
A VARIANT OF THE RESIDUAL

COMPLEXITY METRIC

By

ZAIN SAIFULLAH

Sarjana Matematika

Institut Teknologi Bandung

Bandung, Indonesia

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July 1995

OKLAHOMA STATE UNI1lERSITY

A VARIANT OF THE RESIDUAL

COMPLEXITY METRIC

Thesis Approved:

Dean of the Graduate College

11

ACKNOWLEDGMENTS

I would like to express my appreciation to and thank my thesis advisor Dr. Mansur H.

Samadzadeh for his advisement, guidance, and instruction throughout my thesis research

work.

I extend my appreciation to Drs. Blayne E. Mayfield and Huizhu Lu for serving on my

graduate committee.

I also would like to thank the Government of Indonesia for providing funds for my

graduate study through the Science and Technology for Industrial Development Program.

Finally, I would like to thank my family, my wife Maimun M. Naseeh and my son

Husamuddin Barroq, for their patience during my graduate studies.

111

T ABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. SOFTWARE COMPLEXITY METRICS... 3

2.1 Size Metric.. 3
2.2 Halstead's Software Science.. 4
2.3 Cyclomatic Complexity ... 5
2.4 Residual Complexity Metric (RCM) 5
2.5 Measurement Scales 6

III. WEYUKER'S EVALUATION CRITERIA ... 7

3.1 Definition and Properties.. 7
3.2 Sample Evaluation.. 8
3.3 Criticisms ... 9

IV. A VARIANT OF THE RESIDUAL COMPLEXITY METRIC (VRCM) 12

4.1 Evaluation of the Residual Complexity Metric 12
4.2 Definition ofa Variant ofRCM (VRCM) .. 14
4.3 Properties ofVRCM ... 16

4.3.1 Evaluation ofVRCM .. 16
4.3.2 Growth ofRCM and VRCM ... 19
4.3.3 Range ofVRCM ... 20

4.4 Approximation of the Value ofthe Number of Consecutive Tokens 22
4.4.1 An Approach to Approximate the Value of p 23
4.4.2 Relationships among N, p, q, k p ... 24
4.4.3 Constraints of the Approach 25
4.4.4 Analysis of the Tables 27

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK 30
5.1 Summary .. 30
5.2 Conclusions ... 30
5.3 Future Work .. 31

IV

REFERENCES 33

APPENDICES 36

A. Relationship Tables Among N, p, q, k P .. 37

A. 1 Type 1 Approach 1 ... 37
A.2 Type 2 Approach 1 ... 48
A.3 Type 2 Approach 2 ... 59

B. Glossary .. 70

v

LIST OF TABLES

I. Weyuker's evaluation criteria applied to some software complexity metrics .. 9

II. Evaluation ofRCM: Rl,Rl U,R2,R2U,R3,R3U,R4,R4U 14

VI

CHAPTER I

INTRODUCTION

Software metrics work can be defined as a method of evaluating the structural

attributes of software. Various software metrics have been proposed by researchers and

practitioners in the past 20 years. Generally, metrics are classified as product or process

metrics. Product metrics are indicators that measure some aspects of a software product,

such as a syntactic or structural aspect of a software product. Process metrics are

measurable indicators of the software development process, such as the number of errors

or the number of revisions. In addition to this classification, Fenton [F enton91] considers

resource metrics separately from process metrics. Resource metrics are indicators of the

inputs to / outputs from processes, both in the direct sense of input/output values and in

the indirect sense of environmental assumptions.

Attributes to be measured can be classified as internal and external attributes

[Fenton91]. Internal attributes are attributes that are measured based on one of three

entities: process, product, resources. External attributes are attributes that are measured

based on how the three entities relate to their environment. A number of metrics that

measure internal attributes relating to complexity metrics are discussed in the next

chapter.

In the last few years, more industrial companies have considered the usage of some

software metrics to evaluate their projects. Motorola reported that there have been some

benefits gained by applying software metrics [Daskalantonakis92]. Also, in three years of

1

2

the Hewlett-Packard's metrics program, Grady and Caswell concluded that there had been

fifteen advantages in using software metrics [Grady87].

With the existing large number of proposed metrics and new metrics being defined,

the general properties of software metrics that might lead metrics into becoming 'good

engineering tools' must be defined. Weyuker's evaluation criteria of software complexity

measures provided some of these properties [Weyuker88].

Chapter II of this thesis discusses some software complexity metrics, including the

Residual Complexity Metric (RCM), and their characteristics. Chapter III discusses

Weyuker's evaluation criteria of software complexity measures. Chapter IV describes a

Variant of the Residual Complexity Metric (VRCM), its properties, and some approaches

to solve a problem that can occur in using VRCM. Finally, Chapter V contains the

summary, conclusions, and some future areas of work.

CHAPTER II

SOFTWARE COMPLEXITY METRICS

The definition of complexity differs among researchers. Fenton defines complexity as

a term to capture all internal attributes of software [Fenton91]. This term is used by a

number of researchers to measure a number of internal (structural) product attributes. For

instance, a complexity metric can measure the size, modularity, or control-flow of a

program.

Much effort has been spent in attempting to capture software complexity. In general,

quantifying a software product is carried out by creating mappings from the internal

product attributes of the program into the real numbers. Some specific popular and well­

known software complexity metrics are described below. Other work in software metrics

aims to capture interconnectivity [KafuraS1] [RobillardS9], nesting depth [HarrisonS1]

[PiwowarskiS2], knot measure [Woodward79], or other control flow or data flow

attributes [MageIS1] [OviedoSO].

2.1 Size Metric

The size metric is one of the metrics generally used in software evaluation. This

metric measures various forms of size (magnitude) of a program. It can represent the lines

of code, number of tokens, number of functions, or other measures that are based on these

basic counts [ConteS6].

Line of code (LOC) is a simple and widely-used metric. HP's metrics program

considers LOC in its metric establishment [GradyS7]. The definition of LOC will affect

3

4

the complexity. For instance, whether comment lines, blank lines, or declaration lines in a

program should be considered as a factor in determining the complexity.

2.2 Halstead's Software Science

Halstead's metrics were developed usmg token counts as basic units. Halstead

[Halstead77] did his work on the basis of the number of operators and operands. As one

of the first pioneers in measuring complexity through software code, his publications have

received a lot of attention by researchers. Although researchers have performed many

validation studies on his results, there are some criticisms to these metrics [Shepperd94].

Some of Halstead's metrics are given below .

• Estimated Program Length

if = 111 log 111 + 112 log 112

where 111: number of unique operators

112 : number of unique operands

• Program Volume

V = (Nl + N2) log (111 + 112)

where N 1 : total number of operators

N 2: total number of operands

• Programming Effort

E = 111 N2 (Nl + N2)log(111 + 112)

2112

5

2.3 Cyclomatic Complexity

Cyclomatic complexity was proposed by McCabe [McCabe76]. He developed the

metric based on program control structure by applying a number of graph theoretic

concepts. Cyclomatic complexity for a (program flow) graph G with n vertices, e edges,

and p connected components is defined as

v(G) = e - n + 2p

McCabe demonstrated that

v(G) = II + 1

where II is the number of binary predicates in a program.

2.4 Residual Complexity Metric

Residual complexity metric (RCM) was proposed by Samadzadeh and Edwards

[Samadzadeh88]. Experimental validation of this metric in software maintenance phase

using industrial data was performed by Samadzadeh and Nandakumar [Samadzadeh91].

Their approach uses the operator and operand token classification, as well as their

refinements into statement type token such as sequential, conditional, iterative, input,

output, and processing tokens. All tokens are also classified in term of unique and non­

unique tokens.

Understanding a software document can be modeled by token partitioning

[Samadzadeh88]. The residual complexity metric was presented in order to measure the

remaining complexity that remained uncovered by a specific level of partitioning or

categorization of the tokens. The metric is derived based on the concept of computational

work that can be measured in terms of the entropy function as used in information theory.

The residual complexity is defined [Samadzadeh88] as

6

R = N llog N 1 + N 210g N 2 + ... + N q log N q

where N i stands for number of tokens in the ith block of the partition, and there are a

total of q partitions of tokens.

Halstead's estimated program length can be directly derived from RCM. By choosing

a value of 2 for q, RCM becomes the estimated program length [Samadzadeh 88]. Thus

RCM can be viewed as a generalization of Halstead's estimated program length.

2.5 Measurement Scales

A definition of measurement is offered by Fenton [Fenton94] as follows.

Measurement is defined as the process by which numbers or symbols are
assigned to attributes of entities in the real world in such a way as to
describe them according to clearly defined rules.

By assigning numbers or symbols, measurement must preserve observations about objects

to be measured. Measurement activities must also have clear objectives. The

Goal/QuestionlMetric paradigm (GQM) of Basili and Rombach [Basili88] provides that

important point of a measurement system.

One important issue in the theory of measurement is scale. Measurement scale is

classified to clarify the different possible measurement representations of objects' attribute

[Fenton94]. There are four scale types (in increasing order): nominal, ordinal, interval, and

ratio [Conte86] [Fenton94] [Zuse89]. As an example, addition and subtraction operations

can be performed on measures belonging to the interval scale.

