TOWARDS AN INTERACTIVE DEBUGGING TOOL FOR C++

BASED ON PROGRAM SLICING

By
RAJESHWAR RAMAKA
Bachelor of Science
in Mechanical Engineering
Jawaharlal Nehru Technological University
Hyderabad, India

1993

Submitted to the Facuity of the
Graduate College of the
Oklahoma State University
in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE
December 1995

Cen ey
pruity rbesad 1

TOWARDS AN INTERACTIVE DEBUGGING TOOL FOR C++

BASED ON PROGRAM SLICING

Thesis Approved

MMS w» Sauw\o\ d%g,a d<e\{\

Thesis Advisor

H.

oy app——

ﬂ&fw - A
Ohovwwe O Cotlm.

Dean of the Graduate College

1

PREFACE

The purpose of this thesis work was to develop an interactive debugging tool for
programs written in a subset of C++, based on the program slicing method under the
DYNIX/ptx operating system. The topics that were covered as background and context in
this work consisted of a review of debugging approaches, an introduction to program slicing
and its types: static slicing and dynamic slicing, and a brief review of the different
approaches used in implementing dynamic slicing.

The programming part of this thesis work consisted of the design and
implementation of a program slicing tool, called cppslicer, for debugging programs written
in a subset of C++. The cppslicer software tool is an interactive debugging tool that can be
used to help debug simple C++ programs. The cppslicer tool can be used to debug programs
with or without classes, operator overloading, and pointers to int, char, float, and classes.
The cppslicer program is written in C++. It has about 4900 lines of code distributed around

four classes.

iii

ACKNOWLEDGEMENTS
I would like to express special appreciation to my advisor Dr. Mansur H.
Samadzadeh. He provided essential guidance and inspiration throughout my thesis work. Dr.
Samadzadeh continued to spend endless hours reviewing my work and offering suggestions

for further refinements.

I would like to thank my other committee members, Drs. Huizhu Lu and Jacques

LaFrance. Their time and effort are greatly appreciated.

Finally, I would like to express my sincerest thanks to my family for their continued
support. They helped me throughout my MS program. I couldn't have done it without their

continued love and support.

iv

TABLE OF CONTENTS

CHAPTER PAGE
L. INTRODUCTION ...coiuiiiiritiieerenieeresesseeserereststesseneessessessesunensesenssesneeneesanessesaenas 1
1.1 INrOQUCHIONevvieecicreeeetet ettt e et e s e e s esreesare s 1
1.2 PUrpose Of StUAYceeeerirereienieetentee ettt et
1.3 Organization 0f REPOTtcccccvrvuerireiiniicienitierreeeeerc ettt 3
IL LITERATURE REVIEWcooviiieteininireineeenenistsesssestesesesanssteeeestssesenessesesssssesens 4
2.1 DEDUGEING ..ottt sttt ettt e 4
2.1.1 DEfINItIONS ...vveveenienrerierieeenrsiertesutessesseesseestessesssueeasesssesseasanessees 4
2.1.2 Debugging StEPS ...c.oueverceerrerrrerierieniereereeneee st ese et s ae e 6
2.1.3 Debugging Approachescoceeeecerceenerreerereriinnensteneneesennenns 6
2.1.4 Debugging ToOIScccoceeueverereeeririeeseeient et s e 8
2.1.4.1 Symbolic DebUZEETSccerereuerrerirvrirereeseenreneenienens 9
2.1.4.2 Symbolic Debugger on Sequent Symmetry 9
2.1.4.3 Special Options for CH++ooveeieeiiieiecieeieeeceee 10
2.1.5 Debugging Tools on UNIXcccocerviiimerieniiinieneenrerceeeee e 13
2.1.6 Slicing-Based DEbUZEETScceererereriereinierienienieneniserieneeneneens 14
2.1.7 Other Types of DEDUGEETSccccvireererirrrreenereirereeeneee et e e 14
2.2 Program SHCINEccceeveiiieiirieienenreeterttesteste st seeesaeesee e e e s e saeesaeeereeens 14
2.2.1 Static SHCINE ...coeevererrerirreeetnesteteenteinsseesiee st es st e st e s reesneessaesasans 16
2.2.2 Dynamic SLICING ...ccceeveririrreririiieresieseseetesesseeetessessnssseneessseaeseens 19
2.2.2.1 Dynamic Slicing Proceduresecocveervenrerivererrerenenene. 21
2.2.3 Quasi-Static SHCINGcccevreeieerereireeieeee et 24
2.3 TYPES £0 SHCES .ottt et ns 25
II. C++ PROGRAM SLICER (CPPSHCET) ..ooverruiieieenirrereieneerreteereeseeeaessseeneenseens 27
3.1 INtrOAUCLION «...ovvieeicreieiirienieeteieeieeere s esta e sseres e s e aese e e eveseessseenseensaeennas 27
3.2 C++ Program SIiCEr OVETVIEWcccvieveeeeenirsireesieeereeesseeessesenresensenas 27
3.3 SOftWArE ISSUEScouieiiiiirtiiieteetcee st te st eesreeeve e e s e eaneens 28
3.3.1 DEfiNItIONS ..cceevvriierveeriierieertetesreiessesteetesaee e sseessae s e e eanenns 28
3.3.2 Slicing Criterionceeveeveeeiereeeeeeeeee et cve e e e 29

CHAPTER PAGE

3.3.3 Data SIIUCTUTESeoveruemreeeeeeeeeeeirceeere e seeseees e s e e e evee s 30

3.3.4 Slicing Algorithmscccoiiiiiiiniiiicce 31

3.4 Implementation ISSUEScceevveeuirenerenrenineeeeirte s steeeseeeee e seesseeaens 35

3.6 Slicing Based MEITICSccoceevuriririieniiiiniececnienree ettt 38

3.7 EVAUALION ..ottt et s 40

3.7 Advantages and Limitations of cppsSliCerc.ecvevrvrenevenrrnnnenicnnieniennn, 40

IV. SUMMARY AND FUTURE WORKcoceitriiririiirereneccrteneentenecee e 42

4.1 SUMIMATY ..ooiireiiieieiiitciecer ettt ettt et 42

4.2 FULUIE WOTK ...cnrimreeiiiiiiteeccteeteeete ettt et e e sae et et san et 43

REFERENCES ...ttt ettt et b ettt s st et sne et ae e 45

APPENDICES ...ttt sttt st ettt st e a s s s e et st ee s st e s annaessassaessans 47

APPENDIX A - USERS MANUAL FOR CPPSLICERccccovurvreeerrnrnanene. 48

APPENDIX B - GLOSSARY AND TRADEMARK INFORMATION 51
APPENDIX C - SAMPLE PROGRAMS USED FOR COMPUTATION

OF SLICING-BASED METRICScccocoemiiiiniresreeeerene 54

APPENDIX D - CPPSLICER SOURCE CODE LISTING......ccccccecvmruriniranenn 62

vi

LIST OF FIGURES

FIGURE PAGE
1. A program to compute the sum, average, and product of the first n numbers 11
2. A sample program to compute the sum and product of the first ten numbers 18
3. A static slice of the sample program shown in Figure 2cccooevcveviiivninennrenneenee. 18
4. A dynamic slice of the sample program shown in Figure 2 based on
Korel and Laski's definition of dynamic Slicingccccevvevreveeesieecieeieecerreeieeee, 19
5. A dynamic slice of the sample program shown in Figure 2 based on
Agrawal and Horgan's definition of dynamic slicingccceeecveeevveecieecenieccieeinne 20
6. A quasi-static slice of the sample program shown in Figure 2 based on the
quasi-static slicing Methodccoiviiiiiiiciiiie e 25
7. Slicing data SLIUCIUIESc.eeceerieriierirrieirtestesreete st e sate et e be e et et eese e e sa e nae s e e sneenns 30
8. Rules for computing the INCLUDE S€tc.ccoceerimieniiniiieniineeneeneerereesecsreesreseeseens 32
9. A sample program to compute the sum and product of the first n numbers 32
10. Results of the INCLUDE sets that are computed for the sample program
ShOWI IN FIGUIE O ..ottt e ea s 33
11. Algorithm to compute the INCLUDE S€tc.cccocriiiniiiiiniininiceeeereneeseeseee e 34
12. Rules for producing SlICESceverrerriiriireriiriereseerreere e e teeeeseaseessaessaessaesveeenns 34
13. Slicing algorithm for member functionscc.ccceecceveririencienenenierercrcee e 36
14. Complete slicing algorithmcccccooeriiiiiiiiiniieeee et 37

vii

TABLE

1. SLICING-BASED METRICS

LIST OF TABLES

..

viii

CHAPTER 1
INTRODUCTION
1.1 Introduction

The probability of a program to be compiled initially without errors is bleak. Such
errors include errors in either design or in coding [Borland90]. Debugging techniques are
used to identify and fix errors. Debugging techniques attempt to localize the cause of errors
in a program and correct them [Brown and Sampson73]. It is generally difficult to find
errors merely by observing the afflicted program's behavior. As the size of a program
increases, the cost associated with debugging generally increases. The debugging process
becomes more difficult especially when programs written by other people are involved
[Korel and Laski88]. A number of methods, tools, and approaches have been developed to
debug programs. Debugging approaches include file printing utilities, module testing
packages, and built-in language facilities. Program Slicing is another debugging approach.

Program slicing, as an approach to debugging, is based on the assumption that it is
easier to locate errors in programs of smaller size rather than in thé original source program
of larger size. Program slicing focuses on the statements that are associated with one or
more variables of interest defined as criterion variables [Samadzadeh and Wichaipanitch93].
The program statements that are not related to the criterion variable are omitted. Program
slicing is based on data and control flow analysis. It is applied to programs after they are

written. Hence program slicing is primarily useful for the maintenance rather than the

2
design of software [Nanja90]. Using a slicing method, one can obtain a new smaller
program (or a program of the same size, in the worst case) that preserves part of the original
program’s behavior for a particular output or variable [Weiser84]. Program slicing can be
categorized into static slicing and dynamic slicing depending upon the slicing algorithm and
approach. Static slicing is a method of computing program slices directly from the original
source program [Weiser84]. Dynamic slicing, is a method used to compute program slices
from the executable part of the original source program [Korel and Laski88] [Agrawal and

Horgan90] [Samadzadeh and Wichaipanitch93].

1.2 Purpose of Study

The main purpose of this thesis was to implement a program slicing algorithm in
generating a program slice. An interactive debugging tool called cppslicer was developed
for debugging a subset of C++ programs running in a UNIX environment. The cppslicer
program was designed and developed based on established slicing techniques, and it can run
as a utility program on UNIX systems.

The cppslicer program was implemented using object-oriented techniques and
approaches [Budd91] in the C++ programming language. It was designed so that it can help
debug programs involving straight-line code; control statements such as if, for, while, do,
and switch; and classes together with their member functions, both in public and private
parts. It can also handle expressions manipulating simple pointers to int, char, and classes
(the implicit "this" pointer). The cppslicer program can handle programs that involve

operator overloading. Due to time constraints, structures, unions, and user-defined variables

3

were not included in the scope of this thesis. The cppslicer program cannot handle programs

that contain functional overloading, friend functions, and inheritance.

1.3 Organization of Report

The rest of this thesis report is organized as follows. Chapter II discusses different
debugging methods and tools that are present on UNIX and some other systems. It also
introduces static slicing, dynamic slicing, the different approaches used in implementing
dynamic slicing, and types of slices. The chapter concludes with a review of quasi-static
slicing. Chapter III outlines the design aspects of the cppslicer program, including the data
structures and the different algorithms that were used in designing and developing the
cppslicer program. The chapter concludes by discussing a prototype evaluation of the
cppslicer program followed by advantages and limitations of the cppslicer program. Chapter
IV contains the summary of the thesis report and some of the possible future enhancements

that can be done to the cppslicer program.

CHAPTER 11
LITERATURE REVIEW
2.1 Debugging
2.1.1 Definitions
To facilitate better understanding of debugging, it is appropriate to define the

concepts of error, bug, fault, and defect [Nanja90].

Error. An error is a syntactic discrepancy that can result in faults in software. Errors occur
inevitably while writing programs. Sources of errors can be briefly summarized
[Wichaipanitch92] as follows.
1. Error in specifying the problem definition. This results in solving a wrong problem.
2. Error due to a wrong algorithm. This error occurs due to choosing a wrong algorithm
for a given problem.
3. Semantic errors due to lack of proper knowledge of how a command or a programming
construct works.
4. Errors resulting from incorrect programming of an algorithm.
5. Syntactic errors in a program that occur due to lack of sufficient knowledge about
or proficiency in programming language concepts.

6. Data errors resulting from failure to predict the ranges of various data items correctly.

Fault. A discrepancy in software, which can impair its ability to function as desired, is

4

5
referred to as a fault. Faults can lead to the generation of incorrect output values for a given

input. For instance, faults may occur when input variables are not initialized.

Defect. A discrepancy between the code and the corresponding documentation, which may
result in severe consequences in the process of installation, modification, maintenance, and

testing is known as a defect.

Bug. Debugging. and Debugger. A bug in a computer program is an error that is due to
either syntax or logical errors. Debugging attempts to locate such errors (without
introducing new errors) and correct them. A debugger is a software tool that gives a user
control over program execution status. A user can observe and control the execution of a
program and fix the bugs by comparing it with the specified intention. It should be noted
that as the sizes of programs increase, the bugs associated with them also increase. As the
number of bugs increases, the cost associated with debugging also increases. It is a well
known fact that almost fifty percent of the cost involved in software development is
associated with debugging and correcting the errors in the program during the testing phase
[Tassel74]. Reducing the occurrence of errors in programs is one of the ways to decrease

the cost associated with debugging.

Testing. Testing is the process of attempting to verify the correctness of a program in its
execution. Testing differs from debugging in that testing is used to test the correctness of
a program whereas debugging is used to localize the cause of errors and to correct them
[Brown and Sampson73]. The process of debugging and correcting errors of the program

can be considered part of the testing step.

2.1.2 Debugging Steps
Debugging can be broadly classified into three steps [Borland90].

1. Identifying the bug: It is important in the debugging process to identify the bug in the
testing process by studying the code. This process becomes more complicated when the size
of the program increases. If the bug cannot be identified, the scope or set of statements must
be narrowed down and the code needs to be studied again.
2. Identifying the cause of the bug: Once a bug is identified, the second and harder part is
to identify the cause of the bug. The search for the cause is generally in that part of the
program where the bug exists, rather than the whole program.
3. Fixing the problem: Once a bug and its cause are determined, necessary actions must be
taken to rectify the problem.

The program is then compiled again and tested for other bugs. If any new or residual
bugs still exist, then the above debugging process may be repeated until no more errors are

practically detectable in the program.

2.1.3 Debugging Approaches

Debugging is not an exact science; it is called an art in the sense that it is difficult
to learn and to teach about debugging. Most programmers are trained in programming, but
very rarely are they trained for debugging. It is as true today as ever that it is a difficult
process to find bugs and to correct programs. Some of the common debugging approaches
are briefly described below [Borland90].

1. Bottom-Up Approach: Concentrate on debugging a program's lowest-level functions

7
(which do not call other functions) first. Then work upward towards the main part. In this
way one obtains a foundation of reliable functions that can be used to step over when they
are called in other parts of the code.

2. Look for Classes of Bugs: When a bug is identified look for bugs of similar kind in the
same part of the program.

3. I/O-Based Approach: This approach comprises of five steps which are summarized as
follows [Borland90].

a. Feed the program some input and trace the code. Watch expressions to check the
values of output. Correct the bugs if found.

b. Feed the program with other sets of data that will access the parts of the program
that are not accessed from the preceding step.

c. Test every statement in the program. Be alert for statements or expressions that
must be tested in more than one way.

d. Concentrate on boundary conditions, which can make a program escape from
a loop.

e. When a modification is made to a program, retest the affected parts thoroughly.
If a program is complex, keep a record of the tests performed on the program in the earlier
steps. This record will help in all tests whose results could possibly be affected by the
change. Once the above iteration is done, test the entire program for correct behavior. Test
its response to every type of error it could possibly encounter, within the practical limits of
time and effort.
4. Incremental Approach: To localize the cause of errors, adopt incremental testing. This
process is feasible only when a programmer is conversant with various programming

constructs. Moreover, the programmer should be able to understand the program that is to

8
be tested reasonably well. These things lay emphasis on the skills of the programmer
involved.

5. Logical Approach: Use logical reasoning in determining the cause of errors. This process
is done manually and becomes more difficult in dealing with large and complex programs.
6. Trace-Based Approach: Perform a program trace to determine when the program started
performing incorrectly. This process becomes more difficult when dealing with large and
complex programs. This approach depends upon the programmer's skills and knowledge
acquired from experience, because experience will be of great help in identifying the
elements of the program that are to be traced and in interpreting the trace information
generated.

Most of the experienced programmers would use a subset, if not all of the aforesaid

approaches or switch among them, while debugging programs that are unfamiliar [Nanja90].

2.1.4 Debugging Tools

Historically speaking, when debugging techniques were introduced, programmers
needed to understand all aspects of a source program and localize the part of the program
that did not function as expected. This period is known as "without-tool" generation
[Nanja90]. Later on, several debugging tools were developed. In the first generation,
debugging tools were based on specific machine architectures. Such tools are used to
provide memory dumps and absolute instruction traces, and are called low-level debuggers.
In the second generation, tools were designed and developed to provide the memory

location address for a variable while debugging. In the third generation, the debugging tools

9
were capable of some deductions regarding the presence of errors in programs. Examples
for low-level debuggers include UNIX adb and DOS-Debug. Examples for high-level
debuggers include symbolic debuggers, knowledge-based debuggers, data-base debuggers,

and slicing-based debuggers.

2.1.4.1 Symbolic Debuggers. Symbolic debuggers provide information based on the
programming language that is used to write the programs which are to be debugged.
Contents of the variables can be examined without mentioning the actual addresses of the
variables. This type of debuggers provides various options such as tracing the variable,
setting watch/break points, and line by line execution.

The main advantage of symbolic debuggers, when compared with low-level
debuggers, is that there is no need to know the specific machine architectures. Examples of
this type of debuggers can be found on VAX and UNIX systems. The symbolic debugger
on VAX is called VAX-DEBUG and can be used to debug programs that are written in
assembly language, FORTRAN, BLISS, Basic, Cobol, Pascal, and Pl/I [Nanja90]. The

symbolic debugger on UNIX is called sdb which supports FORTRAN, C, and C++.

2.1.4.2 Symbolic Debugger on Sequent Symmetry. A symbolic debugger present on the

Sequent Symmetry is pdbx . It can be used for source-level debugging and execution of both
conventional and parallel programs. At present, this tool can be used to debug Pascal,
Fortran, C, and C++ programs. This tool can be invoked by the command pdbx or dbx.

When invoked by the command dbx, it can debug only conventional one-process, one-

10
program applications.

To debug using pdbx, a program should be compiled using option -g on the
command line. This produces a file called execfile which contains the symbol table that
includes the names of all the source files translated by the compiler. This makes available
all the source files for perusal while using the debugger. It is perhaps worth noting that if
the program is compiled with the -g option, the executable code generated is saved into an
';a.ou " file. To change this option, one needs to compile the source code with the option -o

to redirect the executable code into another file.

2.1.4.3 Special Options for C++. To compile a source C++ program and to generate an
execfile, one needs to compile the program by typing CC -g <filename>. To debug C++
programs, one needs to invoke dbx or pdbx using the -D option on the command line. As
the on-line manual information on C++ indicates, this option is used to translate cfront-
mangled names to the original C++ versions after reading the program symbols. This
makes possible the usage of C++ identifier names instead of the mangled names generated
by cfront.

The following example illustrates some of the features offered by pdbx. The
program in the example is written in C++. It computes the sum, average, and product of the

first n numbers.

11

#include<stdio.h>
#include<iostream.h>
#include<string.h>
class TestClass({

private:
int sum, fact; // sum, fact, and average are used to
float average; // to store sum, product and average of
public: // the first n numbers.
TestClass () ; // Constructor
void Calculate(int);
void Printval(); // Print the result

Y

// Constructor which initialize the values without being called from
// program.

TestClass: :TestClass () {

sum = 0;
average = 0;
fact = 0;

}
// Function used to calculate sum, product, and average of the first n
// numbers
void
TestClass::Calculate(int num) {
int sub = 1;
while(sub <= num) {
sum = sum + sub;
sub++;
}
int count = 1;
fact = 1;
while(count <= num) {
fact = fact * count;
count++;
}
average = (float) sum / num;
}
// Print the values of variables sum, fact, and average
void
TestClass: :Printval ()
{
printf("Sum Is %d\n", sum);
printf("Fact Is %d4d\n", fact);
printf ("Average Is %$f\n", average);
}
main()
{
int number;
TestClass tl;
cout << "Enter the Number" << endl;
cin >> number;
tl.Calculate (number) ;
tl.Printval();

Figure 1. A program to compute the sum, average, and product of the first n numbers

12
The usage and some of the features of pdbx on the Sequent S/81 computer are
shown below. The % symbol denotes the UNIX Bourne shell prompt from where pdbx can

be invoked by typing dbx or pdbx with the -D option.

$ dbx -D /*Invoking dbx */
dbx version 2.0.1 (00050)

Type 'help' for help.

enter object file name (default is “a.out'):
/*Calling default
executable code */

reading symbolic information

(dbx) 1 30,39 /*Listing the lines */
30 sub++;
31 }
32 int count = 1;
33 fact = 1;
34 while (count <= num) {
35 fact = fact * count;
36 count++;
37 }
38 average = (float) sum / num;
39 }
(dbx) stop in Calculate /*Setting a break point */
[1] stop in Calculate
(dbx) r /*Starting execution */
Enter the Number /*Asking for input */
2 /*Input from user */

%2 Stopped at breakpoint 1 in Calculate at line 25
25 {

(dbx) n /*Stepping to next line */
32 Stopped after next in Calculate at line 26
26 int sub = 1;
(dbx) n
%2 Stopped after next in Calculate at line 27
27 while (sub <= num)
(dbx) n
%2 Stopped after next in Calculate at line 29
29 sum = sum + sub;
(dbx) n
%2 Stopped after next in Calculate at line 30
30 sub++;
(dbx) p num /*Printing the contents of
variable num */
2 /*Value displayed on

to the screen */
(dbx) n
%2 Stopped after next in Calculate at line 31

13

31 }
(dbx) p sub
2
(dbx) c /*Continue the program */
Sum Is 3
Fact Is 2
Average Is 1.500000
%2 Stopped after next in main at line 58
58 }
(dbx) quit /*Quit dbx */
Using pdbx or dbx, one can locate the cause of errors, if any, by typing the
command where at the dbx prompt. Some other features of pdbx are listed below.

1. The contents of the variables, structures, and pointers can be examined without
mentioning their actual address.

2. The program resident in dbx can be displayed and break/watch points can be inserted
during debugging.

2.1.5 Debugging Tools on UNIX

Debugging tools that are typically available on the UNIX systems, other than the
symbolic debuggers, are LINT, ADB, PADB, and CTRACE

ADB is a low-level debugger that is used to debug at assembly level, i.e., it allows
a programmer to analyze the execution of a program in terms of machine instructions. It
also allows a programmer to look into core files and memory dumps.

CTRACE, a debugging tool for C programs, enables a programmer to follow the
execution of a program step by step. It inserts statements to print each executable statement
and the variables that are referenced or modified, and writes the output to the standard
output which can be saved in another file. When the file is compiled and run, it will list each

statement to be executed followed by the variables referenced or modified in that statement,

14

followed by any output from the statement.

2.1.6 Slicing-Based Debuggers

Slicing-based debugging tools produce a slice of a program depending on the
variable(s) of interest. A slice can be either executable or not depending on the slicing
criterion and the slicing method utilized. A slice is a set of program statements that directly
or indirectly contribute to the values assumed by a set of variables at some program point
[Weiser84] [Venkatesh91]. These debuggers are high-level debuggers that can be used to

locate the cause of errors.

2.1.7 Other Types of Debuggers

Other types of debuggers [Nanja90] include the following. Database debuggers in
which debugging is a process of performing queries and updates on a database that contains
a program and the execution states of that program. An example of a database debugger is
OMEGA. Knowledge based debuggers store the debugging programming knowledge in
their knowledge banks. Examples of knowledge based debuggers include Laura, PUDSY,

and Proust [Seviora87].

2.2 Program Slicing
Program slicing is a source-to-source transformation that can be used in
construction, testing, analysis, and debugging of programs [Weiser84] [Venkatesh91].

Program slicing was introduced by Mark Weiser [Weiser81]. Program slicing is used to

15

localize errors in programs. Slicing is concerned with the variables of interest that are called
criterion variables. The statements involving other variables are omitted. In general, one
obtains a new program of smaller size that still retains all aspects of the original program's
behavior with respect to the criterion variable [Samadzadeh and Wichaipanitch93]. Program
slicing decomposes a large program into relatively smaller programs that are called slices
[Weiser81] [Weiser82] [Weiser84].

Operationally, a slice of a program represents a subset of the program's behavior
over all possible inputs. The implication of the definition of a slice is that one could execute
a slice of a program to obtain the values of the criterion variable [Venkatesh91]. Moreover
there can be different slices satisfying the definition for a given program point and a
criterion variable. There is at least one slice for a given slicing criterion, the program itself.
A statement-minimal slice is defined as a slice with the least number of statements. Finding
a statement-minimal slice is reducible to the halting problem which is unsolvable, but one
can find approximate slices using data and control flow [Weiser84].

The advantages of slices and slicing methods are based on four facts, as stated
below [Weiser84].

1) Slices can be found automatically by methods used to decompose programs by analyzing
their data flow and control flow.

2) A slice is normally smaller than the original program.

3) Slices can be executed independently of one another. A slice is itself an executable
program whose behavior must be identical to a specified subset of the original program's
behavior.

4) Each slice produces exactly one projection of the original program's behavior.

The problems with slices are listed below.

16
1) They may prove expensive to find for some programs.

2) Producing slices for some large complex programs may be difficult. There may not be
any significant slices for a program.

3) Their total independence may cause additional complexity in each slice that could be
cleaned up if some simple dependence can be found.

4) Selection of slicing variables may create problems.
In general, it is easy to find significant slices for large classes of programs. Program
slicing can be categorized into static slicing and dynamic slicing depending upon the slicing

criterion.

