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PREFACE 

This study was conducted to provide a decision analysis methodology for military 

commanders and their staffs when confronted with an environmental contamination 

problem. The methodology was based on an established problem solving foundation that 

was adapted to incorporate uncertainty analysis of imperfect data and quantify the 

uncertainty with respect to time. The methodology provided a link between the 

uncertainty analysis and a decision optimization model which can be applied to strategic, 

operational or tactical level decision making. 
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CHAPTER I 

INTRODUCTION 

Defming the Problem 

Need for Methodolo~y 

It is no secret that the number of federal facilities requiring environmental cleanup 

is large and the money available for their remediation is getting increasingly tighter. 

Within the U.S. Army's Installation Restoration Program there are over 15,000 sites 

identified, 30 of which are listed on the national priority list (Brown, 1993). Under these 

circumstances the need for optimizing resources and making the right decisions has never 

been greater. In recent years there has been a general consensus that cleanup of all 

contaminated sites to their previous pristine level is monetarily infeasible (Hellman and 

Hawkins, 1988). This has become very apparent within the Department of Defense 

(DOD) effort to remediate a large number of facilities with increasing budgetary 

constraints. Therefore a management approach has been to optimize resources and 

reduce the risk to human health and environment (HH&E) to a level acceptable to the 

general public and regulators. The approach may seem simple but the problems involve 

uncertainty of the situation and numerous decisions which can make solving the problem 

a very complex and monumental task. Decisions concerning level of risk, criteria for site 

evaluation, remediation alternatives, uncertainty of data and other parameters are very 

complex issues that decision makers must incorporate into a decision making process. 
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Decision making is problem solving, and most often it is done with some degree 

of uncertainty. As the complexity and uncertainty of a problem increases, the decision 

maker's ability to keep it all in perspective and analyze a myriad number of factors is 

lessened. Decision making was once considered an art but has since been developed into 

a science called decision analysis (Baird 1978). Decision analysis provides a rational 

step-by-step approach to aid in the decision-making process (Ossenbruggen, 1984). 

Judgment, rather than intuition, is used and it implies a process of forming an opinion or 

estimate by prudent discernment and comparison (Baird, 1978). Decision analysis allows 

the decision maker to compartmentalize the problem and think through it in a rational and 

structured method. The decision analysis methodology (DAM) presented within this 

thesis uses the fundamentals of decision analysis and links a decision model to stochastic 

models that quantify uncertainty within economic and environmental frameworks. 

A decision tree as shown in Figure 1 is a very convenient way to visualize the 

decision model and methodology. Decision nodes (square blocks) are sequential and are 

related to a time line, as shown in Figure 1. Other nodes within the tree represent random 

events (circles) and terminal nodes (triangles) represent end consequences. Branches 

between decision nodes and random event nodes represent alternative selections or 

decisions. Branches between random event nodes and terminal nodes represent the states 

of nature that are uncontrollable (Ossenbruggen, 1984). These would include, for 

example, the state of nature that a contaminant plume reached a monitoring well. Every 

decision or alternative leads to a consequence that has a certain probability of occurring. 

Sometimes the probability of occurrence is known but usually is uncertain and may be 

determined using models. This is where stochastic modeling assists in determining 
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probabilities. This DAM framework systematically assists the decision maker in 

determining the best alternative based on a cost and risk minimization strategy under 

conditions of uncertainty. The present worth values of capital cost and future monetary 

value of loss to property and human life are used as the measures of the consequence 

(Ossenbruggen, 1984). The consequence will depend upon the alternative chosen and the 

actual state of nature. 

Figure 1. Decision tree used to select alternatives under uncertain conditions. 

I 
Time = 0 Time = t Conseqll8nce X ...... 

Alternative A rl ..... 

T Consequence Y C1 
~ 

Consequence X 

Decision 2... '-'l Alternative B A ~ 

1 1 Consequence Y A 

Decision 3 ~ 1 Consequence X 
Decision 1 !:1 AlternatIve C A 

1 Consequence Y 

CONleqll8nce X ...... 

Alternative D A 1 Consequence Y ..., 

Decision2b ...... 
...... 

.., 
CONlequence X ~ 

AlternatIve E .,..l 
'I Consequence Y 

...... 

The fundamental goal of this thesis was to develop a decision-oriented 

methodology within a framework that was conducive to various situations at the tactical, 

operational and strategic levels of decision making. These levels of decision making were 

considered synonymous to the levels of war as defined in the U.S. Army Field Manual 

100-5, Operations, June 1993. In this way, an existing planning structure already familiar 

to military planners could be applied to an alternative approach. Activities at the strategic 

level establish policy, requirements, objectives, develop plans and provide resources to 
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achieve objectives at the strategic level (FM 100-5, 1993). This is equivalent to strategic 

environmental policy making that encompasses social, political and economic issues. An 

example would be the passing of the National Environmental Policy Act (NEPA) by 

Congress, where environmental strategic policy was made by developing requirements, 

objectives and authority to achieve objectives within the act. At the tactical level, 

operations are planned and executed to accomplish more specific objectives that are 

assigned from the operational level (FM 100-5, 1993). Similarly, tactics is on-the-ground 

problem solving that is usually rapid and dynamic in nature (FM 100-5, 1993). At this 

level, the decision maker has been provided guidance and resources but must utilize the 

resources to their fullest potential. An example in environmental remediation would be 

the directing of remedial actions through movement of equipment and personnel to 

achieve the remedial objective. 

The operational level is the link between strategy and tactics where major 

operations are planned, conducted and sustained to accomplish strategic objectives within 

an area of operations (FM 100-1, 1994). Operational decision making involves 

enforcement of environmental policy, direction and allocation of resources, issuance of 

guidance concerning strategic policy and setting priorities. Using the NEPA example, the 

Environmental Protection Agency (EPA) exercises operational control through 

promulgation and enforcement of NEPA regulations. Additionally the EPA provides 

guidance regarding the regulations and the intentions of the act. These types of actions 

are considered operational because they link: strategic policy to tactical actions. 
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~ ..• 

Users of Methodol0B:Y 

The structure of the DAM presented in this thesis is suitable for both private and 

governmental users at various decision making levels. Flexibility is a key feature of this 

methodology in that it can be applied at the three decision making levels previously 

discussed. To illustrate the decision analysis methodology, it was applied to a tactical 

problem involving groundwater contamination from a federal site. The problem is 

considered tactical because the decisions involve what remediation actions should be 

taken within regulatory and budgetary constraints. 

Development of Methodology Structure 

Military Decision Process 

The military decision process is a method developed and used by military leaders 

to solve problems. This problem-solving method forms the basic foundation from which 

DAM was developed. The problem solving process, as taught by the U.S. Army's 

Command and Staff College (CSC) located at Fort Leavenworth, Kansas, has six steps, 

which are illustrated in Figure 2. Defining the problem, the first step, is critical. Without 

an accurate definition of the problem, solution is practically impossible. Care must be 

taken to insure a correct definition, or all subsequent steps will be of no value to the real 

problem. Gathering facts and information, step 2, is important to making a decision 

based on judgment rather than intuition. Included in this step is data collection, analysis 

and evaluation, which provide the decision maker with the facts. Information gathered 

within this step facilitates estimating the situation, developing courses of action (CGA) 
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and evaluation criteria. An integral part of this step involves making feasible assumptions 

when facts are not available. Assumptions are made to aid the process, not to assume the 

problem away. Determining eOAs, step 3, is susceptible to subjective thinking 

depending on the type of process used. Once the situation is known then eOAs capable 

of solving the problem are developed. The next step involves developing and applying 

screening criteria to each eOA. Screening criteria include constraints such as regulatory, 

time, budget, contaminant levels, plume migration, etc. It is important not to evaluate the 

COAs within this step. It is in the subsequent step that the various eOAs are evaluated 

and weighed against each other with respect to evaluation criteria. Once the best eOA is 

detennined the final step involves implementing the eoA. This problem-solving 

approach is also a hypothetical approach to solving environmental problems. It will be 

shown subsequently how it relates to DAM. 

Figure 2. Military decision making process flow chart. 

Defme Problem 

Implement Best 
COA 
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Even though the U.S. Anny Training and Doctrine Command formally teaches 

this process, there are differences of opinion among experts outside tpe military 

community relative to defmition and order of the steps in Figure 2. Baird (1978) states 

that the following are critical steps in the decision making process: Definition of the 

problem, listing of options, definition of criteria, analysis of the options and choice of a 

course of action. This differs from the steps itemized in Figure 2 in that no fact gathering 

step is included. Differences primarily occur in defmition of events and their order of 

occurrence. As is seen between Baird's steps and Figure 2, his critical steps are in 

concert with the CSCs fundamental steps to problem solving. 

Military Decision Process Adapted for DAM 

For any contaminated site, successful decision analysis of the site is dependent on 

evaluation of numerous factors involving some degree of uncertainty. Probability-based 

methods such as Monte Carlo simulation, stochastic modeling and statistics are used to 

quantify the uncertainty but the output sometimes is not compatible with decision analysis 

(Freeze et al., 1990). A link between uncertainty and decision analysis was necessary. 

Two steps were added to the military decision process in this thesis to establish the link 

between them. These additional steps link technical and uncertainty analysis to an 

economics-based decision framework. Because the resource involved is typically money, 

it is logical to base the decision on economics. A discussion of processes involving 

quantifying risk monetarily is included in Chapter Ill. Figure 3, however, shows how 

these steps integrate into the decision making process. Notice that the fundamental 

structure of Figure 2 remains unchanged. 
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During the fact gathering step, factual information may be sparse or nonexistent in 

some cases. In the absence of factual information, assumptions must be made to continue 

the process. Associated with assumptions is uncertainty, and quantifying that uncertainty 

is the reason for processing any factual information and conducting an uncertainty 

analysis. In a problem involving groundwater contamination for which data from only a 

few monitoring wells is available, contaminant plume size and location is uncertain except 

at the well locations. The infdrmation processing step can utilize geostatistic methods to 

provide some probable distribution of the plume. After the information is processed and 

screening criteria are defined, the next step is quantifying the uncertainty associated with 

off-site transport of a chemical. This defines the uncertainties associated with estimating 

the chemical concentrations and their arrival times at pre-defined points of compliance. 

This, in turn, establishes a range of statistically defmed times when remediation will be 

most effective. In this step, Monte Carlo simulations along with statistical probability 

methods are utilized to quantify the uncertainty. It is important to define screening 

criteria prior to the uncertainty analysis because of the association of clean-up objectives, 

compliance requirements and technology capabilities to screening criteria. During the 

uncertainty analysis there may be occasions when screening criteria tolerances or 

defmitions will affect the analysis. 

The information processing step within Figure 3 involves statistical analysis of 

data to determine the distribution and/or definition of model parameters and boundary 

conditions. These values are then utilized in the uncertainty analysis step as input to 

models. Uncertainty analysis conducts stochastic modeling to determine the distribution 

of outcomes for a given situation. 
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Figure 3. Decision making process adapted to incorporate technical and uncertainty 
analysis. 

Gather Facts 

Determine COAs 

Define & Apply 
Screening Criteria 

Integrating Stochastic Models into DAM 

Process Information 

Uncertainty Analysis 

Evaluate COAs 

Recent work by Freeze, Gorelick, Massmann and others (Freeze et al., 1990 and 

1992; Gorelick et al., 1984; Massmann et al., 1991) has been instrumental in linking 

uncertainty analysis to decision making and optimization. Their methods have primarily 

dealt with specific tactical level problems such as placement of monitoring wells. This 

approach in some cases is too specific; therefore a method more flexible is needed. 

Freeze and coworkers (1990), introduced a decision analysis framework that 

linked hydrogeologic technical and uncertainty analysis to an economic framework that 

could be used in decision analysis. Their work primarily involved applying the framework 

to engineering applications involving groundwater. Critical elements of this framework 
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were integrated into Figure 3. Even though their framework was developed for 

hydrogeological problems, it had other applications. The informatioQ processing step 

utilized their technique of modeling uncertainty for stochastic simulation in the 

subsequent step. In this step simulation models can be utilized to quantify the uncertainty 

for use in a decision model. 

Figure 4 illustrates the decision analysis methodology presented in this thesis. The 

flow and structure did not change from Figure 3 but the information process and 

uncertainty analysis steps were renamed to condition uncertainty model and simulation 

model, respectively. The title changes describe the actions conducted within these steps. 

Condition uncertainty, not to be confused with the geostatistic operation called 

conditional simulation, processes the data with certain models or statistics to develop 

simulation model parameters or boundary conditions. The additional processing provides 

a better understanding of the situation and uncertainty pertaining to environmental 

conditions such as hydrologic boundaries, geologic boundaries and hydrogeologic 

boundaries. This step is flexible to various models dependent upon the situation and the 

users needs and capabilities. 
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Figure 4. Decision analysis methodology framework presented in this thesis. 

Gather Information~_ .... 

Determine COAs 

Define & Apply 
Screening Criteria 

Condition Uncertainty 
Model(s) 

Simulation Model(s) 

Evaluate COAs 

Once the condition uncertainty step is completed, along with the "define and apply 

screening criteria" step, simulation model(s) can be utilized to define or quantify the 

uncertainty of a problem into terms usable for the decision maker. Stochastic modeling 

techniques can be used to develop probability distributions to address the problems 

uncertainty. For example, transport modeling can be used to determine the probability 

that a contaminant will reach a specified point. The probability distributions can then be 

linked to a decision model that optimizes cost and risk used in the decision tree format 

from Figure 1. That is, the transport modeling probabilities are utilized in the decision 

tree analysis as probabilities for the consequences. Decision tree analysis was the tool 

used for the "evaluation of the course of actions" (COAs) step of Figure 4. 
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CHAPTER II 

EXAMPLE PROBLEM INTRODUCTION 

Decision Analysis Methodology Applied to an Example Problem 

Problem Situation and Site Location 

Presentation of the methodology was applied to a tactical problem using a military 

installation data set. The site is a U.S. Army-owned munitions plant known as Longhorn 

Anny Ammunition Plant (LHAAP) located in Harrison County, Texas near the Louisiana 

border (see Figure 5). The U.S. Army Corps of Engineer Tulsa District was charged with 

managing the project, in which a remediation phase was initiated in 1995 after years of 

site characterization (Cliff Murry, 1995). 

The complex, which had been secured from trespass by unauthorized individuals, 

is contractor-operated to load, assemble and pack pyrotechnics, illumination/signal 

ammunition and solid rocket propellant motors (Green et al., 1990). Since the early 

1950' s this industrial complex (see Figure 6) has disposed of solid and liquid explosives, 

pyrotechnics and combustible solvent wastes by open burning, incineration, evaporation 

and burial (Green et al., 1990). A large portion of the wastes were disposed of in area 

called "Burning Ground 3" and the now closed unlined evaporation pond (UEP), see inset 

to Figure 6 (USACE, 1993). 
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Figure 5. Location of example problem used in thesis (ArcUSA, 1992). 
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Figure 6. Longhorn Army Ammunition Plant site location with respect to Caddo Lake 
and Karnack, Texas (MAPEXPERT, 1993). 
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Site Hydrogeology 

LHAAP is in the middle of the East Texas timber belt, characterized by sandy 

rolling forested topography (Green et al., 1990). Geological formations beneath the site 

are the Wilcox and Midway groups (Cushing et al., 1964). The Wilcox formation in 

Harrison County is characterized as a depositional facies of tributary channel deposits 

from the Tertiary age (Fisher et al., 1969). It is typical for these types of deposits to 

consist of about 40% channel deposits (sand) and 60% overbank deposits (silt and clay) 

(Fisher et al., 1969). Due to the depositional environment, the Wilcox Aquifer is made 

up of interbedded sand, silt and clay (see Figure 7). The beds are lenticular, with lenses 

of clay, silt and sand pinching out or grading into one another over short distances (Green 

et al., 1990). Some clay lenses are extensive enough to cause confining conditions locally 

(Hosman et al., 1991). There is considerable vertical resistance to groundwater flow 

because of the interbedded clay and overall low permeability of about 65 gpd per ft2 

(Hosman et al., 1968). The aquifer varies in depth from 90 to 150 feet with the Midway 

group acting as a lower boundary unit. Aquifer depth variance is due to the slight 

Northwest dipping of the Wilcox and Midway groups caused by the Sabine uplift. The 

uplift (see Figure 5) is a geologic structural feature that has pushed Upper Cretaceous 

beds to within 700 feet of the surface (Matson, 1916). In areas adjacent to the uplift the 

same beds are 5000 to 6000 feet from the surface (Matson, 1916). The regional 

groundwater gradient is about .0015 to the northeast (Hosman et aI., 1991) but is 

affected locally by mounding of the water table beneath the burning ground and UEP. 

The mounding causes a radial gradient outward from the site for a short distance 
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(USACE, 1993). This mounding was attributed to the increased levels of infiltration due 

to activities at the site which removed topsoil and vegetation. The remaining land surface 

was highly porous, allowing increased infiltration to recharge the Wilcox aquifer, thus 

carrying the contaminants. 

Figure 7. Typical stratigraphic cross section of the Wilcox and Midway groups with 
detail of interbedded silts clays and sand (not to scale). 

Site Contamination 

The disposal site incorporates several waste units within a 300 m by 150 m 

rectangular area (see inset to Figure 6). All of the units have received a variety of waste, 

depending on the type of ammunition production at the time of disposal. The waste units 

include past demolition bum and burial pits, burn pans, a heavy propellant pit, 18 various 

bum pits, burn cages,liquid waste sump, an unlined evaporation pond and an air curtain 

destroyer (USACE, 1993). A summary listing in Table 1 categorizes the known 

pollutants into specific heavy metals, volatile organic compounds and explosives. 
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Table 1. Most significant contaminants detected at the burning ground (USACE, 1993). 

• Heavy Metals 
o Barium 
o Chromium 
o Lead 
o Zinc 

• Volatile Organic Compounds 
o Trichloroethylene 
o Methylene Chloride 
o Vinyl Chloride 
o Acetone 

• Explosives 
o HMX 
o RDX 
o 1,3,5-TNB 

For simplicity, only one contaminant was used to test the decision analysis 

methodology developed during this effort. The criteria used in choosing one of the above 

listed contaminants were as follows: A human health and environment (HH&E) threat, as 

defined by the EPA (EPA, 1987), found in large quantities and a reasonable amount of 

monitoring data available. Trichloroethylene (TCE) was chosen for this analysis because 

it not only met all the criteria, but also because it is a very common contaminant 

throughout the country (Sawyer et al., 1994). This allowed some transfer of the 

developed methodology to other locations or applications. TCE was used as an industrial 

solvent for many years on the site. It is a dense non-aqueous phase liquid (DNAPL) 

exhibiting the physical characteristics listed in Table 2. These characteristics are 

conducive to the contaminant's potential for migration through the unsaturated into and 

through the saturated zones. 
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Table 2. Physical characteristics for Trichloroethylene. 

Physical Characteristic Value Source 
Solubility 1100 mg/l (250 C) Verschueren, 1983 
Specific Gravity 1.46 Weast, 1980 
Density 1.33 g/ml Weast, 1980 
Adsorbability (Koc) 122.84 (uglgOC)/(uglml) Sawyer et aI., 1994 
Henrys Constant 450 (atm-m3 water)/(m3 air) Sullivan, 1984 

Contaminants from the burning ground have been under continual monitoring 

since 1976 using a variety of sampling methods including groundwater monitoring and 

soil borings (USACE, 1993). Currently (August, 1995) there are 44 groundwater 

monitoring wells that are relatively shallow compared to the total thickness of the aquifer. 

These are presented in Figure 8, together with depth frequencies for the sampled wells. 

The most frequent well depth occurs between 20-39 feet, with twenty monitoring wells 

within that range. From welliog data, aquifer thickness varies from 90 to 150 feet 

(USACE,1993), 

therefore a majority of the collected data represents the shallower portions of the aquifer. 

Figure 8. Bar diagram showing monitoring well depth range and number of wells within 
each range (USACE, 1993). 
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This analysis was therefore limited to the upper portion of the aquifer. This was 

consistent with the monitoring and remediation objectives of the U.S. Army Corps of 

Engineers (USACE, 1993). Figure 9 presents the locations of these monitoring wells on 

the site. As site characterization evolved, so did the installation of the monitoring wells. 