CHAPTER III

WEYVKER'S EVALUATION CRITERIA

3. 1 Definition and Properties

Weyuker proposed several evaluation criteria for syntactic or structural complexity

measures [Weyuker88]. A program in her paper consists of a program statement followed

by a program body, which in turn is followed by an output statement. To simplify the

discussion, the program body is called the program. The program is the object to be

measured in the evaluation process.

She developed a system to evaluate complexity measures by defining a general set of

properties for complexity measures that will help "to clarify the strengths and weaknesses

of existing and proposed complexity measures" [Weyuker88]. The main goal of the

evaluation criteria is to define rigorous properties for a formal definition of software

complexity measures.

The proposed properties and some of the definitions dealing with Weyuker's

evaluation criteria follow [Weyuker88]. Let P, Q, and R be programs. IPI denotes the

complexity of program P. P;Q denotes the concatenation of programs P and Q.

<Property 1> (3P) (3Q) (IFI :f:. IQI)
There are programs that have different complexities.

<Property 2> Let c be a nonnegative number, there are only finitely many programs of
complexity c.

<Property 3> There are distinct programs P and Q such that IPI = IQI.

7

<Property 4> (::3P) (::3Q) (P=Q & IPI * IQI).
There are programs that compute the same function, but have different
complexities.

<Property 5> (VP) (VQ) (IPI ~ IP;QI and IQI ~ IP;QI)
Complexity of a program P is less than or equal to that of the
concatenation ofP and another program.

8

<Property 6a> (::3P) (::3Q) (::3R) (IPI = IQI & IP;RI * IQ;RI)
<Property 6b> (::3P) (::3Q) (::3R) (IPI = IQI & IR;PI * IR;QI)

There are programs that have the same complexity, but the concatenation
of those programs and another program give different results in terms of
their complexities.

<Property 7> There are program bodies P and Q such that Q is formed by permuting the
order of the statements ofP, and IFI *IQI·

<Property 8> IfP is a renaming ofQ, then IPI = IQI.

<Property 9> (::3P) (::3Q) (IPI + IQI < IP;QI)
There are programs where the complexity of their concatenation is less
than that of the same programs computed separately and added together.

Properties 1 through 3 are about properties of measures. Property 4 says that the

complexity of a function relies on its implementation. Property 5 states the monotonicity

property of a measure. Properties 6, 7, and 9 deal with interactions among subprograms.

Property 8 states the effect of changing variable names.

3.2 Sample Evaluation

Weyuker performed her evaluation on a number of complexity metrics [Weyuker88].

The metrics which were covered in her evaluation were statement count, cyclomatic

complexity, Halstead's programming effort, and Oviedo's data flow complexity. The

evaluation of the metrics are given in Table I.

Cyclomatic complexity cannot fulfill Property 2. The cyclomatic complexity is based

on the control statement of a program. It does not consider other statement types. For a

particular value of the cyclomatic complexity, we can create infinitely many instances of

9

other statement types. Therefore, infinitely programs can be created with the same

cyclomatic complexity.

Table I. Weyuker's evaluation criteria applied to some software
complexity metrics (Source: [Weyuker88])

Property Statement Cyc.Comp. Effort Data Flow
Count Compo

I y Y Y Y
2 Y N Y N
3 Y Y Y Y
4 Y .y Y Y
5 Y Y N N
6 N N Y Y
7 N N N Y
8 Y Y Y Y
9 N N Y Y

Table I also shows that statement count, cyclomatic complexity, and effort cannot

satisfy Property 7 that covers statement arrangement or token order. As a general rule,

every token count measures do not consider arrangement or order [Weyuker88]. This

property will be stressed in this thesis work.

3.3. Criticisms

An earlier attempt to define software complexity measures axiomatically was

performed by Prather [Prather84]. The three axiomatic criteria proposed by Prather

govern the structural behavior of software measures. These evaluation criteria are less

restrictive than those of Weyuker's [Shepperd93]. This generalization can lead to the

overall weakness of the evaluation criteria.

There are a number of criticisms of these evaluation criteria. First, There is no

compatibility of the scale of measurement in all properties of these evaluation criteria. As

an example, two properties (Properties 5 and 6) have contradictory scales of measurement

10

[Fenton94]. Property 5 of Weyuker's evaluation criteria reqUires the ratio scale, but

Property 6 excludes the ratio scale.

The second criticism is in regard to the generalization of all attributes of software

complexity measures. Although she tries to define the properties in general terms (not

many details), in order to cover the general properties of software complexity measures,

Weyuker's work cannot capture all attributes of software complexity measures. As an

example, Property 5 has much to do with the size rather than the comprehensibility in

determining complexity. On the other hand, in Property 6, comprehensibility contributes

more to the complexity than software size [Fenton94].

Another criticism is that these evaluation criteria work at the code level. They cannot

work at the design level. Property 2 says that from a certain value of complexity, we can

create finitely many programs. In design level, given a particular complexity level, we can

create infinitely many program designs. As a result, infinitely many programs can be

created [Shepperd93].

From the previous two criticisms, it can be inferred that the criteria are not general

(complete) for evaluating software complexity measures. They evaluate some important

aspects of software complexity measures. More specifically, on the completeness of

Weyuker's axioms, Fenton [Fenton94] states that:

More importantly, what they fail to observe, is that Weyuker did not
propose that the axioms were sufficient; she only proposed that they
were necessary.

Another aspect of this criticism, because of the weakness of the generalization of

axioms, is that the complexity of a software document cannot be determined by mapping

a software document directly to a single real number [Fenton94]. A set of mappings is

more realistic. Some hybrid metrics, which combine two or more software metrics, are

alternatives to eliminate this weakness [Harrison81] [Hansen78] [Ramamurthy88]. A

combination of a number of metrics using factor analysis was proposed by Munson and

11

Khoshgoftaar [Munson89] to address the generalization weakness of Weyuker's

evaluation criteria. This proposed hybrid metrics together with its empirical validation was

primarily concerned with the dimensionality of metrics. From the orthogonal metrics

resulting from factor analysis, Munson and Khoshgoftaar constructed a relative complexity

metric that measures the overall program complexity by creating a mapping from the

representative metrics of each orthogonal metric into a single real number. This relative

complexity metric is calculated using the covariance matrix of the representative metrics

and their corresponding eigenvalues [Munson90] [Khosgoftaar94].

It can be argued that the meaning of attributes to be measured is more important than

merely satisfying the properties of Weyuker's evaluation criteria. Cherniavsky and Smith

demonstrated that they can create a metric that satisfies all properties, but is not a sensible

measure of complexity [Cherniavsky91l McColl and McKim [McCo1l92] developed a

metric that satisfies all nine properties of Weyuker's evaluation criteria, and which works

on a structured language known as WHILE language.

CHAPTER IV

A VARIANT OF THE RESIDUAL COMPLEXITY METRIC (VRCM)

4. 1 Evaluation of the Residual Complexity Metric

The tokens used in the experimental validation of RCM by Samadzadeh and

Nandakumar [Samadzadeh91] were the operator and operand tokens (R1); the sequential,

conditional, and repetitive tokens (R2); the input, output, and processing tokens (R3);

and the refinement of operator (arithmetic, logical, and system) tokens and the refinement

of operand (constant, and variable) tokens (R4); as well as their non-unique tokens

(RIU,'R2U, R3U, and R4U),

RCM was evaluated using Weyuker's criteria. Properties 1, 3, 4, and 8 of Weyuker's

evaluation criteria are clearly satisfied by RCM. The result of the study on the rest of the

properties applied to RCM are reported below.

First, let's examine the applicability of Property 2 to RCM. If a particular value of

RCM and the number of unique tokens are given, the total number of tokens N and the

possible total number of tokens that belongs to each particular block of the partition

N i depend on these values. The last two values are finite because, from the definition of

RCM, these values are less than a given particular value of RCM, i.e. Ni::;; N < R for N>

l. For N = 1, those values are also clearly finite. From this finite total number of tokens,

we can build finitely many programs of certain complexity. Therefore, Property 2 holds.

It is clear from the definition of RCM that additional tokens can increase the

complexity as measured by RCM. If an additional token is a new token type, the

12

13

complexity remains the same. Otherwise, the complexity becomes larger. Therefore,

Property 5 holds.

To satisfy Property 6, for unique and non-unique cases of RCM, we choose two

programs P and Q that have the same complexity. Let q = 2 and let P consist of n tokens

of the first type and n+ 1 tokens of the second type. Q consist of n+ 1 first type tokens and

n second type tokens. Let R contain 1 first type tokens. The complexity of P and Q is the

same, but IP;RI ":1= IQ;RI. Hence, Property 6a holds.

Using the same reason stated by Weyuker [Weyuker88], the complexity calculated by

RCM is independent from the placement of tokens in a program. Position of tokens in a

program does not affect the complexity as calculated by RCM. Permuting the order of

tokens does not change the complexity. Therefore, Property 7 cannot be satisfied by the

RCM.

To satisfy Property 9, choose programs P and Q such that the complexity ofP and Q

are given by

IPI = A log A + B log B

IQI = Clog C + D log D

where A, B, C, D > 0 and they are the number of tokens in the corresponding classes.