2.2.1 Static Slicing

Static slicing is defined on the basis of all computations of a program. Static slicing
produces a program segment that consists of those statements that may possibly be executed
if the program is sliced according to the desired criterion [Weiser84]. Static slicing is the
method of computing slices directly from the original source program. A slice obtained by
a static slicing criterion is called a static slice. Generally, it is easy to find a static slice for
a program as compared to obtaining a dynamic slice.

In general, a slicing criterion of a program P is a tuple <i, v>, where i is a statement
in P and v is a subset of the variables in P [Weiser84]. According to Weiser, "a slice can
be defined behaviorally as any subset of a program which preserves a specified projection
of its behavior" [Weiser84].

Given a program P, anode » in its flow graph, and a variable var, the static slice

of P with respect to var at node # can be constructed by finding:

17
1) All reaching definitions of var at node n.
2) All reachable nodes in the program from each reaching definition obtained.
If SRD(var, n, F) represents the set of reaching definitions of a variable var at node
n in flow graph F, then the static slice will be the union of all reachable nodes. More
precisely,
Staticslice(P, var, n) = U x € SRD(var, n, F) R€AChablenodes(x, D)
where reaching definition of a variable var at node » in flow graph F is be a set of nodes
in F at which var is assigned a value and control can flow from that node to node n without
any redefinition of var along the control flow path, and ReachableNodes(x, D) is a set of
vertices in the program dependence graph D that can be reached from x by following one
or more edges in D [Agrawal, et al.91].
SRD for the program in Figure 2 with respect to variable total is SRD(total, 15, F)
= {6, 15} and static slice with respect to variable total is shown in Figure 3.
One advantage of static slicing over dynamic slicing is that it is easier and faster to
identify a static slice [Samadzadeh and Wichaipanitch93]. The reason for this is that the
computations for generating a static slice are done directly from the original source
program. The disadvantages of static slicing are the following

1) Static slicing yields program slices of generally larger size than those obtained using
dynamic slicing.

2) Static slicing cannot treat array elements and fields in the dynamic records as individual
variables [Korel and Laski90].

3) Static program slices tend to be large and imprecise when the programs to be debugged

18

#include<stdio.h> S1
#include<string.h> S2
main() S3
{
int number; sS4
int fact; S5
int total; S6
int variable; s7
variable = 1; S8
fact = 1; S9
if(number < 0) s10
{ S11
printf("error\n"); S12
number = 0; S13
}
while (number < 10){ S14
total = total + 1; S15
number++; S16
fact = fact * variable; S17
variable++; 518
}
printf("total is %d\t factorial is %d\n",total, fact); S19

}

Figure 2. A sample program to compute the sum and product of the first ten

numbers

#include<stdio.h> si
#include<string.h> s2
main () S3
{
int number; sS4
int total; S6
if (number < 0) S10
{ si1
printf{"error\n"); S12
number = 0; S13
}
while (number < 10){ s14
total = total + 1; S15
number++; S16

Figure 3. A static slice of the sample program shown in Figure 2

involve pointers and composite variables such as arrays, records, and unions. Dynamic

19

slicing overcomes these shortcomings.

2.2.2 Dynamic Slicing

Static slicing was extended to dynamic slicing by Korel and Laski [Korel and
Laski88]. According to Korel, a dynamic slice is a sub program that computes the values
of the criterion variables in a specific execution of a program [Venkatesh91]. In contrast to
Korel and Laski's approach, Agrawal [Agrawal, et al.91] defined a dynamic slice as a
collection of statements that affect the values of the criterion variable in a specific execution
of a program. The slice may not be executable by itself. To clarify the two different
definitions, consider the example shown in Figure 2 that calculates the sum and product of
the first ten natural numbers.

Korel and Laski's dynamic slice with respect to the variable total at S19 contains
statement S16 because the statements which effect the control statements should be included

in the slice. Figure 4 shows Korel and Laski's dynamic slice

#include<stdio.h> S1
#include<string.h> S2
main () S3
{
int number; sS4
int total; S6
while (number < 10) S14
{
total = total + 1; S15
number++; S16

Figure 4. A dynamic slice of the sample program shown in Figure 2 based on Korel and
Laski's definition of dynamic slicing

20
of the program in Figure 2.

According to Agrawal and Horgan's definition of a dynamic slice, the dynamic slice
with respect to variable total at S19 includes all of the statements that directly affect the
criterion variable. All other variables, even the variables that are involved in the control
flow of the original program are omitted. The program in Figure 5 shows the output

generated based on Agrawal and Horgan's definition of dynamic slice of the program in

Figure 2.
#include<stdio.h> sl
#include<string.h> S2
main () S3
{
int number; 54
int total; S6
while (number < 10) S10
{
total = total + 1; Sl4

}

Figure 5. A dynamic slice of the sample program shown in Figure 2 based on Agrawal
and Horgan's definition of dynamic slicing

Compared to Agrawal and Horgan's dynamic slice, Korel and Laski's dynamic
slice is larger in size. But Korel and Laski's slices are definitely executable and never end
in infinite loops.

Dynamic slicing consists of two activities [Venkatesh95]: the first activity is to
obtain the trace about the execution of the program for a given input, the record activity is
to construct slices for variables present in the program.

The execution trace for a program can be obtained using source code or object code,

21

which are called as source-level instrumentation or object-level instrumentation,
respectively [Venkatesh95].

To obtain an execution trace, Agrawal and Horgan used source-level instrumentation
over object-level instrumentation because of the following assumptions [Venkatesh95]: ease

of portability to different platforms and simplicity of implementation.

2.2.2.1 Dynamic Slicing Procedures. To facilitate better understanding of dynamic program
slicing as proposed by Agrawal and Horgan, and by Korel and Laski, it is necessary that
the following definitions be presented [Korel and Laski90] [Agrawal, et al.91]
[Wichaipanitch92] .

Let the flow graph of the program P be a digraph (V, R, S, L) and C be the slicing
criterion, where V represents a set of vertices, R represents a binary relation on program P
which is referred to as the set of arcs, S € V is a unique entry node, and L € V is a unique
exit node.

A vertex in V consists of one instruction, such as input/output statements,
assignment statements, and control instructions (e.g., if-then-else or while), which are
called test instructions.

An arc corresponds to a possible transfer of control flow from one instruction to
another instruction.

A path from s to some vertex n € V is called a sequence. If there is input data that
causes the path to be transferred during execution, then the path is feasible.

A trajectory is a feasible path that has been executed for some input. A trajectory

22
with respect to an instruction and its position is represented as an ordered pair (an
instruction, its position in the trajectory) so as to distinguish among multiple occurrences
of the same instruction in a trajectory. If trajectory T for a program P is represented by (k,
P) for some instruction k in program P, then the pair can be replaced by k? and will be
referred to as an action. An action kP is a test action if k is a test instruction.

If T represents the trajectory of a program on input x, then the dynamic slicing
criterion of program P executed on x can be defined as C = (x, 19, V), where I%is an action
and v is a subset of variables in P.

If hist denotes the execution history of a program P on a test-case test and on a
variable var, then the dynamic slice of P with respect to hist and var is the set of all
statements in the kist whose execution has some effect on the value of var as observed at
the end of the execution of the program. Unlike static slicing, dynamic slicing is defined
with respect to the end of the execution history, i.e., if a dynamic slice with respect to some
intermediate point in the execution is to be determined, then we should consider the partial
execution history up to that point [Agrawal, et al.91].

A dynamic slice, as defined by Agrawal and Horgan, for a variable var can be
determined as follows.
1) Find all the nodes that correspond to the last definition of variable var in the execution
history.
2) Find all nodes in the graph reachable from that node. Then set

DynamicSlice(hist, var) =U X ¢ DRD(var, sy R€@Chablenodes(X, DynamicDep(hist))

where DRD(var, hist) denotes the last occurrence of the node in hist that assigns value to

23
var.

The Steps involved in obtaining a dynamic slice based on Korel and Laski's
definition for dynamic slicing for a program P can be summarized as follows [Korel and
Laski88] [Wichaipanitch92].

1) Find a trajectory of the program P.

2) For each action kP in the trajectory, compute U(kP), the set of variables that are used in
k, and D(kP), and set of variables that are defined in k.

3) Compute the Definition-Use relation, a relation in which one action assigns a value to
an item of data and the other action uses that value.

4) Compute the Test-Control relation, capturing the effect between test actions and actions
that have been chosen to execute by these test actions.

5) Compute the slicing set S, and the action set A.. The Slicing set S, can be computed
using the following definition.

Let C=(x, 1%, V) be a slicing criterion and T be a trajectory on input x. To find the slicing
set S,, we have to find a set A° of all actions that have direct influence on V at q and on
action I%. A° is defined as follows:

A°=LD(q, V) ULT@)
where LD(q, V) is the set of last definitions of variables in V at the execution position q,
and LT(I9) is the set of test actions that have Test-Control influence on action I4.

The slicing set S, can be found by an iterative method, as the limit of the sequence
S% S, ..., 8%, 0<n < q, defined as follows:

SP=A°,

s =g Uam,

where A" = { XP eM(T): 1 <p<gq,

24
(1) X ¢S, and
(2) there exists Y' € S',t<q, XP Z Y}
where Z = DU U TC U IR, and M(T) represents a set of actions in
the trajectory T.
Finally, we can get the slice from the following definition:
s, =s, Ugr
where S* is the limit of the sequence { S '}.

As stated in the previous section, it is generally difficult and more complex to
compute a dynamic slice than a static slice. Moreover, using dynamic slicing to produce
slices, one needs to produce an executable code from the original source code. The process
of finding slices becomes difficult when programs that are written in C++ are the inputs
because of classes, operator overloading, functional overloading, polymorphism, and other

features.

2.2.3 Quasi-Static Slicing

Quasi-Static slicing, which falls between static slicing and dynamic slicing, arises
from applications in which values of some inputs are fixed while the behavior of the
program varies with respect to other variables [Venkatesh91].

A quasi-static slice with respect to variable total at S19 in Figure 2 is obtained by
including the statements which check the value of the variable number at line S10. Figure

6 shows the final slice using the definition of quasi-static slicing.

25

#include<stdio.h> S1
#include<string.h> S2
main () S3
{
int number; sS4
int fact; S5
int total; S6
if(number < 0) S10
{ s11
printf ("error\n"); S12
number = 0; S13
}
while (number < 10) S1l4
{
total = total + 1; S15
number++; S16
}
printf("total is %d\t factorial is %d\n", total, fact); S19

}

Figure 6. A quasi-static slice of the sample program shown in Figure 2 based on the
quasi-static slicing method

2.3 Types of Slices

Slices can be broadly classified into forward slices and backward slices based on the
type of computation involved. A backward slice consists of statements or expressions that
affect the value of a variable of interest [Venkatesh91] [Venkatesh95]. In computing this
type of slices, first the execution trace of a program is recorded and then the dynamic
dependence relations are determined backwards.

A forward slice contains statements in a program whose computation is affected by
the value of a variable of interest [Venkatesh91] [Venkatesh95]. These slices are computed
during the execution of a program without recording the execution trace.

Slices can also be divided into four kinds based on the extent to which the closures

on the dependencies are performed [Venkatesh95].

26

1. Data Dependence: In case of backward slicing, this type of slice contains the previous
definition site of a variable of interest and is called Defsite. For forward slicing, it is a set
of statements where the current definition for variable of interest is used and is called as
Refsite.

2. Data Closure: This type of slice is obtained by performing closure just over data
dependencies, starting from a variable of interest. This type is used for debugging,
understanding of programs, for maintenance.

3. Data and Control Closure: This type of slice is obtained by performing closure over both
data and control dependencies, starting from a variable of interest. This type of slice has
applications in testing. The dynamic slice as defined by Agrawal and Horgan [Agrawal, et
al.91] falls under this type.

4. Executable: This slice is obtained by performing closure over both data and control
dependencies, and including some additional statements that make the slice an executable
sub program that depicts the original program's behavior. This type of slice in backward
slicing corresponds to Korel and Laski's dynamic slice.

CHAPTER III
C++ PROGRAM SLICER (cppslicer)
3.1 Introduction
Based on a review of the open literature, there seems to be no slicing-based
debugging tool currently available for the C++ programming language. By applying static
and dynamic slicing techniques, a slicing environment called C++ program slicer
(cppslicer) was developed for programs written in a subset of C++. It is developed as a
utility program of the UNIX system. The cppslicer tool is written using C++ and the object-
oriented methods. It can also be used to slice programs that are written in ANSI C in a more
efficient manner. The rest of this chapter discusses the design and implementation issues

of the cppslicer tool.

3.2 C++ Program Slicer Overview
Using the cppslicer program, a user can locate the cause of errors in a program. It
can be compared with the tools developed by Nanja [Nanja90] and Wichaipanitch
[Wichaipanitch92], whose slicers can be used to locate errors for programs that are written
using a subset of C. The cppslicer tool was designed and developed in a way to afford ease
and convenience to the user. Menus are provided to allow a user to select any one of the
number of functions (load, slice, cload help, man, etc.) supported by the cppslicer program.

The cppslicer program was designed and developed using object-oriented methods.

27

28

One important aspect of cppslicer is data abstraction. Data abstraction is not violated in any
of the classes. Code reusability is one of the other aspects that was taken into consideration

while designing and developing the cppslicer program.

3.3 Software Issues

3.3.1 Definitions

The following definitions [Weiser84] [Nanja90] are useful for applying slicing to
programs written in a subset of C++.
DEF(n). DEF(n) is the set of variables whose values are changed at statement n [Weiser84].
For example, if n is an assignment statement, the values that appear on the left side of the
expression are included in DEF(n). Other variables that can be included are variable
declarations and read statements. If the statement does not contain any of these types, then
DEF(n) is empty.
REF(n). REF(n) is the set of variables whose values are used at statement n [Weiser84].
Thus, if n is an assignment statement, REF(n) is the set of values that appear on the right
side of the assignment. Other variables that can be included in REF(n) are variables that are
used in printing and variables that are used to test the test-control relations. If the statement
does not contain any of these types, then REF(n) is empty.

Slicing Criteria. A slicing criterion of a program P is a tuple <i, V>, where i is a specific

statement in P and V is a subset of the variables in P [Weiser84].
Active Set. An active set is a set of variables at statement K of a program P, whose values

just before execution of the statement K might influence the slicing criterion variables V

29

just before execution of the slicing criterion statement n .

3.3.2 Slicing Criterion

Based on the review of the open literature, there seems to be no algorithms for
slicing C++ programs, hence a new method involving both static and dynamic slicing,
which is different from quasi-static slicing [Venkatesh91], was developed.

The new algorithm, analogous to Weiser's algorithm, depends on the backward
approach. It differs from a static slice in that the slices generated are executable irrespective
of the criterion variable. The static slicing method can be used to generate slices of
programs that may or may not be executable.

The new algorithm differs from dynamic slicing too. A dynamic slice of a program
can be computed from the executable part of the source code [Korel and Laski88]. That is,
an executable trace is developed from the original source code. This trace can be compiled
into a dynamic dependence graph that links each instance of the use of a variable to its
definition. Each occurrence of a definition is linked to the corresponding occurrences of
the variable's uses (if any) in its defining expression, also to the variable's uses (if any) in
expressions that are control dependent [Venkatesh95]. The new algorithm uses the original
source program itself to produce slices that are executable.

This proposed method deviates also from quasi-static slicing [Venkatesh91]. Quasi-
static slicing is dependent on the variables that affect the overall performance of the slices.
Such variables are not considered in developing the new algorithm. On the other hand, the

proposed method is similar to quasi-static slicing in the aspect that it uses both the static and

30

the dynamic slicing methods.

type RefDef is record of

variable : StringClass;
linenumber : int;
PartsType : int;

end of record

type RefClass is record of

PartsTytpe : int;
Beginline : int;

EndLine : int;

rettype : RETTYPE;
ClassName : StringClass;

end of record

type node is record of

linenumber : 1l..n statements;
INCLUDE : int;

metoo : int;

lineinformation : StringClass;

RefHeader : array[l..n] of RefDef;
DefHeader : array[l..n] of RefDef;

end of record

Figure 7. Slicing data structures

3.3.3 Data Structures

The data structures and algorithms that were designed and used in implementing the
slicing algorithm are shown in Figure 7. The figure shows part of the data structures that
were used in the implementation of cppslicer. Classes that were designed and implemented
for cppslicer are discussed in the section on implementation issues (Section 3.4).

RefClass is used to store information regarding the criterion class. Similar to the
criterion variable, criterion class is a class of interest with respect to which slicing is

performed. For the cppslicer program, there can be at most one class of interest. The

31
information includes parts type (public or private), member functions, their beginning and
terminating lines, and the type of value that is to be returned from the member functions
(void, int, ..., etc.)

RefHeader and DefHeader are used to store the variable that are referenced and
defined, which were defined as REF(n) and DEF(n) [Weiser84]. The additional information
includes variable type (global, local, private, or public) and their line numbers.

In node type, INCLUDE is used to store a set of line numbers that are used for

computing the scope of influence of each line.

3.3.4 Slicing Algorithms

For finding out the scope of influence of control statements and functions, the
INCLUDE set is used. The INCLUDE set for each statement is initially set to NULL. If a
line number X contains a control statement or function, then X will contain the starting and
ending line numbers in it. Due to the complexity of the C++ language, and in order for the
cppslicer program to be able to handle classes and their member functions, a set of rules that
are simpler than the metoo set [Samadzadeh and Wichaipanitch93] were made as shown
in Figure 8. Based on the rules in Figure 8, Figure 10 shows the INCLUDE set for the

program shown in Figure 9, which calculates the sum and product of the first n numbers.

32

1. For any line number consisting of such instructions as control, thqg
include set will contain
1.1 Its line number.
1.2 Line number representing the beginning of the scope of
influence.
1.3 Line number representing the end of the scope of the
influence.
2. If a control statement appears with one statement, it will be marked
with metoo set.
3. In case of member functions of the criterion class, the include set
will contain
3.1 Member function's line number in the class.
3.2 Starting line where the actual member function is defined.
3.3 Ending line where the actual member function is defined.
4. If any other statements appear, their metoo and INCLUDE are set to NULL

Figure 8. Rules for computing the INCLUDE set

1 #include<stdio.h>

2 #include<iostream.h>

3 #include<string.h>

4

5 main()

6 {

7 int sub = 1;

8 int sum = 0;

9 int fact = 1;

10 int num = 0;

11 cout << "Enter the Number" << endl;
12 cin >> num;
13 if(num < 0)
14 cerr << "error in input " << endl;
15 while(sub <= num)

16 {

17 sum = sum + sub;

18 sub++;
19 }

20 int count = 1;

21 while (count <= num)
22 {
23 fact = fact * count;
24 count++;

25 }

26 cout << "sum 1s " << sum << "\nProduct is " << fact << endl;
27 }

Figure 9. A sample program to compute the sum and product of the first n numbers

33

2
0
ot
o)
(e}

Line Number INCLUDE
End

o
D
Q
H-
B

O Jo b W R

N}
[N eleololeNoloReoNoleoNoNel o oNeNeoNoNeoNolNolNoNolNo e
1N

=
w
O OO0 OO OO O OORFRPROODODO0ODODODODODODODOOOO
OO OO OO OO OORFRPROODODODODODOODOODOOOO

Figure 10. Results of INCLUDE sets that are computed for the sample program shown in
Figure 9

The algorithm that was designed and implemented to compute the INCLUDE

set is shown in Figure 11.

34

function ComputeIncludeSet(var begin : array[l..n] of node; var end

:array(l..n] of node; linenumber : int)

var
info : StringClass;
begin
1 info := 0;
2 while(begin != end)
begin
2.1 info = begin[linenumber] -> LineInformation;
2.2 check for member function or check for control
statement;
2.3 if success store the starting line in INCLUDE and
find for end statement;
2.4 linenumber = linenumber + 1;
end;
end;

Figure 11. Algorithm to compute the INCLUDE set

The slicing algorithm for cppslicer is based on Weiser's backward approach. The

set of rules that are followed in finding a slice for a given program are shown in Figure 12.

1. Get the criterion line.
2. Get the corresponding member function from RefClass.
3. Using Weiser's backward approach.
3.1 Compute straight line slicing based on the straight line
slicing algorithm.
3.2 Compute test control statements, the control statements that
influence the statements of interest.
3.3 Include Member function's (if any) that fall in between
statements of interest.
4. Mark all other statements (to avoid their presence in the slice)

Figure 12. Rules for producing slices

As mentioned earlier, information regarding each member function is stored in a

data structure called RefClass in the form of a linked list. The criterion line (the line at

which slice to be performed) should be decided before starting to slice a program.

Depending on the line number, the member function can be selected by searching the linked

35
list.

For each statement, compute active set (the criterion variables and a set of variables
that influence the criterion variables), def (the set of variables that are defined), and ref (the
variables that are referenced). A statement is marked for a slice, if the intersection of the
active set and def is not empty. The same statement is checked for control statements. If
there exists any control statements, then check for the presence of statements that are
marked to include in the slice in its scope of influence. If found, then include the control
statement in the slice. Finally, the statement is searched for any member functions that
belong to the criterion class (class of interest). If found, the statement is included in the
slice. The slicing algorithm is shown in Figure 13. Figure 14 shows the complete slicing

algorithm that was designed and implemented for program slicing.

3.4 Implementation Issues

In designing and implementing program slicing for programs written in a subset of
C++, the programming language C++ and object-oriented methods [Budd91] were
employed.

The cppslicer program consists of four classes: StringClass, LoaderClass,
SliceClass, and ProcessorClass. LoaderClass is used to load the program to be sliced, and
compute the referenced and defined variables for each statement. SliceClass is basically
designed and implemented to slice a program based on the class of interest, the variable of
interest, and the line of interest. It sets slice marks to TRUE for the statements that influence

the variable of interest and prints the final output onto the screen or saves into

36

function Slice(var begin : arrayl[l..n] of node; var end
of node; Activeset : StringClass; line : int)
var
refs: arrayl[l..n] of RefDef;
defs: arrayll..n] of RefDef;
beginline : int;
begin

1. Beginline is the starting line of the member function.
obtained from RefClass.

2. while(line >= beginline)

rarray(1l. .n]

It will be

begin
2.1 ref := begin[line] -> RefHeader;
2.2 def:= begin[line] -> DefHeader;
2.3 if(ActiveSet N def != NULL)
begin
ActiveSet = ActiveSet U ref;
begin[line] -> SLICE = TRUE;
end;
2.4 Check for the presence of member functions.
2.5 if(control statement)
begin
-Check each statement for slice mark within
the scope of influence of control statement,
if marked, include the control loop in the slice,
-else proceed to the next statement
end;
2.6 line := line -1;
end;
end;

Figure 13. Slicing algorithm for member functions

37

Procedure SliceProg(filename : StringClass; n : integer; RefClass

var

begin

w

~N oy Ul

10
11
end;

array[l..n] of RefClass)

beginline : integer;

endline : integer;
status : integer;
sliceline : integer;
var : StringClass;

activeset : StringClass;

if(bad filename) then

- show error and return;

status := LaodSouceProgram(filename)
if(status == error) then

- show error and return;
Get the class line number;
Get public and private members of class;
Insert class members into RefClass;

while(RefClass != NULL)

begin

7.1 Set all the statement's slice marks to false;

7.2 Find all control statements in the program and mark
their starting and ending line;

7.3 BeginSlice := RefClass -> beginline;

7.4 EndLine := RefClass -> endline;

7.5 ComputeRefDef (BeginLine, EndLine);

7.6 RefClass := RefClass -> next;

end;

sliceline := Get the slice line;

activeset := Load the active variables ;

BeginSlicingProgram(sliceline, activeset);
Print the slice;

Figure 14. Complete slicing algorithm

38
a file. While designing the cppslicer tool, functional overloading and operator overloading
techniques were adopted. The classes of the cppslicer program have "has a relation” thus
avoiding the usage of inheritance [Budd91]. Overall, the program consists of 4500 lines of
undocumented C++ code.

Linked lists were used to store the program information. The process of searching
and inserting was made easy by keeping the addresses of statements such as the starting and
ending line of each member function and the line number of member functions defined in
a class.

The cppslicer program consists of a main program, five sub programs, and five
header programs. The sub programs are Loader.C, Slice.C, FlowControl.C, Proc.C, and

String.C. The header programs are defs.h, Loader.h, slice.h, Proc.h, and string.h.

3.5 Slicing Based Metrics

Program slicing can be used in two different areas [Weiser81]. First, program slicing
is used for the debugging and testing of programs. Second, program slicing can be used to
obtain slicing based metrics which provide useful information about the structure of a
program. Weiser proposed five slicing based program metrics.

1. Coverage: Coverage compares the lengths of slices to the length of the entire
program. Coverage might be expressed as the ratio of mean slice length to program length.
A low coverage value indicates a program which has several distinct conceptual purposes.

2. Overlap: Overlap is a measure of how many statements in a slice are found only
in that slice. This could be computed as the mean of the ratios of non-unique to unique

statements in each slice. A high overlap might indicate very interdependent code.

3. Clustering: Clustering reveals the degree to which slices are reflected in the
original code layout. It could be expressed as the mean of the ratio of statements formerly

39

adjacent to total statements in each slice. A low cluster value indicates that the slices are
intertwined like spaghetti, while a high cluster value indicates that the slices are physically
reflected in the code by statement groupings.

4. Parallelism: Parallelism is the number of slices that have few statements in
common. Parallelism could be computed as the number of slices which have a pair-wise

overlap less than a certain threshold. A high degree of parallelism would suggest that
assigning a processor to execute each slice in parallel could give a significant program

speed up.

5. Tightness: Tightness measures the number of statements that are in every slice,
expressed as a ratio over the total program length. The presence of relatively high tightness
might indicate that all the slices in a subroutine really belonged together because they all
shared certain activities.

The cppslicer program is a tool developed using the program slicing method
involving both static slicing and dynamic slicing approaches for simple programs written
using a subset of C++. The size of the slice obtained depends on three factors: (1) The class
name with respect to which the slice is marked , (2) The selected variables (private members
of a class), and (3) The line number of the selected variables. C-Debug [Wichaipanitch92],
and C-Sdicer [Nanja90] were designed and developed to handle simple programs written
using a subset of C, and they adopted dynamic slicing and static slicing methods,
respectively. Due to the difference in slicing criteria and programming languages used, the
results that are obtained for slicing based metrics under cppslicer cannot be compared with
the results that are obtained using C-Debug and C-Sdicer debuggers.

