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PREFACE

This thesis attempts to provide an understanding of the natural design principles that

underlie the observed learning/clustering performance of the modified GLA olfactory neural

network which retains the essential clustering properties of the olfactory bulb and

paleocortex in pattern recognition. A statistical model is developed to model the proposed

hardware implementation of the modified GLA model. This statistical modelling of the

modified GLA model will assist in the understanding and optimizing the design and

architecture dimensionality and also in intepreting the test results.
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CHAPTER I

OLFACTION AND NEURAL NETWORKS

Introduction

Over the past decade, neural networks have drawn constantly increasing research

attention and undergone significant developments in essentially three categories. The frrst

category is that of mathematical description and analysis of the learning properties of neural

networks, often working from biological and physiological exemplars [ 1,2]. The second and

perhaps the largest, uses computer simulations to verify the validity of the neural network

models in addition to demonstrating their applications [ 3,4]. The third group of research

topics is the prospect of compact and dense hardware implementation of neural networks in

analog integrated circuit form [ 5,6,7,8]. This thesis falls into the latter two categories.

The essence of a neural network lies in its distributed memory or knowledge

processing, using massive interconnections and interactions, and in learning and self

organization. The human brain is a signal storage and processing device. Neural networks

provide a general framework for signal storage and processing and offer an exciting new

approach to simulate human intelligence [ 9 ].

Neurobiologists evaluate the functioning of the brain by taking the bottoms up

1
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approach, studying the stimulus response characteristics of a single neuron and network of

neurons. On the other hand, psychologists study brain function from the cognitive and

behavioral level [ 9 ].

It is estimated that the human brain contains over 100 billion neurons and there are

1014 synapses in the human nervous system. Studies of brain neuroanatomy indicate often

more than 1000 synapses are on the input and output ofeach neuron. Note that, although the

neurons switching time ( a few milliseconds) is about a millionfold times slower than current

computer elements, they have a thousandfold greater connectivity than today's

supercomputers [ 20 ].

Neurons and the interconnection synapses consistute the key elements for the neural

information processing. Most neurons possess tree like structures called dendrites which

receive incoming signals from the other neurons across junctions called synapses._ There are

three parts to a neuron: (1) a neuron body cell, (2) branching extensions called dendrites for

receiving input, and (3) an axon that carries the neuron output to the dendrites of other

neurons. The synapse represents the junction between an axon and a dendrite [ 15]. Nerve

signal transmission in the brain is of two types: chemical signals across the synapses and

electrical signals within the neuron. A neuron collects signals at its synapses by summing all

the excitatory and inhibitory influences acting upon it. If the excitatory influences are

dominant, then the neuron frres and sends this message to other neurons via the outgoing

synapses. In this sense, the neuron function can be modelled as a simple threshold function

f( • ).

The modulation of synaptic junctions has long been regarded as the likely mechanism
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for learning and memory [ 13]. The long term potentiation (LTP ) that is observed in the

hippocampus, limbic system, and in some cortical structures of the brain, is believed to be

similar to the mechanism used for leaming[ 14]. The changes in the synaptic strength due

to LTP are rather coarse when compared to the precise and graded weight changes that are

offered by artificial neural networks. How a nervous system might respond to the

computationally limited neural learning and neural processing that is used by artificial neural

networks due to two dimensional connectivity [ 15 ] is a topic for much additional research.

Extensive research is being carried out using computer simulations on such abstract neural

network models to understand the effects of incorporated artificiality and also in an attempt

to elucidate the organizational principle at the system level [ 1,2 ].

Artificial Neural Networks

The term artificial neural networks means any computing architecture that consists of

massively parallel interconnected simple "neural" processors. The current structures of

artificial neural networks are often based on the past and present understanding of the

biological nervous system. Artificial neural networks are composed of many nonlinear

computational elements. These computational elements operate in parallel and are arranged

in patterns reminiscent of biological neural networks. Elements are connected via densely

connected weights. Weights are typically adapted during use ( learning) [ 3]. The

information is held in these weights. New information is captured by changing the strength

of the connection, of a group of untrained or partially trained weights. Contrary to Von
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Neumann's computer which processes instructions sequentially, neural network models

explore many hypothesis simultaneously using their massive parallel structures.

In its simplest form, a neuron sums weighted inputs and passes the result through a

non-linearity. The neuron is characterized by an internal threshold or offset and by the type

of non-linearity. The various types of mathematical non-linearities applied are hard and soft

limiters, sigmoidal logistic non-linearities and hyperbolic tangents [ 3]. The hyperbolic

tangent is similar in shape to the logistic function. It is most often used by the biologists as

a mathematical model of nerve-cell activation. The most commonly used mathematical

model non-linearity is the sigmoid logistic non-linearity.

One of the principal reasons for the interest in neural network models is the fact that

many perform associative functions as a direct consequence of their architecture (and are

therefore sometimes termed' associative memory' models). These associativ~ functions

include the ability to reconstruct original learned patterns from inputs that are fragmented or

distorted versions of the patterns, the related ability for novel input patterns to elicit outputs

of related patterns that were previously stored in memory, and the ability to link two or more

unrelated patterns, especially when they occur at the same time, so that a subsequent input

of one elicits the others from memory [ 11 ].

Neural network models offer their greatest potential in areas such as speech

processing, image recognition, and pattern classification. In such applications, many

hypothesis are pursued in parallel, high fault tolerant computation rates are required, and the

existing computer systems are far from equalling human performance. When compared to

traditional computing methods, the benefits of neural networks extend beyond the high
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computation rates provided by massive parallelism. The degree of robustness or fault

tolerance provided by neural networks is greater than the fault tolerance provided by

sequential digital computers. Because of the many processing elements and the robust

interconnection, damage to a few neurons and synapses does not significantly impair overall

performance. Like humans, true neural networks must recognize partial input information

[ 10 ].

Olfactory Model

The modelling and fabrication of an olfactory is a difficult task since olfaction theories

are still in the developmental stages. A functional model is required to allow purely functional

designs to be pursued. On the one hand, a computer simulation of a too detailed anatomical

olfactory model may result in a model which is beyond the feasibility of silicon implementation

and may result in large volumes of difficult to analyze data, while on the other hand, too much

abstraction and simplification of the anatomical olfactory results in the model loosing its

relevance to biology altogether with the potential loss ofcomputational power associated with

the anatomical model. Thus, the efforts towards a moderate level of abstraction for the

olfactory model is necessary. The correct choice of a model helps to understand the model

as well as preserve the essential features of the model. A moderate level of abstraction for

the GLA olfactory model [ 17] has been proposed by Granger, Lynch, and Ambros-Ingerson

[ 10 ]. The interested reader is referred to the work of Granger et.al for details [ 16, 17,

18 ].
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Richard Granger, Gary Lynch, and Amberose-Ingerson have reported a potentially

useful model for the investigation of the aggregate network learning and memory properties

of olfaction in behaving animals. This model referred to as the GLA model henceforth, deals

with the interacting structures of the olfactory bulb and piriform cortex tllat have been

observed in rats [ 16, 17, 18]. Computer simulations of this model have attractive

computational properties, such as (a) the ability to identify clusters in the input cue

environments at various levels of detail, hence achieving a form of hierarchial clustering,

( b ) the extensibility to unsupervised learning, ( c ) the ability to detect a weak odor obscured

by a stronger one or identifying the significant component of a complex odor. A central

feature of this model is the periodic sampling of input odors at the theta rhythm to which

network response is locked. The theta rhythm matches the rhythm for both the hippocampal

firing and the rate at which rats sample odor during learning. With successive sniffs of the

input, hierarchical clustering and unmasking operations proceed sequentially.

Proposed Hardware Implementation of the Olfactory Model

We propose an direct implementation of the GLA model which retains the essential

clustering properties of the olfactory bulb ( OB ) and paleocortex. Our proposed hardware

model possesses several favorable features including: mixed mode, in lieu of a pure analog

approach; current and voltage mode processing; discrete, coarse and unidirectional weight

updates, leading to a simplified learning algorithm, and single quadrant multipliers.

The hierarchial clustering at the theta rhythm in the original network facilitates the use
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of a synchronous or clocked approach rather than full analog concurrent parallel processing.

The input cues, analog current input vectors 0i , are assumed to be generated by sensors

which are sampled periodically at an artificial theta rhythm ( clock ) St. However, the

generalized model input is not restricted to any frequency, spatial sampling or time series i.e

speech or frequency spectrum spatial samples or image will suffice. For each cycle in this

rhythm, there are two major nonoverlapping phases: activation of the OB and feedforward

excitation of the piriform cortex ( PC ) indicated by PHIFF, followed by feedback inhibition

of the OB by the PC indicated by PHIFB. The clocking sequence of the olfactory system is

shown in Figure 1. Prior to the actual clustering, the network is trained over a set of the input

cues by updating the forward ( excitatory) nonvolatile weights in parallel according to the

adult plasticity rule, utilizing hebbian learning coincident with the simultaneous activity at a

winning piriform cell and an active mitral patch. Even though system control is derived

through the clocks, the actual computation between the clocking is truly analog, concurrent,

and carried out in parallel.