The complexity of the concatenation of programs P and Q is given by

(A + C) log (A + C) + (B + D) log (B + D)

= A log (A + C) + C log (A + C) + B log (B + D) + D log (B + D)

> A log A

> IPI + IQI

+ Clog C + B log B

Therefore, Property 9 holds. Table II shows the results.

+ D log D

Table II shows that the original RCM satisfies 8 of the 9 properties of Weyuker's

evaluation criteria for software complexity metrics. Property 7, which RCM does not

satisfy, was originally defined based on the assumption that the complexity becomes larger

(or at least does not decrease) with additional program bulk because of the potential

14

interactions among the units. It also shows that RCM with the above token

categorizations is not responsive to unit arrangement and token order.

Property RI RIU R2 R2 U R3 R3 U R4 R4U
1 Y Y Y Y Y Y Y Y
2 Y Y Y Y Y Y Y Y
3 Y Y Y Y Y Y Y Y
4 Y Y Y Y Y Y Y Y
5 Y Y Y Y Y Y Y Y
6 Y Y Y Y Y Y Y Y
7 N N N N N N N N
8 Y Y Y Y Y Y Y Y
9 Y Y Y Y Y Y Y Y

4.2 Definition ofa Variant ofRCM (VRCM)

Every bulk or token count measure, which categorizes the tokens of a program

directly, is not responsive to the unit arrangement or token order property of Weyuker's

evaluation criteria. To satisfy Property 7, a token categorization of RCM has to consider

the token order. This consideration leads to the definition of a variant of RCM hereafter

referred to as VRCM.

A variant of the residual complexity metric is developed by applying the concept of

context locality, i.e., the original locality of tokens, to the original residual complexity

metric definition. Partition classes for calculating VRCM are created based on the number

of consecutive token. It can be observed that a token must consider a number of previous

and subsequent tokens as its context.

Locality of tokens is bounded by how far (measured by "distance") each token can

interact with other tokens as far as program comprehensibility is concerned. The maximum

distance, at which a token is allowed to interact with other tokens in this thesis work, is

15

called the range of consecutive tokens. Let P and q be the range of consecutive tokens and

the number of original token types, respectively. At the beginning and at the end of a

program, there are classes that have lengths less than p (because there are no other

previous or subsequent tokens to be observed). For this reason and for token

concatenation, a null token is added to the original set of tokens. For p = 1, the number of

possible partition classes is equal to the number of different token types, i.e., q + l.

Constant 1 represents the additional null token. For p > 1, the order of the original token

types affects the forming of the partition classes of VRCM. Positions of the original token

types, within the range of consecutive tokens, determine the total number of possible

classes that can be created. For each position of an original token type, as mentioned

earlier for p = 1, the number of possible partition classes is q + 1. If p is given, the number

of all possible classes that can be created is the product of the number of all possible

classes for each position, i.e., (q + 1) (q + 1) ... (q + 1) = (q+ I)P. Omitting a class all of

whose elements are null, the total number of possible classes will be (q + 1) P - 1. As an

example, let the original token set be {X,Y} and p = 2. The set of all possible classes that

can be created is {XX, XY, Xe, YY, YX, Ye, ee, eX, eY}, where e represents the null

token.

Based on the definition ofRCM, which is
q

R = 'L(NjlogNj)
j = 1

VRCM is defined as
s

Rv = 'L(NjlogNj) ,
j = 1

s = (q+l)P -1,

But the elements of the classes that contain null tokens do not contribute to the

complexity because each class only has one member . Therefore, VRCM can be written as
s

Rv = 'L(NjlogNj),
j = 1

s=qP,

16

where p, q, R, and Rv stand for the range of consecutive tokens, the number of original

token partitions, RCM, and VRCM, respectively.

4.3 Properties ofVRCM

4.3.1 Evaluation ofVRCM

The formal definition of VRCM is the same as the formal definition of RCM, except

for the total number of possible classes. Some of the observations and results about

VRCM are similar to those ofRCM.

Properties 1, 3, 4, and 8 of Weyuker's evaluation criteria are clearly satisfied by

VRCM. The results of the study on the other five properties applied to VRCM are

presented below.

Using the same reasoning as in the evaluation ofRCM, VRCM satisfies Properties 2

and 5 . For Property 2, given a particular value of R v' N i ::; N < R v for N > 1. For N = 1,

those values are also clearly finite. Therefore, Property 2 holds.

The proof of Theorem 1 (in Subsection 4.3.2 below) provides an argument for

satisfying Property 5. It states that additional tokens at the end of a program cannot

decrease the complexity as measured by VRCM. Therefore, Property 5 holds.

To satisfy the rest of the properties (properties 6a, 7, and 9), we use proof by

examples due to the use of existential quantifiers in some of the properties. Some of the

properties in Weyuker's evaluation criteria indicate that we need the availability of at least

one program that can satisfy those properties. For Property 6a, Example 1 below shows

another approach that differs from that of the evaluation of RCM. This example also

shows that Property 9 is satisfied by VRCM. Furthermore, Example 2 below shows that

VRCM satisfies Property 7. Thus VRCM satisfies all of the 9 properties of Weyuker's

evaluation criteria.

17

In the next two examples, consider a token classification that consists oflhree types

of token (q=3): conditional (C), iterative (I), and sequential (S) [Samadzadeh91]. Let p =

2, then there are qP = 9 possible partition classes that can contribute to the complexity.

The partition classes are {CC, CI, CS, II, IC, IS, SS, SC, SI}, where CC stands for the

first and the second token being conditional tokens, CI stands for the first token being a

conditional token and the second token being an iterative token, etc. Examples below

show that Properties 6, 7, and 9 hold. The partition class names, e.g., SS or SC, are used

in the following two examples to refer to the size of each respective partition class as well.

Example 1:

ProgramP Token Program Q Token ProgramR
Type Type

x = 3~ S x = 3~ S forG=Oj<=2j++){
Y = 7~ S y= 7; S ifG=O) {
for(i=0;i<=3 ;i++){ I if(x==3) { C j = 7;

if(x=3) { C for(i=0;i<=3 ;i++) { I printf("%d II ,j)~
y=x+y; S y=x+y; S } }
if(y> 0) { C if(y> 0) { C

x = 3x + 7; S x = 3x + 7~ S
y= O~ S Y = O~ S

} } } } } }

IPI = SS log SS + SI log SI + IC log IC + CS log CS + SC log SC
= 2 log 2 + 1 log 1 + 1 log 1 + 2 log 2 + 1 log 1
= 4 log 2

IQI = SS log SS + SC log SC + CI log CI + IS log IS + CS log CS
= 2 log 2 + 2 log 2 + 1 log 1 + 1 log 1 + 1 log 1
= 4 log 2

IRI = IC log IC + CS log CS + SS log SS
= 1 log 1 + 1 log 1 + 1 log 1
=0

Token
Type

I
C
S
S

IP;RI = SS log SS + SI log SI + IC log IC + CS log CS + SC log SC
= 3 log 3 + 2 log 2 + 2 log 2 + 3 log 3 + 1 log 1
= 6 log 3 + 4 log 2

IQ;RI = SS log SS + SC log SC + CI log CI + IS log IS + CS log CS + SI log SI
+ IC log IC

= 3 log 3 + 2 log 2 + 1 log 1 + 1 log 1 + 2 log 2 + 1 log 1 + 1 log 1
= 3 log 3 + 4 log 2

IPI = IQI, but IP;RI "* IQ;RI· Therefore, Property 6a holds.

IPI + IRI < IP;RI· Therefore, Property 9 holds.

Example 2:

ProgramP Token Program Q
Type

x=3; S x=3;
y=7; S for(i=0;i<=3;i++) {
for(i=0;i<=3;i++) { I y=7;

if(x==3) { C if(x==3) {
y=x+y; S y=x +y;
if(y> 0) { C if(y> 0) {

x= 3x + 7; S x = 3x + 7;
y=O; S y=O;
z=2x; S z=2x;

} } } } } }

Q is formed by interchanging the second and third lines in P.

IPI = SS log SS + SI log SI + IC log IC + CS log CS + SC log SC
= 3 log 3 + 1 log 1 + 1 log 1 + 2 log 2 + 1 log 1
= 3 log 3 + 2 log 2

IQI = SI log SI + IS log IS + SC log SC + CS log CS + SS log SS
= 1 log 1 + 1 log 1 + 2 log 2 + 2 log 2 + 2 log 2
= 6 log 2

IPI"* IQI

Therefore, Property 7 holds.

Token
Type

S
I
S
C
S
C
S
S
S

18

19

4.3.2 Growth ofRCM and VRCM

As a variant of RCM, VRCM should retain specific properties of RCM.

Concatenation of programs is one of the issues in Weyuker's evaluation criteria. This issue

leads to another aspect of programs, i.e., the size growth. The theorem below addresses

the growth of token counts for RCM and VRCM.

Theorem 1:

VRCM maintains the growth direction ofRCM under concatenation of tokens.

Proof:

Let P and Q be sequences of tokens.