Some slicing based metrics were computed for six programs (three written in C++

and three in C) taken from different published sources. The values generated are given in

TABLE 1. The programs in this computation are listed in Appendix A. In TABLE I, P1, P2,

P3, P4, PS5, P6 represent the programs used in the computation of slicing based metrics.

40

TABLE I
SLICING-BASED METRICS
C++ C
Metric P1 P2 P3 P4 P5 P6
Size(# of Lines) | 60 111 52 45 67 62
Output Var's 3 2 5 3 10 1
Coverage 0.83 0.90 0.81 0.82 0.72 0.70

3.6 Evaluation

The cppslicer tool was evaluated for its effectiveness and utility as a debugging tool.
A group of computer science students at Oklahoma State University were asked to test and
evaluate the cppslicer tool using their own programs. The following are the results and the

conclusions based on the responses submitted.
1. The students involved found that the cppslicer tool is of use in finding out the cause and

location of error in their programs.

2. The graduate students that were involved felt that the cppslicer tool should be enhanced
to handle programs containing multiple classes, functional overloading, and inheritance.
3. None of the subjects were aware of program slicing and its application to the debugging

C++ programs.

3.7 Advantages and Limitations of cppslicer
The cppslicer program can be used to generate slices for programs written using a
subset of C++ based upon a set of user-specified classes and variables that are present in the

program. The cppslicer program is equipped to handle user-defined classes, its member

41

program. The cppslicer program is equipped to handle user-defined classes, its member
functions, "this", an explicit pointer to a class, operator overloading within a class, and
calling member functions within member functions.

The cppslicer program consumes considerably more time to compute slices than does
static slicing. The tool is not equipped to slice programs with respect to user-defined
variables, variables within structures, or unions. The cppslicer program cannot handle
classes involving inheritance, functional overloading, or classes containing inline and

friend functions.

CHAPTER IV
SUMMARY AND FUTURE WORK
4.1 Summary

In Chapter 1, a brief overview of debugging was presented. It also introduced the
concept of program slicing. The first chapter concluded by providing the purpose of the
study and outlining the organization of this report.

In Chapter II, the different debugging approaches and a number of tools, which are
available on UNIX systems, were presented. Chapter II described different program slicing
methods: static slicing, dynamic slicing, and quasi-static slicing. Under dynamic slicing,
the existing methods by Agrawal and Horgan [Agrawal and Horgan90], Korel and Laski
[Korel and Laski90] and Samadzadeh and Wichaipanitch [Samadzadeh and
Wichaipanitch93] were introduced. Chapter II ends by briefly discussing the advantages
and disadvantages of each method.

Chapter III provided information about the debugging tool called cppslicer, which
was designed and developed for this study. The steps involved in the design approach, the
algorithms used, and the advantages and limitations were discussed in that chapter.

The cppslicer program is an interactive debugging tool designed and developed for
novice programmers to debug their programs written in C++. Using cppslicer, a user can
locate the cause of errors. It is designed to handle the basic C++ commands. It is developed

as a utility program for UNIX. In designing and implementing the cppslicer program, the

42

43

expensive to use C++ when compared to other object-oriented programming languages
(OOPs) such as Smalltalk or Simula, programming in C++ does not require a graphics
environment, and since C++ is a strongly-typed language, programs do not incur run-time
overhead from type checking or garbage collection.

As a rudimentary C++ slicer, cppslicer can generate a slice of a source program
which preserves part of the original program's behavior for a specific input. The cppslicer
tool was designed and developed to handle programs written in a subset of C++ involving
data structures such as classes, member functions of classes involving operator overloading,
pointers to classes (the implicit "this" pointer), straight-line codes, control statements,
function calls, and expressions containing simple pointers to char, int, or float. The cppslicer
program cannot handle structures, unions, user-defined variable, functional overloading,

constructors, destructors, inheritance, or const and inline functions.

4.2 Future Work

The cppslicer program can be enhanced in future to handle expression involving
pointers to structures and unions. It can also be enhanced to handle inheritance,
constructors, destructors, and functional overloading.

Other significant improvements that can be made to cppslicer program include the
slicing of the function members that are called from within other member functions. At
present the cppslicer program includes all the statements of the member functions which are
called from other member functions. It can be further enhanced to slice member functions

based on private variables and the arguments that are passed to the member functions.

44

based on private variables and the arguments that are passed to the member functions.

REFERENCES

[Agrawal and Horgan90] Hiralal Agrawal and Joseph R. Horgan "Dynamic Program
Slicing", Proceedings of ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation, pp. 1-19, White Plains, NY, June 1990.

[Agrawal, et al.91] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Stafford
"Dynamic Slicing in the Presence of Unconstrained Pointers", Technical Report
SERC-TR-93-P, Software Engineering Research Center, Department of Computer
Science, Purdue University W. Lafayette, IN. Also published in the Proceedings of the
Fourth ACM/IEEE-CS Symposium on Testing, Analysis, and Verification (TAV 4), pp.
1-19, October 1991.

[Borland90] Turbo C -- UPDATE, Borland International, Inc., CA, 1990

[Brown and Sampson73] A. R. Brown and W. A. Sampson, Program Debugging: The
Prevention and Cure of Program Errors, MacDonald/American Elsevier, NY, 1973.

[Budd91] Timothy Budd, An Introduction to Object-Oriented Programming, Addison-
Wesley Publishing Company, Inc., Reading, MA, 1991.

[Korel and Laski88] Bogdan Korel and Janusz Laski, "Dynamic Program Slicing",
Information Processing Letters, Vol. 29, No.3, pp. 155-163, October 1988.

[Korel and Laski90] Bogdan Korel and Janusz Laski, "Dynamic Slicing of Computer
Programs", Journal of Systems and Software, Vol. 13, pp. 187-195, 1990.

[Nanja90] Sekaran Nanja, "An Interactive Debugging Tool for C Based on Program Slicing
and Dicing, " MS Thesis, Computer Science Department, Oklahoma State University,
Stillwater, OK, May 1990.

[Samadzadeh and Wichaipanitch93] M. Samadzadeh and W. Wichaipanitch, "An Interactive
Debugging Tool for C Based on Dynamic Slicing", Proceedings of the 1993 ACM
Computer Science Conference, Indianapolis, IN, pp. 30-37, February 1993.

[Seviora87] R. E. Seviora, "Knowledge-Based Program Debugging Systems", IEEE
Software, Vol. 4, 3, pp. 20-32, May 1987.

[Tassel74] Dennie V. Tassel, Program Style, Design, Efficiency, Debugging, and Testing,
Prentice-Hall, Inc., NJ, 1974.

[Venkatesh91] G. A. Venkatesh, "The Semantic Approach to Program Slicing",

45

46

Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language
Design and Implementation, Toronto, Ontario, Canada, pp. 107-119, June 1991.

[Venkatesh95] G. A. Venkatesh, "Experimental Results from Dynamic Slicing of C
Programs", ACM Transactions on Programming Languages and Systems, Vol. 17, No.
2, pp. 197-216, March 1995.

[Weiser81] M. Weiser, "Program Slicing", Proceedings of the Fifth International
Conference on Software Engineering, San Diego, CA, pp. 439-449, March 1981.

[Weiser82] M. Weiser, "Programmers Use Slices When Debugging", Communications
of the ACM, Vol. 25, No. 7, pp. 446-454, July 1982.

[Weiser84] M. Weiser, "Program Slicing", IEEE Transactions on Software Engineering,
Vol. SE-10, No. 4, pp. 352-357, July 1984.

[Wichaipanitch92] W. Wichaipanitch, "An Interactive Debugging Tool for C Based on
Dynamic Slicing and Dicing", MS Thesis, Computer Science Department, Oklahoma
State University, Stillwater, OK, December 1992.

APPENDICES

47

APPENDIX - A
USER MANUAL FOR CPPSLICER

The cppslicer program is a debugging tool based on program slicing techniques. It
runs under the UNIX environment (DYNIX/ptx) on the Sequent S/81 machine. The cppslicer
program can be used to locate the cause of errors in programs written in a subset of C++. The
basic information about the tool can be obtained by typing info at the cppslicer prompt. A
menu listing all the commands can be obtained by typing help at the prompt. The menu is
shown below.

| Welcome to (
| C++ Program Slicer. |
| Type "info" to get |
| information about the tool. |

s ok ok e ke o o ok ok ok o ke ok o o ok ok o ok ok s ok ok ok ok ok ke ok ok ke ok ok ok ok o ok ok e ok sk ok ok ok o s ok sk e ke ok ok sk ok ok ok ok ok sk sk ok ok ok sk ok sk ok

* Command Usage Purpose *

st ok sk sk 3 ok ok e ok sk sk ok o oe ok ok sk 3k ok ok ok sk ok ok o ke ok sk sk ok ok ok ok sk ok ok ok ok o o ke ok ok 3 s ok ok ok sk s o ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok

* cload cload <filename> Used to load programs written in *
* C or in C++ without classes *
* edit edit <filename> Edit a program in cppslicer *
* help help Display list of commands that can *
* be used in cppslicer *
* load load <filename><classname> Used to load a program into cppslicer*

* written in C++ containing classes *
* man man <command> Give help on the usage of a command *
* q(uit) q or quit or exit Used to exit from the tool *
* save save <filename> Used to save the slice into a file *
* slice slice<line no><var> Used to slice a program residing in ~ *
* cppslicer *
* type type Display program resident in *
* cppslicer *

ok ok 3k ok ok 3k ok ok 3k 3k 3k % ok 3k ok sk ok 3k % 3k 3k 3k ok 3k ok ke 2k ok ok 3k ok ok Sk 3k 3k 3k 2k 2k ok 3k ke sk sk vk ok ok Ak sk ok ok ok ok sk s sk ok sk %k ok ok ok ok ok %k %k Kk ok

The help menu displayed when cppslicer is started
The cppslicer debugging tool can be invoked at the UNIX prompt by typing its
pathname. Then the cppslicer program is invoked and a help menu appears on the screen.

To find information about a command, type help and the command name as shown below.

48

49

cppslicer> help slice

The response provides help about the usage of that command. To generate a slice for a

particular program, one needs to load the program into cppslicer tool. This can be done by

typing load <filename><classname>, where the filename denotes the program name and

the classname is the class of interest with which the slice marks will be made. After loading

the program into cppslicer, other commands that can be used are slice and save. The list of

commands that are available in cppslicer are shown below.

cload

echo

edit or VI

help

man

save

slice

type

Another way of loading a program into cppslicer. It is used to
load programs that are written in C.

Used to display the list of commands that are available in cppslicer.
It echoes the list of commands whenever a user types an invalid
command. This command cannot be executed by users.

Used to edit a program in the cppslicer environment using the vi
editor.

Provides a list of the commands that are available in cppslicer,
their usage, and their purpose.

Provides information about specific commands; explaining a
purpose of the command and its usage.

Saves the resulting output into a file. The usage of the command is
save followed by a file name into which the output should be directed.

Used to generate a slice for a program that is resident in cppslicer.
The usage of the command is slice <linenumber><criterion
variables>. The linenumber denotes the line with respect to which a
slice is to be generated, and the criterion variables are those with
respect to which a slice can be obtained.

Displays the program resident in the cppslicer with line numbers on
left side. This helps to locate the variables of interest and their line
numbers.

tor/

50

Invokes the UNIX shell. Any of the system commands can be
executed by typing / or ! followed by the command.

APPENDIX B

GLOSSARY AND TRADEMARK INFORMATION

Action:

Amortized Time:

D(XP):

Execution History:

Flow Graph:

Last Definition:

M(T):

Program Dependence Graph:

Reaching Definition:

GLOSSARY

A instruction k at position p in the trajectory is represented
as (k, p). The pair is replaced by k and referred to as an action.

The average time per operation over a worst-case scenario
of operations.

The set of variables that are defined in action X .

Execution history at any node denotes the partial program
execution until that node.

The Flow graph of program P is a tuple <V, A>, where V is
the set of vertices that represent simple statements such as
read and write and conditional expressions such as if-then-
else and while-do, and A is the set of directed edges between
pairs of vertices in V.

The last definition of variable v at node t is the action that
last assigned a value to v when it was reached on trajectory T.

A set of actions in a given trajectory T.

The Program dependence graph of a program is obtained by
the union of data and control dependence graphs, where the
data dependence graph contains a set of edges that reflect data
dependencies among nodes that are in the flow graph of
the program, and the control dependence graph contains a set
of edges that reflect control dependencies among the
nodes that are in the flow graph of a program.

If F represents a flow graph, n a node in the flow graph, and
var a variable in the flow graph, then the set of all reaching
definitions of var at n in F will be the set of all nodes in F at
which var is assigned a value and control can flow from that
node to node n without any redefinitions of var along the
control flow path.

31

52

Slicing Criterion: A slicing criteria can be expressed as the set of values of some
set of variables at a statement .

Slicing Set: A set of actions that have influence on the variable of interest.
TC(XP): Test-Control relation, a binary relation on M(T) capturing

the effect between test actions and actions that have been
chosen to execute by these test actions. X denotes a action.

Test Action: An action X is a test action if X is a test instruction.

Test Case: A test case consists of a specific set of input values for a
program.

Trajectory: A trajectory is a feasible path that has been executed for some
input.

U(XP): The set of variables that are used in action XP.

TRADEMARK INFORMATION

Sequent S/81: Sequent S/81 is a registered trademark of the Sequent Computer Systems,
Inc.

UNIX: UNIX is a registered trademark of AT&T.

VAX: VAX is a registered trademark of Digital Equipment Corporation.

APPENDIX C

SAMPLE PROGRAMS USED FOR COMPUTING THE
SLICING-BASED METRICS

The six sample programs shown below are used for the computation of the slicing-
based metrics.

L1177 70 0007077777777 77777777777777777777777777777777777/77777777777777777
/7 TEST PROGRAM 1

// A program to compute sum, average, and product of the first n numbers.
J717077 0770777777777 77777777777707777707707777077777777777777777777777777
#include<stdio.h>

#include<iostream.h>

#include<string.h>

class TestClass({
private:
int sum, fact;
float average;
public:
TestClass(); // Contrsturctor
void Calculate(int);
void Printval();
Y

// This is a constructor which will be called automatically without being
// called from the original source program. It initializes the values of
// sum, fact, and averages to 0.

TestClass: :TestClass ()
{

sum = 0;
average = 0;
fact = 0;

}

// This member function calculates the sum, average, and product of the
// first n numbers denoted by variable num.

void
TestClass::Calculate (int num)
{
int sub = 1;
cout << "Enter the Number" << endl;
cin >> num;
while(sub <= num) {
sum = sum + sub;

sub++;

}

int count = 1;

fact = 1;

while (count <= num)

{
fact = fact * count;
Printval () ;

54

}

55

count++;

average = (float) sum / num;
printf("sum is %d\n", sum);

}
//

This function prints the final result onto the standard output

void
TestClass: :PrintvVal()

{

printf("Sum Is $d\n", sum);
printf("Fact Is %d4d\n", fact);
printf(“"Average Is %$f\n", average);

}

main ()

{

int number;

TestClass tl;

printf("enter the number : ");
scanf ("%d", &number);
tl.Calculate (number) ;
tl.Printval();

L1727 0000700770007 700777070700077 0700777777777 0777007777770777777777777

//
//
//
/7
/7
//
//

TEST PROGRAM 2
Copyright (c¢) 1991 AT&T Bell Laboratories, All Rights Reserved
Published in ""A C++ Primer'' by Stanley Lippman, Addison-Wesley.
This program is directly downloaded. Hence the program is not
documeneted and is presented as is.
This program performs basic operations on strings like string copy,
concatination, etc.

LITILELI T L0777 7007007700007 7070770077 0007777777077777770777777077777777

#include <iostream.h>
#include <string.h>
#include <assert.h>
#include <iomanip.h>

class String {
private:

int len;
char *str;

public:

}i

String(char*);

String(const String&);

String();

String& operator={(const String&);

int getLen();

String& operator+=(const String&);
operator <(String& s);

operator >(String& s);

friend String operator+(Stringk, String&) ;

String::String()

{

len = 0;

str = 0;
}
String::String(char *s)
{
if (!'s) {
len = 0;
str = 0;
}
else {
len = strlen(s);
str = new char([len + 1];
strepy(str, s);
}
}
String::String(const String& s)
{
len = s.len;
if ((str = s.str) == 0)
return;
str = new char[len + 1];
strcpy(str, s.str);
}
String& String::operator=(const String& s)
{
i1f (this == &s) return *this;
delete str;
len = s.len;
if ((str = s.str) == 0)

return *this;

str = new char[len + 1];
strepy(str, s.str);
return *this;

)

int

String: :getLen()

{

}

return len;

String&
String: :operator+={ const String &s)
{
len = len + s.len;
if (len <= 0)
return *this;
char *p = new char{len+l];
strepy (p, str) ;
strcat(p,s.str);
delete str;
str=p;
return *this;
}
String
operator+(const String &sl, const String &s2
{
String result = sl;
result += s2;
return result;
}

int String::operator<(String& s) {

)

56

57

if (s.len == 0) return 0;
if (len == 0) return 1;
return(strcmp(str,s.str)<0) ? 1: 0;
}
int String::operator>(String& s) {
if (len == 0) return 0;
if (s.len == 0) return 1;
return(strcmp(str,s.stx)>0) ? 1: 0;
}
main ()
{
String S1("Ramaka");
String S2("Hello"}:;
String S3;
S3 = 81 + S82;
cout >> S3.getlen()>> endl;
}

L7777 77077770777777777777777077770777777707777777777777777777777777

// TEST PROGRAM 3

// This program performs the operations of a clock. It contains

// a clock class. This program is published in " 'C++ for C Programmers'
// by Ira Pohl, The Benjamin/Cummings Publisihing Company, Inc., CA,

// 1993

L1177 0707777707777077777770777777777777777777077770777777777777777777
#include<iostream.h>

#include<string.h>

class clock({

N

private:
int tot_secs, secs, mins, hours, days;
public:
clock{int) ; // Constructor
void print(); // Function to print private parts

void tick();
void reset (const clock& c);

Y

// This constructor initializes all the variables based on variable i.
// It then calculates the corresponding values of secs, mins, hours,

// and day.
clock::clock(int 1)
{

tot_secs = 1i;

secs = tot_secs % 60;
mins = (tot_secs / 60) % 60;
hours = (tot_secs / 3600) % 60;
days = tot_secs / 86400;

}

// This function is to print the final result onto the screen.

void clock: :print ()

{

cout << days << "d : " << hours << "h:" << mins << "m:" << secs <<
"s:"<<endl;

}

// This function increments the total seconds by one sec and updates the

58

// other wvalues.

void clock::tick()
{
clock temp = clock(++tot_secs);
secs = temp.secs;
mins = temp.mins;
hours = temp.secs;
days = temp.days;

// This function is used to reset one clock variable with another clock
// variable. It is like a copy constructor.

void clock::reset (const clock& c)

{

tot_secs = c.tot_secs;

secs = c.secs;
mins = c.hours;
hours = c.hours;
days = c.days;

}

main ()

{
int 1;

clock cl1(150});
for(i=0; 1 < 20; i++)
cl.tick();
cl.print();
}

1177777177177 7770777777777777777777777707777777777777777777777777
// TEST PROGRAM 4
// This program inputs and echoes back integers, beginning a new
// output line at each point where a comma appears in the input, the
// total of all the integers on that line is displayed. The input must
// itself consists of only one line. Any characters other than digits
// and commas are ignored, except as delimiters for the numbers. The new
// line is used to detect the end of the line.
// This program is scanned as it is from Nanaj’s MS thesis [Nanja90].
JILTT71770 77777777707 7707777077777777777777707777700777777707777777777
#include <stdio.h>
main ()
{

char character, last_char;

int line_total, next_line, current_number;

line_total = 0;

next_line = 2;

current_number = 0;

last_char = 0;

printf{("Type a line of integers, with a comma everywhere\n");

printf("the line is to split. Any other characters\n");

printf("are ignored: \n\n");

scanf ("%$c", &character);

printf("Line 1> "};

while (character != '\n')

{

if (character == ',")
{
if(last_char >= '0' && last_char <= '9"')
{

59

line_total += current_number;
current_number = 0;

}
printf (" < total: %$d\nLine %d> ", line_total, next_line);

line_total = 0;
next_line++;

}

else

if (character >= '0' && character <= '9'")

current_number = (current number * 10) + (character -
IOI),
else
{
if(last_char >= '0' && last_char <= '9"'")
{
line_total = line_total + current_number;
current_number = 0;
}

}
}
last_char = character;
scanf ("%c", &character) ;

}
printf ("< total: %d\n", line_total);

J11707 070770707777 77777777077777777777770777777/77777770077777777777

/7 TEST PROGRAM 5

// This program generates multiple coin toss samples. This program
// 1is scanned from Nanja’s MS thesis [Nanja90].

L7777 77077

#include <stdio.h>

#define MAX_RAND 2000

#define MODULUS 327681

#define SEMI_MOD (MODULUS %2)

main()

{
int index,start,nr_trials,nr_iter;
int head, tail,h_lead, t_lead, iter, curr_seed;
int multl,mult2, incrl, incr2;
float ratio, lead_sum, side_sum;
float d_vals[MAX_ RAND];

head = tail = h_lead = t_lead = 0;
printf("\n Starting seed?");

scanf ("%d4", &curr_seed);

printf("\n Sample size?");

scanf ("%d",&nr_trials) ;

printf("\n Number of samples to generate?");
scanf ("%d",&nr_iter);

printf("\n First multiplier?");

scanf ("%d", &multl) ;

printf ("\n First increment?");

scanf ("%d", &incrl);

printf("\n Second multiplier?");

scanf ("%d4", &mult2) ;

printf("\n Second increment?");

scanf ("%d4d", &incr2);

printf ("Starting seed = %d\n\n",curr_seed);

printf ("generating random values...... \n");

for(iter = 0; iter < nr_iter; iter++)

{

head = 0;

tail = 0;

h_lead = 0;

t_lead = 0;

for(index = 0; index < nr_trials; index++)
{

if (curr_seed >= SEMI_MOD)
start = (multl * curr_seed + incrl) % MODULUS;

else
start = (mult2 * curr_seed + incr2) % MODULUS;
if (start)
head++;
else
tail++;
if (head > tail)
h_lead++;
else if(tail > head)
t_lead++;
}

printf ("%$3d heads; %3d tails;",head, tail);
printf("H leads = %3d; T leads = %3d4d", h_lead, t_lead);
if(h_lead > t_lead)

{

ratio = (float) h_lead / (h_lead + t_lead);
}
else
{

ratio = (float) t_lead / (h_lead + t_lead);
}
d_vals[iter] = ratio;

lead_sum = lead_sum + ratio;
if (head > tail)

{
side_sum = side_sum + (float) head / nr_trials;
}
else
{
side_sum = side_sum + (flocat) tail / nr_trials;
}
printf("ratio = %.41f\n",ratio);
}
printf (“\n DONE \n");
printf("side_sum == %.41f; mean side lead == %.41f\n",

side_sum, side_sum / nr_iter);

printf("lead_sum == %.41f; mean lead == %.41f\n",
lead_sum,lead_sum / nr_iter);
}

L1117 777770707077777777777777777777777777777777777070777777777777777

// TEST PROGRAM 6

// This program computes correlation coefficients. This program
// 1s scanned from Nanja’s MS thesis [Nanja90].

L1170 777 777777777777 7777777777777777/777777777777777777777777777777

#include <stdio.h>
#define MAX_VALS 50
#define MAX_STR 100

60

61

main ()

float c_vals[MAX_VALS]:;

float d_vals[MAX_VALS];

float suml, sum2,varl,var2;

float coeff,co_vari,numer, denom;
int index ,nl,n2;

char *null_str = "";

char info[MAX_ STR];

printf (" Enter values for group 1l.\n");
printf{(*?");

gets (info);

index = 0;

while(strcmp{(info, null_str) != 0)
{
c_vals[index] = atoi(info);
++index;

printf("?");
gets (info) ;

}
nl = index; printf(" Enter values for group 2.\n");
printf("?");

gets (info);
index = 0;

while(strcmp(info, null_str) != 0)
{
d_vals[index] = atoi(info);
++index;
printf("?");
gets{info) ;
}
n2 = index;
if (nl = n2)
{
suml = 0.0;
for(index = 0; index < nl; index++)
suml = suml+ c_vals[index];
sum2 = 0.0;
for(index = 0; index < nl; index++)
sum2 = sum2 + c_vals[index];
co_vari = 0.0;
for(index = 0; index < nl; index++)
co_vari = co_vari + (c_valsl[index] * d_vals[index]);
numer = co_vari - (suml * sum2);
varl = 0.0;
for (index = 0; index < nl; index++)
varl = varl + (c_vals[index] * c_vals[index]);
for(index - 0; index < nl; index++)
var2 = var2 + (d_vals[index] * d_vals([index]);
denom = (varl - suml * sum2) * (var2 - sum2 * sum2);
denom = sqrt(denom) ;
if (denom != 0)
coeff = numer / denom;
printf("r == %7.311f\n",coeff);
}
else

printf ("Arrays must be the same size.\n");

APPENDIX D
CPPSLICER SOURCE CODE LISTING

The cppslicer program is a slicing-based debugging tool for a programs written in
a subset of C++ that runs under UNIX (DYNIX/ptx) on the Sequent S/81 machine. This tool
can be used to debug programs containing simple classes. It cannot handle inheritance,
functional overloading, or friend and inline functions.

[1777770 77000777777 7777707777777777707770770777777777777777777777

// cppslicer

// The source code consists of five programs, Loader.C,

// Slice.C, FlowControl.C, Proc.C, and String.C. It consists of

// four classes, LoaderClass, SliceClass, ProcessorClass, and

// stringClass. LoaderClass is used to load program, set the

// slice marks, store the public and private parts (if any)

// into a linked list. SliceClass is used to slice the

// program with respect to the given variable and line

// number. ProcessorClass handles all the input and output issues.

