  

 

3.2.3 Conventional Relation Performance Above the Melting Layer  

The echo classification routine used in this study classifies four hydrometeor 

species above the melting layer: Dry Snow, Crystals, Graupel, and Rain/Hail. Dry 

Snow and Crystals encompass most polarimetric echo designations exhibiting low Z 

(generally less than 35 dBZ) and ρhv greater than 0.97. Discrimination between Dry 

Snow and Crystals is primarily based on the magnitudes of Z and ZDR. Discrimination 

between Graupel and Rain/Hail above the melting layer is primarily based on the 

magnitudes of Z and ρHV.  

As illustrated by a polarimetric radar cross-section through a typical 

Oklahoma thunderstorm (Fig. 23), the two polarimetric variables KDP and ZDR 

measured above the melting layer are noisy, often negative, and seem loosely 

connected with rain on the ground. Although microphysical processes in the frozen 

part of the cloud directly impact rain formation and polarimetric measurements 

undoubtedly provide insight into the nature of such processes and snow type, the 

quantitative use of the polarimetric variables measured above the melting layer for 

precipitation estimation on the ground has not yet been justified. At the moment, the 

use of modified R(Z) relations may be the most reasonable option provided that the 

type of the radar echo above the melting layer is determined using a polarimetric 

classification algorithm.  
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Fig. 24a shows that the conventional relation (53) heavily underestimated rain 

at the surface if the hydrometeors in the radar resolution volume are identified as Dry 

Snow and Crystals. Note, the classification routine allows for Dry Snow to be 

designated if part of the radar volume is below the freezing level. The errors are 

smaller at closer distances where the height of the radar resolution volume is at or 

below the freezing level (Fig. 24b). Z measurements in these regions often closely 

resemble those in the rain beneath (e.g., Fabry and Zawadski, 1995). As the height of 

radar echo progressively increases with distance, rain underestimation becomes 

overwhelming (Fig. 24c).  

In order to minimize the bias in the estimate of rain when dry snow / crystals 

are sampled by the radar at longer distances, we introduce an additional factor of 2.8 

to conventional R(Z) relation (53) 

R(Z) = 2.8*R(Z) = 4.76 ×10-2 Z0.714 (60) 

The intercept in (60) is between the intercepts of the Z – S relations 

recommended by Super and Holroyd (1998) 

S = 3.86 ×10-2 Z0.5, (61) 

and Vasiloff (2001) 

S = 5.46 ×10-2 Z0.5, (62) 

for estimating snow water equivalent rate S on the operational NEXRAD network if 

snow near the surface is dry.  

The performance of the conventional R(Z) relation for a limited subset of 

cases when the radar echo was classified as Graupel / Hail above the freezing level is 

illustrated in Fig. 25. Because KDP and ZDR are usually small for dry graupel and hail 
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aloft, it is hard to expect rainfall estimation improvement if these two polarimetric 

variables are used directly. Instead, we recommend to use the modified R(Z) relation 

for Graupel / Hail aloft with the multiplying factor 0.8 which minimizes the bias and 

rms error for this data subset. 

 

 

3.3 Radar Algorithms and Their Performance as a Function of Range 

 

 As in section 3.2, there is benefit in the use of different rainfall relations for 

different classes of radar echo. The idea of using multiple relations to optimize 

rainfall estimation as suggested by Chandrasekar et al. (1993), Cifelli et al. (2002), 

and Matrosov et al. (2005) was further explored by Ryzhkov et al (2005a) in JPOLE 

studies. According to the “synthetic algorithm” developed by Ryzhkov et al. (2005a), 

the choice between various polarimetric rainfall relations is determined solely by the 

radar reflectivity Z or R(Z), i.e., rain rate computed from Z using Eq (53). Ryzhkov et 

al. (2005a) recommend using the R(Z, ZDR) relation in light rain (R(Z) < 6 mm/h), 

R(KDP, ZDR) relation in moderate-to-heavy rain (6 < R(Z) < 50 mm/h), and R(KDP) 

relation in heavy rain (R(Z) > 50 mm/h). The three relations were optimized based on 

the comparison with the ARS gages for rain events during JPOLE in 2002 – 2003. In 

Ryzhkov et al. (2005a), the “synthetic algorithm” was validated only at distances less 

than 90 km from the radar, where the contamination from mixed-phase and frozen 

hydrometeors is minimal. Note that the R(Z, ZDR) relation in the “synthetic 
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algorithm” is different from the one given by (25). The R(Z, ZDR) relation in Ryzhkov 

et al. (2005a) was optimized for light rain where R(Z) < 6 mm hr-1.    

We suggest another version of a “synthetic algorithm” which is based on the 

results of polarimetric classification rather than on Z and is applicable for a wide 

range of distances from the radar. This algorithm is constructed as follows.  

R  =  0                    -- if nonmeteorological echo is classified, 

R  =  R(Z, ZDR)      -- if Light/Moderate Rain is classified, 

R  =  R(Z, ZDR)      -- if  Heavy Rain or Big Drops are classified, 

R  =  R(KDP)       -- if  Rain/Hail is classified and the echo is below 

the freezing level,  

R  =  0.6*R(Z)       -- if Wet Snow is classified, 

R  =  0.8*R(Z)      -- if Graupel or Rain/Hail is classified and the radar 

volume is above the freezing level, 

R  =  R(Z)          -- if Dry Snow is classified and the radar volume is 

below the freezing level, 

R = 2.8*R(Z)     -- if Dry Snow or Crystals are classified and the 

radar volume is above the freezing level,   

(63) 

where the R(Z), R(Z, ZDR), and R(KDP) relations are specified by (53) – (55) above,  

Z values are capped at 53 dBZ and rain rate is set to zero if ρhv < 0.85 to ensure 

minimal contamination from nonmeteorological echoes. The set of equations in (63) 

comprises an echo classification (EC) rainfall estimation algorithm. In the current 

version of the EC algorithm, we use two very different R(Z) relations for Dry Snow 

below and above the freezing level. In the future, a more gradual change of the 
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intercept parameter in the R(Z) relation for Dry Snow / Crystals as function of range 

(or radar volume height) might be needed, similar to what was suggested by Hunter et 

al. (2001) for WSR-88D snow accumulation algorithm or what is usually employed in 

the conventional VPR methods. This algorithm was tested on the entire dataset along 

with the individual relations (53) - (55) and the “synthetic algorithm” by Ryzhkov et 

al. (2005a).  

The mean biases and RMS errors for 5 algorithms are plotted as functions of 

range for the entire dataset in Fig. 24. The distances from gauges have been 

partitioned into 50 km wide range bins to smooth the plotting. Due to significant 

radar rainfall accumulations associated with intense convective lines (MCS) and hail-

producing storms, convective warm season events dominate the overall performance 

statistics in Fig. 26. Separate statistics were obtained for widespread “stratiform” rain 

events that we define as the events with an absence of convective signatures and for 

which the bright band played a significant role (Fig. 27). This subset includes 26 

hours of Oklahoma Mesonet gage observations during 9 widespread cold-season 

precipitation events. 

As was claimed by Ryzhkov et al. (2005b) and Giangrande and Ryzhkov 

(2003), the conventional WSR-88D algorithm tends to overestimate rainfall in a wide 

range of distances up to 200 km from the radar and underestimate it beyond 200 km 

because of the progressive overshooting of precipitation at longer ranges (Figs. 26, 

27). The overestimation at ranges below 100 km is primarily due to the impact of 

large drops and melting hail, which are very common in Oklahoma storms (Ryzhkov 

et al. 2005a). At ranges between 100 and 200 km, contamination from the bright band 
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is another factor contributing to the positive bias of the conventional rainfall estimate. 

Depending on the height of the freezing level, the impact of the bright band is 

strongest in the range interval 130 – 180 km. Conclusions regarding the performance 

of the conventional WSR-88D R(Z) relation in this paper are consistent with the 

results of independent statistical study by Krajewski and Ciach (2005), who examined 

a massive amount of radar data collected by the operational KTLX WSR-88D radar 

in the same region, i.e., central Oklahoma. 

The performance of rainfall relations at close distances from the radar (< 100 

km) reaffirms initial JPOLE findings, which suggest that polarimetric methods and 

“synthetic” algorithms in particular outperform the conventional R(Z) relation for 

most precipitation regimes. Three polarimetric algorithms: the Ryzhkov et al. (2005a) 

“synthetic”, EC-based, and R(KDP) demonstrate similar performance at the ranges up 

to 130 km with the EC algorithm producing the lowest bias and the “synthetic” one 

yielding smallest rms errors for all rain events combined (Fig. 26).  

The EC algorithm significantly outperforms others in the range interval 

between 130 and 200 km in terms of the rms error. However, this result is not 

necessarily surprising since the tuned R(Z) relations in mixed phase and frozen 

hydrometeors in the proposed EC-method (63) were developed by minimizing the 

bias and rms errors using subsets associated with different hydrometeor classes within 

the same multi-year dataset. Although our 4-year dataset is rather large and 

encompasses a high variety of different storms, independent testing and validation of 

the method in different climate regions is required to check stability of the suggested 

R(Z) relations for nonrain hydrometeors. There is little chance to find a single R(Z) 
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relation which will perform satisfactory for all classes of mixed-phase and frozen 

hydrometeors. Polarimteric classification combined with the use of multiple R(Z) 

relations provides a better opportunity to reduce uncertainty in rainfall measurements 

in a wide range of distances from the radar.  

Utilizing the classification-based polarimetric algorithm (EC) instead of the 

conventional R(Z) relation results in a reduction of the bias and rms errors of hourly 

rainfall estimates up to 200 km from the radar (Fig. 26, 27). At distances within 50 

km, the rms error is reduced by roughly a factor of 2, largely attributed to improved 

polarimetric performance in the presence of heavy rain and convective echo. This 

result echoes the Ryzhkov et al. (2005a) report of a factor of 1.7 reduction for the 

cases observed in central Oklahoma during JPOLE. The improvement gradually 

phases out with increasing distance from the radar. The degree of the rms error 

reduction exceeds 50% at ranges up to 140 – 150 km and drops to about 20% at 200 

km.  

For the cold season, non-convective events, the EC-algorithm also 

outperforms the conventional one, but to a lesser degree. Polarimetric methods 

capitalizing on the combined use of Z and ZDR offer only modest improvement at 

close ranges. The most tangible improvement is achieved at longer distances from the 

radar where the impact of the bright band is maximized (Fig. 27). 

The EC-algorithm is designed to use specific differential phase KDP more 

sparingly compared to the “synthetic” algorithm which implies more aggressive use 

of KDP. This is dictated by the need to mitigate noisiness in rain fields and the 

appearance of negative accumulations related to noisy and negative KDP. However, in 
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some instances the KDP-based algorithms may produce less bias if substantial 

averaging over time and space is performed. For example, the “synthetic algorithm” 

shows slightly smaller bias at shorter distances than the EC-algorithm. Nevertheless, 

we believe that the overall performance of the EC-algorithm is better and the 

approach is the better suited for implementation on the polarimetric NEXRAD. An 

advantage of the EC-based methodology is that it can be easily adapted to incorporate 

the ideas of traditional VPR correction which will benefit from polarimetric 

classification. 

 

 

3.4 Summary 

 

1. The performance of the conventional and various polarimetric algorithms 

for rainfall estimation has been validated at a wide range of distances from 

the radar. This was accomplished using a large dataset that included radar 

data collected with polarimetric prototype of the WSR-88D radar and gage 

data from the ARS Micronet and Oklahoma Mesonet networks in 

Oklahoma. The type of radar echo in the radar resolution volume over 

gage locations was identified using the polarimetric classification 

algorithm. The accuracy of rainfall estimation was assessed separately for 

different classes of radar echo including liquid, mixed-phase, and frozen 

hydrometeors. 
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2. A new algorithm that utilizes multiple polarimetric relations and modified 

R(Z) relations depending on a radar echo class has been developed. 

According to this strategy, quantitative precipitation estimation should be 

preceded by and contingent on results of hydrometeor classification. The 

R(Z, ZDR) relation is utilized if the radar echo is classified as rain and 

R(KDP) relation is used if large hail is mixed with rain. At longer 

distances, where the radar resolution volume is filled with mixed-phase 

and frozen hydrometeors, the polarimetric radar is primarily used as a 

classifier. R(Z) relations with additional multiplicative factors (or intercept 

parameters) are applied if the radar scatterers are identified as wet snow, 

dry snow, crystals, as well as graupel and hail above the melting layer. 

These factors were optimized for our dataset and further testing of the 

method using independent data in different climate regions will be needed 

to assess their variability. We do not exclude that in the future that the 

R(Z) relations should be modified according to the height of the radar 

resolution volume above ground or melting layer similar to the approach 

recommended by Hunter et al. (2001) for improvements of the WSR-88D 

snow accumulation algorithm.  

3. A validation study that incorporates a 4-year polarimetric dataset 

containing 43 rain events and 179 hours of observations demonstrates that 

the performance of the suggested algorithm, which is based on echo 

classification (EC-algorithm), is superior in terms of both bias and rms 

error. The most significant improvement, as compared to the conventional 
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WSR-88D algorithm, is found in convective storms where the rms error of 

hourly rain estimate is reduced by a factor of 2 at distances less than 50 

km from the radar.  

4. The degree of improvement for all relations gradually decreases with 

range and becomes insignificant at distances beyond 200 km. It is shown 

that the EC method exhibits better performance than the conventional 

WSR-88D algorithm with 1.5 – 2 times reduction in the rms error of one-

hour rainfall estimates up to distances of 150 km from the radar. In regions 

with bright band contamination, the rms error for the EC-method is 

reduced by a factor of 1.25 as compared with the conventional method. 

Only modest improvement in rms error is observed compared to the 

conventional relation in snow above the melting layer.  

5. As opposed to the “synthetic” algorithm suggested by Ryzhkov et al. 

(2005a), the EC-algorithm uses specific differential phase KDP sparingly. 

This was done to avoid noisiness inherent to most of the KDP-based 

algorithms.  
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4.  POLARIMETRIC MEASUREMENTS AT MULTIPLE ELEVATION 

ANGLES 

 

 

The advantages of polarimetric methods for improving radar rainfall 

estimation to longer distances were discussed in the previous chapter. The quality of 

several published and a proposed EC-based rainfall algorithm was assessed for a 

single elevation angle (0.5°) that is the most relevant for standard NWS rainfall 

applications. A main conclusion was that the performance of the tested rainfall 

algorithms deteriorates with range in the locations of mixed-phase and frozen 

hydrometeors. Although it was demonstrated that the knowledge of polarimetric echo 

classification may improve rainfall algorithm performance, the results point to an 

unavoidable limitation of radar-based rainfall estimation to distant ranges; as range 

from the radar increases, the radar beam height and volume size increase such that the 

measured bulk hydrometeor characteristics are increasingly less representative of the 

underlying surface precipitation.  

It was not unexpected that close-distance Mesonet and ARS network gage 

accumulation comparison studies reaffirmed the superiority of polarimetric methods 

in rain. However, the EC-methodology calls for the use of modified R(Z) relations at 

ranges with mixed phase and frozen echo. This implies polarimetric rainfall 

estimation at these locations only capitalizes on polarimetric insight indirectly 

through echo classification. It is further cautioned that tuned R(Z) relations have not 

been extensively tested and are not likely to be universally applicable.  
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As an alternative to the use of modified R(Z) relations, it may be beneficial to 

capitalize on the data collected at lower radar tilts to extend the range interval where 

the radar samples rain, thereby minimizing the role of tuned R(Z) relations in an EC-

based methodology. The potential advantage of data collection at lower radar tilts is 

illustrated by the following example: A beam from the KOUN radar system with base 

tilt at the 0.5° elevation angle intersects the bottom of the melting layer to within 120 

km during the typical warm-season central Oklahoma MCS events (e.g., chapter 3, 

Figs. 26, 27). Under similar atmospheric conditions for a 0.0˚ tilt, simple beam 

geometric considerations dictate the radar beam would intersect the melting layer 

near 170 km. Here, the lower radar tilt provides an additional 50 km of radar 

observations in rain beneath the melting layer where polarimetric relations are best 

suited (100% areal coverage increase). Such an ability to probe liquid hydrometeors 

to much longer distances provides strong incentive to pursue the use of a lower base 

tilt in operations.  

A major limitation for data collection at lower tilts is that the radar 

measurements at these elevation angles are susceptible to partial beam blockage and 

ground clutter contamination. Maddox et al. (2002) highlight the limits of radar 

coverage for the operational NEXRAD WSR-88D network. The study notes that 

radar coverage below 3 km AGL in the western United States is sparse, with 

prominent low-level blockage significantly compromising available radar data. 