For RCM,
q

R(P) = "L(NilogNi)
i = 1

Additional tokens will increase N, the total number of tokens. If additional tokens

belong to empty classes, then R(P;Q) = R(P). If there is at least one additional token that

belongs to a non-empty class, we have R(P;Q) > R(P). Therefore R(P) ~ R(P;Q).

The same reasoning holds for VRCM. With additional tokens at the end of P, the

classes that have null tokens at the end of P become classes that have no null token. If

additional tokens belong to empty classes, then Rv(P;Q) = Rv(P). Otherwise,

Rv (P) < Rv (P;Q). Therefore, Rv (P) ~ Rv (P;Q).

•
This theorem says that VRCM maintains the same growth direction as RCM. It also

says that VRCM is not really a new metric. It is a modification ()f the RCM then considers

token order.

20

4.3.3 Range ofVRCM

To determine the range ofVRCM, the maximum and minimum values ofVRCM must

be examined. Lemma 1 below gives the maximum value of both RCM and VRCM. This

lemma also indicates a critical point that yields the maximum value.

Lemma 1:

The maximum value of RCM and VRCM is N log N which occurs when all tokens

belong to one partition class.

Proof:

Assume that the maximum value occurs when tokens belong to more than one

partition class. Then, by definition,
q

R = 'L(Ni logNi)
i = 1

q
where q>l, Ni:to 0, and 'LNi = N

i = 1

But,

NlogN= (Nl + N2+···+ Nq)log(Nl + N2+"'+ N q)

= Nllog(Nl + N2+'··+ N q) + N2 log(Nl + N2+···+ N q)

+ ... + Nqlog(Nl + N2+···+ N q)

> NllogNl + N2 IogN2+"'+ NqlogNq

Hence, the assumption that the maximum value occurs when more than one partition

class is created is wrong. Therefore, the maximum value occurs when the partitions

contain one class. By letting q = 1, the maximum value is N log N.

•
Without loss of generality, it is assumed that the domain of N i is a positive real

number for each i. This assumption is required to fulfill a necessary condition that a

21

function has partial derivatives (derivatives of a function on its particular independent

variable assuming that other independent variables are constant). Lemma 2 gives the

minimum value of this function.

Lemma 2:
q q

If q is given, the minimum value of "L (N i log N;) with constraints "L N i = N for
i = 1 i = 1

Ni ~ 1 and N; E positive real number, is t (N log N) .
; = 1 q q

Proof:

Using the Lagrange Multiplier [protter64],
q q

L(N;)= "L(NilogN;) + A(N - "LN;)
;=1 i=1

If L N i denotes the partial derivative of L respect to N;, then

L N i = log N i + 1 - A = 0 for each;

or

N; = N· J

Hence,

or

But,

N
N; =

q

(N / q , N / q , ... , N / q) is a critical point.

if; = j

otherwise

The quadratic form matrix of its partial derivative is not zero on its diagonal. The

value of elements on its diagonal is q / N. The eigenvalues of this matrix, AS, are

calculated [Scanlon67] as

22

q
IT (LN·N·-A) = 0

. 1 1 I
1=

Because L N iN i = q / N is positive for each i, A is also positive for all i. Therefore,

(N/q,N/q, ... ,N/q) is a point that gives a minimum value. By setting Ni = N/q, the

. . I' q (N I N) mInImUm va ue IS L - og- .
i = 1 q q

•
Theorem 2 below gives the possible range of values for VRCM. Using the same value

of q, the range ofVRCM is wider than that ofRCM. This is caused by the relatively larger

number of classes that VRCM has over RCM.

Theorem 2:

If N, q, and P are given, then q; (N log N I < VRCM < N log N.
i = 1 qP qp)

Proof:

From the definition of VRCM, the total number of partition classes that contribute to

the complexity is qP. Using Lemmas 1 and 2, the theorem holds.

•
4.4 Approximation of the Value of the Number of Consecutive Tokens

Calculation of RCM depends only on the total number of tokens N, the number of

tokens in each partition block N i, and the number of partition classes q. In the calculation

of VRCM, there is an additional parameter P (the number of consecutive tokens). With

this additional parameter, there is a problem that can occur in calculating VRCM. The

problem is how to determine the value ofp.

The larger the value of P, the larger the total number of partition classes that can be

created. On the other hand, the total number of tokens N increases at a much slower rate.

Hence, a larger value of P tends to cause the distribution of tokens to spread evenly in the

new token categorization. This spread lowers the value of VRCM. For example, a class

23

that has (a + b) members spreads its member into two new partition classes. The first class

get a members and the second class get b members. But (a + b) log (a + b) ~ a log a +

b log b. Therefore a larger the value of p tends to decrease the value of VRCM (decrease

the remaining complexity that remains uncovered by the current token partitioning). But,

there is still a limitation, in that the value of VRCM becomes zero, in the extreme case, if

so many partition classes are created.

4.4.1 An Approach to Approximate the Value ofp

To solve the problem of calculating token context in terms of the number of

consecutive tokens to be considered, we need a representation of p that has the ability to

measure the changes that are caused by the changes in the value of p. Let k p be a

constant that corresponds to a particular value of p assuming that Nand q are given.

Determining the value of p amounts to choosing the value of k p .

In this approach, the changes of the value of R v will be measured. The change can be

measured in terms ofp. To make it work, a representative value of Rv on eachp has to be

determined. In this approach, the average value of Rv on each p, Rp ' will be used as a

representative of R v on each p.

Two methods of determining a constant, k p' are chosen to measure the change of the

value of Rp. The constants are defined below.

• Relative difference of two consecutive values for Rp' i.e., Rp and Rp + 1

_ Rp -Rp +l
k p -

Rp

• Relative difference between Rp and the maximum value ofVRCM

NlogN - Rp
k - ------"'-

p - NlogN

24

The first constant will be useful if Rp is a monotonic non-increasing function of p. It

can measure the maximum tolerance of the changes of the average value of R v. The

second constant does not need the assumption that Rp is a monotonic non-increasing

function of p. It measures the percentage of the average understanding a document as

captured by token categorizations. For ease of reference, the first method of determining

the constant is called Type 1 and the second one is called Type 2.

4.4.2 Relationships among N, p, q, k p

As mentioned in the last subsection, the value of k p will determine the relationships

among N, p, and q. To calculate the value of k p' the value of Rp must be determined or

approximated. Based on this calculation or approximation, the appropriate constant type

k p can then be chosen.

Theorem 2 provides a basis for finding an approximate value for Rp. The average of

the two bounds for VRCM is chosen as an approximate value for Rp (determining better

approximate values for Rp is an area of future work). Rp can then be written as

Rp = 1/2 Nlog N + 1/2 q; ('!!"'-IOg.!!...-J
i = 1 qP qP

= 1/2 NlogN + 1/2 qP('!!"'-IOg.!!...-J
qP qP

N
= 1/2 Nlog N + 1/2 Nlog-

qP

= 1/2 NlogN + 1/2 NlogN - 1/2 Nlog qP

= N log N - 1/2 N p log q

Clearly R P is a linear function of p. On the basis of this linearity, we can use both of

the constants to measure the relative changes. Type 1 is calculated as

_ (N log N -l/2 Np log q) - (N log N -l/2 N (p + 1) log q)

(NlogN -l/2Nplogq)

_ -l/2 Np logq + l/2 Np logq + l/2 Nlogq
(NlogN -l/2Np logq)

l/2Nlogq = ----'------=---=-----
NlogN -l/2Nplogq

logq = __ ---=--c=----_

logN2 -logqP

Type 2 is calculated as

NlogN - Rp
k - ---------''--
p- NlogN

NlogN -(NlogN -l/2Nplogq)
=--=-~-~-~-~~~

NlogN

l/2plogq = --'--=-----=--=-
logN

logqP = ----=~-:::-
logN2

4.4.3 Constraints of the Approach

25

There are two main constraints in this approach. First, in determining the value of

Rp ' it is assumed that N is a real number. In fact, the number of tokens belonging to
qP

each partition class is an integer. To address this constraint, another method is applied,

i.e., using the nearest integer numbers. If f ~ l; J and C ~ I ; l and assuming that the

26

probability of f and c in substituting the value of N is the same (equally probable), then
qP

the minimum value of VRCM becomes

qP (N NJ 1/2 qP 1/2 qP
L -log- = L (c1ogc)+ L (flogf)

i = 1 qP qP i = 1 i = 1

P
= L[(clogc) + (flogf)]

2
P

= L[(f + l)log(f + 1) + flogf]
2

As a result, the value of R P becomes

1 1
-NlogN +-qP[(f + l)log(f + 1) + flogf]
2 4

In this case, Rp is not a monotonic function of p. This is caused by the non-

monotonic behavior of the floor function. Based on this reason, Type 2 is an appropriate

constant that measures the changes. The constant can be written as

NlogN-Rp
k - --------''-
P- NlogN

_ NlogN - {1/2NlogN + 1/4 qP[(f + l)log(f + 1)+ flogf]}

NlogN

= l/2NlogN -l/4 qP[(f + l)log(f + 1) + flogf]

NlogN

For ease of reference, this approximation IS called Approach 2 and the previous

approximation is called Approach 1.