LIILIITLI0 7007000707700 77 7077070777 7077077777777777777777777777

[10777707 7777707077777 7777077777777777777777777777/777777777777777777777777
//

/7 Loader.h

[107770700 7707007777707 7777770777077777707777777777777777777777777777777777
#include<iostream.h>

#include<string.h>

#include"string.h"

#include"defs.h"

// Structure that can store the referenced and defined values in each
// statement of the program.

struct RefDef {

StringClass variable; // stores the information of each line

int linenumber: // stores the statement line number

int PartType; // if statement is a declaration, store its
// type

struct RefDef *next;
Y

// Structure that stores the information of a class of interest. It stores
// parts type (public or private) and their information.

struct RefClass({

int PartsType; // part type, i.e., public or private

int BeginLine; // start line of the member function

int EndLine; // end line of the definition (function)
RETTYPE rettype; // type of value that is returned from that

// member function.
StringClass Member;
StringClass ClassName;
RefClass *next;
}:

// This structure stores the information of each line of the program loaded into
// cppslicer program.

struct node {

int LineNumber; // Statements line number
StringClass LineInformation; // Statement information

62

int Position; // Position of the variable
int SLICE; // Flag to identify the slice mark
int INCLUDE; // Flag to include the statement

BOOLEAN metoo;

struct node *left;

struct node *right;

struct RefDef *RefHeader;

struct RefDef *DefHeader;
};

// Loader Class is used to load the program into the cppslicer program.
// It computes referenced and defined variables for each statement and
// stores them in Rfdf structure in the form of linked 1list.

class LoaderxClass({
private:
node *Header:;

63

RefDef *Rfdf; // Linked list to store referenced and defined

// variables of each statement

RefClass *SliceClass; // linked list to store public and private
// parts of a class of interest

StringClass Buffer;

StringClass ClassName;

int LineNumber, Size;

RETTYPE returntype;

int Position;

public:

int LoadSourceprogram(char *);

void InsertIntoList();

void ComputeRefDefForClass (char *);

void InsertPublicPartsIntoSliceClass(char *);

int GetClassLineNumber (const StringClass&);

void GetPublicAndPrivateParts(void);

int GetVariableType(char *);

void LoadIntoSliceClass(const int& , const int& , char*);

void LoadIntoSliceClass(const int&,char*);

void InsertPrivatePartsIntoSliceClass(char *);

void PlaceIntoSliceClass(int , char *);

char* CheckPresence(char*, char¥*);

char* CheckPresence(const StringClass& , const StringClass&);

node* GetHeader (void);

RefClass* GetRefClass(void);

char* GetClassName (void);

int GetPosition(void);

void MarkaAllSlices();

void PrintProgram() ;

void PrintSliceClass();

void EndLoader () ;

void LoadMainParts();

char* RemoveTabsAndBraces (char*);

char* RemoveBackSpaces (char *);

char* RemoveFrontSpaces(char *);

void RemoveReturnTypes (StringClass&);

LoaderClass& operator=(LoaderClass&);

}:
(7077777770777 77777777777707777777077777077777777777077777/70777777777777777777

// //
// slice.h //
// //

L1717 77770007777707777777777777077770777777777777777777707777777777777777777777
#include<iostream.h>

#include<string.h>

#include"Loader.h*

// Slice class is designed and developed to slice the program residing

// in the cppslicer program. It computes slices based on the line

// and class of interest. It first checks for the presence of the class

// and line number in the command line. If not found, it will give an error

// message and quits the process of slicing. Once the class and line of interest

64

// are identified, it slices the program from the starting line to the line
// of interest. If the statement is qualified to be present in the slice,
// slice mark is set to TRUE. The same set of statements are checked for control
// statements. If the statements present within the control loops are marked
// with slice marks, then the start and end statements of control loop are also
// included in the final slice. Also, the statements which influences the
// control loop are included to make the program executable.
class SliceClass{
private:

LoaderClass L1;

RefDef *RefHeader;

RefDef *DefHeader;

RefDef *IoRefHeader;

RefDef *ActiveVar;

BOOLEAN RefCounter, DefCounter, IoCounter, WHILE;

public:

int GetSliceCriteriaf();

int ComputeRefDefForClasses(const StringClass&);

int ComputeRefDef (int, int);

int CheckForControlStatement (StringClass);

void IgnoreSpaces(char *, int&);

void IgnoreBraces{char *, int&);

void IgnoreBraces{(char*, int&, const char);

void IgnoreOperands (char*, int&);

void IgnoreOnlyArthOPerators(char*, int&);

void IgnoreDigitsOperators{char*, inté&);

int CheckForFor (StringClass);

int CheckForIOStream(const StringClassk);

void SetReserveVarIntoRef();

void MarkAllSlices(int, int);

void MarkallSlices(void);

int CheckForComments (const StringClass&);

int CheckForComments (const StringClass&, int&);

int CheckForBlankSpace{const StringClassé&);

int GetBeginLineForClassMemeber (const StringClassé&);

int GetEndLineForClassMemeber (const StringClass&, int);

int InsertIntoRefDefliist (const int& , const int&, char *);

int MarkSliceForCriterionLine(char *, int);

void CheckControlStatements (node*, node*});

int SliceControlLoop(int);

void SliceControlLoop (node*, node*);

void PerformSliceOnOriginalProgram();

IOTYPE GetIoType(const StringClass&);

BOOLEAN IsAvalidDeclaration(const StringClass&);

void CheckForIoOPerands (const StringClass&);

void InsertIntoIoList(IOTYPE , const StringClass&);

void InsertIntoReflList(StringClass&);

void DeleteRefFromRefList (RefDef*);

void InsertIoRefIntoDeflList (RefDef*);

void InsertIntoHeaderAllRef (node * , RefDef*);

void InsertIntoHeaderAllDef (node*, RefDef*);

void InsertIntoHeader (RefDef*, RefDef*);

void DeleteRefDefloRef(RefDef *, const int&);

int BeginSlicingProgram(int, const StringClass&);

BOOLEAN CheckForActiveSet (node*) ;

void VariableRefered(node*);

int CheckPresenceOfActiveVars(RefDef*, const StringClass&);

void InsertActiveVars(const StringClass&);

void LoadActiveVars(const StringClass&);

int GetBeginLine(int);

BOOLEAN IsAControlStatement (const StringClass&);

void MarkControlFlow(const int&, int, node**);

void CheckOpenBracket (node* , int&);

void CheckCloseBracket (node* , int&);

void DeleteRefDefIoRef (RefDef*);

void PrintSlice();

void CopyLoader (LoaderClass&) ;

void InsertControlVar(const StringClass& , int);

void PrintVar(RefDef *);

BOOLEAN IsAValidMember (StringClass);
void MarkControlStatForRefDef (int , int);
void PrintSlice(int };

void ControlStatWithInControlState(node *);
void PrintFinal();

void DeleteActiveVars() ;

void PostSliceMarks(node* , node *);

void PrintFinalSlice(char *);

void IncludeMemberFunction(node*);

int CheckForNew(StringClass);

void CheckInsideForNew{char*);

void PrintProgram();

void Display();

int ComputeRefDefForMain():;

void Set();

void PrintActiveVars();

}i
[117770770777707770777077770077077707707777777777777777777777777777777777777
//

// Proc.h

//
[1117707700777077777077777077770777777707770070777707777777077777770777777777777
#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#include<ctype.h>

#include"slice.h"

// This Class is used to start the process, load the program, slice
// the program, print the resulting slice, and other functions depending
// on the users interest.

class ProcessorClass({
private:

BOOLEAN status; // A flag to notify that a program

// is loaded into cppslicer.

SliceClass slicer;

public:
void StartProcess();
void LoadProg(char *);
void SliceProg(char *);
void PrintProg(char *);
void DisplayProg();
void ManCommands (char *);
void TypeProg();
void HelpMenu() ;
void Echo();
void CloadProgram{char *);
void InfoTool();
void EditProgram(char *);
void SystemCommand({char *);

Y

L1710 77077777707777770777777770777777770777770777707770777077777777777777777777
//

// defs.h

//

L1177 007770777777 0777777777777 777777777077777777077777777777777777777777
const int MAXLINE=80;
const int INT=1;

const int CHAR=2;

const int FLOAT=3;
const int ERROR=-1;
const int PRIVATE=0;
const int PUBLIC =1;
const int BODY =2;
const int PRESENT=1;
const int NOTPRESENT=0;
const int IOREF=2;
const int REFERED=1;

65

const int DEFERED=0;

const char SPACE=' °';

const char TAB='\t';

const char OPENBRACE='({';
const char CLOSEBRACE='}"';
const char OPENBRACKET='(';
const char CLOSEBRACKET=')';
const char UNDERSCORE='_"';
const char SQOPENBRACKET='[';
const char SQCLOSEBRACKET=']';
const char ENDOFLINE='\O';
const char CARRRETURN='\n';
const char PLUS='+"';

const char SUBTRACT='-"';

const char DIVIDE='/';

const char MOD='%"';

const char MULTIPLY='*"';

const char COLON=';'
const char COTE='\"''
const char COMMA=','
const char PERIOD='."';
const char EQUALTO='="';
const int FOUND= 1;
const int NOTFOUND= -1;
const int SUCCESS=1;
const int FAILURE=1000;

-~ o~ s

typedef enum{TRUE, FALSE}BOOLEAN;

typedef enum{StartState, LastState, ControlState,SixthState, StrState,
SwitchState, VariableState, AirthematicState, IntermediateState,
LoopingState, PreFinalState, CheckingState }StateType;

typedef enum{ SCANF, GETS, GETCHAR, COUT, CIN, PRINTF, SWITCH, VOIDTYPE}
typedef enum{ INTIGER, INTS, CHARECTER, CHARS, VOID, FLOATING, FLOATS,
FRIEND, CLASSTYPE} RETTYPE;

1107777707070 07770777777777770777777777770777777777777777707777771777 77
// string.h !/
L1107 700707 0777770777077 777777707077777777770777707777777777777777777777

#include<iostream.h>
#include<string.h>

class StringClass{

private:
int len;
char* str;
public:
StringClass(); // default constructor
StringClass (char*); // conversion
// constructor
StringClass(const StringClassé&); // conversion
// constructor
char* GetStr(void) const; // returns the string
void PutStr(char*);
void operator=(const StringClass&); //assigns values to
//given constructor
StringClass& operator=(const char*); //assigns values to

//given constructor

int operator=={(const StringClass&);

int operator!={(const StringClass& };

char* operator&=(const StringClass&);

char* operator&&(const StringClass&);

StringClass& operator+={const StringClass&);

friend char* operator<<(const StringClass&, int);

friend char* operator>>(const StringClass&, int);

friend char* operator+{(const StringClass&, const
StringClass&);

int operator>(const StringClass&);

66

IOTYPE;

67

int operator<(const StringClass& String);
void print{();

Y

1177777777777 7777777777777077777077777777777777777777777777777777777777
//

// Loader.C

//

JIL17070707 7770777777777 777777770777770770777777777707777777777777777777777
#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#include<ctype.h>

#include"Loader.h"

LITILIITETIT LT 0007700777070 77 077070000 Er i irerrririi7i770740407070717777407777

// Member Function : LoadSourceProgram

// Purpose : This function is used to locad the program to be sliced
// into cppslicer. It scans each statement of the program
// and passes it to the InsertIntoList function.

L1070 T00 0000700070770 0 707 777777707777770777707777770707777777777077777777

int
LoaderClass: :LoadSourceprogram{char *Name)
{
int linenumber;
char buffer [MAXLINE];
FILE *fp;
//printf ("Loading the Source Program into Slices\n");
fp = fopen(Nare, "r");
if(fp == NULL)
{
printf ("unable to open the file\n");
return FALSE;
}
linenumber = 0;
Header = NULL;
do (
memset (buffer, 0, MAXLINE);
fgets (buffer, MAXLINE, £fp):;
linenumber++;
Buffer = buffer;
LineNumber = linenumber;
InsertIntoList();
} while(! (feof(fp)));
return TRUE;
}

LITITLLT 0000000077007 7700777777 70077777707077777777777077777777777

// Member Function : InsertIntoList
// Purpose : The purpose of this function is to insert each line of
// the sample program into linked list.

LIPILIII T 0700000000077 0707077770770 7070700000770 77070777777770770777777777

void
LoaderClass: :InsertIntoList ()
{
node *sub;
node *temp = new node;
temp -> LineNumber = LineNumber;
temp -> LineInformation = Buffer;
temp -> left = NULL;
temp -> right = NULL;
temp -> DefHeader = NULL;
temp -> RefHeader = NULL;
temp -> INCLUDE = 0;
temp -> metoo = TRUE;
if (Header == NULL)

Header = temp;

Header -> left = NULL;
SliceClass = NULL;
Rfdf = NULL;

}

else if(Header -> left == NULL)

{
Header -> left = temp;
temp -> right = Header;
temp -> left = NULL;

}

else

{
sub = Header;
while(sub -> left != NULL)
{

sub = sub -> left;

sub -> left = temp;
temp -> right = sub;
temp -> left = NULL;

}
}
JI0101007 0077770777770 7777707777777777777777707777777777777777777777777777
// Member Function : InsertPublicPartsIntoSliceClass
// Purpose : Once the program is inserted into linked list,
// the list is searched for the class of interest.
// Then the public and private parts of the
// class of interest are inserted into refclass
L0110 070700 7770777777777 7771777777777770777777777777777777777777777777777
void
LoaderClass: : InsertPublicPartsIntoSliceClass (char *info)
{

char *temp;

temp = strtok(info, ";"“);

PlaceIntoSliceClass (PUBLIC, temp);
}

// Name represents class of interest. This function is used to get the line
// number of class of interest.

int
LoaderClass: :GetClassLineNumber (const StringClass& Name)
{

int len;

node *temp;

char *name, *tem;

name = Name.GetStr();
len = strlen(name);
if (Header == NULL)
{
printf("file is not loaded into the slicer\n");
printf("load and slice the program\n");
//exit(0);
return FAILURE;
}
temp = Header;
while((temp {= NULL)&&
(((tem = strstr(temp -> LineInformation.GetStr(), name)) == NULL) ||
((tem = strstr(temp -> LineInformation.GetStr(), "class")) == NULL)))
temp = temp -> left;
if(tem != NULL)
{
Position = temp -> LineNumber;
ClassName = name;
//strcpy(ClassName, name);

68

69

return Position;

}
else
{
//printf ("Searched %s\n", temp -> LineInformation.GetStr());
//getchar () ;
printf('not a valid class name: try again\n');
tem = NULL;
return FAILURE;
//exit(0);
}
}
J1177777770 7777077707077 7777777777777777777077770777707777777777777777777777
// Member Function :GetPublicAndPrivateParts
// Purpose :This function is used to get the public and
7/ private parts of class of interest. The information is
// stored in refclass. It also stores the start and
// end line of each member function defined in the class of
// interest. This information is very useful while slicing
// member functions defined in public and private parts of
// the class of interest

LIIPIITITE07 7700007707007 0777070007707 700070770007 770070700777770771777777

void
LoaderClass: :GetPublicAndPrivateParts (void)
{
node *temp;
char *tem;
char subinfo[MAXLINE];
char *pinfo;
char *poin;
char info[MAXLINE];
char teml([80];
int position, len, type;
int count = 0;
position = Position;
temp = Header;

while(temp -> LineNumber != position)
temp = temp -> left;
while((tem = strstr(temp -> LineInformation.GetStr (), "private:")) ==
NULL)
temp = temp -> left;
temp = temp -> left;
while((tem = strstr(temp -> LineInformation.GetStr(), "public:")) ==
NULL)
{

memset (subinfo, 0, MAXLINE);

memset (info, 0, MAXLINE);

memset (teml, 0, MAXLINE) ;

strcpy(info, temp -> LineInformation.GetStr());

type = GetVariableType(info);

pinfo = RemoveFrontSpaces{info);

strcpy (info, pinfo);

sscanf (info, "%[~ 1%[":]", teml, subinfo);

len = strlen{subinfo);

subinfo[len] = ';"';

switch(type)

{

case INT: // For Int
//printf ("Entered into Int Statement\n");
LoadIntoSliceClass (PRIVATE, INT, subinfo);
break;

case CHAR: // For Char
LoadIntoSliceClass (PRIVATE, CHAR, subinfo) ;
break;

case FLOAT: // For Float
LoadIntoSliceClass (PRIVATE, FLOAT, subinfo) ;

break;

case ERROR:
printf(*error: invalid type encountered\n");
exit(0);

}i

temp temp -> left;

type = 0;
}
tem = CheckPresence(temp -> LineInformation, "public");
if(temp == NULL)
{
printf ("error in the program loaded: no public parts\n");
exit(0);
}
else
{
//printf ("Into Public PArts\n");
// At Presnt I am checking classes with no inline Functions.
count = 0;
temp = temp -> left;
strepy(info, temp -> LineInformation.GetStr());

while(((tem = CheckPresence(info, "}")) == NULL) || (count != 0))
if((poin = strstr(temp -> LineInformation.GetStr(), "{")) != NULL)
count++;
else if((poin = strstr(temp -> LineInformation.GetStr(), "}"))
NULL)
count--;

tem = CheckPresence(temp -> LineInformation, "//“);
if{(tem != NULL)

strepy(info, strtok(info , "//"));
tem = strstr(temp -> LineInformation.GetStr(), "/*");
if(tem != NULL)

strepy(info, (temp -> LineInformation && "“/*"));
pinfo= RemoveTabsAndBraces (info);
if(strlen(pinfo) > 0)

{
strepy{info, pinfo);
pinfo = NULL;
LoadIntoSliceClass (PUBLIC, info);
}

temp = temp -> left;

memset (info, 0, MAXLINE);

memset (subinfo, 0, MAXLINE);

memset (info, 0, MAXLINE);

pinfo = NULL;

strcpy(info, temp -> LineInformation.GetStr());

}
LoadMainParts () ;
}
}
[177077 7777707770777 7077007770777077707777777777777707777777777777777777777
// Member Function :GetVariableType
// Purpose :This function is used to find out the type of
// variable that is returned from the memeber
// function.

LITITTTI7 0000070777707 77700777770770777777077707777707770077077777770777777777

int
LoaderClass: :GetVariableType (char *info)
{

char *temp;

if((temp = strstr(info, "int")) != NULL)
return INT;

else if((temp = strstr(info, “char*)) != NULL)
return CHAR;

else if{(temp = strstr(info, "float")) != NULL)

return FLOAT;

73

temp = temp +1 ;

}

L1177 7777770777777770777777777777777777770777777777777777777777777770/777777

// Member Function :GetHeader

// Purpose :This function is used to get the starting

/7 statement of the program residing in the cppslicer.
L1777 770070777707777777777707777777777777/707777777770777777777777777777777

node*
LoaderClass: :GetHeader (void)
{
if (Header == NULL)
return NULL;
else
return Header;

}

1770777777707 777777777777777077777707777707777777777712770777777777777777777
// Member Function : GetRefClass

// Purpose : To get the starting member present in the

// refclass list.

L1177 000 7700077777 777777777077777777777777077707/777777770777777777777777777

RefClass*
LoaderClass: :GetRefClass (void)
{
if(sliceClass == NULL)
return NULL;
else

return SliceClass;

}

// This function is used to get the name of class of interest.

char*
LoaderClass: :GetClassName()
{
return ClassName.GetStr();
}
int

LoaderClass: :GetPosition(void)

{
}

// This function is used to print the program resident in cppslicer program onto
// the screen.

return Position;

void
LoaderClass: :PrintProgram()
{
int number;
int num = 0;
node *temp;
temp = Header;
number = 0;
while(temp -> left != NULL)
temp = temp -> left;
number = temp -> LineNumber;
temp = Header;
num = 1;
printf("==v--mmm————————_—————— \n");
printf ("page %d of %d\n", num, ((number/20) + 1));
while(temp != NULL)

74

printf("%d %$s", temp -> LineNumber, temp -> LineInformation.GetStr());
temp = temp -> left;

if((temp -> LineNumber % 20)} == 0)
{
printf("---e=mcrrcm e o \n") ;
printf("enter a key to continue ...");
getchar();
num++;
printf("----------=----"" \n");
printf(*page %d of %d\n", num, ({number/20) + 1)};
}
}
printf(*\n------------—--———cm e \n*);
}
[177770707777777777777707777770770777707077070777770707770777707771777777777777
// Member Function :PrintSliceClass
// Purpose :Used to print the contents of the refclass.

JITI1TI7 0000777707077 70707007070 7077 0007077077700 77077777077700777777777777

void
LoaderClass: :PrintSliceClass (void)
{

RefClass *temp;

temp = SliceClass;

while(temp != NULL}
{
printf(*$d ", temp -> PartsType);
if(temp -> PartsType == PUBLIC)
printf("%$d ", temp -> rettype);
printf("%s “, temp -> ClassName.GetStr{()):

printf("$s\n", temp -> Member.GetStr());
temp = temp -> next;

}

J1777707770007770707770777777777707777077707777777777/7777777777777777077777777777/7
// Member Function : EndLoader

// Purpose : Psedo destructor to end the loader. This function is
// called when the cppslicer has to be loaded with another
// program (that has to be sliced.)
//
void
LoaderClass: : EndLoader ()
{
printf("called \n");
if(Header != NULL)
while(Header -> left != NULL)
{
node* temp = Header;
Header = Header -> left;
Header -> right = NULL;
temp -> left = NULL;
temp -> right = NULL;
delete temp;
}
if(SliceClass != NULL)
while(SliceClass != NULL)
{

RefClass *temslice = SliceClass;
SliceClass = SliceClass -> next;
temslice -> next = NULL;

delete temslice;

75

}
II170TT0000 077070777700 00777 000707770700 70770077070007777777777777777777777

// Member Function :RemoveTabsAndBraces

// Purpose : While parsing the member function definition,

// the spaces before and after the statement are

// removed. This function is called to remove spaces,

// tabs, and braces (if any) before and after the member

/7 function that is to be stored into refclass
J1177777777777777777777777777770077707777777777777777777777777777777777777

char*
LoaderClass: :RemoveTabsAndBraces (char *info)
{

int len = strlen(info);

int count = 0;

int counter = 0;

StringClass temp;

temp = RemoveFrontSpaces (info);
temp = temp && "(“;
temp = RemoveBackSpaces (temp.GetStr());

RemoveReturnTypes (temp) ;
temp = RemoveFrontSpaces (temp.GetStr());
return (temp.GetStr()):

}

LIITTITI L0070 7770777777000 0777000707700 0 77777700 77007777777777

// Member Function :RemoveFrontSpaces

// Purpose :This function is used to remove the spaces and
// tabs infront of the statement. It is called from
// RemoveTabsAndBraces function.

LITTLITTT 0000070770000 7 0700007700000 0077000077000 7777777 77077070777777777

char *
LoaderClass: :RemoveFrontSpaces (char *info)
{

StringClass temp;

int counter = 0;

int count = 0;

while(! (isalnum(infolcounter])))

if((info[counter] == TAB) || (info[counter] == SPACE))
{
counter++;
count++;
}
else
break;

}
StringClass str = info;
if(count > 0)

temp = str << count;
else

temp = str.GetStr();
return (temp.GetStr());

}
LIPITETET P70 0000777007000 0 0000077700000 007700000 7777707077077077777707077777

// Member Function :RemoveBackSpaces
// Purpose :This function is used to remove the spaces and
/7 tabs after the statement. It is called from

// RemoveTabsAndBraces function
1117077700700 7777777707777777777770777777777777077707707777777777777777777

char *
LoaderClass: :RemoveBackSpaces (char *info)

{

int len = strlen(info);

76

int counter = len;
int count = 0;
while((!isalnum(info[counter]}))

if((infol[counter] == TAB) || (info[counter] == SPACE))

counter--;
count++;
}
else
break;
}
StringClass str = info;
if(count > 0)
str = str >> count;
return (str.GetStr());

}
LITT100T7 000000 7000707777770707777077000077777077770777777700077777777777

// Member Function : RemoveReturnTypes

// Purpose : Once the spaces in front and back of the statement to
// be inserted into refclass are removed, the prototype
// containing the return type is also removed. After this
// the statement contains only the member function name
// (prototype). This is used in locating the function's
// body

IIIPILTITI P70 0000777070007 777000077 7777777077070777777070070777777777777

void
LoaderClass: :RemoveReturnTypes (StringClass& info)
{
returntype = INTIGER;
int len = 0;
char* pinfo = info.GetStr();
if((info &= "friend") != NULL)
{
info = info << 6;
returntype = FRIEND;

}
else if((info &= "int*") != NULL)
{

info = info << 4;

returntype = INTS;

return;

}
else if((info &= "char*")!= NULL)
{

info = info << 5;

returntype = CHARS;

}
else if((info &= "float*")!= NULL)
{
info = info << 6;
returntype = FLOATS;
}
else if((info &= “void") != NULL)
{
info = info << 4;
returntype = VQOID;

}

else if(((info &= "char") != NULL))
info = info << 4;
returntype = CHARECTER;
return;

}

else if((info &= "int") != NULL)

{

info = info << 3;

77

returntype = INTIGER;

return;
}
else if((info &= "float") != NULL)
{

info = info << 5;

returntype = FLOATING;

return;
}
else if((info &= ClassName.GetStr()) != NULL)
{

len = 0;

len = strlen(ClassName.GetStr());

if((info &= "& ") != NULL)

info = info << len + 1;
else

info = info << len;

returntype = CLASSTYPE;
return;
}
else
{
int counter = 0;
int count = 0;
count = strlen(info.GetStr());

len = 0;
while(len < count)
{
if ((pinfo[counter] != TAB) || (pinfolcounter] != SPACE))
{
counter++;
len++;

else if((isalnum(pinfolcounter])))

break;
}
if(counter > 0)
info = info << counter;
else

info = pinfo;
}

// A copy of loaderclass can be made by making use of operator overloading. This
// function is of great use when a copy of loaderclass instinct is to me made

// which can be modified and those changes will not reflect in the original

// member

LoaderClass&

LoaderClass: :operator=(LoaderClass& L)

{
Header = L.GetHeader();
SliceClass = L.SliceClass;
Buffer = L.Buffer;
ClassName = L.ClassName;
LineNumber = L.LineNumber;
Size = L.Size;
return (*this);

}

LITTTP000 0770000007707 07 0770000077 00777007777707777007070777777777777777777

// Member Function : LoadMainParts
// Purpose : It is used to load the main program and its
// functions.

