TEST FRAME GENERATION FROM Z SPECIFICATIONS

By
TEGUH RAHARDJO
Bachelor of Engineering
Bandung Institute of Technology
Bandung, Indonesia

1983

Submitted to the Faculity of the
Graduate College of the
Oklahoma State university
in partial fulfillment for
the Requirement for
the Degree of
MASTER OF SCIENCE
July 1995

TEST FRAME GENERATION FROM Z SPECIFICATIONS

Thesis Approved:

Thesis Adviser

A, L
 honese O Colli

Dean of the Graduate College

ii

PSRt 3

OKLAHOMA STii Ll iy

ACKNOWLEDGMENT

| Many thanks to my thesis adviser Dr. Mansur H. Samadzadeh for his advice,

‘1 guidance, and assistance toward finding my thesis topic finding and the completion of my

‘lthesis. My sincere thank to Drs. Blayne E. Mayfield and Huizhu Lu for serving on my

1‘ graduate committee and to Mr. H. Sinaga for reading an early version of this thesis. 1

‘:would also like to acknowledge the financial support of the Government of Indonesia
‘lthrough the Science and Technology for Industrial Development Program of the Research
iand Technology Ministry and through the Computing Center of Nusantara Aircraft

Industry Ltd., during my graduate studies.

iii

TABLE OF CONTENTS

Chapter Page
I INTRODUCTION ...ttt eeeeaaaaees 1
II Z SPECIFICATIONS OVERVIEW ... 3
2.1 SChemasooviiiiiiee e s 3

2.2 Schema Decoration and Variable Identifiers ... 5

2.3 The Aand E CONVENtIONSc..oviiiiiieiiiiie e 7

2.4 Schema Linkingccocoiiiiiiiiiii e 10

III TEST SELECTION METHOD ... 13
3.1 Cause-Effect Graphcccoooiiiiiiiii 14

3.2 Test Case Derivation Procedureccccccooooiiii 16

3.3 Examples of Cause-Effect Graphing Method .. 17

IV IMPLEMENTATION DETAILS AND EVALUATION ...l 24
4.1 INtrodUCtIONcoooviiiiiiiiii e 24

4.2 Input Preparationscoccoiiiiiiiiiiioieiiee e 25

4.3 Data StIUCLUTESooeiiiiiiiieiieiieee et 26

4.3.1 Cause-Effect Graph Data Structures ... 26

4.3.2 Test Frame Data Structurescoccoeeiiviiniiiiiiniin, 29

4.3.3 Working Data Structuresc.coooooovieeiiiiiii e 30

4.4 Algorithmsc..oooiiiii i 32

4.4.1 Cause-Effect Graph Construction Algorithms 32

442 Test Frame Derivation Algorithmscccccoooeinl 34

4.5 COMPIEKILYoovviiiiiiiieiii e et 39

4.6 Testing of the TOOLccooiiiiiii e, 41

V SUMMARY AND FUTURE WORKcoooiiiiiiccecee e, 43
S.1 SUMMATY ..oooiiiiiiiiiiee ettt e e s e et aee e e 43

52 Future Workcocoooiiiiie e 44
REFERENCES ..., 45

iv

APPENDIXES ...

APPENDIX A: GLOSSARY

APPENDIX B: INPUT/OUTPUT LISTINGS ...,

APPENDIX C: PROGRAM LISTING

- Figure

LIST OF FIGURES

Page
1. AZ schema for a generic COMtAINETc..oooiveioeiiiiiiiieiit e 3
: 2. The schema of a telephone directoryc.ccccooveiiiiiiiii e 4
Iu 3. The after-operation telephone directory schema ... 6
I' 4. The schema of the telephone directory entry additionooo 6
‘} 5. Successful operation message schema ... 7
I. 6. The schema APAONEDIIecCtOrYcccovoieieeieeieeeeee e 8
2 7. The schema APhoneDirectory with schema inclusions ... 8
8. AddEntry with APhoneDirectory inClusion ..o, 8
9. The schema EPHONEDITeCIOrYccccocviiiiiiiiiiieiie e 9
10. FindPhones sChemacooiiiiiiiiiii e 9
11. The schema of entry addition for the case of a non-employee name 10
12. The schema of entry addition for the case of a duplicate entry 9
‘} 13. The expanded entry addition schema ... 11
14. The schema UnknownPersoncccccccoccviiiiiiimniiiiiiiiiiesiecre e 12
15. The cause-effect graph basic symbolscoooi 14
16. Constraint SYMDOLSccocoiiiiiiiiiiiii e 15
:‘17. Sample cause-effect graph ... 18
:‘18. Sample decision tablecccooiviiiiiiiii e 19

Figure Page

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

SaMPLE tESE CASESoeeiiiiiiiiiiieii et 19
The cause-effect graph of the entry addition schema ... 21
The decision table of the entry addition schema test frames 21
Test cases for the entry addition schema ... 22
The non-ASCII symbol conversion table for the tool 25
The conversion of the schema predicate of CAddEntryc....c.......... 26
The declaration of the graph header structureccoo.oooiiiii, 27
The declaration of the graph node structureccccooiviiiiiiiii 28
The declaration of the graph link structure ..., 28
The declaration of the test frame list header structurec..........ocoe 30
The declaration of the test frame structurecccooeiiiiiiiiii 30
The declaration of the predicate data structureoocooiiiiiiin, 31
The declaration of the operator data structurecccoocoiiiiiiiiii. 31
The worst case graph for the graph construction for five scanned predicates 40
The worst case graph for the test frame derivation for five scanned predicates 41
Schema AddBirthRecordcc.ccccoooviiiiioiiiiiiiieeeeeeeeeee e, 51
The cause-effect graph of the schema AddBirthRecord .. 59

vii

CHAPTER 1
INTRODUCTION

Software testing is the main method generally used to validate the correctness of a
program. The testing process accounts for 28% to 50% of the total software development
cost [Ramamoorthy75] [Sommerville92]. Studies on test data selection and generation

have been conducted to improve the effectiveness and efficiency of the testing process as

well as the overall software development process.

Research on the requirement specification and design processes has been

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|‘conducted for improving the software development process. Informal specification
|

|

|

|

languages were popular for software requirement engineering in the 1970's [Boehm76].
|
' Formal specifications were introduced in the early 1980's and have since become more
|
|
' popular [Basili91]. One of the established formal specification languages is Z. Z was

|
' developed at Oxford University [Diller90] [Spivey88].

‘ Studies on specification language based testing techniques are conducted as the
|

I
 specification languages become more established. Studies on software testing that involve
|

:the Z language have also been conducted [Hayes86] [Stocks93]. Hayes [Hayes86]
|

proposes abstract data type testing techniques that use data type specifications to produce
I

'procedures to check the specification implementations. Stocks and Carrington [Stocks93]
|

describe the derivation of a test template framework from an operation unit

specification. The test templates are constructed from the unit valid input partitions that
are heuristically derived from the unit predicates.

A number of test selection techniques are already established. The test selection
techniques can be categorized into two main methods: functional method that derive test
" cases based on the software specification and structural method that derive test cases
based on the internal structure of the software [Beizer90] [Myers79]. Cause-effect
graphing, one of the functional test selection technique [Myers79], appears to be a
promising approach to be implemented for d;:dving test cases from predicate or Boolean
logic based specifications. The technique includes the transformation of a specification
into a Boolean cause-effect graph and the derivation of the test cases by tracing the graph
backward.

The implementation of the cause-effect graphing to generate test frames from Z
specification is the main objective of this thesis. A test frame generation tool that can
handle a Z schema with limited notations was developed. The construction of the tool is
discussed in this thesis report. The rest of this thesis report also discusses the background
of test frame generation and is organized as follows. Chapter II introduces the Z
specification technique with a number of simple examples. Chapter III describes the test
selection method that will be used for generating test frames. Chapter IV discusses the
tool’s implementation and evaluation. The last chapter, Chapter V, summarizes this thesis

work and describes the possible future work extensions.

CHAPTER II

Z SPECIFICATIONS OVERVIEW

Z is a notation for formal specification and design that uses mathematical
disciplines of first-order logic and set theory to model a system [Diller90]
[Sommerville92]. Z uses a collection of schemas to specify both the static and dynamic

aspects of a system [Spivey88].

2.1 Schemas

A schema is a two-dimensional graphical specification that contains a schema’s
name, signature, and predicate [Sommerville92]. Figure 1 shows an example of a

schema that records a container specification.

Schema name

Schema signature
Schema predicate
— Container /
contents: N /
capacity: N
contents < capacity ‘/

Figure 1. A Z schema for a generic container (Source: [Sommerville92])

The schema name is at the top line of the schema; the schema signature is the part
between the top line and the middle line of the schema; the schema predicate is the part
between the middle line and the bottom line of the schema. The schema signature contains
various declarations that introduce the system entities. The schema predicate specifies the
entities’ relationships by defining one or more equations and membership predicates over
the signature entities.