The essential blocks in our architecture consist of: the glomeruli normalizer within the

OB, to normalize the glomerulus activity; a mitral patch within each glomeruli, to

thermometer encode the networks's normalized inputs Gi* ; the sparse weight matrix, to

sparsely project lateral olfactory tract ( LOT ) activity onto the PC via the modifiable

synapses winner take all ( WTA ) piriform patches within the PC, to exhibit the winner take

all competition; tie resolver, to resolve potential ties that occur among two or more winning

piriform cells within a piriform patch[17].
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Olfactory Bulb

The olfactory receptor inputs contact mitraVtufted and periglomerular cells in bundles

termed as glomeruli g. Each glomeruli is assumed to be associated with different types of

receptor cells. Each glomerulus receives excitatory input from an ON collectively fonning

an vector 0i. It also receives an inhibitory feedback activation vector Ii from the PC through

weights obtained after adaption. The excitatory inputs are combined with tile inhibitory

feedback signal and the resulting net inputs form the un-normalized activity Gi* to the

glomerulus.

Because of its dense inhibitory granule system, the bulb seems to be well suited to

normalize inputs of different magnitudes from the receptor ( i.e the greater the signal, the

greater the inhibition it extracts). The resulting net inputs are then subjected to non-linear

processing as well as global normalization mediated by the interaction between the excitatory

and inhibitory cells of OB. Thus the bulb output is normalized such that the total number of

mitral cells that are activated is reasonably constant across cues for different intensities and

composition ( the normalization process constrains the bulb so that only 20 % of the bulb cells

are activated). The sum of the non-linearly mapped and scaled normalized activity remains

nearly constant.

Each normalized glomerulus signal Gi is thermometer coded by the m mitral cells per

mitral patch. Mitral cells have equidistant thresholds, 8Mi < 8M(i+l) ( O~ j ~ m), where aMi'

is the activation of the jth mitral cell in the glomerulus, globally generated by a resistor

ladder. Electronically, this is equivalent to NO conversion without encoding.
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Sparse Weight Matrix

The binary voltage levels of the mitral cell My in the OB are spatially projected on the

hxp piriform cells in the piriform cortex via mxg LOT lines, forming the synapses between the

OB and PC. The synaptic weights W(ijXId) are realized by floating gate, non volatile, analog

programmable memory in conjunction with a MOS transistor, whose conductance is

modulated by the charge on the floating gate. The weights are non-decremental, incremented

in discrete steps ( typically - 10% of their maximum weight ), and saturated at a maximum

value ofw max ( - two to three times their naive weights or greater is desired). The excitatory

synapses W(ifXJd) are sparse and they are randomly distributed within the PC with a sparseness

on the order of 10%. The hardware sparse weight matrix, W(mxgXhxp) consists of sparsely

connected ( 2 of 20 ) synapses randomly arranged in the 4x5 submatrices. We believe that

to restrict the PC random interconnection to a small local area is intuitively correct and

biologically consistent, although unrealistically limited in area. However, the choice of a 4x5

area was selected for fabrication convenience and has no biological formulation. Each

submatrix receives four consecutive LOT lines and five consecutive piriform input lines

resulting in 20 cross junctions. The sparse ( 10% ) pseudorandom connectivity within the

submatrix is achieved by establishing two randomly chosen connections at these cross

junctions via the placement of a weighing transistor. Within the submatrix any input LOT line

may be interconnected with any piriform input line, with the exception that a double

interconnection between a given pair of lines is excluded.

This architecture results in the uniform distribution of weights as opposed to the



11

increasingly tapered distribution from caudal to rostral as reported for the anatomical model.

Further, due to the restrictions imposed on the submatrix, there exists a zero probability of

forming certain particular patterns of connectivity within a submatrix. The architecture does

not appear limited by this effect. In networks which are sufficiently large, and with an

increasing number of LOT lines the constrained distribution in the submatrix tends to be very

similar to the unconstrained interconnection patterns of tIle anatomical model, with the

exception of tapering.

Time multiplexing of the weight matrix W is used to compute, the weighted

excitatory bulbar input currents to the PC in the forward phase, and the weighted inhibitory

feedback currents from winning piriform cells to OB in the backward phase. Current

Conveyor (CC) based Bidirectional Voltage/Current buffers (BiVI) permit such a bidirectional

use ofW[17].

piriform Cortex

The currents produced by the innerproducts between LOT activity and sparse weights,

are summed on the column ofW. The total number of columns are organized into p patches

with h neighboring columns per patch. The resulting innerproduct analog currents PkJ· are

amplified/scaled by the BiVI and fed into the PC. In the PC, the excitatory piriform cells Pkl

are arranged into p disjoint winner-take-all piriform patches with h piriform cells/patch. The

index k indicates the patch while l indicates the cell number within a piriform patch. Thus

each column feeds only one corresponding piriform cell. The piriform patches exhibit a WTA
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competition within a patch which results in only a piriform cell or cells, associated with the

highest current or greatest number of weight connections, to go high while rest of the cells

remain low. The winning piriform cell is declared activated only if the input current to the

corresponding pirifonn cell is equal to or greater than a piriform threshold 8p • 8p is used to

support unassisted learning.

The WTA processed output P/d ideally should have only h winners. But due to the

finite resolution of the WTA circuit( AI - luA), it is not possible to avoid ties with the few

near highest input currents. The tie resolver circuit has been added to the post WTA

processing, thereby resolving ties digitally. Thus during the multisampling process, resolved

WTA competition at each cycle results in a distinct output code used for clustering and forms

the basis for feedback inhibition.

To implement feedback inhibition on the OB by the PC during the backward phase,

binary outputs of the resolved winning piriform cell PWId are latched and reciprocally applied

via the BiVI buffers to the multiplexed transpose ( WT
) of the weight matrix, thus generating

the inhibitory currents on the respective LOT lines configured for sinking the currents. The

resulting inhibitory currents are amplified/scaled by the BiVI buffers. The inhibition on m

consecutive LOT lines are summed by switching them together fonning an aggregate

unthreshold inhibition Ii· associated with each glomeruli from which the respective forward

LOT lines originated.
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Multi-Sampling

The feedforward excitation and feedback inhibition cycles work in synchrony with a

4-7 Hz theta rhythm. Electronically this can be as high as a few Megahertz. After the first

sniff a nonnalized OB output ( with initial zero inhibitory feedback) will trigger the most

active piriform cell in each patch on the basis of petformance rules and random connectivity.

The winning piriform cells in the PC are trained according to LTP which produces an

inhibitory feedback. Thus the glomeruli with the most significant input components are more

strongly inhibited and secondary components then elicit significant responses from their

glomeruli in subsequent cycles.

In subsequent sniffs, the normalized activity of these secondary components has to

increase in order to keep total normalized activity of glomerulus at a constant level. As a

consequence, the spatial pattern of the mitral cell activity differs from the pattern generated

in the first sniff. The mitral cells from glomeruli which are just inhibited do not frre whereas

a larger number of mitral cells fIfe from the glomerulus whose normalized activity has just

been increased. Hence a different activation pattern is generated which, in tum, produces a

distinct bulbar-cortical output code. In short, secondary components are also inhibited and

still weaker components are expressed in subsequent cycles and so on in a hierarchial fashion.

The process ( bulb activation =} normalization =} cortical activation =} inhibitory

feedback) is repeated in each cycle until the bulb is sufficiently inhibited to be largely

quiescent so that all the weaker stimuli are expressed. The process in which distinct bulbar­

cortical responses are obtained by successively inhibiting components of the original stimuli
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is referred to as multi-sampling. During this multi-sampling process a hierarchial clustering

takes place in which the initial output code indicates a main class or cluster membership, and

subsequent codes indicate sub-clusters or subclass membership. Cluster and sub-cluster

breadth in the input vector space appear to be dependent on weight increase, the ratio of

saturated to naive weight values, and the data sample set on which the network learns.

The key to integrating the building blocks into a functional system is optimization of

architecture dimensionality ( g, m, p and h ) and scaling of P /d. , Ii· etc, which have a direct

impact on transistor dimensions. This requires the development of a statistically-based system

model to assist in the understanding and optimizing the design. Chapter IT of this thesis

presents a statistical software model of the modified GLA olfactory, Chapter III analyses the

results of model simulations done using matlab and fortran to validate the models accuracy

and Chapter IV deals with conclusion and future prospects of olfaction.



CHAPTER II

STATISTICAL MODELING OF AN

ELECTRONIC OLFACTORY

Although modeling need not duplicate a biological system exactly, an accurate model

is necessary to understand how a biological system functions in order to characterize its

algorithm properly. In addition, an accurate model assists in the following:

( a) providing a better understanding of the paradigm,

( b) understand the process of learning,

( c) assists in the design or selection of the system architecture dimension ( i.e the

number of patches and number of cells per patch ),

( d ) assists in optimizing performance i.e. weight range and,

( e ) provide a means to try new strategies.

The statistical modeling described in this chapter, in addition to the above mentioned

general factors, assists the researcher in the determination of optimal network dimensionality,

the feedback scaling of It and the determination of the distribution of the number of active

synapses on a winning piriform neuron. This distribution, and its variance, contribute to

15
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exemplar subvector estimation error in ~* ( the effective SNR). This knowledge is essential

for simulation, analysis, transistor sizing and fabrication of the electronic olfactory system.

