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PREFACE 

This study consists of two sections. The first section deals with the measurement 

and correlation of adsorption data for methane, nitrogen, and carbon dioxide binary 

mixtures on wet Fruitland coal at 115°F and pressures to 1800 psia. The extended 

Langmuir model was employed to correlate the present data. In addition, new mixing 

rules were incorporated in the model to lend it greater flexibility. In the second section, 

five equations-of-state (EOS) models were evaluated for their ability to predict the 

compressibility factors of methane, nitrogen, and carbon dioxide. The effect of 

reoptimizing the EOS parameters was also investigated. 
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NOMENCLATURE 

a cubic equation-of-state (EOS) parameter, BWR EOS parameter, PRG EOS 

parameter, molar area 

A Helmholtz energy 

%AAD average absolute percentage deviation 

AAD average absolute deviation 

Ao BWR EOS parameter 

b cubic EOS parameter, BWR EOS parameter, PRG EOS parameter 

bi co-efficients of the modifYing function ofMSPHCT EOS 

B Langmuir adsorption constant 

Bo BWR EOS parameter 

c degrees of freedom parameter, BWR EOS 

Co BWR EOS parameter 

d BWREOS parameter 

Do BWR EOS parameter 

Eo BWR EOS parameter 

Ft SPHCT modifYing function 

G Gibbs function 

H enthalpy 

L amount adsorbed per unit of adsorbent upon the completion of a hypothetical 

monolayer 

mi PR EOS parameters 

n number of moles 

xu 



N number of terms, number of particular species 

P pressure 

Pi, Pf initial and final pressure 

Q PRG EOS parameter 

R gas constant 

RMSE root mean square error 

S entropy 

SS objective function 

T temperature 

t reduced temperature (T/T*) 

v specific volume 

v partial molar volume 

u PRG EOS parameter 

U internal energy 

V volume 

WRMS weighted root mean square error 

w PRG EOS parameter 

Xi adsorbate mole fraction 

z feed gas mole fraction 

Z compressibility factor 

ZM maximum coordination number 

Greek Symbols 

lC" t 

y 

BWR EOS parameter 

PRG EOS parameter 

PRG EOS parameters 

BWR EOS parameter 

Xlll 



p density 

p reduced density (v * Iv) 

Ili chemical potential of species i 

Qa' Qb PR EOS parameters 

1t spreading pressure 

't geometrical constant (0.74048) 

8 fraction of monolayer coverage 

ro accentric factor, amount adsorbed per unit of adsorbent 

Subscripts 

A 

c 

R 

r 

calc 

expt 

inj 

cell 

unads 

solu 

attractive term 

critical state 

repulsive term 

reduced parameter 

calculated 

experimental 

injected gas or injection side of the experiment 

cell side of the experiment 

unadsorbed 

solubility 

Superscripts 

* characteristic parameter 

att attractive term 

rep repulsive term 

gas gas phase 

ads adsorbed phase 

XlV 



SECTION 1 - EXPERIMENTAL WORK 

CHAPTER I 

INTRODUCTION 

The United State's coalbeds contain two to four times the amount of natural gas 

contained in traditional reservoirs [1]. In conventional gas reservoirs, natural gas exists in 

a gaseous state and can be easily recovered as an energy supply. In coalbeds, methane is 

adsorbed on the coal surface, where it exists at liquid-like densities. The adsorbed layer 

holds more methane than an equal volume of conventional reservoir due to the higher 

density of the adsorbed gas [2]. 

Current coalbed methane recovery technology uses primary depletion methods. 

Using such methods, the cleat (cleavage planes in a coal seam) pressure is reduced by 

pumping out water. Due to the reduced pressure, methane desorbs from the coal matrix 

and diffuses to the cleats. Methane and water flow to the well bore, thus increasing the 

recovery of methane. The enhanced recovery method uses nitrogen or carbon dioxide, 

which is injected into the cleats. Injected gases result in increasing the total cleat pressure 

and concurrently reducing the partial pressure of methane. Methane desorbs from the coal 

matrix and diffuses to the cleats then flows out with water and nitrogen or carbon dioxide 

gas [3]. 

The effect of the adsorption behavior of methane and the injected gases on the 

mechanism of enhanced recovery is not well understood. Preliminary investigations were 
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conducted by Amoco Production Company in Tulsa on wet Fruitland coal at 115°F and 

pressures to 1800 psia to study the adsorption phase behavior of methane, nitrogen, 

carbon dioxide and their mixtures [4]. The investigation performed by Amoco involved 

few data points covering limited compositions. The experimental measurements were 

carried out to provide engineers with detailed phase behavior information required to 

optimize the production and recovery of coalbed methane. The conditions of the 

experimental pressures and temperature were chosen to be representative of the Fruitland 

wet coal found in the Colorado portion of the San Juan Basin [3]. 

The specific objectives of the present work were as follows: 

1) Measure the adsorption of methane, nitrogen, carbon dioxide mixtures on 

Fruitland wet coal at 115°F and to pressures of 1800 psia. 

2) Develop and evaluate mathematical models to represent the adsorption 

behaviors of these gases. 

The experimental facility for the present work has been designed, constructed and 

tested by Hall [3]. Hall has reported experimental measurements for pure carbon dioxide, 

nitrogen, and methane and their mixtures. The binary gas adsorption data were measured 

in a joint effort undertaken by Hall and me. Concurrently, mathematical models were 

developed by Zhou [5] to adequately represent the adsorption data for the pure gases and 

mixtures. 

The following chapters briefly outline the theory and the experimental procedures 

and present the mixture adsorption data in a format suitable for use in modeling the 

depletion behavior of coalbed methane reserves. Section 2 deals with the prediction of 

compressibility factors using various equations of state (EOS). Knowledge gained from 

this project can be used to design optimum strategies for coalbed methane production. 
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CHAPTER II 

LITERATURE REVIEW 

This chapter briefly reviews the theory and experimental work related to the 

measurement of mixture adsorption data. Specifically, the topics reviewed are (1) the 

theory of adsorption, (2) experimental techniques, and (3) previous experimental work. 

All these topics have been described in detail by my co-workers [3, 5]. 

Theory 

Adsorption occurs when the intermolecular attractive forces between a solid and a 

gas are greater than those existing between molecules of the gas itself, resulting in the 

accumulation of the gas on the surface of the solid, even though the pressure may be 

lower than the vapor pressure at the prevailing temperature [6]. Adsorption can be 

classified as physical adsorption or chemical adsorption, based on the type of interaction 

between the solid and gas. Physical adsorption involves molecular interaction forces and 

is accompanied by evolution of heat which is of the order of the heat of sublimation of the 

gas. Physical adsorption may be a multilayer reversible phenomenon. Chemical 

adsorption or activated adsorption is the result of chemical interactions between the solid 

and the adsorbed substance. The heat liberated is of the order of the heat of chemical 

reaction. The process is irreversible, and on desorption the original substance will often 

be found to have undergone a chemical change [6]. The present work deals with physical 

adsorption, and the term adsorption refers to physical adsorption. 
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Desorption of the adsorbed gas can be achieved in different ways [6], e.g., by 

lowering the pressure of the gas phase or by raising the temperature of the adsorbed gas. 

Many theories and models have been developed to explain the different types of 

adsorption isotherms. The resulting equations are then used to predict the amounts 

adsorbed based on a limited number of experiments. The various isotherm models [6] 

follow three different approaches: (a) the Langmuir approach, (b) the Gibbs or 

thermodynamic approach, and (c) the Potential theory. 

The Langmuir Approach 

The Langmuir model is a simple two-parameter model which is widely used in 

industry. The Langmuir isotherm utilizes the concept of dynamic equilibrium between the 

rates of condensation (adsorption) and evaporation (desorption) and relies on the 

following assumptions [7-8]: 

1) Each adsorption site can accommodate one and only one molecule or atom. 

2) The adsorbed molecule or atom is held at definite, localized sites. 

3) The energy of adsorption is constant over all sites, and there is no interaction 

between neighboring adsorbates. 

The Langmuir equation [7] is written as: 

ro BP 
e = L = l+BP (1) 

where e is the fraction of monolayer coverage, co is the amount adsorbed per unit of 

adsorbent, L is the amount adsorbed per unit of adsorbent upon the completion of a 

hypothetical monolayer, and B is the Langmuir adsorption constant. Assuming ideal 

localized monolayer adsorption, the Langmuir isotherm can be extended to gas mixtures. 

The extended Langmuir model [6] is defined as: 
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Li~PYi 

l+LBjPyi 
j 

where Li and Bi are the Langmuir model constants for pure i. 