In Figure 1, the signature of the Container schema introduces two entities, namely
contents and capacity, that are declared as natural numbers. The schema predicate
specifies the fact that the contents cannot be greater than the capacity. The predicate is an
invariant predicate that must always be TRUE for all operations over the database.

Figure 2 depicts another schema example that specifies a company internal
telephone directory. The operations on this directory, which are described in the
following sections, broaden the Z specification overview. Most of this background
section on Z, including the running example, is based on two main references on Z

[Diller90] [Spivey88].

—PhoneDirectory
personnel. P Person
telephones. Person <« {Address, Phone}

dom telephones < personnel

Figure 2. The schema of a telephone directory

The schema PhoneDirectory signature in Figure 2 declares two system entities:

the set personnel that consists of all the company employees and the identifier telephones

that gives the relationship between the company personnel and the pairs of the internal
addresses and telephone numbers. The schema predicate introduces an invariant predicate
that specifies that only the company personnel can have the internal addresses and
telephones. The following is an example of a possible state of the system:
personnel = { Asmuni, Mary, John, Teguh}
telephones = { Asmuni — {CC Bldg 100, 4444}, Mary — {Mgmt Bldg
1201, 4001}, John —» {Mgmt Bldg. 1701, 4002}, John —
{Mgmt Bldg 1701, 4003}, John — {Prod Bldg 1101, 4111},
Teguh — {CC Bldg 100, 4444} }
This simple schema gives the exact system specification that is ordinarily written as a
prose specification. The schema specifies that one employee can have more than one
telephone and one telephone can be shared by more than one employee. The schema
does not impose unwanted limitations on the stored order or the number of telephone

entries.

2.2 Schema Decoration and Variable Identifiers

Any operation on a system usually creates a new state of the system. As a
convention, the after-operation system schema is represented by decorating the before-
operation schema name and variables with a prime [Diller90]. For instance,
PhoneDirectory’ represents the state of the telephone directory after an operation (see

Figure 3).

— PhoneDirectory’
personnel”: P Person
telephones”: Person +* {Address, Phone}

dom telephones” < personnel’

Figure 3. The after-operation telephone directory schema

The telephone entry addition schema, which is shown in Figure 4, includes the

transformation of the system states.

— AddEntry
personnel, personnel” . P Person

telephones, telephones’: Person <+* {Address, Phone)
name? : Person

address? . Address

newnumber? : Phone

dom telephones < personnel

dom ftelephones” < personnel’

name? € personnel

name? — {address?, newnumber?} ¢ telephones

telephones’ = telephones u { name? — {address?, newnumber?}}
personnel’= personnel

Figure 4. The schema of the telephone directory entry addition

Variables that are ended with a question mark, e.g., name? and newnumber?, are
considered input variables for the operation. In Figure 4, the predicates with the input

variables on the left hand side such as

name? € personnel
name? — ({address?, newnumber?} ¢ telephones

are the preconditions for the operation, and

telephones’ = telephones U { name? — {address?, newnumber? }}
personnel’ = personnel

are the conducted operations. The other two predicates

dom telephones < personnel
dom telephones’ < personnel’

are an invariant precondition and an invariant postcondition, respectively, for the schema
AddEntry and other operations of the schema PhoneDirectory.

A system operation is usually accompanied by an output that reports the
completion of operation. Another schema, Success, as shown in Figure 5, is added to
specify the successful operation information. The exclamation mark at the end of a

variable, e.g., rep!, indicates that the variable is an output variable.

— Success
rep!. Report
rep! = ‘Done’

Figure 5. Successful operation message schema

2.3 The A and = Conventions

In an attempt to make a concise specification that includes a state transformation,
the A (delta) schema is used for representing the combination of the before- and after-

operation schemas. For the telephone directory, the A schema is shown in Figure 6.

— APhoneDirectory
personnel, personnel”: P Person
telephones, telephones’: Person <> {Address, Phone)

dom telephones < personnel
dom telephones” < personnel’

Figure 6. The schema APhoneDirectory

APhoneDirectory
F PhoneDirectory
PhoneDirectory”

Figure 7. The schema APhoneDirectory with schema inclusions

The A schema can be represented by using schema inclusions as shown in Figure 7.
The schema AddEntry also can be written with APhoneDirectory inclusion, as depicted

in Figure 8.

— AddEntry
APhoneDirectory
name?: Person
address?. Address
newnumber?. Phone

name? & personnel

name? — newnumber? ¢ telephones

telephones’ = telephones U {name? — {address?, newnumber?)}}
personnel’= personnel

Figure 8. AddEntry with APhoneDirectory inclusion

Notation = (xi) is used to specify an operation that does not change the system

state. The = schema for the schema PhoneDirectory is shown in Figure 9. A database

inquiry is an example of an operation that does not change the system state. Figure 10

shows one of the database inquiries of the schema PhoneDirectory.

— ZPhoneDirectory
APhoneDirectory

telephones’” = telephones
personnel” = personnel

Figure 9. The schema ZPhoneDirectory

The schemas of entry addition and query operations (discussed above) only cover
operations with correct inputs. Since a system might receive incorrect inputs, we must
complete the operation specifications by specifying error handling procedures. The next
schemas (Figures 11 and 12) specify the operations of entry addition for two kinds of
input errors, i.e., when the name entered is not a company employee and when the entry

already exists in the directory.

— FindPhones
HPhoneDirectory

name?: Person
numbers!: P {Address, Phone}

name? € dom telephones
numbers! = telephones(|{name?}|)

Figure 10. FindPhones schema

10

— NotEmployee
ZPhoneDirectory
name?. Person
rep!: Report

name? ¢ personnel
rep! = ‘Not an employee’

Figure 11. The schema of entry addition for the case of a non-employee name

— DuplicateEntry
ZPhoneDireciory
name?: Person
address?. Address
newnumber?. Phone
rep!: Report

name? — {address?, newnumber?} € telephones
rep! = ‘Entry already exists’

Figure 12. The schema of entry addition for the case of a duplicate entry

2.4 Schema Linking

The schemas of parts of a system can be linked together with the propotional
connectives A and v to form a complete specification for the system. The complete
schema for the directory entry addition operation can be defined as follows:

CAddEntry = (AddEntry n Success) v NotEmployee v DuplicateEntry
The logical operators A and v are used to combine four schemas into one new schema.

Figure 13 depicts the expanded schema for the entry addition operation.

11

[
|
|
|
| — CAddEntry
: personnel, personnel”: P Person

: telephones, telephones’: Person <> {Address, Phone)
: name? : Person

: address? . Address

| newnumber? : Phone

: rep! : Report

|

|

|

|

dom telephones < personnel
dom telephones” < personnel”
! ((name? e personnel
! name? — newnumber? ¢ telephones
! telephones’= telephones U {name? — {address?, newnumber?}}
! personnel’= personnel
! rep! = ‘Done’)
! Y
! (name? ¢ personnel
! telephones’= telephones
personnel’= personnel
rep! = ‘Not an employee’)
Y
(name? — {address?, newnumber?} € telephones
telephones’ = telephones
personnel’= personnel
rep! = ‘Entry already exists’))

Figure 13. The expanded entry addition schema

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

! For the telephone number query operation, a schema for handling input errors
|

|

' should also be added. Figure 14 shows a schema that deals with an unknown person on
|

|

the query operation. A new schema for telephone number query operations can be created
|

‘
'as a combination of the query schemas that cover the correct and the incorrect inputs, i.e.,
|

|

|

CFindPhones = (FindPhones N Success) v UnknownPerson

‘\
|
! — UnknownPerson
]
! EPhoneDirectory
| name?:. Person
|
'.
! rep!: Report
I
|
I
|
1
|
I
|
|
|
|
|

name? ¢ dom telephones
rep! = ‘Unknown person’

Figure 14. The schema UnknownPerson

‘ As discussed above, the use of schemas allows a system specification to be

ﬁdeveloped gradually and incrementally. Initially, simple schemas for small and manageable

fpieces of the system can be created. The schemas then can be combined to construct a

.complete and complex system specification.

CHAPTER III

TEST SELECTION METHOD

The degree of completeness of test cases generated affects the quality of the
testing process; i.e., the more complete the test cases, the greater the possibility of finding
all the mistakes in a computer program. In most nontrivial cases however, a complete
exhaustive test that includes all possible input values consists of too many test cases and is
impossible to conduct. For the purpose of minimizing the number of test cases while
retaining the effectiveness of testing as much as possible, a minimal subset of the input
values that represent the entire input domain should be selected [Myers79] [Rapps85].