Owing to partial beam blockage and public safety considerations, the WSR-88D 

network operates with a minimum elevation angle of 0.5° to ensure unobstructed and 

high quality measurements of Z under typical atmospheric conditions. For low-lying 
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radar systems and/or radar located in mountainous terrain as in the Maddox et al. 

(2002) paper, higher base tilts are necessary to collect uncontaminated data near the 

radar and/or beyond larger surface blockages. It is clear that such data collection at 

higher tilts precludes longer-range precipitation coverage. In this way, the availability 

of unbiased measurements of precipitation or accurate calibration of radar 

measurements in the presence of a PBB is intimately linked with the challenge of 

capitalizing on the lowest available grazing angles for precipitation estimation to 

longer distances. 

 Several studies offer methods to improve conventional precipitation 

measurements over complex terrain (e.g., Andrieu et al. 1997, Seo et al. 2000, Dinku 

et al. 2002, Kucera et al. 2004, Langston and Zhang 2004). A common practice is the 

use of Digital Elevation Models (DEM) to identify the larger-scale topographical 

features responsible for significant partial beam blockage bias in the reflectivity 

factor Z. The accuracy of such DEM-based Z correction procedures strongly depends 

on the extent of beam blockage and often requires the transition to less obstructed 

radar measurements from higher tilts (as in hybrid scanning schemes) when blockage 

exceeds 60%. In many situations, smaller sub DEM-scale anthropogenic structures 

(e.g., towers, buildings) and nearby trees may cause significant occultation of the 

radar beam and lower the quality of Z bias retrievals for these methods. As a further 

complication, the degree of beam blockage also depends on atmospheric refractive 

conditions. This may result in large errors in Z calibration procedures, particularly if 

anomalous propagation occurs (Bech et al. 2003).  
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Polarimetric measurements offer several avenues for precipitation 

measurements in the presence of a PBB. Most notably, polarimetric measurements of 

KDP and ρHV are immune to partial beam blockage. Such blockage immunity may 

provide an opportunity for viable rainfall estimation in mountainous terrain as well as 

rainfall estimation at lower elevations more representative of near ground 

hydrometeors (e.g., Zrnic and Ryzhkov 1996). Radar calibration techniques drawing 

from polarimetric self-consistency (e.g., Goddard et. al 1994, Scarchilli et al. 1996) 

and the polarization properties of some natural scatterers (e.g., Smyth and Illingworth 

1998) may also be adapted to enhance the quality of Z and ZDR measurements for 

subsequent radar rainfall applications to longer distances and in the presence of a 

PBB. 

To this point, the study has solely focused on the data collected by the KOUN 

polarimetric prototype of the WSR-88D. Although the KOUN radar is well-suited for 

most radar rainfall studies, PBB investigations with KOUN are challenging since the 

radar is relatively unobstructed at standard WSR-88D VCP 11/12 grazing angles. 

Nevertheless, it is possible to capitalize on the flexible scanning strategies of KOUN, 

as it is a research radar system. Specifically, the KOUN radar routinely scans at a 0.0° 

base tilt that is partially obstructed by the Earth surface. Since the KOUN 0.5° tilt is 

largely unobstructed, relative comparisons between the 0.0° and 0.5° tilts may 

provide an adequate proxy for the PBB attributed to modest terrain features. 

However, in light of limited KOUN radar blockage, the studies in this chapter are 

supplemented by the large archive of radar data collected by the low-lying NSSL 

Cimarron polarimetric radar that is more prone to the bias by PBB.  
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Several applications of polarimetric radar measurements at multiple, low, and 

partially blocked elevation angles are addressed in this chapter. As an initial inroad 

into the value of radar observations at various tilts, the first section examines changes 

in radial profiles of polarimetric variables at several low grazing angles collected 

during a widespread precipitation event. Following the procedures outlined in chapter 

3, the second section provides KOUN point comparisons for conventional and 

polarimetric rainfall estimates at the 0.0˚ (blocked) elevation angle and the 0.5˚ 

(unblocked) tilt. These comparisons explore the immunity of polarimetric rainfall 

methods in the presence of PBB. The third section discusses methods for the 

calibration of conventional and polarimetric radar measurements in the presence of a 

PBB that may be beneficial for subsequent operational weather radar applications. 

The chapter concludes with an outline of the recommended changes to operational 

strategies for improved rainfall estimation in partially blocked regions.     

 

 

4.1 Comparison of Multiple Elevation Angles  

 

Radial profiles of polarimetric variables through the melting layer provide the 

initial insight into the benefits of lower elevation angles for rainfall estimation. Fig. 

28 displays KOUN radial measurements at the 0.0˚, 0.5˚, 1.5° and 2.5° elevation 

angles for a volume scan from the 11/18/04 JPOLE stratiform rainfall event (00:40Z). 

Profiles are obtained along the 110˚ azimuth in the direction of modest precipitation. 

As described in chapter 2, the heights of the freezing level and the 4°C level from the 
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00Z NWS OUN sounding may reasonably approximate the boundaries of the melting 

layer in cold season events. For this event, the available sounding indicates that 

pronounced polarimetric melting signatures are likely between 2.0 km – 3.0 km AGL. 

Concurrent results from the operational MLDA (performed as in chapter 2) designate 

a melting layer between these heights.  

Polarimetric signatures through the melting layer (Fig. 28) are in general 

agreement with the conceptual model for melting hydrometeors outlined in chapter 2. 

Melting signatures are more pronounced at higher elevation angles, attributed to the 

improved transverse resolution of the measurements. The reflectivity factor exhibits a 

characteristic ‘bright band’ peak, although some ambiguity exists (at the lower tilts) 

which is attributed to localized precipitation variability and the impacts of beam 

broadening. Higher elevation angles resolve these ambiguities and a pronounced 

increase in Z is found at slant ranges that correspond to a mean radar beam height of 

2.5 km.  

Along differential reflectivity profiles, a sharp increase is observed once the 

radar beam encounters the melting layer. This increase is most pronounced along the 

highest tilts, with a relative enhancement of 0.8-1.0 dB found along the 2.5° tilt. As 

with Z measurement profiles, the ZDR enhancements are less well-defined at the lower 

elevation tilts, which is also attributed to precipitation variability, smoothing and 

beam broadening.  

As stated in chapter 2, the cross-correlation coefficient ρHV is sensitive to 

small concentrations of mixed-phase hydrometeors and provides the best signal for 

the onset of melting layer contamination in radar rainfall fields. In contrast to Z and 
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ZDR measurement profiles, there is clear evidence of melting layer signature along 

ρHV profiles for all tilts in Fig. 28. At the 0.5° tilt, previously defined as the radar tilt 

most applicable for current operational rainfall algorithms, there is a significant 0.04 - 

0.05 drop over 50 km originating at the slant range of 85 km. For the 85 km slant 

range, the beamwidth of a WSR-88D radar at the base 0.5° tilt is approximately 1.5 

km with the center of the radar beam at a height of 1.1 km above the surface. Recall 

that the melting layer bottom is placed slightly below 2.0 km AGL based on available 

sounding and MLDA results. In contrast to Z and ZDR profiles, the onset of the 

pronounced ρHV drop along the profile is more readily attributed to the interaction of 

the top portion of the radar beam with the melting layer bottom. Similar arguments 

can be applied with respect to the other tilts shown in Fig. 28. These observations 

confirm that ρHV is more sensitive to melting layer contamination than Z and ZDR, 

with particular emphasis on the response of the measurement at lower tilts where Z 

and ZDR signatures are ambiguous.  

Statistical errors of differential phase measurements increase with decreasing 

ρHV within the melting layer. This explains the noisy measurements of ΦDP and KDP 

and these regions. In the previous chapter, it was highlighted that fluctuations in 

differential phase translate to noisy measurements of KDP and contribute to artificially 

low, nonphysical and/or negative rainfall accumulations. Since the impact of low ρHV 

associated with the melting layer and melting layer contamination at the lowest 

elevation angle occurs at father distances, there is a sizable 30 - 40 km gain in range 

where KDP may be safely used for rainfall estimation. 

 

 76



 

4.2 The Use of Low or Blocked Elevation Angles for Rainfall Estimation 

 

A new radar rainfall algorithm suitable for the polarimetric WSR-88D was 

formulated in chapter 3 and shown to improve rainfall estimation performance to the 

distances mandated by the NWS. The proposed EC-methodology capitalizes on the 

sensitivity of polarimetric measurements to meteorological echo and applies a 

different rainfall relation contingent on echo type. An unstated limitation of the 

methodology for immediate operational implementation is that rainfall relation 

recommendations were based on KOUN radar studies that assume well-calibrated 

radar in the absence of PBB. Therefore, to successfully apply the proposed EC-

methodology for rainfall estimation across the entire WSR-88D network, an 

operational algorithm must be flexible so as to identify and apply necessary 

corrections (which includes adopting different rainfall relations) when the radar is 

miscalibrated and/or partial beam blockage may impact rainfall variables.  

If the location and extent of beam blockage is known or radar miscalibration 

is a concern, perhaps the simplest modification to the proposed EC-methodology 

would be to adopt rainfall relations that heavily capitalize on polarimetric 

measurements of KDP that are immune to PBB. This section explores the usefulness 

of direct rainfall estimation with a R(KDP) relation for partially blocked and 

unblocked tilts. As an additional reference, the performance of the R(KDP) relation is 

compared to the performance from the standard R(Z) relation that will experience 

bias due to PBB at the 0.0° tilt. We may determine the extent of partial beam 

blockage (%) for the KOUN radar at the 0.0° tilt using the expression  
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where the center of the radar beam is at elevation angle θ0 = 0.0° and the top of the 

blocking obstacle (surface of the earth) is defined by the elevation angle θb (as 

illustrated in Fig. 29). Ω is the radar beamwidth, which is 1.0° for the KOUN radar. 

Based on the KOUN tower height h = 20 meters and assuming standard atmospheric 

conditions, the value of θb can be determined based on simple beam geometry as  
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Substituting the value for θb into (64), the degree of beam blockage at the lowest 

KOUN tilt is roughly 37.5%.  

In the presence of a partial beam blockage, Z may be expressed as the product 

of a shielding factor Fshield of the obstacle and the unobstructed value for Z    
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where a Gaussian antenna pattern is assumed with )1
50
α(18.1x −=  and the 

reflectivity factors expressed in linear units. Following (66) for the KOUN 0.0° 

blockage of 37.5%, a 1.8 dBZ bias of Z is predicted.   

Twenty hours of KOUN rainfall measurements have been identified for the 

investigation of R(Z) and R(KDP) relations at low, blocked tilts. The subset was 

selected from the larger JPOLE dataset in the previous chapter and required 

observations during hours when the data from both the 0.0˚ (lowest, blocked tilt 
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available from KOUN) and 0.5˚ tilt were available. A list of the events and the hours 

of observations (as in Table 2) is provided in Table 4.  

Hourly rainfall accumulation comparisons are performed over ARS and 

Mesonet network gages using the conventional R(Z) and the polarimetric R(KDP) 

relations from (53) and (54), respectively. To isolate errors associated with PBB on 

rainfall estimate performance, gages beyond 100 km have been removed to mitigate 

melting layer contamination. Hail contamination is a factor for some events in the 

dataset (based on the results of echo classification), however hail contamination will 

not significantly alter the interpretation of R(KDP) relations. The corresponding gage-

radar accumulation scatterplots for the 0.0˚ and 0.5˚ elevation angles are shown in 

Figs. 30 and 31, respectively. The images combine the results from the Oklahoma 

Mesonet (star symbols) and ARS (cross-hair symbols) network hourly gage 

comparisons.   

It is not surprising that there is a relative underestimation of the hourly rainfall 

accumulation from the conventional R(Z) relation at 0.0° as compared to the 0.5° tilt 

(Fig. 30). At the 0.0° tilt, the conventional relation underestimates rainfall with a bias 

of -0.64 mm and an rms error of 1.95 mm. For the unobstructed KOUN 0.5° tilt, there 

is overestimation of the rainfall with a bias of 0.74 mm and an rms error of 2.20 mm. 

The findings for the unobstructed 0.5° tilt are consistent with the performance of the 

R(Z) relation in rain types I and II over the larger JPOLE rainfall dataset in chapter 3. 

While there is slight improvement in the rms errors at the blocked tilt, the gain is 

likely fortuitous and the improvement is attributed to hail contamination outliers that 

are partially offset by PBB.  
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In contrast to the performance of the conventional R(Z) relation, R(KDP) 

accumulations are unbiased by PBB. Bias and rms error statistics at the 0.0° elevation 

angle are of the same sign and similar magnitude to those obtained at the higher, 

unobstructed tilt (Fig. 31). For the blocked 0.0° tilt, the R(KDP) relation 

underestimates rainfall with a bias of -0.7 mm and an rms error of 1.8 mm. There is a 

slight improvement in the performance of the R(KDP) relation at the higher tilt that 

exhibits a bias of -0.6 mm and an rms error of 1.56 mm. However, if considering only 

higher gage accumulations (> 5 mm) as a means to mitigate noisiness inherent in KDP 

measurements of light rain, the bias and rms errors at both the unblocked and blocked 

elevation angles are nearly identical.  

The results indicate is that R(Z) relations are biased by the presence of PBB, 

however there is no substantial change in the performance of the R(KDP) relation. It is 

noteworthy that the R(KDP) relation applied for the blocked tilt outperforms the 

standard R(Z) relation at the unblocked tilt, as it is less sensitive to DSD variability 

and the presence of melting hail. However, noisiness in KDP measurements still limits 

the viability of R(KDP) relations in light rain. Therefore, although the use of KDP-

based relations may be beneficial in operations when compared to a Z-based relation 

from higher or obstructed tilts, successful application of R(KDP) relations demands 

situations of moderate to heavier  precipitation. Z-based rainfall measurements in 

light rain situations that benefit from cursory blockage correction procedures may be 

ideal if the blockage is not too severe.  

 

 

 80



 

4.3 Partial Beam Blockage Detection and Correction 

 

Regular operation of weather radar mandates frequent calibration to ensure 

accurate measurements. Even modest calibration errors in the measurements of Z and 

ZDR may produce severe deficiencies in the accuracy of radar products such as rainfall 

estimation and hydrometeor classification (e.g., Ryzhkov et al., 2005a). As with the 

errors introduced by system miscalibration or attenuation in rain, partial blockage of 

the radar beam further exacerbates the problem of accurate radar measurements.  

The impact of partial beam blockage and radar miscalibration on reflectivity-

based rainfall relations calls into question the robustness of the proposed EC-

methodology in mixed phase and frozen echo. One of the advantages of polarimetric 

radar is its ability to measure specific differential phase KDP that is immune to radar 

system miscalibration, attenuation in rain, and partial beam blockage. In addition to 

direct applications of KDP measurements for rainfall estimation (as in section 4.2), it 

may be possible to capitalize on the unique properties of KDP for radar calibration 

including Z and ZDR calibration in the presence of a PBB to an accuracy sufficient for 

operational rainfall applications.      

Improvements in radar data quality was a motivating factor for the 

polarimetric upgrade to the WSR-88D network. Several studies explore polarimetric 

methods for radar calibration. Ryzhkov et al. (2005b) examined the idea of self-

consistency among Z, KDP, and differential reflectivity ZDR (e.g., Goddard et. al 1994, 

Scarchilli et al. 1996, Vivekanandan et al. 2003) for the KOUN radar. The calibration 

technique originally suggested in Goddard et al. (1994) was modified by introducing 
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an area-time integration approach over a large spatial/temporal domain and by 

incorporating multiple consistency relations for the central Oklahoma region. This 

calibration methodology was tested on a large dataset during the JPOLE field 

campaign (Ryzhkov et al. 2005c), and exhibited an accuracy to within 1 dB of the 

well-calibrated KTLX WSR-88D reference radar.  

Application of the above consistency technique for Z calibration stipulates 

unbiased measurements of ZDR and KDP. As opposed to KDP, ZDR may also be 

significantly biased by PBB (Ryzhkov et al. 2002). This bias of ZDR caused by 

blockage is usually manifested by an apparent azimuthal modulation of ZDR in 

uniform precipitation. Hence, ZDR should be corrected for the effects of PBB prior to 

calibration of Z if a consistency technique is to be utilized.  

Different methods for absolute ZDR calibration are discussed by Gorgucci et 

al. (1999), Bringi and Chandrasekar (2001), Hubbert et al. (2003), and Ryzhkov et al. 