The Gibbs Approach 

(2) 

The fundamental property relation for a three-dimensional open system can be 

written as [8]: 

(3) 

where D, S, and V are the molar internal energy, entropy, and volume, respectively. The 

chemical potential of component i is denoted by Ili, and ni denotes the number of moles of 

component i. According to Hill [9], the interfacial region between a bulk gas and a solid 

surface may be treated as a two-dimensional phase with its own thermodynamic 

properties. Therefore, for a two-dimensional phase an analogous expression results in [8] 

(4) 

where 1t is the spreading pressure and 'a' is the molar area. The Gibbs function is defined 

as [8] 

G=D + 1ta- TS (5) 

Equations (4) and (5) result in the following general expression: 

d(nG) = (na)d1t-(nS)dT + L (Ili dnJ (6) 

Equations for d(nH) and denA) can be derived in a similar way from the enthalpy Hand 

Helmholtz function A defined as [8] 
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H = U+7ta 

A=U-TS 

From Equation (6) it is clear that [8] 

(7) 

(8) 

(9) 

where Gi is the partial molar Gibbs function and is equal to the partial derivative by 

definition. The Gibbs function G is also related to the chemical potentials as [8]: 

(10) 

The equilibrium criterion for the heterogeneous gas phase and the adsorbed phases 

for i components can be expressed as [10]: 

pgas= pads 

(11) 

(12) 

(13) 

These equilibrium relations are helpful in determining the adsorption properties. 

Differentiating Equation (10) and comparing with Equation (6) yields the Gibbs

Duhem equation for the two-dimensional phase [8], i.e., 

(nS)dT -(na)dn+ L (nidlli ) = 0 (14) 

or 

(15) 

Therefore at constant temperature, Equation (15) will reduce to the Gibbs adsorption 

isotherm [8]: 
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(16) 

At equilibrium dllfas == dll~ and the Gibbs adsorption isothenn can be written as [8], 

(17) 

Assuming ideal gas behavior, it can be shown that 

(18) 

where P is the pressure and Yi is the gas mole fraction. In this case, the Gibbs adsorption 

isothenn becomes [8] 

(19) 

rewriting Equation (19) we have 

(20) 

where a = Alnt and dlnP = dP!P 

Increasing the gas pressure from zero to P and the spreading pressure from zero to n, but 

keeping the gas phase composition constant, the Gibbs isothenn upon integration gives 

(21) 

Equation (21) can be used for both pure fluids and mixtures to evaluate n from 

experimental data. Upon evaluation ofnlRT from Equation (21) for various values of 

compositions (Yi) for the same temperature and pressure, dlnP in Equation (20) can be set 

equal to zero and solved for xi. 
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(16) 

At equilibrium dJ..lras = dJ..lF and the Gibbs adsorption isothenn can be written as [8], 

-ad7t + L (XidJ..ligas) = 0 (const T) (17) 

Assuming ideal gas behavior, it can be shown that 

(18) 

where P is the pressure and Yi is the gas mole fraction. In this case, the Gibbs adsorption 

isotherm becomes [8] 

(19) 

rewriting Equation (19) we have 

-( :'T )d7t +dlnP + L(XidlnYi) = 0 (const T) (20) 

where a = Aint and dlnP = dPlP 

Increasing the gas pressure from zero to P and the spreading pressure from zero to 7t, but 

keeping the gas phase composition constant, the Gibbs isotherm upon integration gives 

(21) 

Equation (21) can be used for both pure fluids and mixtures to evaluate 1t from 

experimental data. Upon evaluation of 1tIR T from Equation (21) for various values of 

compositions (Yi) for the same temperature and pressure, dlnP in Equation (20) can be set 

equal to zero and solved for xi. 
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~(~J = nt Oyl 
T,P 

(22) 

The composition of the adsorbate can be calculated from Equations (21) and (22). 

The isothenns derived from the Potential theory have found utility in interpreting 

adsorption by capillary condensation, or pore filling, and will not be discussed here. 

Equations (19) to (22) indicate that the required experimental data are the total amount 

adsorbed, nt in gmoles/g sorbent, at constant gas compositions while varying the total 

pressure. Compressibility factors should be used when the gas phase is not ideal. 

Experimental Techniques 

The amount adsorbed at equilibrium can be determined by (a) volumetric (b) 

gravimetric, or (c) chromatographic methods [6]. Using the volumetric method, the 

pressures before and after adsorption in a closed system are measured, whereas using the 

gravimetric method, the amount adsorbed is determined by the weight gain in the flow 

system. Adsorption measurements by the chromatographic method require highly 

idealized conditions, including: dilute mixtures, plug flow, instantaneous equilibrium 

between fluid and solid phases for both concentration and temperature, and no pressure 

drop. Such stringent conditions often result in large errors [6]. Adsorption for mixtures 

can be calculated from breakthrough curves, by frontal chromatography, or by elution 

chromatography. In this work, a constant volume (volumetric) method is used to 

determine the amount adsorbed for mixtures. 

Previous Experimental Data 

Previous experimental data at high pressures for binary mixtures on coal are very 

scarce. At the time of this writing, only one source [11] was available with the adsorption 
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data on coal at 86 of and 750 psia for the gases of interest. Only low pressure adsorption 

data using activated carbon, molecular sieve and charcoal as adsorbents were available. 

Preliminary studies by Amoco Production Company [4] in Tulsa, resulted in adsorption 

data for pure fluids and binary mixtures as well. The adsorption data were not extensive 

and were measured only at limited compositions. In the present work at Oklahoma State 

University (OSU), adsorption measurements were conducted at uniform intervals of gas

phase mole fractions: 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. 
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CHAPTER III 

EXPERIMENTAL APPARATUS AND PROCEDURES 

The experimental apparatus and procedures used in this work for measuring the 

adsorption of pure and mixed gases on Fruitland wet coal are discussed in detail by Hall 

[3]. Following is a brief description of the experimental procedures and the calculations 

associated with them. 

Figure 1 illustrates the schematic diagram for the experimental setup [3]. The 

experimental apparatus consists of two sections, the pump section and the cell section. 

The cell section contains Fruitland wet coal which acts as an adsorbent. The equilibrium 

moisture content of the coal sample was found to be 2.2% by weight [3]. The 

experiments were conducted with the moisture content kept between 4% and 14%, thus 

reducing the possibility of obtaining varying degree of adsorption. The amount of gas 

injected from the pump section is calculated from the pvT properties on the pump side. 

Similarly, the amount of gas remaining in the cell section is calculated after equilibrium has 

been reached on the cell side. The difference in the amounts gives us the amount of gas 

adsorbed on the adsorbent. 

A Ruska positive displacement injecting pump is used on the pump side to inject 

the gas with known composition. Air bath temperature controllers were used for both the 

pump and cell sections to maintain steady-state environment within the control volumes. 

The temperature of the contents of the pump was controlled by using a water bath and 
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circulator (Haake Model NB3). The cell side consists of a high-pressure vesselwhich 

holds the adsorbent. Pressure transducers [Sensotech Model 450] are used to measure the 

pressures. Temperatures are monitored by Hart Scientific AIOll RTD Thermometers. 

The pressure transducers were calibrated against a Ruska dead-weight pressure gauge 

[Model No. 2465] available in the laboratory. 

In the case of mixtures, the equilibrium gas compositions were analyzed using a 

Perkin Elmer Sigma 2 gas chromatograph. A Spherocarb column is used to analyze the 

mixtures under study. The gas chromatograph is calibrated prior to the mixture 

adsorption measurements. Details on the gas chromatograph operating conditions and the 

calibration procedure are given elsewhere [3]. 

Governing Equations 

The amount adsorbed for component k in a binary mixture is determined by the 

difference in the amount of gas injected from the positive displacement pump (ninj)k and 

the amount unadsorbed (nunadsk In addition, the amount of component dissolved in the 

moisture present in the coal is accounted for. Accordingly, 

(23) 

where the amount of component k injected is given by [3] 

(ninj)k = Zk ~[PPi VPi - Ppf VPf]j (24) 
J 

where j is equal to number of injections. The amount of component k unadsorbed in the 

free gas in the equilibrium cell is given by 

(25) 

where Pc is the gas density within the cell, and Yk is the mole fraction of component kin 

the equilibrium gas mixture. The cell section void volume is obtained by injecting known 

amounts of helium from the positive displacement pump into the cell section at 
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sequentially higher pressures. Helium is assumed to be inen and does not adsorb on to the 

coal. The void volume in the cell section is calculated by [3] 

(26) 

and 

[ PYinj ] = [PVVOid] 
ZHeRT pump ZHeRT cell 

(27) 

so 

[ PVinj ] [P 1 Vvoid = Z RT / Z R T 
He pump He ell 

(28) 

The solubility of each component in water is estimated at its partial pressure using a 

proprietary program [26]. Thus, the amount of each component adsorbed at a given 

pressure is corrected to account for its solubility in water. Therefore, knowing the amount 

of gas injected, the amount of unadsorbed gas and the amount of gas dissolved in water, 

the amount of gas adsorbed on Fruitland wet coal can be determined. 

Relation between Gibbs and Absolute Adsorption 

In Gibbs adsorption, the volume of the gas phase is assumed to be equal to the 

void volume and therefore the volume of the adsorbed phase is assumed to be negligible. 