27

Another constraint of having three approximate values is the possible values of p and

q. From the value of Rp ' the value of qPis bounded above by the total number of tokens,

N, because of the behavior of the logarithmic function. In fact, if particular values of N and

q are given, we can assign the value of p up to N. This constraint says that the approaches

cannot measure the change of the value of VRCM on a large number of possible partition

classes.

4.4.4 Analysis of the Tables

The relationships among the parameters of VRCM are shown in Appendix A The

relationships are given by choosing some values for the parameters. With the assumption

that there is a maximum total number of token N corresponding to a program module, in

this analysis we choose the total number of tokens to be up to 150. Because of the

monotonicity property of Rp as function of p, for any particular values of Nand q, the

value of k p also inherits that monotonicity property, as shown in mathematical

expressions of this constant in Subsection 4.4.2. This indicates that regardless of the value

of N, the monotonicity property is preserved. For the example in Appendix A, we assume

150 is large enough. By repeatedly adding 5 to N, starting from 5, the tables are created.

F or a particular value of N, all possible values of p and q are considered in this analysis.

Appendix Al covers Type 1 and Approach 1. Appendix A2 covers Type 2 and Approach

1. Finally, Appendix A3 covers Type 2 and Approach 2.

For Type 2, after choosing a particular value of k p , for a particular value of N and q,

the value of p can be determined from the corresponding table, and vice versa. For Type 1,

it can be done in the same manner, but it does not determine the value of p directly. It

works based on the consecutive values ofp, i.e.,p andp + 1. As mentioned in Section 4.4,

Type 1 can measure the maximum tolerance of the changes of the average value of

VRCM. Therefore, p + 1 corresponds to the value of k p .

28

Based on the tables in Appendix A, the properties of the approaches are described

below.

• For Approach 1, if p and q become larger, the value of the relative difference (k p)

becomes larger too. It shows that k p is a monotonic non-decreasing function of p. For

Type 1, q has a greater influence on the relative difference than p does. For Type 2, we

cannot conclude which one has a greater influence. At some points, q has a greater

influence than p does, and vice versa.

• For Approach 1, Type 1 the relative difference becomes smaller with the increasing

value of N, for particular values of p and q. At some values of N, the values of k p are

almost the same. Furthermore, at large values of N, the relative difference between two

consecutive values of p is also almost the same. Conversely, at the small values of N, these

values have large differences.

• For Type 2, the values of the relative difference at the largest possible values of p at

some points are 0.5. The definition of the relative difference of Type 2 says that this value

can be achieved whenever the value of VRCM is O. At these points, the boundary

constraint is not a problem. In fact, the value of 0.5 is achieved whenever N = qP. From

the tables, generally, those values are around 0.4. This fact indicates, although there are

some boundary constraints, that the approaches can capture a large percentage of average

of understanding a document. From the tables, the range of Approach 1 for this type is

0.34 - 0.50. The range of Approach 2 is 0.32 - 0.46.

• In general, the properties of Approach 2, Type 2 are the same as the properties of

Approach 1, Type 2. But, because of the behavior of the floor function, there are

exceptions on some points. There can arise cases where with a larger value of q, a smaller

value of the relative difference would result. For example, let N = 120 and p = 2. The

29

values of the relative differences for q = 8, 9, 10 are 0.46, 0.45, and 0.44, respectively.

These exceptions violate the expected behavior of R p that says, from the mathematical

expression of Rp ' that the larger the value of q, the smaller the value of Rp ' and from the

definition of Type 2, this increases the value of k p.

CHAPTER V

SUMMARY, CONCLUSIONS, AND FUTURE WORK

5.1 Summary

In Chapter I, a general classification of software metrics and a classification of

software attributes to be measured were introduced. Chapter II discussed the definition of

software complexity and some specific software complexity metrics, especially the

Residual Complexity Metric (RCM). Chapter III described Weyuker's evaluation criteria

that contain 9 properties. Some criticisms of these evaluation criteria were also presented.

Two main criticisms were the omission of the consideration of the scales of measurement

and the incapability of the evaluation criteria in becoming a general measurer. Chapter IV

described the evaluation of RCM using Weyuker's evaluation criteria. A variant of RCM

was proposed in that chapter in order to satisfy Property 7 that covers token order. The

properties of VRCM and two approaches to determine the ranges of consecutive tokens

were also presented in that chapter.

5.2 Conclusions

The proposed VRCM is developed by applying the concept of context locality to the

original RCM definition. VRCM satisfies all properties of Weyuker's evaluation criteria.

VRCM also maintains the same growth direction as RCM. Determining the value of the

number of consecutive tokens p is carried out by determining a constant that can represent

p. Two approaches and two types of constants are proposed. These constants,

30

31

referred to as the relative differences, measure the changes that are caused by the changes

in the value of p.

The relationships among the parameters of VRCM are presented in tables in

Appendix A. Approach 2, using the fact that VRCM is actually computed based on

integers, has a property that at some points possibly violates behavior of R p (average

value of understanding a document) defined on section 4.4. Approach 1 has no violation

of behavior of R p' but it works on real numbers as a generalization of VRCM. This

generalization is a weak point of Approach 1.

There is a boundary constraint of the parameters of VRCM. The tables show that the

theoretical approach of Type 2 can cover a large portion of the possible values of

complexity (or a user's current level of a document's understanding). In reality, the full or

almost full coverage of that understanding, by choosing a large value for p, will cause the

metric, its distinguishing power, in that it will lose its ability to differentiate documents.

5.3 Future Work

Theorem 1 in Chapter IV says that VRCM is not a new metric. It also shows that

concatenation of programs cannot decrease the complexity as measured by both RCM and

VRCM. However, inserting additional tokens in the middle of a program can possibly

decrease the value of VRCM. This phenomenon can be explained by the following

example. Program P in Example 1 in Subsection 4.3.1 can be written as SSICSCSS. The

complexity of this program is 4 log 2. Suppose token I is inserted between the sixth token

(C) and seventh token (S). This new program can be written as SSICSCISS. This token

insertion causes class CS to have only one member (previously it had 2 members), thus

decreasing the value of VRCM. On the other hand, this token insertion causes the classes

CI and IS both to have one member (previously they had no members), thus adding

nothing to the value of VRCM. Therefore, the net result decreases the complexity as

32

measured by VRCM. In this example, the value of VRCM becomes 2 log 2. This anecdote

suggests that experimental validation of VRCM is needed as an area of future work. It is

also worth noting that Weyuker's evaluation criteria do not include the case of additional

tokens inserted in the middle of a program.

In the approaches to determine the value of p, the minimum value of VRCM is used.

This value is achieved based on the assumption that all tokens belong to all possible

classes with the same probability. In fact, there are classes that have no members in

VRCM. For example, in program P in Example 1 in Section 4.3, there are only 5 partition

classes out of 9 that have members. Hence, an experimental work that studies the

distribution of the non-empty and non-singleton classes as a function on p is needed. This

distribution can determine the 'practical' minimum value ofVRCM on eachp.

The two approaches in determining the values of p (as mentioned in Section 4.4) have

weaknesses. Specifically, in Approach 2, an improvement of the approach is required. The

improvement can be done on a theoretical basis or through some adjustments such as an

adjustment to the value k p in the points that violate the behavior of Rp.

Instead of using the relative difference of Type 2, the ratio of R p and the maximum

value of VRCM can be used. This constant measures the residual understanding of a

software document.

RCM is derived based on the concept of computational work that can be measured in

terms of the entropy function as used in information theory. Information theory analysis of

VRCM is also an area of future work.

Finally, as mentioned in Section 4.4, determining the approximate values of Rp '

which can represent the average value ofVRCM better, is an area of future work.

REFERENCES

[Basili88] V. Basili and D. Rombach, liThe tame project: Towards improvement- .
orientated software environments", IEEE Transactions on Software Engineering, Vol. 14,/
No.6, pp. 758-773, June 1988.

[Cherniavsky91] J. C. Cherniavsky and C. H. Smith, liOn Weyuker's Axioms For Software
Complexity Measures II , IEEE Transactions on Software Engineering, Vol. 17, No.6, pp./
636-638, June 1991.

[Conte86] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, "Software Engineering Metrics
andModels", The Benjamin/Cummings Publishing Co., Menlo Park, CA, 1986.

[Daskalantonakis92] M. K. Daskalantonakis, "A Practical View of Software Measurement
and Implementation Experiences Within Motorola", IEEE Transactions on Software'/
Engineering, Vol. 18, No. 11, pp. 998-1010, November 1992.

[Ejiogu91] L. E. Ejiogu, "Software Engineering with Formal Metrics", QED Technical
Publishing Group, Wellesley, MA, 1991.

[Fenton91] N. E. Fenton, "Software Metrics: A Rigorous Approach II , Chapman & Hall,
London, UK, 1991.

[Fenton94] N. E. Fenton, "Software Measurement: A Necessary Scientific Basis", IEEE
Transactions on Software Engineering, Vol. 20, No.3, pp. 199-206, March 1994. v

[Grady87] R. B. Grady and D. L. Caswell, "Software Metrics: Establishing a Company­
Wide Program II , Prentice-Hall Inc., Englewood Cliffs, NJ, 1987.

[Halstead77] M. H. Halstead, "Elements of Software Science II , Elsevier, New York, NY,
1977.