(2005c) among others. They include the measurement of solar radiation at the two 

orthogonal polarizations and the use of natural scatterers of known polarimetric 

properties such as light rain and dry aggregated snow. However, none of these 

techniques address the assessment and correction of the ZDR bias caused by PBB.   

The section is organized as follows. First, observational evidence of the ZDR 

bias caused by PBB is presented. The evidence includes data collected over a 

multiyear period from two polarimetric radars located in central Oklahoma. A ZDR 

calibration technique is proposed and utilizes radar measurements of ZDR in light rain 

and dry aggregated snow at unblocked and blocked elevations. This calibration 

technique was tested for the NSSL Cimarron radar that suffers from PBB at the 0.5° 
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tilt, and the KOUN radar that does not experience significant PBB at this tilt. Once an 

estimate of ZDR bias has been established, a methodology for the calibration of Z in 

the presence of PBB will be presented following the operational self-consistency 

approach presented by Ryzhkov et al. (2005c). Integration is partitioned into small 

azimuthal sectors to assess the azimuthal modulation of the Z bias. The suggested 

technique is validated by direct comparisons of Z measured by the Cimarron radar 

and the unobstructed KTLX WSR-88D radar near Oklahoma City.  

Although self-consistency studies have demonstrated the usefulness of these 

techniques for absolute radar calibration of Z, the proposed techniques are often 

difficult to implement in operations. A simple consistency method for relative 

blockage and radar miscalibration assessment is also provided. Motivated by the 

results in section 4.2, the technique examines the ratio of the rainrates from a 

polarimetric R(KDP) relation that is unbiased by PBB to those from the conventional 

R(Z) relation that is biased by PBB. For this approach, we utilize KOUN radar 

rainfall rates from the 0.5° tilt that is unbiased due to PBB and compare these to the 

rainrates from the 0.0° tilt that experiences blockage due to beam blockage by the 

Earth surface (e.g., Figs. 30, 31). Radar miscalibration is determined by projecting 

rainrate discrepancies between the blocked and unblocked tilts into Z offsets.       
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4.3.1 ZDR Observations in the Presence/Absence of Partial Beam Blockage 

 

4.3.1.1 Blocked radar (Cimarron) 

It is often difficult to recognize the adverse effects of beam blockage on the 

quality of radar measurements if the blockage is not well pronounced. This was 

precisely the case for the Cimarron polarimetric radar. Although the Cimarron radar 

sits relatively low compared to the surrounding terrain (Fig. 32), the impact of PBB 

on the quality of dual-polarization measurements was not immediately apparent. The 

most common manifestations of the problem include persistent radial ‘valleys’ and 

‘ridges’ in the Z or ZDR fields in cases of uniform precipitation like stratiform rain and 

snow. Another indication of this phenomenon is a repetitive negative bias of Z-based 

rainfall estimates in particular azimuthal sectors. The latter can be revealed only after 

analysis of long-term statistics of radar-gauge comparisons. The natural spatial 

variability of the radar variables often obscures blockage-related azimuthal 

modulations of Z and ZDR over shorter time frames.   

The use of meteorological scatterers of known polarimetric properties 

provides one possible approach to investigate ZDR bias (e.g., Bringi and Chandrasekar 

2001, Hubbert et al. 2003, Ryzhkov et al. 2005c). Light drizzle-type rain and dry 

aggregate snow are possible natural calibration targets. Nearly spherical drizzle 

particles should exhibit ZDR close to zero (in dB scale, e.g., Smyth and Illingworth 

1998, Bringi and Chandrasekar 2001). However, JPOLE studies indicate that drizzle 

constitutes only a small portion of light rain with intensity less than 5 mm hr-1, 

resulting in ZDR values for light rain quite different from zero and dependent on drop 
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size distributions (Ryzhkov et al. 2005c). Fig. 33 illustrates a summary of the mean 

ZDR-Z dependencies for central Oklahoma obtained from multi-year disdrometer data 

and measurements from the well-calibrated KOUN WSR-88D polarimetric radar that 

does not experience beam blockage problems. If highly convective events (thick 

black line) are excluded, the mean ZDR values for light rain with intensities between 1 

and 5 mm hr-1 (Z between 25 and 35 dBZ) commonly vary in the range between 0.4 

and 0.8 dB with median values around 0.5-0.7 dB (which are rather different than 

zero). Fig. 33 represents the ZDR – Z dependencies averaged over large number of 

different rain events with different DSDs.  For given value of Z, the mean ZDR in light 

rain can vary considerably from storm to storm depending on the type of DSD.  Such 

variations can be as high as 0.6 – 0.7 dB (Ryzhkov et al. 2005c). Measurements in dry 

aggregated snow near the ground usually exhibit ZDR below 0.3 dB with much lower 

variability than in light rain provided that wet snow and pristine snow crystals are 

excluded (Ryzhkov and Zrnic 1998a, 2003). 

Because of high variability of ZDR in light rain, dry snow appears to be a 

better calibration target for absolute calibration of ZDR than rain observed at low 

antenna elevations.  However, the impact of DSD on ZDR in stratiform rain can be 

substantially reduced if one examines the difference between ZDR at two adjacent 

elevations (e.g., 0.5º and 1.5º). Such difference is usually small in light stratiform rain 

provided that both elevations are not blocked. The partial beam blockage at lower 

elevation can be recognized by an increased value of the ZDR difference. 

Identification of the areas of light rain (with rain rates between 1 and 5 mm hr-1) 
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requires radar rainfall estimates that are unbiased by beam blockage. This is 

guaranteed by the use of KDP, which is immune to PBB.  

It is reasonable to expect that in the absence of PBB the mean value of ZDR in 

range gates where 1 < R(KDP) < 5 mm hr-1 should not depend on azimuth provided 

that the averaging procedure is performed over a sufficiently large volume of data. To 

confirm this notion, rain rates were computed using the relation in (54) for the 

Cimarron data collected at the lowest tilt of 0.5˚. For several rain events, we identify 

range gates where 1 < R(KDP) < 5 mm h-1 and partition these range gates into 1˚ 

azimuthal intervals. Recall that for light rain (Z < 40 dBZ), the estimate of KDP is 

made using a window of 25 successive gates, which corresponds to a radial resolution 

of about 6 km. The standard deviation of such a KDP estimate is about 0.05 – 0.1 deg 

km-1 (Ryzhkov and Zrnic 1996). Although the relatively large errors of KDP 

estimation may incorrectly classify range gates as containing “light rain”, the impact 

of this is minimized when a large number of radials are summed. Since attenuation is 

nearly linearly proportional to ΦDP, these measurements can also be used to correct 

ZDR for attenuation in rain (e.g., Bringi et al. 1990). Mean ZDR values for this rainrate 

interval are computed and examined as a function of azimuth.  

Prior to ZDR averaging, range gates with a cross-correlation coefficient ρHV 

lower than 0.7 are removed. In pure light rain or dry snow, ρHV usually varies 

between 0.98 and 0.997 if the dual-polarization radar is well designed. Because of 

quantization noise in the Cimarron data processor, the measured values of ρHV are 

negatively biased, and these high values have never been attained (Ryzhkov and 

Zrnic 1998b). This should be taken into account when interpreting the Cimarron 
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polarimetric data. Although the absolute values of ρHV are not reliable, relative 

changes are still trustworthy. Previous studies indicate that for the Cimarron radar, the 

0.7 ρHV threshold is useful to discriminate between meteorological and 

nonmeteorological scatterers and to avoid melting layer contamination (e.g., Ryzhkov 

and Zrnic 1998b). To further mitigate potential melting layer contamination, only 

gates located within 100 km of the radar were examined. Data from the first 12 km 

have been removed to limit ground clutter contamination. Polarimetric bright band 

detection performed at higher, unobstructed elevation angles (e.g., Giangrande and 

Ryzhkov 2004, chapter 2) also helps reduce contamination from mixed phase 

hydrometeors. 

The results of this analysis for 5 stratiform rain events are presented in Fig. 

34a,b. Each event contains a minimum of 3 continuous hours of stratiform rainfall 

observations that include between 13,000 and 21,000 radials of data at the elevation 

of 0.5˚. It is clear that averaged values of ZDR at the 0.5˚ elevation exhibit a repetitive 

azimuthal dependency. In addition, the magnitude of ZDR for nearly all azimuths is 

much lower than the expected 0.4 - 0.8 dB in Fig. 33. The composite curve in Fig. 

34b shows that the standard deviation of the ZDR bias estimates for each azimuth is 

about 0.2 dB.     

Similar dependencies of ZDR have been obtained for a number of snow events 

(Fig. 35a,b). Each of the 7 events contained a minimum of 2.5 continuous hours of 

snowfall data. For several of these cases, the number of azimuths exceeded 12,000 

individual radials per event, however individual radial counts on the order of 5,000 

were more typical due to changes in radar scanning strategy. In fact, the results in Fig. 
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35 exhibit a striking resemblance with the azimuthal modulation observed for light 

rain events, with ZDR values about 0.3 dB lower as expected. The composite curve 

(Fig. 35b) once again shows that the standard deviation of the difference between 

individual curves is about 0.2 dB.  

The hypothesis that PBB is responsible for the observed azimuthal modulation 

was confirmed by the fact that a pronounced azimuthal modulation was not revealed 

at the next available and mostly unblocked elevation angle of 1.5˚. The difference of 

ZDR measured at the unblocked (1.5˚) and blocked (0.5˚) elevation angles is shown in 

Fig. 36a,b. Unfortunately, data at 1.5˚ were not available for all of the events 

illustrated in Figs. 34 and 35. For the cases shown in Fig. 36, however, the observed 

difference between the elevation angles remains relatively stable for several years. 

The mean standard deviation of the ZDR difference at each azimuth for these events is 

0.12 dB. Analysis of reflectivity data during this period shows that the Z difference 

between 1.5° and 0.5° is typically within 3 dB. This suggests that the radar blockage 

is usually less than 50% in most directions.  

As Fig. 36 shows, the ZDR bias due to PBB is unacceptably high and 

approaches 0.8 dB in certain azimuthal sectors. This magnitude of the bias is 

particularly noteworthy for radar located in the Great Plains, without rugged or 

mountainous terrain in close proximity. In order to estimate rainfall with an 

acceptable accuracy, the required accuracy of ZDR measurements should be 0.2 dB for 

moderate-to-heavy rainfall, and 0.1 dB for light rain (Ryzhkov et al. 2005c). 

Therefore, the correction for possible PBB must be performed before polarimetric 

rainfall estimation is made. 
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The origin of the ZDR bias associated with PBB may stem from a variety of 

sources. First, the antenna beams at the H and V polarizations are not perfectly 

identical, and therefore may be obstructed differently by the same obstacle. A second 

possible cause is multipath propagation with different characteristics for H and V 

radio waves. Finally, semitransparent obstacles (like nearby trees) might have 

different degrees of transparency for H and V radiation similar to polarimetric grids. 

Note that the spike at Az = 45˚ in Fig. 35a almost disappeared on 02/05/2002 

following an extreme ice storm responsible for breaking several large trees in the 

vicinity of the radar. Minor seasonal variations might be potentially attributed to the 

presence/absence of foliage on nearby trees.         

 

4.3.1.2 Unblocked radar (KOUN WSR-88D) 

The same methodology was applied to the KOUN WSR-88D polarimetric 

radar data presumed much less affected by PBB at the 0.5° elevation angle. A 

summary of 4 events (rain on 09/19/2002, 10/08/2002, 10/24/2002, and snowfall on 

02/06/2003) is presented in Fig. 37a,b where the difference between ZDR at the 1.5˚ 

and 0.5˚ elevation angles is displayed as a function of azimuth (four individual curves 

and one composite curve). Regions of light rain were identified using the fuzzy logic 

classification algorithm described by Schuur et al. (2003), as in chapter 1. As with the 

Cimarron data, only gates in which 1 < R(KDP) < 5 mm hr-1 were examined.  

The difference in the mean ZDR at the two elevations for the light rain events 

is particularly small and does not exhibit a pronounced azimuthal dependence. The 

mean value does not differ from zero by more than 0.1-0.2 dB. The only exceptions 
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are the azimuthal directions of 36˚ and 157˚ at which a tower of another WSR-88D 

radar and large University of Oklahoma buildings are located. The mean standard 

deviation of the ZDR difference at each azimuth is 0.06 dB. This result confirms that 

the KOUN radar does not experience noticeable bias due to PBB except for a few 

isolated directions where high towers or buildings are located.  

Out of the four snowfall events observed during the JPOLE project, the 

02/06/2003 event was selected for analysis because of its large spatial extension and 

uniformity. Frequent ground observations were also available during this case, which 

confirm that the snow consisted primarily of large dry aggregates. Similar to the rain 

events, the difference in ZDR between the lowest two elevation angles is within 0.1 

dB. 

 

4.3.2 Methodology for ZDR Calibration in the Presence of a Partial Beam Blockage 

  

The suggested calibration of ZDR in the presence of PBB can be formulated as 

follows: 

1. Absolute calibration of ZDR has to be performed at high (unobstructed) 

elevation angles as described by Ryzhkov et al. (2005c). This calibration 

implies the measurements of solar radiation at the two orthogonal channels 

and/or the use of polarimetric properties of dry aggregated snow above the 

melting layer. These techniques demonstrate an ability to calibrate ZDR 

with an accuracy of 0.2 dB, which is sufficient for most hydrological 

applications. 
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2. Regions of light rain should be identified using a polarimetric 

classification algorithm and KDP measurements that are immune to PBB. 

An algorithm based on the fuzzy logic approach as in chapter 1 and that 

utilizes Z, ZDR, ρHV, and texture parameters of Z and/or ΦDP, SD(Z), and 

SD(ΦDP), is recommended. The cross-correlation coefficient ρHV is not 

affected by PBB provided that the signal-to-noise ratio is sufficiently high. 

Because the distinction between rain and nonrain echo (e.g., bright band, 

ground clutter, biological scatterers) is mostly affected by ρHV, SD(Z) and 

SD(ΦDP) and to a lesser extent by Z and ZDR, the moderate biases of Z and 

ZDR due to PBB do not dramatically impact the results of such rain-versus-

nonrain classification. Zero weights can be assigned to Z and ZDR 

measurements if very large biases are expected.  

3. Classification should be performed for all elevation angles examined. The 

selection of range gates with 1<R(KDP)<5 mm hr-1 provides further 

confidence that only the data associated with light rain are chosen for 

subsequent averaging of ZDR. An alternate option is to use more reliable 

and unbiased Z and ZDR data at higher elevation angles to identify regions 

of light rain. This option implies that light rain is present at both 

elevations. 

4. In the case of snow, one has to ensure that the snow type is suitable for 

ZDR calibration, i.e., it has intrinsic ZDR of a few tenths of a dB. Such ZDR 

is usually observed for dry aggregated snow (Ryzhkov and Zrnic 1998a, 

2003). Classification of this type of snow is more challenging than the 
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classification of light rain, and is often contingent on additional 

observational data (surface temperatures, soundings, etc.). Crystallized 

snow is characterized by high values of ZDR and KDP, whereas wet 

aggregated snow is associated with low ρHV combined with high ZDR and 

moderate KDP (similar to the bright band). 

5. Once appropriate scatterers (light rain or dry snow aggregates) are 

identified, the mean value of ZDR corresponding to these scatterers should 

be computed as a function of azimuth at the potentially blocked and 

unblocked elevations. The dataset should be large enough to ensure 

acceptable statistical error in the mean ZDR value for every azimuthal 

interval defined by radar resolution in azimuth. In this study, 1-4 hours of 

data were used for such estimation. Further investigations are required to 

evaluate more objectively the amount of data that are needed.  

6. It is very likely that in the case of snow the intrinsic ZDR might exhibit a 

pronounced increase with height (Ryzhkov and Zrnic 1998a). If this 

happens and the mean ZDR at the lowest unblocked elevation angle 

exceeds 0.3 dB, then it is recommended that only ZDR data from the lowest 

(blocked) elevation be used.  

          For each azimuth, the ZDR bias caused by PBB is determined as 

ΔZDR = <ZDR(blocked)> - <ZDR(unblocked)> (64) 

in the case of rain and snow (if <ZDR(unblocked)> in snow is less than 0.3 

dB)  and  

ΔZDR = <ZDR(blocked)> - 0.2 dB (65) 
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in the case of snow if <ZDR(unblocked)> is larger than 0.3 dB. It is 

assumed in (65) that the average intrinsic value of ZDR in snow is equal to 

0.2 dB. 