It also provides a clearer picture of how clustering is achieved and the means by which Ii*

is estimated at each hierarchical level. An extensive analysis of how the device mismatch may

affect tile proposed hardware implementation is also completed.

Distribution of the winning pitiform cells

The following discussion develops the distribution for the number of winning pirifonn

cells which will be solicited during the feedback phase of each clustering cycle. Using ordered

statistics [ 25 ], the distribution of the active synaptic connections ( 3.w ) on a winning neuron

in a winning neuron in a WTA piriform of patch size 11 can be calculated as:

[

amax j(h_l)

g(amax)-hf(amax ) !f(.)dP

..co

for -00 < amax < 00

(1)

where f ( • ) is the synaptic distribution of the active synapses on a piriform neuron (weight

matrix column )

The number of active synapses present on a piriform neuron can be estimated

statistically by noting that a hypergeometric distribution [ 6 ] is formed by the illteraction of

A active out of N LOT lines, within the presence of n possible active synapses in N possible

locations and it is written as follows:
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where

N is the number of LOT lines

A is the number of active LOT lines

n is the number of synapses on a piriform neuron

8.w is the number of active synapses on a neuron

and the mean and standard distribution are given by:

nA
ll-­

N

0 2__(_n_A/_N_)_(_l_-A_/_N_)_(N_-_n_)
(N-l)

(2)

(3)

(4)

For a relatively large N and n N N > 4, a hypergeometric distribution can be

accurately approximated by a Donnal distribution. Further considering the sparsity of the

weights to be equal to 0.1, then n = 0.1 N synapses per column. This observation is

biologically well founded and results from the probability of a LOT to pirifonn synapse

occurrence which is in the range from 0.1 to 0.2 in the piriform cortex [ 26 ]. This results in

the operational constraint that A be greater than 40. Further, given the biological observation
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that LOT activity ( Ka) is limited to 10 to 20% then N must be greater than 200. This result

also is very realistic biologically, since N is easily in excess of several thousands [ 26]. The

distribution of the active synapses on a pirifonn neuron can now be writtell as follows:

-1/2 (a,,-ll/O) 2
e

f(a w)------
On{(2)

(5)

where: ~ and 0 are from equation ( 3 ) & ( 4 ) and 0
2 now can be written for large N as:

0 2• _n_A_(_N_-n_-_A_)

N 2 (6)

Substituting equations ( 5 ) into equation ( 1 ) and integrating, the distribution of the

winning piriform neuron can be written as:

-me F
g (amax ) .--------T"-----

vnja[ER~( :0-:m; Signa) -1]

where

(7)

(8)

The mean and variance of the distribution in (7 ) are not readily determined in closed

form. However, by plotting this distribution it is easily observed that the mode and mean ~w

increase as h increases, while the variance Ow decreases with increasing h. This results in a

better estimate of Jlw as h approaches infmity and corresponds well with intuition. Note,

having won and with training the resultant winner will be shifted well out on to the tail of the

distribution. This will be demonstrated in chapter III, figure 10.
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Distribution of the Inhibition Response

Using the preceding nomenclature the expected value of the inhibition signal can be

determined as follows. The winning synapses a.w are actively updated or trained during

learning while the remaining, ( n - aw )remain unchanged. Mter training, 'lw weights will have

a value of w max' while (n - 3.w ), have the initial or the naive value wn • Each winning

piriform patch ( element of P ) can be viewed as a binomial distribution trial when calculating

the inhibition vector

(9)

Ideally during feedback in a trained network, where a pure or a noise free exemplar is applied

to the input ( template Mij or OJ ), the occurrence of an active trained synapse !s mutually

exclusive of a naive or a untrained synapse. This is also true when the P ( and Pw after tie

resolving) vector ( which results as a direct application of Mij or OJ ) is applied to the WT in

equation ( 10 ).

In the calculation or estimation of It three potential sources of error exist:

contributions due to naive weights, both the mean (1Jn ) and standard deviation (on); and

standard deviation (ow) associated with the number of trained weights ( Wmax ) on a winning

piriform patch equation ( 7). The expected value of the estimated exemplar ( I or 1* ) is

determined by Jlw. Therefore the expected values of inhibition for a fully trained WT matrix

at a currently excited, and unexcited mitral cell are:



p. w11. wmax p
Ma A

w (n-p. )
11 • n W p

Mh N-A

respectively, and their respective variances are

2 W2 (n-p. ) ( n-Jl 1cr • n w 1 W' p
Mil N-A N-A

20

(10)

(11)

(13)

(12)

The expected signal to noise ratio, II SNR " for the inhibition vector It or exemplar estimate

can now be written as:

(14)

where 0Ma is the noise term associated with the variation in the value of the number of trained

synapses on a winning piriform synapse ( 7 ), while JlMn and 0Mn are the results of the naive

or untrained synapses being solicited during the feedback or the inhibition cycle. As

previously, flMn and flware mutually exclusive of each other and this contribution may be

easily eliminated by masking ( biological inhibition) or disallowing summation of those LOT

lines inactive during the present minor cycle to contribute to the inhibition of level I. Note
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that JlMn represents a "DC" tenn which also can be readily removed by capacitive coupling.

Substituting ( 10 ) through ( 12 ) into ( 13 ).

€ SNR- ( II D) ( a -ll ) ( n-ll ) 2 ( n-ll ) ( n-11_W'-_~ __w W 2+ W 2 __w + W 2 __w l w
A A max P2 n N-A P n N-A N-A

where after simplification

where ~ equals wmax
2

/ wn
2 is the trained to naive weight ratio.

For A = 0.2N and n = O.IN and after further simplificatiol1

25K II 2
I W

€SNR-----------------------
25K 11 (0 • IN-11 w) 2 (0 • IN-11

w
) (0. 7N-11 w)

__E_W (O.2N-ll )+ + _
P w 0.64 O. 64p

(15)

(16)

(17)

The following observations can be made from equation ( 17 ) regarding the noise tenns in the

denominator. The frrst and the third tenns are reduced by increasing the number of trials or

patches in the piriform cortex. The second term can be removed by thresholding. Finally it

is possible to remove the second and third terms by masking with M ( the mitral activity) as

previously noted. In the following discussion we will look at the two possible cases in more

detail.

case 1: Threshold removal of term two reduces equation ( 17 ) to
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(18)

for Jlw approaching n ( increasing h see ( 7 ) ), increasing p and larger ~

case II: Mask removal of the second and third terms

25K P. 2pe. r w
SNR 25K P. (0. 2N-P. )

r w w

and after simplification becomes

llwP p
e· .~SNR o. 2N-p o. 2N

W' ---1
llw

(19)

(20)

(21)

From equation ( 18 ) we can observe that to achieve a better signal to noise ratio the

value of~ should be high and from equations ( 19 ) and ( 21 ) we can say that by increasing

"p" we can achieve an improved Signal to Noise Ratio. It is also of considerable importance

for us to ensure that the transistor mismatch errors of the electronic olfactory implementation

does not affect the results or the performance of the olfactory model. In the following

sections we have analyzed the transistor mismatch errors of the proposed hardware

implementation, which will provide a brief insight of the effects of mismatch errors on the

model results and performance.
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Modelling of Mismatch in MOS Transistors

The mismatch of MOS transistors must be taken into consideration to achieve

precise modelling of the above model. In gelleral, when COllsidering the mislnatch in MOS

transistors in an analog integrated circuit process, two valiations are to be considered. The

frrst one is the global or the interdie valiations which account for the total variation in the

value of the component over a wafer or a batch. Second is tile local variation mismatch or

interdie variations which reflect the variations in a component value with reference to an

adjacent component on the same chip. As the design of presicion analog integrated circuits

is based on component ratios rather than their absolute values, we must concern ourselves

with the android variations. The major effects of mismatch in a MOS transistor are: the drain

current mismatch which are due to the offset voltage or overdrive and pmismatch [50]. In

the following sections we will develop a mismatch model and analyze the device mismatch

errors of the building blocks of the electronic olfactory. This sllould help us in deciding

whether the device mismatch en·ors affects the system pelfolmallce.

Bidirectional Voltage I Current Buffers

Bi-directional voltage/current ( BiVI ) buffers based on the current conveyor concept

permit bi-directional access to the weight matrix. They provide the dual functions of serving

as voltage drivers and current sources/sinks to isolate the weight matrix in forward and

backward modes respectively. Figure 2. shows the BiVI conveyor. It is clear from the figure
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that the two major factors of the BiVI causing mismatch are the offset voltage of the amplifier

and the current transfer error due to the current mirrors (MINA &MINB, MIPA & MIPB).

Both the mitral and the piriform BiVI buffers contribute similar errors. These BiVI buffers

perform inverse functions in the feedforward and feedback cycles which will be analyzed in

the following sections.

Feed Forward Operation

In the feed forward mode the BiVI buffer at the mitral end acts as a Voltage

controlled Voltage source ( VCVS). Therefore the mismatch error associated with BiVI

buffer when acting as a VCVS is just the offset voltage ( Vosm ) of the amplifier. Whereas the

BiVI buffer at the piriform end acts as a Current controlled Current source ( CCCS) in the

feed forward mode. The mismatch error associated with the CCCS is the offset voltage due

to the amplifier (Vosp ) and the current transfer error of the current mirror ( A4 )as shown

in Figure 3. The outputs of the mitral cells ( My), are projected onto the piriform cells in the

piriform cortex via the LOT lines thus forming a connection matrix between the OB and the

PC. The excitory synapses W(ij)(kl) have an associated mismatch error term ( fl W(ij)(kl) ).