[Halstead79] M. H. Halstead, "Advances in Software Science", Advances in Computers,
Vol. 18, Academic Press Inc., New York, NY, pp. 119-172, 1979.

[Hansen78] W. J. Hansen, "Measurement of Program Complexity by the Pair", ACM
SIGPLAN Notices, Vol. 13, No.3, pp. 29-33, March 1978.

[Harrison81] W. Harrison and K. Magel, "A Complexity Measure Based on Nesting
Level II , ACM SIGPLAN Notices, Vol. 16, No.3, pp. 63-74, March 1981.

33

34

[Kafura81] D. Kafura and S. Henry, "Software Quality Metrics Based on
Interconnectivity", J. Systems and Software, Vol. 2, No.2, pp. 121-131, June 1981.

[Khoshgoftaar94] T. M. Khoshgoftaar, 1. C. Munson, and D. L. Lanning, "Alternative
Approaches for the Use of Metrics to Order Programs by Complexity", J. Systems and
Software, Vol. 24, No.3, pp. 211-221, March 1994.

[MageI81] K. Magel, "Regular Expressions in a Program Complexity Metric", ACM
SIGPLAN Notices, Vol. 16, No.7, pp. 61-65, July 1981.

[McCabe76] T. 1. McCabe, "A Complexity Measure", IEEE Transactions on Software
Engineering, Vol. SE-2, pp. 308-320, December 1976.

[McCo1l92] R. B. McColl and 1. C. McKim, Jr., "Evaluating and Extending NPath as a
Software Complexity Measure", J. Systems and Software, Vol. 17, No.3, pp. 275-279,
March 1992.

[Munson89] 1. C. Munson and T. M. Khoshgoftaar, "The Dimensionality of Program
Complexity", Proceedings of the J J th International Conference on Software Engineering,
Pittsburgh, PA, pp. 245-253, 1989.

[Munson90] 1. C. Munson and T. M. Khoshgoftaar, "Applications of a Relative
Complexity Metric for Software Project Management", J. Systems and Software, Vol. 12,
No.3, pp. 283-291, July 1990.

[Nandakumar89] C. K. Nandakumar, Quantifying the Software Maintenance Task: An
Empirical Study of Complexity Metrics Across Versions, MS Thesis, Computer Science
Department, Oklahoma State University, Stillwater, OK, May 1989.

[Oviedo80] E. I. Oviedo, "Control Flow, Data Flow and Program Complexity",
Proceedings ofCOMPSAC80, Chicago, IL, pp. 146-152, 1980.

[Piwowarski82] P. Piwowarski, "A Nesting Level Complexity Measure", ACM SIGPLAN
Notices, Vol. 17, No.9, pp. 44-50, September 1982.

[Prather84] R. E. Prather, "An Axiomatic Theory of Software Complexity Measure", The
Computer Journal, Vol. 27, No.4, pp. 340-347, November 1984.

[Protter64] M. H. Frotter and C. B. Morrey, Jr., "Modern Mathematical Analysis",
Addison-Wesley Publishing Co., Inc., Reading, MA, pp. 176-183, 1964

[Ramamurthy88] B. Ramamurthy and A. Melton, "A Synthesis of Software Science.
Measures and the Cyclomatic Number", IEEE Transactions on Software Engineering, /
Vol. 14, No.8, pp. 1116-1121, August 1988.

35

[Robillard89] P. N. Robillard and G. Boloix, "The Interconnectivity Metrics: A New
Metric Showing How a Program is Organized", J. Systems and Software, VoL 10, No.1,
pp. 29-39, July 1989.

[Samadzadeh88] M. H. Samadzadeh and W. R Edwards, Jr., A Classification Model of
Software Comprehension, Computer Science Department, Oklahoma State University,
Stillwater, OK, OSU-CIS-TR-88-01, 30 pages, 1988.

[Samadzadeh91] M. H. Samadzadeh and C. K Nandakumar, "A Study of Software
Metrics", J. Systems and Software, VoL 16, No.3, pp. 229-234, November 1991.

[Scanlon67] J. C. Scanlon, "Advanced Calculus", D. C. Heath and Co., Boston, MA, pp.
119-124, 1967.

[Shepperd93] M. Shepperd and D. Ince, "Derivation and Validation of Software
Metrics", Oxford University Press Inc., New York, 1993.

[Shepperd94] M. Shepperd and D. C. Ince, "A Critique of Three Metrics", J. Systems and
Software, VoL 26, No.3, pp. 197-210, September 1994.

[Weyuker88] E. J. Weyuker, "Evaluating Software Complexity Measures", IEEEJ
Transactions on Software Engineering, VoL 14, No.9, pp. 1357-1365, September 1988.

[Woodward79] M. R Woodward, M. A Hennell, and D. Hedley, "A Measure of Control
Flow Complexity in Program Text", IEEE Transactions on Software Engineering, VoL
SE-5, No.1, pp. 45-50, January 1979.

[Zuse89] H. Zuse and P. Bollmann, "Software Metrics: Using Measurement Theory to
Describe the Properties and Scales of Static Software Complexity Metrics", ACM
SIGPLAN Notices, VoL 24, No.8, pp. 23-33, August 1989.

APPENDICES

36

APPENDIX A: RELATIONSHIP TABLES AMONG N,p, q, kp

APPENDIX AI: TYPE 1, APPROACH 1

p=> 12 23 34 45 56 67 78
q
JJ
2 0.27
3
4
5
6
7
8
9
10

Relative difference for N = 10, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
JJ
2 0.18 0.22
3 0.31
4
5
6
7
8
9
10

37

38

Relative difference for N = 15, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.15 0.17
3 0.25
4
5
6
7
8
9
10

p=> 12 23 34 45 56 67 78
q
U
2 0.13 0.15 0.18
3 0.22
4 0.30
5
6
7
8
9
10

Relative difference for N = 25, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.12 0.14 0.16
3 0.21
4 0.27
5 0.33
6
7
8
9
10

Relative difference for N = 30, Type 1 Approach 1
p => 12 23 34 45 56 67 78
q
JJ
2 0.11 0.13 0.15
3 0.19 0.24
4 0.26
5 0.31
6
7
8
9
10

p=> 12 23 34 45 56 67 78
q
JJ
2
3
4
5
6
7
8
9
10

0.11
0.18
0.24
0.29

0.12 0.14 0.16
0.22

Relative difference for N = 40, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
JJ
2 0.10 0.12 0.13 0.15
3 0.17 0.21
4 0.23
5 0.28
6 0.32
7
8
9
10

39

40

Relative difference for N = 45, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
JJ
2 0.10 0.11 0.13 0.14
3 0.17 0.20
4 0.22
5 0.27
6 0.31
7
8
9
10

p=> 12 23 34 45 56 67 78
q
JJ
2 0.10 0.11 0.12 0.14
3 0.16 0.20
4 0.22
5 0.26
6 0.30
7 0.33
8
9
10

Relative difference for N = 55, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
JJ
2 0.09 0.10 0.12 0.13
3 0.16 0.19
4 0.21
5 0.25
6 0.29
7 0.32
8
9
10

41

Relative difference for N = 60, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.09 0.10 0.11 0.13
3 0.15 0.18
4 0.20
5 0.24
6 0.28
7 0.31
8
9
10

p=> 12 23 34 45 56 67 78
q
U
2 0.09 0.10 0.11 0.12 0.14
3 0.15 0.18
4 0.20 0.25
5 0.24
6 0.27
7 0.30
8 0.33
9
10

Relative difference for N = 70, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.09 0.10 0.11 0.12 0.14
3 0.15 0.17
4 0.19 0.24
5 0.23
6 0.27
7 0.30
8 0.32
9
10

42

Relative difference for N= 75, Type 1, Approach I
p => 12 23 34 45 56 67 78
q
JJ
2 0.09 0.10 0.11 0.12 0.13
3 0.15 0.17
4 0.19 0.24
5 0.23
6 0.26
7 0.29
8 0.32
9
10

p=> 12 23 34 45 56 67 78
q
JJ
2 0.09 0.09 0.10 0.12 0.13
3 0.14 0.17
4 0.19 0.23
5 0.22
6 0.26
7 0.29
8 0.31
9
10

Relative difference for N = 85, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
JJ
2 0.08 0.09 0.10 0.11 0.13
3 0.14 0.16 0.20
4 0.18 0.23
5 0.22
6 0.25
7 0.28
8 0.31
9 0.33
10

43

Relative difference for N = 90, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.08 0.09 0.10 0.11 0.13
3 0.14 0.16 0.19
4 0.18 0.22
5 0.22
6 0.25
7 0.28
8 0.30
9 0.32
10

p=> 12 23 34 45 56 67 78
q
U
2 0.08 0.09 0.10 0.11 0.12
3 0.14 0.16 0.19
4 0.18 0.22
5 0.21
6 0.24
7 0.27
8 0.30
9 0.32
10

Relative difference for N = 100, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.08 0.09 0.10 0.11 0.12
3 0.14 0.16 0.19
4 0.18 0.22
5 0.21
6 0.24
7 0.27
8 0.29
9 0.31
10 0.33