Monitoring well installation occurred in four phases from 1980 through 1989, where 22 

wells were initially completed in early 1980, followed by 18 wells in June and July of 

1982, 10 wells between 1984 and 1986, and 24 wells between 1987 and 1989 (USACE, 

1993). The sum of these wells does not agree with current active monitoring well 

numbers because many of the older wells were closed. In addition to groundwater 

monitoring, soil borings were taken and tested for the various contaminants. A total of 

20 borings were completed and analyzed for volatile organic compounds and heavy 

metals (USACE, 1993). Figure 10 shows the locations of the bore holes utilized in this 

monitoring program. 
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Figure 9. Locations of monitoring wells for groundwater sampling (USACE, 1993). 
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Figure 10. Locations of soil borings along with existing monitoring wells (USACE, 
1993). 
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Monitoring data show that there was a significant amount of TCE contaminating 

the soil and groundwater on site. Figure 11, prepared from these data, shows the 

strength and migration of TeE over the years for a few selected wells. Monitoring wells 

C-l, MW-16 and MW-17 were located down-gradient from the original waste units and 

showed a progressive increase in TCE concentrations over the time of monitoring. 

Monitoring well MW -1 was located adjacent to the evaporation pond and showed a 

significant amount of TCE contamination. Free-phase testing in this well yielded TeE 

concentrations of 30,000 to 50,000 ugll. This was expected given the flow characteristics 

of TCE and the proximity of the well to the waste unit (reference Figure 9). 

Figure 11. Variation of strength and migration of TeE within the burning ground for 
select monitoring wells. 
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The UEP (unlined evaporation pond) is of particular importance since it was the 

primary means for disposal of liquid wastes since 1955 (Green et aI., 1990). Prior to that 

time, various trenches and bum pits were used to dispose of the liquid industrial wastes. 

The UEP was closed in 1985 with the removal of the remaining liquid and sludge. It was 

then capped to prevent water infiltration (Green et al., 1990). As part of the clean 

22 



closure procedure, samples were collected from the floating material in the pond, the 

sediment layer on the pond's bottom, and the soil layer beneath the pond and tested for 

inorganic and organic compounds (Green et aI., 1990). Of the three layers tested, only 

the aqueous layer had consistent detection of TCE (Green et aI., 1990). Even though 

tests were conducted for volatile organic compounds (VOC) during closing procedures of 

the UEP, they were not used as parameters for clean closure of the UEP (USACE, 1993). 

A significant VOC plume within the saturated zone exists under the site, as shown in 

Figure 12. This figure shows the U.S. Army Corps of Engineers' estimated 

isoconcentration contours using November, 1992 monitoring well data. Even though 

clean closure (contaminant source removed) methods were used, the presence of VOCs 

after closure was significant enough to suggest continued loading into the saturated zone 

from wastes located in the vadose zone which were disposed years before. Surface soil 

testing for VOCswas conducted during the cleanup but none within the vadose zone 

directly under the UEP (USACE, 1993). Groundwater monitoring data since 1985 

showed the contaminant plume continued to increase within the saturated zone (see 

Figure 11). It can be assumed that contaminated soils in both the vadose and saturated 

zones beneath the site continued to act as a source of contamination to the groundwater. 
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Contamination Risk 

Three features must be present for a contaminant to pose a threat to HH&E: 

source of contamination, receptor for contamination and a pathway from the source to 

the receptor (EPA, 1987). 

Even though the capacity of the Wilcox aquifer is small to moderate, its potential 

use as a domestic water source is high for rural home sites (Hosman et al., 1991). In 

addition, the industrial complex is bounded to the northeast by Caddo Lake, which serves 

as a drinking water source to the local communities of approximately 50,000 people 

(Golden et al., 1994). Therefore, the potential for drinking water contamination from the 

site exists. With the regional ground water gradient generally oriented northward, 

Harrison Bayou would be the primary location to intercept a contaminant plume 

migrating with the regional groundwater gradient from the site (Figure 6). For this effort, 

therefore, the immediate receptor path was taken to travel through Harrison Bayou. 

Identifying the receptor path was important in determining the plane of 

compliance (POC), identifying alternative actions and potential receptors. The POC 

established for this problem existed along an interface between the groundwater and 

surface waters with the Harrison Bayou. Figure 13 shows the approximate alignment of 

the POCo 
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Figure 13. Location of the POC with respect to the source, Harrison Bayou and the 
potential receptors (MAPEXPERT, 1993). 
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Based on the given data, TCE is present in significant amounts and has the 

physical capability to migrate through a potentially usable aquifer. The amount of TCE 

detected in the groundwater exceeds the national drinking water standard of 5 ugll. TCE 

is an EPA listed contaminant known to have non-carcinogenic effects on humans (Sawyer 

et al., 1994). Therefore, a risk to HH&E does exist under these circumstances. As 

manager of such a facility the questions to be asked are: Do I remediate, when should 

remediation start and what type of remediation technique should I use? Chapter one 

outlined the importance of developing decision criteria and a model. The constraints 

important to this specific problem are technical more than they are social or political. 

Even though social or political issues are not addressed in this example problem, they can 

be addressed within the methodology. This can be done through development of criteria 

catering to those issues. 
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The following are the criteria used in the Long Hom Anny Ammunition Plant 

problem. 

• Limit of contaminant migration. 

Defined as the furthest point the contaminant can migrate off the site. 
An imaginary boundary called the plane of compliance (POC) was 
used to mark this point. It was set as the swampy interface with 
Harrison Bayou just North of the burning grounds (see Figure 13). 
Any contamination migrating beyond the POC with a strength greater 
than or equal to the set maximum contaminant level (MCL) was 
considered failure. 

• Maximum contaminant level. 

Defined as the maximum allowable concentration of contaminant in 
groundwater. Measured in micrograms of contaminant per liter of 
water, the MCL used will be that which is set by the EPA for drinking 
water of 5 ugll for TCE (Sawyer, et. aI., 1994). 

An objective function was used to calculate the cost of each consequence in a 

decision tree similar to Figure 1. The least costly consequence inherently includes the 

optimum alternatives within the decision tree. Being a cost minimization decision model, 

the objective function's goal is to minimize the cost of remediation and minimize risk 

(probability of failure). Failure for this problem was defined as TCE in a concentration 

equal to or greater than the MCL migrating to the POCo Equation (1) presents the 

objective function developed for this problem. The first part of the objective function is a 

typical present-worth model that was used to evaluate each alternative in present dollars. 

The remedial cost function (C(t» and the failure cost function (R(t» are the core for this 

equation. Costs of additional testing and monitoring groundwater were also factored into 
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the objective function. The probability function is the quantification of the problem's 

uncertainty, which represents the probability a certain state of nature will exist 

Minimize $ = [[(l/(1+i)t) * (C(t) + R(t) + T(t) )] + M(t)] * P(snx) (I) 

where $ = cost in dollars 

= index rate for money 
t = time unit from 0 to T 
C(t) = remedial action cost function 
R(t) = risk failure cost function 
T(t) = additional testing cost function 
M(t) = monitoring well cost function 
P(snx) = probability for a given state of nature 

The remedial cost function is the estimated capital and operation costs for each of 

the consequences involving remediation actions. This cost variable is a function of time; 

therefore a uniform series model was used to calculate a present worth for operational 

costs, as shown below. 

C(t) = RACAP + RAOM[(1+iY-I]/[i(1+iY] (2) 

where = capital cost for remedial action RACAP 
RAOM = operation and maintenance cost for remedial 

action 

Uncertainty for this function involves the size and location of the contaminant 

plume. Since remedial cost are typically proportional to the plume volume, remedial cost 

estimates inherit the uncertainties associated with defining the plume. A geostatistical 

approach called conditional simulation was used to determine the size of the plume and it'" 

concentration distribution. The method utilized proven geostatistical software to define 

the spatial statistics of the monitoring data. These spatial statistics were then run through 

a kriging and conditional simulation algorithm using Monte Carlo techniques. A 

statistical analysis was then conducted to determine the upper boundary of the 95% 
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confidence interval (UB 95 CI) for the plume's two-dimensional size, location and 

concentration distribution. The VB 95 CI plume size and concentration distribution were 

used to determine the various remediation alternatives and to calculate their cost. 

The failure cost function puts a monetary value on failure; therefore it is 

associated with minimizing costs for each alternative. Failure, previously defined as TCE 

migration greater than 5 ugll across the POC, can result in substantial costs due to 

litigation, new domestic water source development, etc. Because this variable is a 

function of time, the present cost of a uniform series is applied to any recurring costs 

associated with failure. 

R(t) = FCAP + FOM[(l+iY-l]/[i(1+iY] 

where FCAP = 
FOM = 

capital cost for failure 
operation and maintenance cost for failure 

In this particular decision model a decision sequence was added, called 

"Additional Testing". This concept utilizes Bayes' theorem to provide a refined 

(3) 

probability for a given state of nature. The Bayesian concept will be discussed in depth 

later, but as utilized in this problem, the potential monitoring data obtained from installing 

additional groundwater monitoring wells were used to calculate a revised probability of 

TCE migrating to the POCo Both capital and operational costs were incurred for 

installing monitoring wells. Again the variable was a function of time, so a uniform series 

model was used to calculate a present worth for T(t) operational costs as shown below. 

T(t) = TCAP + TOM[(1+iY-l]/[i(1+iY] 

where TCAP = 
TOM = 

capital cost for testing 
operation and maintenance cost for testing 
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The monitoring well cost function was the operation costs for monitoring existing 

wells and associated laboratory analysis. This function had no capital costs because the 

monitoring wells already existed. The cost variable was a function of time. Therefore a 

uniform series model was used to calculate a present worth for operational costs as 

shown below. 

(5) 

where MOM = operation and maintenance cost for monitoring 
groundwater in existing wells 

A majority of the problem's uncertainty analysis was associated with the 

probability function. For the given contamination problem, three states of nature were 

used based on the concentration of TCE within the groundwater reaching the POCo 

States of nature were defined as: (1) no detectable amount of TCE reached POC, (2) less 

than 5 ugll TCE reached POC and (3) ~ 5 ugll TCE reached POCo Given these three 

random events without any other information, the probability of one being the true state 

of nature was 1/3. In reality the three states of nature do not have the same probability of 

occurrence. Therefore an uncertainty analysis was conducted to better define the 

probabilities for the states of nature. 

A stochastic approach was used to determine the probabilities of these states of 

nature. An analytical groundwater model using Monte Carlo simulation techniques 

developed a probability versus TCE concentration plot for various time periods. 

Probabilities for the states of nature were taken from these plots and used in the decision 

tree analysis. 
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Capital, operational and maintenance costs for all functions were determined using 

the EPA's Cost of Remediation Alternatives (CORA) software. This expert system 

provides the user with remediation alternatives and their associated costs. Developing 

"cost for failure" value also utilized the CORA software by determining cost for providing 

alternative drinking water sources. 

The Bayesian or probability updating concept used in the model was based on 

Bayes Theorem, which was derived from the definition of the probability of an 

intersection and the use of the defmition of conditional probability (Ossenbruggen, 1984). 

The objective of this concept was to improve the probabilities for the states of nature 

through additional testing. The prior probability was defined as the probability that the 

true state of nature is the event Sj, or P[Si] (Ossenbruggen, 1984). Revised probability is 

equal to the conditional probability where the true state of nature is the event Si given the 

outcome of a test is Zj or P[S/Zj] (Ossenbruggen, 1984). Definition of the probability of 

an intersection and the use of conditional probability defmition yields (Ossenbruggen, 

1984): 

or 
P[Si n:lj] = 

P[Si 121] P[Zj] = 

P[:lj n Sd 

P[Zj lSi] P[ Sa 

Rearranging the equation, the posterior probability is obtained. 

= 

(6) 

(7) 

(8) 

From equation (8) it can be seen that the revised probability is a function of the prior 

probability (Ossenbruggen, 1984). The sample likelihood P[Zj I Si] is the probability that 
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the test event Zj occurs given the true conditional state of nature Si (Ossenbruggen, 

1984). 

In this project the Bayesian or updating model was applied to uncertainties 

associated with monitoring data adequately delineating between the three states of nature 

previously described. That is, there are sampling, processing and analytical errors 

associated with each monitoring data point. These errors may result in either false 

positive or false negative samples being reported. A false positive is defined as a sample 

where the reported TCE concentration was greater than the 5 ugll when, in fact, it was 

less than this concentration. A false negative similarly defines a cleaner state of nature 

than is warranted by the actual aquifer contaminant levels. 

The Bayesian analysis used in this effort was applied only to possible analytic 

error, as they are the only ones reported (Medina et al., 1989). The technique employed, 

however, can be readily extended to sampling and processing as data become available. 

At this point, the example problem has been introduced. Referring to the decision 

making process in Figure 4, the "define problem" and "gather information" steps have 

been completed. The decision maker now must develop courses of action, process the 

data (condition uncertainty modeling) and performing simulations to develop probabilities 

for the possible states of nature that will be used in the decision tree analysis. Chapter 

three discusses the methods used within each of these steps as they were applied to the 

example problem. 
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Chapter III 

ME1HODOLOGY 

Determination of Contaminant Concentration 

Contaminant flux to Groundwater Analysis 

Purpose and Objective: Contaminant movement to the POC involved two 

separate transport components: contaminant loading into the aquifer from the vadose 

zone and transport through the aquifer. Stochastic analysis of the contaminant loading 

established the probability and associated uncertainties necessary for modeling 

contaminant transport through the saturated zone. The objective of this section was to 

identify the methods used to determine the initial flux of TCE into the underlying aquifer 

using known TCE soil concentrations measured within the vadose zone. This flux value 

will be used as the release rate (pulse loading) parameter necessary in the saturated zone 

transport model. 

Method Developed and Applied. Past studies have shown that advective 

transport of a compound past a stationary point exhibits a concentration variation with 

time as represented in Figure 14 (Fetter, 1980). 

Figure 14. Concentration versus time under advective transport conditions. 
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Curve shapes in Figure 14 are a function of the contaminant properties and hydrogeologic 

conditions in which the contaminant travels. An increase·in concentration, as seen 

between points a and b of curve A, represent the plume arrival to a stationary monitoring 

point. Flattening of the curve, as shown between points b and c, shows plume strength at 

its maximum indicated continuous loading from the source. When the curve starts to 

subside, as shown between points c and d, this could be an indication that continuous 

loading has ceased, given that the plume has not changed directions or undergone 

significant decay. Curves A and B represent two separate compounds with such different 

transport properties, such as adsorption and/or ion exchange (retardation), within the 

same hydrogeologic environment. 

This theoretical transport behavior was applied to this research by changing the 

concentration to a mass loading. Utilizing a plot similar to Figure 14, a mass loading 

versus time plot was developed utilizing classical transport theory. Contaminant soil 

concentrations and soil properties had previously been measured in 1988 from the bore 

holes shown in Figure 10 (USACE, 1993). These data were used to develop a mass 

loading curve similar to Figure 14. Since the source, having been removed in 1985, was 

no longer loading TCE into the unsaturated zone, the mass loading to groundwater 

should lie somewhere between points c and d of Figure 14 and could be approximated by 

advective-dispersive modeling. Modeling contaminant transport was conducted in two 

phases. The first phase traced mass loading from the time the units were opened (1950) 

until present and had as its objective the development of the shape of the mass loading 

curve with respect to time. Since contaminant soil concentrations were not available 
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prior to 1988, an initial soil level was selected which was considered to be representative. 

The subsequent modeling runs proved that the mass loading shape ~ not dependent on 

the soil concentration of the contaminant. Phase two used the contaminant soil 

concentration data from 1988 to determined where the mass loadings for 1988 and 

subsequent years were located on the curve. From this point on the curve, maximum 

mass loading was extrapolated to determine a maximum mass loading into the aquifer. 

Tool Utilized. The Jury unsaturated zone model incorporated in the American 

Petroleum Institute's Decision Support System for Exposure and Risk Assessment 

(APIDSS) software was used to estimate the contaminant flux into the aquifer (APIDSS, 

1994 and Jury et al., 1983). The Jury model is a screening-level tool that can be used to 

estimate the contaminant mass loading to a water table aquifer (APIDSS, 1994). It is 

based on the analytical solution to the differential mass balance equation and initial 

conditions presented below (APIDSS, 1994): 

Differential mass balance equation: 

where 
CT 

t 

Jl 

= 

= 
= 

total soil concentration as defined by eq. (1) (mg of 
contaminantlcm3 of wet soil) 
time (day) 
first order decay rate constant O/day) 

(9) 

DE 
Z 

= 
= 

effective diffusion coefficient estimated by eq. (l4) (cm2/d) 
depth measured positive downwards from the soil surface 
(em) 

VE = effective contaminant velocity estimated by eq. (l5) (cm/d) 

The initial condition is: 

CT(O < z < L, t=O) 
CT(z ~ L, t=O) 

= 
= 
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Equations (lOa) and (lOb) imply that initially the contaminant is unifonnly incorporated 

to a depth L. In equation (9), the total soil concentration is assumed to be distributed 

between the solid, aqueous and the vapor phases and is estimated using: 

CT 

where 

Pb 
Cs 

8w 

C1 

8. 
Cg 

= (11) 

= the bulk density of soil (g of dry soil/cm3 of wet soil) 
= the adsorbed phase concentration (g of contaminant/g of 

dry soil) 
= . the volumetric water content (cm3 of water/cm3 of wet soil) 
= the dissolved phase concentration (g contaminant/cm3 

solution) 
= the air porosity (cm3 gas in soillcm3 wet soil) 
= the dissolved phase concentration (g contaminant/cm3 gas 

in soil) 

The three individual phase concentrations Cs, C1 and Cg are related by partition 

coefficients as follows: 

= 

and Cg = 

where 

= 

= 
H = 

(12) 

(13) 

the chemical-specific soil-water partition coefficient [(mglg 
of dry soil)/(glcm3 of solution)] 
Kocfoc 
the dimensionless fonn of the Henry's constant [( mgll of 
vapor)/(mg/1 of solution)] 

The effective diffusion coefficient in equation (9) is estimated by: 

where 
D a 

g 

Dt 

8 
8w 

= 

= 

= 
= 

the chemical specific gaseous diffusion coefficient in air 
(cm2/day) 
the chemical specific liquid diffusion coefficient in water 
(cm2/day) 
the total soil porosity (cm3 voids/cm3 wet soil) 
the volumetric water content (cm3 of water/cm3 of wet soil) 
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ea 

foe 
= 
= 

the air porosity (cm3 gas in soil/cm3 wet soil) 
fraction of organic carbon in soil (mg of organic carbonlmg 
of soil) 

The effective contaminant velocity in soil in equation (9) is estimated by: 

= 

where 

= 

The variable HE is defmed as: 

= 

where 
h = 

h = 

where 
d = 

(15) 

the volumetric soil-water flux, i.e., percolation rate when Jw 

is positive, (cmJday) 

(16) 

boundary layer transfer coefficient (cmJday) estimated as: 

(17) 

the stagnant air boundary layer thickness (cm) 

Concentrations estimated at the water table are used to compute the contaminant flux to 
the water table using: 

Mwt = 

where 
Mwt = 
V = 
A = 
C1 = 
D = 
~C/~Z= 

annual mass loading to water table (mglyr) 
infiltration rate (mJyr) 
area of the source (m2) 

liquid phase concentration at the water table (mglm3) 

hydrodynamic dispersion coefficient (m2/yr) 
concentration gradient at the water table (mglm3/m) 

Tool Assumptions. Assumptions associated with the model are as follows 

(APIDSS, 1994): 

(18) 

• The soil column is assumed to be homogenous and isotropic without any 
variations with depth. 

• The infiltration rate is assumed to be uniform and steady. 
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• The contaminant is initially incorporated unifonnly from the top of the soil 
column to a depth 'L' cm below the surface. Note that the model can analyze 
a contaminant incorporated in a thickness 'D' cm buried b~low a clean layer of 
soil using the principle of superposition. 

• Contaminant decay is assumed to follow a first order function. 
• The partitioning of contaminant concentrations between the three phases, i.e., 

solid phase, dissolved aqueous phase and the vapor phase is assumed to be 
linear. Compositional equilibrium among phases is assumed at all locations at 
all times. 