There are two main techniques for selecting test cases: functional or black-box
methods and structural or white-box methods [Beizer90] [Myers79]. Black-box
techniques derive test cases based on the software specification or the external behavior of
the software. White-box techniques derive test cases based on the internal structure of the
software. One of the techniques that derives test cases from software specifications is the
cause-effect graphing method [Myers79].

Cause-effect graphing is a method for selecting test cases that concerns the
combinations of program inputs and outputs. The method uses a cause-effect graph that
represents a system operation transformation viewpoint. Test cases are selected by

methodically tracing back the resulting cause-effect graph [Myers79].

13

14

3.1 Cause-Effect Graph

Cause-effect graph is a Boolean graph that links causes (preconditions) and effects
(postconditions) of an operation of a system [Myers79]. The causes and effects are
represented by nodes, which have either a TRUE(=1) value to indicate that the causes or
effects do exist, or a FALSE(=0) value to indicate that the causes or effects do not exist.
The logical IDENTITY, NOT, AND, and OR are used to transform or combine the
causes and relate them to the effects (see Figure 15). In addition, to state the constraints

among the inputs or the outputs, constraint symbols as shown in Figure 16 are used.

IDENTITY NOT

O—0 OB

OR AND

(D)—Y AY)
O

Figure 15. The cause-effect graph basic symbols (Source: [Myers79])

15

Exclusive Inclusive
e <: | <.§
One and only one Requires
| <: | C
Masks

Figure 16. Constraint symbols (Source: [Myers79])

There are four cause constraint symbols (E, I, O, and R) and one effect constraint
symbol (M). The E symbol is used to specify that only one of the constrained causes can
exist at one time. The I symbol is used to specify that at least one of the constrained

causes must exist. The O symbol states that one and only one of the contained causes

16

must exist. The R symbol states that the existence of one cause requires the existence of

the other cause referenced. The M symbol states that the existence of one effect

suppresses the existence of another effect referenced [Myers79].

3.2 Test Case Derivation Procedure

Myers provides the main process of cause-effect graphing test case derivation as

follows [Myers79].

1.

Break down the system specification into smallest independent operational unit
specifications. The break down is necessary because a large specification will result in
a very complex cause-effect graph.

Derive the causes and effects from the unit specification. A cause is an input
equivalence class or a diverse input condition, while an effect is a result condition.

. Construct the Boolean graph of causes and effects based on the unit transformation

specifications.

Transform the graph into a limited-entry decision table by systematically tracing back
the graph. A table row represents a cause or an effect value and a table column
represents a test case.

. Convert the decision table into test cases.

The detailed procedure for decision-table construction proposed by Myers

[Myers79] is as follows.

1.

2.

Choose one effect to be in the TRUE value.

Trace the graph backward from the effect to derive cause combinations that affect the
effect value to be TRUE. The rules for reducing the number of cause combinations,
when tracing back one node of the graph, are as follows:

- For an OR node, if the node output is TRUE, consider only cause conditions that
lead only one node input to be TRUE, while if the node output is FALSE, consider
all possible conditions that lead all the node inputs to be FALSE.

17

- For an AND node, if the node output is TRUE, consider all possible conditions that
lead the output to be TRUE, while if the node output is FALSE, all node input
combinations should be considered. For the case that all inputs are FALSE, only
one cause situation should be considered. For the other cases, enumerate all cause
conditions that lead a node input to be FALSE and consider only one combination
of cause that leads a node input to be TRUE.

3. Put the cause and effect values of each cause combination in a column of the table.
4. Derive the value of the other effect nodes for each cause combination and place them
on the table.
3.3 Examples of Cause-Effect Graphing Method

As an example of the cause-effect graphing method, a sample specification of a
small database based on the specification presented by Myers [Myers79] is used. The
database consists of two one-character fields. The specification of the database entry
operation is as follows.

The first field must be an "A" or a "B." The second field must be a digit.

If both conditions are satisfied, then a new record is inserted. If the first

field is incorrect and the second field is correct, then the message "Field 1

1s incorrect" is displayed. If field 1 is correct and field 2 is incorrect, then

the message "Field 2 is incorrect” is displayed. If both fields are incorrect,

then both messages are displayed.

The derivation of causes and effects of the specification gives the causes as:

cl - field 1 is "A"

c2 - field 1 is "B"

c3 - field 2 is a digit
and effects as:

el - a new record is inserted

e2 - message "Field 1 is incorrect” is displayed

18

e3 - message "Field 2 is incorrect” is displayed

Figure 17 shows the cause-effect graph of the operation. Intermediate node il is
created to combine causes cl and c2 with the OR function. Since causes cl and c2 cannot
exist at the same time, an E constraint is added (see Section 3.1) for the two causes. The
decision table constructed by using the method discussed above gives five test frames for
the entry operation as shown in Figure 18. By choosing one value for each input
equivalence class, the decision table can be converted into test cases as shown in Figure

19.

Figure 17. Sample cause-effect graph (Source:[Myers79])

To describe the implementation of the cause-effect graphing method on a test case
derivation from a Z specification, the expanded entry addition schema, CAddEntry,
described in Section 2 is used. The implementation uses specific methods for deriving

causes and effects as explained below.

Cause/ Test Frame Number
Effect
1 2 3 4 5
cl 1 0 0 1
c2 1 0 0
c3 1 1 0 0
el 1 1 0 0 0
e2 0 0 1 1 0
e3 0 0 0 1 1

Figure 18. Sample decision table

19

Test Input or Precondition Expected Result
Case
1 field 1 =“A” A new record with field 1 =*“A” and
field 2 = “8” field 2 =“8” is inserted
2 field 1 =“B” A new record with field 1 =“B” and
field 2 = “8” field 2 =“8” is inserted
3 field 1 =“C” Message “ Field 1 is incorrect” is
field 2 =“8” displayed
4 field 1 =“B” Message “ Field 2 is incorrect” is
field 2 =“C” displayed
5 field 1 =“C” Messages “ Field 1 is incorrect” and
field 2 =“C” “Field 2 is incorrect” are displayed

Figure 19. Sample test cases

The derivation of causes from the schema is accomplished by defining an operation

precondition as a cause. The causes derived from CAddEntry are listed below.

20

cl - dom telephones — personnel

c2 - name? € personnel

c3 - name? — {address?, newnumber?} < telephones

A precondition predicate that forms the negation of another precondition predicate
is not defined as a cause. For instance, name? ¢ personnel, the negation of name? e
personnel, is not defined as a cause.

The effects are derived from the schema CAddEntry by defining a postcondition
predicate of an operation as an effect. The derived effects are listed below.

el - dom telephones’ < personnel

e2 - telephones' = telephones v { name? — {address?, newnumber?} }

e3 - personnel’ = personnel

e4 - rep! = ‘Done’

e5 - telephones’ = telephones

e6 - rep! = ‘Not an employee’

e7 - rep! = ‘Entry already exists’

By examining the operations and relations in the schema, the cause-effect graph of
the schema can be constructed. Figure 20 depicts the cause-effect graph of the entry
addition schema. The schema test frames, that are derived from the graph by using the
decision-table construction procedure (see Section 3.2), are shown in Figure 21. The
possible test cases for the entry addition schema, that are derived form the test frames by

choosing one set of cause values for each frame, are shown in Figure 22.

Figure 20. The cause-effect graph of the entry addition schema

Cause/ | Test Frame Number
Effect
1 2 3
cl 1 1 1
c2 1 0 1
c3 0 0 1
el 1 1 1
e2 1 0 0
e3 1 1 1
e4 1 0 0
es 0 1 1
e6 0 1 0
el 0 0 1

Figure 21. The decision table of the entry addition schema test frames

21

22

Test Input or Precondition Expected Result
Case

1 | personnel = { Asmuni, Hadi, Mary} personnel”’= { Asmuni, Hadi, Mary}

telephones = { } telephones’= {Mary — {Mgmt Bldg
name? = Mary 1101, 4022} }
address? = Mgmt Bldg 1101 rep! = ‘Done’

newnumber? = 4022

2 | personnel = { Asmuni, Hadi, Mary} personnel”’= { Asmuni, Hadi, Mary}
telephones = { } telephones’= { }

name? = Tom rep! = ‘Not an employee’

address? = Prod Bldg 1111
newnumber? = 4055

3 | personnel = { Asmuni, Hadi, Mary} personnel’= { Asmuni, Hadi, Mary}

telephones = {Mary —» {Mgmt Bldg | telephones’= {Mary — {Mgmt Bldg
1101, 4022} } 1101, 4022}}

name’ = Mary rep! = ‘Entry already exists’

address? = Mgmt Bldg 1101

newnumber? = 4022

Figure 22. Test cases for the entry addition schema

In the cause-effect graph, nodes c1 and el represent an invariant precondition
(cause) and an invariant postcondition (effect), respectively. Node cl is linked to the
cause nodes of all operations of the data entry system. Node el is linked solely to node cl
and not affected by the results of all of the schema operations.