44

Relative difference for N = 105 Type 1 Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.08 0.09 0.10 0.11 0.12
3 0.13 0.15 0.18
4 0.18 0.21
5 0.21
6 0.24
7 0.26
8 0.29
9 0.31
10 0.33

p=> 12 23 34 45 56 67 78
q
U
2 0.08 0.09 0.09 0.10 0.12
3 0.13 0.15 0.18
4 0.17 0.21
5 0.21
6 0.24
7 0.26
8 0.28
9 0.31
10 0.32

Relative difference for N = 115, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.08 0.09 0.09 0.10 0.12
3 0.13 0.15 0.18
4 0.17 0.21
5 0.20
6 0.23
7 0.26
8 0.28
9 0.30
10 0.32

45

Relative difference for N = 120, Type 1 Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.08 0.08 0.09 0.10 0.11
3 0.13 0.15 0.17
4 0.17 0.20
5 0.20
6 0.23
7 0.26
8 0.28
9 0.30
10 0.32

p=> 12 23 34 45 56 67 78
q
U
2 0.08 0.08 0.09 0.10 0.11
3 0.13 0.15 0.17
4 0.17 0.20
5 0.20 0.25
6 0.23
7 0.25
8 0.27
9 0.29
10 0.31

Relative difference for N = 13 0, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.08 0.08 0.09 0.10 0.11 0.12
3 0.13 0.15 0.17
4 0.17 0.20
5 0.20 0.25
6 0.23
7 0.25
8 0.27
9 0.29
10 0.31

46

Relative difference for N = 135, Type I, Approach 1
p => 12 23 34 45 56 67 78
q
JJ
2 0.08 0.08 0.09 0.10 0.11 0.12
3 0.13 0.14 0.17
4 0.16 0.20
5 0.20 0.24
6 0.22
7 0.25
8 0.27
9 0.29
10 0.31

p=> 12 23 34 45 56 67 78
q
JJ
2 0.08 0.08 0.09 0.10 0.11 0.12
3 0.13 0.14 0.17
4 0.16 0.19
5 0.19 0.24
6 0.22
7 0.25
8 0.27
9 0.29
10 0.30

Relative difference for N = 145, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
JJ
2 0.07 0.08 0.09 0.10 0.11 0.12
3 0.12 0.14 0.17
4 0.16 0.19
5 0.19 0.24
6 0.22
7 0.24
8 0.26
9 0.28
10 0.30

47

Relative difference for N= 150, Type 1, Approach 1
p => 12 23 34 45 56 67 78
q
U
2 0.07 0.08 0.09 0.10 0.11 0.12
3 0.12 0.14 0.16
4 0.16 0.19
5 0.19 0.24
6 0.22
7 0.24
8 0.26
9 0.28
10 0.30

48

APPENDIX A.2: TYPE 2, APPROACH 1

p=> 2 3 4 5 6 7 8
q
U
2 0.43
3
4
5
6
7
8
9
10

Relative difference for N = 10, Type 2, Approach 1
p=> 2 3 4 5 678
q
U
2 0.30 0.45
3 0.48
4
5
6
7
8
9
10

49

Relative difference for N = 15 Type 2 Approach 1
p=> 2 3 4 5 678
q
lJ
2 0.26 0.38
3 0.41
4
5
6
7
8
9
10

p=> 2 3 4 5 6 7 8
q
lJ
2 0.23 0.35 0.46
3 0.37
4 0.46
5
6
7
8
9
10

Relative difference for N = 25, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
lJ
2 0.22 0.32 0.43
3 0.34
4 0.43
5 0.50
6
7
8
9
10

Relative difference for N = 30 Type 2 Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.20 0.31 0.41
3 0.32 0.48
4 0.41
5 0.47
6
7
8
9
10

p=> 2 3 4 5 6 7 8
q
U
2 0.19 0.29 0.39 0.49
3 0.31 0.46
4 0.39
5 0.45
6
7
8
9
10

Relative difference for N = 40, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.19 0.28 0.38 0.47
3 0.30 0.45
4 0.38
5 0.44
6 0.49
7
8
9
10

50

51

Relative difference for N = 45, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.18 0.27 0.36 0.46
3 0.29 0.43
4 0.36
5 0.42
6 0.47
7
8
9
10

p=> 2 3 4 5 6 7 8
q
U
2 0.18 0.27 0.35 0.44
3 0.28 0.42
4 0.35
5 0.41
6 0.46
7 0.50
8
9
10

Relative difference for N = 55, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.17 0.26 0.35 0.43
3 0.27 0.41
4 0.35
5 0.40
6 0.45
7 0.49
8
9
10

52

Relative difference for N = 60 Type 2 Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.17 0.25 0.34 0.42
3 0.27 0.40
4 0.34
5 0.39
6 0.44
7 0.48
8
9
10

p=> 2 3 4 5 6 7 8
q
U
2 0.17 0.25 0.33 0.42 0.50
3 0.26 0.39
4 0.33 0.50
5 0.39
6 0.43
7 0.47
8 0.50
9
10

Relative difference for N = 70, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.16 0.24 0.33 0.41 0.49
3 0.26 0.39
4 0.33 0.49
5 0.38
6 0.42
7 0.46
8 0.49
9
1()

53

Relative difference for N = 75,- Type 2 Approach 1
p=> 2 3 4 5 6 7 8
q
JJ
2 0.16 0.24 0.32 0.40 0.48
3 0.25 0.38
4 0.32 0.48
5 0.37
6 0.42
7 0.45
8 0.48
9
10

p=> 2 3 4 5 6 7 8
q
JJ
2 0.16 0.24 0.32 0.40 0.47
3 0.25 0.38
4 0.32 0.47
5 0.37
6 0.41
7 0.44
8 0.47
9
10

Relative difference for N = 85, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
JJ
2 0.16 0.23 0.31 0.39 0.47
3 0.25 0.37 0.49
4 0.31 0.47
5 0.36
6 0.40
7 0.44
8 0.47
9 0.49
10

54

Relative difference for N = 90, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.15 0.23 0.31 0.39 0.46
3 0.24 0.37 0.49
4 0.31 0.46
5 0.36
6 0.40
7 0.43
8 0.46
9 0.49
10

p=> 2 3 4 5 6 7 8
q
U
2 0.15 0.23 0.30 0.38 0.46
3 0.24 0.36 0.48
4 0.30 0.46
5 0.35
6 0.39
7 0.43
8 0.46
9 0.48
10

Relative difference for N = 100, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.15 0.23 0.30 0.38 0.45
3 0.24 0.36 0.48
4 0.30 0.45
5 0.35
6 0.39
7 0.42
8 0.45
9 0.48
10 0.50

55

Relative difference for N = 105, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.15 0.22 0.30 0.37 0.45
3 0.24 0.35 0.47
4 0.30 0.45
5 0.35
6 0.38
7 0.42
8 0.45
9 0.47
10 0.49

p=> 2 3 4 5 6 7 8
q
U
2 0.15 0.22 0.29 0.37 0.44
3 0.23 0.35 0.47
4 0.29 0.44
5 0.34
6 0.38
7 0.41
8 0.44
9 0.47
10 0.49

Relative difference for N = 115, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.15 0.22 0.29 0.37 0.44
3 0.23 0.35 0.46
4 0.29 0.44
5 0.34
6 0.38
7 0.41
8 0.44
9 0.46
10 0.49

56

Relative difference for N = 120, Type 2 Approach 1
p=> 2 3 4 5 6 7 8
q
JJ
2 0.14 0.22 0.29 0.36 0.43
3 0.23 0.34 0.46
4 0.29 0.43
5 0.34
6 0.37
7 0.41
8 0.43
9 0.46
10 0.48

p=> 2 3 4 5 6 7 8
q
JJ
2 0.14 0.22 0.29 0.36 0.43
3 0.2:3 0.34 0.46
4 0.29 0.43
5 0.33 0.50
6 0.37
7 0.40
8 0.43
9 0.46
10 0.48

Relative difference for N = 130, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
JJ
2 0.14 0.21 0.28 0.36 0.43 0.50
3 0.23 0.34 0.45
4 0.28 0.43
5 0.33 0.50
6 0.37
7 0.40
8 0.43
9 0.45
10 0.47

57

Relative difference for N = 135 Type 2, Approach 1
p=> 2 3 4 5 678
q
JJ
2 0.14 0.21 0.28 0.35 0.42 0.49
3 0.22 0.34 0.45
4 0.28 0.42
5 0.33 0.49
6 0.37
7 0.40
8 0.42
9 0.45
10 0.47

p=> 2 3 4 5 6 7 8
q
JJ
2 0.14 0.21 0.28 0.35 0.42 0.49
3 0.22 0.33 0.44
4 0.28 0.42
5 0.33 0.49
6 0.36
7 0.39
8 0.42
9 0.44
10 0.47

Relative difference for N= 145, Type 2, Approach 1
p=> 2 3 4 5 6 7 8
q
JJ
2 0.14 0.21 0.28 0.35 0.42 0.49
3 0.22 0.33 0.44
4 0.28 0.42
5 0.32 0.49
6 0.36
7 0.39
8 0.42
9 0.44
10 0.46