• The effective diffusion of contaminant in the vapor and liquid phase within the 
soil is based on the following relationships: 

Dg 

and Dl 

where 

D a 
g 

D1w 

Sa 
aw 

at 

= (19) 

= (20) 

= the chemical specific gaseous diffusion coefficient in 
air (cm2/day) 

= the chemical specific liquid diffusion coefficient in 
water (cm2/day) 

= the air porosity (cm3 gas in soil/cm3 wet soil) 
= the volumetric water content (cm3 of water/cm3 of 

wet soil) 
= the total soil porosity (cm3 voids/cm3 wet soil) 

Modelin~ Analysis. As mentioned, modeling the flux of TCE into the 

groundwater was conducted in two phases. The first phase detennined the shape of the 

mass loading curve given the soil properties within the burning ground. During the next 

phase, the maximum mass loading value was calculated using data from the 1988 

sampling set Since there was no longer a contaminant source, the assumption was made 

that the measured 1988 mass loading point occurred somewhere along curve A between 

points c and d (see Figure 14). Once the curve was developed, the maximum mass 

loading value was extrapolated along this curve. Figure 15 illustrates conceptual first and 

second phase modeling curves developed by the Jury transport model. First phase 
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modeling developed the shape of curve A in Figure 15 with respect to the actual time line. 

The second phase developed the darkened portion of curve A, between points c and d. 

This phase did determine mass loading over time. The maximum mass loading, point c, 

was then extrapolated from phase two modeling values and phase one curve shape. 

Figure 15. Modeling phase one idealized plot. 
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Phase One Modeling. It is known that contaminant dumping started about 1950 

and continued into the mid 1980's, with the UEP closing in 1985 (Green et aI, 1990). 

Therefore, a modeling period of 50 years was used to determine the mass loading curve 

shape. The following assumptions were made with respect to both modeling phases: 

• Phase one thickness of contaminant incorporation was one meter. This was 
based on the information from the data summary report on depths of the UEP 
and disposal trenches (USACE, 1993). 

• For modeling purposes, the depth of the unsaturated zone was considered 
uniform over the entire site. This figure was derived using simple statistics of 
the depth to water table data from 44 groundwater wells. 

• It is assumed that by 1988 the entire unsaturated zone thickness was 
contaminated under the source. Therefore, phase two thickness of 
contaminant incorporation was 5.74 m, equal to the unsaturated zone depth. 
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• Since the majority of the waste was disposed into trenches and the UEP, it 
was valid to assume there was no cover 'over these units (USACE, 1993). 

• Fifteen different waste units were located within an area 159 m by 305 m. 
Since the waste units occupied more than 50% of this area, the area was 
modeled as one unit. 

• A simple statistical analysis of the soil concentration data from 1988 provided 
a mean and upper boundary of the 95% confidence interval (UB 95 CI) to be 
used as the contaminant concentration in the soil. 

Table 3 lists the parameter definition and values used in phase one modeling. 

Two parameters, simulation time and incorporation thickness, have two values. These 

correspond to the two modeling phases having different values with respect to these 

parameters. Two values shown under the soil concentration parameter corresponded to 

the mean and UB 95 CI as discussed in the assumptions. 

40 



Table 3. Data used in Jury model to determine contaminant loading into the aquifer. 

Parameter Definition Units Value Source 

Model Control Parameters 
simulation time years 150 and 220 USACE,1993 
simulation type - deterministic N/A 

Media Specific Parameters 
volumetric water content - 0.26 USACE,1993 
effective porosity - 0.4 USACE,1993 
dry weight soil bulk density gjcm3 1.6 USACE,1993 
thickness of incorporation m 11 and 25.74 USACE,1993 
thickness of soil cover m 0.0 USACE,1993 
depth of unsaturated zone m 5.74 USACE,1993 
fraction of organic carbon - 0.01 Golden et aI., 1994 
boundary layer thickness em 0.5 Jury et aI., 1990 
infiltration cmlyr 43 Golden et aI., 1994 
X -dimension of the source m 305 USACE,1993 
Y -dimension of the source m 159 USACE,1993 

Chemical Specific Parameters 
total concentration in soil mg/kg 323.0 & 45.6 USACE,1993 
diffusion coefficient in air em2/s 1.0xlO·3 APIDSS, 1994 
diffusion coefficient in water em2/s 1.0xlO·6 APIDSS, 1994 
Henry's law constant - 37.7xlO-2 Howard et al., 1990 

Koc4 (uglgOC)/(uglml) 122.84 Sawyer et aI., 1994 
solubility mg/l 1100 Verschueren, 1983 
decay rate constant day-I 2. 13x 10-3 Callahan, 1979 

1. Phase one modeling parameter value. 
2. Phase two modeling parameter value. 
3. Mean and upper boundary of the 95% confidence interval of measured soil 

concentration. 
4. The organic carbon partition coefficient is estimated from the partition 

coefficient (Kow) using the relationship Koc=.63(Kow) (Karickhoff et aI., 1979). 
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Phase one modeling produced the mass loading to groundwater curve shown in 

Figure 16. Since the model did not allow continuous loading of the vadose zone from a 

source, the curve peaked out and then declined. This peak was taken to be equivalent to 

point b in the idealized curve shown in Figure 15, but with simulated loadings of actual 

conditions. Under constant source loading, maximum mass loading would be maintained 

until source loading stopped, having a mass loading versus time plot similar to Figure 15. 

From the modeling analysis, peak mass loading was achieved at year 24 or calendar year 

1974. Year 0 corresponded to calendar year 1950, when contaminant disposal started. 

Maximum loading was maintained for a period of 11 years, from 1974 to 1985. In 1985 

the UEP was closed, with removal of all solids and liquids (Green et al., 1990). This 

period was used to construct the b-c equivalent segment of Figure 15 with the simulated 

mass loading data. As mentioned, the shape of the curve in Figure 16 was a function of 

the soil and chemical transport properties, not of the contaminant soil concentrations. 

Figure 16. Mass loading to groundwater curve shape for phase one Jury modeling 
without continuous loading. 
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A curve similar to Figure 16 was later used to determine the pulse load (yearly loading 

into the aquifer) by determining the area under the curve. 

Phase Two Modeling. This phase used measured 1988 data to determine mass 

loading. Once the shape of the mass loading curve was determined, values for mass 

loading were needed to determine the flux to the water table aquifer required for 

transport modeling. The soil concentration data were from 1988 soil analyses that were 

conducted on bore holes within the source area. Two values, a mean and UB 95 CI, 

were used in a stochastic approach to determine mass loading into the aquifer. Figures 

17 and 18 present plots of the mass loading calculated during phase two. Year 0 in these 

figures corresponds to 1988. Notice that the shape of each curve was relatively the same 

but the magnitudes of mass loading differed. Mass loading for 1988 was 175 kglyr and 

347 kglyr for the mean and UB 95 CI respectively. Each curve had a similar shape, as 

expected, under similar soil and chemical transport properties. 

Figure 17. Mean mass loading to groundwater curve for phase two Jury modeling. 
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The slope for each curve varied due to the variance in mass loading. Back extrapolation 

of the slope simulated for the period 1988/89 was completed to the 1985-88 period to 
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complete the curve from closure through recession (i.e. the c-d limb of Figure 15). The 

extrapolation assumed the sl~pe was constant through years 1985-89. Another 

assumption was that the peak mass loading rate presented in Figure 16 corresponded to 

point c of Figure 15 and was considered the maximum mass loading rate. 

Figure 18. Upper 95% confidence level mass loading to groundwater curve for phase 
two Jury modeling. 
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Comparing the various figures developed, the starting point in Figures 17 and 18 

corresponded to a point midway on the recession limb of Figure 16. Figure 19 combines 

these figures into one for comparison and for calculation of total loading of TCE. The 

figure shows continuous loading into the aquifer starting in 1967, increasing through 

1973 and then decreasing from 1985 to 1997. 

The area under the curve in Figure 19 represents the total mass of TCE that was 

loaded into the aquifer at the mean and higher flux rates. Multiplying the mass loading 

(kglyr) by the number of years yielded the mass of TCE in kilograms. Calculation was 

done for both curves. Each area was divided into three geometric shapes, a rectangle and 

two triangles on both sides of the rectangle. Total loading values calculated for the UB 

95 CI and mean curves were 18,942 kg and 7998 kg, respectively. The total load values 
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Contaminated Groundwater Transport Analysis 

Purpose and Objective. This was the second contaminant transport activity to be 

analyzed. The previous analysis provided a contaminant source tenn for this modeling 

effort. This analysis will quantify a probability of TCE reaching the plane of compliance 

(poe) over a specified period of time. subject to predetennined constraints. The 

objective was to detennine the probability of the plume reaching the poe at a specified 

concentration. 

Method Used. A two-dimensional analytical model was used in Monte Carlo 

fashion to develop numerous possible scenarios. The scenarios were statistically analyzed 

and a cumulative probability density plot developed. 

Numerous concentration break-through curves similar to Figure 20 were 

simulated to show the time and concentration relationship of TCE at the poe. Each of 

the three example simulations in the Figure 20 plot illustrates the TCE concentration at 

the poe over time. 

Figure 20. Typical contaminant break-through curve simulated at the poe well . 
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The simulations were statistically analyzed to develop a probability distribution 

plot for TCE concentrations for various time periods. Figure 21 illustrates an example of 

a probability plot for two time periods. For example, the first curve represents the 

probability of a concentration of X mgll reaching the Poe within a specified time period 

of Y years. The second curve represents the probability a concentration X mgll reaches 

the Poe within a specified time period of (Y +Z) years. 

Figure 21. Probability plot of TCE concentration reaching Poe for different time 
periods. 
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The probabilities developed were utilized within the decision analysis method to 

assign probabilities for the previously described states of nature. Uncertainty of 

contaminant transport is quantified as a probability that can be integrated into the decision 

analysis. 

Tool Utilized. The publicly available code, Analytical Transport: One, Two and 

Three Dimensional (ATI23D) incorporated in the APIDSS software package was utilized 

for this analysis. The code was developed by G.T. Yeh in 1981 at the Oak Ridge 

National Laboratory, Oak Ridge, Tennessee.· AT123D provides flexibility to the user 

with the following features (Yeh, 1981 and APIDSS, 1994): 
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• Sources may be simulated as instantaneous releases or as time-varying load 
rates into the groundwater system. Time-varying loading is further subdivided 
into continuous and finite duration releases. 

• The saturated zone may be infinite or finite in the lateral and vertical 
directions. 

• Has the ability to simulate a variety of contaminant source geometry's oriented 
in different ways along the x, y and z directions. Sources can include point, 
line, area or volume sources. 

• For our purposes, the model can be used to estimate concentrations as a 
function of time at any location specified by x, y and z coordinates. 

AT123D uses Green's function to solve the advection-dispersion equation for the 

conditions listed below, and a separate solution is used for each type of source and 

boundary condition (APIDSS, 1994): 

• Groundwater flow is assumed to be one-dimensional, steady and uniform in 
the down-gradient direction. 

• AT123D simulates: Three-dimensional dispersion, one-dimensional uniform 
advection, linear and reversible equilibrium adsorption and lumped first-order 
decay for both chemical and biodegradation. 

• Saturated zone is assumed to be homogenous and isotropic in terms of its 
physical properties. 

Pertinent equations governing the transport and distribution of soluble contaminant are 
(Yeh, 1981): 

a b c d e f g 
-"""-~, ------------.. ~ ~ ~ ~ , , 
d~C = V (Ile D V C) - V (C q) + M - (K ne C) - (A. ne C) -~& + (A. Pb Cs) (21) 
at at 

where 
q 
D 
C 
Cs 

Pb 
M 
Ile 
A. 
K 

= 
= 
= 
= 
= 
= 
= 
= 
= 

Darcy velocity vector (UT) 
hydraulic dispersion coefficient tensor (L 2 rr) 
dissolved concentration of the solute (MJL3) 

absorbed concentration in the solid (MIM) 
bulk density of the media (MIl}) 
rate of release of source (MI(L3*T» 
effective porosity (L 0) 

radioactive decay constant orr) (set to zero in APIDSS) 
degradation rate orr) 
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Term (a) in equation (21) is the time rate of change of waste solute mass per unit volume 

of the aquifer water; term (b), the combined effect of hydraulic disper;;ion and molecular 

diffusion; term (c), the effects of advective transport; term (d), the contribution of waste 

source; term (e), the effects of first order chemical and biological degradation; term (f), 

the effects of radioactive decay which is set to zero by APIDSS; and term (g), the effects 

of reversible ion exchange or sorption (Yeh, 1981). The solution of equation (21) for a 

complex groundwater system is extremely difficult, therefore it is usually simplified (Yeh, 

1981). 

The fundamental advective-dispersion solute transport equation in three-

dimension found in all basic hydrogeology texts (Freeze and Cherry, 1979) can be 

simplified to equation (22) if the following assumptions are made: 

• Groundwater characteristics are considered uniform. Because the transport of 
TCE is primarily through highly conductive channel sand deposits within the 
Wilcox aquifer, modeling the transport within a finite aquifer (channel sand 
deposits) which can be assumed homogeneous. 

• Sorption is in a state of instantaneous linear isothermal eqUilibrium (Yeh, 
1981). 

where 

dC/dt = V (K VC) - V (U C) - [(KlRd) + A]C + M/(ne Rd) (22) 

= 
= 
= 
= 

retardation factor = I + pb(KJne) 

retarded dispersion tensor = DlRd 
retarded seepage velocity = (q/ne)2IRd 
distribution coefficient 

Subject to the conditions that no contaminant can flow across the impervious boundaries, 

flow through open boundaries are located at infinity and that it is a finite duration release, 

solution of equation (22) is reduced to the following (Yeh, 1981): 
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T 

C (X,y,z,t) = f [MI(neRl)] Fijk (X,y,z,t;t) dt 

where 
Fijk 

M 
T 

o 

= 

= 
= 

integral of Green's function over the source space 
(Yeh, 1981) 
instantaneous release of total mass 
duration of waste release 

Tool Assumptions. Assumptions associated with the model are as follows 

(APIDSS, 1994): 

(23) 

• The saturated zone was assumed to be homogenous, isotropic and of uniform 
geometry. 

• The water table was assumed to be steady without any fluctuations. 
• The flow direction was uniform, one-dimensional and steady state. 
• Contaminant decay was assumed to follow a lumped, first order decay rate. 
• Contaminant adsorption was considered to follow linear adsorption. 
• Concentrations in the liquid and solid phase of the aquifer assumed to be in 

equilibrium at all times. 
• The AT123D model simulated the dissolved phase contaminants only and was 

not applicable to simulate the transport of free products. 
• APIDSS employed an approximate method to estimate average well 

concentrations. Concentrations are estimated by AT123D at a user-specified 
number of equally-spaced vertical intervals across the well screen; these were 
then arithmetically averaged to compute the well concentration. 

Modeling Analysis. Within this analysis several assumptions were made that were 

inherent to using AT123D, as previously discussed. In addition to these, other 

assumptions were made with regard to actual site conditions and defining parameters. 

Their discussion is included with the discussion of parameter sources in the following 

paragraphs. 

Table 4 provides the parameter values and their sources used in the AT123D 

modeling analysis. Parameters listed in Table 4 that have their reference source 

highlighted with an asterisk are discussed in detail in the following paragraphs. These 
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extended discussions were necessary for the reader to fully understand how the parameter 

value was derived and the assumptions made with respect to the parameter. The 

following include the highlighted parameter sources: 

=> Aquifer geometry 

The aquifer was determined to be finite after thorough analysis of the site's 
geology and modeling the underlying aquifer as infinite and fmite. Chapter 
Two discussed the complex depositional environment characterizing the area 
aquifer. The Wilcox aquifer in this area was characterized by channels of sand 
(remnants of previous river channels) interbedded with silt and clay deposits. 
Well drilling logs and geologic cross-sections provided in the data summary 
report confirmed the presence of sandy channel deposits. The channel sands 
were generally oriented Northeast to the Southwest but have substantial 
meandering at right angles to their orientation. Hydraulic conductivity tests 
performed within the various soil types also showed that the channel sands 
were significantly more conducive to contaminant transport than the silt and 
clay. Local and regional groundwater gradients had a Northern orientation 
(Hosman et al., 1968 and USACE, 1993). Monitoring well data for well C-6 
had a TCE concentration of 139 ugll in 1993 and less than 5 ugll in 1992. 
This monitoring well was 2400 feet Northeast of the UEP. Additionally, some 
monitoring wells between C-6 and the UEP never had TCE detected. From 
the cross-section data, wells without contamination may not be hydraulically 
connected to the channel sand deposit C-6 is screened. Cross-sections were 
developed from the drilling logs to determine the channel sand deposit 
dimensions as given in Table 4. 

=> Hydraulic conductivity 

Hydraulic conductivity had a significant variance within the channel sand 
deposits, with ranges from 47 rn/yr to 3045 rn/yr. Hydraulic conductivity was 
measured in-situ using the slug test. These values were found in the data 
summary report for a large number of wells and bore holes (USACE, 1993). 
Their statistical distribution was log-normally distributed, and a Monte Carlo 
approach was used in a stochastic analysis utilizing the statistical distribution. 

=> Receptor well geometry 

Chapter Two discussed, in detail, the plane of compliance (poe) and its 
significance to the problem. AT123D modeled contaminant migration to a 
receptor that was defined as a point and not a plane. It was established the 
poe would likely be North of the site in Harrison Bayou. Along this poe a 
point was chosen for its location with respect to the interface of ground water 
with surface water. This interface was assumed to occur just South of 
Harrison Bayou in a low swampy area. Since the groundwater interfaces with 
surface water, the screening level (Z-dimension) for the receptor point was 
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chosen from ground level to five meters below the surface. It was assumed 
that any TCE migrating within this zone was captured by surface water 
draining into the lake. 

=::} Source geometry 

Source geometry in the X and Y directions was discussed previously in this 
chapter. The Z-dimension parameter was set to zero because the contaminant 
flux was across a plane rather than from a volume. Pulse duration was set to 
36 years representing TCE dumping from 1950 to 1985. The release rate was 
determined by the two phase soil mass loading rate analyses previously 
discussed and was considered to have uniform distribution between the mean 
and higher boundary of the 95% confidence interval. 

A typical method used to determine the maximum precision of the Monte Carlo 

analysis involves plotting the mean concentration at the receptor point against the number 

of simulations. For a given number of simulations, a mean POC concentration was 

calculated given the concentrations from each of the simulations. As- the number of 

simulations increased, the mean concentrations oscillated around a maximum precision 

value. Figure 22 shows the Monte Carlo maximum precision plot used to determine that 

300 simulations insured a proper representation of all possible outcomes. 

Figure 22. Monte Carlo maximum precision plot. 
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As a check to assure that the contaminant transport simulations were producing 

reasonable output, a calibration analysis was conducted. During this analysis, all model 

parameters were held constant except for the receptor well geometry. The new receptor 

well chosen was an actual monitoring well on site. Monitoring well 109 was chosen for 

its hydrologic connection with the UEP (see Figure 10) and its extensive monitoring 

history. Geologic cross-sections showed a channel sand deposit connecting MW 109 

with the UEP (USACE, 1993). This provided the best possible homogeneous situation in 

which to conduct the simulations. Additionally, MW 109 had a monitoring record that 

spans 11 years (1982-93) (USACE, 1993). Initially in 1982, there was no TCE 

contamination detected (USACE, 1993). In subsequent years the detected amounts have 

fluctuated between 29 and 10,000 ugll (USACE, 1993). The results from this cheek will 

be presented in the next chapter of this thesis. 

Contaminant Plume Uncertainty 

Geostatistics Definition 

Geostatistics (Clark, 1979; Joumel and Huijbregts, 1978; Matheron, 1971) is 

defined as a set of statistical procedures for describing the correlation of spatially 

distributed random variables and for performing interpolation and areal estimation for 

these variables (Cooper and Istok, 1988). This technique evolved from the empirical 

methods developed and applied to ore bodies in South Africa by D. G. Krige during the 

1950's (Cressie, 1991). In recent years, geostatistical methods "have been used in a 

variety of problems involving hydrogeology (ASCE Task Committee, 1990 and Cooper 
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and Istok, 1988). It is a potentially powerful tool for the analysis of contaminant 

concentration data from contaminant plumes in groundwater (Cooper and Istok, 1988). 