LIELLT7H07 0007077070707 7707070070777 7077000707070 707077770770007777777777777

void
LoaderClass: :LoadMainParts ()

78

node *ptr = Header;
RefClass *sub;
char *tem;

while((strstr{ptr -> LineInformation.GetStr(), "main()") == NULL)&&{(ptr
!= NULL))
ptr = ptr -> left;
if(ptr == NULL)
{
printf("warning: no main program\n");
return;

//printf ("main linenumber is %d\n", ptr -> LineNumber) ;
char name({80];
memset (name, 80, NULL);
strcepy {name, "main()");
//LoadIntoSliceClass (PUBLIC, name) ;
PlaceIntoSliceClass (PUBLIC, name);
sub = SliceClass;
while(sub -> Member != "main{()")

sub = sub -> next;
sub -> Beginline = ptr -> LineNumber;
//printf("LineInformation is %$s\n", ptr -> LineInformation.GetStr());
int linenumber = 0;

int i = -1;
while((ptr != NULL) || (linenumber != 0))
{

tem = strstr(ptr -> LineInformation.GetStr(), "{");
if(tem != NULL)
i++;
tem = strstr(ptr -> LineInformation.GetStr(), "}");
if((tem != NULL) && (i== 0))
{
linenumber = ptr -> LineNumber;
//printf ("Reached End Of Line: %d\n", linenumber) ;
break;

}
else if((tem != NULL) && (i > 0))
i--;
ptr = ptr -> left;
}

if(ptr == NULL)

{
printf ("warning: main part of the program is missing\n");
printf ("Check Source Code\n");
return;

}

if (linenumber != 0)
sub -> EndLine = linenumber;
//printf ("begin and end lines are %d and %d\n", sub -> BeginLine, sub ->
EndLine) ;
}

1170771717777 77777777/777/) End of Loadexr.C ////////11//11717/7/7/

[1177077770070777777777777077777777777777777777770777777777777771777777777
//

// Slice.C

//
[177770777077
#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#include<ctype.h>

#include*slice.h"

79

PILETLTT00 0000000707070 0770007007707 00077077077 7777707770777770777777777

// Member Function : ComputeRefDefForClasses
// Purpose : This function performs all the necessary
// operations for slicing the program. It first
// parses each member function and then computes
/7 the ref and def by calling different member
// functions. It then calls a member
// function to slice the program based on the
// class of interest, criterion variable, and its line
7/ number .
L1777 777707077707777707707777707077770707077770777777707777777707777777777777
int
SliceClass: :ComputeRefDefForClasses(const StringClass& name)
{
node *temp, *nodeclass;
StringClass string ;
char *tem;
int endNumber;
int beginnumber;
int status = 0;
temp = Ll.GetHeader();
RefClass *refclass;
RefClass *temrefclass;
refclass = Ll.GetRefClass();
RefHeader = NULL;
DefHeader = NULL;
IoRefHeader = NULL;
if (refclass == NULL)
{
printf("there is no class \n");
exit(0);
}
else
//printf ("RefClass Is %$s\n", refclass -> ClassName.GetStr());
if(refclass -> ClassName == name)
{
temrefclass = refclass;
while(temrefclass != NULL)
{
if((temrefclass -> PartsType == PUBLIC)&&(temrefclass
->Member != "main()"))
{
if (temrefclass -> rettype != FRIEND)
{
string temrefclass -> ClassName;

string = string + "“::";
string = string + temrefclass -> Member;
if(temp != NULL)

nodeclass = temp;

else

{
printf("error in getting the header\n");
exit(0);

}

endNumber = 0;

while((nodeclass != NULL)&&(endNumber == 0))

{
tem =

strstr (nodeclass->LineInformation.GetStr(),string.GetStr(});
if (tem == NULL)
nodeclass = nodeclass -> left;
else
{
beginnumber = nodeclass -> LineNumber;
endNumber = GetEndLineForClassMemeber (string, beginnumber);
temrefclass -> BeginLine = beginnumber;
temrefclass -> EndLine = endNumber;

MarkAllSlices (beginnumber, endNumber) ;

status = ComputeRefDef (beginnumber, endNumber});

if(status == -1)

{
printf ("cannot handle reference to pointers\n");
return -1;

}
MarkControlStatForRefDef (beginnumber, endNumber);
break;
}
}
}
else if(temrefclass -> Member == “main()")
{
beginnumber = temrefclass -> BeginLine;
endNumber = temrefclass -> EndLine;
MarkAllSlices (beginnumber, endNumber) ;
status = ComputeRefDef (beginnumber, endNumber) ;
if(status == -1)
{
printf("cannot handle reference to
pointers\n");
return -1;
}
MarkControlStatForRefDef (beginnumber, endNumber)
}
temrefclass = temrefclass -> next;
}
}
else
{
printf('error in choosing the slice class\n");
printf("error in ComputeRefDefForSlcieClass\n");
exit(0);
}
RefHeader = NULL;
DefHeader = NULL;

}

}

IoRefHeader = NULL;

// Here U have to call MarkallSlices ComputeRefDEf,
SetReservedVarIntoRef,
// ControlFlowCheck.

J177777777007777777777777777777770/77777777777777777077777777777777/7777/7777
Member Function : MarkAllSlices

Purpose : The purpose of this function is to mark all the
statement's slice marks to false. After setting slice
marks to false, the program is sliced and the slice

/7
/!
//
//
//
//
/7

marks for statements of interest are set to true.
it will be very easy to display the statements of
interest onto the screen.

JITTLTTP0 0070770000777 0770070000000 rr 7770077707000 707007707 70707707777

void

SliceClass: :MarkallSlices(int start, int end)

{

{

}

node *temp;
temp = Ll.GetHeader();
while((temp != NULL)&&(temp -> LineNumber != start))

temp = temp -> left;

if(temp == NULL)

printf("warning: errror in setting initial slice marks \n");
return;

80

]

Then

whil
{

temp -> SLICE

e(temp -> LineNumber != end)

FALSE;

temp -> metoo = TRUE;
temp = temp -> left;

}
3

// This function is called to set ref,

def for the variables defined in each

81

// statement of each member function of class of interest. The basic algorithm
// for parsing is adopted from Nanja's work. This function after computing the

// ref and def for each line inserts them into the linked list containing the

// statement itself.

int

SliceClass:

(.
int
int
int
int
int
node
Stri

:ComputeRefDef (int begin, int end)

i =0;

index = 0;

count;

state;

NoHeader;
*temhead;

ngClass pname;

RefDef *calptr;

char
char
char
char
char
char
int

int

Stat

Information[80];
*buffer;
variable[MAXLINE] ;
secvariable[MAXLINE] ;
*test;
thirdvariable[MAXLINE] ;
seccount;
CommentFlag;
eType presentstate,prevstate;

//printf (*Entered Into Compute Ref Def Function\n");
temhead = Ll.GetHeader();

whil

e((temhead -> LineNumber != begin) && (temhead != NULL))

temhead = temhead -> left;

if(t
{

emhead == NULL)

printf(*error in getting the line of the member
function\n");
exit(0);

}

temhead = temhead -> left;

whil
{

e(temhead -> LineNumber != end)

presentstate = StartState;
prevstate = StartState;
CommentFlag = 0;

RefCounter

FALSE;

DefCounter = FALSE;
IoCounter = FALSE;

strcepy (Information ,temhead -> LineInformation.GetStr());

buffer = Information;
//buffer = temhead -> LineInformation.GetStr();
CheckForComments (buffer, CommentFlag);

if
{

}
if
{

(strstr(buffer, "//*) != NULL)
buffer = strtok(buffer, *//");
//printf("after strtok: %s\n", buffer);
(strstr(buffer, "/*") != NULL)
%f(strstr(buffer, "*/") != NULL)

buffer = strtok(buffer, "/*");
//printf ("State Reached :%s\n",

buffer);

break;
}
else

{
while((strstr(temhead ->

LineInformation.GetStr(), "*/") == NULL))
temhead = temhead -> left;
buffer = temhead -> LineInformation.GetStr();

}

}

NoHeader = FALSE;

while((presentstate != LastState) && (CommentFlag ==
NOTPRESENT))

{

// This Case Check For the valid Command Name. It then
// decides the the value of the PresentState till it
// gets to final state.
switch(presentstate)

{
case StartState:
i=0;
while((buffer{i] == SPACE) || (bufferl[i] ==
TAB) || (buffer[i] == OPENBRACE))
i++;
if ((buffer{i] == ENDOFLINE) || (buffer[i] ==
CARRRETURN) || (buffer[i] == CLOSEBRACE))
{
presentstate = LastState;
NoHeader = TRUE;
break;
}

prevstate = presentstate;
state = NOTPRESENT;
state = CheckForControlStatement (buffer);
if(state == PRESENT)
{
presentstate = LastState;
break;
}
state = NOTPRESENT;
state = CheckForFor(buffer);

if(state == PRESENT)

{
presentstate = ControlState;
break;

}

state = NOTPRESENT;

state = CheckForIOStream(buffer);

if(state == PRESENT)

{
presentstate = SixthState;
break;

}

else if((strstr(buffer, "str") {= NULL))

{
// This State has been Determined in the comming Code.
presentstate = StrState;

break;
}
else if((strstr(buffer, "switch") != NULL))
{
presentstate = SwitchState;
break;
}
else if((isalnum(buffer[il)) || (buffer[i]
== UNDERSCORE))
{

presentstate = VariableState;

82

83

break;
}
else if((buffer[i] == PLUS) || (bufferl[i]
== SUBTRACT))
{
presentstate = AirthematicState;
break;
}
else if((buffer[i]== SUBTRACT) &&
(buffer[i+l] == '>'))
{

printf("line %d: reference to
pointer encountered\n", temhead -~>
LineNumber) ;
return -1;
}
else
{
presentstate = LastState;
NoHeader = TRUE;
break;

// Checks The Variable Presnnt in the line and stores in the ref list
case VariableState:
index = 0;
memset (variable, NULL, MAXLINE) ;
while((buffer[i] == SPACE) || (buffer[i]
== OPENBRACKET) || (buffer([i] ==
CLOSEBRACKET) || (buffer[i] == TAB)
(buffer[i] == COMMA))
1++;
while((isalnum(buffer{il)) || (buffer[i]
== UNDERSCORE))
variable[index++] = buffer[i++];
variable[index] = ENDOFLINE;
IgnoreSpaces (buffer, 1i);
if (buffer[i] == PERIOD)
i++;
if (buffer{i] == SQOPENBRACKET)
{
i++;
IgnoreSpaces (buffer, i);
index = 0;
while(buffer[i] != SQCLOSEBRACKET)
{
IgnoreSpaces (buffer, 1i);
if((isalpha(buffer[i])) ||
(buffer[i] ==
UNDERSCORE))
{
while((isalpha(buffer([i]))
|| {(buffer[i] == UNDERSCORE))
secvariable{index++] =
buffer[i++];
secvariable[index] =
ENDOFLINE;
InsertIntoRefDefList (REFERED,
temhead -> LineNumber,
secvariable);
}
else
IgnoreDigitsOperators(buffer, i);

}
if(strcmp(variable ,"if") == NULL)
{
presentstate = LastState;
break;

if((prevstate == AirthematicState))

if((buffer[i] == PLUS) && (buffer[i] ==
buffer[i+1]) || (buffer[i] == SUBTRACT) &&
(buffer[i] == buffer[i+l]))
{

InsertIntoRefDefList (REFERED,
temhead -> LineNumber, variable);
InsertIntoRefDeflist (DEFERED,
temhead -> LineNumber, variable);
presentstate = LastState;
break;
}
}
InsertIntoRefDeflList (DEFERED, temhead ->
LineNumber, variable);
IgnoreBraces (buffer, 1i);

if (((buffer(i] == PLUS) && (buffer[i + 1] ==
buffer[il)) || ((buffer[i] == SUBTRACT) &&
(buffer[i+l] == buffer[i])))
{

InsertIntoRefDefList (REFERED, temhead ->
LineNumber, variable);
presentstate = LastState;

break;

}

prevstate = presentstate;

if (buffer{i] == COLON)

{
presentstate = LastState;
break;

}

else 1f(buffer[i] == EQUALTO)

{

presentstate = IntermediateState;
break;

else if((buffer[i]== SUBTRACT) && (buffer[i+1]
== '>'))
{
printf(“line %d: reference to pointer
encountered\n', temhead -> LineNumber);
return -1;

}
else if ((buffer([i] == PLUS) || (buffer[i] ==
SUBTRACT) | | (buffer[i] == MULTIPLY) ||
(buffer[i] == DIVIDE))
{
i++;
if(buffer([i] == EQUALTO)

presentstate = LoopingState;
break;
}
break;

// This case is basically to determine the state of buffer

case IntermediateState: // Case 2
RefDef *front, *back;
if(prevstate == LoopingState)

if(RefHeader != NULL)
{
front = RefHeader;
back = front;
while(front != NULL)
{
back = front;
front = front -> next;

84

// Next state

}

}
char *x = back -> variable.GetStr();
InsertIntoRefDeflList (REFERED,
back -> linenumber, x);

}

IgnoreBraces (buffer, 1i);
IgnoreOperands (buffer, 1i);
IgnoreSpaces (buffer, 1i);

if(buffer{i] == COTE)
i++;

if(buffer[i] == EQUALTO)
i++;

IgnoreBraces (buffer, i, OPENBRACKET) ;
prevstate = presentstate;

if((buffer[i] == CARRRETURN) || (
buffer{i] == PERIOD) | |
(buffer[i] == COLON))
{
presentstate = LastState;
break;
}
else if((isdigit(buffer(il)) || (buffer[i]
== PERIOD))
{
presentstate = PreFinalState;
break;
}
else if((isalpha(buffexr[il)) || (buffer[il
== UNDERSCORE))
presentstate = CheckingState;
else if(buffer[i] == OPENBRACE)
presentstate = LastState;
break;

case CheckingState:

// Case Number 3

buffer[i++];

index = 0;
memset (variable, NULL, MAXLINE);
while((isalpha(buffer[i])) || (buffer{i] ==
UNDERSCORE))variable[index++] =

variable[index] = ENDOFLINE;
IgnoreSpaces (buffer, i);

if(buffer{i] == SQOPENBRACKET)
{
while(buffer[i] != SQCLOSEBRACKET)
{
1++4;

IgnoreSpaces (buffer, i);

index = 0;

if((isalpha(buffer{i])) ||
(buffer[i]==UNDERSCORE))

{
while((isalpha(buffer(il])) ||
(buffer[i]==UNDERSCORE))
secvariable[index++] =
buffer[i++];
secvariable[index] =
ENDOFLINE;
InsertIntoRefDeflList (REFERED,
temhead -> LineNumber,
secvariable);
}
else
IgnoreDigitsOperators(buffer, i);

85

IgnoreBraces (buffer, i);

prevstate = presentstate;

if(buffer([i] == EQUALTO)

{

InsertIntoRefDeflList (DEFERED, temhead ->

LineNumber, variable);
presentstate = IntermediateState;
break;

}
InsertIntoRefDeflist (REFERED, temhead ->

LineNumber, variable);

if ((buffer(i] == COLON) || (buffer[i] ==
OPENBRACKET))
presentstate = LastState;
else if((buffer[i] == SUBTRACT) && (buffer[i+l]
== '>"'))

printf("line %d: reference to pointer
encountered\n", temhead -> LineNumber);
return -1;

}

else
presentstate = IntermediateState;
break;
case LoopingState: // Case Number 4

//printf ("Entered Into Looping State\n");
prevstate = presentstate;
if(buffer[i] == EQUALTO)

presentstate = IntermediateState;

break;
case AirthematicState: // Case Number S
//printf("Entered Into Airthematic State\n");

++1;

prevstate = presentstate;

if((buffer(i] == PLUS) || (buffer[i] ==
SUBTRACT))

presentstate = VariableState;

break;
case SixthState: // Case Number 6

//printf ("Entered Into Sixth State\n");
memset (variable, 0, MAXLINE);
i=0;
index =0;
IgnoreSpaces (buffer, 1i);
IOTYPE type;
type = GetIoType(buffer);
switch(type)
{
case GETCHAR:
while((isalpha(bufferf{i]))||
(buffer(i] == UNDERSCORE))
variable[index++] =
buffer[i++];
variable[index] = ENDOFLINE;
InsertIntoRefDeflList (DEFERED,
temhead -> LineNumber,

variable);

presentstate = LastState;

break;

case GETS:

while((isalpha(buffer([i]}))
1++;

IgnoreSpaces (buffer, i);

if(buffer[i] == OPENBRACKET)
1++;

while((isalpha(buffer(il)) ||

(buffer[i] == UNDERSCORE))
variable[index++] =

buffer[i++];

variable[index] = ENDOFLINE;

InsertIntoRefDefList (DEFERED,
temhead -> LineNumber,

variable);
presentstate = LastState;
break;

case SCANF:

case PRINTF:
char *point = strchr(buffer, '"');

if(point != NULL)

++point;

point = strchr(point, '"');
++point;
strcpy(buffer, point);

}
index = 0;
if(buffer[index] == CLOSEBRACKET)
{
presentstate = LastState;
break;

}
int length = strlen(buffer);

while(index < length)

if((!(igalpha(buffer[index]))))
if((buf%er[index] != UNDERSCORE))
buffer[index] = SPACE;
index++;
i = 0;

length = strlen(buffer);
while(i < length)

{
IgnoreSpaces (buffer,

index = 0;
while((isalnum(buffer[i]))
{(buffer[i] == UNDERSCORE))

variable[index++] =

buffer{i++};

’

i);

variable[index] = ENDOFLINE;

if((i < length) &&
(IsAvValidDeclaration(variable)))

if(type == SCANF)

InsertIntoRefDefList (DEFERED,

temhead -> LineNumber, variable);
else

InsertIntoRefDeflList (REFERED,
temhead -> LineNumber, variable);

}
}
presentstate = LastState;
break;

// added later when the code is working fine
case CIN:
InsertIntoIoList (CIN, buffer);
presentstate = LastState;
break;
case COUT:

InsertIntolIoList (COUT, buffer);
presentstate = LastState;
break;

case SWITCH:

87

88

InsertIntoIoList (SWITCH, buffer);
break;
case VOIDTYPE:
printf (*cannot produce slice for the
folloing line\n");
printf("%s\n", buffer);

break;
}i
break;
case StrState // Case Number 7
//prlntf("Entered Into Strstr State\n");
i=0;

memset (variable, NULL, MAXLINE) ;
count = 0;
pname = buffer;

if((pname &= "strlen") != NULL)
{
while((! (isalnum(buffer{i]))) &&
(buffer[i] != UNDERSCORE))
1++;
while((buffer[i] == UNDERSCORE) ||
(isalnum(buffer[i])))
variable[count++] = buffer[i++];

variable[count] = ENDOFLINE;
InsertIntoRefDefList (DEFERED,
temhead -> LineNumber, variable);
test = strstr(buffer, "strlen');
test = strchr(test, OPENBRACKET) ;
count = 0;

strcpy(secvariable, test);
IgnoreSpaces (secvariable, count);
if (secvariable[count] ==

OPENBRACKET)
count++;
seccount = 0;
while((secvariable[count] ==
UNDERSCORE)

|| ((isalnum(secvariable[count]))))
thirdvariable[seccount++] =
secvariable[count++];
thirdvariable{seccount] = ENDOFLINE;
InsertIntoRefDefList (REFERED, temhead
->LineNumber, thirdvariable);
presentstate = LastState;

break;
}
else if((pname &= "strcpy") != NULL)
{
test = strstr(buffer, "strcpy");
test = strchr(test, OPENBRACKET) ;
count = 0;
memset (secvariable, NULL, MAXLINE);
strcpy(secvariable, test);
IgnoreSpaces {secvariable, count);
if (secvariable[count] == OPENBRACKET)
count++;
seccount = 0;
IgnoreSpaces (secvariable, count);
while((secvariable[count] == UNDERSCORE)

|| ((isalnum(secvariable[count]))))
thirdvariable{seccount++] =
secvariable{count++];
thirdvariable{seccount] = ENDOFLINE;
InsertIntoRefDefList (DEFERED, temhead
->LineNumber, thirdvariable);
presentstate = LastState;
break;

while((buffer[i] != UNDERSCORE) &&
({!{isalpha(buffer{il])))))
1++;
IgnoreSpaces (buffer, 1i});
memset (variable, NULL, MAXLINE);
count = 0;
while((buffer[i] == UNDERSCORE) ||
((isalpha(buffer(i]))))
variable[count++] = buffer{i++];
variable[count] = ENDOFLINE;
if((pname &= "strcmp") != NULL)
{
InsertIntoRefDefList (REFERED, temhead ->
LineNumber, variable);

}

else

{

InsertIntoRefDefList (DEFERED, temhead ->
LineNumber, variable);

}

if((pname &= “strcat") != NULL)

{

InsertIntoRefDefList (REFERED, temhead ->
LineNumber, variable) ;

}
while((buffer{i] != UNDERSCORE) &&
((!(isalpha(buffer[i]))}))
1++;
IgnoreSpaces (buffer, i);
count = 0;
while((buffer[i] == UNDERSCORE) ||
((isalpha(buffer{i]))}))
variable[count++] = buffer[i++];
variable[count] = ENDOFLINE;
InsertIntoRefDefList (REFERED, temhead ->
LineNumber, variable);
presentstate = LastState;
break;

case ControlState : // Case Number 8
//printf ("Entered Into Control State\n");
// This performs the insertion of all I/o
// variables into special list.
CheckForIoOPerands (buffer);
InsertControlvVar (buffer, temhead -> LineNumber) ;
//InsertIntoRefList (buffer);
presentstate = LastState;

break;
case PreFinalState: // Case Number 9
//printf ("Entered Into Prefinal State\n");
while((isdigit(buffer[i])) || (buffer[i] ==
PERIOD))
i++;
IgnoreBraces (buffer, i, OPENBRACKET) ;
prevstate = presentstate;
if(buffer[i] == COLON)
{
presentstate = LastState;
break;
}
else
presentstate = IntermediateState;
break;
case SwitchState: // Case Number 10

//printf ("Entered Into Switch State\n");
InsertIntoIoList (SWITCH, buffer);
presentstate = LastState;

break;

case LastState: // Will Not reach This State
//printf ("Error: Reached LastState Which is to

Quit\n");

}

LILPLLTIITT TP 007777077707 07777707777777 77077777 70770770777777777777777777

/7
//
/7

}

break;
};
}
if (IoCounter == TRUE)
{
calptr = IoRefHeader;
//PrintvVar (calptr);
while(calptr != NULL)
{
DeleteRefFromRefList (calptr);
calptr = calptr -> next;
}
calptr = IoRefHeader;
while(calptr != NULL)
{
InsertIoRefIntoDefList (calptr);
calptr = calptr -> next;
}
}
if(RefCounter == TRUE)
{
calptr = RefHeader;
printf("ref: ");
PrintVar (calptr);
while(calptr != NULL)
{
InsertIntoHeaderAllRef (temhead,
calptr = calptr -> next;

}

}
if(DefCounter == TRUE)
{
calptr = DefHeader;
printf(*def: ");
PrintVar (calptr);
while(calptr != NULL)
{
InsertIntoHeaderAllDef (temhead,
calptr = calptr -> next;

}

}

if(RefCounter == TRUE)

{
DeleteRefDeflIoRef (RefHeader) ;
RefHeader = NULL;

}

if(DefCounter == TRUE)

{
DeleteRefDeflIoRef (DefHeader) ;
DefHeader = NULL;

}

if(IoCounter == TRUE)

{
DeleteRefDefIoRef (IoRefHeader) ;
IoRefHeader = NULL;

}

temhead = temhead -> left;

return SUCCESS;

Member Function : IgnoreBraces

Purpose

calptr);

calptr);

: This function is used while parsing the statements.
when ever a space, tab brackets are encountered,

they

90

91

// are discarded. This function is called from
// ComputeRefDef function.
JI777 7077077770707 70777707777077777777777777777707777777777777777777777777

void
SliceClass: :IgnoreBraces(char* buffer, int& i, const char tem)
{

if(tem == OPENBRACKET)

{

while((buffer[i] == SPACE) || (buffer[i] == TAB)
(buffer[i] == OPENBRACKET) || (buffer[i] ==
CLOSEBRACKET))
i++;
return;
}
return;

// If u get any other specific Conditions Add them here
}

// This function is used to ignore braces

void
SliceClass: :IgnoreBraces (char *buffer, int& i)

{

while((buffer[i] == SPACE) || (buffer[i] == TAB)
(buffer[i] == OPENBRACKET) || (buffer[i] == SQOPENBRACKET)
(buffer[i] == CLOSEBRACKET) || (buffer[i] ==
SQCLOSEBRACKET))
1++;
return;

}

// This function is used to ignore spaces and tabs present in a statement of
// the program to be sliced. This function is called from ComputeRefDef
// function.

void
SliceClass: :IgnoreSpaces (char *buffer, int& i)
{
while((buffer[i] == SPACE)]| (buffer[i] == TAB))
i++;
return;
}

// This function is used to ingore the operators. This function is called from
// ComputeRefDef function.

void
SliceClass: :IgnoreDigitsOperators (char *pbuffer,inté& i)
{

char buffer [MAXLINE] ;

strcpy (buffer, pbuffer);

while((buffer[i] == PLUS) || (buffer[i] == SUBTRACT) ||
(isdigit (buffer[i])) || (buffer[i] == DIVIDE))
i++;

}

// This function is used to ignore operands. This function is called from
// ComputeRefDef function.

void
SliceClass: : IgnoreOperands (char *buffer, int& i)
{
while((buffer[i] == PLUS) || (buffer[i] == SUBTRACT)
|| (buffer[i] == MULTIPLY) || (buffer[i] == DIVIDE) || (buffer[i] ==
MOD))

i++;

}

92

// This function is used to ignore arithematic operators present in statements
// of the program to be sliced

void
SliceClass: :IgnoreOnlyArthOPerators (char *pbuffer, int& k)
{

char spbuffer[MAXLINE];

//printf ("I is %d\n"*, k);

memset (spbuffer, NULL, MAXLINE);

strepy (spbuffer, pbuffer);

while((spbuffer[k] == PLUS) || (spbuffer[k] == SPACE) ||
(spbuffer[k] == TAB) || (spbuffer(k] == SUBTRACT) ||
(spbuffer (k] == MULTIPLY) || (spbuffer(k] == DIVIDE) ||
(isdigit (spbuffer(k])))
k++;

//printf ("I is %d\n*, k);

LITITT0T7 0000007000707 707000 700777077 7777777007777707070007770070777707777707077777

// Member Function : CheckForControlStatement

// Purpose : This function is used to check for the control

// statements such as while, else, if, etc.. if

// found, it returns TRUE else FALSE. This function is

// used while parsing the statements of the program to be
// sliced

L1777 0770077770070 00 77070770777 700707070777770077777777770770777777777777777777

int
SliceClass: :CheckForControlStatement (StringClass temp)
{

//StringClass temp = ptemp;

if(((temp &= "else") != NULL) && ((temp &= "if") == NULL))
return PRESENT;

else if((((temp &= "do") != NULL) && (strien(temp.GetStr()) == 3)) |]
((temp &= "exit (") != NULL))
return PRESENT;

else if((temp &= "case") != NULL)

return PRESENT;
else
return NOTPRESENT;
}

// Checks for the presence expressions containing if, while, for. If the

// statement contains if, for, while, then it returns PRESENT else NOTPRESENT.
// This function is called from ComputeRefDef function to identify weather a
// statement is control statement or not.

int
SliceClass: :CheckForFor (StringClass buffer)
{
//StringClass buffer = pbuffer;
if(((buffer &= "if") != NULL) || ((buffer &= "while"”) != NULL)
|| ((buffer &= “"for") != NULL))
return PRESENT;
else
return NOTPRESENT;
}

LIPTITIT I LI 0070000777000 0 7707000070777 7 077070777 77777070777777777077777

// Member Function : CheckForIOStreams

/7 Purpose : This function is to check for the iostream

// commands cin and cout. It also check for the
// regular stdio commands, scanf, gets and other
// input/output functions.