 

4.3.3 Z Calibration in the Presence of a Partial Beam Blockage   

 

This section describes two methods for the calibration of Z in the presence of 

a PBB. Once ZDR is calibrated (e.g., using a technique described in the previous 

section), the principle of self-consistency among Z, ZDR, and KDP in the rain medium 

can be applied as a means to estimate Z bias that is expected to change with azimuth 

as a function of PBB. This approach allows for an absolute calibration of Z in the 

presence of a PBB. In addition to the above self-consistency methodology, a simple 

consistency calibration technique that compares the rainfall rates from R(KDP) and 

R(Z) relations is used to explore relative Z bias as a function of PBB.   

 

4.3.3.1 Self-Consistency Z Calibration Approach in the Presence of PBB 

To investigate the Z bias caused by PBB for the Cimarron radar, we adopt a 

modified version of the self-consistency approach offered by Ryzhkov et al. (2005c). 

According to the consistency principle, the radar reflectivity factor in rain can be 

roughly estimated from ZDR and KDP using the relation 

Z = a + b log(KDP) + c ZDR, (66) 

where a, b, and c are constant coefficients, Z is expressed in dBZ, KDP is in deg km-1, 

and ZDR is in dB. Then, the area-time integrals of the measured KDP and the KDP 
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estimated from Z and ZDR using (66) are matched by adjusting Z. This type of Z 

adjustment has to be performed separately for different azimuthal intervals. Since the 

relation (66) is valid for rain only, all nonrain echoes should be identified and filtered 

out prior to application of the consistency technique. 

The coefficients in (66) are usually derived from large statistics of 

disdrometer measurements or direct radar observations in rain. A large number of the 

consistency relations can be found in the literature. Comparative analyses of the 

performance of different consistency formulas have been performed by Ryzhkov et 

al. (2005c) on the extensive polarimetric radar dataset obtained during JPOLE. 

Ryzhkov et al. (2005c) found that additional improvement could be achieved if more 

than one consistency relation was used. The study recommends two relations that 

work best for central Oklahoma rain events:  

Z = 46.0 + 9.55 log(KDP) +1.68 ZDR, (67) 

and  

Z = 44.0 + 12.2 log(KDP) +2.32 ZDR. (68) 

The need to use more than one consistency relation is dictated by a very high 

diversity of rain regimes and associated DSDs in Oklahoma. There is no unique 

consistency formula that “matches” all rain types. Equation (67) works better in the 

cases of DSDs dominated by small drops and (68) is preferable for DSDs that are 

characterized by a prevalence of large drops with a relative deficit of small drops. 

Two estimates of the Z bias are derived from (67) and (68), with only one accepted 

for a particular rain event using criteria formulated in Ryzhkov et al. (2005c).    
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In this study, the Z biases caused by PBB are examined in a limited azimuthal 

sector between 180˚-220˚ that contains the ARS micronet gauges (Fig. 38). The ARS 

area was also used for independent verification of the Cimarron radar calibration 

using the data from the operational KTLX WSR-88D radar that is located 20 km off 

the Cimarron radar.  

Consistency relations (67) and (68) were applied separately for 5˚ azimuthal 

sectors within the 180˚-220˚ interval to compute two sets of estimates of the Z bias as 

a function of azimuth. The 5˚ increment was assumed adequate to resolve most details 

of the expected azimuthal modulation of Z bias attributed to PBB for several reasons. 

Although ZDR biases were obtained for 1˚ increments, mean azimuthal dependencies 

(e.g., Fig. 34) indicate that resolving most modest changes in the ZDR bias (excluding 

the larger towers) does not require such a high level of detail. In addition, since the 

consistency technique utilizes area-time integrals of KDP, an increase in the sector size 

should decrease the collection time for a valid calibration to be performed.  

Alternate estimates of the bias in the Cimarron reflectivity factor were 

obtained via direct comparison of reflectivity factors measured by the Cimarron and 

KTLX radars. Direct comparison of the instantaneous Z fields from the Cimarron and 

WSR-88D radars is not the best way to quantify the bias that is a function of azimuth 

with respect to the Cimarron radar. Instead, we compare point estimates of one-hour 

rainfall accumulation for each of the 42 rain gages constituting the ARS network 

from both radars using a conventional WSR-88D R(Z) algorithm and determine how 

the difference between the two is projected into a difference in Z.   
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4.3.3.2 Results of Self-Consistency Z Calibration  

Fig. 39 represents a summary of the Z bias estimates obtained from the 

consistency method (solid lines) and direct KTLX-Cimarron comparisons (diamonds 

and dashed lines) for 5 widespread rain events. Each event contains a minimum of 

two consecutive hours of hourly KTLX-Cimarron rainfall comparisons and a 

minimum of 3 hours of accumulated radar data for the consistency-based calibration. 

Every diamond in Fig. 39 indicates the result of the KTLX-Cimarron comparison 

obtained from one hour of observations for a particular rain gage. The dashed lines 

represent the mean azimuthal dependencies of the Z bias obtained from the direct 

KTLX-Cimarron comparisons.                

 Similar to ZDR, the bias of Z exhibits a well-pronounced azimuthal 

modulation, even within a relatively narrow sector of less than 40˚. The azimuthal 

dependencies of the bias obtained from the consistency method and direct KTLX-

Cimarron comparisons show good agreement in 4 out of 5 events (except the event on 

10/23/1997). In the case on 10/25/2000, the two estimates of the Z offset show very 

similar azimuthal dependencies, but the absolute values of the biases are about 3 dB 

off for all azimuths examined.    

A general increase in the magnitude of the negative Z bias during the 4-year 

period is well captured by both methods. Note that such degradation is mostly related 

to the system problems with the Cimarron radar. As mentioned previously, partial 

beam blockage between the Cimarron 1.5° and 0.5° tilts is responsible for no more 

than 3 dB of the azimuthally modulated offset.  

 96



 

It is very difficult to quantify the accuracy of the suggested technique for Z 

calibration using direct comparisons of reflectivity factors from the KTLX and 

Cimarron radars. This is because the direct method shows significant uncertainty.  

There are also indications that the operational KTLX radar could be noticeably 

miscalibrated itself. Comparison of rainfall estimates from gauges and both radars 

using conventional and polarimetric rainfall algorithms shows that reflectivity from 

the KTLX radar was likely negatively biased prior to Fall 2000 and positively biased 

after that (Ryzhkov et al. 2001b).  

The RMS difference between the two estimates of Z bias obtained from the 

consistency technique and direct comparisons of reflectivity factor measured by the 

KTLX and Cimarron radar is about 2.4 dB for all 5 cases combined.  

 

4.3.3.3 Rainfall Consistency Z Calibration Approach in the Presence of PBB 

The self-consistency Z calibration approach outlined above provides an 

estimate of the absolute radar miscalibration if sufficient data are collected in 

moderate rain. In the absence of a pronounced PBB, Z self-consistency techniques are 

straightforward to automate and may complement existing calibration procedures. 

Unfortunately, establishing the Z bias attributed to the combined impacts of PBB and 

system miscalibration is more complex and requires additional testing. In particular, 

ZDR measurements are biased due to PBB and these biases may translate into large 

errors in absolute Z calibration retrievals. Because the ZDR bias from blockage is 

often difficult to accurately assess, one approach is to consider longer-term Z 

retrievals in the vicinity of a PBB relative to known unblocked radials/regions. In this 

 97



 

manner, consistency methods that deemphasize or avoid ZDR measurements may be 

equally suited.  

A simplified consistency approach is proposed to investigate the relative Z 

bias attributed to PBB. The method examines the rainrates obtained from a 

conventional R(Z) relation to those from a polarimetric R(KDP) relation over blocked 

and unblocked regions. The operational quality KOUN radar was selected to test this 

approach because the system is assumed well calibrated. Since the KOUN radar is 

relatively unobstructed at the 0.5° elevation angle, the proposed technique compares 

KOUN rainfall relations between the blocked 0.0° tilt and the unblocked 0.5° tilt.  

Results from previous section indicate that the polarimetric R(KDP) rainfall 

relations produce unbiased rainfall accumulations at both the unblocked and blocked 

KOUN radar tilts. The results indicate that conventional R(Z) accumulations are 

biased at the 0.0° tilt compared with the 0.5° tilt, which is attributed to PBB by the 

Earth’s surface. We may express the bias in the conventional R(Z) relation as 

R(Zb) = R(Z)*10 0.0714*ΔZ, (69) 

where ΔZ is the bias [in dBZ], Zb is the biased reflectivity factor = Z ± ΔZ, and R is 

in mm hr-1. The ratio of R(KDP) to R(Zb) from (69) is  

[R(KDP)/R(Zb)] = [R(KDP)/R(Z)]*10 -0.0714*ΔZ. (70) 

For unblocked, well-calibrated radar measurements in regions of light to moderate 

rain, the ratio of rainrates in (70) should be close to unity.  Taking the logarithm of 

both sides of (70) and multiplying by 10, the projected bias in Z measurements ΔZ 

can be expressed as 

ΔZ = -14 log [R(KDP)/R(Zb)]. (71) 
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In the presence of a PBB, R(Z) should underestimate the rainrate as compared to 

R(KDP). Underestimation results in a negative value for ΔZ in (71). The expression 

for Z bias in (71) is straightforward and easily adapted to explore of azimuthally 

dependant blockages.  

In practice, several factors impede the ability to obtain accurate Z bias 

retrievals with the method proposed in (71). It is known that R(KDP) rainfall rate 

estimates are noisy and possibly negative in regions of light rain. To avoid issues 

associated with negative or unrepresentative rainfall rate measurements, it is 

suggested that the proposed method in (71) retrieves Z bias from the median ratio 

obtained over a large dataset. As an additional constraint, we avoid negative R(KDP) 

values and consider only the retrievals for KDP-based rainfall rates and corresponding 

polarimetric signatures consistent with light to moderate rain echo (e.g., rainrate 

between 1 to 10 mm hr-1, high ρHV) to minimize hail contamination.   

R(KDP) rainfall relations are less sensitive to DSD variability than R(Z) 

relations and have been found to underestimate rainfall in light to moderate 

precipitation. Therefore, despite KDP quality control efforts, the ratio of rainfall 

relations in (71) is not necessarily unity. These factors limit the accuracy of Z bias 

retrievals, especially over short data collection intervals. It is for this reason we do not 

recommend the methodology in (71) for absolute radar calibration. However, the 

relative difference of Z bias retrievals from unblocked and blocked KOUN tilts is 

meaningful over longer intervals and may provide a Z correction for PBB in a manner 

similar to ZDR calibration in (64) and (65).  
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In light to moderate precipitation, vertical changes in the profile of 

precipitation are assumed minor for small increases in the elevation angle. It was 

demonstrated in sections 4.1 and 4.2 that differential phase profiles and the 

performance of R(KDP) is largely unchanged between the lowest KOUN tilts in rain. 

Rewriting the Z bias equation in (71) as a difference between the median values from 

the blocked (0.0°) and unblocked (0.5°) elevation angles   
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The relation in (72) may be evaluated over various area (azimuthal) and time domains 

as necessary for relative blockage mapping.   

 

4.3.3.4 Results of Rainfall Consistency Z Calibration 

Fig. 40 summarizes Z bias estimates obtained from the rainfall consistency 

method from (72) for 4 widespread rain events during JPOLE. Each event contains a 

minimum of three consecutive hours of KOUN data from the 0.0° and 0.5° elevation 

angles. Fig. 41 plots the combined median difference between the unblocked and 

blocked radar tilts for all events in Fig. 40.                

 Similar to KOUN ZDR bias mapping (Fig. 37), the bias of Z for the events in 

Fig. 38 exhibits a pronounced azimuthal modulation with repeatable azimuthal 

dependencies in several directions. Consulting the composite Z bias observations in 

Fig. 41, the most pronounced directions of blockage (in excess of the anticipated 

offset expected between the tilts) occur along azimuthal directions of roughly 60°, 

90°, 157°, 200°-270°, 315° and 345°. As with ZDR, it is often difficult to attribute 
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these offsets to specific terrain features or towers. It is noted that directions of 60°, 

157°, and 315° feature pronounced peaks for both Z and ZDR long-term KOUN 

observation maps and are in the direction of larger towers and university buildings. 

There is also a relative valley in ZDR measurements and a relative peak of Z between 

the directions of 200°-270°, consistent with the location of a terrain ridge that is a 

prominent fixture on ground clutter maps within 20 km of the KOUN radar (e.g., Fig. 

3, Bachmann and Zrnic 2007).  

On an event-by-event basis, absolute values of the Z bias based on the method 

in (72) may vary significantly. As previously stated, partial beam blockage attributed 

to the Earth surface (Z0.5° - Z0.0°) is responsible for not more than 2 dB. For three 

events in Fig. 40, these statements are reasonable compared to mean Z bias 

observations for relatively unobstructed KOUN radar viewing directions, e.g., 180°. 

During the event on June 11, 2003, the median difference along most directions is 

greater than 4 dBZ. For this case, radar observations were collected in the wake of a 

strong squall line passage over the radar location. It is possible that the sharp 

temperature drop at the lowest levels of the atmosphere behind this line was 

conducive for additional ducting/bending of the lower radar beam into the surface. 

This additional ducting may explain the 2 dBZ discrepancy between the Z bias 

observations from this event and the other events.     

 

4.3.4 Summary of Partial Beam Blockage Detection and Correction 

Partial beam blockage (PBB) causes biases in radar reflectivity factor Z and 

differential reflectivity ZDR. Such biases manifest themselves as azimuthal 
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modulations of Z and ZDR in spatially uniform precipitation such as stratiform rain 

and snow. The biases may stem from larger terrain features (e.g., hills and mountains) 

or smaller obstructions in close proximity of the radar (towers, tall buildings, trees, 

etc.). The suggested methodologies for calibration might be helpful to improve the 

quality of radar data collected at blocked low antenna elevations that are beneficial to 

perform rainfall measurements less affected by bright band contamination, to detect 

regions of convection initiation associated with surface based gust fronts, and for 

more efficient polarimetric tornado detection (Ryzhkov et al. 2005d). 

In order to recognize PBB, it is recommended to examine azimuthal 

dependences of the mean ZDR for light rain with intensity between 1 and 5 mm h-1 or 

dry aggregated snow at several elevation angles including potentially blocked and 

unblocked elevations. Identification of the areas containing light rain should be 

performed using polarimetric classification of radar echoes and measurements of 

specific differential phase KDP that is not affected by PBB. Dry aggregated snow 

should be distinguished from other snow types such as pristine ice crystals and wet 

aggregates that are not efficient for recognition of PBB.   

Regular observations with the Cimarron polarimetric radar reveal azimuthal 

modulations of ZDR at the elevations of 0.5° with the depth up to 0.8 dB. No such 

modulation was observed for the polarimetric prototype of the WSR-88D radar. The 

ZDR bias caused by PBB is estimated as a difference between mean values of ZDR 

measured in light rain or dry aggregated snow at lowest unblocked and blocked 

elevations. Such a difference can be estimated with an accuracy of about 0.1 dB 

provided that the dataset is sufficiently large. Absolute calibration of ZDR at higher, 
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unblocked elevations can be performed using the methods described in the literature 

(e.g., Gorgucci et al. 1999, Bringi and Chandrasekar 2001, Hubbert et al. 2003, 

Ryzhkov et al. 2005a). 

Once ZDR is corrected for effects of PBB, a self-consistency approach 

capitalizing on interdependency of Z, ZDR, and KDP in rain can be applied to calibrate 

Z at every azimuthal interval. The Z bias estimates obtained from the self-consistency 

approach in the presence of PBB have been validated using direct comparisons of 

radar reflectivity measured by the Cimarron radar and unobstructed operational 

KTLX WSR-88D radar. The two techniques exhibit similar azimuthal dependencies 

of the Z bias resulting from PBB. The RMS difference between the biases of Z 

obtained from the two methods is about 2.4 dB for all 5 cases examined. The 

technique does not require using digital elevation maps of terrain and does not rely on 

any assumptions about refractive conditions in the atmosphere. Although in the case 

of the Cimarron radar the occultation of the radar beam at elevation 0.5° was 

relatively moderate (generally less than 50%), we expect that the proposed method is 

applicable in the presence of more severe blockage.  

Simple, consistency-based calibration techniques for relative Z biases may 

also prove beneficial for operational blockage detection and correction. An advantage 

of these methods is that they are simple to implement and avoid the issues with ZDR 

calibration in the presence of a PBB. It was demonstrated that these approaches may 

also capture the situations of beam bending/ducting for individual events.  
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4.4 Recommendations In The Presence of a Partial Beam Blockage 

  

To improve the recommended EC-methodology to satisfy the additional 

demands for an operational radar network, the suggested methodology for rainfall 

estimation in the presence of PBB can be modified as follows: 

 

1. Correction of radar variables affected by PBB must be performed prior to 

application of echo classification routines and radar rainfall estimation. 