The principle reason is that estimation techniques, based on the theory of regionalized 

variable, can be used to obtain the best and unbiased estimates of contaminant 

concentrations at unmeasured points in the plume, based on a limited number of 

groundwater samples (Cooper and Istok, 1988). The term "best" is in the sense that the 

estimation error is minimized (Cooper and Istok, 1988). Geostatistical methods are 

useful for site assessment and monitoring situations where data are collected on a spatial 

network of sampling locations, and are particularly suited to cases where contour maps of 

pollutant concentration or other variables are desired (Englund and Sparks, 1991). 

Geostatistics Objective 

The objective in this analysis was to use some of the geostatistical techniques 

available to develop an isoconcentration map of the TCE plume. Even though there were 

forty sampling points within the burning grounds, there was still some level of uncertainty 

with respect to the plume's dimensions and concentration contours. The output from this 

analysis was important to the decision analysis because the plume characteristics were 

used to identify various alternative remedial actions and their attendant costs for the 

subsequent decision model. 
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Method Developed and Applied 

The flow chart illustrated in Figure 23 represents the geostatistical methods used 

in this analysis. Following data collection from the sample sites, Variance Analysis was 

conducted to determine the variance (spatial statistics) between all the sampling points. 

An experimental variogram was developed to describe the pattern of spatial correlation 

displayed by the data (Cooper and Istok, 1988). After the experimental variogram was 

developed, a variogram model was chosen for interpretation of the spatial correlation 

structure of the data set (Englund and Sparks, 1991). The computation, interpretation 

and modeling of variograms is the "heart" of a geostatistical study (Englund and Sparks, 

1991). This analysis controls interpolation during the conditional simulation step as well 

as the ultimate qUality of the results by kriging and/or conditional simulation (Englund 

and Sparks, 1991). Time spent within this step should be greater than anyone step 

within the flow chart. 

Figure 23. Flow chart graphically depicting the geostatistical methods used in this thesis. 
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The Sample Data Declustering step was used for this particular data set because 

many of the sample points were spatially clustered. Clustering of wells within the plume 

is common for groundwater contamination problems bec~use the objective is to locate 

and define the plume. Therefore, the collected data may be skewed and not a true 
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and shape of the distribution, to look for outliers which may be erroneous or 

unrepresentative, to look at the spatial coverage of the data and to look for spatial 

patterns in the data (Englund and Sparks, 1991). In many cases a transfonnation is used 

to improve the fit of the ReV to a nonnal distribution (Cooper and Istok, 1988). 

The tool used in this step was Geostatistical Environmental Assessment Software 

(Geo-EAS) version 1.2.1 (Englund and Sparks, 1991). Refer to Appendix A for a 

discussion of Geo-EAS and methods applied in data assessment. 

Data Spatial Variance Analysis 

Purpose and Objective. As previously mentioned, this step is probably the most 

important. A majority of time in the geostatistical analysis was spent developing the 

variogram model that best fit the experimental variogram. There are two objectives 

within this step: (1) developing the experimental variogram from the sampling set and (2) 

fitting a variogram model to the experimental variogram. The purpose of the model was 

to approximate the "true variogram" that is later used during the conditional simulation 

step (Englund and Sparks, 1991). 

Methods Applied. Cooper and Istok (1988) discuss the methodology for 

calculating the experimental variogram and fitting a model to the variogram. Two 

moments of Z(x) (with Z(x) representing the random function of contaminant densities) 

are required for a linear geostatistical analysis. The first-order moment is the mean of 

Z(x) and the second-order moment includes: 

variance: Var[Z(x)] = E{[Z(x) - m]2} = C(O) (24) 
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covariance: C(h) = E{ [Z(x + h)] [Z(x)]} - m2 

variogram: 2y(h) = E{ [Z(x + h) - Z(X)]2} = C(O) - C(h) 

where 
m = 
h = 
y(h) = 

E[Z(x)] = mean or expected value 
Xi - Xi+1 (vector) 
variogram in the form used most often 

(25) 

(26) 

(27) 
(28) 

The semivariogram is the principal tool used in geostatistics because it can be applied 

with less restrictive assumptions than the variance or covariance (Cooper and Istok, 

1988). The semivariogram defined in equation (26) represents the true semivariogram of 

the ReV. Since there are a limited number of sampling points not covering the entire area 

of interest, it is only possible to estimate the true structure (Cooper and Istok, 1988). 

This estimate is called the experimental semivariogram (Cooper and Istok, 1988): 

N(h) 

[2N(h)rl I. [Z(Xi+h) - Z(XD]2 (29) 
i=l 

where 
N(h) = the number of sample pairs separated by the vector h. 

Rules to follow for estimating the true semivariogram from a set of sample values 

are (Journel and Huijbregts, 1978): 

N(h) > 

Ihl < 
where 

Ihl = 
L = 

30 to 50 sampling points 

U2 

magnitude of the separation vector h 
longest dimension of the contaminant plume 

(30) 

(31) 

After the experimental variogram is developed, fitting that variogram to a model 

follows. The most commonly used models are linear, spherical, exponential and gaussian 

(Cooper and Istok, 1988). 

59 



Preliminary comparisons of the variogram model with the experimental model are 

made by eye (Cooper and Istok, 1988). Fitting utilizes knowledge of the physical 

properties of the contaminant, the plume, aquifer and groundwater flow patterns (Cooper 

and Istok, 1988). A variogram may be unidirectional. Therefore, different variograms 

can exist in different directions exhibiting anisotropies (Hohn, 1988). The type of model 

was obvious from the experimental variogram calculated during this analysis. Appendix 

A discusses the techniques and Geo-EAS tools utilized in developing the variogram 

model to ensure a best fit of the model to the experimental variogram. 

Sample Data Declusterinl: 

The purpose of groundwater monitoring wells is to detect contamination. 

Therefore, the data collected can have an inherent bias due to the placement of the wells 

and not represent the true data set. This is especially true for the burning ground example 

problem where the purpose of placing monitoring wells was to locate and define the 

groundwater contamination plume. Figure 10 shows the location of the monitoring well 

with respect to the waste units and the clustering of the wells within the TCE plume as 

shown in Figure 12. For this particular problem the data were treated as if it were 

spatially clustered. The purpose of this step is to obtain a representative data sample 

without the clustering bias. An approach taken was to assign declustering weights to 

sample points, whereby values in areas with more data receive less weight than those in 

sparsely sampled areas (Deutsch and Joumel, 1992). Appendix A discusses the 

techniques and tools utilized in assigning declustering weights to sampling points. 
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Conditional Simulation 

Purpose and Objective. Conditional simulation (CS) uses the variogram model 

and sample data to generate two-dimensional realizations of the regionalized variable 

(log-normal TCE concentration). Each realization is a possibility of reality but is not 

necessarily reality. When (n) number of realizations are generated, they can be 

statistically analyzed to determine the distribution around a statistical mean. The mean, at 

a simulated point, will show the value estimated by kriging and its corresponding 

estimation variance (Delhomme, 1978). The objective is to develop an isoconcentration 

map of the plume within some designated confidence interval. 

Methods Applied. Kriging (Delhomme, 1978) is one of the original methods of 

interpolating a regionalized variable. The method is considered an exact interpolator, 

providing at every simulated point the best possible linear estimate (Delhomme, 1978). 

Kriged output is smoother, less detailed than the true values, and a true (versus a spatially 

weighted) error is unknown (Delhomme, 1978). Conditional simulation provides a 

solution to kriging by providing more detail and the ability to approximate (estimate) the 

true error (Delhomme, 1979). The following equation depicts the differences between 

kriging and CS (Delhomme, 1979): 

true value 
z(x) 

= 
= 

kriging estimate 
z·(x) + 

true error 
[z(x) - z·(x)] 

(32) 

Kriging cannot calculate the true error because the algorithm does not have a value for 

z(x) as shown in the kriging error defmition. Conditional simulation estimates the error 

by using the underlying spatial structure of the variable of concern to simulate an 
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estimation error. That is, the CS method uses the modeled validated variogram as the 

indicator of spatial variation for the simulated variables. 

Traditionally, CS is divided into two steps: (1) generation of nonconditional 

simulations (NCS) and (2) conditioning (Delhomme, 1979). Nonconditional simulations 

vary from conditioned in the fact NCS does not honor observed values. 

• Step 1 (Delhomme, 1978): Simulation of the error for equation (32) is 
performed using NCS methods such as "turning bands" (Matheron, 1973) that 
simulates a realization sex) of a random function Sex) having the same spatial 
variation as z(x). Kriging can be performed on sex) using the true data 
locations. As the variogram is the same, the kriging estimate s *(x) at point x 
are computed with the same kriging weights as for z*(x). The term sex) is 
now defmed as: 

sex) = 

and can be substituted into equation (32): 

[z(x)-z*(x)] = [s(x)-s*(x)] 

(33) 

• Step 2 (Delhomme, 1978): Each of the NCS obtained in the first step are 
conditioned to the sample values. From the actual sample values, kriging has 
yielded an estimate z * (x) at any point x. If x is not a sample point, the true 
value z(x) is not available. and the kriging error [z(x) - z*(x)] remains 
unknown. But the first step determined the kriging error as shown in 
equations (32) and (33). Therefore the CS zs(x) is defined as: 

zs(x) = z*(x) + [s(x)-s*(x)] (34) 

Tool Utilized. The sequential gaussian simulation program (SGSIM) was utilized 

for the conditional simulation step (Deutsch and Journel, 1992). This newer algorithm, 

available from Geostatistical Software Library (GSLIB) by Deutsch and lournel (1992), 

streamlined the simulation by producing direct conditioned estimates without the 

intermediate unconditioned step. Sequential simulation conditioning is extended to 

include all data available within a neighborhood of the simulated variable, including the 

original data and all previously simulated values (Deutsch and 10urnel, 1992). 
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Using SGSIM, each variable was simulated sequentially according to its normal 

conditional cumulative distribution function (ccdt) fully characterized.through a simple 

kriging system (Deutsch and Joumel, 1992). The conditioning data consist of all original 

data and all previously simulated values found within a neighborhood of the location 

being simulated (Deutsch and Joumel, 1992). 

Using the SGSIM program, the conditional simulation of a continuous variable 

z(u) modeled by a Gaussian-related stationary random function Z(u) proceeds as follows 

(Deutsch and Journel, 1992): 

• Using the cumulative distribution function (cdt) Fz (z), performs the normal 
score transform of z-data into y-data with a standard normal cumulative 
distribution function. 

• Defines a random path that visits each node of the grid (not necessarily 
regular) once. At each node u, retains a specified number of neighboring 
conditioning data including both original y-data and previously simulated grid 
node y-values. 

• Uses simple kriging with the normal score variogram model to determine the 
parameters (mean and variance) of the ccdf of the random function Y(u) at 
location u. 

• Draws a simulated value l) (u) from the ccdf. 

• Adds the simulated value l) (u) to the data set. 

• Proceeds to the next node, and loop until all nodes are simulated. 

• Back transforms the simulated normal values { l) (u), u E A }into simulated 
values for the original variable { z(/) (u) = <p'1 (y(l) (u», u E A }. 

• For multiple realizations { l) (u), u E A }, I = I , ... ,L, the previous algorithm 
is repeated L times with either one of the following options: Uses the same 
random path to visit nodes or a different random path for each realization. 
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Monte Carlo Analysis 

Purpose and Objective. Each of the numerous simulations represents a possible 

realization of the true TCE concentrations within the groundwater aquifer. A statistical 

analysis was conducted on the numerous simulations to determine the isoconcentration 

map of the TCE plume within certain confidence intervals. Three product outcomes 

include: a mean isoconcentration map, an upper boundary of the 95% confidence interval 

map and a upper boundary of the 90% confidence interval map. 

Tool Utilized and Methods Applied. The contaminated site was represented on a 

grid network of 75 feet square, 3750 feet East-West boundary and 4500 feet North-South 

boundary. Each grid intersection was represented by a node for which a value lieu) was 

simulated. A statistical analysis was calculated for each of the node locations to estimate 

the cumulative probability distribution. If z(u) represents the true concentration value at 

any node, then (Dean et al., 1989): 

where 
z(u) = 

g 
X 

= 
= 

g (X) 

function representing the conditional simulation 
vector of all simulation inputs 

(35) 

Since the components of X contain the cumulative distribution function (cdf) Fz (z) the 

goal of Monte Carlo analysis is to calculate the cdf Fz(u) (zs(u» given the probabilistic 

characterization of X (Dean et aI., 1989). Fz(u) (zs(u» is defined as (Dean et al., 1989): 

Probability (z(u) S ziu» (36) 
where 

is the CS output 
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Given a set of deterministic values for each of the input parameters. X h X2 ••••• Xn, 

SGSIM computes the output simulation value as (Dean et al .• 1989): 

z(u) = (37) 

Application of the Monte Carlo simulation procedure requires that at least one of the 

input variables. Xn, be uncertain and the uncertainty is represented by a cumulative 

probability distribution (Dean et al., 1989). The simulation is then conducted numerous 

times to generate a series of zs(u) values for each of the nodes within the two-dimensional 

grid simulated. The simulated outputs are then statistically analyzed to yield the 

cumulative probability distribution of the simulated output (Dean et aI., 1989). The steps 

involved in the application of the Monte Carlo technique was (Dean et al .• 1989): 

1. Select the appropriate cumulative probability distribution function for 
describing uncertainty in the input variable(s). 

2. Select a random number from the distribution and use this as input to the 
model. 

3. Run the model using the random number taken from the input distribution to 
calculate the output. 

4. Repeat steps 2 and 3 for a number (n) times. 

5. Determine the cumulative probability distribution function of the output step 
3. 

6. Analyze the output distribution and utilize the statistics (i.e. mean and VB 95 
CI). 

A subsequent grid with the statistical values of the simulated values was developed on a 

spreadsheet and plotted. 

To ensure adequate representation of the random field A and that all possible 

realizations were simulated, a Monte Carlo maximum precision plot was developed using 
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the same procedures defined previously in the groundwater contaminant transport 

section. 

Cost Analysis 

Purpose and Objective 

A primary goal of this decision analysis was to ensure that cost estimates did not 

influence the decision process. That is, decisions alternatives should not show a 

sensitivity to cost estimates. Cost estimates were developed by Cost of Remedial Action 

(CORA), a program developed by CH2M Hill under contract to the U.S. EPA's Office of 

Solid Waste and Emergency Response (CH2M Hill, 1990). The mo~el was 

commissioned to assist EPA in compiling a list of, and developing cost estimates for site 

management options at Superfund sites (CH2M Hill, 1990). Using a model such as 

CORA provided an objective means to estimate costs for the various alternatives within· 

the decision model. 

Tool Utilized 

The CORA model is comprised of two subsystems: the expert system and the 

cost system (CH2M Hill, 1990). Both were used in this analysis. The expert system 

provided a number of potential remedial action scenarios for the site in question (CH2M 

Hill, 1990). The remedial action scenarios were then used to develop the alternatives 

within the decision model. Output from the system comes in the form of a list of cost 

modules that were accessed through CORA's cost system. 
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The cost system consisted of the cost module building blocks and a book keeping 

system for storing and retrieving data (CH2M Hill, 1990). The cost module blocks 

utilized to develop estimates of capital and operational costs for the following objective 

function variables: cost of remedial action, cost of failure. cost of additional testing, and 

cost of monitoring groundwater wells. For any specific consequence, there may be costs 

associated with all or some of the listed variables. 

Cost estimates were made for the following actions using CORA: 

• Remedial Action Cost (capital and operational) 
o Groundwater Extraction (module 206) 
o In-Situ Bioremediation (module 304) 
o Discharge to Surface Water (module 406) 
o Air Stripping Treatment (module 307) 
o Granular Activated Carbon Treatment (module 309) 
o Site Preparation (no module number) 

• Failure Cost (capital and operational) 
o Surface Water Diversion (module 105) 
o Site Access Restrictions (module 504) 
o Municipal Water Supply (module 502) 

• Additional Testing (capital and operational) 
o Groundwater Monitoring Well Construction (module 503) 
o Groundwater Monitoring (module 503) 

• Existing Groundwater Monitoring (operational) (module 503) 

Methodology Applied 

Groundwater Extraction. Utilizing the isoconcentration map (Figure 40) to 

estimate the length of an extraction well barrier line, a line of 15 wells with overlapping 

depression cones was chosen as needed to remove the contaminant in the ten year 

remediation time period. The pumping rate was estimated as 500 gpm (Hosman et aI., 
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1968) while the other parameters used for this module were based on site characteristics 

and climatalogical data for the area of study. These parameters as well as those for the 

other cost modules are presented in Tables 7-17. Parameters involving protection above 

grade and during drilling were not employed in this analysis. 

In-situ Bioremediation. Similar assumptions as were made for groundwater 

extraction were also applied in this module. The isoconcentration map for the VB 95 CI 

(Figure 40) was used for determining the area of contamination and the initial 

contaminant concentration by calculating the mean concentration over the entire plume. 

Bioremediation-specific parameters were taken from the suggested CORA parameters 

when a value was unknown for the site such as efficiency of hydrogen peroxide and 

oxygen demand. The remediation period was held constant at 10 years for both 

bioremediation and the groundwater extraction alternative. 

Discharge to Surface Water. Due to the sites remote location and no accessibility 

to a permitted waste water treatment plant, the assumption was made that the extracted 

groundwater would be treated and released into the local drainage feature. Costs 

associated with treating and discharging the extracted groundwater were developed. This 

module considered only the cost associated with discharge. Two types of treatment were 

compared for the treated groundwater. 

Granular Activated Carbon Treatment. This treatment was the first considered 

for treatment of the extracted groundwater. This treatment and air stripping were 

considered to illustrate the methodology's flexibility to changing decision criteria. If there 

are future changes in regulatory requirements, the decision analysis has the flexibility to 
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adjust to other alternatives. Two assumptions were made, that the water flow was 2000 

gpm and the total organic carbon was 10000 ugll based on the initial concentration 

calculations made from the isoconcentration map. As with any granular activated carbon 

system, the largest expense incurred was due to the high cost of activated carbon. CORA 

estimated the amount of activated carbon required and used this estimation for 

developing operational costs. 

Air Stripping Treatment. The second of the two water treatment operations 

incorporated into the groundwater extraction alternative cost was air stripping. Input 

parameters such as flow of water, chemical constants and concentration were used by 

CORA to develop an air stripping tower design that would meet the specified effluent 

concentration. The resulting tower design was used by CORA to estimate the costs for 

construction and operation of the system. The cost estimate made for this treatment 

operation was based on the assumption that the vapors would not be secondarily treated. 

Failure Costs. Developing costs for failure was difficult to determine, as these 

had the potential to influence the subsequent decision model through the calculation of 

the expected monetary value. The approach taken was that any TCE concentration ~ 5 

ugll reaching the POC would be considered failure, and costs associated with this failure 

were then calculated. An assumption of the analysis was that remedial action was 

considered 100% effective and no failure costs would be incurred. Three cost modules: 

runoff diversion, site security and municipal water replacement were used to estimate the 

failure costs. Their calculation was critical to the analysis. The costs that included runoff 

diversion involve the diversion of contaminated surface runoff from the surrounding 

69 



drainage features. In addition, if contamination reached Harrison Bayou, some 

excavation of contaminated soil was necessary. The second category of costs were site 

access restrictions for areas contaminated beyond the boundaries of the ammunition plant. 

Security would be required for protection of the remediation equipment as well as 

securing the contaminated site from unwarranted access by the general public. The third 

failure cost included supplying municipal water to those affected by contaminated 

groundwater. The approach employed determined the costs of municipal water supply 

for a number of residential and commercial connections to the distribution system. 

Decision Model 

Purpose and Objective 

The decision model's purpose is to provide the decision maker with a way of 

concisely visualizing the problem and a means to evaluate decisions/alternatives within the 

model. The objective is to assist the decision maker in the decision process to solve a 

problem or set of problems. The example problem involved TCE contamination of the 

groundwater that could potentially reach a source of drinking water for the surrounding 

communities. Problem definition was to choose the best alternative that minimized both 

the cost of remediation anp environmental risk. 