LILETITTTT 0007700770007 77 7007700777770 7 7777000770707 777707077777777777

int
SliceClass: :CheckForIOStream(const StringClass& pbuffer)

StringClass buffer = pbuffer;

if(({ buffer &= "cout") != NULL) || ((buffer &= "scanf") != NULL) ||

((buffer &= *"cin") != NULL) || ((buffer &= "printf") != NULL) ||

((buffer &= "gets") '= NULL) || ((buffer &= "getchar") != NULL))
return PRESENT;

else

return NOTPRESENT;

}

void

SliceClass: :SetReserveVarIntoRef ()
{

}

// This function is used to check for the comments within the statements.

// This Will Call CheckForReserveVar();

int
SliceClass: :CheckForComments {(const StringClass& string, int& flag)
{

char *info, *temp;

info = string.GetStr();

temp = strstr(info, "/*");

if(temp == NULL)

{

flag = NOTPRESENT;
return PRESENT;

else if(temp != NULL)
{
flag = PRESENT;
return PRESENT;
}
temp = strstr(info, "//");
if(temp != NULL)
{

flag = PRESENT;
return PRESENT;

}

else

{
flag = NOTPRESENT;
return PRESENT;

}

}
int
SliceClass: :CheckForComments (const StringClass& string)
{
int i=0;
char *info = string.GetStr();
while(info[i] != NULL)
if((info[i] == '/') && (info[i+l1l] == '/'))
{
return PRESENT;
}
i++;
}
return NOTPRESENT;
}
int

SliceClass: :CheckForBlankSpace(const StringClass& string)
{

int i=0;

int status=NOTPRESENT;

94

char *info = string.GetStxr();
//int len = string.Getlen():
int len = strlen(info);

while{ info[i] != len)
if(infol[i] == "' ")
{
status = PRESENT;
break;
}
else
i4+;
}
if({i == len) &&(status == NOTPRESENT))
return NOTPRESENT;
else

return PRESENT;
}

L1777 0770007070777 77777777777770770777770777777777777077777077777777777777777
// Member Function : GetBeginLineForClassMember

// Purpose : This function is used to find out the starting line of the
// class of interest. Once the starting line of class of
// interest is known, the public and private parts can be

// obtained which will be stored in the refclass.
L1117 77 70070777777 7077770070077777777777777777077700777777777777770777777777

int
SliceClass: :GetBeginLineForClassMemeber (const StringClass& name)
{
node *temp = L1l.GetHeader();
StringClass string;
char *tem;
int linenumber = 0;
while(temp != NULL)
{
string = temp -> LineInformation;
tem = Ll.CheckPresence(string.GetStr(), name.GetStr());
if(tem == NULL)
temp = temp -> left;
else
{
linenumber = temp -> LineNumber;
break;

}
if(linenumber == 0)
{
printf("no memeber finction defined for the memeber defined in
class\n");
exit (0);
}
else
return linenumber;

}

[0777707777077077770777777777777777770771077777777777777777777277/77777777777
// Member Function : GetEndLineForClassMember

// Purpose : This function is called with member function name and begin
// line number of the member function. It checks the refclass
// for the member function, if found compares the begin number
// and returns the end line number.

LITTTEITT77 0000700700777 7007000077700 00700707707007007007770777777777777777777

int
SliceClass: :GetEndLineForClassMemeber (const StringClass& string, int beginnumber)
{

int i=0;

95

node *temp = Ll.GetHeader():;
if(temp == NULL)
{

printf("error in getting header\n");
exit(0);

}

char *tem;

StringClass stri = string.GetStr();

int linenumber;

//printf ("LineNumber is %d\n", beginnumber);

while((temp -> LineNumber != beginnumber) && {(temp != NULL))
temp = temp -> left;

temp = temp -> left;

if(temp == NULL)

{

printf("error in the program\n");
printf ("check source code of tool \n");
exit(0);
}
else
{
linenumber = 0;
i=-1;
while((temp != NULL) || (linenumber != 0))
{
tem = Ll.CheckPresence(temp -> LineInformation, "{");
if(tem != NULL)
i++;
tem = L1l.CheckPresence(temp -> LineInformation, "}");
if((tem != NULL) && (i== 0))
{
linenumber = temp -> LineNumber;
//printf ("Reached End Of Line: %d\n",
linenumber) ;
break;

}
else if((tem != NULL) && (i > 0))
i--;
temp = temp -> left;
}

if(temp == NULL)

{
printf("error in the code of tool or program\n');
printf ("check source code\n");
exit (0);

}
if (linenumber != Q)
return linenumber;

}

L1777 777707077077007077777770777777777777770770777077777777777777777777
/7 Member Function : InsertIntoRefDeflList

// Purpose : If a variable is referenced or defined in the
// statement, then the variable is passed to this
/7 function from ComputeRefDef function. If the

// variable is already existing in the list, it is
/7 ignored else it is inserted into RefDef list.

LITITTITI 7000007000007 0 0777077777700 7070 0077000000707 7777777707770777777077777

int
SliceClass::InsertIntoRefDefList (const int& ref, const int& linenumber, char
*info)
{
if((IsAvalidDeclaration(info)) && (IsAValidMember (info)))
{
RefDef *temrefdef;
RefDef *temp = new RefDef;

temp -> variable = info;
temp -> PartType = ref;
temp -> linenumber = linenumber;
temp -> next = NULL;
if(ref == REFERED)
{
RefCounter = TRUE;
if(RefHeader == NULL)
{
RefHeader = temp;
return SUCCESS;
}

else
{
temrefdef = RefHeader;
while((temrefdef -> next != NULL) &&
(temrefdef -> variable != temp -> variable))
temrefdef = temrefdef -> next;
if({ temrefdef -> variable == temp -> variable)
return FAILURE;
else
{
temrefdef -> next = temp;
return SUCCESS;
}
}
}
else if(ref == DEFERED)

{
DefCounter = TRUE;
if(DefHeader == NULL)

DefHeader = temp;
return SUCCESS;

}
else
{
temrefdef = DefHeader;
while((temrefdef -> next != NULL) &&
(temrefdef -> variable != temp -> variable))
temrefdef = temrefdef -> next;
if(temrefdef -> variable == temp -> variable)
return FAILURE;
else
{
temrefdef -> next = temp;
return SUCCESS;
}
}
}
else if(ref == IOREF)

{
ToCounter = TRUE;
if(IoRefHeader == NULL)
{
IoRefHeader = temp;
return SUCCESS;

else

temrefdef = IoRefHeader;
while((temrefdef -> next != NULL) &&

(temrefdef -> variable != temp -> variable))

temrefdef = temrefdef -> next;

if(temrefdef -> variable == temp -> variable)
return FAILURE;

else

{

temrefdef -> next = temp;

96

97

return SUCCESS;

}

// The name denotes the class of interest. The criterion line is checked for
// variable(s) of interest. If it contains them, then slice mark is set true

int
SliceClass::MarkSliceForCriterionLine(char *name, int linenumber)
{

node *temp = Ll.GetHeader();

while((temp -> LineNumber != linenumber) && (temp != NULL))

temp = temp -> left;
if(temp == NULL)
{

printf ("error in the source code\n'");
printf ("check the source code\n"};
printf("at the line \n%d\t%s\n", linenumber, name);
exit (0);

}

else
temp -> SLICE = TRUE;
return SUCCESS;

}

JI1777777 0700777707777 7770777777777070777077777777770777777777777777777777777
// Member Function : GetIoType

// Purpose : This function checks for presence of any input/
// output functions present in the statement. If
// found, it returns the type of function.

L1707 0070 0000000700700 7777777777707 7770077077000 7771777777 77777777777777

IOTYPE
SliceClass: :GetIoType(const StringClass& pbuffer)
{
StringClass buffer = pbuffer.GetStr();
if ((buffer &= "getchar") != NULL)
return GETCHAR;
else if((buffer &= "gets") != NULL)
return GETS;
else if({(buffer &= "scanf") != NULL)
return SCANF;
else if((buffer &= "printf") != NULL)
return PRINTF;
else if((buffer &= *cin") != NULL)
return CIN;
else if((buffer &= "cout") != NULL)
return COUT;
else if((buffer &= "fscanf") != NULL)

return SCANF;
else
return VOIDTYPE;
}

// Here, variable can be a referenced, defined, or a reserved word. This
// function is used to check the variable. If the variable is a reserved word,
// then it returns PRESENT else NOTPRESENT.

BOOLEAN
SliceClass::IsAValidDeclaration(const StringClass& variable)
{

stringClass buffer = variable.GetStr();

int len = strlen(buffer.GetStr()};

if((((buffer &= "int") != NULL) && (len == 3)) ||
({(buffer &= "char") != NULL)&& (len == 4)) |[
({(buffer &= "float") != NULL) && {(len == 4)) ||

98

(({buffer &= "double") != NULL) && {(len == 6))
(((buffer &= "friend") != NULL) && {(len == 6))
(((buffer &= "return") !'= NULL) && (len == 6))
(((buffer &= "struct") != NULL) && (len == 5)) |
((buffer &= "char *") != NULL)
({(buffer &= "typedef") != NULL) && (len == 7)))
return TRUE;
else if(((buffer &= "int *") != NULL) || ((buffer &= "while") != NULL)
((buffer &= "for") != NULL) || ((buffer &= "FILE") != NULL)
({(buffer &= "if") != NULL) || ((buffer &= "switch") != NULL)
({(buffer &= "exit") != NULL) || ((buffer &= "class") != NULL)
((buffer &= "strcpy") != NULL) || ((buffer &= "strcmp") != NULL) ||
{(buffer &= *strlen") != NULL) || ((buffer &= "strcat") != NULL))
return TRUE;
else if(((buffer &= "strtok") {= NULL) || ((buffer &= "NULL")!= NULL)
|| ((buffer &= "strstr") != NULL) || ((buffer &= "else") != NULL) ||
((buffer &= "break") != NULL) || ((buffer &= "feof") != NULL) ||
((buffer &= "this") && (len == 4)))
return TRUE;
else if (((buffer &= "private:")!= NULL) || ((buffer &= "public:")!= NULL)
|| ((buffer &= *private”) != NULL) || ((buffer &= "public") != NULL) ||
((buffer &= *isalnum") != NULL) || (((buffer &= "new") != NULL) && (len

== 3)))
return TRUE;
char *var = buffer.GetStr();
int length = strlen{(var);
len = 0;
int i = 0;
while(i < length)

if ((isdigit(var([il])))
len++;
//return TRUE;
i++;

}
if(len == length)
return TRUE;
return FALSE;
}

// This function checks for the presence of input output operands.

void
SliceClass: :CheckForIoOPerands (const StringClass& buffer)
{

char *string;

IOTYPE type;

type = GetIoType(buffer);

string = buffer.GetStr();

if(type != VOIDTYPE)

InsertIntoIoList(type, buffer);

}

// If the variable referenced is in IO statement, then the variable is inserted
// into iolist.

void
SliceClass: :InsertIntoloList (IOTYPE type, const StringClass& pstring)
{
int i=0;
int count = 0;
char *var;
char *firststring, *sec, fin[MAXLINE];
char variable [MAXLINE];
StringClass string;
string = pstring;
if(type == SCANF)
{

//firststring = string &= OPENBRACKET;

firststring = string && *(";

if((var = strchr(firststring t*r)) = NULL)
{
var++;
sec = strchr(var, '"');
while(var != sec)
{
*var = SPACE ;
var++;
}
var++;
i=0;
while((!isalnum{*var)) && (*var == UNDERSCORE)
&& (*var != CLOSEBRACKET))
var++;
while(*var != CLOSEBRACKET)
{
while((*var == SPACE) || (*var == COMMA))
var++;
if(*var == '&"')
var++;

count = 0;

while((isalnum(*var)) || (*var == UNDERSCORE))

{
fin[count++] = *var;
var++;

}

fin[count] = '\0';

// THis Is the part I donot have access to the temhead.
// For Compiling I use count

InsertIntoRefDefList (IOREF, count, fin);
//InsertIntoRefDefList (IOREF, temp -> LineNumber, fin);

}
}
else if(type == GETS)
{
firststring = string && "(";
var = firststring;
while(*var != ',")
{
while((*var == ' ') || (*var == ' ('))

{
var++;
//cout << "Statement Reached" << endl;

}

while((isalnum(*var)) || (*var == '_'))
{
fin[count++] = *var;
var++;

}
fin[count] = ENDOFLINE;

if(strlen(fin) > 0)
InsertIntoRefDefList (IOREF, count, fin);

}

}
else if(type == GETCHAR)

{
firststring = string && " (";

i=0;
IgnoreSpaces {firststring, 1i);
while((isalnum(firststring{i]))][(firststringl{i] ==
UNDERSCORE))
variable[count++] = firststringl[i++];

variable[count] = ENDOFLINE;
// I need to get the temp from the calling member funtion

//InsertIntoRefDefList (IOREF, temp -> LineNumber, variable);
InsertIntoRefDefList (IOREF, count, variable);

}

99

else if(type == SWITCH)
{
firststring = string &= "(";
//printf ("Got %s\n", firststring);
//getchar();
i = 0;
IgnoreSpaces (firststring, 1i);
if(firststringli] == OPENBRACKET)
i++;
while(firststring[i] != CLOSEBRACKET)
{
count = 0;
while((isalnum(firststringfil])) || (firststring{i] ==
I_I))
variable{count++] = firststringl[i++];

variable[count] = ENDOFLINE;
InsertIntoRefDefList (REFERED, count, variable);
if(1 > 250)

{

}

printf("error in the parsing line\n");
exit(0);

else if(type == COUT)

{

memset (fin, NULL, MAXLINE);
firststring = pstring.GetStr();
firststring = strchr(firststring, ‘'<<'});

strecpy (fin,

count = 0;

firststring);

while(finl[count] != ';')

{

while((fin[count] == SPACE) || (fin[count] == TaB) ||
(fin{count] == '<') || (fin[count] ==

PERIOD) | | (fin{count] == OPENBRACKET) ||

(fin[count] == CLOSEBRACKET))

count++;

if(fin[count] == '"')

{

while(fin[count] != '<')
{
if(fin{count] == ';'")
return;
count++;

}

while((fin[count] == SPACE) || (fin[count] == TaB) ||
(fin[count] == '<'})

i=0;

count++;

memset (variable, NULL, MAXLINE);

while({fin[count] == UNDERSCORE) ||
(isalnum(fin[count])})

variable{i++] = fin[count++];

variable[i] = ENDOFLINE;

//printf ("Inserting Into Ref : $%$s\n", variable);
if(strlen{variable) > 0)

}

InsertIntoRefDefList (REFERED, count, variable);

}
else if(type == CIN)

{

memset (fin,
int count =
firststring
firststring
strepy(fin,

NULL, MAXLINE);

0;

= pstring.GetStr();

= strchr(firststring, '>>'};
firststring);

memset (variable, NULL., MAXLINE);

100

101

while(fin[count] = '; ")
{
while((fin[count] == SPACE) || (fin[count] == TAB) ||
(fin[count] == '>'))
count++;
i=0;
while((fin[count] == UNDERSCORE) ||
(isalnum(fin[count])})
variable[i++] = finl[count++];

variable{i] = ENDOFLINE;
if(strlen(variable) > 0)
InsertIntoRefDefList (DEFERED, count, variable);

}

L1177 70 7777070777777 707777770770777007777777777077777777707770777777777777
// Member Function : InsertlIntoReflist

// Purpose : Once the variable is checked for reserved word, it
/7 is inserted into the reflist.

L1777 7777777777 777077

void
SliceClass::InsertIntoRefList (StringClass& buffer)
{
char variable[MAXLINE];
char *string = buffer.GetStr();
int len = strlen(string):
int i = 0;
int count = 0;
while(i < len)
if((! (isalnum({string[i]))) &&(string[i] != UNDERSCORE))
string[i] = SPACE;
i++;
}
i=20;
while(i < len)
{
while((! (isalnum(string[i]))) &&(string[i] != UNDERSCORE))
i++;
count = 0;
while((isalnum(string[i])) || (string[i] == UNDERSCORE))
variable[count++] = stringli++];
variable{count] = ENDOFLINE;
if((i < len) && (IsAvalidDeclaration(variable)))
{
InsertIntoRefDeflList (REFERED, count, variable);
}
}
}

JIT110777 7707777777 77707777777707770777777777770777707777777777/707777777777777
// Member Function : DeleteRefFromRefList

// Purpose : After inserting the ref list into the respective

// node containing the line information, the reflist

// is deleted so that the same ref list can be used for
// remaining statements.

LILELTLLTT L0077 0 7000770000007 r 770 r 000 i7 007070707 7770707071777071777

void
SliceClass: :DeleteRefFromRefList (RefDef* calptr)
{
RefDef *temp;
RefDef *front;
temp = RefHeader;
front = temp;
if(RefHeader -> variable == calptr -> variable)

102

temp = RefHeader;

RefHeader = RefHeader -> next;
delete temp;

return;

}
while(temp != NULL)

{
if(temp -> variable == calptr -> variable)
front = temp -> next;
delete temp;
}

temp = temp -> next;
}
}

LITLTTITE00 0007007007770 0 00000071 777007 07007707777 7777077777177777

// Member Function : InsertIoRefIntoDefList
// Purpose : This function inserts the variable into the Def
// list.

L1110 07 707070077700 7000 07707707770 00777707707707077777777707777777077777777777

void
SliceClass: :InsertIoRefIntoDefList (RefDef *calptr)
{

int flag = -1;

RefDef *temp;

temp = DefHeader;

while(temp -> next!= NULL)

{

if(temp -> variable == calptr -> variable)

flag = PRESENT;
break;

}
temp = temp -> next;

}

if(flag != PRESENT)

{
RefDef *tem = new RefDef;
tem -> variable = calptr -> variable;
tem -> linenumber = calptr -> linenumber;
temp ->PartType = calptxr -> PartType;
return;

}
LITTITTIT TP 0007700000077 7000007700007 00007707777 77707070777777777

7/ Member Function : DeleteRefDeflIoRef

// Purpose : This function after parsing each statement, and

// inserting the variables into the reflist of the

// statement itself, deletes the global lists, reflist,
// deflist, and iolist. This makes the global lists

// pointing to null which can be used to store ref, def
/7 variakbles for remaining statements.

LI1ITHTIEP 0707700007070 7 70070777707 707 7707070777077 70770777777777777777

void
SliceClass: :DeleteRefDefIoRef (RefDef* temp)
{
RefDef *front:
while(temp != NULL)
{
front = temp;
temp = temp -> next;
delete front;
}

// It inserts the first value refered into ref list.

void

SliceClass: :InsertIntoHeaderAllRef (node *temhead, RefDef *calptr)

{
RefDef *temp;

if(temhead -> RefHeader

NULL)

{
RefDef *node = new RefDef;
node -> variable = calptr -> variable;
node ~> linenumber = calptr -> linenumber;
node -> PartType = calptr -> PartType;
node -> next = NULL;
temhead -> RefHeader = node;
}
else
{
temp = temhead -> RefHeader;
while({(temp -> next != NULL) && (temp -> variable != calptr ->
variable))
temp = temp -> next;
if((temp -> next == NULL) && (temp -> variable != calptr ->

variable))

{
RefDef *node =

new RefDef;

node -> variable = calptr -> variable;
node -> linenumber = calptr -> linenumber;
node -> PartType = calptr -> PartType;
node -> next = NULL;

temp -> next = node;

}
// This function is used to

void

insert the variable into Deflist.

SliceClass: :InsertIntoHeaderAllDef (node *temhead, RefDef *calptr)

{
RefDef *temp;

if(temhead -> DefHeader == NULL)

{
RefDef *node =

node -> variable =
node -> linenumber
node -> PartType =
node -> next = NULL;

new RefDef;

calptr -> variable;

= calptr -> linenumber;
calptr -> PartType;

node;

temhead -> DefHeader =
}
else
{
temp = temhead -> DefHeader;

while((temp -> next
variable))
temp =
if((temp -> next
variable))

{

temp ->

RefDef *node =

== NULL) && (temp -> variable

!= NULL) && {(temp -> variable

next;

= calptr ->

new RefDef;

node -> variable = calptr -> variable;
node -> linenumber = calptr -> linenumber;
node -> PartType = calptr -> PartType;
node -> next = NULL;

temp -> next = node;

}

// This is a pseudo copy constructor used to make a copy of the loader

!'= calptr ->

class.

103

104

void
SliceClass: :CopyLoader (LoaderClass& Loader)
{
L1 = Loader;
}
void

SliceClass::InsertControlVar (const StringClass& buffer, int linenumber)
{
char *string;
char variable[80];
int index;
int 1i;
int length;
length = strlen(buffer.GetStr());
index = 0;
string = buffer.GetStr();
while(index < length)

if((!isalnum(string[index])) && (string[index] != UNDERSCORE))
string{index] = SPACE;
index++;
}

//printf("Buffer in ControlStatement is %s\n", string)};
index = 0;
while(index < length)

{

IgnoreSpaces(string, index);

i=0;

while((isalnum(stringlindex]))|| (string[index] ==
UNDERSCORE})

variable[i++] = string[index++];
variable[i] = ENDOFLINE;
if((IsAvalidDeclaration(variable))&& (strlen(variable) > 0))
InsertIntoRefDefList (REFERED, linenumber, variable);

}

// This function is used to print the variable present in the RefDef list.

void
SliceClass: :PrintvVar(RefDef *temp)
{
int line = 0;
line = temp -> linenumber;
while(temp != NULL)
{
printf("%s ", temp -> variable.GetStr());
temp = temp -> next;
}
printf(" at line:%d\n*, line);
}

[11777 0770707077770 777770777777707777707777777777777777777077770777777777
/7 Member Function : PrintFinal

// Purpose : This function is to print the program resident
// in the loader.

1177777770 777077077077777777777077077777777777777707707777777077777777777777

void
SliceClass: :PrintFinal()
{
node *ptr = Ll.GetHeader();
while(ptr != NULL)
{
if(ptr -> RefHeader != NULL)
PrintVar (ptr -> RefHeader);
else if(ptr -> DefHeader != NULL)
PrintVar (ptr -> DefHeader);

ptr = ptr -> left;
}
}

// This function is used to check for the presence of reserve worr new.
// if found parses the statement by itself and finds out the ref and def

// variables that are present in the statement.

int
SliceClass: :CheckForNew(StringClass var)
{
if((var &= "new") != NULL)
return PRESENT;
else
return NOTPRESENT;
}
void

SliceClass: :CheckInsideForNew(char *var)
{
if(strstr(var, "=") != NULL)
{
char variable[MAXLINE];
char sec[MAXLINE];
char third[MAXLINE];
int count, index;
memset (variable, NULL, MAXLINE);
memset (sec, NULL, MAXLINE) ;
memset (third, NULL, MAXLINE) ;
strcpy(variable, var);
strcpy(sec, strchr(variable, 'new '));
printf(*'sec is %s\n", sec);
count = 0;

index = 0;
while((isalnum(sec[count])) || (seclcount] == UNDERSCORE))
third[index++] = sec[count++]);
if(strcmp(third, "new") == 0)
{
count = 0;
while(variable[count] != EQUALTO)
{

memset (sec, NULL, MAXLINE);
index = 0;
IgnoreSpaces (variable, count);

while((isalnum(variable[count])) || (variable[count]

==UNDERSCORE))

sec[index++] = variable{count++];
sec[index] = ENDOFLINE;
InsertIntoRefDefList (DEFERED, count, sec);

}

while(variable[count] !'= COLON)

{
IgnoreSpaces (variable, count);
memset (sec, NULL, MAXLINE);
index = 0;

while((isalnum(variable[count])) || (variable[count]
==UNDERSCORE))
sec[index++] = variable[count++];

sec[index] = ENDOFLINE;
InsertIntoRefDefList (REFERED, count, sec);
IgnoreSpaces (variable, count);
while(variable[count] != SQCLOSEBRACKET)
{
IgnoreSpaces (variable, count);
if((isalpha(variable{count]})
(variable[count] == UNDERSCORE))
{

while((isalpha(variable([count]))

| [(variable[count] == UNDERSCORE))

105

106

sec[index++] = variable[count++];
sec[index] = ENDOFLINE;
InsertIntoRefDefList (REFERED, count, sec);
}
else
IgnoreDigitsOperators(variable, count});

}

}
}

// This function is used to print the program present in the laoderclass.
void

SliceClass::PrintProgram()

{

}

LI1TLTTLL7 7000000007000 707000007770 0007070700077707077777077777777771777777

Ll.PrintProgram() ;

// Member Function : ComputeRefDefForMain

// Purpose : This function is used to parse the programs
/7 written in C or in C++ without classes. It
// computes the ref and def values and inserts
// them into the reflist and deflist.

LIITETITETIT 700070077 E 77770700077 770777707070707770007770770771777710777

int
SliceClass: :ComputeRefDefForMain ()
{
RefClass *refclass;
RefHeader = NULL;
DefHeader = NULL;
IoRefHeader = NULL;
int beginnumber = 0;
int endNumber = 0;
refclass = Ll.GetRefClass();
if(refclass == NULL)
{
printf("error in computing refdef for main part of program\n");
return FAILURE;

if(refclass -> Member == "main()")

{
beginnumber = refclass -> BeginLine;
endNumber = refclass -> EndLine;
MarkAllSlices (beginnumber, endNumber);
ComputeRefDef (beginnumber, endNumber) ;
MarkControlStatForRefDef (beginnumber, endNumber) ;
RefHeader = NULL;
DefHeader = NULL;
IoRefHeader = NULL;
return SUCCESS;

}

else

printf(*error while inserting into refclass\n");
return FAILURE;
}
}

1101177070777 777/717/7777/77/777/7 End of Slice.C /////////7777/7777777777777

L1177 777 0007770777777 7070/0777/77
//

// FlowControl.C.