There are several methods to calibrate Z and ZDR measurements that are 

affected by PBB, including the use of DEM-based correction procedures, 

examining Z and ZDR differences between obstructed and nearest 

unobstructed beam directions (both in azimuth and elevation) in uniform 

precipitation, and by checking the consistency between Z, ZDR, and KDP in 

rain. As in section 4.3, the later two methods typically require long-term 

observations at the particular radar site before reliable estimates of the Z 

and ZDR biases can be established. The use of DEM information is not 

sufficient if PBB is caused by man-made targets or trees near the radar (as 

with the Cimarron radar).  

2. As a first step for Z calibration, a simple approach based solely on pure 

geometric considerations is recommended, i.e., on the degree of beam 

occultation based on DEM or other terrain models following (64) - (66). 

The “default” ZDR bias should be set to zero. More accurate estimates of 

the PBB-related biases of Z and ZDR using techniques outlined in section 
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4.3 can be performed after sufficient amount of the radar data becomes 

available at the radar site.  

3. According to the proposed EC-methodology, the R(Z,ZDR) relation should 

be primarily used in rain and heavy rain echo, R(KDP) used in rain / hail, 

and various modifications to R(Z) relations in mixed phase and frozen 

hydrometeors above the melting layer. The recommendations were 

established for unobstructed KOUN radar measurements of Z and ZDR. In 

the presence of PBB, echo classification is questionable and measurements 

of Z and ZDR may be less reliable than KDP. In these situations, Z and ZDR 

measurements should be used more sparingly. There are several possible 

combinations for the use of standard R(Z) and polarimetric relations 

contingent on echo classification and the degree of beam blockage. We 

recommend the following  

i. If the beam blockage parameter α < 20% (e.g., Z bias due to 

PBB is roughly less than 1 dB), the EC-methodology should 

remain unchanged.  

ii. If the blockage is 20% < α < 70%, we recommend that the EC-

method be modified to utilize the R(Z,ZDR) relation if the echo 

behind obstruction is classified as light/moderate rain, but to 

switch to the R(KDP) relation if the echo is classified as heavy 

rain or rain / hail (HR or RH). Modified R(Z) relations are still 

applied above the melting layer, however the quality of all 

relations is questionable.  
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iii. If the blockage α > 70%, we recommend avoiding the elevation 

angle for classification and rainfall estimation behind the 

obstruction. As in hybrid scanning strategies, we recommend 

switching to the next highest elevation and reassessing the 

blockage. 
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5. MODELING OF THE MELTING LAYER: POSSIBILITIES FOR 

POLARIMETRIC VPR CORRECTION 

 

Widespread radar observations in melting layer regions are noteworthy given 

limited and costly laboratory or in situ sampling of the melting process and 

hydrometeor characteristics therein (e.g., Stewart et. al 1984, Willis and Heymsfield 

1989, Mitra et al. 1990, Barthazy et al. 1998, Oraltay and Hallett 2005). Many studies 

have linked conventional radar melting layer or bright band signatures, as well as the 

prominence of these signatures, to hydrometeor type and precipitation microphysics 

(e.g., Atlas 1957, Fabry and Zawadzki 1995, Drummond et al. 1996). A detailed 

understanding of the atmospheric conditions and important hydrometeor 

interactions/properties that produce polarimetric radar signatures within the melting 

layer may provide critical information for improving radar rainfall estimates beneath.   

High resolution modeling of the melting layer may offer valuable insight into 

the microphysical processes that affect vertical profiles of polarimetric variables. 

Previous studies directly compare model output to conventional radar reflectivity 

factor observations (e.g., Ekpenyong and Srivastava 1970, Klaassen 1988, Szyrmer 

and Zawadzki 1999). Few studies have expanded these efforts in an attempt to 

reproduce polarimetric measurements for comparison with observed polarimetric 

radar data (e.g., Russchenberg and Ligthart 1996, D’Amico et al. 1998) and eventual 

improvements in rainfall estimation.  

This chapter explores polarimetric observations of the melting layer and 

provides a simple melting layer model to gain a better understanding of the important 

 107



 

physical processes within. The motivation for this effort is in the potential for 

improvements to conventional VPR methods for rainfall estimation to longer distance 

though the addition of polarimetric insight. The working hypothesis to be tested is as 

follows. Aggregation increases the median size of raindrops beneath the melting layer 

(that ultimately reach the surface), whereas riming tends to decrease this median size. 

Therefore, for the same value of reflectivity factor Z aloft, traditional VPR-based 

rainfall estimates overestimate for the cases of strong aggregation and underestimate 

for cases of intense riming. However, aggregation and riming differently affect the 

polarimetric parameters of the melting layer, such as those for ZDR and ρHV, which 

may be modeled. In this manner, our knowledge of the behavior of the polarimetric 

measurement profiles through the melting layer could be directly applicable to 

improve rainfall estimation in the rain medium below.   

The chapter is organized into two major parts. In the first section, we examine 

vertical profiles of polarimetric measurements and explore the relationship between 

conventional and polarimetric bright band signatures. Such long-term polarimetric 

observations are necessary to evaluate the performance of melting layer modeling 

efforts. A basic statistical analysis of these profiles will also complement the existing 

literature documenting the behavior of the conventional radar reflectivity factor 

through the melting layer (e.g., Fabry and Zawadzki 1995). KOUN radar observations 

for several events featuring prominent melting layer signatures have been compiled 

for this analysis.       

In the second section, we provide the theoretical background and results for a 

polarimetric melting layer model. The basic theromodynamic framework for this 

 108



 

model follows directly from several previous published efforts. A goal is to reproduce 

cases of strong aggregation and riming. To differentiate this work from the previous 

melting layer modeling studies, our results focus on the ability to reproduce key 

polarimetric signatures with such models. The strengths and limitations of the model, 

as well as additional methods to improve the accuracy of the model, are discussed.   

 

 

5.1 Polarimetric Melting Layer Signatures 

 

Long-term melting layer observations of the conventional reflectivity factor 

are widely documented in the literature (e.g., Fabry and Zawadzki 1995), however 

systematic observations of polarimetric variables within the melting layer are largely 

unavailable. The motivation for compiling polarimetric radar observations of melting 

is similar to that for Z. Longer-term polarimetric observations from a wide range of 

precipitation regimes may allow for the quantification of the contributions from 

various microphysical processes responsible for bright band signatures. The 

importance of different microphysical processes may also be determined indirectly 

through comparisons of long term signatures with microphysical modeling efforts. 

Following the Fabry and Zawadzki (1995) model, the calculation and relationships 

between several key polarimetric parameters of the melting layer have been examined 

below. 
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5.1.1 Data and Analysis Methods        

As an initial effort toward documenting long-term polarimetric melting 

signatures, an analysis has been performed for 10 events observed by the KOUN 

radar during the JPOLE field campaign. All selected events feature prominent, 

widespread polarimetric melting layer signatures and were selected for analysis based 

on the frequency and duration for which MLDA results were available. Characteristic 

profiles of Z, ZDR, and ρHV were obtained in the directions of the most pronounced 

melting layer signatures for each event. To reduce the impact of beam broadening / 

smoothing on the interpretation of polarimetric signatures, three higher KOUN 

elevation angles of 19°, 16°, and 10° were utilized. A list of the events is in Table 5. 

Several parameters of the melting layer have been obtained from the set of 

measurement profiles. The definitions of these parameters largely follow Fabry and 

Zawadzki (1995) for conventional Z measurement profiles. A ‘typical’ set of Z, ZDR, 

ρHV profiles is shown in Fig. 42. This image contains a description and the location of 

several key polarimetric parameters. For this analysis, the radar parameters are 

determined as follows. For each profile of ρHV, we determine the heights at which ρHV 

drops below 0.99 in the vicinity of the melting layer (based on MLDA results). These 

locations serve as a proxy for the top and bottom of the melting layer. We noted that 

this definition differs from the one utilized by Fabry and Zawadzki (1995) that is 

based on the change in the slope of the Z profile. It is again argued that the drop in 

ρHV is more sensitive to the presence/absence of melting particles and has a stronger 

physical basis for top/bottom designation.  
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Once the melting layer boundaries along a profile are established, parameters 

including the height and magnitudes of peaks/extremes in Z, ZDR, and ρHV are easily 

determined. The parameter values for Z and ZDR in snow aloft and rain beneath the 

melting layer are specified 50 meters from boundary locations. In this analysis, the 

melting layer thickness is defined as the difference between the melting layer top and 

bottom heights and based on ρHV signatures as in Fig. 40.  

 

5.1.2 Polarimetric Bright Band Parameters 

A scatterplot of Z in the regions of snow above the melting layer versus the 

corresponding values in the rain medium beneath is shown in Fig. 43. Similar to the 

findings of Fabry and Zawadzki (1995), the Z values found in both regions are 

comparable and straddle the 1:1 line on the plot. The median value of Z is higher for 

rain (31.7 dBZ) than in snow (31.3 dBZ), although Z is largely conserved at the 

peripheries of the melting layer. The findings for these events support arguments that 

aggregation and breakup in the melting layer accounts for less than a 1 dB change in 

Z (e.g., Fabry and Zawadzki 1995, Szyrmer and Zawadzki 1999).  

Fig. 44 contains a scatterplot of Z in rain versus the corresponding peak Z in 

the melting layer. As anticipated, there is a substantial melting layer Z enhancement 

(ΔZ = Z peak - Z rain) for all profiles examined. The mean and median enhancement 

in Z is 9 dB and varies between 4 dB and 16 dB. These bright band enhancements are 

comparable to the values observed by Fabry and Zawadzki (1995) for modest 

rainrates (R < 3 mm hr-1). However, since the observations of Fabry and Zawadzki 

(1995) were performed with an X-Band radar system, caution is advised when 
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comparing relative magnitudes of Z enhancements that depend on radar wavelength. 

While a large peak Z is typically associated with a larger value of Z in rain, the 

enhancement ΔZ does not strongly correlate with Z in rain (e.g., Klaassen 1988, 

Fabry and Zawadzki 1995).      

The interpretation of conventional melting layer signatures may be aided by 

the addition of polarimetric parameters. Fig. 45 shows a scatterplot of ZDR in snow 

versus rain as was plotted for Z. Unlike measurements of Z, ZDR measurements 

exhibit very different values at the boundaries of the melting layer. Low density dry 

snow aggregates aloft exhibit low ZDR with a mean and median of 0.47 dB (consistent 

with chapter 4). Mean and median ZDR values in rain are higher and exceed 0.8 dB.  

The ZDR enhancement ΔZDR in the melting layer as compared with the value 

of ZDR in the underlying rain is shown in Fig. 46. The average profile exhibits a 0.7 

dB enhancement in the melting layer, with relative peak values ranging from 0.3 dB 

to 1.2 dB above the value in rain. The magnitude of the ZDR peak generally exceeds 

1.0 dB for the event profiles. Several events recorded peak ZDR in excess of 2 dB in 

the melting layer, indicative of large melting snow aggregates. Mean and median 

peak ZDR exceed 1.5 dB and are significantly higher than the mean and median values 

observed in rain or snow. High peak ZDR values are associated with higher ZDR values 

in rain, which is not unexpected if aggregation that generates large hydrometeors 

within the melting layer is responsible for an increase in median drop size in the rain 

beneath.   

Minimum values of ρHV within the melting layer ranged between 0.81 and 

0.97 for the profiles in the dataset, with a mean and median value of 0.91. Among the 
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polarimetric parameters, the most pronounced relationship between parameters was 

found for these minimum values of the correlation coefficient and peak ZDR (Fig. 47). 

This result is expected since both ZDR and ρHV are not weighted by concentration and 

extreme values for both are sensitive to the presence of resonance-sized melting 

aggregates (those with a resonance factor (D |ε|1/2 )/ λ ~1). There is loose connection 

between Z peak and ρHV (Fig. 48) because Z depends on concentration whereas ρHV 

does not.  

Cross-comparisons between Z and ZDR parameters reveal additional, 

nontrivial connections. While the relationship between ρHV/ZDR and Z parameters is 

often weaker, large peak Z values are often associated with high ZDR in the rain 

beneath the melting layer (Fig. 49). Large ΔZ enhancements also trend toward high 

ZDR measurements in rain (Fig. 50). However, the opposite is not true, e.g., large or 

pronounced peaks in ZDR provide less insight into the value of Z for rain, attributed to 

sensitivity of ZDR to resonance-sized particles.  

In chapter 2, it was argued that the peak values of ZDR and ρHV should reside 

at heights equal to or below the height of the peak in Z. On the average, the relative 

height of the Z peak was located just slightly above the middle of the melting layer, 

similar to the findings of Fabry and Zawadzki (1995). As confirmation of the 

statements in chapter 2, the height of the ZDR peak was found at/below the height of 

the ρHV minimum for all event profiles and always located below the height of Z 

peak. The typical separation between peak heights was on the order of 100 meters for 

the profiles examined.    
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The thickness of the melting layer (depth of the ρHV drop) ranged between 0.6 

km and 1.2 km with a mean and median of 0.9 km. As suggested in Fabry and 

Zawadzki (1995), deeper melting layers typically corresponded to higher rainrates 

(values of Z) in the rain beneath (Fig. 51). For this dataset, thickness was strongly 

linked to the absolute height of the melting layer top (Fig. 52). The result is a likely 

indication that the warm season MCS events in the dataset with higher freezing levels 

also often featured deep, low relative humidity layers below the melting layer 

favorable for extended melting layer depths (e.g., see theoretical melting layer 

discussion in the next section.).       

 

 

5.2 Model of the Melting Layer 

 

This section outlines a simple model of the melting layer capable of 

reproducing polarimetric radar measurement profiles. Validation of the model may be 

performed against observed polarimetric radar measurement profiles and parameters 

as shown in the previous section. The model assumes that one snowflake produces 

one raindrop (e.g., Ohtake 1969, Mitra et al. 1990, Szrymer and Zawadzki 1999). 

This assumption greatly simplifies the modeling problem by avoiding the need to 

numerically solve the stochastic collection or breakup equations for melting particles. 

In our initial simulations, melting hydrometeors are treated as Rayleigh scatterers to 

simplify calculations of radar measurements. For melting layer models of the 

conventional reflectivity factor Z profiles, the above assumptions have produced 
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reasonable results (e.g., Klaassen 1988, Szrymer and Zawadzki 1999). However, 

several field studies indicate the presence of large melting aggregates within the 

melting layer resulting from collisions in the upper portion of the melting layer as 

well as breakup in the lower sections (e.g., Stewart et al. 1984, Willis and Heimsfield 

1989, Barthazy et al. 1998, Goeke and Waldvogel 1998). Although aggregation and 

breakup processes may offset by the lower boundary of the melting layer, such 

particle interactions may be critical for the accurate replication of polarimetric 

profiles and parameters within the layer.  

 

5.2.1 Thermodynamic Background of the Model 

The heat balance equation for a melting snowflake / small graupel can be 

expressed as (e.g., Klaassen 1988) 

)]ρρ(LD)TT(K[FDπ2
dt
dfmL 0vv0mmf −+−= , (73) 

where m is a mass of melting snowflake, f = mw/m is mass fraction of melted water, 

Dm is the diameter of a melting snowflake (assumed spheroid), K is the 

thermodynamic conductivity of air, Dv is the diffusivity of water vapor in air, Lf is the 

latent heat of fusion of water, Lv is the latent heat of vaporization, Fm is the 

ventilation coefficient, and (T – T0) and (ρ – ρ0) are the temperature and vapor density 

differences between the air and the surface of the melting particle. 

The vapor density difference from (74) may be expressed as 
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where e is the water vapor pressure, es is saturation (equilibrium) vapor pressure, RH 

is the relative humidity (expressed in %), and Rv is the gas constant for water vapor. 

Expanding the saturation vapor pressure es(T) as 
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0ss −+=  (75) 

and using the Clausius – Clapeyron equation 
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the vapor density difference in (75) may be expressed as  
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The expression in (77) may be substituted into (73) as   
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For the expression in (78), it is assumed that the surface temperature of the 

melting snowflake is 0°C. Therefore, the melting of a snowflake starts immediately at 

T = 273°K (0°C) if RH = 100%, e.g., the air is saturated. If the air is subsaturated 

(RH < 100%), snowflake melting begins at slightly positive temperature Tm for which 

right-hand side of (78) is equal to zero (e.g., Mitra et al. 1990). For several JPOLE 

events with prominent melting layer signatures, the relative humidity from available 

soundings within melting layer regions was observed below 100%. In the presence of 

strong entrainment of dry ambient air (e.g., trailing stratiform sections of MCS 

events), the RH can drop as low as 60 – 70 %. Under these conditions, the onset of 
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melting may be delayed until the ambient air temperature is in excess of 2°C (e.g., 

Rasmussen and Pruppacher 1982).  