Methodology Discussion 

As discussed in Chapter I, the methodology was an adaptation of the military 

decision making process. The decision model utilized the decision tree analysis approach 
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Given the example problem discussed in Chapter II, the decision maker was faced 

with the possible decision to "take action" or "postpone action". Postponement could be 

for budgetary reasons, better site assessment or others. If "take action" was chosen, then 

subsequent decisions involving additional testing and remedial action follow in the 

decision tree. The same questions involving remedial action follow the postponement 

decision. An assumption inherent to the postponement decision is that additional testing 

requirements are incorporated into this decision. 

Assumptions made with regard to decision tree variables and the analysis include: 

• The time required to remediate the site was 10 years for all remedial action 
alternatives. 

• If remediating action was taken, the monitoring period was 13 years. Ten 
years is during the remediation phase and three years for post closure 
monitoring. 

• If remediation action is delayed, the monitoring period was equal to the delay 
time plus the 13 years. The delay was set as 10 years, therefore monitoring 
was equal to 23 years. 

• If no action was taken, then the monitoring period was set as 50 years. This is 
equal to the time the unit was in operation and must be monitored for that 
period of time after closure. 

• Failure costs would be incurred for a period of 50 years. This takes into 
account the biodegradation and dispersion of the contaminant to levels below 
the MCL. 

• Calculation of present worth value of future payments used a discount rate of 
7%. 

• The additional monitoring wells installed provided early warning to 
contaminant reaching the POCo Therefore the cost of failure was assumed to 
be zero. 

• Remediation was assumed 100% effective and cost of failure is zero. 

• All recurring costs are on a yearly basis. 
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Figure 24. Decision tree in skeletal fonn, depicting decision nodes within the tree. 
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Uncertainty Integration. The uncertainty of the problem is depicted by chance 

nodes within the decision tree. The result of a chance node is the true state of nature of a 

given situation. Figures 24 and 25 show where a majority of the chance nodes were 

located at the ends of the remedial and no action alternatives in the developing decision 

tree. Another type of decision node will be introduced in a later section that discusses 

prior and posterior probabilities resulting from additional testing. 
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Figure 25. Integrating chance nodes and states of nature within the decision tree. 
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Branching out from the chance nodes are three states of nature; no detectable TCE at the 

POC, < 5 ugll of TCE detected at the POC and > 5 ugll of TCE detected at the POC as 

shown in Figure 25. Probabilities are assigned to each state of nature resulting from the 

transport analysis conducted using APIDSS. Since there were no further decisions 

beyond the states of nature, DATA identified these nodes as terminal and prompts the 

user for the objective function. In this example problem the objective function is the cost 

that was defined in equation (1) in Chapter n. Figure 25 represents a sub-tree that is 

incorporated into any of the decisions in Figure 24 that precede remedial action and no-

action decisions. 

Prior and Posterior Probabilities. From the contaminant transport analysis, 

probabilities were established for the states of nature because the true state of nature was 

unknown. Probabilities were dependent upon the methods and data used for their 

calculation. In the example, there was uncertainty involved with transport parameters and 

the monitoring data. This uncertainty was carried onto the probabilities. A method of 

improving or updating probabilities involved the use of Bayes Theorem, which states that 

revised probability is proportional to the sample likelihood times the prior probability 

(Press, 1989). Sample likelihood is the same as conditional probability or the probability 

that test event Zj occurs given the true state of nature (Ossenbruggen, 1984). Therefore, 

the revised probability can be illustrated with the following equation (Ossenbruggen, 

1984): 

= 

where 

= 
= 

P[Z/SjJ * P[Sjl 
P[Zj] 

conditional probability 
L P[Z/Si] * P[Si] 
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= probability for state of nature i 

Utilizing the Bayes Theorem equation, revised probabilities were determined 

given the additional information/data that could be gained from newly constructed 

monitoring wells. This test was considered an imperfect test due to the possibility of 

error during laboratory analysis of TCE concentrations (Standard Methods, 1989). 

Conditional probability was calculated about the MCL of 5 ugll for TCE using the 

following equations (Standard Methods, 1989): 

where 

Expected measured bias = .92C - .1 
Overall precision standard deviation = .32 X - .57 

C 
X 

= 
= 

true concentration of TCE 
expected measured bias 

(40) 
(41) 

Three states of nature were established for the example problem, each having two 

probabilities associated. Probabilities for states of nature defined for current conditions 

will not be the same for future times. The states of nature are defined as: 

1. Sl: no detectable contamination at the POCo 

2. S2: less than 5 ugll of contamination detected at the POCo 

3. S3: greater than or equal to 5 ugll of contamination detected at the 
POCo 

Three experimental outcomes were established and defmed as: 

1. Zl: no detection of TCE during analysis, minimum detection limit is 
.12 ugll (Standard Methods, 1989). 

2. ~: less than 5 ugll of contamination detected during analysis. 

3. Z3: greater than or equal to 5 ugll of contamination detected during 
analysis. 

Conditional probabilities are summarized in the following table using equations (40) and 

(41) for their calculation. The table is configured with states of nature Sn in columns and 
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the experimental outcomes Zn in rows. Conditional probability, P[Z/SJ, is the sum of the 

probabilities of an experimental outcome given a Sn divided by the pr9bability of the state 

of nature. For example, the conditional probability for a test yielding < 5 ugll of TCE 

given that the true state of nature is no detectable amount of TCE present will be .4286 

or 43%. That is, referring to the table, the P[Z2/SIl = .4286 and is found at the 

intersection of the Z2 row and the Sl column. 

Table 5. Conditional probability values used in the development of the revised 
probabilities for the decision tree analysis. 

P[Z/Sj] Sl S2 

Zl .5714 0 
S3 
0 

~ .4286 .5714 .4286 
Z3 0 .4286 .5714 

Bayesian analysis was incorporated into the decision tree analysis to determine if 

additional testing would enhance the available data and provide a revised state of nature 

with less uncertainty. The decision to conduct additional site testing was located at two 

places within the decision tree (see Figure 24). It was assumed that any postponement of 

action would require the decision maker to perform additional testing. Therefore, in the 

Postpone Action decision branch, additional site testing was incorporated without any 

decision. The structure of the additional site testing sub-branch is illustrated in Figure 26. 

Utilizing Bayes Theorem into the decision analysis provided the analysis with a 

revised probability for the states of nature but also a means to evaluate the worth of 

additional data. Decision tree analysis took into account the cost of procuring the 

additional data and provided the analysis with the results that additional testing would 

yield in the form of revised probabilities. 
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Figure 26. Additional Site Testing sub-branch incorporated into the overall decision tree. 
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Objective Function Variable Sensitivity Analysis. The sensitivity analysis was 

conducted using an option available in DATA (1995). Two types of sensitivity plots 

were utilized to show the sensitivity of the respective variable to changes in the expected 

monetary value (EMV) and the resultant cost. The tornado diagram illustrated in Figure 

27 gets its name from the shape exhibited by the boxes within the plot. This type of plot 

illustrates several variables with their respective sensitivity shown by the block width. 

For example, the block for monitoring operational costs illustrates that the variable is 

sensitive from an EMV of $1.0 million to $9.0 million. That is, if the EMV within this 

range was to increase for the optimal alternative then a change in the optimal alternative 

would occur. The dotted vertical line represents the EMV for the optimal alternative 

calculated during the analysis. 
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Figure 27. Typical tornado diagram illustrating sensitivity for numerous objective 
function variables. 
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The dark vertical lines within the sensitivity boxes for the variables of additional testing 

operation costs (ATCOM), and remedial action operation costs (RACOM) illustrated that 

a threshold value existed for the variable. This threshold value is better presented in 

Figure 28, as shown by the intersection of the two decision alternatives to take action and 

postpone action. Cost for ATCOM above the threshold value of $76,000 results in the 

optimum alternative of postpone action and if below that threshold the optimum 

alternative changes to immediate remedial action. 

The utility of the tornado diagram is apparent when there were numerous 

variables within the objective function. Instead of looking at each variable separately, the 

tornado diagram can be used to illustrate the sensitivity of numerous variables. Variables 

exhibiting sensitivity in the diagram can then be evaluated further utilizing the sensitivity 
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plot shown in Figure 28. When a variable was suspect, then a plot similar to Figure 28 

was utilized to further determine the threshold point at which the op~mal decision 

alternative could change. 

Figure 28. Sensitivity analysis plot of an individual objective function variable cost versus 
EMV. 
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Chapter IV 

RESULTS 

Contaminated Groundwater Transport Analysis Results 

PUIllose and Method 

This analysis used a two-dimensional analytical model in Monte Carlo fashion to 

detennine the probability of TCE reaching the plane of compliance (POC) at a specified 

concentration. The probability was taken from a probability distribution function 

developed from this analysis. Results of this analysis were categorized into four groups: 

contaminant break through curves of alternative transport scenarios, Monte Carlo 

maximum precision analysis, model calibration to monitoring well data development of 

probabilities of TCE reaching the POCo These results are used along with the decision 

model's objective function to calculate the expected monetary value within a decision tree 

analysis. 

Monte Carlo Maximum Precision Detennination 

Maximum precision of the Monte Carlo analysis was found to occur between 275 

and 300 simulations, where the mean concentration at the POC was plotted with an 

increasing number of simulations, as shown in Figure 29. Mean concentrations from 1 

through 100 simulations showed much variation before tapering toward a relatively 

constant precision point. This point occurred at about 250 simulations, with a mean 
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concentration of .0015 mgll (1.5 ugll). The 300 simulations used in this analysis were 

beyond the minimum required simulations for maximum precision. Simulations numbers 

beyond 300 theoretically had no effect on the stochastic analysis. That is, a maximum 

precision level was reached at approximately 250 simulations. The effects of variation in 

hydraulic conductivity inputs were reduced to the lowest possible levels given the 

distribution of the variable and the transport model employed. 

Figure 29. Maximum precision plot for Monte Carlo analysis. 

u 
0 0.0035 Q., 

@) 0.003 
c:: 0.0025 0 
. ~ 0.002 .... .... c:: 0.0015 ~ u c:: 0.001 
8 0.0005 a 0 ~ 

-. 1 

• ... I~ 1 - • ; 
• : 

• I • • -- -- l 
! 
= - I .- l 

:E o 50 100 150 200 250 300 

Simulation Number 

Modeling Calibration to Monitoring Data 

The transport model calibration analysis results are illustrated in Table 6, which 

compares the measured data from monitoring well (MW) 109 for years 1982-1993 to the 

modeled concentrations resulting from the pertinent transport simulations. The 

comparisons show that TCE concentrations measured in MW 109 were within the 

modeled concentration range. Years 1986-1992 exhibited higher measured 

concentrations (0.11 to 0.2(4) then were predicted by the model (O.oo to 0.10) but were 
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within the same order of magnitude. Results of this analysis illustrated some reliability in 

the model configurations and parameters used in transport simulations. 

Table 6. Comparison of monitoring data to modeling data for MW 109. 

Year MeasuredlSim ulated Measured Data (mg/l) Modeling Data (range in mg/l) 

NOV 82/year 32 not detected 0-.09 
APR 83/year 33 .029 0-.09 
SEP 84/year 34 <.05 0-.09 
SEP 86/year 36 .11 0-.09 
SEP 87/year 37 .16 0-.09 
SEP 88/year 38 .19 0-.10 
NOV 92/year 42 .204 0-.02 
NOV 93/year 43 .094 0-.01 

Monte Carlo Simulations 

Figure 30 illustrates the breakthrough curves for contaminant concentration at the 

POC for 300 simulations over a simulation period of 50 years. The concentrations at the 

POC varied from zero to over .07 mgll (70 ugll), with a majority of the simulations 

showing contaminant concentrations within the 0-.01 mgll zone. The simulated time 

period for the TCE concentrations to peak: at the POC ranged between five and ten years. 

Dissipation of the concentrations from their peak: to zero, at the end of the simulation 

period, had a simulated time between five and fifteen years. 
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Figure 30. AT123D modeling results for contaminant transport to the POCo 
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Contaminant Transport Probabilities 

The probability distributions for TCE concentrations at the Poe are shown in 

Figure 31. The Monte Carlo simulations presented in Figure 30 were statistically 

analyzed to develop these probability distributions for TCE concentrations expected at 

five separate time periods within the simulation period. The probabilities were developed 

by calculating the statistical distribution of the simulated TCE concentrations at the POC 

that ranged from l.OxIO-6-1000 ugll. In Figure 31, each of the five curves illustrated the 

probability distribution of contamination at the POC within a specific time period. Curve 

A represents the probability distribution of the simulated TCE concentrations at the Poe 

within the entire 50 year simulation period. Curve B shows the probability distribution of 

simulated concentrations at the Poe for simulation years 1-10 while curve C addresses 

simulation years 11-20. Curves Band C show a significant difference in probability 

distribution. The probability for .001 mgll (1 ugll) of TeE to migrate to the Poe is 

about 19% in the first 10 years as opposed to 2% in the following ten years, as 

represented by curve C. Mter 20 years of transport time, the probability is almost zero, 

as shown by curves D and E. Probability curves Band C were important when analyzing 

the decision option to postpone any remedial actions. 
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Contaminant Plume Delineation 

Objective 

The objective was to use geostatistical techniques to develop an isoconcentration 

map that delineated the TCE plume. The output from this effort was important to the 

decision analysis because select plume characteristics were used as constraints for 

alternative actions within the decision model. That is, the question to be asked is, would 

uncertainties in defining the contaminant plume produce an alternative optimum 

remediation design? Presentation of the results in this analysis followed the chronology 

previously shown in Figure 23 and repeated here in Figure 32 for clarity, where the initial 

step was to collect data and determine the spatial statistics or variance analysis. 

Subsequently, the data were conditionally simulated in Monte Carlo fashion to develop 

the contaminant isoconcentration map. Additional discussion for each follows. 

Figure 32. Flow chart graphically depicting the geostatistical methods used in this thesis. 
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Thirty-seven sampling points were used out of a possible 44 monitoring wells 

sampled by the Corps of Engineers. Four monitoring wells were not used because they 
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were not tested in 1993, the target year. Another three wells were not used in the analysis 

because small scale geologic structures near the well locations caused anomalous data 

values. 

From Chapter III, it was noted that the geostatistical variable must have a normal 

distribution before kriging or conditional simulation. Figures 33 and 34 display the 

histograms for the TCE concentration and the log-normal transformed concentration 

distributions. Figure 33 shows that the measured concentrations were heavily skewed 

toward low TCE concentrations. Figure 34 shows that log-normal transformation of the 

TCE concentrations had a nearer normal distribution that could be used in further 

geostatistical analysis. A more detailed statistical discussion is given in Appendix A 

illustrating the log-normal transformation having a near normal distribution. The log-

normal transformed TCE concentrations were used in the geostatistical analysis due to the 

near normal distribution exhibited. 

Figure 33. Histogram plot of 1993 monitoring data concentrations ug/l, not transformed. 
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Data Spatial Variance Analysis 

The spatial variance analysis had two objectives: develop the experimental 

variogram that was representative of the true variogram and fit a model to the 

experimental variogram. The resulting experimental and model variograms are illustrated 

in Figure 35 with the vertical axis representing the variance of the variable (log- normal 

TeE concentration in groundwater) and the horizontal axis representing separation 

distance in feet 

The variogram showed a variance ceiling of about 7.5 beyond the range of 400 

feet Between the origin and 400 feet the structure was not well defined. The lack of 

structure near the origin was apparently due to the complexity of the geology and the 

sparse sampling data, thus hindering the capability to detect small concentration 

variations within the incremental lag spacing of 290 feet. Another incremental lag 

spacing of 200 feet was used to assist in defining the structure near the origin. Figure 36 

illustrates the new variogram that had two points versus one between the origin and 400 

feet on the x-axis. Reducing the incremental lag spacing caused the variance at further 

points to have greater scatter in Figure 36 than exhibited in Figure 35. This highlighted 

the importance of conducting several iterations of variogram development. Both of these 

experimental variograms were utilized to develop the model variogram. Figure 35 

assisted in determining the variogram sill with its relatively good structure beyond 400 

feet. Figure 36 was important to verify the lower end structure with additional variance 

points less than 400 feet. These lower end points assisted in defining the model 

variogram shape and verification of a nugget effect. 
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The variogram figures illustrate a gaussian model fitted to the experimental 

variograms. The model variogram was characterized by a sill value of 7.8, a nugget of 

0.0 and a range of 425 feet. This model variogram fit the experimental variogram very 

closely and was representative of the true variogram (see Figures 35 and 36). 

An assumption made in the variogram analysis was that the underlying structure 

was isotropic and that no anisotropic structures occurred within the aquifer. That is, the 

complexity and randomness of the depositional structures within the aquifer precluded 

modeling the random anisotropic structures and was beyond the presentation of the 

methodology in this thesis. Therefore the experimental variograms developed were 

considered omni-directional as illustrated in Figures 35 and 36 by the direction and 

tolerance parameters set at 0.0 and 90° respectively. Additional discussion of the data 

spatial variance analysis is provided in Appendix A, where the detailed discussion 

summarizes the variogram cross-validation analysis that was used to evaluate the model 

variogram development. Also included in Appendix A is the sample data declustering 

discussion which, while an important preliminary step to conditional simulation, is not as 

relevant to the overall decision analysis. 

Conditional Simulation 

Kriging Versus Conditional Simulation. Conditional simulation utilized Monte 

Carlo techniques in a stochastic analysis that produced numerous two-dimensional 

realizations of the contaminant plume. Each simulation was a possible realization of the 

true TCE plume distribution. Figure 37 illustrates the output from one conditional 
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simulation realization. Each realization contained simulated data as well as the true or 

measured values at the sampling points. Figure 37 and subsequent simulation figures 

were plotted on a grid network that was 3750 feet along the east axis and 4500 feet along 

the north axis, with each grid 75 foot square. Comparing one conditional simulation 

realization with a kriged realization (see Figure 38) produced noticeable differences 

between the two simulation methods. The smoothing effect inherent to Kriging (Deutsch 

and Joumel, 1992) between known data points was very noticeable when compared to 

the conditional simulation figure. The smoothing effect that Kriging created is one of the 

fundamental differences between it and conditional simulation. The detail exhibited with 

the conditionally simulated plume was much more defined, with greater variation over 

shorter distance than with the kriged example. This greater detail, together with the 

opportunity to develop two-dimensional, spatially correlated statistical distributions of the 

TCE plume strongly supported the use of conditional simulation over the more typically 

applied contouring or Kriging approaches. 
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Figure 37. Isoconcentration map of one conditional simulation realization. TeE values in 
the legend are log-normal transformed values. 
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Figure 38. Isoconcentration map of the Kriged estimates. TeE values in the legend are 
log-normal transformed values. 

I!J 0-1.6 
.6.4-8 

Kriged Estimate 

.1.6-3.2 03.2-4.8 04.8-6.4 
Cl8-9.6 

Boundary of Burning Grounds 

iii3787.5 

3037.5 
N 
o 
r 2287.5 t 
h 
i 
n 

111111111111111111537.5 9 

111111111111111111787.5 
1111111111111111137.5 37.5 787.5 1537.5 2287.5 3037.5 

Easting 

96 



Monte Carlo Maximum Precision. The same technique used in the contaminated 

groundwater transport analysis was applied to determine the minimUIl} number of 

simulations needed to adequately represent the conditions. Figure 39 presents the 

maximum precision plot of the mean simulated concentration for increasing simulations. 

As there were 3000 simulated nodes for each realization, statistically analyzing all the 

nodes and plotting the results was not feasible. Three randomly selected nodes, not to 

include sampling points, were used in the precision analysis, as shown in Figure 39. The 

figure shows that maximum precision was reached between 40 and 60 simulations for 

each of the three simulated nodes. 