In deriving the test frames, the value of the invariant nodes c1 and el must always
be set to TRUE as a fact that both are invariant nodes. Since the variant effect nodes of
an operation are always linked to one intermediate node (the rightmost intermediate node
for the operation), test frame derivation can be done by setting the value of the rightmost

intermediate node to 1 and tracing the graph backward starting from the node. The value

23

of the effect nodes then can be derived after all values of the rightmost intermediate nodes

have been derived.

CHAPTER IV

IMPLEMENTATION AND EVALUATION

4.1 Introduction

The main thrust of the thesis work involved the development (i.e., design and
implementation) of a tool that utilizes the cause-effect graphing method to generate test
frames from Z specifications. The tool was developed in the programming language C on
a Sequent Symmetry S/81 running the DYNIX/ptx operating system. The implementation
uses text files to store the tool input and outputs.

The tool’s software consists of sixty eight C procedures, of which forty four
procedures are used to create a cause-effect graph and twenty two procedures are used to
derive test frames from the cause-effect graph. The input to the tool is the predicate part
of the expanded schema of an independent unit of a system. The cause-effect graph
traversals and test frame table are the outputs of the tool.

The main data structures and algorithms used to create the graph and to derive the
test frames are described later in this chapter. This chapter also describes the tool’s input

preparations and the evaluation of the tool.

24

25

4.2 Input Preparations

Due to the limitations of text files, schema predicates are manually converted to
all-text predicates. Certain keywords are used to replace non-ASCII schema symbols.
Figure 23 shows the symbol conversion table. In preparing the input, the default link A
between two predicates in the same suboperation (that is implicit in a schema) must be

explicitly written in the converted specification.

Symbol Keyword Symbol Keyword
A & c subset
% | c subseteq
€ in vs notsubset
¢ notin * not=
- mapsto U union

Figure 23. The non-ASCII symbol conversion table for the tool

As an example, the result of the conversion of the schema predicate of

CAddEntry, which was described in Chapter II, is shown in Figure 24.

26

dom telephones subseteq members &

dom telephone’ subseteq members’ &

((name? in members &

name? mapsto newnumber? notin telephones &
telephones’ = telephones union name? mapsto newnumber? &
members’ = members &

rep! = ‘Okay’) |

(name? notin members &

telephones’ = telephones &

members’ = members &

rep! = ‘Not a member’) |

(name? mapsto newnumber? in telephones &
telephones’ = telephones &

members’ = members &

rep! = ‘Entry already exists’))

Figure 24. The conversion of the schema predicate of the schema CAddEntry

4.3 Data Structures

4.3.1 Cause-Effect Graph Data Structures

In order to construct a cause-effect graph and to derive test frames from a cause-
effect graph, the following requirements are imposed on graph specifications.
- The graph must able to be traced backward and forward.

- Each graph node must be able to be connected with more than one other node backward
and forward.

- The cause nodes, constraint nodes, the rightmost intermediate nodes, and the effect
nodes must be able to be accessed sequentially.

- All graph nodes should use the same data structure.

27

Three data structures were used to represent the cause-effect graph: graph header,
graph node (vertex), and graph link (edge). The declarations of the three data structures
are shown in Figures 25, 26, and 27.

The graph header has a pointer to the first cause, effect, and rightmost
intermediate nodes. The header also records the number of cause, intermediate, and effect
nodes. The graph node structure is used to represent cause, intermediate, effect, and
constraint nodes. Each of the four node types has its own sequence node number.

The node structure has a pointer to the first forward link and the first backward
link. A forward link of a cause node connects the cause node to an intermediate node. If
a cause node has a constraint relation to other cause nodes, a backward link will connect

the cause node to a constraint node.

typedef struct graph_header{
struct graph node *cause, /* Pointer to the first cause node */
effect, / Pointer to the first effect node */
*rightmost_inter,
/* Pointer to the first rightmost
intermediate node */
constraint, / Pointer to the first constraint node */

int ncause, /* The number of cause nodes */
ninter, /* The number of intermediate nodes */
neffect; /* The number of effect nodes */
}GRAPH;

Figure 25. The declaration of the graph header structure

28

typedef struct graph_node {
int type; /* The node type:

1 : AND intermediate node
2 : OR intermediate node
3 : E constraint node
4 . R constraint node

10 : Cause node

11 : Invariant cause node

20 : Effect node

21 : Invariant effect node */

int number; /* The sequence node number */
int scope; /* The node scope level */
struct graph_link *forw, /* Pointer to the first forward link */
bakw; / Pointer to the first backward link */
struct graph_node *next; /* Pointer to the next sequence similar
node */
} GRPNODE;

Figure 26. The declaration of the graph node structure

typedef struct graph_link {

int negation; /* Link negation:
1 : NOT link
0 : IDENTITY link */
struct graph_node *node; /* Pointer to an adjacent node */
struct graph_link *next; /* Pointer to the next similar function link */
} LINK,

Figure 27. The declaration of the graph link structure

A constraint node will only have forward links. For an R constraint node, the first
forward link will connect the constraint node to the constrained (affected) cause node, and
the next forward links will connect the constraint node to the constraining nodes. For an

E constraint node, the sequence of forward links is not important. An effect node will

29

only use the backward link pointer. The effect node will have backward links to the
rightmost intermediate nodes.

The node scope level data in the node structure is used only for an intermediate
node. The data is used to arrange the insertion of an intermediate node into a cause-effect
graph. An intermediate node can have backward links to the lower level intermediate
nodes and/or cause nodes, and forward links to the higher intermediate nodes or effect

nodes.

4.3 .2 Test Frame Data Structures

The test frame derivation result is recorded by using link lists. Link lists are used
since the number of test frames cannot be determined at the beginning of the derivation
process and besides the number changes dynamically during the process. The data
structures of the test frame link list are: test frame list header and test frame (test frame list
element). Figures 28 and 29 show the declaration of the test frame list header structure
and the test frame structure, respectively.

One test frame list is used to store the test frame derivation result of the cause-
effect graph tracing backward from one intermediate node that is connected to the effect
node(s). The list header has a pointer to link the list header and the next test frame list
that stores the result of the graph derivation from the next rightmost intermediate node.

The test frame structure has a pointer to the array of the intermediate node

derivation status. The status array element is used to indicate whether: a. all possible input

30

conditions, or b. only one input condition, that leads the value of an intermediate node in a

test frame, is needed to be derived.

typedef struct test_frame_list_header {
struct test_frame *head; /* Pointer to the first test frame */
struct test_frame *tail; /* Pointer to the last test frame */
struct test_frame list_header *next;
/* Pointer to the next test frame list
header */
} TEST_LIST,

Figure 28. The declaration of the test frame list header structure

typedef struct test_frame {

int *cause, /* Pointer to the array of cause node
values */

int *inter, /* Pointer to the array of intermediate
node values */

int *derive; /* Pointer to the array of the intermediate
node derivation status */

int *effect; /* Pointer to the array of effect node
values */

struct test_frame *next; /* Pointer to the next test frame */

} TEST FRAME;

Figure 29. The declaration of the test frame structure

4.3.3 Working Data Structures

The tool uses several working data structures for constructing a cause-effect graph
and deriving test frames from a cause-effect graph. Two important working data

structures are the “predicate” and “operator” structures. These two structures are used in

31

a cause-effect graph construction to store a scanned predicate and the operator following
the predicate. The declaration of the structure predicate is shown in Figure 30 and the

declaration of the structure operator is shown in Figure 31.

typedef struct predicate {
char part[3][80]; /* Predicate parts:
- Part 1: An entity before an equation or
membership symbol in a predicate
- Part 2: An equation or membership symbol,
- Part 3. An entity after an equation or
membership symbol in a predicate. */
int type, /* Predicate type:
10 : Precondition/cause predicate
11 : Invariant precondition predicate
20 : Postcondition/effect predicate
21 : Invariant postcondition predicate */

scope; /* Scope level of the predicate */
} PRED;

Figure 30. The declaration of the predicate data structure

typedef struct operator {

int type, /* The operator type:
0: Nooperator; 1 : AND;2: OR */
Scope; /* Scope level of the operator */
} OPER;

Figure 31. The declaration of the operator data structure

Both the predicate and the operator contain an element to record their scope level,
which is used as one of the parameters to arrange the representation of the precondition
predicate relationships in the cause-effect graph. A cause node that represents the next

precondition predicate must be linked (through intermediate nodes) to a cause node that

32

represent the previous precondition predicate if the next predicate has a lower scope level

than the previous predicate.

4.4 Algorithms

In the two sections that follow, the tool’s algorithms for constructing a cause-

effect graph and for deriving test frames from the graph are presented.