Thus, the adsorption data determined from the constant volume method is based on the 

Gibbs adsorption. Absolute adsorption is defined by Young [12] as the total number of 

moles of an adsorbate held by the surface molecular forces between the adsorbate and 

adsorbent Hence, Gibbs adsorption is corrected using the density of the adsorbed phase 

The relationship between Gibbs adsorption and absolute adsorption can be expressed as 

[4, 13]: 
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leo a j 
[ CO a] = Gibbs 

abs [1- ~ii ] (29) 

or 

a a [1 ( Pgas )] co Gibbs = co abs - Pads (30) 

There are two approximations commonly used in estimating molar adsorbate 

volume. One approximation, suggested by Vee [2], is to use liquid density at the 

atmospheric boiling point pressure. The methane and nitrogen adsorbed phase density 

estimates are 0.421 and 0.808 gmlcc, respectively. Carbon dioxide is a solid at 

atmospheric boiling point pressure. Therefore, the density for a saturated liquid at the 

triple point (1.18 gmlcc) is used. The second approximation calls for the use of 

temperature-dependent van der Waals covolumes [13] as the molar adsorbate volumes. 

The following expression is used to estimate the molar adsorbate volume above the critical 

temperature 

RT, va = __ c T > T, 
8P' - C 

C 

(31 ) 

The van der Waals covolumes calculated using the above equation are 43. 10 cc/mole for 

methane, 38.64 cc/mole for nitrogen and 42.82 cc/mole for carbon dioxide, respectively. 

Experimental Errors 

Theory of multivariate error propagation was used to estimate the errors in the 

adsorption experiments. The uncertainty associated with each quantity is estimated by 

expressing the desired quantity as a function of measured variables. The uncertainty in 

each measured variable is expressed in terms of its standard deviation, a. Therefore for a 
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quantity R calculated from a set of input variables (x}. xb .... xN), the uncertainty in R is 

expressed as [14]: 

(32) 

where the summation is carried out over all input variables, Xi. The error analysis for the 

present experimental work has been discussed in detail by Robinson et al. [14] in a report 

to Amoco. The major contributors for the uncertainty in the adsorbed amount are 

adsorbed phase molar volume, void volume, injection pump dead volume and 

compositional terms. Additional discussion and examples are documented by Hall, in the 

Supplementary Material [15] related to his thesis. 

Experimental Difficulties 

Many problems have been encountered during the course of the experiment. 

Synthesizing a mixture of required composition was found to be very time consuming. 

The time can be reduced drastically if a pre-synthesized mixture is used. Also, minute 

leaks in the experimental setup are difficult to detect with a helium detector. This problem 

can be overcome either by using a more sensitive helium detector or by designing the 

experimental setup with a minimum number of fittings'. The magnetic circulation pump 

was a constant source of maintenance problems during the experiments. Better means of 

shielding the pump from coal particles should be devised to reduce the amount of 

maintenance required. 

Gas Compressibility Factors 

Accurate compressibility factors for pure components and mixtures are necessary 

in processing the adsorption experimental data. The importance of the compressibility 
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factors can be gauged from the fact that a 1 % error in the value for the compressibility 

factor can propagate into a 10% error in adsorption values [3]. This is because 

compressibility factors are used in the calculation of the void volume, the moles injected or 

moles unadsorbed for both pure and mixture components. The three-dimensional Redlich

Kwong equation of state (3-D RK EOS) was used to calculate the compressibility factors. 

The optimization of the EOS constants and interaction parameters is discussed in detail by 

my co-workers [3,5]. The data published by the International Union of Pure and Applied 

Chemistry (IUP AC) [16-17] were used to regress the EOS constants for the pure 

components. Binary experimental data at the temperature and pressure ranges of interest 

were selected from the literature [18-22] to determine the interaction parameters. For 

helium, the compressibility factor data were obtained from the National Bureau of 

Standards Technical Note 631 [23]. 

On regressing the EOS constants and the interaction parameters, the residuals in 

compressibility factors are on the order of 0.04% for helium (100-1000 psia), 0.01% for 

methane, 0.004% for nitrogen and 0.004% for carbon dioxide throughout the operating 

pressure range [3]. For binary mixtures, the optimum interaction parameters (Cij) are 

0.0859 for the methane-nitrogen mixtures, 0.1032 for the methane-carbon dioxide 

mixtures and -0.0537 for the nitrogen-carbon dioxide mixture [3]. The maximum 

deviation for the compositions considered is 0.5% for the methane-nitrogen mixtures, 

1.2% for the methane-carbon dioxide mixtures and 0.1 % for the nitrogen-carbon dioxide 

mixtures in the range of interest [3]. 
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CHAPTER IV 

EXPERIMENTAL RESULTS AND DISCUSSION 

Experimental adsorption data for methane, nitrogen and carbon dioxide binary 

mixtures were measured at 115°F and to pressures of 1800 psia and are well documented 

by Hall [3]. The experimentally determined absolute adsorbed values of methane, nitrogen 

and carbon dioxide and their mixtures were plotted against the cell side pressure and feed 

mole gas fraction by Hall [3]. The equilibrium phase-rule variables include temperature, 

pressure and phase compositions [10]. The feed gas mole fraction variable is not a phase

rule variable, therefore, it cannot be used to fix the state of a system. Hence to present the 

data in a more suitable format, the absolute adsorbed values for the binary mixtures are 

plotted against the equilibrium adsorbate mole fraction and equilibrium gas mole fraction. 

Also, the equilibrium phase compositions are represented graphically at fixed intervals in 

pressure. 

For the methane-nitrogen mixtures, the adsorption information is shown as the 

total absolute adsorption as a function of methane adsorbate mole fraction and, similarly, 

as function of methane equilibrium gas mole fraction up to pressures of 1800 psia. For the 

methane-carbon dioxide mixtures and the nitrogen-carbon dioxide mixtures, similar figures 

are generated in addition to plots which present the experimental data to a pressure range 

of 1000 psia. This is due to the observed multilayer adsorption for carbon dioxide above 

1200 psia [3, 5]. The sharp increase in sorption capacity for carbon dioxide was also 
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exhibited by the pure gas [3]. Combination of cubic spline and polynomial fits [25] are 

used to obtain a smooth representation for the data wherever possible. 

The error analysis for the present measurements has been performed and presented 

in detail by Hall [3]. From the results presented by Hall, the individual component errors 

in the adsorbed amount range from one to seven percent in the case of binary mixtures. 

Methane-Nitrogen Adsorption 

Experimental data for the methane-nitrogen binary mixture are presented in 

Figures 2 to 8. Measurements are made for methane feed gas molar compositions of 

20/80, 40/60, 60/40 and 80/20. Figure 2 illustrates the total absolute adsorption as a 

function of methane adsorbate mole fraction. The total adsorption varies from a minimum 

value corresponding to pure nitrogen to a maximum value for pure methane. The 80/20 

mixture at high pressures closely approaches the pure methane isotherm. This indicates 

that methane and nitrogen are competing for the same adsorption sites at high pressures, 

and methane is preferentially adsorbed. It is also seen that the methane adsorbate mole 

fraction is almost constant irrespective of the pressure for the same methane feed gas mole 

fraction. This indicates that irrespective of the pressure, the system tries to maintain a 

relatively constant adsorbate composition of methane, although the individual adsorbed 

amounts may vary; variations within 0.02 in mole fraction are observed for pressures 

extending from 100-1800 psia. This is also illustrated in Figures 5 to 8, where the 

adsorbed amount is a function of the equilibrium gas mole fraction. Another indication 

that methane is preferentially adsorbed is that, for a 20/80 feed gas mole fraction, the 

adsorbate mole fraction of methane is around 45/55, which indicate that more methane is 

adsorbed relative to nitrogen even at low methane concentrations. 
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Figures 3 and 4 show the absolute adsorption for methane and nitrogen as a 

function of methane adsorbate mole fraction. As the methane adsorbate mole fraction 

increases, as expected the absolute amount of methane adsorbed increases. Similar trends 

are observed when the total absolute adsorption is plotted as a function of methane 

equilibrium gas mole fraction, as given in Figures 6 and 7. Figure 8 illustrates the effect of 

pressure on the adsorbate and gas compositions. In addition, Figure 8 indicates that the 

composition of the adsorbate phase is significantly different from that of the equilibrium 

gas phase. Similar behavior is observed for the methane-nitrogen mixture adsorption data 

presented by Stevenson [11] at 86°F and pressures to 750 psia. 

Methane-Carbon Dioxide Adsorption 

Measurements for the methane-carbon dioxide binary mixtures are made at 

injection feed gas mole fractions of 20/80, 40/60, 60/40 and 80/20. The adsorption data 

are illustrated in Figures 9 to 22. Figures 15 to 20 present the adsorption data only up to 

1000 psia. Thus, the increased adsorption exhibited by carbon dioxide above pressures of 

1200 psia is not shown in these figures. As the methane adsorbate mole fraction 

decreases, the total adsorption increases for a given pressure. This shows that as the 

methane in the feed gas mole fraction decreases, carbon dioxide is preferentially adsorbed, 

resulting in the increase in total adsorbed amount at a given pressure. Figure 16 illustrates 

that up to pressures of 1 000 psia, as the pressure increases, for a given feed gas mole 

fraction, the adsorbate composition remains almost constant. The behavior is similar to 

that of methane-nitrogen adsorption. The variation in the adsorbate mole fraction for a 

given feed mole fraction is due to high sorption capacity of carbon dioxide relative to 

methane. Figures 10 and 11 illustrate the adsorbed amount of methane and carbon 

dioxide as a function of methane adsorbate mole fraction. The behavior is similar to that 

of methane-nitrogen adsorption. Similar figures present the adsorbed amount as a 
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function of equilibrium gas mole fraction. Figures 21 and 22 illustrate the effect of 

pressure on the methane-carbon dioxide x-y plot. It is evident that the phase compositions 

differ considerably. Stevenson and co-workers [11] performed the adsorption 

measurements at 86°F and pressures to 750 psia. They have reported a cross over in the 

x-y plots due to variations in pressure. The phase behavior of the present compositions, 

however, is different from that observed by Stevenson et al. [11], since the cross over 

behavior does not occur even at pressures of 1500 psia. 