Figure 39. Monte·Carlo maximum precision plot of mean concentration versus number of 
simulations. . 
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Another check was conducted using the standard deviations of the three nodes in 

the same fashion as the plot of the running means. A plot of the relationship (Figure 40) 

showed the standard deviations converging to one value at around 40 simulations but not 

as well as in Figure 39. Beyond 40 simulations the standard deviations diverged but still 

remained within acceptable tolerance limits. 
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Figure 40. Monte Carlo maximum precision plot of standard deviation of concentration 
versus number of simulations. 
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Statistically derived isoconcentration maps illustrated the upper boundaries of the 

95% and 90% confidence intervals and the mean simulation concentrations were 

prepared. The plot of the simulated means, Figure 41, was very similar to the Kriged 

estimate in Figure 38, illustrating that the average of conditional simulations·at a given 

location converges to the Kriging estimate and the variance converges to the kriging 

variance (Delhomme, 1979). This similarity lends itself to the verification of maximum 

precision and that 45 simulations were adequate to represent the conditions. 
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Figure 41. Isoconcentration map of the means froI:ll the conditional simulation 
realizations. The legend gives the TeE concentrations as log-normal transformed. 
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The objective of the conditional simulation was to identify statistical variance 

about an isoconcentration map of the contaminant plume. Isoconcentration maps were 

developed for the statistical upper boundary of the 95% confidence interval (UB 95 CI) 

and the upper boundary of the 90% confidence interval (UB 90 CI), shown in Figures 42 

and 43, respectively. Both figures illustrate the concentration variation within the plume 

and the areal extent of the plume. Comparison of the two figures revealed that the areal 

spread of the respective plumes was the same for the UB 95 CI and UB 90 CI. 

Differences, however, did occur in these simulated plumes. Note that the higher 

contaminant concentrations were denser in Figure 42 (the UB 95 CI) than in Figure 43 

(the UB 90 CI). This variation may be significant when determining remediation 

alternatives and attendant costs based on the size and strength of the contaminant plume. 
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Figure 42. Isoconcentration map of the UB 95 CI from the conditional simulation 
realizations. The legend gives the TCE concentrations as log-nonnal transfonned. 
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Figure 43. Isoconcentration map of the VB 90 CI from the conditional simulation 
realizations. The legend gives the TCE concentrations as log-normal transformed. 
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Cost Analysis 

Remedial Action Costs 

Groundwater Extraction. Costs for groundwater extraction and parameter inputs 

for CORA module 206 are summarized in Table 7. The left column of the table lists the 

input parameters required for this CORA cost module. Parameters having a large impact 

on the costs included: nwnber of wells, pump rate and depth. The results from CORA 

are listed in the right column. For this module there were two costs associated with 

groundwater extraction, capital costs reflecting the construction costs associated with 

extration well emplacement and operational and maintenance cost (O&M) which were 

estimated for a one year period. These costs were calculated as a yearly recurring cost in 

the objective function during the decision tree analysis. 

Table 7. CORA groundwater extraction cost module 206 summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Number of wells. 15 Capital cost 360,000 
Pumping rate per well (gpm). 500 O&Mcost 370,000 
Well diameter (inches). 6 
Gravel packed wells? yes 
Average depth of wells (ft). 75 
Transfer piping length (ft). 1000 
Pumping water level/well (ft). 55 
A vera~e temperature (,)F). 64 
Confidence level. mediwn 
Level of protection. none 

103 



In-Situ Bioremediation. Table 8 presents the CORA parameters and results for 

this remediation alternative. Input parameters involving the area of contamination, initial 

concentration and oxygen demand increased the costs of bioremediation when their 

quantities were high. In this analysis hydrogen peroxide was used to deliver oxygen to 

the microorganisms causing the O&M costs to increase sharply over other alternatives. 

The capital costs for this alternative ($490,000) were a little higher than for groundwater 

extraction but the significant cost difference was between O&M costs, of $1.7 million 

annually for bioremediation versus $370,000 for the groundwater extraction. 

Table 8. CORA in-situ bioremediation cost module 304 summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Area of contaminant (acres). 308 Capital cost 490,000 
Thickness of contaminant (ft). 17 O&M cost 1,700,000 
Initial TCE conc. (mg/kg). 12532 
Level of degradation (%). 100 
Oxygen demand (mg/mg) 3.5 
Soil bulk density (pct). 99 
Percent COD leached. 30 
Efficiency ofH20 2 (%). 30 
Remediation pe_riod (years). 10 
Sampling events/month. 1 
Number of sampling wells. 20 
Soil cores per year. 10 
Labor required (man-d/wk). 5 
Protection level. none 
Average temperature (OP). 64 
Confidence level. medium 
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Discharge to Surface Water. Discharge into local drainage features was assumed 

for the treated groundwater due to the sites remote location and lack of accessibility to a 

permitted waste water treatment plant. Results presented in Table 9 were only the costs 

considering the actual discharge. Treatment costs were calculated separately for two 

different operations and are presented in Tables 10 and 11. The most significant costs 

associated with this module were the capital costs and cost incurred to get an NPDES 

permit for discharge. The majority of the capital startup costs were for materials to drain 

the treated water an estimated 3000 feet from the treatment site to Caddo Lake, as shown 

in the parameter inputs column of Table 9. These costs would not be incurred for the in-

situ bioremediation alternative but would be a factor in groundwater extraction. They 

represent, therefore, an additional cost for that alternative. 

Table 9. CORA discharge to surface water cost module 406 summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Transmission mode. gravity Base capital cost 200,000 
Flow (gpm). 2000 NPDES permit 46,000 
Length of pipe (ft). 3000 O&M cost 740 
Depth of trench (ft). 6 
Is diffuser required? no 
Protection level. none 
Average temperature (OP). 64 
Confidence level. medium 
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Granular Activated Carbon Treatment. This was the more expensive treatment 

process of the two estimated and combined with the previously itemi~ed extraction costs 

was the most expensive remediation alternative in the analysis. Results in Table 10 show 

that capital costs were $2.0 million while yearly O&M costs were $l.9 million. The 

O&M costs were strongly influenced by the asterisk-highlighted parameter, the carbon 

usage, that was estimated by CORA at about 1 million pounds per year which may be 

excessive. 

Table 10. CORA granular activated carbon cost module 309 summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Water flow (gpm). 2000 Capital cost 2,000,000 
Total or~anic carbon (ug/l). 10000 O&Mcost 1,900,000 
Protection level. none 
Average temperature (<>P). 64 
Confidence level. medium 
Carbon used (lb/yr). 1132818· 
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Air StriIJIJin~ Treattnent. The second of two treattnent operations this system was 

much less costly than the activated carbon system. Presented in Table 11 are the input 

parameters required to develop the cost of the system. Parameters highlighted with an 

asterisk were calculated by CORA based on the input parameters. The resulting capital 

and operational cost were $400,000 and $110,000 respectively. The operational costs 

were on a yearly basis and were used in a recurring cost economic analysis to determine 

the total cost for this system for a 10 year operational period. 

Table 11. CORA air stripping cost module 307 summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Waterflow (gpm). 2000 Capital cost 400,000 
Protection level. none O&M cost 110,000 
A veraj!;e temperature (~). 64 
Confidence level. medium 
Flow discharge (gpm). 2000· 

Air stripQing towers number. 2" 

Overall packing depth (ft). 43· 

Tower diameter (ft). 11· 
Power r~uired (kW). 101· 

Gas flow (cfm). 6030· 
* Calculated by CORA from input parameters. 
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Site Preparation. Site preparation costs were included into all the remediation 

alternatives. The assumption was that electrical power would be brought to the site from 

an existing electrical distribution system that existed nearby at other ammunition plant 

facilities. A key parameter input shown in Table 12 was the distance to the electrical 

distribution point, which CORA used to estimate the cost as $28,000. Capital costs were 

the only cost associated and included access to the distribution system and construction 

of an electrical drop on the site. 

Table 12. CORA site preparation cost module summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Site clearing (acres). 0 Capital cost 28,000 
Tree removal (acres). 0 O&Mcost 0 
Dust control area (acres). 0 
Local utility connection? yes 
Distance to power point (ft). 2000 
Gas connection required? no 
Water connection required? no 
Access road required? no 
Building demolition (cy). 0 
Average temperature (OP). 64 
Confidence level. medium 
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Failure Costs 

Surface Water Diversion. This cost module was one of the three costs that made 

up the cost of failure determination, as discussed in Chapter III. The costs for surface 

water diversion, presented in Table 13, were based on the parameter inputs shown in the 

left column of the table. Key parameters included the length and width of the 

contaminated site as well as the 25 year storm rainfall in 24 hour period. The projected 

capital costs of $1.1 million were much higher than the attendant annual operational cost 

estimated at $4,700. 

Table 13. CORA surface water diversion and collection cost module 105 summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Length of cont. site (ft). 1000 Capital cost 1,100,000 
Width of cont. site (ft). 1000 O&Mcost 4,700 
25 yr., 24 hr rain (inches). 6 
Average temperature ('F). 64 
Confidence level. low 
Protection level none 
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Site Access Restrictions. Assuming the contamination was transported beyond 

the boundaries of the ammunition plant, the potential for additional site security 

requirements was likely. Site security included the requirements listed in the parameter 

input column such as dimensions of the perimeter and guard requirements. As mentioned 

in Chapter ill, the reasons for security varied but most likely would be required for 

protection of remediation equipment as well as securing the site from unwarranted access 

by the general public. Table 14 presents the results of the CORA estimation of $750,000 

in yearly operational costs with no capital costs. 

Table 14. CORA site access restrictions cost module 504 summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Site perimeter (ft). 10000 Capital cost 0 
Permanent fencing? no O&Mcost 750,000 
Temporary fencing? no 
Lighting required? no 
Security guard required? yes 
Access points required. 5 
Guards per access point. 1 
Number of shifts. 3 
Temporary_ guardhouses. 5 
Vehicles required. 3 
Confidence level. low 
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Municipal Water Supply. Input parameters as shown in Table 15 included 

pipeline length, well depth and number of residential and commercial connections. 

CORA estimated that the capital costs would be $6.8 million with yearly recurring costs 

of $54,000 per year (Table 15). It was assumed that if failure occurred, recurring costs 

would be realized over a 50 year period. That is, the new municipal water supply would 

serve the local community for 50 years and yearly costs would be incurred during that 

period. 

Table 15. CORA municipal water supply cost module 502 summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Length of line (ft). 10000 CaQital cost 6,800,000 
Average well depth (ft) 100 O&M cost 54,000 
Residential connections. 500 
Commercial connections. 100 
Total commercial flow (gpm). 50 
Average temperature (OP). 64 
Above grade J>rotection. none 
Below grade protection. none 
Confidence level. low 
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Additional Groundwater Monitorin~ Well Cost 

The cost detennined in this model was that incurred per well constructed. The 

number of wells chosen for installation was then multiplied to this unit-cost estimate. The 

annual O&M costs were those associated with well upkeep and monitoring costs. The 

parameter input column of Table 16 shows the average depth of wells to be 50 feet with a 

quarterly monitoring frequency that tested for volatile organic compounds such as TCE. 

The estimated capital cost per well was $8,100 while O&M cost was $9,200 per well per 

year (Table 16). 

Table 16. CORA groundwater monitoring cost module 503 summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Number of wells. I Capital cost 8,100 
Average well depth (ft). 50 O&M cost 9.200 
Number to monitor. 1 
Monitoring frequency (#/yr). 4 
Monitor HSLORG yes 
Monitor VOA GCIMS yes 
Average temperature ("F). 64 
Level of l>fotection. none 
Confidence level. medium 
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Existin~ Groundwater Monitorin~ Costs 

Costs determined in this module were associated with current and future 

monitoring of existing monitoring wells. Since these wells were already constructed, only 

O&M costs were appropriate, as shown by the parameter input column in Table 17, 

where the number of wells constructed was set to zero. The monitoring number 

parameter was 40, corresponding to number of wells on the site, with a quarterly 

monitoring frequency for volatile organic compounds. CORA estimated that yearly 

recurring cost to monitor the wells was $280,000 as shown in Table 17. 

Table 17. CORA groundwater monitoring cost module 503 summary table. 

CORA Inputs CORA Results 

Parameter Value Component Cost ($) 

Number of wells. 0 Capital cost 0 
Average well d~th (ft1 0 O&Mcost 280,000 
Number to monitor. 40 
Monitorin~ frequency (#/yr). 4 
Monitor HSLORG yes 
Monitor VOA Ge/MS xes 
Average temperature CF). 64 
Level of protection. none 
Confidence level. medium 
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Estimated Cost Summary 

The estimated costs are summarized in Table 18 for each of the alternatives 

evaluated in the decision analysis. The table was divided into three sections: costs 

incurred, potential costs for testing and potential costs for failure. Under the incurred 

costs column are the estimated costs to implement the corresponding alternative. Their 

costs were divided into capital costs and annual operation costs, as shown in Table 18. 

The estimated costs for additional testing were separated because these costs mayor may 

not be incurred, depending if the additional testing alternative was chosen. The final cost 

category was the estimated costs for failure. If no action were taken and the contaminant 

reached the POC in concentrations greater than 5 ug/l, then these costs were realized. 

Table 18. Summary of estimated costs for alternatives by cost type. 

Type of Cost Alternative Cost ($ x 106, capital cost/annual O&M cost) 

Costs Incurred P&Tl P&T2 Bioremediation No Action 

Groundwater Extraction .36/.37 .36/.37 - -
In-Situ Bioremediation - - .49/1.7 -
Surface Discharge .25/.001 .25/.001 - -
Activated Carbon Treatment - 2.011.9 - -
Air Stripping Treatment .40/.11 - - -
Site Preparation .03/0.0 .03/0.0 .03/0.0 -
Monitoring Groundwater 0.0/.28 0.0/.28 0.0/.28 0.0/.28 

Potential Costs for Testin2 P&Tl P&T2 Bioremediation No Action 

Additional monitoring/well .008/.009 .008/.009 .008/.009 .008/.009 

Potential Costs for Failure P&T 1 P&T2 Bioremediation No Action 

Surface Water Diversion - - - 1.11.005 
Site Restrictions/Security - - - 0.0/.75 
Municipal Water Supply - - - 6.8/.054 

TOTALS 1.05/.77 2.65/2.56 .53/1.99 7.91/1.10 
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Decision Model 

Decision Tree Analysis 

The complete decision tree for the analysis is illustrated in the accompanying map 

file as Figure 56. The size of the trees precluded them from being illustrated on standard 

paper and they were plotted on larger sheets. Figure 56 presents the decision tree 

structure having the alternatives labeled and the objective function cost for each of the 

consequences realized. 

To illustrate the results of the decision tree analysis, Figure 44 presents the tree in 

rolled-back form showing the estimated monetary values (EMV) for each of the decision 

alternatives. This decision tree is a collapsed version of the tree illustrated in Figure 56 

and is different only in that the redundant sub-branches have been collapsed for clarity. 

Each of the end nodes in Figure 44 has either the "Remedial Action" sub-branch or "Take 

No Action" sub-branch, as illustrated in Figure 45, attached to those nodes. The 

collapsed sub-branches were the same throughout the decision tree and varied only with 

respect to the values for the objective junction cost variables and probability variables. 

Referring to the first decision node in Figure 44 labeled "Contaminated 

Groundwater Problem", it can be seen that the optimum decision was to "Postpone 

Action" with a resulting EMV of $4.7 million dollars. The EMV should not be associated 

with the expected cost of consequences but is a relation of objective function cost and 

probability for the states of nature (Ossenbruggen, 1984). Actual costs are summarized 

in Chapter V for each of the consequences. 
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Figure 45. Detail of collapsed sub-branches not shown in Figure 44. 
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The next node on the "Postpone Action" sub-branch is a chance node representing 

the three possible test outcomes from the additional test wells. The probabilities for each 

of the three possible test results are shown in decimal form near the test branch label. 

There are three optimal decisions each corresponding to the test results. If the test well 

did not detect contamination, the optimal solution was to take no remedial action and 

continue monitoring (highlighted with darkened nodes). If the test well detected 

contamination but the concentration was below the MCL (5 ug/l) the optimal solution 

remained the same, the same conclusion was reached. Finally, if the test well detected 

contamination concentrations greater than or equal to 5 ug/l, then the optimum decision 

was to choose the pump and treat alternative with air stripping treatment of the 

groundwater. 

Variable Sensitivity 

Sensitivity analysis is an important part of any decision analysis process. As was 

discussed within the CORA cost results section, if the estimated cost of failure was 

inflated or, conversely, too low, then an effect on the optimum alternative derived in the 

decision tree analysis could result. A sensitivity analysis was conducted separately for the 

capital cost and operational costs at the root node (first decision branch) of the decision 

tree. 

Output from this analysis can be the typical "variable versus expected value" plot 

or an alternative type of plot called the tornado diagram. Figure 46 illustrates the tornado 

diagram that was determined for the following capital cost variables within the objective 
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function: remedial action cost, cost of failure and additional testing cost. Tornado 

diagrams illustrate the variables with the greatest sensitivity to the expected monetary 

value (EMV) at the top and the least sensitive at the bottom. The horizontal axis in the 

figure represents the EMV value that was calculated in the decision tree. The optimum 

EMV calculated as $4729.27K was highlighted as a vertical dashed line in the figure. 

Figure 46. Tornado diagram illustrating sensitivity for the capital cost variables of the 
objective function. 
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Sensitivity for remedial action capital costs was the most sensitive of the three variables 

evaluated and had the potential to change the decision from a postpone action alternative 

to one requiring immediate action. This is seen by the dark vertical line within the 

sensitivity block located at about $4650K EMV. The mark indicated that the optimum 

decision could change with a significant change in the variable's value. Another way of 
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showing this relationship is presented in Figure 47, a sensitivity plot of remedial action 

capital cost versus EMV. 

Figure 47. Sensitivity analysis plot of remedial action capital cost. 
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This figure shows that "postpone actions" is the optimal decision as long as the capital 

cost of remediation is greater than $540,351, as illustrated by the dashed vertical line to 

the line intersection. At or below this point the optimal decision would be to take action 

with a new EMV of $4646.68K. 

The tornado diagram in Figure 46 showed no sensitivity to the failure and 

additional testing cost variables. Figures 48 and 49 present a sensitivity analysis for each 

individual variable. In Figure 48, failure capital costs ranging from zero to almost $14 

million illustrated no intersection of the decision alternatives. The converging slope of 

the two lines was such that intersection would occur at a point beyond any reasonable 

estimation of failure costs. 
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Figure 48. Sensitivity analysis plot of failure capital cost. 
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In Figure 49, the same sensitivity was illustrated for additional testing capital cost. 

Capital costs ranging from zero to $200,000 illustrated no intersection of the decision 

alternatives. Again, the converging slope of the two lines was such that intersection 

would occur beyond any reasonable estimation of failure costs. 

Figure 49. Sensitivity analysis plot of additional testing capital cost. 
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A similar sensitivity analysis was conducted with the operational and maintenance 

cost variables resulting in a tornado diagram illustrated in Figure 50. This diagram had 

the distinctive tornado shape, with monitoring costs as the most sensitive, indicating that 

an increase in the optimal EMV could change the decision alternative. Two variables, 

additional testing and remedial action operational costs, showed a potential to change the 

decision from a postpone action alternative to one requiring immediate action as 

highlighted by the dark vertical lines within their sensitivity boxes. 

Figure 50. Tornado diagram illustrating sensitivity for the operational and maintenance 
cost variables of the objective function. 
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A separate sensitivity plot (Figure 51) showed that monitoring cost were very sensitive to 

changes in EMV but the decision alternatives intersected beyond $600,000. That is, any 

change in monitoring costs would not change the decision alternative but it would change 
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if the EMV was increased from $4.7 million to about $5.2 million. An increase in the 

EMV is only possible if the probabilities were changed and/or the all objective function 

variable values were increased. More important was the sensitivity of additional testing 

and remedial action costs. 

Figure 51. Sensitivity analysis plot of monitoring operational cost. 
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These two variables had the potential to change the optimum alternative. Figure 52 

illustrates the additional testing sensitivity with a change in optimal alternative occurring 

at about $76,000 cost. This means that an increase in additional testing operational costs 

would result in a decision alternative change. Operational testing costs at or above 

! $76,000 would change the optimum decision to the "take action alternative". 
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Figure 52. Sensitivity analysis plot of additional testing operational cost. 
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Remedial action operational cost sensitivity in Figure 53 showed that a decrease in cost to 

about $587,000 would cause a change in the optimum alternative. 

Figure 53. Sensitivity analysis plot of remedial action operational cost. 
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Once again, failure cost, which had the least confidence when estimating costs, 

was not sensitive to changes in cost as illustrated in Figure 54. The intersection of the 

two alternative cost sensitivity lines showed no convergence within a reasonable 

estimation range. Therefore the failure cost estimates appear to be reasonable and show 

no sensitivity to changes. 