Therefore the significant error terms in the feed forward operation are as follows:

( a ) the offset voltage of the amplifier in the mitral buffers (Vosm ) ,

( b ) the offset voltage of the amplifier in the piriform buffers ( Vosp ),

( c ) the current transfer error of the current mirrors in the pirifonn buffer

( flIp) and,
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( d ) the mismatch error term of the synapse ( AW(ijXld) ).

Feed Back Operation

In the feedback mode the BiVI buffers at the mitral side act as a current controlled

current source ( CCCS ) and the BiVI buffers at the at the piriform side act as a voltage

controlled voltage source ( VCVS). The significant error terms of the BiVI buffers in the

feed back mode from a similar analysis as previous are given as follows:

( a ) the offset voltage of the amplifier in the piriform buffers ( Vosp ),

( b ) the mismatch error term of the synapse ( AW(ij)(kl) ).

( C ) the offset voltage of the amplifier in the mitral buffers (V0SI11 ) ,

( d ) the current transfer error of the current mirrors in the mitral buffer

Weight Matrix

The weight matrix sub structure of Figure 4 with four rows ( My) and five columns

( Pkl ) is shown. Each of the weight elements ( W(ijXkl) ) are modelled as resistors as shown in

Figure 4. The equation for the weight interconnection transistor is as given below and it can

be seen that there are two significant terms the mismatch in geometries ( AP), and the

mismatch in their threshold voltages ( ~VT ).
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(22)

which can be simplified as follows

(23)

where

~Pis the geometry mismatch of the interconnecting weight transistor ( W(ij)(kl)'

Ii.VT is the threshold voltage mismatch of the interconnecting weight transistor

( W(ij)(ld) ).

Winner Take All CirCllit

Figure 5 shows the winner take all circuit tllat is implelnented in the proposed

hardware model. The most significant sources of mismatch in the winner take all cell are as

follows:

( a) the beta and threshold mismatch errors due to the comparison trallsistor MP2 of the

winner take all cell and,

( b) the offset voltage due to the comparator

This analysis ignores Pel1·ors ( area and oxide insulator) of MP4 and Amislnatch elTors can

be ignored due to the use of cascades. By converting all these mismatCh error tel1TIS into an
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equivalent input referred current error the equivalent error current of the winner take all

circuit can be written as follows:

where gmz = 1(2 pz lin) and pz is of the transistor MP2

(24)

almcc = aI(mirror) = current transfer ratio error of the current min·or composed of MP2

of the various winner take all cells.

Equivalent Current Error in Feed Forward Mode

The equivalent current error in the feed forward mode can be determined by taking

into account the device mismatch errors of the bi-directional buffers of the mitral and

piriform patches along with the weight matrix and winner take all mismatches. The equivalent

current at the input of the piriform current conveyor can be derived from Figure 3 and is as

shown below:

where

W(ij)(kl) are the elements of the weight matrix

aW(ij)(klJ are the error associated with the weight matrix

Vm(ij) are the voltage at the mitral end of the weight matrix

(25 )
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Vp(kl) are the voltage at the piriform end of the weight matrix

Vosm are the offset voltage due to the comparator at the mitral buffer

vosp are the offset voltage due to the comparator at the piriform buffer

dIp are the error associated with the current mirrors at tile piriform buffers.

By defining a factor K as the number of times the weights llave been trained, we Call simplify

equation ( 25 ) as follows:

(26 )

where VMP =Vm(ij) - Vp(kl)

The above equation gives the total current at the output of each piriform patch. The

equivalent current mismatch in the feed forward direction can be obtained by adding the

winner take all mismatch errors of ( 24 ) with the above equation. The equivalent current

error in the feedforward direction and equivalent error term can be obtained by combining

equations ( 24 ) and ( 26 )

(27)

By a similar analysis the equivalent current mismatch error can be derived for the feedback

inhibition current and is as shown below

(28)
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For statistical modelling of the mismatch errors a normally distributed random

number in the range of 2-5% of the original value is added to the original value. This 2-5%

device mismatch error is the total error of the building block which takes into account the

pen·or and also tIle typical tllreshold offset voltage e11·ors of ±10mv. The values of 2-5%

were chosen based on the results of previous device fabrications. The results of the

simulations are analyzed in the next chapter, and COllclusively demonstrate that transistor

mismatch errors have no significant effect on the results and pelfolmance of tIle model.



CHAPTER III

SIMULATION AND ANALYSIS OF THE OLFACTORY MODEL

This chapter describes a software implementation of the statistical model presented

in the previous chapter by software. Two source codes, one in Matlab and the other in

Fortran with minor implementation differences were written for our implementation of the

modified GLA model and validated. Analysis of the training/clustering results of the

simulation are summarized along with the model validation.

In this chapter, the model is validated with respect to the following statistical

properties

(a) Distribution of the synapses in the sparse matrix,

(b) Distribution of the number of active synapses in a piriform neuron,

(c) Distribution of the magnitude of the winning piriform neuron,

(d) Relative mean and variance of the trained winner,

(e) Distribution of the inhibition response and,

(0 Distribution of inhibition response with mismatch errors taken into

consideration.

(g) Effective SNR of 1*

34
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Software Model

The flowchart of the Software implementation of the model is shown in Figure 6.

From the flowchart we can infer how the function of the different modules in the software

implementation of the GLA olfactory model interact. The table 1 on the following page lists

the nomenclature used in the software code and its corresponding usage in the model.

Trial input vectors are the normally distributed random numbers generated between

( 0 - 1). These form the input vectors 0 ( i ) as represented in the flowchart. In our case the

input 0 ( i ) consists of 40 unifonnly distributed random numbers. In order to have 20%

activity as specified in the model in chapter II, we sample without replacement 8 of the 40

vector elements, thus allowing a maximum of five minor cycles. The magnitude and position

of the each grouping of 8 vectors were determined by selecting the eight~ largest in

magnitude and replacing the others by a zero. In a similar manner for each cycle, the eight

remaining largest input vectors are selected and all other vectors(elements) are set to zero.

This process is continued until all five groups of sparse vectors ( 20% ) have been presented

to the mitrals. In the subsequent cycles ( for 2,3,4,5 ) the input cycle vectors have to be

normalized. This is done by selecting the maximum value element in each cycle(20%) and

scaling it to 1 and the other elements are normalized or scaled by the reciprocal of the

maximum value element. These inputs after normalization are then applied to the

thermometer coder. Program Input.nl shows how the input vectors are classified into

different cycles and the logic by which they are normalized. In this program the trial input

vectors OJ are classified based on 20% activation into 5 cycles. They elements of these
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S.No Model Nomenclature Software Nomenclature

1 g g

2 m m

3 p P

4 h h

5 Oi Oi

6 W rl

7 Jiw dw

8 WT r3_v

9 8Mj theta

10 p* pwkt

11 Pkt is4

12 PWId is7

13 Gi Gi

14 I*(ij) iinhib

15 I*(i) fif

16 Ell thresI

17 i 1

18 j j

19 k k

20 1 1

21 1J x

22 kl y

24 Wmax Wmax

25 Wn Wn

26 flMa fl
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27 °Ma f2

28 flMn f3

29 °Mn f4

30 flw f5

31 °Mn f6

32 G.· G.*
1 1

33 aw pw

34 aW(ijXkl) sperr(x,y)

35 Vosm m3

36 Vosp pwerr

37 Ka k

Table 1. Equivalent Nomenclature for software/model

cycles are called G i. These cycles are then normalized and stored as G i* ( gistar )~

The initial conditions that were assumed for the software model of Figure 6

are as follows:

( a ) Ii = 0 (1 < i < g )

( b ) Pi =0 (1 < i < p )

where Ii and Pi are the integrated inhibition signal into the glomeruli "i" from cortical

feedback and the piriform output of the "i" patch respectively.

The complete program ( olfactory.m ) is written in such a way that by changing the

values of the dimension parameters "g","m","p"and,"h", the program can be adapted to any

size olfactory system. It automatically generates the properly dimensioned weight matrix and

all other corresponding vectors. For our simulations we have chosen the size of "g", "m",
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Figure 6. Flow Chart of the Olfactory Model
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"p", and "h" to be 40, 16, 40, and 16 respectively. These dimensions were selected based on

the olfactory model by P. A. Shoemaker, C. G. Hutchens and S. B. Patil [4]. This results in

a sparse weight matrix of 640 X 640 with a probability of interconnect (synapses) of 0.1. The

placement of synapses is random and normally distributed with a naive value of 1. This is

implemented by the matlab command "sprandn(640,640,0.1)", which results in a sparse matrix

of dimension 640 x 640 with a probability of interconnect 0.1. The command "spones

(sparse weight matrix)" will result in a sparse matrix with naive value of 1.

Initially, the frrst cycle of inputs, ( 20%) of the most significant input components

are applied to the thermometer coder which is essentially ND conversion without encoding.