Nitrogen-Carbon Dioxide Adsorption 

Adsorption measurements were made for the nitrogen-carbon dioxide binary 

mixture at feed gas compositions of 20/80, 40/60, 60/40, 70/30 and 80/20. Figures 23 to 

25 illustrate the amount adsorbed as a function of nitrogen adsorbate mole fraction. 

Figures 29 to 34 present the mixture data up to 1000 psia, and thus excludes multilayer 

adsorption exhibited by carbon dioxide above 1200 psia. The data exhibit behavior similar 

to that of methane-nitrogen mixture adsorption discussed earlier. As the nitrogen mole 

fraction in the feed gas drops, there is a sharp drop in the nitrogen adsorbate mole fraction 

and concurrently in the amount of nitrogen adsorbed This shows that carbon dioxide 

efficiently displaces nitrogen, i.e., carbon dioxide adsorbs preferentially with respect to 

nitrogen. Figures 26 to 28 present the amount adsorbed as a function of nitrogen 

equilibrium gas mole fraction. The behavior is similar to that of the methane-carbon 

dioxide mixture adsorption. As in the case of the methane-carbon dioxide system, the 

phase composition behavior of the nitrogen-carbon dioxide mixtures as illustrated in 

Figures 35 and 36, is non-ideal [5] at higher pressures. 

The experimental data presented by my co-workers for the binary systems differed 

significantly [3, 5] On recalculation [24] of the adsorbed amounts for the pure 

components, it was determined that two different methods were used to compute the 
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adsorbed phase molar volume. Also, correlations presented by the two authors have 

utilized different units for the Langmuir constant B. Hall [3] used units of psi a-I, whereas 

Zhou [5] presented B in units of bar 1 , therefore the discrepancies in the results should not 

be misinterpreted. 
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CHAPTER V 

CORRELATION OF BINARY EXPERIMENTAL DATA 

Measurement of mixed gas adsorption is a tedious process. Therefore any 

empirical correlation which caters to design purposes is a welcome substitute for gas 

adsorption measurements. Adsorption measurements for pure methane, nitrogen and 

carbon dioxide and their mixtures were performed on wet Fruitland coal at a temperature 

of 115 OF and pressures to 1800 psia at OSu. There are two replicate isotherms for 

methane, three for nitrogen, and three for carbon dioxide. For mixtures, the adsorption 

data were collected at uniform intervals of 0.2, 0.4, 0.6 and 0.8 in feed gas mole fractions. 

A mathematical model which describes the adsorption behavior of binary gases on 

coal at conditions of interest has been developed and tested. The pure component 

adsorption data were fit to a simple Langmuir model and the constants thus obtained were 

used to test and compare the new model with the extended Langmuir model. 

The Langmuir isotherm is the simplest and the most commonly used model in the 

industry. The specific form of the Langmuir isotherm was presented earlier in the 

Literature Review. The following objective function was used in the regression of model 

constants: 

(33) 

where roC is the calculated value of the amount adsorbed and roe is the experimental value. 
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Optimum values for the two parameters in the Langmuir model were determined for each 

pure component and are tabulated in Table I. Carbon dioxide exhibits multilayer 

adsorption above 1010 psia [3]. Therefore, the regressions for the pure carbon dioxide 

data were limited to a pressure of 1010 psia. 

The Langmuir equation represents the selected data satisfactorily to give %AAD 

ranging from 2.3 to 2.9. The model constants and the resultant statistics are given in 

Table I. 

TABLE I. Simple Langmuir Model for Pure Adsorption Isotherms 

Component Points L, B, RMSE %AAD WRMS 
mg mole/ gm coal psia- l 

Cf4 20 1.084 0.001989 0.0119 2.3 1.5 

N, 30 0.8976 0.0006566 0.0081 2.9 1.7 

CO2 24 1.481 0.004838 0.0281 2.6 1.6 

The extended Langmuir equation described earlier in the Literature Review section 

is used to predict the adsorption of mixtures. To obtain a better description of the binary 

data, the simple Langmuir model is modified to include the following mixing rules for the 

LB term in the numerator and B in the denominator: 

as: 

LB 

B = LLBjkYjYk 
j k 

Thus, the modified model used in correlating the present experimental data is given 

58 



(34) 

for the total amount adsorbed and 

y?5( tMilty~5 )p 

1+( 1PikYjYk} 
(35) 

for the individual component adsorption, where Mii = LiBi and Mij and Bij are the 

regressed parameters. This model collapses to a simple Langmuir model when Mij and Bij 

equal to zero, for a pure fluid. Therefore, only the pure parameters Li and Bi are used in 

the extended Langmuir model predictions. In contrast, for the modified model, in addition 

to the pure parameters obtained from the simple Langmuir modeL the cross coefficients 

are regressed separately for co 1> co2 and co, for the whole feed gas composition range. 

Comparisons between the predictions obtained by extended Langmuir model, 

referred to here as Case I, and by the new correlative model, referred to as Case II are 

presented in terms of%AAD (average absolute percentage deviation) and AAD (average 

absolute deviation) in Table II. The regressed values for the cross coefficients for 

different mixtures are presented in Table Ill. 

For methane-nitrogen mixtures a total of39 experimental data points were used in 

the correlation work. The predictions are illustrated in Figures 37 to 39. The extended 

Langmuir model results in good predictions for the total amount of gas adsorbed. It also 
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TABLE II. Comparison of Predictions for Binary Adsorption Data 

%AAD(AAD) 

Case No. of Parameters Points O)t I O)? 

Methane(l) + Nitrogen(2) 

I 4 39 4.9 (0.011) 13.8 (0.016) 

II 6 39 3.2 (0.011) 10.5 (0.0131 

Methane(l) + Carbon Dioxide(2) 

I 4 24 10.1 (0.015} 6.2JO.019) 

II 6 24 4.6 (0.009) 5.5 (0.019) 

Nitrogen(l) + Carbon Dioxide(2) 

I 4 24 51.2 (0.025) 11.3 (0.037) 

II 6 24 25.1 (0.011) 6.1 (0.021) 

Case I - extended Langmuir 
Case II - Modified version of extended Langmuir 

0) 

3.5 (0.015) 

3.5 (0.015) 

4.2 (0.026) 

2.9 (0.019) 

7.0 (0.038) 

3.5 (0.016) 



TABLE III. Model Constants for the New Model 

Co-efficient ffi1 ffi , ffi 

Methane(l) + Nitrogen(2) 

M12 0.0001694 0.0000962 0.0000019 

B12 0.0017712 0.0021225 0.0013494 

Methane(1) + Carbon Dioxide(2) 

M12 -0.0001965 0.00048403 0.0003327 

B12 0.0034598 0.0046531 0.0047119 

Nitrogen( 1) + Carbon Dioxide(2) 

M12 -0.0001769 0.0010441 0.0002887 

B12 0.0046966 0.0049988 0.0042890 
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yields predictions for the amount of methane adsorbed with a %AAD of 4.9. In 

comparison, the quality of predictions for nitrogen (on a relative basis) is less favorable, as 

indicated by an average deviation of 13.8%. No significant changes were observed for the 

individual component adsorption amounts. For Case II, there is not much improvement in 

the average percentage deviation for the total amount adsorbed. The minor improvement 

in the fits is signified by near-zero values obtained for the cross coefficient B12 and M12. 

For the methane-carbon dioxide mixtures, the evaluations were restricted to the 

low pressure region (pressures to 1010 psia) due to the nature of the multilayer adsorption 

of carbon dioxide at high pressures [3]. The predictions are illustrated in Figures 40 to 42 

to a pressure of 1010 psia only. Similar to the methane-nitrogen mixtures, the least 

adsorbed gas, in this case methane, has higher deviations than carbon dioxide. Using the 

modified model and regressing the cross coefficients has reduced the observed deviations 

by 50% for the amount of methane adsorbed. However, no similar improvements are 

realized for the total amount adsorbed or in the amount of carbon dioxide adsorbed. 