58

Relative difference for N = 150 Type 2 Approach 1
p=> 2 3 4 5 6 7 8
q
U
2 0.14 0.21 0.28 0.35 0.42 0.48
3 0.22 0.33 0.44
4 0.28 0.42
5 0.32 0.48
6 0.36
7 0.39
8 0.42
9 0.44
10 0.46

59

APPENDIX A.3: TYPE 2, APPROACH 2

Relative difference for N = 5, Type 2, Approach 2
p~ 2 3 4 5 6 7 8
q
JJ
2 0.33
3
4
5
6
7
8
9
10

p~ 2 3 4 5 6 7 8
q
JJ
2 0.30 038
3 0.36
4
5
6
7
8
9
10

60

Relative difference for N = 15, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
U
2 0.28 0.43
3 0.42
4
5
6
7
8
9
10

p=> 2 3 4 5 6 7 8
q
U
2 0.19 0.34 0.41
3 0.32
4 0.41
5
6
7
8
9
10

Relative difference for N = 25, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
U
2 0.20 0.28 0.43
3 0.37
4 0.43
5 0.39
6
7
8
9
10

61

Relative difference for N = 30 Type 2 Approach 2
p=> 2 3 4 5 6 7 8
q
U
2 0.20 0.33 0.45
3 0.31 0.41
4 0.45
5 0.42
6
7
8
9
10

p=> 2 3 4 5 6 7 8
q
U
2 0.21 0.28 0.35 0.41
3 0.34 0.42
4 0.35
5 0.43
6
7
8
9
10

Relative difference for N = 40, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
U
2 0.17 0.25 0.37 0.42
3 0.29 0.44
4 0.37
5 0.44
6 0.42
7
8
9
10

62

Relative difference for N = 45, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
Jj.
2 0.17 0.28 0.39 0.44
3 0.25 0.45
4 0.39
5 0.45
6 0.43
7
8
9
10

p=> 2 3 4 5 6 7 8
q
Jj.
2 0.18 0.25 0.32 0.44
3 0.28 0.45
4 0.32
5 0.35
6 0.44
7 0.41
8
9
10

Relative difference for N = 55, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
Jj.
2 0.18 0.28 0.34 0.45
3 0.25 0.36
4 0.34
5 0.37
6 0.44
7 0.42
8
9
10

63

Relative difference for N = 60, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
U
2 0.15 0.25 0.36 0.45
3 0.28 0.37
4 0.36
5 0.38
6 0.45
7 0.43
8
9
10

p=> 2 3 4 5 6 7 8
q
U
2 0.16 0.23 0.30 0.36 0.42
3 0.25 0.38
4 0.30 0.42
5 0.39
6 0.45
7 0.44
8 0.42
9
10

Relative difference for N = 70, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
U
2 0.16 0.26 0.32 0.37 0.43
3 0.27 0.39
4 0.32 0.43
5 0.40
6 0.46
7 0.44
8 0.43
9
10

64

Relative difference for N = 75 Type 2 Approach 2
p=> 2 3 4 5 6 7 8
q
lJ
2 0.17 0.24 0.33 0.38 0.43
3 0.25 0.40
4 0.33 0.43
5 0.33
6 0.37
7 0.45
8 0.43
9
10

p=> 2 3 4 5 6 7 8
q
lJ
2 0.15 0.22 0.29 0.39 0.44
3 0.27 0.41
4 0.29 0.44
5 0.34
6 0.38
7 0.45
8 0.44
9
10

Relative difference for N = 85, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
lJ
2 0.15 0.24 0.30 0.40 0.44
3 0.24 0.34 0.43
4 0.30 0.44
5 0.35
6 0.39
7 0.46
8 0.44
9 0.43
10

65

Relative difference for N = 90, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
JJ
2 0.15 0.22 0.31 0.41 0.45
3 0.23 0.35 0.43
4 0.31 0.45
5 0.36
6 0.40
7 0.46
8 0.45
9 0.43
10

p=> 2 3 4 5 6 7 8
q
JJ
2 0.16 0.24 0.33 0.41 0.45
3 0.24 0.36 0.44
4 0.33 0.45
5 0.37
6 0.40
7 0.46
8 0.45
9 0.44
10

Relative difference for N = 100, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
JJ
2 0.14 0.23 0.29 0.35 0.45
3 0.23 0.37 0.44
4 0.29 0.45
5 0.32
6 0.41
7 0.38
8 0.45
9 0.44
10 0.42

66

Relative difference for N = 105 Type 2, Approach 2
p~ 2 3 4 5 678
q
U
2 0.14 0.21 0.30 0.36 0.45
3 0.24 0.38 0.44
4 0.30 0.45
5 0.33
6 0.41
7 0.38
8 0.45
9 0.44
10 0.43

p~ 2 3 4 5 6 7 8
q
U
2 0.15 0.23 0.31 0.36 0.46
3 0.23 0.32 0.45
4 0.31 0.46
5 0.34
6 0.35
7 0.39
8 0.46
9 0.45
10 0.43

Relative difference for N = 115, Type 2, Approach 2
p~ 2 3 4 5 6 7 8
q
U
2 0.15 0.22 0.28 0.37 0.46
3 0.24 0.33 0.45
4 0.28 0.46
5 0.34
6 0.35
7 0.39
8 0.46
9 0.45
10 0.44

67

Relative difference for N = 120, Type 2 Approach 2
p~ 2 3 4 5 6 7 8
q
JJ
2 0.14 0.20 0.29 0.38 0.46
3 0.22 0.34 0.45
4 0.29 0.46
5 0.35
6 0.36
7 0.40
8 0.46
9 0.45
10 0.44

p~ 2 3 4 5 6 7 8
q
JJ
2 0.14 0.22 0.30 0.38 0.46
3 0.24 0.35 0.45
4 0.30 0.46
5 0.31 0.43
6 0.37
7 0.40
8 0.46
9 0.45
10 0.44

Relative difference for N = 130, Type 2, Approach 2
p~ 2 3 4 5 6 7 8
q
JJ
2 0.14 0.21 0.27 0.33 0.38 0.43
3 0.22 0.36 0.46
4 0.27 0.38
5 0.31 0.43
6 0.37
7 0.41
8 0.38
9 0.46
10 0.45

68

Relative difference for N = 135, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
U
2 0.14 0.22 0.28 0.34 0.39 0.43
3 0.21 0.31 0.46
4 0.28 0.39
5 0.32 0.43
6 0.38
7 0.41
8 0.39
9 0.46
10 0.45

p=> 2 3 4 5 6 7 8
q
U
2 0.13 0.21 0.29 0.34 0.39 0.44
3 0.22 0.32 0.46
4 0.29 0.39
5 0.33 0.44
6 0.38
7 0.42
8 0.39
9 0.46
10 0.45

Relative difference for N = 145, Type 2, Approach 2
p=> 2 3 4 5 6 7 8
q
U
2 0.14 0.20 0.26 0.35 0.40 0.44
3 0.21 0.32 0.46
4 0.26 0.40
5 0.34 0.44
6 0.33
7 0.42
8 0.40
9 0.46
10 0.45

69

Relative difference for N = 150, Type 2 Approach 2
p=> 2 3 4 5 6 7 8
q
lJ
2 0.14 0.21 0.27 0.36 0.40 0.44
3 0.22 0.33 0.46
4 0.27 0.40
5 0.30 0.44
6 0.34
7 0.36
8 0.40
9 0.46
10 0.45

Complexity:

External Attributes:

Internal Attributes:

Partition Classes:

Process Metrics:

Product Metrics:

RCM:

Resource Metrics:

APPENDIXB

GLOSSARY

A measure of a number of internal (structural) product
attributes.

Attributes that are measured based on how process,
product, and resources relate to their environment.

Attributes that are measured based on one of three
entities: process, product, resources.

Classes resulting from token categorization.

Measurable indicators of the software development
process, such as the number of errors and the number
of revisions.

Indicators that measure some syntactic or structural aspects
aspects of a software product.

Residual Complexity Metric, a metric that measure the
remaining complexity of a software document that has been
subjected a token categorization.

Indicators of the inputs to / outputs from processes.

Scale Types of Measurement: Classification of measurement scales that consists of the
the nominal, ordinal, interval, and ratio scales.

Software Metrics:

VRCM:

Indicators of the structural attributes of software.

A variant of that RCM that applies the concept of context
locality to the original definition ofRCM.

70

VITA

Zain Saifullah

Candidate for the Degree of

Master of Science

Thesis: A VARIANT OF THE RESIDUAL COMPLEXITY METRIC

Major Field: Computer Science

Biographical:

Personal Data: Born in Jakarta, Indonesia, On December 22, 1961, son of Mr.M.
Zainuddin Abdullah and Mrs. Siti Aminah.

Education: Received Sarjana Matematika degree from Institut Teknologi
Bandung, Bandung, Indonesia in June 1986; completed the requirements
for the Master of Science Degree at Oklahoma State University in
July 1995

Professional Experience: From July 1987 to June 1991 worked as Systems
Programmer for Directorate for the Assessment of Technology in
Electronics and Informatics, the Agency for Assessment and Application
of Technology (BPPT), Jakarta, Indonesia.