Eq. (78) may be simplified as 
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Substituting known constants K = 2.428 10-2 J m-1 s-1 K-1, Dv = 2.26 10-5 m2 s-1, Lv = 

2.5 106 J kg-1, Rv = 461.5 J K-1 kg-1, es(T0) = 611 kg m-1 s-2, and T0 = 273 K into (79) 

yields 
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In (81) – (82), h is height and Um is terminal velocity of melting snowflake. 

 Szyrmer and Zawadzki (1999) showed that the product DmFm in (82) can be 

expressed using the melted diameter of snowflake Dw

mA
wmmm DBFD =  (83) 

where Am = 1.7 and Bm = 6.58, with Dw and Dm expressed in mm. Szyrmer and 

Zawadzki (1999) and Zawadzki et al. (2005) recommend expressing terminal velocity 

of melting snowflakes Um using the terminal velocity of the corresponding raindrops 

(to which snowflakes melt) Ur and the mass melted water fraction f as 
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and ρs is a density of dry snowflake in g/cm3 prior to melting. 

 For this model, we adopt the approximation of Brandes et al. (2002) for the 

terminal velocity of raindrops 
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In (86), ρ is the density of air at arbitrary height, ρ0 is the density of air at 1000 mb 

(hPa), Dw is expressed in mm and Ur is in m/s. 

 The density of dry snowflakes depends on snowflake size and the degree of 

riming frim. In this model, the following formula for ρs is used (adopted from Brandes 

et al. 2007) 

922.0178.0 −= wrims Dfρ , (87) 

where Dw is expressed in mm and ρs is in g/cm3. For unrimed snow, frim = 1. If snow 

is rimed, then it is assumed that frim > 1 does not change across the size spectrum, but 

that the snow density can not exceed 0.5 g/cm3 (Zawadzki et al. 2005). As riming 

increases, the density of the snowflake and its terminal velocity increases. Fig. 53 

illustrates the change in the terminal velocity of a melting snowflake depending on 

the melted water diameter and degree of riming for six values of mass water fraction: 

0, 20, 40, 60, 80, and 100%. 

 118



 

 In the model, we assume a linear dependence of ambient temperature with 

height (no interaction between the melting particles and the environment)  

)hh(γTT mm −=− , (88) 

such that the balance equation in (82) may be expressed as 
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where ρw is density of water. Taking into consideration that Am = 1.7 (e.g., Szyrmer 

and Zawadzki 1999), Um(Dw) ~ Dw
0.67 and g ~ Dw

0.37, the rate of melting is 

approximately proportional to Dw
-2 and (frim)-1/3. Moreover, the expression in (89) 

indicates that bigger and/or rimed snowflakes melt faster. With respect to the initial 

environmental conditions, not surprisingly the rate of melting slows in dry, low 

relative humidity air and for low lapse rates γ. If we note that Lf = 336.1 103 J kg-1, a 

further simplification of (89) yields 
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In (90), Dw is expressed in mm, Ur is in m/s, γ is in °km-1, and h is in m. The model in 

(90) is a nonlinear differential equation which can be solved numerically. The 

diameter and density of melting snowflake are functions of the mass water fraction f 
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5.2.2  Snowflake/Drop Size Distribution 

Computations in the model are performed assuming that the raindrop size 

distribution at the bottom of the melting layer is Marshall – Palmer exponential form 

)DΛexp(8000)D(N www −=  (93) 

where the slope Λw = 4.1 R-0.21 (R is the rainrate in mm hr-1), Dw is expressed in mm 

and N(Dw) is in m-3mm-1. The distribution is truncated such that the largest allowable 

raindrop size in 8 mm. 

Recall that for this simple model approach, there is a one-to-one 

correspondence between the snowflakes and raindrops to which these snowflakes 

melt. Thus, the smaller snowflakes in the model melt faster than the larger snowflakes 

and produce smaller raindrops beneath the melting layer. This also implies that the 

largest particles are present at the very top of the melting layer, which contradicts the 

observations of several studies (e.g., Barthazy et al. 1998, Goeke and Waldvogel 

1998). For this model, the maximal diameter of raindrops originated from fully 

melted snowflakes is shown as function of the fall distance from the top of the 

melting layer in Fig. 54. At any given height level, raindrops originating from fully 

melted snowflakes and partially melted snowflakes have very distinct size 

distributions as Fig. 55 demonstrates. It is assumed that mass flux is conserved along 

the height in each bin of the snowflake melted diameter. The size distribution of 

melted snowflakes N(Dm) is expressed as 

w

m
wm dD

dD)]f1(bfa[)D(N)D(N +−= . (94) 

In (94), N(Dw) is determined by (93) and the mass fraction of melted water is 

obtained as a solution of (90). Following Fig. 55, it is clear that the size distribution 
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of hydrometeors is close to exponential only at the peripheries of the melting layer. 

Within the melting layer, the size distribution is close to bi-exponential, which agrees 

with the observations of Barthazy et al. (1998) and Goeke and Waldvogel (1998). The 

slope of DSD for the rain part of size spectrum (Λ = 2.92 mm-1) is much larger than 

the corresponding slope for the snow part (Λ ≈ 0.5 mm-1). It is no surprise that the 

terminal velocities of the hydrometeors are also very different in the rain, mixed-

phase and snow parts of the spectrum (Fig. 56).  

 

5.2.3 Shape and Dielectric Properties of Melting Snowflakes 

For the KOUN polarimetric prototype of the WSR-88D, observational studies 

in section 5.1 considered vertical profiles and profile parameters of the three primary 

polarimetric variables useful for understanding microphysical processes within the 

melting layer: reflectivity factor ZH at horizontal polarization, differential reflectivity 

ZDR, and cross-correlation coefficient ρhv. As described in chapter 1, these radar 

variables depend on the size distribution of the hydrometeors, hydrometeor shape, 

particle orientation, and phase composition (i.e., density and water content). These 

radar variables can be calculated from Eqs. (15) – (18) based on the output of the 

cloud model described in the preceding sections and by using several assumptions 

about the shapes and orientations of hydrometeors of different types.  

 For model radar computations, a zero mean canting angle of hydrometeors is 

assumed. The width of the canting angle distribution σ is allowed to vary with 

particle size and depends on mass water fraction f  

)σσ(fσσ srs −+=  (95) 
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where σr is the width of canting angle distribution for raindrops, whereas σs is the 

corresponding value for dry snowflakes. Suitable values of σr and σs are 10° and 40°, 

respectively. 

 For the initial run of the model, all liquid, frozen and mixed-phase 

hydrometeors are assumed oblate spheroids (horizontal axis greater than or equal to 

the vertical axis) that justify use of the Rayleigh approximation (e.g., Dm|εm|1/2/λ << 

1). In the Rayleigh approximation, scattering amplitudes are estimated following 

chapter 1 Eqs. (3) – (6). The axis ratio of raindrops beneath the melting layer follows 

from Brandes et al. (2002). For snowflakes throughout the melting process, the axis 

ratio is assumed to vary linearly as a function of the melted water mass fraction from 

a value of 0.8 in dry snow aggregates to a final value for rain as predicted by the 

Brandes et al. (2002) study. This axis ratio dependence of a melting snowflake may 

be expressed as  

0.8),-(A f+0.8 =b
a

r    (96) 

where Ar is the axis ratio of the raindrop size to which the snowflake eventually 

melts.     

At S band for a temperature T = 0°C, the dielectric constant of bulk ice is εi = 

3.17 - j 8.54 10-3 and the dielectric constant of water is εw = 79.7 - j 25.2. For dry 

graupel or snowflakes in this study, the dielectric constant of the snowflakes entering 

the melting layer can be obtained as 
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In (74), the dielectric model of snowflakes follows Maxwell Garnett mixing formulas 

for the basic topology of uniformly mixed spherical ice inclusions in an air matrix 

(e.g., Bohren and Battan 1982, Meneghini and Liao 1996). Here, ρi = 0.92 g/cm3 is 

density of bulk ice and the snowflake density ρs is determined from (87). Note from 

(97) that if snowflake density is equal to that of bulk ice, εs reduces to εi. For dry 

snow above the melting layer, the dielectric constant found in (97) may be substituted 

into (15) – (18) to estimate radar variables. 

For melting snowflakes (e.g., within melting layer regions), the dielectric 

constant of depends on the snow density and volume fraction of water in the 

snowflake. In addition, the manner with which the melted water is distributed within 

the melting snowflake (topology) also affects the value of ε. Previous studies by 

Fabry and Szyrmer (1999) describe at least 6 different models for the topology of 

melting snowflakes. For this modeling study, three dielectric models are adopted 

following Maxwell Garnett mixing formulas for three component mixing (e.g., 

Meneghini and Liao 1996). In the first model (Model A), the dielectric constant of a 

melting snowflakes is given by 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−

−−

+
−

−
+=

ws

ws

ws

ws

wws

fv

fv

εε
εε
εε
εε

εε

2
)1(1

2
)1(3

1 . (98) 

where εs is first obtained by substituting the expression in (74). In Model A, the 

topology of melting snowflakes is that of a water matrix with snow (ice in an air 

matrix) inclusions. For the above expression, fv is volume fraction of water. The 

value of fv is easily computed from the mass fraction of water f as 
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 For the second dielectric model (Model B), the dielectric constant of melting 

snowflakes is determined as 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−

−

+
−

+=

sw

sw

sw

sw

sws

fv

fv

εε
εε
εε
εε

εε

2
)(1

2
)(3

1 . (100) 

In Model B, the topology of the melting snowflakes is that of a snow matrix (air 

matrix with ice inclusions) with spherical water inclusions. 

 For the third model (Model C), a mixture of the previous models is adopted. 

The relative contribution from Models A and B is determined based on the volume 

fraction of water and the error function (e.g., Meneghini and Liao 1996)  
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where εA and εB represent the dielectric constants determined from Models A and B, 

respectively. This model aims for a more realistic topology of melting snowflakes 

consistent with laboratory studies (e.g., Mitra et al. 1990). For small volume fractions 

of water (t ≈ 1), the dielectric constant is weighted towards the value of Model B 

(snow matrix with water inclusions). For higher volume fractions of water, the 

relative dielectric constant is weighted toward that of Model A (water matrix with ice 

inclusions).    
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5.2.4  Comparisons of Model Profiles with Observed Melting Layer Signatures 

i. A Low Density Aggregate Example   

For the initial set of melting layer radar measurement profile simulations, the 

density of snowflakes entering the melting layer follows (87) with the riming factor 

set at 1. A riming factor of 1 implies low density aggregates are entering the melting 

layer. For the model runs, the relative humidity has been set at 100% to initiate the 

melting of snow at the height of the freezing level. The lapse rate for these model 

runs is assumed moist adiabatic. Individual snowflakes melt to form a Marshall-

Palmer size distribution (recall, maximum raindrop size beneath the melting layer is 6 

mm) of raindrops consistent with a rainfall rate of 3 mm hr-1.  

Fig. 57 shows the vertical profiles for the reflectivity factor Z corresponding 

to the scattering Models A (solid curve), B (dotted curve) and C (dashed curve). Z 

profiles in Fig. 57 exhibit bright band enhancements ranging in intensity from 2 to 15 

dB. The most pronounced enhancement in Z is observed for scattering Model A, the 

one which models the topology of melting snowflakes as a water matrix with snow 

inclusions. The Z enhancement for this dielectric model of 15 dB seems too high for 

the 3 mm hr-1 rainrate. Qualitative performance measures such as the profile shape 

and the relative location of peak Z are also questionable compared with radar 

observations, with peak Z located closer to the freezing level than long-term 

observation dictate.   

A substantially weaker response in the simulated Z profile is obtained through 

the application of dielectric Model B, the model that reverses the roles of snow and 

water in snowflake topology. The 2 dB bright band enhancement is also in poor 
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agreement with long-term KOUN radar observations. Profile shape and the height of 

peak Z for Model B are also not significantly improved over Model A when 

compared with KOUN radar observations.   

Dielectric Model C offers a reasonable compromise to the performances of 

Models A and B for simulated Z profiles. The enhancement in Z is 10 dB, in good 

agreement with long-term radar observations from the previous section. Qualitatively, 

relative Z peak location and the shape of the Z profile are more consistent with the 

radar observations than for the other models.      

The general performance of the three scattering models with respect to the 

previous literature on conventional melting layer Z profile simulations is comparable. 

The bright band signatures in Model A are too intense, a common response of 

scattering models that use water as the dominant media for the matrix and snow as 

inclusions (e.g., Fabry and Szrymer 1999). Water-dominant or concentric sphere 

dielectric models may be appropriate for melting hail or graupel for which water 

tends to soak around or coat the ice during melting. However, this topology for the 

distribution of melt water is not as typical for melting snowflakes, especially at the 

beginning stages of melting (e.g., Mitra et al. 1990). It follows from (98) that even for 

relatively small volume fractions of water, the dielectric constant for melting 

snowflakes increases rapidly to that of water. In contrast, although the topology in 

dielectric Model B may better represent the early stage of melting (water flowing 

down branches of snowflakes toward the center of the particle), this topology is 

inadequate to capture the enhancement associated with the eventual collapse of the 

ice crystal structure in a mixed-phase particle before forming a water droplet (e.g., 
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Mirta et al. 1990). It is as no surprise that Model C is optimal, as it blends the 

behavior of both the initial and final stages of melting snowflakes. 

Although the simulated Z profiles capitalizing on dielectric Model C perform 

well under the initial simulation conditions, the sensitivity of these profiles to the 

model input parameters should be briefly considered. For example, low values for the 

lapse rate and relative humidity decrease the melting rate, which broadens the 

modeled bright band signatures. It is easy to demonstrate with the thermodynamic 

model in (90) that a 1-2° km-1 change in the lapse rate is comparable to a RH drop 

from 100% to 50%. In the current thermodynamic framework, the only qualitative 

difference introduced by these parameters is that RH controls the temperature at 

which snowflake melting initiates. It is worth noting that for the current model, 

simple changes to the RH and lapse rate do not impact the magnitude of the Z peak or 

the relative peak location. A broadening of the melting layer signatures is observed 

with higher input rainrates (smaller slope Λ), consistent with the presence of 

additional and larger snowflakes entering the melting layer (recall, the raindrop DSD 

is truncated by a maximum raindrop size of 8 mm). The increase in the rainrate also 

leads to an increase in the value of Z proportional to the increase in the number of 

medium to larger diameter snowflakes falling into the melting layer. However, the 

bright band enhancement (Z peak – Z rain) for the model is largely insensitive to 

changes in rainrate beneath the layer. This is attributed to the lack of aggregation and 

the inability of the current model to retain/generate large snowflake sizes in the 

middle of the melting layer (largest particle size is always at the top of the layer).        
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Although the capability of this simple model to replicate Z signatures appears 

adequate compared to KOUN radar observations, the performance of the combined 

thermodynamic and radar scattering model for the simulation of polarimetric ZDR and 

ρHV profiles indicates several deficiencies in the current approach. Simulated ZDR 

vertical profiles for the three dielectric models are shown in Fig. 58. For the dielectric 

models using water a matrix (Models A and C), enhancements of 0.3-0.6 dB are 

typical for ZDR using realistic values of RH, lapse rate and modest rainrates. These 

dielectric models capture the shape and relative location of peak ZDR, several hundred 

meters beneath the height of peak Z. The results are less reasonable for the ZDR 

vertical profile based on dielectric Model B, as only a gradual increase in ZDR is 

observed between small values for dry snow aggregates and slightly higher values in 

rain.   

It is clear that the coupled thermodynamic/radar model underestimates the ZDR 

enhancement. To approach the 0.7 - 1.2 dB ZDR melting layer enhancements 

consistent with typical KOUN radar observations, there are two mechanisms in the 

current modeling approach without aggregation or sophisticated scattering 

computations. First, it is possible to increase the peak ZDR by increasing the input 

rainrate, which increases the number of medium to larger snowflakes entering the 

melting layer. This approach is reasonable since the number and size of the largest 

melting aggregates is likely underrepresented within the melting layer due to the 

absence of aggregation. However, an artificial increase in the rainrate directly limits 

the viability of the corresponding Z profiles. The second approach to increase the ZDR 

enhancement is to modify the initial axis ratio parameter or widths of the canting 
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angle distribution for the snowflakes/raindrops. For example, we note that a decrease 

in the axis ratio of 0.1 - 0.2 increases the relative peak in ZDR by 0.1 - 0.2 dB at 

modest rainrates.  