For the nitrogen-carbon dioxide mixtures, similar to the methane-carbon dioxide 

mixtures, the evaluations are also restricted to pressures of 1010 psia. The predictions are 

illustrated in Figures 43 to 45. The large deviations for nitrogen are due to the low 

adsorption capacity of nitrogen when compared to carbon dioxide. From Case II, the 

deviations are reduced by half for nitrogen, the least adsorbed gas. Significant reduction 

in deviations are observed for the total amount of gas adsorbed and the amount of carbon 

dioxide adsorbed. Moreover, in Case II, the AAD for the least adsorbed gas is reduced by 

half for the carbon dioxide mixtures. 

The total amount of gas adsorbed for the three binary systems can be reasonably 

predicted using the two correlations mentioned above. The two models studied tend to 

give large relative deviations in the less adsorbed components, although the modified 

model reduces the deviations by half when compared to the extended Langmuir model. 

All predictions are applicable for mono-layer adsorption, worse predictions can be 
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expected at high pressures, as would be the case for carbon dioxide mixtures at.lOlO-1800 

pSla. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Adsorption measurements for methane-nitrogen, methane-carbon dioxide and 

nitrogen-carbon dioxide have been carried out in a joint effort with Hall [3]. In the 

present study, the experimental data have been presented in a more convenient format. 

The extended Langmuir model was employed to correlate the present data. In addition, 

new mixing rules were incorporated in the model to lend it greater flexibility. Following 

are the specific conclusions and recommendations which can be made based on this work. 

1) 

Conclusions 

For all the binary mixtures considered, the composition of the adsorbate 

phase is significantly different from that of the equilibrium gas phase. 

2) The type of adsorption observed for carbon dioxide mixtures is similar to 

that of the pure component, with mono-layer adsorption occurring at lower 

pressures and multilayer adsorption occurring at higher pressures. 

3) The non-ideal behavior exhibited in the adsorbate mole fraction as a 

function of gas phase mole fraction indicates that different gas species are 

competing for the same adsorption sites. 

4) The absolute adsorption values differ considerably depending on the model 

used for calculating the adsorbed phase molar volume, with van der Waals 

covolume model giving larger values of the amount adsorbed. 
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5) F or the binary mixtures considered, the adsorbate composition of any 

component is almost constant for a given feed gas mole fraction at different 

pressures. 

6) Pure adsorption data are well represented by a simple Langmuir isotherm. 

The deviations are under three percent for the components considered. 

7) The extended Langmuir model yields the largest relative errors in the least 

adsorbed gas. For the carbon dioxide mixtures, the modified model 

reduces the deviations by 50% in the amount of gas adsorbed the least. 

Overall, the new model is slightly better than the extended Langmuir model 

for all the mixtures under study. 

Recommendations 

I) The displacement pump dead volume should be reduced to minimize the 

associated experimental errors. 

2) The adsorption measurements are conducted at only one isotherm, and 

scarce information is available in the literature to compare the results at the 

conditions of interest. Thus, study of the adsorption phenomenon at 

different temperatures is recommended since coal reservoirs are found at 

different depths. 

3) Generalized models which can represent the compressibility factor data 

more accurately should be used to calculate the adsorbed amounts. 

4) New correlation techniques should be developed to predict the mixture 

adsorption data at high pressures. 
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SECTION 2 - PREDICTING COMPRESSIBILITY FACTORS USING 
EQUATIONS OF STATE 

CHAPTER I 

INTRODUCTION 

Understanding the fluid phase behavior of pure fluids and mixtures requires 

accurate thermodynamic tools. The most convenient form of representing phase behavior 

of fluids for process design and optimization calculations is by analytical equations of state 

(EOS). Numerous EOS exist in literature. The commonly used EOS include the modified 

Benedict Webb Rubin (BWR) equation [1] and the cubic van der Waal type equations 

such as the Peng-Robinson (PR) [2] and the Soave-Redlich-Kwong (SRK) [48] equations. 

To bridge the gap between conventional EOS and those used for representing polymeric 

fluids, more theoretically based equations such as the Perturbed-Hard-Chain Theory 

(PHCT), the Simplified-Perturbed-Hard-Chain Theory (SPHCT) [3-7], the modified 

SPHCT [8] and the Park-Robinson-Gasem (PRG) EOS [9] were developed. The cubic 

van der Waals EOS and the substance-specific form of the BWR EOS are well studied. 

In the previous section, it was asserted that gas mixture adsorption calculations are 

extremely sensitive to the compressibility factors [10]. Pure component data were used to 

determine the pure substance RK EOS model constants [1]. Binary experimental data in 

the selected temperature and pressure range were used to determine the optimum 

interaction parameters in the RK EOS [1]. The RK EOS was used to determine the 
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compressibility factors for the mixtures, based on regressed model constants for binary 

interaction parameters. 

Thus, the model constants obtained from the pure component experimental 

compressibility factor data playa key role in determining the amount adsorbed. Also, the 

components used in the adsorption experiments are in the supercritical region at the 

temperature and pressure ranges considered. The most common approach to obtain 

adequate EOS predictions is to regress the EOS constants using experimental pvTx data. 

Although this approach serves the immediate needs, it does not delineate the 

inconsistencies existing in the EOS itself 

The compressibility factor is comprised of two terms -- an attractive term and a 

repulsive term. Using a novel approach [11], experimental data can be used directly to 

compute these two terms separately, obtain the compressibility factors, and explore 

possible inconsistencies in an EOS model. 

The specific objectives of the present work were as follows : 

1) Set up an extensive pvT literature database for methane, nitrogen and 

carbon dioxide from the triple point to the super critical region. 

2) Check for possible inconsistencies in the PR, BWR, SPHCT, MSPHCT 

and PRG EOS using the database set up for this purpose. 

3) Make a comparative study of the different EOS models thus studied. 

4) Investigate the effect of tuning of the EOS parameters. 

Knowledge gained from this preliminary work should help identify possible 

inconsistencies in defining the attractive and the repulsive terms in the EOS under study. 

Once the inconsistencies are identified, new correlations can be developed for the 

attractive and repulsive terms which will help in developing improved EOS models. 
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CHAPTER II 

EOS EVALUATION STRATEGY 

This chapter presents a brief description for the EOS evaluation strategy used in 

this work. The subject matter relating to EOS evaluation and development is vast. Thus, 

no attempt was made in this preliminary work to consider the various evaluation methods 

discussed in the literature. 

An EOS is a mathematical relation among the observables: temperature T, 

pressure p, specific volume v, and composition x expressed as f(T, p, v, x) = 0 or p = f(T, 

v, x) in a pressure explicit form [11]. The simplest form of an EOS is that of an ideal gas, 

where pv = RT. An ideal gas represents the case where there are no intermolecular 

attractions present and the molecular volume is negligible. The non-ideality of a gas at 

given conditions is reflected in the compressibility factor term. By definition the 

compressibility factor is given as: 

p 
Z=

pRT 
(1) 

where p=1/v. Ideal gas behavior is indicated when the compressibility factor has a value 

of one. 

Compressibility factors can be determined in two ways. Knowing the experimental 

values of temperature, pressure and density one can compute the compressibility factor 
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using Equation (1). Using only the temperature and pressure data, the compressibility 

factors can be calculated using an EOS, such as the PR EOS [2] given below: 

P = RT _ a(T) 
v-b v(v+b)+b(v-b) 

(2) 

For fixed values of the EOS parameters a and b, one can compute the compressibility 

factors iteratively. By regressing the parameters which define a and b against experimental 

data, the EOS predictions can be improved significantly. 

Deviations in the pvT behavior of any real gas from the ideal gas law are caused by 

the repulsive and attractive forces acting between molecules. Extensive work has been 

done to develop theoretically sound correlations for the repulsive and attractive terms. 

The correlations existing in the literature for the repulsive term represent the molecular 

forces reasonably well. Various studies (see, e.g., Park [9] ), however, have indicated that 

the attractive term requires further development. 

The compressibility factor can be written as the sum of attractive and repulsive 

terms as defined below: 

Zeal = 1 + qZatt(T,p,p) + Zrep(T,p,p)] (3) 

Thus, an EOS can be reduced to a compressibility factor form, which is a sum of 

attractive and repulsive terms. For example, the PR EOS defined in Equation (2) can be 

written as: 

where 

Z - Pv _ 1 + _b _ _ av 
- RT - v - b RT{ y2 + 2bv _ b2 ) 

b 
Zrep=-

v-b 
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and 

Experimental density, temperature and pressure data can be used in the above 

equation to obtain the calculated value of the compressibility factor [11]. Since the 

experimental density data are used to compute the attractive and repulsive tenns 

separately, in principle, the sum of the two tenns should equal to the experimental 

compressibility factor within the experimental uncertainty. Thus, significant discrepancies 

between the calculated and the experimental values will reveal the inconsistencies existing 

in one or both tenns. 

In addition, this study explores the predictive capabilities of the various EOS under 

study, as they appear in the literature. Upon evaluation of the predictive capabilities of 

these EOS by the above method, the EOS parameters are regressed using experimental 

data to obtain improved predictions. 

The approach used for evaluating the EOS under study is as follows: 

1) Where possible, the EOS is written as a sum of Zatt and Zrep tenns, as 

defined in Equation (3). 

2) Experimental densities are used to calculate the compressibility factors for 

the selected pure fluids, Zexpt. 