This is implemented in the software by having "m" number of equidistant values from 0 to 1.

The matlab command for the above is Theta = 0:1/16:1. The mitral cells or excitory neurons

are modelled as two state devices which are either quiescent ( not fIring) or activ~ ( fIring at

maximum rate) with glomerulus activity above or below its threshold activity. This results

in a mitral output "m2" of dimension "g x m" which is either"0" or "1".

m2(i,j) = 1

=0

if g(i) ~ theta

otherwise

This mitral output is then applied as input to the weight matrix ( r1 ). In the event, one is

taking the transistor mismatch errors into consideration then a random number ( called

"m3") varying between 2-5% of m2 ( output of the mitral patch) is added to the mitral

outputs which accounts for the BiVI buffer errors as explained in chapter 2. Therefore the

mitral output taking into considerations the device mismatch errors are m2=randn(O.02 - 0.05

)*m2+m2. Another 2-5% of the naive weight value is added to the synapses (called "sperr"
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and stored in flsperr.matfl). Therefore the final value of the weight matrix will be equal to the

sum of the sparse weight matrix ( rl) and sperr. Finally, another 2-5% of the piriform input

value (pw) is added as noise to the pirifol1TI inputs. The outputs of the lnitral is then projected

onto the pirifol1TI cells in the piriform cortex via the LOT lines thus f011ning a connection

matrix betweell the OB and the PC. This is implelnented in the program ill the following

manner:

(29)

See Appendix A for the program listing. For a detailed discussion of the transistor mismatch

model see chapter II.

The output of the piriform cortex is then passed onto as input to the will_ner take all

module. In this module, the program tries to resolve the winner alnollg the patches which

was done by grouping the piriform output in batches ( batching of the patches is a software

constraint) of "h" and selecting the one with maximum activation.

Depending on the output of the winner take all "is7", the mitral outputs "m2", and the

synapse placement learning is implemented, which occurs by adjusting the weights between

two nodes ( activation on both ends are mandatory for learning) with an initial value of wn

(naive weight ), and maximum value ofwmax (saturated value) by a value of dw (increment-

-al value of the weights). Synapses with strength zero cannot change and remain at zero

there after. Learning of the weights is implemented based on the following cOllditions:



r1(iJX.k1)

r1(iJX.k1) otherwise
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(30)

The naive value of the weights was initially set to 1 and with their maximum value as 3.2.

The value of the weights saturate once they have reached the maximum value. The weights

are incremented in steps of 0.4. All three of the above parameters can be changed as need

dictates.

The output of the winner take all is fed back to the trained transposed weight matrix.

The feedback then selectively inhibits the mitral cells in those bulb patches which are most

responsible for cortical output response via long lasting inhibition. The weighted inhibition

( iinhib ) on LOT line (ij) in the backward direction is implemented according to the_ following

equation:

iinhib
ij t t PWk1rl (kl) (ij)

k-1 1-1
(31)

Unthreshold feedback inhibitionltiinhiblt on consecutive m LOT lines in the backward

direction is summed by grouping them together as given by:

fif i = t iinhibij
j-1

(32)

The inhibitory feedback into the glomerulus is obtained by thresholding it with ItthetaI". The
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program directly evaluates the mean (Jlw ) and variance (ow) of the number of synapses in a

winning piriform neuron, mean (flMa ) and variance (0Ma ) of the signal and the mean (flMn)

and variance (0Mn) of the noise due to the naive weights.

Analysis of Simulation Results

Experiment 1-- Distribution of the Winning Piriform cells

(a) The sparse matrix generated by matlab program is fIrst analyzed for its sparsity and

distribution of synapses per column. This was done by summing up the number of

interconnections in each column and then plotting a histogram of the same ( as shown in

figure 7). From the figure we can see that placement of synapses is random aIld i~ normally

distributed, which corresponds with the assumptions made in the model. Further the number

of non-zero elements of the sparse matrix was found to be 38,887 which is approximately

equal to 0.1 x 640 x 640, which validates the condition for the 10% sparsity of the modeL

(b) The 40 random numbers generated from 0 to 1 form the trial vectors O(i), which are

then formed into 5 cycles ( 20% active) of Gi. In this experiment we apply the fIrst cycle of

inputs to the system and examine the outputs of the weight matrix. The weight matrix can

be either a learned or naive, this does not affect the distribution of the number of active

synapses or the magnitude of the winning piriform. All the other parameters g,m,p,h are the

same through out the simulations unless otherwise specified. The output of the weight matrix
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(pw) is obtained according to the equation ( 29 ) in chapter 3. The histogram of the result

which is stored in temp5.mat is then plotted and is appears to be hypergeometrically

distributed as shown in figure 8. From the equation (5) ill chapter 2, we know tllat the

number of active synapses follows a hypergeometric distribution wIlen plotted and for a large

N ( number of LOT lines) it tends to be normally distributed. As tile results of the lTIodel and

simulation appears to be the same, the model is validated in tllis regard. TIle mean and

variance of the active synapses of the piriform neuron, predicted by equations ( 3 ) and ( 4 )

are 14.10625 and 9.8259 respectively. The mean and variance of the active synapses in the

piriform neuron from simulations were found to around 14.4 and 10.2 respectively from 30

trials constituting 40 samples in each trial.

(c) The above experimental data set and parameter values are agaill used for _fillding the

disuibution of the magnitude of the winning piriform. The output of tIle weight mauix whose

results was analyzed previously is used as input to the winner take all. In this module, the

outputs of the weight matrix is grouped in terms of "h", because we have "h" piriform cells

per patch. Then as we are having "m" piriform patches with "h" pirifolm cells per patch,

the winner for each of the "h" piriform patches are found. This is done by selecting the

piriform cell with the maximum value in each patch. The results (is7) stored in the

temp 14.mat are then plotted. It is observed from the figure 9, that the distribution of the

magnitude of the winning piriform follows a skewed distribution as predicted and we can see

how it differs from the distribution of active synapses. From the equation (7) in chapter 2,

we can observe that the magnitude of the winning piliform also appears to follow a skewed
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distribution when plotted. The result seems to validates the modeL However, as explained

in the previous chapter, the mean and variance of the magnitude of the winning piriform

neuron cannot be evaluated in a closed form. But, from the simulation results we calculated

the mean and variance to be approximately 21.8 and 6.25 respectively. Some variation is

due to the choice of the original sparse matrix. This was again calculated from 30 trials with

40 samples per trial. Figure 10, shows that the distribution of the magnitude of the winning

piriform of a trained matrix is shifted and well out on the tail of the untrained one. Having

analyzed the results of the winner in the feedforward direction in this section, the next

experiment will analyze the distribution of the feedback inhibition response in the following

sections.

Experiment 2 -- Distribution of Inhibition Response

(a) Naiye Matrix The trial Oi vectors ( 40 ) were divided into a maximum of five cycles,

each cycle containing 8 vectors to maintain 20% activity. The values of mph and all other

parameters are maintained the same as experiment 1. Inputs used are the cycle 1 input vector

data and the naive weight matrix. The feed fOlWard winner take all outputs obtained ( similar

to experiment 1 ) are applied to the transposed weight matrix, which results in a output as

given by the equation ( 30 ) in chapter 3. The Unthreshold feedback inhibition Ii lit on

consecutive LOT lines are summed by grouping them together as given by equation ( 31 ) in

chapter 3. The simulation results for the trial vectors O(i), frrst cycle inputs, and the

corresponding Unthreshold feedback inhibited currents outputs are shown in figure 11 to
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figure 13. The signal to noise ratio calculated from simulation results according to equation

( 15 ) in chapter 2 is 4.8DB. Although the system is able to recognize and classify the

patterns a minimum signal to noise ratio of 6DB is desired.

(b) Trained Matrix In this experiment all the parameters and values are the same as

experiment 2a, except that instead of a naive weight matrix we use the trained weight matrix

( the updated weight matrix of the previous experiment 2a.). For the same input trial and

cycle vectors the simulated output results are shown in figure 14. The signal to noise ratio

for the output vectors were calculated as before, and were found to be 12.8DB. So from the

above observation we are able to establish the fact that the matrix training results in a

improved signal to noise ratio and that the SNR is directly proportional to the ratio of Wmax

/ Wn. This corresponds with the equation ( 18 ) of chapter 2, which states t~at SNR is

proportional to ~ .

(c) Thresholding The same parameters, trial vectors and input cycle vectors are used as

the previous experiments. A fully trained weight matrix is used in this experiment. The

simulations are carried out as before and the unthreshold feedback inhibition summed vectors

are then thresholded, and thereby eliminating the DC noise that was present in the previous

outputs. From the thresholded feedback inhibitory outputs shown in figure 15, we see that

the total noise term present in the previous outputs is totally eliminated. This was done by

arbitrarily setting the threshold value equal to JlMn + 0Mn. No attempt has been made to

optimize SNR. We see that the total DC noise due to the naive weights is eliminated by
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fixing the threshold value as specified by the model. The noise due to the standard deviation

of the magnitude of the winning piriform can be reduced only by increasing tile number of

pirifot1TI patches "p" or by increasing tIle number of trials.