Figure 54. Sensitivity analysis plot of failure operational cost. 
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In summary, Table 19 presents the sensitivity analysis in a table for comparison of 

the objective function variables. The column titled "Range" shows the variable values for 

which the sensitivity analysis was conducted. The upper limit was about five times that of 

the estimated value detennined using CORA. For variables that were sensitive to changes 

in the variable's value, the threshold value was presented in the table along with the 

threshold EMV. 

Table 19. Summary table for objective function variables and their sensitivity to changes 
of their estimated costs. 

Thresholds, if Yes 
Variable Rangel ($xlO6) Sensitive Value ($xlO6)2 EMV ($x106) 

Remedial Action capital 0-3.0 yes 0.54 4.65 
Remedial Action O&M 0-2.5 yes 0.59 4.72 
Failure capital 0-13.6 no - -
FailureO&M 0-1.6 no - -
Additional Testing capital 0-0.20 no - -
Additional Testing O&M 0-0.20 yes 0.08 5.14 
Monitoring O&M 0-0.60 no - -

1. This was the cost range used in the sensitivity analysis. 
2. Value is the variable cost at which a change in the decision alternative would occur. 
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Chapter V 

DISCUSSION OF RESULTS 

Decision Tree Analysis 

In Chapter II an example problem was introduced to which the decision analysis 

methodology was to be applied. Given the complexity of the situation and the decisions 

required, a decision tree analysis was utilized to evaluate the various decisions that were 

made in choosing the best alternative to remediate the contamination problem at the 

ammunition plant The decision tree shown in Figure 55 is the same as in Figure 44 from 

Chapter IV, representing a collapsed version of the full tree presented in Figure 56. 

The decision tree illustrated in Figure 55 is shown in rolled-back form. That is, 

the decision tree calculations were completed and illustrated the estimated monetary 

value (EMV) for each of the alternatives within the tree, thus highlighting the optimal 

decision alternatives. The darkened nodes highlight the optimal decision path for the 

analysis. The first decision within the decision tree was to "Take Action" or "Postpone 

Action". Calculation of the EMV s revealed that postponement of action was the best 

alternative with an EMV of $4,729.27 K. As discussed in Chapters III and IV, 

postponement of action by 10 years had a significant reduction in the probability that 

contaminant reached the plane of compliance (POC). That is, the greatest probability of 

contaminant occurrence was within the first 10 years, after which the probability 

decreased significantly. This decision alternative inherently included an additional testing 

phase that acted as an early warning system should contaminant migrate towards the POC 
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within the 10 year postponement period, thus initiating revised actions based on new 

migration data. 

Following the "Postpone Action" branch, there are three probability branches 

emerging from the circular chance node. This sub-branch utilized Bayesian analysis to 

revise probabilities of contaminant transport based on additional monitoring wells. At 

this point within the decision tree, future actions were dependent upon the monitoring 

results from the additional wells. For two possible testing outcomes labeled "contaminant 

migration not detected" and "detected in amounts < 5 ugll", the optimal decision 

alternative calculated was to take no remedial action. The "No Action" decision had an 

EMV of $4,539.54 K and $4,992.18 K for "No Detected Contamination" and "Detected 

Contamination < 5 ug/l", respectively. If contamination was detected in amounts greater 

than 5 ug/l, then the decision analysis shows that "Remedial Action" was the best 

alternative. The best remedial action alternative was detennined to be the pump and treat 

technique utilizing an air stripping operation to treat the groundwater, assuming that the 

vapor emissions were not treated. This alternative had a calculated EMV of $5,930.82 K. 

The utility of the decision tree analysis did not stop with just providing the best 

decision alternative. It was also used in evaluating decision alternatives under varying 

situations, commonly called "war gaming". Suppose for example that the alternative of 

"Postponing Action" was not an option. It can be seen in Figure 51 that at each of the 

decision nodes within the tree, the decision alternatives that were not the original optimal 

choice have a double hatch mark on their respective branch. 
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Using the hypothetical example that postponing action was not an acceptable alternative, 

the remaining decision alternative branch was analyzed. Within this decision branch there 

were two alternatives, "Additional Site Testing" or "No Additional Site Testing". The 

optimal decision alternative of the two was the branch without a double hatch. That is, 

the "No Additional Site Testing" alternative was preferred. The subsequent optimal 

decision alternative within this sub-branch was the remedial action alternative of pumping 

and treatment utilizing an air stripping operation, having an EMV of $5.140.32 K. From 

this alternative analysis it can be seen that the decision tree analysis was very useful in 

evaluating decisions under varying "war gaming" scenarios. 

Probabilities of Decision Tree Analysis 

The state of nature probabilities and the revised probabilities resulted from the 

stochastic Monte Carlo contaminant transport analysis conducted early in the decision 

analysis methodology process. This analysis was essential to assign probabilities of 

occurrence to the three states of nature that were used in the decision tree analysis. 

Probabilities for the three states of nature: contaminant not detected at the POC (Sl). 

contaminant detected at Poe with concentration < 5 ugll (S2) and contaminant detected 

at Poe with concentration ~ 5 ugll (S3) are shown in Table 20. The table illustrates that 

the probability of contaminant occurrence at the Poe decreased with time with more 

information. Therefore, an increased certainty was brought to the decision tree analysis 

through the contaminant transport analysis and the Bayesian analysis. Prior to the 

transport analysis the probability for anyone state of nature to occur was 33.3% since the 
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sum of the three probabilities must equal 100%. After conducting the contaminant 

transport analysis, the probabilities were revised to 52, 35 and 13% for (Sl), (S2) and • 

(S3), respectively and were employed in the "take action" decision alternative branch (see 

Table 20). 

Table 20. Prior and revised probabilities utilized within the decision tree analysis. 

Decision Tree Analysis Probability (%) 

Decision Alternative Test Result Sl S2 S3 

Take action No additional testing 52 35 13 

Take action with testin~ No detection ofTCE 100 0 0 
Detection of TCE < 5 ug/l 46 42 12 
Detection of TCE ~ 5 ugll 0 67 33 

Postpone Action 10 yrs No detection of TCE 100 0 0 
Detection of TCE < 5 ug/l 95 4.5 .5 
Detection of TCE ~ 5 ug/l 0 86 14 

Combining the transport and the Bayesian analysis, the probabilities were further 

refined for the states of nature. From Table 20 the revised probabilities under the "Take 

Action" alternative were significantly different when compared to the prior probabilities 

without additional testing data. The prior probability of POC contamination of 13% was 

higher than the revised probability of 0% for the "No Contaminant Detected" test result. 

Revised and prior probabilities were similar at 12% and 13%, respectively, for the 

"Detection < 5 ugll" test result. Revised probabilities increased to 33% if detection is ~ 5 

ugll in the additional monitoring welL 

Within the "Take Action" branch of the decision tree, the optimal alternative 

calculated was not to do the additional testing but to take remedial action. This decision 
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illustrates how the methodology takes into consideration not only the enhanced 

probabilities from Bayes analysis but also considers the cost and benefit that additional 

testing provided. The additional testing alternative had a higher EMV then the take 

action branch, thus precluding it as an optimal decision alternative. The higher EMV of 

additional testing resulted from the probability of S3 occurring, given detection of 

contaminant < 5 ug/l, which was 12%. This probability combined with the objective 

function cost was great enough to make the EMV for the take no action alternative 

higher than the remedial action alternative. The lower EMV for remedial action did not 

lower the higher overall EMV for the additional testing sub-branch of the decision tree, 

thus the take action branch, having a lower EMV, was the optimal alternative. 

Probabilities associated with the postpone action branch were revised from the 

prior probabilities for the states of nature for years 10-19. These probabilities were 

illustrated as curve B in Figure 32 of Chapter IV. The revised probabilities for the 

postpone action alternative were low enough in S3 that the remedial action alternative 

was calculated as the optimal alternative only if the contaminant was detected in 

quantities ~ 5 ug/l in the additional monitoring wells. 

Expected Monetary Value in Decision Analysis 

The contaminant transport and Bayesian analysis were important to developing 

prior and revised probabilities for the states of nature within the decision analysis. 

Conditional simulation and cost estimation were important to determining the EMV s that 

were calculated within the decision analysis and were used to determine the optimal 
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alternative. Conditional simulation was used to define the size and strength of the 

contaminant plume that existed beneath the burning grounds using spatial statistics 

developed from monitoring data. These two parameters were used in the cost estimation 

program CORA to estimate the cost for remedial action and failure. 

From the conditional simulation results shown in Chapter IV. remedial action 

alternatives were developed for the decision analysis. Three alternatives were used to 

demonstrate the methodology. Two of the alternatives utilized pump and treat 

technology with varying treatment operations. Pump and treat #1 used an air stripping 

operation to remove the TCE from groundwater. This option was inexpensive when 

compared to pump and treat #2 which used granulated activated carbon to treat 

groundwater. The third alternative utilized in-situ biodegradation technology. This 

technique was also expensive due to the size of the plume and use of hydrogen peroxide 

to deliver oxygen to the microorganisms. 

The groundwater extraction operations were much less expensive than in-situ 

bioremediation due the remediation scheme and number of extraction wells. with first 

year operating costs of $980.000 versus $2.19 million. respectively. The hydraulic barrier 

approach previously discussed in Chapter III was taken to be the primary reason for these 

decreased costs. This scheme was much cheaper and more practical than installing 

extration wells in a grid network over the entire site. The bioremediation scheme 

involved inoculating the contaminated aquifer with microorganisms and providing them 

nutrients and oxygen. This alternative was expensive due to the use of hydrogen 

peroxide as a delivery agent for the oxygen and the size and strength of the plume. 
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The objective function costs for the various decision alternatives within the 

decision tree are illustrated in Table 21. Within the decision tree the~e were three main 

decision alternatives under the column labeled "Decision Alternatives". Each of these 

alternatives had sub-decision branches involving remedial or no action. These decision 

alternatives were labeled individually under the "Decision Alternative Objective Function 

Cost" column. The table illustrates the objective function cost for all possible outcomes 

within the decision tree. The cost difference experienced between the non-testing 

alternative and the testing alternatives were the additional costs incurred for installing the 

additional monitoring wells and associated lab analysis costs. Comparison of the 

alternatives to postpone and take action with testing reveals some costs remain the same 

and others differ. The reason the cost varied for S3 was due to the discount rate effect on 

the operation and maintenance costs given a 10 year delay. That is, the cost of operations 

will be higher in 10 years due to inflation. Cost for the other two states of nature were 

not different due to an assumption that capital costs had been committed for reaction if 

contaminant was detected in amounts ~ 5 ugll in the additional monitoring wells. 

lllustration of the expected monetary values calculated during the decision tree 

analysis are presented in Table 22. The table is similar to Table 21, with the same 

decision alternative columns, except the replacement of the Sx column with Zx. the 

outcome from additional testing. This is because the EMV is a calculation of the Sx 

probability multiplied by its respective objective function cost Since there was no 

additional testing within one of the decision alternatives Zx does not apply for that 

alternative. 
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Table 21. Objective function costs for the remedial action and no action alternatives. 

Decision Alternative 
Objective Function Cost ($x • 106) 

Decision Alternative Sx' P&T 1 P&T2 Biorem. None 

Take action with additional test StfZx 5.57 7.17 5.06 4.54 

S21Zx 5.57 7.17 5.06 11.3 

S31Zx 7.18 21.3 15.2 22.4 

Take action with no testing Sl 4.90 6.50 4.38 3.86 
S2 4.90 6.50 4.38 10.7 

S3 6.75 20.9 14.8 21.8 

Postpone action (testing inherent) SllZx 5.57 7.17 5.06 4.54 

S21Zx 5.57 7.17 5.06 11.3 

S31Zx 8.13 22.3 16.2 22.4 

* Sxrepresents the three states of nature and Z. represents the three test results defined as: 
Zl - additional testing does not detect contaminant 
Z2 - additional testing detects contaminant with concentration < 5 ugn 
Z3 - additional testing detects contaminant with concentration ~ 5 ugn 

It can be seen from Table 22 that for the decision alternative "Take Action" and 

"Conduct Additional Testing", the optimal sub-branch decision alternative for a test 

resulting in Zl was take no remedial action, having an EMV of 4.54. The EMV for the 

optimal alternative was lower than the other EMV s within the same row. If the test 

results were either Z2 or Z3, then the optimal sub-branch decision would be pump and 

treat remediation scheme one (P&T 1). From the table, the decision alternative to take 

action with no testing showed the optimal sub-branch decision for P&T 1 with an EMV 

of 5.14 which was less than the other EMVs. The "Postpone Action" alternative was 

similar to the other alternative involving additional testing. From the table, the optimum 

sub-branch alternatives for Zt. Z2 and Z3 were no remedial action (4.54), no remedial 

action (4.92) and P&T 1 (5.93), respectively. 
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Calculation of the EMV s for the main decision alternatives involving testing was 

the same as for sub-branches involving a chance node with states of nature. In this case 

the optimal EMV was multiplied by the probability of Zx. For example, the EMV for the 

alternative "Postpone Action" was calculated as $4.73 x 106 (see Figure 55). The 

calculation is as follows: 

Zl: EMVZ1 = $4.54 X 106 and PZ1 = .5493 
Zz: EMV Z2 = $4.92 X 106 and PZ2 = .4335 
Z3: EMVZ3 = $5.93 x 106 and PZ3 = .0171 

Table 22. Expected monetary value for decision alternatives within the decision tree. 

Sub-branch Decision Alternative 
EMV s ($x • 106) 

Decision Alternative Zx· P&Tl P&T2 Biorem. None 

Take action with additional test Zl 5.57 7.17 5.06 4.54 
Zz 5.76 8.83 6.25 9.50 
Z3 6.10 11.8 8.41 15.0 

Take action with no testing na 5.14 8.38 5.74 8.61 

Postpone action (testing inherent) Zl 5.57 7.17 5.06 4.54 
Zz 5.58 7.24 5.10 4.92 

* Refer to Zx definition in Table 21. Z3 5.93 9.29 6.61 12.9 

Sensitivity Analysis 

The original motivation to conduct a sensitivity analysis was a lack of confidence 

in the estimated costs for failure that were used in the objective function. After 

conducting the sensitivity analysis it was found that the decision analysis was not sensitive 
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to failure costs at the decision point to postpone or take action (see Figures 44, 46, 48 

and 52). Objective function cost variables that were sensitive include remedial action 

capital cost (RACCAP), additional testing operational cost (ATCOM) and remedial 

action operational cost (RACOM). The sensitivity plot for RACCAP (see Figure 45) 

illustrates that the optimal decision could change if RACCAP went below $540,351. The 

lowest RACCAP value, for P&T 1, was estimated by CORA to be nearly $1 million. 

Therefore, it is unlikely that remedial action capital costs will go below the threshold 

value. If RACCAP did go below the threshold value, then the optimal decision 

alternative would change to "Take Action". 

The other objective function variable encompassing remediation costs, the 

operation and maintenance cost, showed sensitivity with a threshold value of about 

$590,000 (see Figure 51). The likelihood that the optimal alternative would change was 

less for remedial action O&M (RACOM) costs than it was for its capital costs. 

RACOMs threshold value is about 20% of the lowest estimated RACOM value. That is, 

the lowest estimated RACOM value was a little over $3 million and the likelihood that it 

would reduce to $590,000 appears small. 

In Figure 50 the additional testing O&M cost (ATCOM) showed sensitivity with a 

threshold value of about $76,000. Again, the likelihood that the optimal alternative 

would change appears small since the ATCOM for the present optimal alternative, 

postpone action, is about $45,000. However, if seven or more additional monitoring 

wells were installed versus the estimated three, then the optimal alternative could change. 

This is based on the estimation that ATCOM is $9,200 per well per year. 
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The results discussed in this chapter were strongly based on the assumptions made 

throughout the analysis involving transport, conditional simulation and the optimization 

equation. Additionally, as mentioned in Chapter IT, the data utilized in this analysis was 

representative of the upper portions of the Wilcox aquifer. If data were made available 

that could change a previously made assumption, then the analysis would need to be 

evaluated to determine the effect on the results. For example, if the physical parameters 

for TCE were to change, then the significance of these changes on the current results 

should be determined. In other words, the results of this analysis are based on the data 

and assumptions presented in this analysis. 
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Chapter VI 

CONCLUSIONS 

Methodology Summary 

This study was conducted to provide a decision analysis methodology for military 

commanders and their staffs when confronted with an environmental contamination 

problem. The methodology was based on an established problem-solving foundation that 

was adapted to incorporate uncertainty analysis of imperfect data and quantify the 

uncertainty with respect to time. The uncertainty output was then used in conjunction 

with a decision optimization model for utilization in a decision tree analysis. 

The uncertainty analysis used existing contaminant transport models in stochastic 

fashion to develop time versus concentration break-through curves. The break-through 

curves were then used to develop probabilities of occurrence for contaminant reaching 

the plane of compliance (POC) within specified time periods. These probabilities were 

utilized in the optimization model to calculate the expected monetary value for the 

decision alternatives. To further refine the contaminant transport probabilities, a 

Bayesian analysis was conducted to determine the revised probabilities given uncertainties 

associated with laboratory testing. These revised probabilities were used in the decision 

tree sub-branches involving additional testing in the same fashion that the prior 

probabilities were used. 

The areal extent and concentration distribution of the contaminant plume was 

defined by using conditional simulation. These plume characteristics were important in 
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developing the remediation schemes and their costs. Three remediation schemes were 

used in this analysis: pump and treat groundwater with air stripping, pump and treat 

groundwater with activated carbon and in-situ bioremediation. Each of the these 

remediation strategies required that the plume size and concentration be known to 

estimate attendant costs. Their costs, as well as monitoring, additional testing and failure 

costs were estimated using the CORA expert system. The costs developed by CORA 

were used in the objective function of the decision model. 

The objective function~ equation (1) of Chapter II, was a cost minimization model 

that incorporated remediation, monitoring, additional testing and failure costs. This 

equation was used to calculate the cost of each consequence within the decision tree. 

The objective function cost combined with the probabilities, developed in the uncertainty 

analysis, were used to determine the expected monetary value for each of the decision 

alternatives. The decision alternative with the least expected monetary value was the 

optimum alternative. 

Summary of Findings 

Transport Modeling 

The following findings were made from contaminant transport modeling through 

the unsaturated and saturated zones. 

• Mass loading of TCE into the underlying aquifer was modeled as 631 kglyr 
for the upper boundary 95% confidence interval and 267 kglyr for the mean 
value. 

• Reliability of the saturated zone transport analysis was illustrated by the 
calibration modeling of contaminant transport to a existing monitoring well 
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which had similar concentrations within the same order of magnitude (see 
Table 6). 

• The probability distribution of contamination at the POC with a specific time 
period varied greatly due to biodegradation and/or migration of the 
contaminant into deeper un-monitored zones within the aquifer (see Figure 
31). 

Bavesian Analysis 

The Bayesian analysis revealed that additional knowledge did improve 

probabilities over the prior probabilities (see Table 20, Chapter V). However, the 

"additional testing" decision alternative was not the optimum alternative given if action 

was taken immediately, which meant that revised probabilities were not enough to have 

an effect on the optimum expected monetary value in all cases. 

Conditional Simulation 

Findings from the conditional simulation analysis include the following: 

• Conditional simulation realizations (Figure 37) produced noticeable 
differences in concentration variation over short distances as compared to the 
kriging estimate (Figure 38) and the U.S. Army Corps of Engineers' 
isoconcentration map (Figure 12). 

• The difference between the UB 95 CI and UB 90 CI isoconcentration maps 
was that the contaminant concentration density varied (Figures 42 and 43, 
respectively). The areal extent (size) of the plumes did not vary between the 
two figures. 

• Mean concentration and plume area for the UB 95 CI was 12,532 ugll and 
308 acres, respectively. The mean concentration for the UB 90 CI was 11683 
ugll and the area was the same as the UB 95 CI. 
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Decision Analysis 

Findings from the decision analysis include the following: 

• Decision analysis provided a link between the economic framework and the 
technical analysis. 