4 4.1 Cause-Effect Graph Construction Algorithms

The tool implements the cause-effect graph construction procedures described in
Chapter I1I, except for constraint relations I (Inclusive), O (One and only one), and M
(Masks). The following two algorithms are the main algorithms to construct a cause-

effect graph from a converted schema predicate.

Algorithm 1 Cause-Effect Graph Construction
Input. Input schema file.

QOutput. The constructed cause-effect graph, and the table of precondition (cause) and
post condition (effect) predicates.

Method.
1. Set the initial value for the predicate and the operator scope level.
2. while there is a predicate in the input schema file
then begin
Scan a predicate and a connective operator that follows the predicate from the input file
schema; In this scanning, decrease the scope level of the predicate and the operator by 1
when a character ‘(" is scanned and increase the scope level of the predicate and the operator
by one when a character ‘)’ is scanned.
Look the scanned predicate up in the table of predicates and get the predicate sequence
number and the predicate negation flag
3. if the scanned predicate or the negation of the predicate does not exist in the table of
predicates
then begin
Insert the predicate into the table and get the predicate sequence number predicate
and negation flag

33

if the scanned predicate is an effect or invariant effect predicate
then Add a new effect node to the cause-effect graph and link the node to the related
nodes
else begin /* The scanned predicate is a cause predicate */
Add a new cause node to the cause-effect graph and link the node to the
related nodes
if the number of the graph cause nodes is more than one and the predicate is
not an invariant cause predicate
then begin
Search constraints between the new predicate and the existing cause
predicates
if the constraints are found
then Add the necessary constraint nodes and links to the graph

end
end
end
else
Add necessary links between the existing predicate node and the related nodes in the
graph

end while
Remove any intermediate node duplication

Algorithm 2 Cause/Effect Node and Link Addition

Input. The cause-effect graph, the scanned predicate, the predicate sequence number, the
predicate negation flag, the scanned connective operator, and a node addition flag.

QOutput. Updated cause-effect graph.

Method.

L

if the scanned predicate is the negation of the existing predicate in the table of predicates
then Set the graph link negation to 1.
if a new cause/effect node is required
then begin
Create a new graph node.
if the predicate is a cause or invariant cause predicate
then Add the new node to the graph-cause link list.
else Add the new node to the graph-effect link list.
end
else /* A new node is not required */
Search the appropriate existing cause/effect node to be linked.
if the type of predicate is invariant cause or (the type of the predicate is cause and there is a
connective operator that follows the predicate and (the node is the first cause node or the type of the
current connective operator is not the same as the previous operator or the type of the predicate is
effect or invariant effect or the scope level of the predicate is less than the scope level of the
previous operator))
then begin /* A new intermediate node is required */
Create a new intermediate node; Set the scope level of the node to value of the operator scope
level.

34

7. if the graph rightmost intermediate link list is NULL or the type of the previous predicate is
effect or invariant effect
then Set the created intermediate node as the new rightmost intermediate node
end
8. if the type of the predicate is cause or invariant cause
then begin /* Link a cause node */

9. if the previous predicate is a cause predicate and the new intermediate node is created
then begin
10. if the scope level of the predicate is the same as the scope level of the previous
intermediate node and the type of the previous intermediate node is AND
then begin

Link the cause node with the previous intermediate AND node; Link the
new intermediate node and the other intermediate nodes based on their
scope level and update the rightmost intermediate node pointer if necessary.
end
11. else begin
Link the cause node with the new intermediate node; Link the new
intermediate node with the previous intermediate nodes (the new node is
the backward node of the previous node).
end
end
else /* The new intermediate node is not created */
Link the previous intermediate node and the cause node.
end
12. else begin /* Link an effect node */
Link the rightmost intermediate node and the effect node.
13. if the type of the previous predicate is cause or invariant cause
then begin
Add the rightmost intermediate node to the graph rightmost intermediate node list;
Remove the previous intermediate node if the node is not linked to an effect node and
only has one backward link and one forward link after the node backward link is
copied to the forward node; Add a new element (pointing to the rightmost
intermediate node) to the rightmost intermediate scope list.
end
end
14. if the predicate is the last predicate in the input schema file
then Link a rightmost intermediate node with another rightmost intermediate node based on the node
sequences pointed by the rightmost intermediate scope list; The later node is linked to the earlier
node if the scope level of the earlier node is greater than the later node scope level; In this
linking, the forward links of the later node are removed after they are copies to the earlier node.

4.4 .2 Test Frame Derivation Algorithms

The general procedures for deriving test cases from a cause-effect graph was
presented in Chapter III. The tool implements almost all of the procedures except the

derivation of test cases from test frames. In this implementation, the tracing is not started

35

from an effect node but from one of the graph’s rightmost intermediate node, as
mentioned at the end of Chapter III. The implementation procedures are described in the

following seven algorithms.

Algorithm 3 Test Frame Derivation

Input: A cause-effect graph and the value of the starting derivation node (one of the
graph rightmost intermediate nodes).

Quiput. Test frame lists.

Method.
1. Create the header of the test frame lists.
2. for all of the rightmost intermediate nodes that do not connected to an INV_EFFECT node
begin

Trace the graph backward starting from the rightmost intermediate node.
3. if the test frame header is not linked to a test frame list

then Link the test frame lists header to the new test frame list creating in the graph tracing.
4. else Link the previous test frame list to the new test frame list creating in the graph tracing.
5. for all test frame in the new test frame list

begin
6. for all of the other rightmost intermediate nodes
begin
7. if the other rightmost intermediate node is connected to an INV_EFFECT node
then Set the other rightmost intermediate node in the test frame to 1.
else Derive the other rightmost intermediate node value by (a) propagating the existing
node values or, if the value propagation cannot used to derive the other rightmost
intermediate node, (b) setting the other rightmost intermediate node value in the test
frame to 0 and derive the unassigned affected node values.
end
8. end
9. Remove any test frame duplication in all test frame lists.

10. Derive all node effect values in all test frames of the new test frame list by propagating the value of
the rightmost intermediate nodes .
end

Algorithm 4 Cause-Effect Graph Backward Tracing Starting from One of the Graph
Rightmost Intermediate Nodes

Input: The cause-effect graph, one of the graph rightmost intermediate nodes, and the
rightmost intermediate node setting value .

Qutput. A new test frame list.

Method.

36

Create a new test frame list.

Create a new test frame and add the new test frame to the new test frame list.

Set the value of the rightmost intermediate node in the new test frame to the setting value (=1).
Starting from the rightmost intermediate value, recursively trace the graph node backward to derive
the possible combinations of the input node values.

el s

Algorithm 5 Recursive Graph Node Backward Tracing
Input. A cause-effect graph, one of the graph intermediate node, and a test frame list.
QOutput. Updated test frame list.

Method.
1. if the node type is AND or OR and the test frame list is not NULL
then begin

Derive the input node values I* Algorithin 6 */
2. for all input nodes of the node
Trace the graph node backward /* Algorithm 5 */
end

Algorithm 6 Input Node Values Derivation
Input. A cause-effect graph, an intermediate node of the graph, and a test frame list.

Output: Updated test frame list.

Method.
1. for all test frames in the input test frame list
begin
2. if the explosion of the test frame at this node is allowed
then begin
Create an additional test frame list
3. if the node output value at the test frame is TRUE
then begin

4. if the node is an AND intermediate node

5. then for all input nodes of the intermediate node and the previous input node
value derivation, if any, is succeeded
Derive the input node value by setting the value of the input of the
intermediate node to be TRUE /* Algorithm 7 */

6. else /* The node is an OR intermediate node */

7. Derive the true OR input node values /* Algorithm 8 */

end

8. else /* The node output is FALSE */

9. if the node is an AND intermediate node

10. then Derive the false AND input values I* Algorithm 9 */

11, else /* The node is an OR intermediate node */

for all input nodes of the intermediate node and the previous input node value
derivation, if any, is succeeded

12.

13.

37

Derive the input node value by setting the value of the input of the
intermediate node to be TRUE I* Algorithm 7 */
if the input node derivation has not successfully completed
then Remove the test frame from the list
end
if the additional test frame list is not empty

then Add all elements of the additional test frame list to the input test frame list.

Algorithm 7 One Input Node Value Derivation

Input. A cause-effect graph, a test frame, one of an intermediate node backward link, and
the value of the intermediate node input to be propagated to the input node value.

Output. Updated test frame and return code.