The above expetiment is repeated for cycles two and three and the feedback

inhibitory outputs for both naive and trained mauix and thresholded are shown in figures 16

to 23. The con·esponding signal to noise ratios are calculated and are shown ill table 2. From

the values we can see that the signal to noise ratio continues to decrease with the increase

in the number of cycles, for a given sparse weigilt matrix and other fiXed size dimensions.

The reason for the decrease in SNR with the increase in number of cycles is not clearly

understood. Additional statistical experiments and analysis have to be done in this regard.

Cycle Number Signal to Noise Ratio -

1 12.9

2 10.38

3 8.2

Table 2. Cycle Number Vs SNR Values

To statistically validate the results that were obtained from simulations, a 90%

confidence interval test was done. This was done to ensure that the simulated mean of the

number of active synapses of a winning piriform is within one standard deviation of the

theoretical value 90% of the time, 30 iterations were done. The results are tabulated in the

appendix c. The iterations were done by taking random sparse matrix and random first cycle
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inputs every time. The table gives the corresponding SNR values obtained for every iteration.

It can be observed from the tabulated values that the mean of the number of trained weights

on a winnil1g neuron is almost constant, hence statistically validating the results.

Anotller ilnportant observation that can be lnade from the simulations is that for a

desired SNR, number of exemplars, and a given melnory capacity ( total nunlber of weights),

it is essential to find out what is the optimal value of the piriforln patclles alld number of

pirifolID cells per patch. FindiIlg the optimum value of tile pirifol1TI patclles and piliform cells

is beyond the scope of this thesis. However the observation that the percentage of ties

increase with the decrease in number of piriform cells/patch can be made from the limited

experiments conducted and summarized in table 3. Further statistical experimentation must

be completed with the model to confmn the variation in the percentage of ties and, SNR.

# of PirifOlID # of cells/Patch % of ties

Patches

64 10 17

40 16 7.5

32 20 6.25

Table 3. Sizing of Piriform Patches/Cells

Experiment 3 -- Mismatch Error Analysis

The device mismatch en·or analysis was done by adding a random number which is
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2-5% of the value for the Bidirectional voltage/current buffers ( all the error terms lumped

together), and a random value of 2-5% of the naive value to the sparse matrix according to

the model presented in the previous cilapter. The same trial vectors and fIrst cycle input

vectors were presellted as inputs. TIle rnismatcil error terlTIS were added to the Initral outputs

and to the sparse weight matrix. These changes were implemented ill tile program en·ors.m.

The other parameters and dimension values are the same as the [11"St two expel1ments. Figures

24 and 25 shows the feedback inllibited output values with and without transistor mismatch.

A comparison of the thresholded outputs for a particluar cycle witll alld without lnismatch are

shown in figure 26. It is clear from the figures that the model with transistor mismatches is

able to recognize and classify patterns unaffected by the random mismatch. It was further

observed that, the location of winners in the piriform patches were also unaffected. The SNR

is sligntly degraded in the case of device mismatch errors taken ill to COllsiderati_on.

In the case of ties in the winner take all of the piriform patch (with device mismatch

errors taken into account), there is a chance that a different winner lnight be selected. We

will be analyzing the effects due to this and how to rectify it below. This lnay result in a

feedback inhibited CUI14ent that may not be according to our expectations. One such case out

of 40 trials was analyzed and the number of winners in the case of mismatch was found to

be 40 and 48 without device mismatch en40rs. This is due to the fact the there are no ties in

the winner take all when simulated with mismatch errors and hence it gives a different value.

If this result is obtained by using naive weights then it doesn't affect the performance but

whereas the tie results from a trained weight matrix is very remote. Infact in our 40 trials it

failed to occur. By the time it becomes a problelTI the network pattern recogllition function
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SNR ( with mismatch )=92.83DB
SNR (without mismatch )= 144.2DB
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would have failed.

This problem can be overcome by modifying the model presented in the previous

chapter. According to the model the winner is decided by selecting the pirifolID cell with the

highest current. But ifwe take all the pirifOlID cells within 2-3% of the winner, and select the

winner using tie resolver approach, that is by selecting the leftmost ( numerically least

significant) piriform cell which is within 2-3% of the winner, then this problem is solved.

This approach can be carried out for both naive and trained matrices.

Therefore, we can conclude that the transistor mismatch errors have a minimal effect

on the model, but still petformance remains high. Hifidelity audio is around 72-96DB and

the SNR from the simulation results with thresholding and mismatch is 90 DB, which implies

that the pelformance is still high.



CHAPTER IV

CONCLUSIONS AND FUTURE PROSPECTS

Modeling and fabrication of olfactory is a difficult task since olfaction theories are

still in the developmental stages. On the one hand, a computer simulation of a too detailed

anatomical olfactory model may result in huge volume of data which is difficult to analyze,

while on the other hand, too much abstraction and simplification of the anatomical olfactory

may loose its relevance to biology with the potential loss of computational power for the

anatomical model. Thus the effort towards the moderate level of abstraction is necessary.

The correct choice of model detail helps to understand the model while preserving the

essential features of the model.

The modified GLA model described in chapter I and chapter II is most definitely

biologically inspired, while the basic idea in the minds of the original investigators initially may

not have been its hardware implementation, it is well suited for the hardware implementation

of an associative processor. The original GLA model has required additional simplifications

for hardware implementation but retains, the essential clustering properties of the olfactory

bulb ( OB ) and paleocortex as verified by the simulation results presented in chapter 3.

Computer simulations of the model have demonstrated attractive computational properties,

61
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such as hierarchial clustering, the extensibility to unsupervised learning, and the ability to

detect weak odor obscured by a strong one [16] and further confmned in this thesis or

identifying the significant component of a complex odor. Future statistical experiments will

have to be completed on the model of this thesis to confmn hierarchial clustering, and the

ability to detect a weak odor.

The GLA model is a statistical model based on long term synaptic potentiation. Such

statistical network models do not require high precision. The normalization was achieved

using software algorithms. The simulation of the statistical mode presented in chapter II and

validated in chapter III, allows the hardware designer to address the complex issues of ;

normalization and scaling of feedback inhibition current, performance optimizing, and will

assist in; the selection of patch dimensions, assists us in understanding the learning process,

and finally quantifies the effects of device mismatches on the petformance of the system.

From the simulation results, we can conclude that

(1) the distribution of the active synapses of a piriform neuron and tIle distribution

of the magnitude of the winning piriform neuron appears to correspond with the model,

(2) the "DC" noise term can be removed by thresholding the feedback at a fixed

value of flMn + 0Mn ( for a particular dimension and parametric values) are obtained

statistically and,

(3) As the system learns and the weights reach saturation value the SNR of the

feedback inhibition current increases, this emphasizes the fact that ratio of saturation to naive

weight should be maximized but cant be so large that they do not allow an untrained

exemplar to emerge.
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(4) Simulations were petformed taking device mismatch errors into account. From

these simulation results we can conclude that the system hardware petformance and results

will have no significant effect on the electronic olfactory perlolmance.

The Signal to Noise ratio gets degraded, but it is able to classify and recognize patterns,

which is shown in figures 24 and 25. The simulation results for a mismatch network and a

thresholded exemplar were a very respectable SNR of 92.83.

The following studies, statistical experiments and design investigation must be

completed to achieve a optimal performing electronic olfactory:

(1) determining the relationship between memory capacity, 1* SNR, exemplar length,

mitral and piriform dimensions,

(2) determining the relationship between mitral and piriform dimensionality and a

fixed weight array,

(3) more statistical experiments have to be completed to understand why the SNR

decreases with increase in the number of cycles,

(4) the upper limit on weight saturation,

(5) the effect of noise on flw'

(6) determining the relationship between the number of piriform cells per patch and

the percentage of ties and,

(7) redesigning hardware as appropriate.
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oLFAcTORY,M

% This program olfactory.m is used for both feedfolWard and feedback cycles.

% Intially the sparse weight matrix (tempI.mat) and input vectors (inpI.mat) are loaded

% by these two files

load tempI

load inpi

% the following command functions as a thermometer coder

the = 0:0.0650: I

% the following line converts the normalized inputs to mitral outputs spatially

for i=1:40

for j=1:16

if o(i»=the(j)

m(i,j)=I;

else

m(i,j)=O;

end

end

end

ml=m'

m2 = ml(:)

% this above command gives the output of the mital cells

m3=m2';

% the above command is executed so matrix multiplication could be done

pw=m3*rl;

save temp5 pw

% the variabe "pw" is the output of the weight matrix and input to the piriform patches



% the following command helps us to select a winner

% "ca" acts as a counter and that is initialized with a value 1

% the following code diveides the piriform output in batches of 16 ( for each piriform

patch)

ca=l

for i=1:40

for j=ca:ca+15

k=j-(i-l)*16;

is(i,k)=pwG);

end

ca=ca+16

end

% this code helps to select a winner among the piriform patch

for i=1:40

for j=1:16

if is(i,j)<max(is(i,:»

is(i,j)=O;

end

end

end

is4=is';

is5=is4(:);

is6=is5'

is7=spones(is6);

% variable "is?" is the winner take all output

save temp14 is6

is8=pw-is6;

save temp15 is8
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% let u=i*j the no of mitral outputs