The results for ZDR vertical profiles argue that a more accurate treatment of 

large melting aggregates is necessary to reproduce the desired signatures in radar 

measurement profiles. The necessity for more sophisticated scattering computations is 

further augmented since melting hydrometeors are of resonance size, i.e., if the factor 

D |εm|1/2/λ becomes comparable to 1. At large sizes, the Rayleigh approximation 

becomes invalid for the estimation of the scattering amplitudes such that more 

complex computations based on the T-matrix method are required. Section 5.2.5 

explores the impact of resonance scattering and the rapid increase in ZDR 

measurements for larger drop sizes. The discrepancies in model ZDR profile shape and 

peak enhancement may also be attributed to neglecting aggregation in this simplified 

model.  

 One of the clear manifestations of the limitation of the current model without 

aggregation is its inability to reproduce realistic vertical profiles of the cross-

correlation coefficient (Fig. 59). The minimal value of ρhv for all dielectric models is 

higher than 0.996, whereas KOUN observations often indicate that the cross-

correlation coefficient may drop below 0.90.  

 

ii. Rimed Particle Example    

To simulate rimed/accreted particles typical of weak convective storm 

regimes, the density of snowflakes entering the melting layer is increased by setting 
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the riming factor in Eq. (87) to 10. A riming factor of 10 forces the initial bulk 

density of nearly all particles to a value typical of graupel, 0.5 g cm-3. Fig. 60 

illustrates the vertical profiles for the reflectivity factor Z corresponding to the 

scattering Models A (solid curve), B (dotted curve), and C (dashed curve). Similar 

plots for the riming example have been provided for the simulated profiles of ZDR 

(Fig. 61) and ρHV (Fig. 62).   

 For higher density rimed particles entering the melting layer, the simulations 

are in general agreement with the available observations for weak convection (e.g., 

Fabry and Zawadzki 1995). The profiles for convective cells feature no clear bright 

band signature and a rapid change in Z near the freezing level consistent with the 

onset of melting. These signatures imply that there is only minimal change in the 

velocity of the falling particles during melting.  

For the simulated Z profiles, all dielectric models lack the pronounced bright 

band signature and feature a quick transition between lower Z values in snow and 

higher Z values in the rain beneath the melting layer. ZDR measurements in the 

profiles gradually evolve from low values in dry snow aloft to higher values in rain. 

Changes to the dielectric model dictate the nature of the transitions. Specifically, 

water-matrix dominant dielectric models (Models A and C) favor the transition in Z 

and ZDR to higher values at heights closer to the freezing level than the snow-matrix 

model (Model B). Model values of ρHV for rimed snow are closer to unity than for 

unrimed snow, but the magnitudes of the cross-correlation coefficient are still at 

variance with radar observations.      
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5.2.5 Improvements to the Melting Layer Model and Polarimetric VPR Implications 

An understanding of the conditions necessary to reproduce the observed 

polarimetric melting layer profiles is required for the potential inclusion of 

polarimetric measurements into VPR techniques. It is suggested that the discrepancy 

between model profiles and KOUN observations in the previous sections implies that 

the proposed thermodynamic / radar scattering model of the melting layer without 

aggregation / breakup does not adequately account for wet snow particles of 

resonance sizes. Moreover, these hydrometeors are responsible for the observed 

enhancements in ZDR as well as the pronounced minimums of ρhv.  

 The conditions in the upper sections of the melting layer are favorable for 

aggregation and the generation of hydrometeors of larger size than the aggregates 

entering the top of the melting layer. This is because raindrops and/or smaller wet 

snowflakes will have a much higher terminal velocity than larger snowflakes that 

require additional time to melt. As a result, smaller particles may be collected by 

partially melted, larger snowflakes given that particle sticking capacity should be high 

at positive temperatures. In support of such claims, observational studies confirm that 

wet snow aggregates in portions of the melting layer may reach sizes 2 – 3 times that 

of the largest dry snowflake observed entering into the top of the melting layer (e.g., 

Barthazy et al. 1998). However, it is unclear whether such giant aggregates (> 20 

mm) found in the upper to middle sections of the melting layer are associated with the 

most pronounced polarimetric signatures. Presumably, these particles become 

increasingly unstable as melting progresses, collapse and/or are prone to collision or 

spontaneous breakup. Regardless, such a melting morphology is in sharp contrast to 
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the melting layer model without aggregation for which the largest particles are 

located at the top of the melting layer.  

Future modeling efforts should incorporate aggregation / breakup and 

appropriate scattering computation methods for large wet hydrometeors. It is 

suggested that aggregation and breakup of melting snowflakes be treated in a rigorous 

manner which implies solving stochastic collection equations (e.g., Mitchell 1988)  
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where n is the concentration, m is mass, w is vertical air velocity, v(m) is terminal 

velocity, g(T) is temperature-dependent probability of aggregation, q(m’,m’’) is 

mass-dependent probability of aggregation when two particles collide, S(m/m’,m’’) is 

a number of fragments with masses between m and m+dm formed when particles 

with masses m’ and m’’ collide and break up, and K(m’,m’’) is a collection kernel 

determined as  

|)''D(v)'D(v|E)''D'D(
4
π)''m,'m(K c

2 −+=  (104) 

where Ec is collision efficiency, D’ and D’’ are diameters of particles with masses m’ 

and m’’. It is noted that the second and third lines in (103) describe the process of 
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aggregation, whereas the fourth and fifth lines describe breakup on collision. For 

example, if the probability of aggregation q is set as 1, then only aggregation takes 

place.  

Several studies suggest numerical and approximation techniques for solving 

(103) for rain (e.g., Kovetz and Olund 1969, Tzivion et al. 1987) and snow (e.g., 

Passarelli 1978). However, solving (103) within the melting layer is computationally 

nontrival and beyond the scope of this study. Rather, it is much easier to explore a 

realistic spectrum of melting snowflakes with rigorous scattering computations at 

larger particle sizes for which the Rayleigh approximation becomes invalid (e.g., > 8 

mm). This exercise is useful to demonstrate the ingredients responsible for a sharp 

increase of ZDR and a more realistic drop in ρhv as in KOUN observations. As noted in 

section 5.2.2 and shown in Fig. 55, particle distributions within the melting layer are 

often observed close to bi-exponential. In this section, we examine polarimetric Z, 

ZDR and ρHV measurements using such a bi-exponential model for a melting layer 

particle size distribution.  

Polarimetric radar measurements are sensitive to the volume fraction of water 

for the melting particles. The volume fraction of water for a population of melting 

particles at a given height is an output of the thermodynamic model (90). While 

examining solutions of (90), the volume fraction of water for melting particles 

(thermodynamic model without aggregation) was well approximated by a power law 

relation 
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where Drs is the diameter of the largest completely melted particle and β = -2 best 

matches the model in (90). For a bi-exponential distribution, this implies that particles 

with a size Dm ≤ Drs have completely melted into raindrops and the volume fraction 

of water fv is set at 1 for these sizes. The dependence of the fv on diameter of melting 

particles from (105) is shown as the solid curve in Fig. 63. The value of Drs is 6 mm, 

which is realistic for the lower part of the melting layer.  

It is easy to demonstrate that a melting layer model with volume fractions of 

water following (105) may not adequately handle particles of resonance sizes 

responsible for the observed signatures in ZDR and ρhv. Resonance effects become 

increasingly important as the ratio of Dm |εm|1/2 / λ approaches 1.  Fig. 64 plots this 

resonance factor as a function of melting snowflake diameter Dm. In this plot, the 

solid curve is based on dielectric constants calculated using the value of fv that is 

specified by (105) for Drs = 6 mm and a dielectric model that assumes a water matrix 

with snow inclusions. Although melting particle size may be large relative to the 

KOUN radar wavelength, large melting snowflakes have smaller dielectric constants 

closer to that of snow (low volume fractions of water). For such reasons, it is unlikely 

to reproduce the observed drop in the cross-correlation coefficient ρhv with the current 

thermodynamic model that does not feature high volume fractions of water on 

medium-sized melting particles.     

In the process of aggregation/accretion, larger-size wet snowflakes collect 

smaller raindrops that have originated from smaller-size snowflakes. In this manner, 

aggregation should lead to an increase in the water content of melting snowflakes 

relative to the values predicted by (105). Such a redistribution of melt water can be 
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quantified using Eq. (104) for a kernel K(m’, m’’) in the stochastic collection 

equation (103). The volume of water ΔV(Dm) collected by a snowflake with diameter 

Dm during certain time interval Δt may be estimated as the integral 
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where D is diameter of collected raindrop, Drs is a maximal diameter of the available 

raindrops, U is terminal velocity of the particles, N(D) is the size distribution of 

raindrops in the interval (0, Drs), and C is a constant depending on collision efficiency 

and Δt. It is noted that N(D) in (106) relates to the liquid portion of a bi-exponential 

distribution with slope Λr that depends on the rain rate below the melting layer. The 

multiplicative aggregation factor C in the integral (106) is a point of uncertainty and a 

temporary solution to a problem that requires a more rigorous treatment of the 

aggregation process via solving the stochastic collection equation.  

Collected water increases both the volume of a snowflake and its volume 

water fraction. A modified volume water fraction fv
(m)(Dm) of the melting snowflake 

is given as 
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where fv(Dm) is initial volume water fraction (in the absence of aggregation) as 

calculated from the thermodynamic model and provided in (105). The dependencies 

of fv
(m) for different aggregation factors C (aggregation intensity) are compared with 

the original model from (105) in Fig. 63 (dashed curves). Size dependencies of the 

corresponding resonance factors for C = 30, 60, 90, and 120 are shown in Fig. 64 
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(dashed lines). It is clear that more intense aggregation increases the likelihood of 

resonance effects for medium particle sizes typically observed within the melting 

layer.    

It is expected that aggregation/accretion also alters the melting particle size 

distribution. In Fig. 65, the initial bi-exponential distribution (without aggregation) is 

depicted by a solid line, whereas a distribution modified due to aggregation as in 

(106) is depicted by dashed lines. In this image, the modified spectrum (after 

aggregation) is also assumed bi-exponential, but with smaller slopes in both the rain 

and snow portions. That is, liquid water from the rain part of the size distribution is 

taken out and redistributed in the snow part.   

The argument that aggregation/accretion is necessary to reproduce the 

observed signatures in the melting layer is further tested by computation of radar 

variables radar using bi-exponential distributions and a T-Matrix approach for 

improved scattering computations (e.g., Mishchenko 2000). For these calculations, 

we assume a starting distribution with largest raindrop size Drs = 6 mm and maximum 

particle size of 20 mm. Axis ratios and the canting angle distribution spread are as 

outlined in section 5.2.3. The dielectric model assumes a water matrix with snow 

inclusions as in Model A. This dielectric model should provide a realistic topology 

for partially-to-completely melted snowflakes in the bottom half of the melting layer.  

Table 5 contains ρHV and ZDR calculations for the nonaggregation case (C = 0) and the 

cases for an increasing aggregation factor (C = 30, 60, 90, 120). In the 

nonaggreagation case, the slopes of the size distribution are Λr = 2.92 (rain) and Λs = 
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0.5 (snow) for a rain rate of 5 mm hr-1 below the melting layer (see section 5.2.2.). 

Aggregation implies lower values for Λr and Λs, as listed in Table 5. 

It appears that incorporating aggregation/accretion into the microphysical 

model is necessary to reproduce the observed polarimetric signatures within the 

melting layer. As expected, in the absence of aggregation case (C = 0) the results of 

T-Matrix computations are similar to those from the previous section where 

simplified Rayleigh formulas are utilized, i.e., the T-Matrix approach makes little 

difference. To replicate polarimetric enhancements in ZDR and the minimums in ρHV 

close to KOUN observations, it is required to take into account aggregation with 

relatively high values of C. High values of C imply a more rigorous redistribution of 

melt water onto the larger particles within the melting layer, thereby enhancing 

resonance effects. The most pronounced polarimetric signatures are associated with 

high concentrations of wet particles at sizes close to 0.1λ. Further, a strong 

relationship is found between the calculated values of ZDR and ρHV. That is, the lowest 

values of ρHV are associated with the highest values of ZDR. This relationship and the 

magnitudes of ZDR and ρHV compare well with KOUN observations in section 5.1 

(Fig. 47).          

   

 

5.3 Summary and Implications for Rainfall Estimation 

 

Based on the long-term KOUN radar observations and initial melting layer 

modeling efforts, significant information applicable for rainfall estimation is 
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contained in the shape of polarimetric radar measurement profiles. A summary of 

important findings for radar rainfall estimation through mixed-phase regions is as 

follows:  

 

1. Aggregation and riming differently affect the polarimetric measurement 

profiles and parameters of Z, ZDR and ρHV. The cases of moderate to 

intense aggregation favor a pronounced enhancement in polarimetric 

profiles and parameters of Z, ZDR, and a sharp drop in ρHV. Riming 

suggests a weaker melting layer signature for all variables.  

2. As hypothesized, long-term ZDR observations and ZDR model profiling 

indicates aggregation increases the median size of raindrops. Riming tends 

to decrease this median size.    

3. The strongest connection between polarimetric profile parameters is 

observed between peak ZDR and the minimum in ρHV. Pronounced ZDR and 

ρHV signatures typically occur below the height of Z peak where wet 

snowflakes with high contents of water and resonance sizes of roughly 

0.1λ are generated.  

4. Understanding polarimetric signatures within the melting layer may be 

useful to improve VPR-based rainfall estimation. Initially, we recommend 

a simple approach that capitalizes on peak values of Z, ZDR and ρHV within 

the melting layer. A pronounced increase in Z and ZDR associated with a 

significant drop in ρHV indicates the presence of large aggregates and an 

increase in medium raindrop size. If riming is a dominant mechanism for 
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snow formation, then polarimetric signatures in the melting layer are 

weaker. Since vertical profiles of precipitation flux and radar variables are 

very different in the cases of aggregation and riming, the VPR correction 

should be performed differently in these situations.    
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APPENDIX A: TABLES 

 

Table 1: KOUN data listing and available verification for melting layer designation 

 
Event ML Designation  RUC Hours Radiosonde 

Source 
Sonde 
Hour 

21 May 2003 1236-1437 UTC 1200-1500 UTC NWS 
Norman, OK 

1200 UTC 

4 June 2003 1204-1839 UTC 1200-1900 UTC NWS 
Norman, OK 

1200 UTC 

11 June 2003 0056-0601 UTC 0100-0600 UTC NWS 
Norman, OK 

0000 UTC 

2 June 2004 2117-2210 UTC 2100-2200 UTC N/A N/A 
3 June 2004 0201-0559 UTC 0200-0600 UTC N/A N/A 
9 June 2004 0714-2359 UTC 0700-2300 UTC NWS 

Norman, OK 
1200 UTC 
0000 UTC 

19 June 2004 1155-1837 UTC 1100-1900 UTC NWS 
Norman, OK 

1200 UTC 

20 June 2004 1628-1753 UTC 1600-1800 UTC TELEX 
MCAS 

1648 UTC 

21 June 2004 0936-1658 UTC 0900-1700 UTC NWS 
Norman, OK 

1200 UTC 

22 June 2004 0503-1410 UTC 0500-1200 UTC NWS 
Norman, OK 

1200 UTC 

14 November 
2004 

1917-2359 UTC 1900-2300 UTC NWS 
Norman, OK 

0000 UTC 

15 November 
2004 

0643-2025 UTC 0700-2000 UTC NWS 
Norman, OK 

1200 UTC 

18 November 
2004 

0029-0337 UTC 
0553-0559 UTC 

0000-0400 UTC 
          0600 UTC 

NWS 
Norman, OK 

 

0000 UTC 

6 February 
2005 

0122-1455 UTC 0100-1500 UTC NWS 
Norman, OK 

  1200 UTC 

13 May 2005 0657-1253 UTC 0700-1300 UTC NWS 
Norman, OK 

1200 UTC 

4 June 2005 
5 June 2005 

2222-2359 UTC 
0000-0259 UTC 

2200-2300 UTC 
0000-0300 UTC 

NWS 
Norman, OK 

0000 UTC 

13 June 2005 0112-0322 UTC 
2140-2305 UTC 

0100-0300 UTC 
2200-2300 UTC 

NWS 
Norman, OK 

0000 UTC 

17 June 2005 0403-0501 UTC 0400-0500 UTC N/A N/A 
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Table 2: Listing of KOUN events and the hours of observation. 