Method.
1. if the type of the input node is invariant cause
then begin
2. if the value of the input node in the test frame has not been assigned
then begin
Set the value of the input node in the test frame to 1
3. if the intermediate node propagation value is not 1
then Terminate and return an abnormal termination code
end
Terminate and return a normal termination code
end
4, else if the type of the input node is cause
5. then if the value of the input node in the test frame has not been assigned
then begin
6. if the input node has constraint relations
then begin
Examine whether the propagation of the intermediate node propagation
value to the constrained node does not conflict with any existing value of
the constraint related nodes
7. if there is a conflict
then begin
Set the value of the input node in the test frame to 0.
Terminate and return an abnormal termination code
end
8. else begin
Set the value of the input node in the test frame to the value of
the intermediate node propagation value;
Set the value of the constrained nodes to the value of the node
propagation value in the test frame, if the value of the
constrained nodes have not been assigned,
Terminate and return a normal termination code.
end
end
9. else Set the value of input node in the test frame to the intermediate node

propagation value

38

end
10. else if the intermediate node propagation value is not the same as the existing value of the
input node in the test frame
then Terminate and return an abnormal termination code
11. else Terminate and return a normal termination code
12. else /* The type of the input node is intermediate */
Set the value of input node in the test frame to the intermediate node propagation value

Algorithm 8 True OR Input Node Values Derivation

Input: A cause-effect graph, an OR intermediate node of the graph, a test frame, and an
additional test frame list.

Quitput: Updated test frame, updated additional test frame list, and return code.

Method:
1. Determine the true OR input value combinations
2. for all of the combinations but the last one
begin
Create a new test frame
Copy the values in the input test frame to the new test fame
Derive the value of the input nodes and store them in the temporary test frame

3. if there is a value conflict between the existing value and the propagation value during the
derivation
4, then Delete the new test frame
5. else Add the new test frame to the additional test frame list
end
6. Derive the value of the input nodes using the last value combination and store them in the input test
frame

7. if there is a value conflict during the last derivation
then Terminate and return an abnormal termination code
8. else Terminate and return a normal termination code

Algorithm 9 False AND Input Node Values Derivation

Input. A cause-effect graph, an False intermediate node of the graph, a test frame, and an
additional test frame list.

Output. Updated test frame, updated additional test frame list, and return code.

Method.
1. Determine the false AND input value combinations
2. for all of the combinations but the last one
begin

Create a new test frame

Copy the values in the input test frame to the new test fame

Derive the value of the input nodes and store them in the temporary test frame
3. if there is a value conflict between the existing value and the propagation value during the

39

derivation
4, then Delete the new test frame
5. else Add the new test frame to the additional test frame list
end
6. Derive the value of the input nodes using the last value combination and store them in the input test
frame

7. if there is a value conflict during the last derivation
then Terminate and return an abnormal termination code
8. else Terminate and return a normal termination code

4.5 Complexity

The computational complexity of the tool is determined by calculating the
execution time and the space usage of the graph construction and test frame derivation
separately. Because of the complicated data structures and the recursive algorithms used,
for both calculations only the worst cases are considered.

The graph construction execution time and space usage depend on the number of
nodes and links that are created. The worst case is found when a cause or effect node is
created for each scanned predicate, each intermediate node has two backward links, and
there are constraints R among the cause nodes as shown in Figure 32.

For n scanned predicates, the resulting number of graph nodes and links are given
below.

- The number of cause, intermediate, and effect nodes = 2 n,

- The number of non-constraint links =2 n- 1,

- The number of constraint nodes =n - 2, and

- The number of constraint links = (24+3+ ...+ (n-1))= +n(n-1)- 1.

These numbers show that the worst case computational complexity of a cause-effect

graph creation process is the square of the number of scanned predicates.

40

Figure 32. The worst case for the cause-effect graph construction for five scanned
predicates

The execution time for the derivation of test frames from a cause-effect graph
depends on the number of graph node value assignments, which is proportional to the
product of the number of test frames and the number of graph nodes. The space usage
for the derivation is also proportional to the product of the number of test frames number
and the number of nodes in the cause-effect graph. The worst case for the test frame
derivation is found when each scanned predicate is transformed to a cause or effect node,
all cause nodes are connected to an AND intermediate node, and the intermediate node
value is the negation of an effect value.

The structure of cause-effect graphs resulting in the worst complexity for five
scanned predicates is depicted in Figure 33. The number of test frames that will be

created during the derivation in the worst case grows proportional to two to the power of

41

the number of scanned predicates. Thus, the execution time and space usage of the tool is
proportional to the product of the number of scanned predicates and two to the power of

the number of scanned predicates.

RSO0

Figure 33. The worst case for test frame derivation for five scanned predicates

4.6 Testing of the Tool

The tool has demonstrated the feasibility of generating test frames from Z
specification. Two sample schemas were used to test the tool. The test results (included
in Appendix C) showed the capability of the tool in transforming a Z schema to a cause-
effect graph and deriving test frames from the graph. The graph creation part of the tool
can handle the R and E constraint relations among the schema predicates and can

transform them into graph node relations. The test frame derivation part of the tool,

42

which is based on the cause-effect graphing method, has been done successfully both for

regular node derivations and all zeroes input of a false AND intermediate node.

CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

The role of software testing in software development is quite important and formal
specifications becoming more widely used. Consequently, conducting studies on test
generation from formal specifications is a viable and active area of work. The work that
was conducted in this thesis was the development of a tool to generate test frames from Z
specifications. In this study, a tool was designed and implemented to be used for limited Z
schema notations. The tool implements the cause-effect graphing method for generating
test frames [Myers79].

The tool carries out two major processes. The first process converts a Z schema
to a cause-effect graph. The tool input is the predicate part of the schema with limited
notations. The input should be converted manually to an all-text specification before the
processing can begin. The constraint relations among predicates that can be handled by
the tool are constraint R’s (requires) and E’s (exclusive). The second process derives test
frames by tracing the cause-effect graph backward. At this process, the tool precisely

implements Myers’ method [Myers79].

43

44

Two sample Z schemas were used to test the tool. The test frames were generated
correctly based on the method used. Despite the stated weaknesses and limitations of the
tools, the test results demonstrate the promising possibility for generating test data from Z

specifications.

5.2 Future Work

A prototype evaluation of the tool indicated a number of weaknesses.

- The tool cannot read a Z schema directly; the schema should be converted into an all-
text specification.

- The tool can handle limited Z notations (e.g., it cannot handle universal and existential
quantifiers).

- The tool does not provide input syntax checking.

- The tool cannot handle I, O, or M constraint relations among schema predicates.

The above list shows that improvements are needed mainly at the front-end of the tool.

The back-end of the tool will need small changes after the tool’s front-end is improved.
Designing, implementing, and testing improvement to the tool to eliminate the

weaknesses should be considered as extensions of this work. They include the creation

of a graphical environment for editing Z schemas, the development of a better scanner,

and the addition of a parser for syntax checking. The generation of test cases from test

frames can also be a significant work to improve the tool’s capability.

REFERENCES

[Basili91] Victor R. Basili and John D. Musa, "The Future Engineering of Software: A
Management Perspective," IEEE Computer, pp. 90-96, September 1991.

[Beizer90] Boris Beizer, Software Testing Techniques, Van Nostrand Reinhold, New
York, NY, 1990.

[Boehm76] Barry W. Boehm, "Software Engineering," IEEE Transactions on Computers,
Vol. C-25, No. 12, pp. 1226-1241, December 1976.

[Denney91] Richard Denney, "Test-Case Generation from Prolog-Based Specifications,"
IEEE Software, pp. 49-57, March 1991.

[Diller90] Antoni Diller, Z: An Introduction to Formal Methods, John Wiley & Sons,
Chichester, England, 1990.

[Foster84] K. A. Foster, "Sensistive Dest Data for Logic Expresssion," ACM SIGSOFT
Software Engineering Notes, Vol. 9, No. 2, pp. 120-126, April 1984.

[Hayes86] Ian J. Hayes, "Specification Directed Module Testing," IEEE Transactions on
Software Engineering, Vol. SE-12, No. 1, pp. 124-133, January 1986.

[Higashino94] T. Higashino and G. v. Bochmann, "Automatic Analysis and Test Case
Derivation for a Restricted Class of LOTOS Expresssions with Data Parameters,"
IEEE Transactions on Software Engineering, Vol. 20, No. 1, pp. 29-42, January
1994,

[Jacky95] Jonathan Jacky, "Specifying a Safety-Critical Control System in Z," IEEE
Transactions on Software Engineering, Vol. 21, No. 2, pp. 99-106, February
1995.

[Luo94] G. Luo, A. Das, and G. v. Bochmann, "Software Testing Based on SDL
Specifications with Save," IEEE Transactions on Software Engineering, Vol. 20,
No. 1, pp. 72-87, January 1994.

[Myers79] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, New
York, NY, 1979.

45

46

[Ostrand88] Thomas J. Ostrand and Marc J. Balcer, "The Category-Partition Method for
Specifying and Generating Functional Tests," Communications of the ACM, Vol.