% let v=k*l the no of piriform inputs in feed forward mode

% the following steps find the output of the piriform patches

% the synapses have a naive value of 1 and a saturated value of 3.2 and it is increased in

steps of

% of 0.4, in case if the varible values have to be changed tIle next three lines have to be

edited.

wmax=3.2

wnaive =1

% the following lines are used for learing purposes

% this modelling of the olfactory uses unsupervised learning

dw=0.4

% this lines reserves the space for sparse matrix and hence speeds the process

r2_v=spalloc(640,640,640. *640.*.1);

[xl,yl,rl_vJ=find(r1);

% these are nothing but arrays and pointers

for v=(l:length(r1_v))

xlp=x1(v);y1p=y1(v);

ifm2(xlp»0 & is7(ylp»0

r2_v(x1p,ylp)=min(rl_v(v)+dw,wmax);

else

r2_v(xlp,ylp)=rl_v(v);

end

end

% transpose of the weight matrix after learning is done

r3_v=r2_v'

save temp3 r2_v

% the learned weight matrix is stored in file "temp3.mat"

% the following equations are the feedback current generating equations
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in=is7*r3_v;

iinhib=in';

% the feedback unthreshold inhibiting currents are generated using the learned transpose

weight % matrix

z=l

for y=1:40

fif(y)=O

for x=z:z+15

fif(y)=(iinhib(x)+fJf(y));

end

z=z+16

end

% the above lines are done for grouping the feedback inhibited currentd based on the

number of % mitral cells

save temp13 ftf

% variable "fif' represents the feedback inhibited current

for i=1:40

if f1f(i»250

t(i)=fif(i);

else

t(i)=O

end

end

t1=fif-t;

% variabe Iff " gives the value of muMa

f=~pfunCmean',t)

% variabel " f1 " gives value of sigmaMa

f1 =spfunCstd',t)

% variable " f2 " gives mean of muMn



f2=spfunCmean',tl)

% variable " f3 " gives value of sigmaMn

f3=spfunCstd',tl)

% variable" f4 " gives value of muw

f4=spfunCmean' ,is6)

% variabel " f5 " gives sigmaw

f5=spfun('std' ,is6)
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FORTRAN -- SOURCE CODE

Written by Dr. Patrick Shoemaker NRaD, San Diego.
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SCALARS
NBP = # bulb patches (glomeruli); NBC= # cells per patch

Dimensioned for architecture/parameters to match
network in Ambros-Ingerson dissertation. However,
note the following differences in our algorithm:

1. no associational collaterals in piriform.
(total number of synapses/pirLeell may match that
of A-I model, though all come from bulb)

2. inhibitory feedback piri.-to-bulb is graded
(vs. thresholded (0 or max) in original model)

ARRAYS
LABEL = label for input data
EXIN =external inputs to bulb patches (glomeruli)

(NOTE: range 0-1 initially; normalized to O-NBC)
1st index indicates patch, 2nd ranges over data set

BINH = inhibitory feedback to bulb patch from piriform
BCINH = component of piri. FB. corresp. to ea bulb cell
BIN =total net input to bulb patch (w/o normalization)
BN = normalized bulb patch input
ill =# winning cells in a bulb patch
BULB = vector of bulb states (winners are .TRUE.)
PIN =net input to piriform cells
IP =index of winning cell in a piriform patch
PWIN = indicates piri.winners (.TRUE.) in a sniff cycle

Weights are not double-indexed (since matrix is sparse); rather
they are single indexed. With respect to their pirifonn cells
their numbers are in ascending order and in contiguous blocks.

NW = # times + 1 that weight #(index) has been updated
NB = index of bulb cell associated w/ weight #(index)
NPW =index of 1st wt. associated w/ piri.cell #(index)

(final element is total # weights + 1)
W =value of (any) weight after (index-I) updates
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oLFAcToRY,FoR

c* modified from OLF.FOR on 15-16 APR 92

c**********************************************************************
C* olfactory algorithm simulation
c*
C*
C*
c*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
c*
C*
c*
C*
C*
C*
c*
C*
C*
C*
C*
C*
C*
C*
c*
C*
C*
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C* NBT = total # bulb cells
C* NPP =# piriform patches; NPC =# cells per patch
C* NPT =total # piriform cells
C* PBULB = fraction of bulb cells allowed to be active
C* TOL = tolerance with which PBULB criterion must be met
C* C = parameter for normalization of inputs
C* NSNIFF = # "sniffs" between resets
C* CINH = scaling constant for pirie inhibition of bulb
C* LEARN =flag for learning
C* NFLAG = flag for mode of net input normalization
C* PINH =flag for inhibition (ARP) of piriform winl1ers
C* BINHLIM =flag to limit FB inhibition to active LOTs
c**********************************************************************

DIMENSION LABEL(8)

DIMENSION EXIN(40,8),BINH(40),BIN(40),BN(40)

DIMENSION BCINH(400)

DIMENSION PIN(IOOO)

INTEGER*2 IB(40),IP(50)

LOGICAL*1 BULB(400)

INTEGER*2 NW(120000),NB(120000)

DIMENSION NPW(IOOI)

DIMENSION W(20)

CHARACTER*1 FLAG

CHARACTER*12 SETFL, WEIGHTS, WTSAT, INFL

CHARACTER*12 OUTFL

LOGICAL LEARN, PINH, PWIN(I024), BINHLIM

DATA NW/120000*1/

DATA IB/40*1/ IP/SO*l/

DATA BULB/400*.FALSE./

DATA PINHI.FALSE./ BINHLIMI.FALSE./

DATA ZERO/O.O/ HALF/O.5/ ONE/I.OI



C********************** SETUP *************************

C* read setup file name

WRITE (*,'(/" INPUT NAME OF SETUP FILE:")')

READ (*,200) SETFL

200 FORMAT (A12)

OPEN (lO,FILE=SETFL)

READ (10,*) NBP, NBC, NPP, NPC

READ (10,*) PBULB, TOL, NSNIFF, CINH

READ (10,200) WEIGHTS

READ (10,200) WTSAT

READ (10,200) INFL

CLOSE (10)

C* Ambros-Ingerson model parameters:

C* NBP=40, NBC=10, NPP=50, NPC=20

C* PBULB=5/40=12.5%, CINH: parameter not in original model

C* WEIGHTS: there are 117 synapses (out of 400 LOT lines)

C* per piriform cell

C* WTSAT: weights go from .2 to.4 in increments of .04

C* (these figs are all double for assoc. synapses but

C* note many fewer of those fibers are active)

NBT = NBC*NBP

NPT = NPC*NPP

FNBC = FLOAT(NBC)

FNBP = FLOAT(NBP)

FNBT = FLOAT(NBT)

BMAX = PBULB*FNBT + TOL
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BMIN = PBULB*FNBT - TOL

C* read interconnection sites

OPEN (10, FILE=WEIGHTS)

NPW(l) = 1

JO =°
DO 90 I=I,NPT

READ (10,*) IX,NP

READ (10,*) (NB(JO+J), J=l,NP)

JO = JO+NP

90 NPW(I+1) = JO+1

CLOSE (10)

C* read weight saturation characteristics

OPEN (10, FILE=WTSAT)

READ (10,*) NWMAX

READ (10,*) (W(I+1), I=O,NWMAX)

CLOSE (10)

C* read input data for clustering

OPEN (10, FILE=INFL)

READ (10,*) NDATA

DO 91 ND=l,NDATA

C* (BN is scratch here)

READ (10,*) LABEL(ND), (BN(J), J=l,NBP)

DO 91 J=l,NBP

91 EXIN(J,ND) =FNBC*BN(J)

CLOSE (10)
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c* read bulb normalization mode

WRITE (*,'(/" BULB NORMALIZATION MODE:"I

* " 1 = LO & HIGHEST SAT (AGC + MAX)"I

* " 2 = BIOLOGICAL (AGC + SIGMOID)")')

READ (*,*) NFLAG

IF (NFLAG.EQ.1) THEN

C = FNBT*(PBULB-ONE)

ELSE

C = FNBT*PBULB

WRITE (*,'(/" INPUT NONLINEARITY CONSTANT:")')

READ (*,*) CO

ENDIF

C* read piriform inhibition flag

WRITE (*,'(1" INCLUDE PIRIFORM INHmmON (AHP)? Y OR N:")') ­

READ (*,201) FLAG

201 FORMAT (AI)

IF ( (FLAG.EQ.'Y') .OR. (FLAG.EQ.'y') ) PINH = .TRUE.

C* set bulb inhibition mode

BINHLIM = .TRUE.

WRITE (*,'(/" OUTPUT DATAFILE:")')

C* read output datafile name

READ (*,200) OUTFL

OPEN (lO,FILE=OUTFL)

C* learn or evaluate mode

WRITE (*,'(/" LEARN OR EVALUATE? L OR E:")')

READ (*,201) FLAG
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98 IF ((FLAG.EQ.'L') .OR. (FLAG.EQ.'l')) THEN

LEARN =.TRUE.

C* input # learning cycles

WRITE (*,'(/" HOW MANY LEARNING CYCLES?")')

READ (*,*) NLEARN

NL=O

ELSE

LEARN = .FALSE.