3) The EOS predictions of the compressibility factors, Zeal' are compared with 

Zexpt· 

4) The EOS parameters are then re-optimized ("tuned") using the experimental 

data and compared to the original EOS perfonnance for the complete data 

range. 
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CHAPTER III 

REVIEW OF EOS MODELS 

This chapter briefly reviews five EOS models selected for evaluation in this work. 

They are the (1) BWR, (2) PR, (3) SPHCT, (4) MSPHCT and (5) PRG model. The EOS 

models are presented in terms of the attractive and repulsive terms of the compressibility 

factor wherever possible. 

Classical EOS 

The PR EOS represents one of the most commonly used van der Waals type 

classical equations. Peng and Robinson [2] proposed an equation of the form described 

below by modifying the attraction pressure term of the semi-empirical van der Waals 

equation: 

P = RT _ aCT) 
v-b v(v+b)+b(v-b) 

(6) 

where v is the specific volume, R is the gas constant, a and b are the EOS parameters 

defined as: 

aCT) = a(Tc)ex(Tr,ro) (7) 

beT) = b(Tc) (8) 

Following Soave's work, ex is defined as 

83 



(9) 

(10) 

a(~) and b( Tc) are defined at the critical point as 

(11) 

(12) 

More accurate liquid density values can be obtained with the PR EOS when compared to 

the SRK EOS, with the other performances being comparable [2]. The inherent simplicity 

and qualitative success makes it the most attractive EOS industrially. The attractive and 

repulsive terms for the compressibility factor are presented in Equations (4a) and (4b). 

The values ofEOS parameters available in the literature [6] are included in Appendix A. 

Virial-Based EOS 

The variation of the BWR EOS used in this work is the form presented by Starling 

[1]. Thermodynamic property data in the liquid, gas and dense fluid regions were used 

simultaneously in developing this new model. To ensure consistency between predicted 

properties, available experimental pvT, enthalpy and vapor pressure data were used 

simultaneously by the authors in a multi-property analysis to determine the parameters in 

the EOS for individual materials. The EOS is a pressure-explicit function of temperature 

T, and molar density p. Prediction of density at a given temperature-pressure condition 

requires a trial and error solution. Starling [1] used thermodynamic property data in the 

liquid, gas and dense fluid regions to simultaneously develop this new model. 
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where Ao-Eo, a-d, a. and y are the EOS parameters. As the pressure is a complex 

function of density, no effort has been made to present this model in terms of attractive 

and repulsive terms of compressibilities. The values ofEOS for the individual components 

are included in Appendix A 

Perturbed-Rard-Chain Theory EOS 

SPRCTEOS 

Beret, Donohue and Prausnitz [3] developed the perturbed-hard-chain theory 

(PRCT) which is applicable to both liquid and gas phases for compounds ranging in 

structural complexity from methane to heavy hydrocarbons and polymers. The basic 

approach of the PRCT EOS is to define a canonical partition function of statistical 

thermodynamics in terms of all the energy states of the molecules and relate it to the 

classical thermodynamic variables. Kim [14] proposed a simplification to the PRCT 

equation by replacing the attractive portion of the partition function with the model of 

Lee, Lombardo and Sandler. The SPRCT equation results in an attractive term with a 

much simpler density and temperature dependence than the original PRCT equation 

making it more convenient for engineering calculations. 

The SPRCT EOS [8] is given as: 

Z = 1 + c(Zrep + Zatt) 

where 
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Z - ZMCV*Y 
att - - * 

cv+cv Y 

Y = exp(2~)-1 

- v* p=-y , - T 
T=-

T* 

(14) 

(15) 

(16) 

(17) 

where T* and v * are the characteristic temperature and volume respectively, c is the 

degrees of freedom parameter and ZM is the maximum coordination number equal to 36. 

The values ofEOS parameters are included in Appendix A. 

MSPHCTEOS 

Systemic errors have been observed for the vapor pressure and liquid density 

predictions using the SPHCT for pure fluids near both the triple point and the critical 

temperatures. Such errors have been attributed to poor characterization of the EOS 

parameters and tend to make optimization of the EOS parameters more difficult. To 

address some of these drawbacks, Shaver [8] introduced critical point constraints and 

modified the attractive term to improve the parameterization of the SPHCT EOS. The 

MSPHCT equation is given as: 

Z - ZMCV*Y 
att - - * 

cv+cv Y 
(18) 

(19) 
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(20) 

where bi are the coefficients of the modifying function Ft. The values of the EOS 

parameters are included in Appendix A. 

PRGEOS 

PRG EOS [9] was developed on the same lines as the SPHCT and other similar 

models. Park and co-workers adopted the attractive term from the generalized cubic and 

appended a correction term to it. The repulsive term was adopted from the correlation 

developed by Elliot and co-workers [47]. PRG equation is defined as: 

Z 1 (at a.Yvr Qa.Y J 
= + c Vr - b't - v; + uVr + w - V r + 1 

where 

Y= exp( 4 )-1 
* - T where vr--=V/v and T = - and ...... * 

Z _ a't 
rep - Vr - b't 

z - a.Yvr 
att - - 2 

vr +uvr +w 

_ Qa.Y 
vr + 1 

The values ofEOS parameters are included in Appendix A. 
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CHAPTER IV 

EXPERIMENTAL pvT DATA FOR THE SINGLE PHASE REGION 

The present chapter gives a brief description of the database used in the present 

evaluations. The motivation for selecting the gases under study is also described. 

The components chosen for this work are methane, nitrogen and carbon dioxide. 

These components were chosen because (a) these gases are widely used in the industry, 

and (b) they provide the necessary infonnation for the experimental adsorption 

measurements undertaken at OSu. The temperature and pressure ranges considered in 

this study extend from the triple point to the supercritical region. 

Experimental data for pures has been identified in the range of 0-500 bar and 

0-500 K. Sources for the available experimental data, along with temperature, pressures 

and density ranges, are presented in Tables I - III. Figures 1-6 map the compressibility 

factor data used in this evaluation in tenns of temperature and pressure. The critical 

properties and the other physical property data needed for each component are tabulated 

in Appendix B. 
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Table I. Summary of Available Experimental p-p-T Data for Methane 

Source Year Number of Pressure Range 

Data Points (bars) 

Keys & Burks [24] 1927 80 32-257 

K valnes&Gaddy [25] 1931 182 0-1000 

Michels et al. [26] 1936 175 20-390 

Reamer et al. [27] 1943 294 13-482 

Van Itterbeek et al. [28] 1963 162 9-312 

Douslin et al. [29] 1964 317 16-405 

Kobayashi et al. [30] 1970 262 15-690 

Da Ponte et al. [31] 1978 86 14-1280 

, 

I 

Temperature I 

Range (K) 

273-473 
! 

203-473 I 
I 

273-423 I 

294-510 
I 

114-188 

273-623 

150-273 

110-120 



\0 o 

Table II. Summary of Available Experimental p-p-T Data for Nitrogen 

Source Year Number of Pressure Range Temperature 

Data Points (bars) I Range (K) 

Michels et al. [15] 1934 56 20-80 273-423 

Michels et al. [16] 1936 147 200-3000 273-423 

Benedict [17] 1937 25 100-1560 90-273 

Van Itterbeek & 1960 67 13-140 66-91 

Verbeke [18] 

Kobayashi et al. [19] 1962 152 2-540 133-273 

Street & Staveley [20] 1967 107 4-680 77-120 

Weber [21] 1970 76 140-2660 80-140 

Da Ponte et al. [22] 1978 27 0.5-1 110-120 

Straty & DiIle~g3] L- 198Q_ ... _ 28Q . __ L ........ _0-35Q_ 84-300 



Table III. Summary of Available Experimental p-p-T Data for Carbon Dioxide 

Source Year Number of Pressure Range Temperature 

Data Points (bars) Range (K) 

Michels et al. [32] 1935 239 16-3039 273-423 

Kennedy [33] 1954 2222 25-1400 273-1473 

Vukalovich et al. [34] 1968 168 7-300 273-308 

Golovskii et al. [35] 1969 128 9-600 220-306 

Kirillin et al. [36] 1969 21 20-580 433-473 

\0 Kirillin et al. [37] 1969 39 16-500 283-308 
....... 

Kirillin et.al [38] 1970 24 20-500 223-273 

Vukalovich et al. [39] 1970 95 7-190 238-273 

Popovet al. [40] 1970 117 7-300 283-303 

Holste et al. [41] 1987 236 3-477 220-450 

~~et~H2]_ 1988 10 58-270 250-330 
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Figure 1. Experimental Compressibility Factor Data Available for Methane 
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Figure 2. Experimental Compressibility Factor Data Used in Evaluations for Methane 
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CHAPTER V 

RESULTS AND DISCUSSION 

Extensive experimental data were used to evaluate the various EOS for the gases 

under study. The predictive capabilities of the EOS were evaluated and compared. In 

addition, an optimization routine was used to regress the EOS model parameters and to 

explore the effect of parameter tuning on the quality of the predictions. 