• The method was flexible to varying situations by: 

o the ability to implement the analytical tool(s) that fit the situation 

o integrating a Bayesian framework, as presented in this thesis 

o incorporating a utility function that caters to a risk-averse decision 
maker 

• It was found that "Postpone Action" was the optimum decision for the 
particular example used. This resulted from having the lowest expected 
monetary value ($4,729.27 K) and means that, given the available information 
it was statistically the best decision alternative. Caution must be taken in the 
fact that this decision was based on monitoring data from the upper portions 
of the aquifer, which means that this may not be the optimum decision given 
additional information from lower portions of the aquifer. 

Methodology Fulfills Need 

The decision analysis methodology presented in this thesis has demonstrated its 

utility in environmental decision analysis under conditions of uncertainty. Environmental 

decision analysis is a very complex and dynamic process that requires a methodology that 

can concisely illustrate the problem and adapt to changes in conditions and uncertainty. 

The methodology provided a link between uncertainty analysis and a decision 

optimization model which can be applied to strategic, operational or tactical level 

decision making. Both governmental or private users can benefit from the methodology. 

The methodology was not limited to the tools used in the example problem but is flexible 

to varying situations in which the user determines what tools are appropriate. 
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Adaptability 

The utility of the methodology is in its capability to be used in varying situations. 

The methodology is not limited to groundwater contamination as it was applied in the 

example problem. The technique can be applied to other environmental contamination 

problems that invariably involve some level of uncertainty similar to the example problem. 

Typically groundwater contamination remediation involves much uncertainty with respect 

to contamination conditions and hydrogeological conditions, as illustrated. With wide 

spread occurrence of groundwater contamination, it was appropriate to use such an 

example for presentation of the methodology. Had the example problem involved heavy 

metal contamination, the decision analysis methodology would not have changed, only 

the tools utilized to quantify uncertainty and characterize the problem. 
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APPENDIX A 

Additional discussion of the geostatistical methods 

applied and tools utilized for: Data Assessment, 

Data Spatial Variance Analysis and Sample Data Declustering. 
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Data Assessment 

Tool Utilized 

The tool used in the data assessment step of the geostatistical analysis was 

Geostatistical Environmental Assessment Software (Geo-EAS) version 1.2.1 (Englund 

and Sparks, 1991). It is a collection of interactive software tools for performing two-

dimensional kriging of a regionalized variable. (Englund and Sparks, 1991). Geo-EAS 

software and documentation was developed by the U.S. EPA utilizing public domain 

software. 

The Geo-EAS program used for data assessment was the univariate statistics 

program called STAT1. The menu driven program provides the user with the following 

statistical information: 

Data Observations 

Number of observations 
Number of missing observations 
Number of retained observations 

Data Statistics 

Mean 
Variance 
Standard Deviation 
Percent Coefficient 
Variation 
Lower data limit 
Upper data limit 

Histogram 

Plot of histogram 
Skewness 
Kurtosis 

Probability 
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Plot of probability 
25th percentile value 
Median value 
75th percentile value 



Methods Applied 

A data file containing the monitoring well coordinates and measured 

concentrations from 1993 was analyzed utilizing STAT1 to determine the univariate 

statistics for the measured TeE concentrations. ST AT1 has a convenient feature that 

allows the user to choose a log option for the data. This feature transforms the data 

values into natural log numbers and then analyzes the transformed data. An statistical 

analysis was conducted using both the non-transformed and transformed TeE 

concentrations. 

Results of Data Assessment 

The following table summarizes the statistics of the sample data for both the 

measured concentrations (ugll) and the log-normal transformed measured concentrations. 

The sample size was 37 monitoring wells that had measured TeE concentrations 

measuring from 5-18,300 ugll. Statistical analysis calculated the mean as 1800.3 and 

median as 150.0 with a standard deviation of 4115.8. To measures for distribution 

normality, skewness and kurtosis, had values of 3.12 and 12.13 respectively. Normally 

distributed data should have skewness close to zero and kurtosis near one. The 

transformed concentration statistics does have a near normal distribution with skewness 

equal to .11 and kurtosis equal to 1.90 (see Table A-I). 
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Table A-I. Statistical analysis of measured data and log-normal converted 
concentrations. 

Sample size is 37 TCE concentration (ug/l) log-normal TCE conc. (In 
ug/l) 

Minimum concentration 5 1.609 
Maximum concentration 18,300 9.814 
Standard Deviation 4115.8 2.585 
Mean 1800.3 5.058 
Median 150.0 5.011 
95% Confidence Interval - -

lower limit 428.0 4.196 
upper limit 3172.6 5.919 

Skewness 3.12 .11 
Kurtosis 12.13 1.90 

Another STATI tool used to determine the distribution of the data was a 

cumulative distribution plot as shown in Figures A-I and A-2. The distribution presented 

in Figure A-I was for the non-transformed TCE data, which illustrates the data's skewed 

distribution. The log-normal transformed data plotted in Figure A-2 represents a near 

normal distribution which is better suited to geostatistical analysis. The data illustrates a 

linear cumulative distribution from the transformed concentrations of 1.7-9.8. 
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Figure A-I. Cumulative distribution plot of 1993 measured monitoring well 
concentrations that are not log-normal transformed. 
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Data Spatial Variance Analysis 

Methods Applied 

Figure A-3 is an example of a linear model with a nugget effect. The variability of 

the nugget effect (Co) is due to sampling error, analysis error and structure affects (if 

spatial structure with a range less than the smallest h is present) (Cooper and Istok, 

1988). Note that the variogram is equal to the slope multiplied by the range (h) for the 

linear model. 

Figure A-3. Simple linear model and nugget effect (Cooper and Istok, 1988). 

y(h 

Co 
Variability due to the nugget effect 

o h 

The type of model is usually obvious from the experimental variogram provided 

enough data points were collected (Cooper and Istok, 1988). Listed below were the 

guidelines used to ensure a best fit of the model to the experimental variogram. The 

technique used to determine if the variogram model was representative of the true 

variogram was a cross-validation procedure incorporated into Geo-EAS. This program 
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determined how well the fitted variogram predicted the observed values at the monitoring 

well locations. Cross-validation should not be used solely for verifying good fit of the 

model variogram nor should variogram parameters be changed to achieve a good cross-

validation (Deutsch and Joumel, 1992). The following were evaluation criteria used to 

determine the acceptability of the variogram model (USGS STATPAC, 1986): 

• Mean kriging error should be close to zero. 

• Standard deviation of the kriging errors should be lower than the standard 
deviation of the regionalized variable. 

• Standard deviation of the standardized errors should be close to unity. 

• The standardized errors should be independent of the kriged values (Joumel 
and Huijbregts, 1978). 

• The standardized errors should be independent of their location as expressed 
by their x-and y-coordinates. 

• The kriged value should be positively correlated with the observed value of 
the regionalized variable. 

• It is important for the final theoretical variogram model to closely approximate 
the observed variogram of the data. 

Tool Utilized 

Two programs, PREY AR and V ARlO, from the Geo-EAS package were used to 

develop the experimental variogram and to fit a model to the variogram. A third 

program, called XV ALID, was utilized to validate the variogram model utilizing the 

previously listed guidelines. 

PREY AR is a preprocessor program for the program V ARlO (Englund and 

Sparks, 1991). Because variogram calculations use the distance and relative direction 

between pairs of points in the sampled area, PREY AR computes these so that variogram 
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parameters may be changed and variogram recalculated more quickly in V ARlO 

(Englund and Sparks, 1991). The output from PREY AR is a pairs comparison file 

containing the input data me contents along with distances and relative directions 

between pairs of sample points (Englund and Sparks, 1991). This information was then 

used by the program V ARlO to calculate variogram values. 

V ARlO is a two-dimensional variogram analysis and modeling program (Englund 

and Sparks, 1991). Using the pairs comparison me developed by PREY AR, it calculates 

the variogram values and other statistics for a specified set of pair distance intervals 

(Englund and Sparks, 1991). Tolerances may be specified for pair direction and lag 

distance intervals (Englund and Sparks, 1991). Plots of variogram values vs. distance can 

be displayed as well as several graphs of the individual lag results such as lag-histograms, 

box plots, postplots and lag-scatter plots (Englund and Sparks, 1991). Variograms may 

be fitted with a model of up to four nested variogram structures (Englund and Sparks, 

1991). 

XV ALID stands for "cross-validation" that involves estimating values at each 

sampled location in an area by kriging with the neighboring sample values (Englund and 

Sparks, 1991). The estimates are compared to the original observations in order to test if 

the hypothetical variogram model and neighborhood search parameters will accurately 

reproduce the spatial variability of the sampled observations (Englund and Sparks, 1991). 

The evaluation criteria listed in the guidelines list were also calculated. 
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Vari0i:ram Results 

Within the spatial variance analysis there were two objectives: Develop the 

experimental variogram that is representative of the true variogram and fit a model to the 

experimental variogram. Developing the variogram entailed not only statistics of the 

spatial data but also requires knowledge of the geology for the site. The resulting 

experimental variogram presented in Figure A-4 illustrates the spatial variable variance in 

the vertical axis with respect to distance, in feet, between the variables in the horizontal 

axis. The experimental variogram showed a variance ceiling of about 7.5 beyond the 

range of 400 feet. Between the origin and 400 feet, the structure was not well defined 

due to the complexity of the geology and the sparse sampling data. This hindered the 

variograms capability to detect variation within the incremental lag spacing that was set at 

290 feet Changing the incremental lag spacing 290 feet to 200 feet, this assisted in 

defining the structure near the origin. Figure A-5 presents the new experimental 

variogram showing two points between the origin and 400 feet. The reduction in the 

incremental lag spacing caused greater scatter in variance at further points in Figure A-5 

than in Figure A-4. This highlights the importance of conducting several iterations of 

variogram development. 

Both of these experimental variograms were utilized in the model variogram 

development as discussed in Chapter III. Figure A-4 assisted in determining the 

variogram sill with its relatively good structure beyond 400 feet and Figure A-5 was 

important to verify the lower end structure with additional variance points less than 400 
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feet. These lower end points assisted in defining the model variogram shape and 

verification of a nugget effect. 

In the example problem an assumption was made that the variogram was isotropic 

with no anisotropic structures within the aquifer. Given the complexity and randomness 

of the depositional structures within the aquifer, modeling the random anisotropic 

structures would be futile and was beyond the presentation of the methodology in this 

thesis. Therefore, the experimental variograms developed were considered omni

directional as illustrated in Figures A-4 and A-5 by the Direction and Tolerance 

parameters set at 0.0 and 90°, respectively. 
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Variogram Cross-Validation 

Using the evaluation criteria outlined early in the appendix and in Chapter Ill. the 

following results were found during the cross-validation analysis. 

• Mean kriging error should be close to zero. 

The mean kriging error was equal to .283 (see Table A-2). 

• Standard deviation of the kriging errors should be lower than the standard 
deviation of the regionalized variable. 

Standard deviation of the kriged errors is 2.384 which was lower than the 
standard deviation of the regionalized variable of 2.585 (see Table A-2). 

• Standard deviation of the standardized errors should be close to unity or 1.0. 

The standardized errors standard deviation was .836 (see Table A-2). 

• The standardized errors (zscore) should be independent of the kriged values 
(Joumel and Huijbregts. 1978). 

Figure A-6 illustrates a scatter plot of zscore (y-axis) and the kriged values 
(zstar on x-axis), which showed little correlation. The correlation coefficient 
.247 indicated some correlation but was too low to indicate any correlation. 

• The standardized errors (zscore) should be independent of their location as 
expressed by their x- and y-coordinates. 

Figure A-7 illustrating a scatter plot of zscore (y-axis) with both the x- and y
coordinates, easting and northing respectively, showed very little correlation. 
The correlation coefficients were .048 and .099 for easting and northing 
respectively. 

• The kriged value should be positively correlated with the observed value of 
the regionalized variable. 

Figure A-8 illustrated in a scatter plot that the kriged value had some 
correlation with the observed value. The correlation value was low at .431 
but high enough to show correlation. 

• It is important for the final theoretical variogram model to closely approximate 
the observed variogram of the data. 

Figures 35 and 36 from Chapter IV illustrated close approximation of the 
variogram model to the experimental variogram. 

161 



Table A-2 summarizes the XV ALID results illustrating the mean and standard 

deviation for the variable, kriged estimate, kriging error and kriging ~tandardized error. 

The significance of these values were given in the previous summary paragraph. 

Table A-2. Cross-validation results table for the model variogram. 

Mean Standard Deviation 
Variable sample point value (Z) 5.058 2.585 
Kriged estimate at sample point (Z') 5.443 1.586 
Kriging error .283 2.384 
Kriging standardized error 2.082 .836 

The following four figures are the correlation plots used in the validation of the 

variogram model. Figure A-6 presented the correlation of kriging standardized error to 

the kriged estimate for TCE concentrations. The calculated correlation coefficient was 

.247 indicating some correlation but was not significant. If correlation were zero then the 

slope of the line in the figure would be zero and few points should occur on the line. 

Figures A-7 and A-8 are correlation plots of the kriging standardized error to the East 

and North coordinates. These figures are the same as Figure A-6 in that they exhibited 

no correlation as shown by the correlation coefficient and the zero slope of the line. 

Figure A-9 presents the correlation of the kriged estimate (Zstar) to the log-normal 

transformed measured TCE concentration. The correlation was positive with a line slope 

of .264 and coefficient of .431. 

162 



3. 

2. j 
1.. 

II s. 
0 g. 
Q 

"" -- II t\1 0\ w 
-1.. + 

~:: 1 I 
1..5 3.9 

Scatte:r Plot 
£:rOM data £ile tceva:r 

+ 
+ + 

+ t-t + + 
+ 

++ 
++ + 

+ 
+ 

+ 
I 

4.5 6.9 7.5 

2sta:r 

+1 Regression Results: 

---I II Pairs 35 

Slope .173 
Intercept -.828 
Corre I. coeff.: .247 

9.9 1.9.5 

- 'Tj 
N _. 

~~ 
~ -; 
y('D 

~ 
9"-
V} 
(') 

a ... 
~ 

"2-
sa. 
g, ... ::r 
('D 

~ 

I 
N' 
g. 

§ 
-; 
fI> 

'S' 
I 
~ 
~ 
fI> ... 
::r 
('D 

i 
~ 
('D 
fI> 



---~ 

II 
~ 
o 
o 
~ 

3. 

2. J + 

~. ~ 
++ 

9. it + 
+ 

-~. -I 

~::l 
9. 

+ 

+ 

:I: 

it-

+ 
I 

499. 

Scatte:r Plot 
f':rOM data tile tceua:r 

+ + 
++ + + 

+ 
+ 

+ + ++ 
+ 

+ + 
+ + 

+ 
+ 

I I I 
S99. ~299. ~699. 2999. 

Easting 

+ 

2499. 

Regression Results: 

11 Pairs 

Slope 
Intercept 
Corre I. coeff.: 

35 

.888 

.844 

.848 

--'Tj (1) _. 

I»OQ 
e. ~ ::s (1) 

~> . , 
:--J 
Vl 
(") 

a .... 
~ 
'2.. 
~ 
o ....., .... 
g" 
fa. 

i 
8-

~ 
'"I 

.m -N 
~ 

1 
<: 
~ 
~ 
m .... 
g" 
:>< , 
(") 
o 
~ 
Q.. 

s· 
a 
(1) 



Seatte:r Plot 
t:rOM data tile teeya:r 

3. 

2 ° j + 
+ + + 

1. ~ + + + + * + 
+ + II 

~ + 0 8. Co) l + 
1/1 + ..... 

II~ 0\ + + VI + -1. + + + 
+ 

-2°L + 

+ 
-3. 

8. 588. 1888. 1588. 2888. 2588. 

No:rthing 

3888. 

Regression Results: 

I Pairs 

Slope 
Intercept 
Corre I. coeff.: 

35 

.888 
-.123 

.899 

-~ 5 ~. 
;l "1 
=.(1) 

~~ 
. 00 

en 
(") 

~ 
~ 

'"SL 
S-
o 
>-to) 
.-+ 
::r 
(1) 

~ 
§ 

~ _. 
N 
g. 

~ 
;;l 

'N' 
~ 

1 
<: 

~ 
til 
.-+ 

g" 
'< 

I 
(") 

o o 
&. ::s 
~ 
(1) 



...... 
0'\ 
0'\ 

~ 
/\I 
~ 

~ 

Scatte~ Plot 
t~OM data tile tceva~ 

19.5T------------------------------------------, 

9.9 

7.5 

6.9 

4.5 

3.9 

+ 
1.5 I I 

1.5 3.9 4.5 

+ 

6.9 

TeE 

+ 

+ 

7.5 9.9 19.5 

Regression Results: 

• Pairs 

Slope 
Intercept 
Correl. coeff.: 

35 

.2G4 
4.882 

.431 

.-.. '"r1 
~ _. 
()~ m.., 

,:-,,('1) 

~ 
:-0 
(/l 
o 
~ 
~ 

'"0 
0-..... 
o ....., 
..... 
~ 
s. 

(JQ 

2.-

~ 
('I) 
til 
-.. 
N 
~ 

~ 
~ 
~ 
en 
g. 
('I) 

I 
(1) 

'"0 
g. 
a 
<: 
P' 
2" 
(1) 
en 



Sample Data Declustering 

. 
Tool Utilized and Methods Applied 

The program DECLUS (Deutsch, 1989) provides an algorithm for determining 

three-dimensional declustering weights in cases where the sample site clusters are known 

to be clustered preferentially in either high or low valued-areas (Deutsch and Journel, 

1992). Since the monitoring wells were installed to locate the contaminant plume, the 

resulting monitoring data would be skewed with contaminant concentration 

measurements. The DECLUS program takes this into account and assigns weights to the 

sample data based on their clustering. That is, a sample point that was located away from 

other sample points would have a higher weight than one located in a cluster of sample 

points. 

Results of Declustering 

Using the same sample data from the monitoring wells, DECLUS calculated the 

decluster weights for each of the sample points as summarized in Table A-3. In addition 

to the declustering weights shown in the table, the measured TCE concentration and log-

normal transformed concentrations were given for each monitoring well. From Table A-4 

the decluster weights for MW -10, MW -12 and MW -14 were less than one due to their 

clustered location as shown in Figure 9 of Chapter II. Other wells that were not clustered 

but isolated by great distances, such as C-6, C-7 and C-lO, had decluster weights greater 
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than one and in some cases greater than two or three as seen in Table A-4. Therefore the 

isolated sampling data was given a higher weighting than the clustered data. 
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Table (4-4). Table of sample point values and their corresponding weights. 

Monitoring Well Measured Conc. Transformed Conc. Dec1uster Weight 
(ugll) (In ugll) 

C-Ol 475 6.1633 1.3638 
C-02 26 3.2581 0.8355 
C-03 5 1.6094 0.6831 
C-04 5 1.6094 0.9578 
C-05 5 1.6094 1.8407 
C-06 139 4.9345 3.0989 
C-07 150 5.0106 1.6535 
C-08 5 1.6094 1.0196 
C-09 420 6.0403 2.0121 
C-lO 440 6.0868 2.1174 
MW-1 16500 9.7111 0.6750 
MW-3 740 6.6067 0.6783 
MW-4 760 6.6333 0.6766 
MW-5 140 4.9416 0.6965 
MW-6 190 5.247 0.7055 
MW-7 18300 9.8147 0.7857 
MW-8 7100 8.8679 0.7245 
MW-9 3325 8.1092 0.7232 
MW-lO 130 4.8675 0.7966 
MW-11 300 5.7038 0.7844 
MW-12 3650 8.2025 0.7902 
MW-13 28 3.3322 0.8458 
MW-14 2800 7.9374 0.7426 
MW-16 27 3.2958 0.8383 
MW-17 34 3.5264 0.8051 
MW-18 150 5.0106 0.7380 
MW-19 59 4.0775 0.9607 
MW-20 8 2.0794 1.0449 
MW-21 4850 8.4867 0.6834 
MW-22 406 6.0064 0.7362 
MW-23 2930 7.9828 0.6774 
102 5 1.6094 0.9515 
109 94 4.5433 0.6810 
124 5 1.6094 0.7387 
126 5 1.6094 1.1484 
129 2400 7.7832 0.7121 
130 5 1.6094 1.0668 
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