ENDIF

C* write headers

WRITE (10,'(" SNIFF LABEL"/

* " IPI"/)')

WRITE (*,'(" SNIFF LABEL"/

* " IPI"/)')

C********************** NETWORK FUNCTION *********************

C* loop on data

99 DO 150 ND = I,NDATA

C* reset piriform inhibition of bulb

DO 152 I=I,NBT

152 BCINH(I) =ZERO

DO 153 I=I,NBP

153 BINH(I) = ZERO

C* reset piriform self-inhibition (if feature enabled)

IF (PINH) THEN

DO 155 I=I,NPT

155 PWIN(I) = .FALSE.

ENDIF

C* loop on "sniffs"

DO 151 NS=I,NSNIFF
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C************** normalize inputs & set bulb states ******************

XMAX = -1.0E3

BTOT=ZERO

C* loop on bulb patches to:

DO 100 I=l,NBP

NCO = (I-1)*NBC

C* reset all bulb neurons;

DO 101 J=l,IB(I)

101 BULB(J+NCO) = .FALSE.

C* compute current inputs;

C* (net input =external input - patch inhibition)

X = EXIN(I,ND) - BINH(I)

C* find largest net input

IF (X.GT.XMAX) XMAX = X

C* find sum of inputs.

BTOT = BTOT + X

100 BIN(I) = X

c* normalization of inputs

C* (iterative due to nonlinearity)

IF (NFLAG.NE.1) GO TO 170

C* mult + add normalization (wI saturation high)

C* shift net inputs by XMAX

DO 184 I=l,NBP

184 BN(I) = BIN(I)-XMAX

C* shift BTOT too

BTOT = BTOT - FNBP*XMAX

C* iterative multiplicative normalization

181 A =CIBTOT
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BTOT=ZERO

DO 182 I=l,NBP

BNI = AMAX1(A*BN(I),-FNBC)

BTOT = BTOT+BNI

182 BN(I) =BNI

IF (BTOT+FNBT.GT.BMAX) GO TO 181

C* set integer output values (# active cells/patch)

DO 183 1=I,NBP

183 IB(I) = INT(BN(I)+FNBC+HALF)

00 TO 102

C* biological model normalization

170 A=ONE

171 A = (HALF + HALF*CIBTOT) * A

BTOT=ZERO

DO 172 l=l,NBP

BNI = G(A*BIN(I),CG,FNBC)

BTOT = BTOT+BNI

172 BN(I) = BNI

IF ( BTOT.GT.BMAX .OR. BTOT.LT.BMIN ) GO TO 171

C* set integer output values (# active cells/patch)

DO 173 I=l,NBP

173 m(l) = INT(BN(I)+HALF)

C* set winning bulb cells, BULB array

102 DO 104 1=I,NBP

NCO = (I-l)*NBC

IBI = IB(I)

IF (IBI.GT.O) THEN

DO 114 J=l,IBI

114 BULB(J+NCO) = .TRUE.
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ENDIF

104 CONTINUE

C************** compute piriform inputs & set piriform states **********

C* reset piriform inputs

DO 105 I=l,NPT

105 PIN(I) = ZERO

C* compute new piriform inputs

C* (ie, W *LOT vector)

DO 106 I=l,NPT

PINI = ZERO

DO 116 J=NPW(I),NPW(I+1)-1

IF (BULB(NB(J))) PINI = PINI + W(NW(J))

116 CONTINUE

106 PIN(I) = PINI

C* find and set winner, ea piriform patch

DO 107 l=l,NPP

NCO = (I-1)*NPC

PMAX=ZERO

C* if inhibiting winners, exclude previous winners,

C* pick the cell w/largest input, and set its inhibit flag

IF (PINH) THEN

DO 156 J=l,NPC

NC =J+NCO

IF (PWIN(NC)) GO TO 156

IF (PIN(NC).GT.PMAX) THEN

NMAX=NC

PMAX =PIN(NC)

ENDIF

156 CONTINUE
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PWIN(NMAX) = .TRUE.

ELSE

C* or just pick largest input if not inhibiting

DO 108 J=l,NPC

NC =J+NCO

IF (PIN(NC).GT.PMAX) THEN

NMAX=NC

PMAX = PIN(NC)

ENDIF

108 CONTINUE

ENDIF

107 IP(I) = NMAX

C* if done with "sniffs", skip computation of inhibition

IF (NS.EQ.NSNIFF) GO TO 149

C************** compute FB inhibitions, piriform to bulb ************

c* compute W(transpose) * pirifonn vector

IF (BINHLIM) THEN

C* limited inhibition - sum for bulb winners only

DO 157 l=l,NPP

IPI = IP(I)

DO 157 J=NPW(IPI),NPW(IPI+1)-1

N = NB(J)

IF (BULB(N)) BCINH(N) =BCINH(N) + W(NW(J))

157 CONTINUE

ELSE

C* othelWise sum inhibition for every LOT line

DO 109 l=l,NPP

IPI = IP(I)

DO 109 J=NPW(IPI),NPW(IPI+1)-1
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N = NB(J)

109 BCINH(N) = BCINH(N) + W(NW(J))

ENDIF

C* sum inhibitions over ea bulb patch

DO 110 I=l,NBP

NCO = (I-1)*NBC

BI=ZERO

DO 111 J=l,NBC

111 BI =BI+BCINH(J+NCO)

110 BINH(l) = CINH*BI

C************** learn (if flag is set) ****************

149 IF (LEARN) THEN

DO 112 I=l,NPP

IPI = IP(I)

DO 112 J=NPW(IPI),NPW(IPI+1)-1

IF (BULB(NB(J))) THEN

NWO=NW(J)

IF ( NWO.LE.NWMAX ) NW(J) = NWO+1

ENDIF

112 CONTINUE

C* or write results if just evaluating

ELSE

WRITE (10,*) NS, LABEL(ND)

WRITE (*,*) NS, LABEL(ND)

DO 188 I=l,NPP

IPI = IP(I)

WRITE (10,'(13X,I4)') IPI

188 WRITE (* ,'(13X,I4)') IPI

ENDIF
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C* close loop on "sniffs"

151 CONTINUE

IF (LEARN) GO TO 150

C* write spacer

WRITE (10,'(/)')

WRITE (* ,'(/)')

C* close loop on data

150 CONTINUE

IF (LEARN) THEN

C* loop on learning cycles

NL=NL+1

C* if learning complete, do an evaluation run

IF (NL.GE.NLEARN) LEARN = .FALSE.

GOT099

ELSE

C* if at end of learning run, option of continuing

IF ( (FLAG.EQ.'L') .OR. (FLAG.EQ.'l') ) THEN

WRITE (*,'(/" MORE LEARNING? Y OR N:")')

READ (*,201) FLAG

IF ( (FLAG.EQ.'Y') .OR. (FLAG.EQ.'y') ) THEN

WRITE (10,'(/)')

FLAG='L'

GOT098

ENDIF

ENDIF

ENDIF

CLOSE (10)

STOP
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END

FUNCTION G(Y,CG,FNBC)

X =YIFNBC - 1.0

IF (X.LT.O) THEN

G = FNBC * EXP(-CG*X*X)

ELSE

G=FNBC

ENDIF

RETURN

END
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APPENDIX -- C

SIMULATION RESULTS
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mean rna std rna mean mn std mn meanw std w snr

321.60 21.23 86.89 11.24 21.98 2.06 12.73

320.40 31.00 84.21 14.95 22.11 2.09 12.40

339.20 22.30 89.86 10.70 22.00 1.75 13.24

353.60 50.36 94.97 12.26 21.75 2.64 10.68

388.80 23.89 105.75 11.05 21.26 2.41 12.73

371.20 40.66 100.77 10.54 21.41 2.26 11.56

333.60 22.08 86.99 12.78 21.98 1.93 13.54

342.80 34.08 95.63 11.06 21.63 2.62 11.27

333.20 26.90 84.41 8.88 22.26 2.12 14.00

348.80 39.67 91.28 10.85 21.62 2.51 12.14

337.60 27.63 85.50 12.83 21.75 2.23 13.83

321.60 21.26 86.89 11.24 21.98 2.02 12.72

340.40 35.51 89.13 10.65 21.76 2.22 12.44

311.60 38.13 83.61 10.40 22.09 2.88 11.35

353.60 29.22 93.33 10.56 22.02 2.71 12.92

356.40 26.22 97.31 12.94 21.64 2.20 12.30

393.60 31.54 106.74 10.54 21.81 2.52 12.39

339.60 26.13 92.35 11.43 21.84 2.25 12.34

336.80 25.47 88.33 12.21 21.77 2.19 13.19

326.00 30.62 82.25 9.62 22.07 2.26 13.63

376.40 45.96 96.11 14.12 21.94 2.35 12.27

355.60 30.52 91.51 12.48 22.02 2.30 13.36

356.40 26.61 95.76 9.66 21.63 2.16 12.74

311.60 38.13 83.61 10.40 22.09 2.89 11.35

416.40 30.62 114.23 11.55 21.18 2.65 12.28

344.00 22.63 91.43 11.58 21.28 2.25 13.14

343.20 22.42 94.45 8.54 21.82 2.00 12.40

362.80 44.73 100.21 9.72 21.02 2.38 10.84

334.00 45.89 95.83 9.77 21.17 2.52 9.80

344.40 38.24 92.63 12.51 21.44 2.82 11.63
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