Five EOS models (PR, BWR, SPHCT, MSPHCT and PRG) have been evaluated 

in this work. The absolute average percentage deviation (%AAD) in the compressibility 

factors are used to assess the EOS predictions and in the model comparisons. FORTRAN 

codes for the different models were introduced into the PFP.FOR (Pure Fluid Properties 

Program) provided by Gasem [12]. The routine used for linking and compiling various 

subroutines is presented in Appendix C. 

Results for pure methane, nitrogen and carbon dioxide are summarized in Tables 

IV-VI. Table IV indicates that the BWR EOS predictions are better than the other 

models. This is expected since the BWR EOS parameters are specific for the component 

being considered. The results obtained for methane using the BWR equation are 3/4 of 

the %AAD of the other two gases being considered. The results for methane by PRG 

model seem abnormal, i.e., a %AAD of226. Smoothed methane data from NBS was used 

to check the predictions and the results obtained (AAD of 195%) indicate that a few data 

points near the triple point caused the observed large deviations. When the classical van 

der Waals type PR equation is considered, it is seen that the predictions are better for 
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carbon dioxide than for the other gases. This can be explained by the fact that some data 

points for methane and nitrogen in the triple point region result in higher %AAD. The 

PHCT EOS give better predictions for carbon dioxide than methane. The EOS 

parameters (T*, v *, and c) for the SPHCT, MSPHCT and PRG models are not available 

for nitrogen, therefore predicted values are not included in the table. When the results for 

these equations for carbon dioxide are compared, it is clear that the MSPHCT model gives 

worse results than the SPHCT model and the results from PRG model are similar to those 

of the SPHCT and PR equations. 

Table V shows the results obtained on optimizing the EOS parameters for the PR, 

BWR and SPHCT equations. To regress the EOS parameters, the following objective 

function was employed to minimize the relative error in the compressibility factors: 

( )

2 
n Z -Z SS = L calc exp 

1= Zexp . 
I 

(26) 

For the PR equation, the model parameters mo, mI, m2 were optimized. The 

results obtained indicate a noticeable improvement in the methane and nitrogen predictions 

(50% reduction in %AAD). Similarly, when the EOS parameters for the SPHCT 

equation, T*, v * and c were optimized, the deviations for all the pure fluids are reduced by 

half(47.6% to 22.2% AAD). However, for carbon dioxide, no significant improvement is 

realized. By comparison, the best results (1 % AAD) are obtained from the BWR model 

on optimizing all the constants. 

Table VI presents the results obtained for the MSPHCT and PRG model. Initially, 

only the characteristic temperature T*, characteristic volume v * and the degrees of 

freedom parameter c were optimized. There was significant improvement in the 

compressibility factor deviations. On further optimization of all the EOS parameters and 
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T ABLE IV. Summary of Results for EOS Predictions for 
Compressibility Factor Data 

EOS No. of Parameters RMSE 

Methane 

PR 5 0.57 

BWR 11 0.05 

SPHCT 3 0.38 

MSPHCT 7 0.27 

PRG 14 2.34 

Nitrogen 

PR 5 0.53 

BWR 11 0.10 

Carbon Dioxide 

PR 5 0.10 

BWR 11 0.14 

SPHCT 3 0.10 

MSPHCT 7 0.23 

PRG 14 0.13 

%AAD 

83.2 

6.1 

47.6 

33.5 

226.5* 

72.6 

10.8 

11.2 

14.8 

15.3 

37.4 

16.0 
* A discrepancy has been identified in the PRG EOS constants; however, at the 

time, the evaluation was completed. 
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TABLE V. Summary of Results for Regressed-Parameter EOS Predictions for 
Compressibility Factor Data 

EOS No. of Parameters RMSE %AAD 

Methane 

PR 5 0.32 30.0 

BWR 11 0.02 1.1 

SPHCT 3 0.21 22.2 

Nitrogen 

PR 5 0.37 30.5 

BWR 11 0.02 2.4 

SPHCT 3 0.17 17.9 

Carbon Dioxide 

PR 5 0.09 9.3 

BWR 11 0.01 0.8 

SPHCT 3 0.05 7.1 
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rABLE VI. Results Obtained on Optimization ofEOS Parameters for 
Compressibility Factor Data 

EOS No. of Parameters RMSE 

Methane 

MSPHCr* 3 0.19 

MSPHCr** 7 0.10 

PRG! 3 0.16 

PRG!! 14 0.02 

Nitrogen 

MSPHCr* 3 0.15 

MSPHCr** 7 0.06 

PRG! 3 1.59 

PRG!! 14 0.10 

Carbon Dioxide 

MSPHCr* 3 0.04 

MSPHCr** 7 0.02 

PRG! 3 0.03 

PRG!! 14 0.01 

* Only EOS parameters r*, v *, and c were optimized 
** All EOS parameters and EOS constants were optimized 
! Only EOS parameters T*, v *, and c were optimized 
!! All EOS parameters and EOS constants were optimized 
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TABLE VI. Results Obtained on Optimization ofEOS Parameters for 
Compressibility Factor Data 

EOS No. of Parameters RMSE 

Methane 

MSPHCT* 3 0.19 

MSPHCT** 7 0.10 

PRG! 3 0.16 

PRG!! 14 0.02 

Nitrogen 

MSPHCT* 3 0.15 

MSPHCT** 7 0.06 

PRG! 3 1.59 

PRG!! 14 0.10 

Carbon Dioxide 

MSPHCT* 3 0.04 

MSPHCT** 7 0.02 

PRG! 3 0.03 

PRG!! 14 0.01 

* Only EOS parameters T*, v *, and c were optimized 
** All EOS parameters and EOS constants were optimized 
! Only EOS parameters T*, v*, and c were optimized 
! ! All EOS parameters and EOS constants were optimized 
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the EOS constants, more improvement in the predictions was observed as indicated in the 

Tables V and VI. 

Based on the results obtained for all the models, it is evident that the BWR and 

PRG model provide good predictions when all the constants are optimized. This is 

expected, since a large number of parameters are optimized for these equations. 

Figures 7-11 compare the predictive and correlative (optimized) abilities of the 

various EOS in terms of compressibility factor deviations for carbon dioxide. Similar plots 

for methane and nitrogen are included in Figures 12-18. These figures show in general 

that the deviations obtained from the optimized-parameter predictions are relatively small 

in the subcritical region, but as the reduced pressure increases the deviations also increase. 

Moreover, while all the EOS evaluated show significant improvements on tuning of the 

EOS parameters, the BWR equation provides the best predictions. 

Figures 19 and 20 illustrate the variation of deviations in the compressibility 

factors with reduced density and reduced temperature, respectively. Using the SPHCT 

EOS, a systematic trend is observed in the compressibility factor deviations of carbon 

dioxide, especially, for reduced densities in the supercritical region. In comparison, Figure 

20 indicates that significant deviations in the compressibility factor occur at reduced 

temperatures in the subcritical region. Moreover, the deviations in the supercritical region 

are similar in nature and vary widely for a given temperature. Additional plots illustrating 

the variation of compressibility factor deviations with reduced density for the five EOS 

models are presented in Appendix D. 

It should be noted that the evaluations are performed for the compressibility factor 

predictions using experimental densities. The viability of the optimized parameters in this 

work will be decided by the quality of the predictions obtained for the volumetric and 

equilibrium properties through iterative computations. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Five EOS models were evaluated for their abilities to predict compressibility 

factors. Experimental pvT data were compiled ranging from near the triple point to 

beyond the critical point region for nitrogen, methane and carbon dioxide. The upper 

limits for the temperature and pressure are 500 K and 500 bars. For some data sets, 

measurements near the triple point were not available; thus, the evaluations were 

performed based on the best available data. Following are specific conclusions and 

recommendations which can be made based on this preliminary work. 

Conclusions 

1) The substance-specific BWR model was found superior to the other 

models. All five models predicted poorly near the triple point region. The 

results improved as the critical region was approached but worsened at the 

upper limits of the temperature and pressure. 

2) Although all the optimized EOS models produced significant improvement 

in the compressibility factor predictions, the BWR equation gave the best 

results. 

3) The EOS prediction results were highly dependent on the number of 

regressed parameters. 
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Recommendations 

1) This preliminary evaluation of the five models was restricted to only three 

pure fluids. The pure database should be expanded to include more types of 

chemical compounds for future EOS evaluations. 

2) It has been observed that the deviations vary widely depending on the 

temperature, pressure and density ranges considered. Comprehensive 

evaluation of the five models covering the full temperature and pressure 

ranges should be performed using other fluids for which data are available 

near the triple point. 

3) The EOS parameters were optimized for all the EOS models and a 

significant improvement in the results was observed. Efforts should be 

directed to include all the pure fluids being considered and simultaneously 

regress the parameters, thus making the EOS more general. 

4) Mixtures were not considered in the present evaluations. The predictive 

capabilities of the five models for mixtures commonly encountered in the 

chemical industry should be studied. 

5) All five models considered predicted poorly near the triple point region and 

at very high pressures. Efforts should be directed to improve the model 

predictions in these limiting regions. 