Number  Date   Hours (UTC)  Event Type 
 

1.  08/14/02   1 – 4   MCS 
2.  09/08/02   18 – 21   Tropical Remnant 
3.  09/09/02   16 – 17   Tropical Remnant 
4.  09/14/02   6 – 11   MCS 
5.  09/19/02   2 – 7   MCS 
6.  10/08/02   17 – 20, 22 – 23  Widespread Stratiform 
  10/09/02   1 – 3, 4 – 5, 13 – 14  
7.  10/19/02   19 – 20, 21 – 22  Widespread Stratiform 
8.   10/24/02   15 – 17, 19 – 21  Widespread Stratiform 
9.  10/28/02   19 – 20   Widespread Stratiform 
10.  12/03/02   22 – 23   Stratiform / Ice NW OKC 
  12/04/02   1 – 3    
11.  04/19/03   10 – 14   MCS 
12.  04/23/03   22 – 23   Isolated Convection 
13.  05/14/03   5 – 11   Severe Convective Cells 
14.  05/16/03   5 – 10   MCS 
15.   05/20/03   1 – 5   Isolated Convection 
16.  06/02/03   3 – 6   MCS 
17.         06/04/03   12 – 14, 15 – 17  MCS 
18.  06/05/03   10 – 15   MCS 
19.  06/06/03   2 – 7   MCS 
20.  06/11/03   0 – 1, 2 – 6  MCS 
21.  06/12/03   0 – 5   MCS 
22.  06/13/03   10 – 14   Isolated Convection 
23.  04/24/04   2 – 7   MCS 
24.  05/13/04   19 – 20   MCS 
25.  06/02/04   20 – 23   MCS 
26.  06/04/04   14 – 20   Isolated Convection 
27.    06/19/04   16 – 20   MCS 
28.  06/21/04   8 – 13   MCS 
29.  06/22/04   8 – 12   MCS 
30.  08/28/04   8 – 12   MCS 
31.  11/14/04   20 – 23   Widespread Stratiform 
32.  11/15/04   10 – 14   Widespread Stratiform 
33.  05/13/05   6 – 10   MCS 
34.  05/27/05   15 – 18   Isolated Convection 
35.  06/05/05   1 – 5   MCS 
36.  06/10/05   7 – 11   MCS 
37.  06/17/05   4 – 7   MCS 
38.  07/01/05   14 – 17   MCS 
39.  08/27/05   18 – 22   Isolated Convection 
40.  08/29/05   3 – 6   Isolated Convection 
41.  09/14/05   3 – 6   MCS 
42.  10/01/05   2 – 18   MCS 
43.  10/05/05   21 – 23   MCS 
  10/06/05   0 – 3, 4 – 6   
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Table 3: The results of echo classification for the Oklahoma Mesonet dataset. 

Percentages exclude nonecho/null classifications. <R> and <ZDR> are mean values of 

rainfall rate (Z capped at 53 dBZ) and differential reflectivity over gage locations for 

the corresponding echo class. The standard NEXRAD R(Z) relation (23) is used to 

estimate the relative contribution to the total radar-estimated rain depth in the far right 

column.    

Echo Category 
# 

Observations 

% 

Occurrence 

<R>  capped 

[mm hr-1] 
<ZDR> [dB] 

% 

Contribution 

to R(Z) 

Rainfall 

GC / AP 7736 9.79 2.88 0.62 5.94 

Biological 11577 14.66 0.34 2.89 0.89 

Dry Snow 4560 5.78 1.51 0.48 1.59 

Crystals 1251 1.58 0.50 0.81 0.14 

Wet Snow 9443 11.96 5.03 1.10 10.75 

Graupel 2695 3.41 14.41 0.60 8.93 

Rain 34016 43.08 3.68 0.83 28.9 

Big Drops 4989 6.31 3.93 1.66 4.48 

Heavy Rain 2224 2.82 58.58 2.11 29.7 

Rain / Hail 460 0.58 82.33 1.15 8.65 
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Table 4: Listing of KOUN events and the hours of observation in the subset for which 

0.0° and 0.5° rainfall results are examined. 

 
Number  Date   Hours (UTC)  Event Type 

 
1.  06/11/03   0 – 6   MCS 
2.  06/19/04   16 – 18   MCS 
3.     06/22/04   7 – 12   MCS 
4.  11/14/04   20 – 23   Widespread Stratiform 
5.  11/15/04   10 – 14   Widespread Stratiform  
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Table 5: Values of ρHV and ZDR for different aggregation intensities defined by factor 

C.  Λr and Λs are the slopes of the bi-exponential distribution for rain and snow 

portions, respectively. 

C Λr [mm-1] Λs [mm-1] ρHV ZDR [dB] 

0 2.92 0.50 0.995 0.866 

30 2.80 0.45 0.989 1.067 

60 2.70 0.40 0.951 1.793 

90 2.60 0.35 0.941 2.10 

120 2.50 0.30 0.940 2.13 
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APPENDIX B: FIGURES 
 
 
 

 
 

Fig. 1: Geometry of scattering as adapted from Ryzhkov (2001). Shaded area 

represents polarization plane. Direction N denotes orientation of the symmetry axis of 

the particle, k represents the direction of wave propagation, z is the true vertical, α 

denotes the canting angle and ψ is the orientation angle with respect to the direction 

of propagation k. 
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Fig. 2: Trapezoidal membership function shape. 
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Fig. 3: Illustration of radar beam interaction with the melting layer. Solid curve 

represents the mean beam height of the 0.5° elevation angle tilt with a 1° beam width 

(bounded by dashed curves).  
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Fig. 4: KOUN measurement PPI images of Z, ZDR, and ρhv on May 13, 2005 at the 

4.5° elevation angle.  
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Fig. 5: An example of average slant range dependences of Z, ZDR, and ρhv at the 4.5° 

elevation angle for the case illustrated in Fig. 4. Z measurements are displayed with 

thin solid lines, ZDR and ρhv are displayed with thick solid lines. MLDA ρhv thresholds 

are depicted with dashed lines. 
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Fig. 6: (A) Example of ML points mapped on the height-azimuth plane. The 80% 

(ML top) and 20% (ML bottom) height contours are overlaid on the image in solid 

lines. (B) Corresponding surface Oklahoma Mesonet temperature (Celsius) and 

KOUN radar reflectivity factor from the 0.5° elevation angle. Highest surface 

temperatures and higher ML tops are located in directions ahead of the convective 

line. 
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Fig. 7: Normalized histograms of KOUN radar measurements of (A) ρhv, (B) Z, and 

(C) ZDR for wet snow (dotted line), dry snow (thin solid line) and light-to-moderate 

rain (thick solid line)(adapted from Park et al. (2007), 29 hours of observation). 

Vertical dashed lines indicate thresholds used in the MLDA. 
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Fig. 8: Intrinsic model (thick solid line) and smoothed (dotted lines) vertical profiles 

of ρhv demonstrating the impacts of beam broadening and radial smoothing on 

polarimetric melting layer signatures at elevation angles 4.5° and 10.0°. 

Environmental melting level height is approximately 3.7 km (thin horizontal line).
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Fig. 9: Scatterplot of ML top heights obtained from the MLDA versus radiosonde-

derived 0°C observations. 
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Fig. 10: As in Fig. 9, but utilizing RUC model analysis output temperatures for 

validation. Hours with questionable RUC or MLDA performance for convective 

events are noted with asterisks. 
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Fig. 11: Histogram of the temperature of the ML top retrieved from the radar as 

revealed by RUC model analysis output. 
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Fig 12: As in Fig. 11, but for ML bottom heights. 
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Fig. 13: Histogram of the ML thickness retrieved from the MLDA. 
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Fig. 14: Temporal dependencies of the height of the ML top estimated from the radar 

(crosses), RUC model output (diamonds) and soundings (‘S’ symbol, bottom of the 

symbol) for 4 different days of observation. 
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Fig. 15: A map of the observation network in central Oklahoma. 
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Fig. 16: Histogram of ranges associated with different classes of hydrometeors 

observed at the 0.5° elevation. 
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Fig. 17: Hourly radar-gage rainfall accumulation scatterplots for rain type I over 

Oklahoma Mesonet gage locations: (a) R(Z), (b) R(KDP), (c) R(Z,ZDR). 
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Fig. 18: Hourly radar-gage rainfall accumulation scatterplots for rain type I over ARS 

network gage locations: (a) R(Z), (b) R(KDP), (c) R(Z,ZDR). 
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Fig. 19: As in Fig. 17, but for rain type II over Oklahoma Mesonet gages. 

 

 181



 

 

Fig. 20: As in Fig. 18, but for rain type II over ARS network gages. 
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Fig. 21: An example of hourly rain accumulation maps obtained using an (a) R(KDP) 

relation and (b) R(Z) relation. 
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Fig. 22: As in Fig. 17, but for Wet Snow over Oklahoma Mesonet gages: (a) R(Z), (b) 

R(KDP), (c) R(Z,ZDR), and (d) 0.6*R(Z) that minimizes bias. 
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Fig. 23: Vertical cross-section of R(Z), ZDR, R(KDP) and ρHV through a thunderstorm 

illustrating loose connection between R(KDP) and ZDR aloft and rain at the surface. 
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Fig. 24: Performance of the conventional R(Z) algorithm if Dry Snow and Crystals 

are identified in the radar resolution volume; (a) All distances and heights of the radar 

volume are included, (b) the radar volume is at or below the freezing level, (c) the 

radar volume is above the freezing level. 
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Fig. 25: Performance of the conventional R(Z) algorithm if the radar volume is filled 

with graupel or hail and is located above the freezing level. 
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Fig. 26:  Mean bias (top) and RMS error (bottom) of different radar estimates as a 

function of range (43 rain events, 179 hours of observation).   
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Fig. 27: As in Fig. 26, but for stratiform events with an absence of convective 

signatures (9 rain events, 26 hours of observation). 
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Fig. 28: Polarimetric variables for various elevation angles measured at the 110˚ 

azimuth for the 11/18/04 case. Tick marks in Z (ZDR) plots represent 1 dB (0.1 dB). 

ρHV is plotted with 0.01 tick marks. Tick marks in ΦHV profiles are in 1° increments.    
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Fig. 29: Illustration of the beam blockage cause by the surface. θ0 is the elevation 

angle at the middle of the beam (here drawn as 0.0°), θb is the elevation angle for the 

top of the blocking obstacle, h is the height of the radar tower, ae is the effective 

radius of the earth, he is the equivalent mean beam height above the surface.  
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Fig 30: Hourly radar-gage rainfall accumulation scatterplots over ARS (cross-hairs) 

and Oklahoma Mesonet (stars) network gage locations for the R(Z) relation at the 

0.0° tilt and the 0.5° tilt. 
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Fig. 31: As in Fig. 30, but for R(KDP). 
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Fig. 32: Image of the Cimarron radar taken during the Fall of 2002. Top left corner 

image shows the radar after an ice storm in February 2003.
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Fig. 33: Mean Z-ZDR dependencies obtained from the radar for different rain regimes 

and from the disdrometer using different assumptions about raindrop shapes. “Radar” 

curves are derived from the KOUN WSR-88D measurements. “Disd” curves are 

based on the 2D video disdrometer statistics. “LD” and “SD” curves correspond to 

rain regimes dominated by large and small drops, respectively. Simulations from 

disdrometer measurements are made using assumptions about drop shape following 

Beard and Chuang (1987) measurements, Brandes et al. (2002), and Bringi et al. 

(2003).     
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Fig. 34: (a) Azimuthal dependencies of ZDR measured by the Cimarron radar at the 

0.5˚ elevation angle for 5 rain events. (b) Mean azimuthal dependence for these 

events. Error bars indicate the range of ZDR variations for all cases.  
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Fig. 35: Same as Fig. 34, but for 7 snow events. 

 197



 

 

Fig. 36: (a) Difference between the mean azimuthal dependencies of ZDR at the 1.5˚ 

and 0.5˚ elevation angles for 5 events. (b) Mean azimuthal dependence for all 5 

events. Error bars indicate the range of variation in the difference field.  
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Fig. 37: Same as Fig. 36, but for 4 events observed by the KOUN radar.  
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Fig. 38: Location of radars and the ARS network rain gauges in central Oklahoma. 

 200



 

 

Fig. 39: Bias of Z measured by the Cimarron radar as a function of azimuth for 5 rain 

events. Diamonds and dashed lines indicate results of direct comparisons of Z from 

the Cimarron and WSR-88D data. The solid curves represent results of consistency-

based retrievals. 
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Fig. 40: Relative bias of Z as determined from the difference of R(KDP) and R(Z) 

rainrates projected into Z as a function of azimuth for 4 rain events. 
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Fig. 41: Mean azimuthal dependence of the Z bias for the events featured in Fig. 38. 
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Fig. 42: Diagram of polarimetric measurement profiles and several parameters that 

are extracted from these profiles.  
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Fig. 43: Scatterplot of the Z in snow versus the value of Z in the rain beneath the 

melting layer as revealed from analysis of 30 typical profiles of polarimetric radar 

variables in 10 different storms with pronounced bright band observed with the 

NSSL’s S-band polarimetric radar. 
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Fig. 44: Scatterplot of Z in rain versus the peak value of Z within the melting layer as 

in Fig. 43. 
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Fig. 45: Scatterplot of ZDR in snow versus ZDR in rain beneath the melting layer as in 

Fig. 43. 
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Fig. 46: As in Fig. 43, the scatterplot of the ZDR in rain versus the peak in ZDR within 

the melting layer. 
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Fig. 47: As in Fig. 43, the scatterplot of the ZDR peak within the melting layer versus 

the minimum in ρHV. 
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Fig. 48: As in Fig. 43, the scatterplot of the Z peak within the melting layer versus the 

minimum in ρHV. 
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Fig. 49: As in Fig. 43, the scatterplot of the Z peak within the melting layer versus the 

value of ZDR in rain beneath. 
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Fig. 50: As in Fig. 43, the scatterplot of the enhancement in Z within the melting 

layer versus the ZDR in the rain beneath 
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Fig. 51: As in Fig. 43, the scatterplot of melting layer thickness versus the value of Z 

in rain. 
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Fig. 52: As in Fig. 43, scatterplot of melting layer thickness versus the height of the 

melting layer top (based on ρHV observations) 
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Fig. 53: Terminal velocity of melting snowflakes as a function of melted water 

diameter for six values of mass water fraction: 0, 20, 40, 60, 80, and 100% in the case 

of unrimed and heavily rimed snow. 
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Fig. 54: Maximal diameter of raindrops versus fall distances from the top of the 

melting layer. Rainrate R is set at 5 mm hr-1. 

 216



 

 

Fig. 55: Size distributions of raindrops and partially melted snowflakes at the top of 

the melting layer (upper curve) and at the levels 200, 400, 600, and 800 m below the 

top. 
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Fig. 56: Terminal velocities of raindrops and partially melted snowflakes at the top of 

the melting layer (bottom curve) and at the levels 200, 400, 600, and 800 m below the 

top. Rainrate R is set at 5 mm hr-1. 
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Fig. 57: Model profiles of ZH through the melting layer. ZH based on dielectric Model 

A (water with snow inclusions) is depicted with a solid line, Model B (snow with 

water inclusions) is depicted with a dotted line, and Model C (mixture of Models 

A,B) is depicted with a dashed lines. Rain rate is 3 mm hr-1. 
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Fig. 58: As in Fig. 57, but for model profiles of ZDR through the melting layer. 
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Fig. 59: As in Fig. 57, but for model profiles of ρHV through the melting layer. 
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Fig. 60: As in Fig. 57, model profiles of ZH for heavily rimed particles entering the 

melting layer. 
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Fig. 61: As in Fig. 57, model profiles of ZDR for heavily rimed particles entering the 

melting layer. 
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Fig. 62: As in Fig. 57, model profiles of ρHV for heavily rimed particles entering the 

melting layer. 
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Fig. 63: Volume fraction of water dependence on melting particle diameter. The 

maximal size of raindrops Drs is 6 mm. Solid curve is the dependence that matches 

well with the thermodynamic model in Eq. (90). Dashed lines are for increasing 

aggregation factors as in Eq. (107).  
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Fig. 64: Resonance factor Dm |εm|1/2 / λ dependence on melting particle diameter. 

Solid curve corresponds to dielectric constants determined using the output of the 

thermodynamic model without aggregation. Dashed lines are for increasing 

aggregation factors. 
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Fig. 65: Modification of the bi-exponential particle size distribution via aggregation. 
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