//

[117770700 0070777777707 7077077770707700707077777077777777777077777777777777777

107

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<ctype.h>
#include“slice.h"

LIPLLIIT 7000007 7770000 0700707777707 7707777777007777777777777770777777717777

// Member Function : CheckForControlStatements

// Purpose : To include the control statements if the

// statements within the control loop are marked
// for slice.

L1017 700 00000007077 777 7770777077000 7070770770007 7707777777777177777777777

void
SliceClass: :CheckControlStatements (node* start, node* end)
{
int i = 0;
int SLICE = FALSE;
int line = start -> LineNumber;
int currentline = 0;
RefDef *ref, *def;
StringClass variable;
StringClass secvariable;
char *buffer;
node *ptr = start;
//printf(*info is %s\n", ptr -> LineInformation.GetStr());
while((ptr -> LineNumber != end -> LineNumber) && (ptr != NULL))
{
if(ptr -> SLICE == TRUE)

SLICE = TRUE;
currentline = ptr -> LineNumber;
break;

}

ptr = ptr -> left;

if (SLICE == TRUE)
{
//printf (*Statement Reached In Slice\n");
end -> SLICE = TRUE;
start -> SLICE = TRUE;
//printf("Including %d %s\n", start -> LineNumber, start ->
LineInformation.GetStr());
//printf("Including %4 %s\n", end -> LineNumber, end ->
LineInformation.GetStr());
ptr = start;
variable = ptr -> LineInformation;
//printf ("Variable Is %s", variable.GetStr());
while(ptr -> LineNumber != currentline)
ptr = ptr -> left;
def = ptr -> DefHeader;
variable = " ";
//printf ("Variable Is %s", variable.GetStr());
while(def != NULL)
{
variable += def -> variable;
variable += * ";
def = def -> next;
}
ref = ptr -> RefHeader;
while(ref != NULL)
{
variable += ref -> variable;
variable += * *;
ref = ref -> next;

108

}

ref = start -> RefHeader;
while(ref != NULL)

{
variable += ref -> variable;
variable += * ;
ref = ref -> next;

}

int flag = 0;
if(end -> LineNumber < currentline)

{
BeginSlicingProgram{end ~-> LineNumber -1, variable);
flag = 1;
}
if ((WHILE == TRUE) && (flag == 0))
{
LoadActiveVars (variable);
SliceControlLoop(start, end);
}
}
}
[17 077007770707 077777070 7777770077777 777777777077/077777770777777777777777777
// Member Function : SliceControlLoop
// Purpose : It checks for the presence of control
// statement. If found any, it will find the
// starting and ending line.

L1007 0007077077700 0000007700007 700077007077 77000707707707777777777

int
SliceClass::SliceControlLoop{(int currentline)
{
int start;
int flag = 0;
int beginline;
node *ptr = Ll.GetHeader();
beginline = GetBeginLine(currentline);
if(beginline == ERROR)
{
printf("error in choosing the line number , try again\n");
return FAILURE;
}

// This Begin Number is the Starting LIne Of the Memeber Function
// In Which the criteion Line Exixts.

while((ptr -> LineNumber != beginline) && (ptr != NULL))
ptr = ptr -> left;

if((ptr == NULL) && (ptr -> LineNumber != beginline))

{
printf('error in locating the begin line\n");
printf("reached slice contol loop\n");
exit (0);

}

while(ptr -> LineNumber <= currentline)

//printf ("Getting Into The Control Flow Check For the Control Loop\n");
//printf("Info : %s\n", ptr -> LineInformation.GetStr());

flag = 0;
WHILE = FALSE;
if(IsAControlStatement (ptr -> LineInformation) == TRUE)
{

if((ptr -> LineInformation &= "{") != NULL)

start = ptr -> LineNumber;
else
{

ptr = ptr -> left;
while(((ptr -> LineInformation &= "{") == NULL)
&& {(ptr != NULL))

109

ptr = ptr -> left;
if(ptr == NULL)
{

printf("error in getting started in control loop\n”);
printf ("exiting\n");

exit (0);
}
else
start = ptr -> LineNumber;
}
flag = 1;

//printf("Reached : %$d\n", ptr -> LineNumber) ;
MarkControlFlow{(start, currentline, &ptr);

}
else if(flag '= 1)
ptr = ptr -> left;
}
return SUCCESS;

LIILTTL 7000077007700 7777000077770 0 070770 07070770707777077777777777

// Member Function : InsertIntoHeader

// Purpose : After calculating the ref and def of the

// statement, the values are inserted into the

// list containing the information about the line

L1110 0000700700000 7770000000770 7777077707070770777777707777777771777

void
SliceClass::InsertIntoHeader (RefDef* header, RefDef* calptr)
{
RefDef *tem;
RefDef* theader = new RefDef;
theader -> variable = calptr -> variable;
theader -> linenumber = calptr -> linenumber;
theader -> PartType = calptr -> PartType;
theader -> next = NULL;
if(header == NULL)
{
header = theader;
header -> next = NULL;
return;
}
else
{
int flag = NOTPRESENT;
tem = header;
while((tem -> next != NULL) && (tem -> linenumber == calptr ->
linenumber))
{
if(tem -> variable == calptr -> variable)
{
flag = PRESENT;
break;
}
else
tem = tem -> next;

}
if (flag == NOTPRESENT)
{

tem -> next = theader;
return;
}
}
}
// After Computing the RefDef for a particular Member Function Call This Func

I117770777
// Member Function : BeginSlicingProgram

110

/7 Purpose : To slice the proggram from the starting line to
// the line of interest.
JI1/7770707000777707777777777777707707777777777777777777777777777777777777
int
SliceClass: :BeginSlicingProgram(int linenumber, const StringClass& string)
{
node *ptr;
int currentline;
BOOLEAN reftype = FALSE;
LoadActiveVars (string); // This is the way of adding into active list.
ptr = Ll1l.GetHeader();
currentline = GetBeginLine (linenumber) ;
if(currentline == ERROR)
{
printf("error in choosing the line number , try again\n");
return FAILURE;
}
while((ptr -> LineNumber != linenumber) && (ptr != NULL))
ptr = ptr -> left;
if(ptr -> LineNumber == linenumber)
while(ptr ->LineNumber > currentline)
{
reftype = CheckForActiveSet (ptr);
if(reftype == TRUE)
{
// This Function Inserts All the Ref Variable Into
// Active List
VariableRefered(ptr);
ptr -> SLICE = TRUE;
}
IncludeMemberFunction(ptr);
ptr = ptr -> right; // Going Back till Reaching First Line
// of the Prog
}
return SUCCESS;
}
else
{
printf (*cannot locate the criterion line\n");
printf("exiting the process\n");
exit (0);
}
}
// This function checks for active variables in deflist If any
// match is found, then the variable is removed them from the active list. This
// process makes slicing fast as it avoids checking for same variable repeatedly
// in the deflist and trying to include the statement into the final slice.
BOOLEAN

SliceClass: :CheckForActiveSet (node* ptr)

{

int count = 0;
int returntype = NOTFOUND;
RefDef *tem = ptr -> DefHeader;
while(tem != NULL)
{
returntype = CheckPresenceOfActiveVars (ActiveVar, tem -> variable);
if(returntype == FOUND)
count++;
tem = tem -> next;
}
if(count > 0)
return TRUE;
else
return FALSE;

111

LTI 7070007777000 77007077070707707777777777777707707777777777717177

// Member Function : VariableRefered
// Purpose : To include variables refered in the program into
// ActiveSet

JI177770770777707770777777777077707777707777777777777777777777777777777777
void
SliceClass::VariableRefered (node* ptr)
{
RefDef* temp = RefHeader;
temp = ptr -> RefHeader;
while(temp != NULL)
{
InsertActiveVars (temp -> variable);
temp = temp -> next;
}
temp = ptr -> DefHeader;
while(temp != NULL)
{
InsertActiveVars(temp -> variable);
temp = temp -> next;
}
}

L1717 070777 077700077777 77707777770777777770077777777707777777777777777777777
// Member Function : CheckPresenceOfActiveVars

// Purpose : To check for the presence of any variable that is

// either referenced or defined in the previous statement.
// if found, and that variable is refering another variable,
!/ then the variable which is being referenced is also

/7 included in the active set.

LITILTETLT 7770770070770 070007000000 0077077777770770710777770777777777777177

int
SliceClass: :CheckPresenceOfActiveVars(RefDef *ptr, const StringClass& info)
{

RefDef *tem;

tem = ptr;

if(tem -> next == NULL)

if(tem -> variable == info)
{
//delete tem;
return FOUND;
}
return NOTFOUND;
}
tem = ptr;
//ptr = ptr -> next;
while(ptr != NULL)
{
if(ptr -> variable == info)
{
//tem -> next = ptr -> next;
return FOUND;

tem
ptr

ptr;
ptr -> next;

}
}
if(ptr == NULL)
return NOTFOUND;
}

// This function is used to insert the active variables into the linked list
// pointed by ActiveVar.

void

112

SliceClass::InsertActiveVars (const StringClass& variable)
{
//printf("Inserting the Variable %s", variable.GetStr());
if(ActivevVar == NULL)
{
RefDef *set = new RefDef;
set -> variable = variable ;
set -> linenumber = 0;
set -> PartType = PUBLIC;
set -> next = NULL;
ActiveVar = set;
ActiveVar ~> next = NULL;
return;
}
RefDef* tem = ActiveVar;
while((tem -> next != NULL)&&(tem -> variable != variable))
tem = tem -> next;
if((tem -> next == NULL)&&(tem -> variable != variable))
{
RefDef *set = new RefDef;
set -> variable = variable ;
set -> linenumber = 0;
set -> PartType = PUBLIC;
set -> next = NULL;
tem -> next = set;
tem = tem -> next;
tem -> next = NULL;
return;

}

// This function is used to check for presence of control statements.
// If found, it will return TRUE otherwise FALSE.

BOOLEAN
SliceClass::IsAControlStatement (const StringClass& info)
{
StringClass LineInformation = info.GetStr();
if((LineInformation &= "while") != NULL)
{
WHILE = TRUE;
return TRUE;

else if({((LineInformation &= “if") != NULL) || ({(LineInformation &=
"else") != NULL)
|| ((LineInformation &= "while") != NULL) |
((LineInformation &= "for") != NULL) ||
((LineInformation &= "switch") != NULL) ||
((LineInformation &= "do") != NULL))

return TRUE;
else
return FALSE;

}

// If a control statement is identified, its scope of influence is determined.
// If the statement contains only one statement, then statement is marked with
// metoo set.

void
SliceClass: :MarkControlFlow(const int& start, int currentline, node **ptr)
{
node *s, *e;
int count = 0;
int end = 0;
// Makesure start and ptr are at the same point
while((*ptr) -> LineNumber != start)
(*ptr) = (*ptr) -> right; // Traversing Back
s = (*ptr);
(*ptr) = (*ptr) -> left;

}

while((((*ptr) -> LineInformation &= "}") == NULL) || (count

CheckCloseBracket (*ptr, count);
if(IsAControlStatement ((*ptr) -> LineInformation) == TRUE)
{
//printf ("LineNumber Is %d\n", (*ptr) -> LineNumber);
ControlStatWithInControlState(*ptr);
}
CheckOpenBracket (*ptr, count); // To avoid writing the code
(*ptr) = (*ptr) -> left;

}

if((((*ptr) -> LineInformation &= "}") != NULL) && (count ==
end = (*ptr) -> LineNumber;
e = (*ptr);

CheckControlStatements (s, e);

= 0))

again

0))

JIETITIT L0007 000707707000 077 07777077777 00707 17777070707 7777077777777777

/7
//
/7

Member Function : CheckCloseBracket

113

Purpose : To find the end line of the control loop. This helps

in locating the range of control statements

LIIITIIT 7000000000007 7777000007707 700000007000 07707770700707070707777777777

void

SliceClass: :CheckCloseBracket (node* ptr, int& count)

{

}

if((ptr -> LineInformation &= "}") != NULL)
{
if(count == 0)
count = 0;
else
count--;

LILILTITITEI PP L0 070707070 r i1t riiiiriirriiliritriiliriniiiiiirliiisisg/

/7
//

Member Function : CheckCloseBracket
Purpose : To find the start line of the control loop

//

void

SliceClass: :CheckOpenBracket {node* ptr, int& count)

{

}

if(ptr -> LineInformation &= "{")
count++;

LILTTTLETIEP 0700000707070 70 0007070700007 0007000000007 777707070707747707777

/7
/7
/!
/7
/7
//

Member Function : LoadActiveVars

Purpose : This function is used to insert the active vars into

the active set. The active set initially contains the

criterion variables. Once the slicing operation is

started, all other variables that influence the

criterion variables are also included in active set.

LIILLTLT0 0000070007770 7 0070000700700 7777707770077 7700070700077 777777777777

void

SliceClass: :LoadActiveVars(const StringClass& string)

{

int len = 0;
int count = 0;

char var [MAXLINE];

int 1 = 0;

char *temp = string.GetStr();
//printf (" String Is %$s\n", temp);
len = strlen(temp);

while(i < len)

{

count = 0;

114

while((temp{i] != ' ') && ((isalnum(temp[i]) || (temp[i] ==
UNDERSCORE)) })
var[count++] = temp[i++];
//cout << var << endl;
var [count] = ENDOFLINE;
if(strlen({var) >0)
InsertActiveVars (var);
memset (var, NULL, 80);
i++ ;

}

J117707777077777777777777777777777777777777777777707777777777777777777777
//Member Function : IsAValidMember

//Purpose : Checks for the member function defined in the class

// of interest. If the defintion and function donot

// coincide, it will give an error. This function is used to
// eliminate the posibkility of existence of functional

// overloading and inheritance.

IILIETLIETIT PP 0770007700077 7007000007077 0770070000777 0777770770700 70707777

BOOLEAN
SliceClass::IsAValidMember (StringClass buf)
{
int lenl=0;
int len2=0;
RefClass *ref = Ll.GetRefClass();
RefClass *temp;
if(ref != NULL)
{
temp = ref;
while(temp != NULL)

{

lenl = strlen(temp -> Member.GetStr());

len2 = strlen{(buf.GetStr());

if((((temp -> Member &= buf) != NULL)&&(lenl ==
len2))&&(temp -> PartsType == PUBLIC))

return TRUE;
else
temp = temp -> next;
}
return FALSE;

}

L1717 7770070 0777777770777 77777777777777070707777777707707077777777077777777777
// Member Function : GetBeginLine

// Purpose : This function is used to get the starting line of
// member function that contains the variable of

// interest. It checks the refclass which contains

// information about each memeber function of the class
// of interest, their starting and ending line nuember.

LITTELTI LTI 7 0707007777770 7 0700000007700 0070777000707 7007770 777070777

int
SliceClass: :GetBeginLine (int number)
{
RefClass *ref = Ll.GetRefClass();
while(ref -> PartsType == PRIVATE)
ref = ref -> next;
//printf("Begin Line Is %d\n", number);
while(ref != NULL)
{
if((ref -> BeginLine < number) && {(ref -> EndLine > number))
return ref -> BeginLine;
else
ref = ref -> next;

}
if(ref == NULL)

(

//exit (0);
return ERROR;
}

printf ("error in selecting the class and line number\n");

}

L1117 0777770700 770077777700 7707770777777777077777077777777777777777777777777

// Member Function : MarkControlStatForRefDef
// Purpose : It checks for presence of any control statements
// if found, marks its scope of influence.

LTI P77 7007070770000 7070070000000 0000707077 77707770707077777777

void
SliceClass: :MarkControlStatForRefDef (int beginline, int endline)
{

node *ptr = Ll.GetHeader();

while((ptr -> LineNumber != beginline)&&(ptr != NULL))

ptr = ptr -> left;
if(ptr != NULL)
{

while(ptr -> LineNumber != endline)

if (IsAControlStatement (ptr -> LineInformation) ==
TRUE)
{
StringClass string = ptr ->
LineInformation.GetStr():
if({string &= "{") == NULL)
{
node *temp = ptr -> left;
while(strlen(temp ->
LineInformation.GetStr())==0)
temp = temp -> left;
StringClass strl = temp ->
LineInformation.GetStr();
if((strl &= "{") != NULL)
{

ptr -> INCLUDE = temp -> LineNumber;

temp -> RefHeader = ptr ->
RefHeader;

temp -> DefHeader = ptr ->
DefHeader;
}
else

{

ptr -> INCLUDE = temp -> LineNumber;

ptr -> RefHeader = temp ->
RefHeader;
ptr -> DefHeader = temp ->
DefHeader;
}
}
}
ptr = ptr -> left;

}

LITETTIIPE0 077770007 777707007770077770007707007070777777770777777777177777777

// Member Function : PrintSlice
// Purpose : It prints out the final slice

L1170 T7 0000707000070 7007000777 0707 007777 7000770700700777777700077777777777

void

SliceClass::PrintSlice(int linenumber)

{
RefClass *ref = Ll.GetRefClass();
node *start, *end, *sub;

115

while(ref -> PartsType == PRIVATE)
ref = ref -> next;

RefClass *tem = ref;

while(ref != NULL)

{

if((ref -> BeginLine < linenumber) && (ref -> EndLine >
linenumber))
break;
else
ref = ref -> next;
}
node *ptr = Ll.GetHeader();
node *sec;
//printf(*Start State Is %d\n", ref -> BeginLine);
while(ptr -> LineNumber != ref -> BeginlLine)
ptr = ptr -> left;
start = ptr;
sub = start;
while(sub -> LineNumber != ref -> EndLine)
sub = sub -> left;
end = sub;
//printf("Start is %d and end is %d\n", start -> LineNumber,
-> LineNumber) ;
printf(*%d %$s", ptr -> LineNumber, ptr ->

LineInformation.GetStr());

ptr -> SLICE = TRUE;
ptr = ptr -> left;
printf("%d %$s", ptr -> LineNumber, ptr ->

LineInformation.GetStr());

ptr -> SLICE = TRUE;
while(ptr -> LineNumber != ref -> EndLine)

if((ptr -> SLICE == TRUE)&&(ptr -> INCLUDE == 0})
{

printf("$d %s", ptr -> LineNumber, ptr ->
LineInformation.GetStx());

}
else if(ptr -> INCLUDE != 0)
{

sec = ptr;

ptr = ptr -> left;

if((ptr -> SLICE == TRUE) && (ptr -> LineNumber <=
linenumber))
{
printf(*$d %s", sec -> LineNumber, sec ->
LineInformation.GetStr());
sec -> SLICE = TRUE;
printf("%d %s", ptr -> LineNumber, ptr ->
LineInformation.GetStr());
}
}
ptr = ptr -> left;

printf("%d %$s", ptr -> LineNumber, ptr ->

LineInformation.GetStr());

}

LITILTTET 7000007070007 7770000007700 007070000007 707070707077777707077777

ptr -> SLICE = TRUE;
PostSliceMarks(start, end);

// Member Function : ControlStatWithInControlState

// Purpose

//
/!

the control statements and finds their scope of

end

It checks for presence of control statements within

116

/7

influence. This function helps in slicing the control loops
within the control loops and including the control loops if
the statements with its influence are marked for slice.

//
LILPT007 0007707007770 7707777077707 7007007770777 7 777777707 777777777777777

void

117

SliceClass::ControlStatWithInControlState{node *ptr)
{
node *start;
int flag = FALSE;
if((ptr -> LineInformation &= "{") != NULL)
{
start = ptr;
flag = TRUE;

}
else if((ptr -> left -> LineInformation &= "{") != NULL)
{

start = ptr -> left;

ptr = ptr -> left;

flag = TRUE;

}
if(flag == FALSE)
{
ptr -> INCLUDE = TRUE;
return;
}
ptr = ptr -> left;
int count = 0;
while(((ptr -> LineInformation &= "}") == NULL) || (count != 0))

if(IsAControlStatement (ptr -> LineInformation) == TRUE)
ControlStatWithInControlState(ptr);
CheckCloseBracket (ptr , count);
CheckOpenBracket (ptr, count); // To avoid writing the code
// again

ptr = ptr -> left;

}

node *end = ptr;

CheckControlStatements (start, end);

}

L1707 0070007007770 0777070707777 707777777707070707717710777170777777777777777

/7 Member Function : DeleteActiveVars

// Purpose : It deletes the active variables from the list after
// performing the slice based on the variables of

// interest. This process is performed when the slicing
// based on the desired criterion is being performed and
// another request based on different criterion is being
// made.

L10707070777777070707707707777077777077771077077777777777777777777777777777777
void
SliceClass::DeleteActiveVars()
{
RefDef *ptr;
if(Activevar != NULL)
{
while(ActiveVar != NULL)
{
ptr = ActiveVar;
ActiveVar = ActiveVar -> next;
delete ptr;
}
delete ActivevVar;
}
}

// This function is to slice the while and other necessary control loops

void
SliceClass::SliceControlLoop{node *start, node *end)
{

int currentline = start -> LineNumber;

node *ptr = end;

BOOLEAN reftype = FALSE;

while(ptr ->LineNumber > currentline)

118

{
reftype = CheckForActiveSet (ptr);

if(reftype == TRUE)
{

VariableRefered(ptr);
ptr -> SLICE = TRUE;

ptr = ptr -> right; // going back till reaching first
// line of the program

}

// This function is used to mark all statements slice marks to false.

void
SliceClass::MarkAllSlices(void)
{
node *ptr = Ll.GetHeader();
while(ptr != NULL)
{
ptr ~-> SLICE FALSE;
ptr -> metoo TRUE;
ptr = ptr -> left;

i n

}

1111770777707 777777077777777777707777707777077777770777777777777777777777777/7
// Member Function : PostSliceMarks

// Purpose : This function is used to set the post slice marks
// to exclude the statements that are not influenced by the
// variable of interest, and active variables.

TIIIITIT P77 777707077777 77777707077070707770770707077777777707777077/7077777777

void
SliceClass: :PostSliceMarks (node* start, node *end)
{
while(start -> LineNumber != end -> LineNumber)
{
if({ start -> SLICE == FALSE)
start -> metoo = FALSE;
start = start -> left;
}
}

LITITILIT 000007000777 77770777070700777707007070707077070777777777777777777

// Member Function : PrintFinalSlice

// Purpose : This function is used to print the part of the
// program which is sliced based on the variable and
/7 line of interest.

LI0TLLTLT LT 7000 P77 r 1170070077707 00070 700707000 7700707070700787070707070707077777

void
SliceClass::PrintFinalSlice(char *name)
{
node *ptr = Ll1l.GetHeader();
FILE *fp;
fp = fopen(name, "w+");
while(ptr != NULL)
{
if{(ptr -> SLICE == TRUE) || (ptr -> metoo == TRUE))
fprintf (fp, "%s", ptr -> LineInformation.GetStr());
ptr = ptr -> left;

}

L1100 7707777777777 7777700707777 077077770777 7777777770777777777777777F77777
// Member Function : Display

// Purpose : It is used to display the program on to the scree.
JITTII7 7070770007077 0 7077777077770 7777 7777777777777 777777777777777777

119

void
SliceClass::Display{()

{
node *ptr = Ll.GetHeader();

int count;
count = 0;
while(ptr != NULL)

if ({ ptr -> SLICE == TRUE) || (ptr -> metoo == TRUE))
count++;
ptr = ptr -> left;

ptr = Ll.GetHeaderxr();

int page = (count / 20) + 1;

int num = 1;

int var=1;
printf("------------ \n");
printf ("page %d of %d\n", num, page);

while(ptr != NULL)

{
if((ptr -> SLICE == TRUE) || (ptr -> metoo == TRUE))

printf(*%d %s“, ptr -> LineNumber, ptr ->
LineInformation.GetStr());
var++;
}
if(var == 20)
{
num++;
printf("--=----mm e \n");
printf("press enter to continue ...");
getchar () ;
printf("\n");
printf("---=--m—m e \n");
printf (*page %d of %d\n"', num, page);
var = 1;
}
ptr = ptr -> left;

printf('-——-—--e . ————— e \n") ;
}

L1777 077 077077777777 7770077 7777777707777 7777707777777777777777777777777777
// Member Function : IncludeMemberFunction

// Purpose : This function is used to check for presence of memeber
// function in statements which fall between begin line and
// line of interest. If found, the slice mark for that

// statement is set to TRUE

L1007 0 700700707777 770707777777707770077777777777777777777707777777777777

void
SliceClass: : IncludeMemberFunction(node* ptr)
{
RefClass* ref = Ll.GetRefClass{();
if(ref == NULL)

return;
else
{
while(ref -> PartsType == PRIVATE)
ref = ref -> next;
while(ref != NULL)
{

if(strstr(ptr -> LineInformation.GetStr(), ref ->
Member .GetStr()) != NULL)

{
ptr -> SLICE = TRUE;

return;

else

120

ref = ref -> next;

}

// This function set all metoo and slice marks

void

SliceClass::Set ()

{
node *ptr = Ll.GetHeader();
while(ptr != NULL)
{

ptr -> SLICE FALSE;
ptr -> metoo TRUE;
ptr = ptr -> left;

}

}

JIL11777 7707707777770 7077777777707777770777770777777707777707/7777777777777777
// Member Function : PrintActiveVars

// Purpose : This function is used to print the active vars that
// are inserted into active set.