6) The usefulness of newly regressed EOS parameters should be verified 

through iterative volumetric and equilibrium computations. 
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APPENDIX A 

EQUATION OF STATE PARAMETERS USED 
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This Appendix contains the original EOS parameters which were used in the 

predictions of compressibility factors. Table Al contains the PR EOS parameter values 

as available in the literature [2]. Table A2 contains the EOS parameters for the modified 

version ofBWR EOS, as given by Starling [1]. Table A3 contains the SPHCT EOS 

parameters for methane and carbon dioxide as found in the literature [14]. Table A4 

contains the EOS parameters for the MSPHCT equation [8]. Table A.5 contain the pure 

fluid parameters for methane and carbon dioxide for PRG EOS [9]. Table A6 contain the 

PRG EOS constants. The EOS parameter values for nitrogen were not available for the 

SPHCT, MSPHCT and PRG EOS. 
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TABLE AI. PR EOS Parameter Values 

mo ml m2 Qa Qh 

0.37464 1.54226 -0.26992 0.45724 0.07780 

Table A2. BWR EOS Pure Fluid Parameters 

Parameter * Methane Nitrogen Carbon dioxide 

Bo 0.723251 0.677022 0.394117 

An 0.752029E+04 0.41 8505E+04 0.659203E+04 

Co 0.27I092E+09 0.137936E+09 0.295902E+ I 0 

Do 0.107737E+11 0.I95183E+ll 0.409151E+ 12 

Eo 0.301 I 22E+ II 0.121648E+ 13 0.102898E+ 11 

b 0.925404 0.833470 0.971443 

a 0.257489E+04 0.140459E+04 0.5632.85E+04 

d 0.474891E+05 0.311894E+05 0.59929.7E+05 

a 0.468828 0.302696 0.395525 

c 0.437222E+09 0.844317E+08 0.274668E+ 10 

Y 0.148640E+OI O.llOOllE+Ol 0.164916E+Ol 
* The EOS constants are based on units of oR, psia and lbmole 

Table A3. SPHCT Pure Fluid Parameters 

Component T* (K) v * (em3 Imol) c 

Methane 80.05 18.889 1.0298 

Nitrogen - - -

Carbon dioxide 104.32 14.486 1.9258 
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Table A4. MSPHCT Pure Fluid Parameters 

Component T* (K) v * (cm3/mol) c 

Methane 95.23 18.858 1.0003 

Nitrogen - - -

Carbon dioxide 131.05 15.858 1.6258 

Table AS. PRG EOS Pure Fluid Parameters 

Component T* (K) v * (cm3/mol) c 

Methane 81.287 23.180 1.0000 

Nitrogen - - -
Carbon dioxide 111.31 18.052 1.6565 

Table A6. PRG EOS Constants 

Constant * Value 

t 0.74048 

a 4.0000 

b 1.9000 

u -2.6192 

w 2.0000 

Q 7.3708 

0.0 1.4000 

KI 0.092687 

K2 0.18011 

K3 -0.030748 

K4 -0.33149 
* The EOS constants are based on units ofK, bar and cm3/mole 

127 



APPENDIX B 

PHYSICAL PROPERTY DATA 
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This appendix contains the physical property data of the pure fluids used in the 

present work. The critical property values along with the acentric factor and the 

molecular weight are given in Table B. The critical temperature, critical pressure, acentric 

factor and molecular weight data were obtained directly from the LID.FOR routine [43]. 

The triple point temperatures and pressures were obtained from the literature as indicated 

by the references. 
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Table B. Physical Property Data Used in this Work [43] 

Physical Pro~erty CH4 N? CO" 
Critical 190.555 126.200 304.210 

Temperature (K) 
Critical Pressure 45.9884 33.9003 73.8254 

(bars) 
Triple Point 90.680 [44] 63.148 [45] 216.580 [46] 

Temperature (K) 
Triple Point 0.1174 [44] 0.1252 [45] 5.180 [46] 

Pressure (bars) 

Accentric factor 0.0113 0.0390 0.2251 

Molecular Weight 16.043 28.010 44.010 
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APPENDIX C 

MAKEFILE ROUTINE 
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This appendix contains a brief description of the Makefile routine used in the 

present work. A Makefile is similar to a batch file in DOS, which facilitates compiling and 

linking multiple Fortran files with ease in an unix environment. The first line consists of 

SUFFIXES term, which identifies the type of files one will encounter in the Makefile. The 

second term SOURCE identifies the different object files which will result in the final 

executable file. The third term, LIBS identifies the type oflibraries which are used by the 

Makefile. For example, Fortran libraries, system libraries, math libraries and XII libraries 

are invoked when the Makefile is executed. The fourth term contains the syntax for 

compiling multiple Fortran files. 

A tab symbol, as shown in the Makefile, is necessary for any type of syntax to be 

executed while running a Makefile. The syntax 'xlf compiles XL Fortran source files. The 

'-c' option compiles the Fortran files without calling the linkage editor. The '-g' option 

produces the debug information which can be used with the 'xde', i.e., the windows 

debugger. The '-NQ20000' flag indicates the size of the table to be used. Depending on 

the size of the routine used, a bigger table size may have to be used. The '03' option 

optimizes the code generated by the compiler and also performs additional optimizations 

which are compiler and memory time intensive. The '-qflag = 1:1' flag specifies the severity 

level of diagnostics to be reported in the listing. This syntax is used in compiling all the 

files with extension *.f 

The 'a.out' file contains the final executable code. The 'clean' command is used to 

delete all the object files when the syntax 'make clean' is executed at the unix prompt. The 

last few lines are used to create object files from source files. The mode of the Makefile 

should be changed to an executable type and run from the unix prompt by typing 'make'. 
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. SUFFIXES: .0 .c .f 

SOURCE= pfp.o files.o sort.O que2.0 optin.o xydat2.0 zfl.o title.o error.o \ 
1\1 regfun.o func.o tbfun.o tcfun.o pcfun.o vcfun.o wfun.o vpfun.o Idfun.o spfun.o \ 
1\1 stfun.o mix.o cubic.o lib.o vrnarg.o slfun.o vzcal.o 
LIBS= -lxlf -lsys -1m -IXll 

.fo: 
1\1 xlf -c -g -NQ20000 $*.f -03 -qt1ag=I:I 

a.out: $(SOURCE) 
1\1 xlf -g -0 $@ $(SOURCE) $(LIBS) 
clean: 
1\1 rm *.0 

pfp.o: pfp.f COMMON.AAA 
files.o: files.f COMM:ON.AAA 
sort.O: sort.f COMMON.AAA 
que2.0: que2.f COMMON.AAA 
optin.o: optin.f COMMON.AAA 
xydat2.0: xydat2.f COMMON.AAA 
zfI.o: zfI.f COMMON.AAA 
title.o: title.f 
error.o: error.f COMMON.AAA 
regfun.o: regfun.f COMMON.AAA 
func.o: func.f 
tbfun.o: tbfun.f COMMON.AAA 
tcfun.o: tcfun.f COMMON.AAA 
pcfun.o: pcfun.f COMMON.AAA 
vcfun.o: vcfun.f COMMON.AAA 
wfun.o: wfun.f COMMON.AAA 
vpfun.o: vpfun.f COMMON.AAA 
Idfun.o: Idfun.f COMMON.AAA 
spfun.o: spfun.f COMMON.AAA 
stfun.o: stfun.f COMMON.AAA 
mix.o: mix.f COMMON.AAA 
cubic.o: cubic.f 
lib.o: lib.f 
vmarg.o: vmarg.f 
slfun.o: slfun.f COMMON.AAA 
vzcal.o: vzcal.f COMMON.AAA 
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APPENDIX D 

ADDITIONAL FIGURES FOR COMPRESSIBILITY FACTOR PREDICTIONS 
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This Appendix contains additional figures illustrating the variation of 

compressibility factor deviations with reduced density for the five EOS models studied. 

Figures D.I to D.4 illustrate the compressibility factor deviations for carbon dioxide as a 

function of reduced density. The results for BWR EOS and PR EOS illustrated in Figures 

D.I and D.2 show large deviations in compressibility factors when the original EOS 

parameters were used for the predictions in the subcritical regions. However, the 

MSPHCT EOS and PRG EOS predictions illustrated in Figures D.3 and D.4 show 

considerable deviations in compressibility factor in the subcritical region and in the 

supercritical regions as well. The predictions improved when the EOS constants and 

parameters were reoptimized with the BWR model resulting in better predictions than the 

other models. 

Figures D.S to D.9 illustrate the variation of deviations in the compressibility 

factors with reduced density for methane. The compressibility factor predictions using the 

original EOS parameters were similar to those observed for carbon dioxide for all the 

models except for PRG EOS, which gives worse predictions in the subcritical region. 

Figures D. 10 and D .11 illustrate the variation of deviations in the compressibility 

factors with reduced density for nitrogen. The original EOS parameters were not available 

for the SPHCT, MSPHCT and PRG models, therefore no effort was made to present 

these models here. Both the models show similar behavior to that observed for methane 

and carbon dioxide, and upon reoptimizing the EOS parameters and the EOS constants 

the predictions improved significantly. 
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