JI70770 7770777777 77770777777777777777777777777777707/777777777777777777777

void
SliceClass: :PrintActivevVars ()

{

if(ActivevVar != NULL)

{
printf("active var: *“);
RefDef *set = ActiveVar;
while(set != NULL)

{
printf("\t%s", set -> variable.GetStr());

set = set -> next;
érintf("\n“);
}
/117177777077 777777/7/77/7 End of FlowControl.C //////////7/7/17177//1777777777

L1117 777077777707777777077777077777777777777777
/7 String.C
J/I117770070 0070070777777 7707707777707777777777777/7

#include<iostream.h>
#include<string.h>
#include<stdlib.h>
#include "string.h*

StringClass::StringClass ()
{

0;

new char;

len
str

I

}

StringClass::StringClass(char* s)
{
len = strlen(s);
str = new char[len+l];
strcpy (str,s);
}

StringClass::StringClass(const StringClass& St)
{

len = St.len;

delete str;

121

str = new char[len+l];
strepy(str,St.str);

}
char*
StringClass: :GetStr(void) const

{
}

// Copies contents of one string class to the given class

return str;

char*
StringClass: :operator&=(const StringClass& string)
{
char *temp = strstr{str,string.str);
if(temp == NULL)
{
//cout << " Not Preset" << endl;
return ({(char *) NULL);
}
else
return temp;
}
StringClass&
StringClass: :operator=(const char * tem) //assigns values to given
construct
{
len = strlen(tem);
str = new char([len + 1];
strcpy(str, tem);
return *this;
}
void
StringClass: :operator=(const StringClass& String)
{
if (this == &String)
return;
delete str;;
len = String.len;
str = new char[len + 1];
strcpy (str,String.str);
//cout << " Operator = is overloaded®<<endl;
}

// returns value 1 if two string classes have same string

int
StringClass: :operator==(const StringClass& String)
{
if (strcmp(str,String.str) == 0)
return 1;
else return 0;
}

// Checks weather two strings are identical. If identical, returns 0, else
// returns 1.

int
StringClass: :operator!=(const StringClass& string)
{
if(stremp(str, string.str) == 0)
return 0;
else
return 1;

122

// Performs concatination of two strings and returns resultant string

StringClass&
StringClass: :operator+=(const StringClass& Stringl)
{
char temp([80];
strepy (temp, str) ;
delete str;
len = len + Stringl.len ;
str = new char[len+1];
strcpy(str, temp) ;
strcat(str, Stringl.str);
return (*this);

}

// String concatination of string belonging to two different classes and
// returns the resultant string

char*
operator+(const StringClass& Stringl, const StringClass& String2)

StringClass tem;

tem.len = Stringl.len + String2.len;
delete tem.str;

tem.str = new char[tem.len + 1];
strcpy (tem.str,Stringl.str);
strcat(tem.str, String2.str);
return (tem.str);

}

// returns 1 if string in the given class is greater than string of other class

int
StringClass: :operator>(const StringClass& String)
{
if (strcmp (str,String.str) > 0)
return 1;
else return O;
}

// returns 1 if string in the given class is less than string of other class

int
StringClass: :operator<{const StringClass& String)
{
if (strcmp (str,String.str) < 0)
return 1;
else return 0;
}

// Prints string of the given class
void

StringClass: :print(void)

{

}

cout << "\nlength\t"<< len<< "\tString\t"<< str<<endl;

char*
StringClass: :operator&&(const StringClass& string)
{

char *var;

var = strtok(str, string.GetStr());

return var;

}

void
StringClass: :PutStr (char *tem)
{

delete str;

len = strlen(tem);

str = new char[len+l];
strcpy(str, tem);

return;
}
char*
operator<<(const StringClass& string, int i)
{
char templ{80];
memset (templ, 0, 80);
strcpy(templ, string.str);
char £in[80];
memset (fin, 0, 80);
int len = strlen(templ);
int j = 0;
for(j = 1; 3 < len; j++)
fin{j-i] = templ[j];
return fin;
}
char*
operator>>(const StringClass& string, int i)
{
char templ([80];
strcpy(templ, string.str);
int len = strlen{(templ);
char £in[80];
strncpy (fin, templ, len - 1i);
return fin;
}

L1717 7777777770777 77777777777777777777777707777777777777777777777777777777
//
// Proc.C

7/
L1077 000 700700770 07777 7770070077000 7777077777777777777077777777777777777

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<ctype.h>
#include"Proc.h"

LITLTTT I 0007000777700 7 0000000070700 7 7000000007 77770777777717777

/7 Member Function : StartProcess

// Purpose : This function is used to start the process. It
// takes the input from the user and performs the
// necessary operation.

LIPIITITT LT 0707000777000 0 7770007777000 0077770000000 7070 7077070707777

void
ProcessorClass: :StartProcess ()
{
char purpose[80];
status = FALSE;

printf("\t —-—---—- - \n") ;
printf (*\t Welcome to \n");
printf("\t C++ Program Slicer \n");
printf(*\t type \"info\" to get [\n"*);
printf("\t Information ab.it tool I\n");
printf("\t -—=----mmm————————— \n");
printf("\n");

//HelpMenu () ;
do{

printf ("cppslicer>");
gets (purpose) ;

if({(strncmp (purpose, "load", 4) == 0) || {strncmp (purpose, "LOAD",

123

4)

124

== 0))
LoadProg (purpose) ;
else if((strncmp(purpose, "cload”, 5) == 0))
CloadProgram(purpose) ;
else if((strncmp(purpose, "slice", 5) == 0) ||
(strncmp (purpose, "SLICE", 5) == 0))
SliceProg(purpose) ;
else if({strncmp(purpose, *save", 4) == 0) ||
(strncmp (purpose, "save", 5)== 0))
PrintProg (purpose);
else if((strncmp (purpose, "cls", 3) == 0))
system("tput clear");
else if((strncmp(purpose, "VI", 2) == 0) ||
(strncmp (purpose, "edit*, 4) == 0))
EditProgram(purpose) ;
else if({strncmp(purpose, "quit", 4) == 0)
(strncmp (purpose, "exit", 4) == 0) || (strcmp(purpose, "q")==0))
exit(0);
else if((strncmp(purpose, "d", 1) == 0) ||
(strncmp (purpose, "display", 7) == 0))
DisplayProg() ;
else if(strncmp (purpose, "type", 4) == 0)
TypeProg() ;
else if(strncmp(purpose, "man", 3) == Q)
ManCommands (purpose) ;
else if(strcmp (purpose, "help") == 0)
HelpMenu() ;
else if(strcmp(purpose, "info") == 0)
InfoTool();
else if((strncmp (purpose, "/", 1) == 0)||(strncmp(purpose, re 1)
SystemCommand (purpose) ;
else if(({strncmp(purpose, "friends", 7) == 0) || (strncmp(purpose,
"scan", 4) == 0)
| | (strncmp (purpose, *inc", 3) == 0) || (strncmp(purpose, "show”, 4)
== 0))
system(purpose) ;
else
{

printf('"invalid command\n") ;
Echo () ;

}
} while(1);
}

L1010 10777077070707770 0777777070 77777777077777777770777077777717777777777777717177
// Member Function : LoadProg

// Purpose : This function is used to load the program into the
// cppslicer. It first locates the class of interest,
// finds its members, then performs the ref def

// operation.

LILITITL P70 0070700000770 7070077770770 7077070 7777770707017 777077777777777

void
ProcessorClass: :LoadProg(char *Name)
{
LoaderClass Loader;
int state = 0;
char first(20] , sec([20], third[20] ;
memset (first, NULL, 20);
memset (sec, NULL, 20);
memset (third, NULL, 20);
sscanf (Name, "%s%s%s", first, sec, third);
if((strlen(sec) <=0) || (strlen(third) <= 0))
{
printf ("Usage: load <filename> <class>\n"};
return;
}
state = TRUE;

125

state = Loader.LoadSourceprogram(sec) ;

if(state == FALSE)
{
printf("try again\n");
return;
}
state = Loader.GetClassLineNumber (third) ;
if(state == FAILURE)
return;

//Loader.PrintProgram() ;

//printf("Class Line Number is %d\n", state);
Loader.GetPublicAndPrivateParts () ;
slicer.CopyLoader (Loader} ;
//Loader.PrintSliceClass ()} ;
state = slicer.ComputeRefDefForClasses (third);
if(state == -1)

{
printf(*try again\n"');
return;
}
//slicer.PrintFinal();
status = TRUE;
}

L1717 700 0777000707000 77707777077700777
// Member Function : SliceProg

// Purpose : This function is used to slice program resident in the

// cppslicer. Before slicing, the referenced and defined

/7 variables of each statement are identified. Based on them
// and active variables, slice mark for each statement is set
// to TRUE or FALSE. After setting the slice marks for the

// statements from begin to line of interest, the same

// statements are checked for control loops and member

/7 functions. Control statements are included if they contain
// statement (s) that are marked with slice marks.

LLLLTITTTEE0 0070070707000 7070070007777 000 70710000 777777707701077177777

void
ProcessorClass: :SliceProg(char *name)
{

int retval = 0;

if(status == FALSE)

{
printf("load program before this option\n");
return;

}
int state = 0;
char first[20], sec[20], Name([80};
//StringClass sams;
memset (first, NULL, 20);
memset (sec, NULL, 20);
memset (Name, NULL, 80);
sscanf (name, "%s%s%s", first, sec, Name);
if((strlen(sec) <=0) || (strlen(Name) <= 0))
{
printf("Usage: slice <line number> <variable>\n");
return;
}
state = atoi(sec);
//sams = Name;
slicer.Set();
slicer.MarkAllSlices();
slicer.LoadActiveVars (Name) ;

retval = slicer.BeginSlicingProgram(state, Name);
if(retval == FAILURE)
{
printf("error in slicing : try again\n');
return;

}

retval = slicer.SliceControlLoop(state);

if(retval == FAILURE)

{
printf('error in slicing : try again\n");
return;

}
slicer.PrintSlice(state);
//slicer.PrintFinalSlice("out");
name = NULL;

}

JI1100770 7000000077777 70 7007777777777 777777777777/077770777777777777777777
// Member Function : PrintProg

// Purpose : This function is used to save the resulting slice
// into a file provided by the user.

11770777770 77777777777077777707707777770777777277777777777777777/77077777777777

void
ProcessorClass: :PrintProg(char *name)
{
if(status == FALSE)
{
printf ("program is not loaded try after loading and sling the
program\n") ;
return;
}
char first[20];
char sec[20];
memset (first, NULL, 20);
memset (sec, NULL, 20);
sscanf (name, "%s%s", first, sec);
if (strlen(sec) <= 0)
{
printf ("Usage:<save><filename>\n");
return;
}

slicer.PrintFinalSlice(sec);

}

L1710 0077 0707777070777 777077777077707707777/7777777777777777777777777777777
// Member Function : Display Program

// Purpose : This function is used to display the program onto
/7 the screen by calling cppslicer's memeber function.
TI1ITT0007 7770007770070 707777007777700707077700777777077777777077777777777777

void
ProcessorClass: :DisplayProg()
{
if(status == FALSE)
{
printf ("program is not loaded try after loading and sling the
program\n") ;
return;
}
slicer.Display();
}

LIIT77070 07000777077 7700007777777 0777707777777 70777777777777777777777777
// Member Function : ManCommands
// Purpose : It displays the list of man commands and the usage

/7 of commands that are available in cppslicer program.

LILTT77 001000077 77000 07777000777 7070707770770770777077707777077077777777777

void
ProcessorClass: :ManCommands (char *name)
{

char first[20];

char sec[20};

memset (first, NULL, 20);

126

127

memset (sec, NULL, 20);
sscanf (name, "%s%s", first, sec);
if(strlen(sec) <= 0)

{
printf ("Usage:<man><command>\n") ;
return;
if ((stremp(sec, "load") == 0) || (strcmp(sec, "1*) == 0))
{
printf("-------memmme \n");

printf("load:\n");

printf ("Usage: load <filename><classname>\n");

printf ("loads the program into the slicer. If the arguments are\n");

printf("not specified as requested, the program will not be
loaded.\n");

printf("One needs to load a program before slicing the program.\n");

printf ("Process of loading also performs parsing of member\n");

printf("functions of the classes if present. It also marks initial\n");

printf("slice which will be the whole program\n");

printf("-----r-—mm—r e —————_———————— - \n");

else if(strcmp(sec, "cload") == 0)

{

printf(*--------- - > b e o e \n");

printf(*cload:\n");

printf("----- \n");

printf ("Usage: cload <filename>\n");

printf("cload is another way of loading the program into slicer. If
the\n");

printf(*loading program does not contain any classes or is a C program
then it can \n");

printf("be loaded by using this command. In this way, it decreases many
searches\n") ;

printf("for the variables of interest and setting slice marks for\n");

printf ("unnecessary statements thereby increasing running efficiency of
the tool\n");

printf(" ——— \n");
}
else if((strcmp(sec, "slice") == 0) || (strcmp(sec, "s") == 0))
{
Printf (" \n"});
printf(*slice:\n");
printf("----- \n");

printf ("Usage: slice <linenumber><variable>\n"});

printf (*Where linenumber is the line at which you want to slice\n");

printf("the program and variable is the criterion variable with\n");

printf ("respect to which the program should be sliced.\n");

printf ("Right now the slicer can slice the programs involving
simple\n");

printf ("statements, control loops, classes, member functions. To
perform\n") ;

printf("slice, one need to have at least one class and one member
function\n");

printf (" when loaded with cload option.\n");

Printf (" —=m o \n");
else if(strcmp(sec, "type") == 0)
{
printf("---------mmmme \n");
printf("type:\n");
printf("----\n");

printf(“"Usage: type <noarguments>\n");

printf("Prints or displays the program present in the slicer\n");

printf("on screen with line numbers on the left side\n");

printf ("It displays the current page of the program and number of pages
it occupies\n');

printf("--------~-————————————————————————————— e \n") ;

else if((strcmp(sec, "quit") == 0) || (strcmp(sec, "exit") == 0))
{
printf("----------—--- - e e o \n");
printf{('quit or exit or g\n");
printf(*--—————---——---——- \n");

printf("Usage: g{uit) < noarguments>\n");
printf("or exit <noargs>\n");
printf("exits the tool and gets back to the unix prompt\n");

S ey
else if({strcmp(sec, "edit") == 0)|]|(strcmp(sec, "VI") == 0))
{
DEAIEE (oo e e e -
printf("edit or VI\n");
printf(“ —————————— \n");

printf("Usage: edit <filename> or VI <filename>\n");
printf("Helps in editing the file in vi editor.\n");

printf("-----ceommm e \n");
else if(strcmp(sec, "save") == 0)
{
printf(*------~---mmm \n"};
printf ("save\n");
printf("----- \n");

printf ("Usage: save <filename>\n"};

printf("Save command basically helps to save the resulting slice\n");

128

printf("into the specified filename. If this command is called before
doing\n"};
printf("the slice, save will include whole program which is called as
largest\n");

printf("possible slice for a program\n"');

pPrintf("----——mmm e e \n");
}
else if(strcmp(sec, "man') == 0)
{
printf("=-----mmmm e \n");
printf ("man\n") ;
printf('---\n");

printf ("Usage: man <command>\n");

printf ("Man displays information about the command mentioned at\n");
printf(*the command prompt. It takes only one command at a time.\n");

printf(*"list of commands that are available are:\n");

printf(* 1. cload 2. edit 3. help\n");

printf(" 4. load 5. man 6. quit\n");

printf(" 7. save 8. slice 9. type\n");

printf(*10. ! or /\n");

printf("---ce e ———— \n");
else if(strcmp(sec, "help") == 0)
{

printf(*~-----mremrmem e \n");

printf ("help\n");

printf("----\n");

printf("Usage: help \n");

printf("Gives information about list of commands and their purpose\n");

printf (*help menu looks as\n");
HelpMenu () ;

printf("-—\—---mme e ——————_————— ———— \n");
else if(strcmp(sec, "echo") == 0)
{
printf(*---------——— e \n");
printf (“echo\n");
printf("----\n");

printf("echos list of commands that are available in the tool\n");
printf("this command is invoked when invalid command is typed at

command line\n");

printf{("-—-c--mrrmm——————_——— —— — —. - - \n");

129

else if((strcmp(sec, "!") == 0) ||(strcmp(sec, "/") ==0))
{
printf("--=-----—--m--— e \n");
printf("! or /\n");
printf('--~--—-- \n");
printf("Usage: ! <system command> or / <system command>\n");
printf("Used to invoke any system command. Any system command can
be\n");
printf ("invoked by typing ! or / before the command\n");
printf("---————---- e \n");
}
else
{
printf("No manual entry for %$s\n", sec);
}
}

JI1010 0117770770 00777707700077777077700707777777707777070770777777/777777077777
// Member Function : TypeProg

// Purpose : It displays the original program with line

/7 numbers on left side. It displays page by page.
L1001 00000 0770070777707 770770707777777707077000777777077077777777777777777777

void
ProcessorClass: : TypeProg()
{

if(status == FALSE)

{
printf("load program before this option\n");
return;

}

slicer.PrintProgram() ;

}

JI1007777 0707070707777 77070777777777707077770777777777777777777777777777777777
// Member Function : HelpMenu

// Purpose : Displays the help menu on to screen when help is
// typed at the command prompt. It displays the commands,
// their usage, and purpose.

L1701 7077 0070007007077 7070770007007 7707777707007 070000007077 77777077777777

void

ProcessorClass: :HelpMenu()

{
printf(Il**
***\nll) ;

printf(** Command Usage Purpose

*\n");

printf (B RS EEEE S EE RS R RS RS RS RS RS R SRRl EEtS SRRttt Sttt Rttt R RS ERRRE S SR ES R
***\nn) H

Eri?tf(“* cload cload <filename> Used to load programs written in
EEE?L%("* C or in C++ without classes
E;??é%("* edit edit <filename> Edit a program in slicer
Eé??é;("* help help Brings a menu giving

g;??éé("* load load <filename><classname> Used to load program into slicer
E;??Lé("* man man <command> Gives help on usage of command
E;??é%(“* g(uit) q or quit or exit Used to exit from the tool
g;??ié("* save save <filename> Used to save output of

p;?nié("* the slice into the file

*\n");

130

printf("* slice slice<line no><var> Used to slice a program

*An");

printf("* residing in slicer

*\n");

printf("* type type Displays program resident in
*\n");

printf("* the cppslicer.

*An");

printf("* ! or / ! <systemcommand> Used to invoke system commands
*\n");
printf(ll**
***\nll) ;

}

J1117707000771000777777/700777077770777777777777777777777777777777/77777777777
// Member Function : Echo

// Purpose : It echoes the list of commands whenever user

// issues a wrong command.
J170700707770770700770707077777070777777707707707777077777777747777777777777777

void
ProcessorClass: :Echo ()
{
printf("valid commands are :\n");
printf("cload <filename>\n");
printf("edit <filename>\n");
printf (*help\n");
printf(*load <filename><classname>\n");
printf ("man <command>\n");
printf("g or quit or exit\n");
printf(*"save <filename>\n");
printf("slice <lineno><variable>\n");
printf("type\n*);
printf("for more information on each command type man <command>\n");
}

[107 0070707770777 77777770777707770777077707770770777770777777777777777777777777
// Member Function : CloadProgram

// Purpose : This function is used to load programs written in C
// or in C++ without classes.
J71107777070777770777777777707777777777777777777777770777777777777777777777

void
ProcessorClass: :CloadProgram(char *Name)
{
LoaderClass Loader;
int state = 0;
char first[20] , sec[20], third[20];
memset (first, NULL, 20);
memset (sec, NULL, 20);
sscanf (Name, "%$s%s", first, sec, third):;

if((strlen(sec) <=0) && (strlen(third) - 0))
{
printf ("Usage: load <filename> <class>\n");
return;
}

state = TRUE;
state = Loader.LoadSourceprogram(sec) ;
if(state == FALSE)
{
printf("try again\n");
return;
}
Loader .LoadMainParts () ;
slicer.CopyLoader (Loader) ;
state = slicer.ComputeRefDefForMain();
if(state == FAILURE)
{

printf("error in loading the program\n");

131

printf(*try again\n");
return;
}
status = TRUE;
}

JI17170777070770707777770077700707777707770077077777770777707777777077777777777
// Member Function : InfoTool

// Purpose : It displays the information regarding the tool when
/7 user issues a info command.

JILILI007 1777770777777 7070777707007077070707077777777077707777770777777777777777777

void

ProcessorClass: : InfoTool ()

{

printf("-——------ e
printf("Program slicing is the process of producing slices of the existing
program \n");

printf ("depending upon the variable of interest and line number. The algorithms
used in \n");

printf (*producing the slices are adopted from Samadzadeh, Korel and Laski's
algorithms. \n");

printf ("The cppslicer uses both static and dynamic slicing methods.\n");
printf("To produce a slice of the program, one needs to have a program which
is\n"});

printf ("executable. Depending on the variable of interest, the size of slice
\n");

printf("will vary. But there will be at least one slice for a program, the
program, \n") ;

printf("itself. ");

printf ("For example consider the following example which reads ");
printf("input for two \nvariables x, y.\n");

printf("l #include <iostream.h> \n");

printf ("2 \n");

printf("3 main() \n");

printf("4 { \n");

printf ("5 int x,y;\n");

printf ("6 cout <<\"enter number \"; \n");

printf ("7 cin>>x; \n");

printf ("8 cout<<\"enter number *;\n");

printf("9 cin>>y;\n");

printf(*10 cout<<\"x = \"<<x<<\" y = \'"<<y<<endl; \n");

printf("11 cout<<\"x = \"<<x<<\" y = \'"<<y<<endl; \n");

printf("12 return 0; \n");

printf (" - \n");

printf ('press enter to continue ...");

getchar();

printf("\n");

printf(*13 } \n");

printf("\n*);

printf("Slice of the program with respect to variable y at line 11 is \n");
printf("\n");

printf ("#include <iostream.h> \n");

printf("\n");

printf("main() \n");

printf("{ \n");

printf (* int x,y; \n");

printf(* cin>>y; \n");

printf(*}\n");

printf("\n"});

printf ("The slice is executable by itself. The tool, cppslicer, can handle
programs\n"};

printf("written in C/C++ either with or without classes, simple pointers \n");
printf("to int, char, class (*this). It can also handle operator
overloading.\n"%);

printf("This tool cannot handle functional overloading, inheritance, \n");
printf("friend functions, inline functions, main with arguments, structures,
unions.\n");

printf("\n");

printf("---—mm e e \n");
printf("press enter to continue ..."};

getchar();

printf("\n");

printf("—-eec e \n") ;

printf("To load an ordinary C program or programs that do not contain any
classes, type\n'");

printf("\t\t\"cload <filename>\"“\nat the prompt. To generate slice,
type\n\t\t\"slice <linenumber><variable>\" \nat the prompt.");

printf ("Upon producing the slice, slicer displays only the part of the\ncode
which is ");

printf(*of more important. To view the whole code type \"type\" at the\ncommand
prompt. To");

printf (" save it to a file type \n\t\t\"save <filename>\".\n");

printf{('While loading the programs that involve classes, the format of the class
should\n");

printf{"be private parts followed by public parts. It is not a restriction, but
the \n");

printf("tool works well (perfectly) under the assumed conditions. To lecad the
program ");

printf ("\ntype \n\t\t\"load <filename><classname>\"\nat the commnand line. Once
the loading part is done, slices for the\n");

printf ("program can be obtained by typing \n\t\t\"slice
<linenumber><variable>\"\nIt should be ");

printf('noted that the variables can be more than one, but the
linenumber\nshould be ");

printf ("unique. \n"});

printf("list of commands that are available in this tool are:\n");

printf(*1l. cload 2. edit 3. help\n");
printf(“4. load 5. man 6. gquit\n");
printf("7. save 8. slice 9. type\n");
printf("10. ! or /\n");

printf("To know more about each command type \"man <command>\"\n");

printf("If you find any information is lacking please e-mail to me at \n");
printf ("ramakar@a.cs.okstate.edu\n");

printf("———m - - \n");
}

JILILTILE7 0777777777077 777 7070707070770 777707777770777777077777777777777777777
// Member Function : EditProgram

// Purpose : A user can edit his/her program while in cppslicer.
// To edit, one needs to type EDIT or VI and filename.
II100707 0007707077777 70 7777770777077 777777077777777777777777777777777777777
void
ProcessorClass: :EditProgram(char *Name)
{

char first{20] , sec[20], third{40];

memset (first, NULL, 20);

memset (sec, NULL, 20);

memset (third, NULL, 40);

sscanf (Name, "%s%s", first, sec);

if (strlen(sec) <=0)

{

printf ("Usage: edit <filename> or VI <filename>\n");
return;

}

strcpy(third, "vi ");

strcat(third, sec);

system(third) ;
}

I177707777777777777777777077777777777707777777770777777777777777777777777777
// Member Function : SystemCommand

// Purpose : This function is to invoke the system commands on
// shell

JIV7TII7 0007007070077 77077777707077707777077707777770777777777777777777777777

133

void
ProcessorClass: : SystemCommand (char *purpose)

if ({purpose[0] == '/') || (purpose[0] == '1'))

char command([80];

memset (command, NULL, 80);

for(int i=1l; i <= strlen(purpose); i++)
command[i-1] = purpose[i];

system(command) ;

}
[I0000717707707777707077777777 End of Proc.C ////////171/7/77717777777177777777

LILETIET700000 707070007 77700700 70 7777007007007770707707007007777777070717707707777777

// Main.C

//
LILTIT07 0707770000 0000000 7000770777700 70 007000770700 7007070777070717777777777

#include<string.h>
#include<stdio.h>
#include"Proc.h"

main ()

{

ProcessorClass P1l;
Pl.StartProcess(};

Makefile to compile all the files together.

OBJS = Main.o String.o Loader.o FlowControl.o Slice.o Proc.o
INCLUDE = string.h Loader.h defs.h Proc.h
CFLAGS = -c -g
LFLAGS = -g -0 proj
proj: $ (OBJS)
CC $(OBJS) $(LFLAGS)
Main.o: Main.C $(INCLUDE)
CC $(CFLAGS) Main.C
String.o: String.C $(INCLUDE)
CC $(CFLAGS) String.C
Loader.o: Loader.C $(INCLUDE)
CC $(CFLAGS) Loader.C
Slice.o: Slice.C $(INCLUDE)

CC $(CFLAGS) Slice.C

FlowControl.o:FlowControl.C ${INCLUDE)
CC $(CFLAGS) FlowControl.C

Proc.o: Proc.C $(INCLUDE)
CC $(CFLAGS) Proc.C
clean:
rm *.o \
proj core

Vita
Rajeshwar Ramaka
Candidate for the Degree of
Master of Science

Thesis: TOWARDS AN INTERACTIVE DEBUGGING TOOL FOR C++
BASED ON PROGRAM SLICING

Major Field: Computer Science
Biographical:

Personal Data: Born in Karimnagar, Andhra Pradesh, India, February 22, 1971,
the son of Mr. Dattaiah Ramaka. and Visheshwari Ramaka.

Education: Graduated from Loyola Academy, Hyderabad, India, in March 1987;
received Bachelor of Technology in Mechanical Engineering from Jawaharlal
Nehru Technological University, India, in July 1993; completed the requirements
for the Master of Science Degree in Computer Science at the Computer Science
department at Oklahoma State University, in December 1995.

Professional Experience: Para Professional Client Services, Computing and
Information Services, Oklahoma State University, August 1994 to June 1995.