31, No. 6, pp. 676-686, June 1988.

|
\
|
\
|
|
|
|
|
|
:[Ramamoothy75] C. V. Ramamoorthy and Siu-Bun F. Ho, "Testing Large Software with
| Automated Software Evaluation Systems," IEEE Transactions on Sofiware
C Engineering, Vol. SE-1, No. 1, pp. 46-58, March 1975.

|

\[RappsSS] Sandra Rapps and E. Weyuker, "Selecting Software Test Data Using Data
‘ Flow Information,” IEEE Transactions on Software Engineering, Vol. SE-11,

| No. 4, pp. 367-375, April 1985.

\‘ [Sommerville92] Ian Sommerville, Software Engineering, Addison-Wesley, Workingham,
‘ England, 1992.

I

' [Spivey88] J. M. Spivey, Understanding Z, Cambridge University Press, Cambridge,
| England, 1988.

|

' [Stocks93] Phil Stocks and David Carrington, "Test Template Framework: A
! Specification -Based Testing Case Study," Proceedings of the 1993 International
Symposium on Software Testing and Analysis (ISSTA), Cambridge, MA, pp. 11-
18, June 1993.

|

“ [Weyuker94] E. Weyuker, T. Goradia, and A. Singh, "Automatically Generating Test
! Data from a Boolean Specification," IEEE Transactions on Software Engineering,
| Vol. 20, No. 5, pp. 353-363, May 1994.

APPENDIXES

47

Abstract Data Type:

Black-Box Techniques:

Cause:
Cause-Effect Graph:

Decision Table:

Effect:
Exhaustive Test:

Formal Method:

Formal Specification:

Invariant Preconditions:

Invariant Postconditions:

Postconditions:

APPENDIX A
GLOSSARY

A set of values (a domain) and a set of operations on those
values.
Software test case selection techniques that derive test cases
based on a software specification or the external behavior of
the software.
An input equivalence class or a diverse input condition.
A graph that links causes and effects.
A table in which each column specifies the causes
(conditions) under which the effects (actions) will take
place.
An output condition or a system transformation.
A test that uses all possible input values.
The use of mathematical notations, such as first-order logic
or set theory, to describe system specifications and software
designs together with the techniques of validation and
verification.

A system specification described by using a formal method.

Preconditions that always be true and are valid for all
operations of a system.

Postconditions that always be true and are valid for all
operations of a system.

Conditions that hold after an operation of a system is
executed.

48

Preconditions:

Predicates:

Schema:

Schema Predicate:

Schema Signature:

Test Case:

Test Frame:

White-Box Techniques:

49

Conditions that hold before an operation of a system is
executed.

Statements that can be either true or false.

A two-dimensional graphical specification in Z, consisting
three components: name, signature, and predicate.

A schema component that specifies relationships by defining
equations and membership predicates over the entities that
are defined in the schema signature.

A schema component that contains various declarations that
introduce system entities.

A combination of specific input and output values derived
from each test frame to test the correctness of a software
module or system.

A combination of causes (input equivalence classes or a
diverse input condition) and effects (expected results) as a
frame for developing test data.

Software test case selection techniques that derive test cases
based on the internal structure of a software module or
system. Also known as Glass-Box Techniques.

A notation for formal specifications and designs that use the
mathematical disciplines of first-order logic and set theory
to model a system.

APPENDIX B

INPUT/OUTPUT LISTINGS

Two different inputs have been used to test the tool. The first input is the
converted schema of the CAddEntry schema as described in Chapter II. The second input
is a converted schema of a birthday data entry schema, AddBirthRecord, that is shown in
Figure 34 on the next page. Each input is stored in file “dtest” before the tool is run.

The tool output shows the input specification (the converted schema), the
traversals of the constructed cause-effect graph, the test frames, and the number of
computation for deriving the test frame. The tool outputs for the two cases are shown the
next pages following the AddBirthRecord schema. An illustration of the cause-effect
graph, which was drawn from the second case graph traversal outputs, is included at the

end of this appendix (Figure 35).

50

— AddBirthRecord

Nanie, Month : seq. of char.

Day, Year: N

known : P Id

birth, birth’: Id — {Name,Month,Day,Year}
id?: Id

name? . Name

month? : Month

day? : Day

year? : Year

rep! : Report

(id? € known
#name?=1..20
year? =0..1995
(month? =Feb A
(mod(year?/4)=0 A

day?=1.29 v

mod(year?/4) # 0 A

day?=1.28) v

month? € {Apr,May,Jun,Sep,Nov} A
day?=1.30v

month? € {Jan,Mar,Jul,Aug,Oct,Dec} A
day?=1.31)

birth’= birth v {id? —> {name?month? day? year?}}
rep! = New record has been inserted’) v
@id? & known

birth’ = birth

rep! = Unknown Id) v

(#name? #1..20

birth’= birth

rep! = Invalid name') v

(month? = Feb

month? ¢ {Apr,May,Jun,Sep,Nov}
month? ¢ {Jan,Mar,Jul,Aug,Oct,Dec}
birth’= birth

rep! = Invalid month') v

(vear? = 0..1995

birth’= birth

rep! = Tnvalid year') v

(month? =Feb A

(mod(year?/4)=0 A

day?#1.29 v

mod(vear?/d) #0 A

day? #1.28) v

month? € {Apr,May,Jun,Sep,Nov} A
day?#1.30 v

month? € {Jan,Mar,Jul,Aug,Oct,Dec} A
day?#1.31

birth’ = birth

rep! = Tnvalid day")

Figure 34. Schema AddBirthRecord

51

52

CASE 1 OUTPUT:

Specification:

dom telephones subseteq members &

dom telephones' subseteq members' &

{ (name? in members &

name? mapsto newnumber? notin telephones &
telephones' = telephones union name? mapsto newnumber? &
members' = members &

rep! = 'Okay') |

(name? notin members &

telephones' = telephones &

members' = members &

rep! = 'Not a member') |

({ name? mapsto newnumber? in telephones &
telephones' = telephones &

members' = members &

rep! = 'Entry already exists'))

The graph forward traversals starting from a cause node:

(INV_CAUSE, 1) ((AND, 1) ((INV_EFFECT, 1)), (AND, 4) ((EFFECT, 5), (EFFECT, 3),
(EFFECT, 7)), (AND, 3) ((EFFECT, 5), (EFFECT, 3), (EFFECT, 6)), (AND, 5)
((EFFECT, 2), (EFFECT, 3), (EFFECT, 4)))

(CAUSE, 2) ((AND,2) ((AND, 5) ((EFFECT, 2), (EFFECT, 3), (EFFECT,4))),- (AND, 3)
((EFFECT, 5), (EFFECT, 3), (EFFECT, 6)))

(CAUSE, 3) (- (AND, 2) ((AND, 5) ((EFFECT, 2), (EFFECT, 3), (EFFECT, 4))),
(AND, 4) ((EFFECT, 5), (EFFECT, 3), (EFFECT, 7)))

** Node representation: [negation/-](<node type>, <sequence number>)

The graph backward traversals starting from an effect node:

{INV_EFFECT, 1) ((AND, 1) ((INV_CAUSE,1)))

(EFFECT, 2) ((AND, 5) ((AND,2) ((CAUSE,2) ((R,1)),-(CAUSE,3) ((R,1})),
(INV_CAUSE,1)))

(EFFECT, 3) ((AND, 3) (- (CAUSE, 2) ({(R,1)), (INV_CAUSE, 1)), (AND, 4) ((CAUSE, 3)
((R,1)), (INV_CAUSE, 1)), (AND, 5) ((AND, 2) ((CAUSE, 2) ((R,1)),- (CAUSE, 3)
((R,1))), (INV_CAUSE,1)))

(EFFECT, 4) ((AND,5) ((AND, 2) ((CAUSE, 2) ((R,1)),- (CAUSE, 3) ((R,1))),
(INV_CAUSE,1)))

(EFFECT, 5) ((AND, 3) (- (CAUSE, 2) ((R,1)), (INV_CAUSE, 1)), (AND, 4) ((CAUSE, 3)
({R,1)), (INV_CAUSE,1)))

53

(EFFECT, 6) ((AND, 3) (- (CAUSE, 2) ((R,1}), (INV_CAUSE,1)))
(EFFECT, 7) ((AND, 4) { (CAUSE, 3) ((R,1)), (INV_CAUSE,1)))

** Node representation: [negation/-] (<node type>, <sequence number>)

The graph cause constraint connections:

(R,1) { {CAUSE, 2) (CAUSE, 3))

** Node representation: [negation/-] (<node type>, <sequence number>)

True-Effect Test Frames:

Frame No. ******* Cause No. ****k*x* *hkkkkk Effect No,**rkrkkk
1 2 3 1 2 3 4 5 6 7
1 110 1111000
2 1 0 0O 1 0 1 0 1 1 0
3 1 1 1 1 01 0 1 0 1
Causes:

1 : dom telephones subseteq members
2 : name? in members
3 : name? mapsto newnumber? in telephones

Effects:

1 dom telephones' subseteq members'

2 : telephones' = telephones union name? mapsto newnumber?
3 : members' = members

4 : rep! = 'Okay'

5 telephones' = telephones

6 : rep! = 'Not a member'’

7 rep! = 'Entry already exists'

Node Values:
0 : FALSE
1l : TRUE
d : Don't care (Either TRUE or FALSE)

The Number of Computations:

Zeroes—-AND Computations
Non Zeroes-AND Computations

@ O

54

CASE 2 OUTPUT:

Specification:

{id? in known &
#name? = 1..30 &
birth year? = 0..1995 &

{birth month? = Feb &

{mod (birth year?/4) = 0 &

birth day? = 1..29 |

mod (birth year?/4) not= 0 &

birth day? = 1..28) |

birth month? in {Apr,May,Jun,Sep,Nov} &
birth day? = 1..30 |

birth month? in {Jan,Mar,Jul,Aug,Oct,Dec} &
birth day? = 1..31) &

birth' = birth union {id? mapsto
{name?,birth month?,birth day?,birth year?}} &
rep! = 'New record has been inserted'} |

id? notin known &

birth' = birth &

rep! = 'Unknown Id' |

#name? not= 1..30 &

birth' = birth &

rep! = 'Invalid name' |

birth month? not= Feb &

birth month? notin {Apr,May,Jun,Sep,Nov} &
birth month? notin {Jan,Mar,Jul,Aug,Oct,Dec]} &
birth' = birth &

rep! = 'Invalid birth month' |

birth year? not= 0..1995 &

birth' = birth &

rep! = 'Invalid birth year' |
{birth month? = Feb &
(mod(birth year?/4) = 0 &

birth day? not= 1..29 |

mod (birth year?/4) not= 0 &

birth day? not= 1..28) |

birth month? in {Apr,May,Jdun,Sep,Nov} &
birth day? not= 1..30 |

birth month? in {Jan,Mar,Jul,Aug,Oct,Dec} &
birth day? not= 1..31) &

birth' = birth &

rep! = 'Invalid birth day'

The graph forward traversals starting from a cause node:

(CAUSE, 1) ((AND, 1) ((EFFECT, 1), (EFFECT,2)), - (AND, 9) ((EFFECT, 3),
(EFFECT,4}))

(CAUSE, 2) ((AND, 1) ((EFFECT, 1), (EFFECT,2)), - (AND,10) ((EFFECT, 3),
(EFFECT, 5)))

(CAUSE, 3) ((AND, 1) ((EFFECT, 1), (EFFECT,2)),- (AND, 12) ((EFFECT, 3),

55

(EFFECT,7)))

(CAUSE, 4) ((AND, 2) ((OR, 6) ((AND, 1) ((EFFECT, 1), (EFFECT,2)))),—- (AND,11)
{ (EFFECT, 3), (EFFECT, 6)), (AND,13) ((OR,17) ((EFFECT, 3), (EFFECT, 8))))

{CAUSE, 5) ((AND, 3) ((OR,4) ((AND,2) ((OR, 6) ((AND, 1) ((EFFECT, 1),
(EFFECT,2)))))),-(AND,5) ((OR,4) ((AND,2) ((OR, 6) ((AND, 1) ((EFFECT, 1),
(EFFECT,2)))))), (AND, 14) ((OR,15) ((AND, 13) ((OR, 17) ((EFFECT, 3),
(EFFECT,8))))),- (AND,16) ((OR,15) ((AND, 13) ((OR,17) ((EFFECT, 3),
(EFFECT, 8))))))

+3) ((OR, 4) ((AND, 2) ((OR, 6) ((AND,1) ((EFFECT,1),
(EFFECT,2)))))),- (AND, 14) ((OR,15) ((AND, 13) ((OR,17) ((EFFECT, 3),
)

(CAUSE, 6) ((AND
))
(EFFECT, 8)))))

(CAUSE, 7) ((AND, 5) ((OR,4) ((AND,2) ((OR,6) ((AND,1) ((EFFECT,1),
(EFFECT,2)))))),- (AND,16) ((OR,15) ((AND,13) ((OR,17) ((EFFECT, 3),
(EFFECT,8))))))

(CAUSE, 8) ((AND, 7) ((OR, 6) ((AND, 1) ((EFFECT, 1), (EFFECT,2)))),~ (AND,11)

((EFFECT, 3), (EFFECT, 6)), (AND, 18) ((OR,17) ((EFFECT, 3), (EFFECT, 8))))

(CAUSE, 9) ((AND,7) ((OR, 6) ((AND, 1) ((EFFECT, 1), (EFFECT,2)))),-(AND, 18)
({OR,17) ((EFFECT, 3), (EFFECT, 8))))

(CAUSE, 10) { (AND, 8) ((OR, 6) ((AND, 1) ((EFFECT, 1), (EFFECT,2})))),
- (AND, 11) ((EFFECT, 3), (EFFECT, 6)), (AND,19) ((OR,17) ((EFFECT, 3),
(EFFECT,8))))

(CAUSE, 11) ((AND, 8) { (OR, 6) ((AND, 1) ((EFFECT, 1), (EFFECT,2)))),
- (AND,19) ((OR,17) ((EFFECT, 3), (EFFECT, 8))))

** Node representation: [negation/-] (<node type>, <sequence number>)

The graph backward traversals starting from an effect node:

(EFFECT, 1) ((AND, 1) ((CAUSE, 1), (CAUSE, 2), (CAUSE, 3), (OR, 6) { (AND, 2)

((CAUSE, 4) ((E,2)), (OR, 4) ((AND, 3) ((CAUSE, 5), (CAUSE, 6) ({R,1),

(R,3), {R,4))), (AND,5) (- (CAUSE, 5), (CAUSE, 7) ((R,1), (R,3), (R,4))))),
(AND,7) ((CAUSE, 8) ((E,2)), (CAUSE, 9) ((R,3), (R,4))), (AND, 8) ((CAUSE, 10)
((E,2)), (CAUSE,11) ((R,4))))))

(EFFECT, 2) ((AND, 1) ((CAUSE, 1), (CAUSE, 2), (CAUSE, 3), (OR, 6) ((AND, 2)
((CAUSE, 4) ((E,2)), (OR,4) ((AND, 3) ((CAUSE, 5), (CAUSE, 6) ((R,1),
(R,3),(R,4))}, (AND, 5) (- (CAUSE, 5), (CAUSE,7) ({R,1), (R,3), (R,4})))),
(AND, 7) ((CAUSE, 8) ((E,2)), (CAUSE,9) ((R,3), (R,4))), (AND, 8) ((CAUSE, 10)
((E,2)), (CAUSE,11) ((R,4)}))))

(EFFECT, 3) ((AND, 9) (- (CAUSE, 1)), (AND,10) (- (CAUSE, 2)), (AND, 11)

(- (CAUSE,4) ((E,2)),- (CAUSE, 8) ((E,2)),-(CAUSE, 10) ((E,2))), (AND, 12)
(- (CAUSE, 3)), (OR,17) ((AND, 13) ((CAUSE, 4) ((E,2)), (OR,15) ((AND, 14)
((CAUSE, 5), - (CAUSE, 6) ((R,1), (R,3), (R,4))), (AND,16) (- (CAUSE, 5),
-(CAUSE, 7) ((R,1),(R,3),(R,4))))), (AND, 18) ({CAUSE, 8) ((E,2)),
((R,4)))))

(EFFECT, 4) ((AND, 9) (- (CAUSE, 1)))

56

(EFFECT, 5) ((AND,10) (- (CAUSE, 2)))

(EFFECT, 6) ((AND, 11) (- (CAUSE, 4) ((E,2)),-(CAUSE, 8) ((E,2)),-(CAUSE, 10)
((E,2))))

(EFFECT, 7) ((AND, 12) (- (CAUSE, 3)))

(EFFECT, 8) ((OR,17) ((AND, 13) ((CAUSE, 4) ((E,2)), (OR,15) ((AND, 14)
((CAUSE, 5}, - (CAUSE, 6) ((R,1), (R,3}, (R,4))), (AND, 16) (- (CAUSE, 5),
- (CAUSE, 7) ((R,1), (R,3),(R,4))))), (AND, 18} ((CAUSE, 8) ((E,2)),

- (CAUSE, 9) ((R,3), (R,4))), (AND,19) ((CAUSE, 10) ((E,2)),- (CAUSE, 11)
((R,4)))))

** Node representation: [negation/-] (<node type>, <sequence number>)

The graph cause constraint connections:

(R, 1) ((CAUSE, 6) (CAUSE, 7))

(E,2) ((CAUSE, 4) (CAUSE, 8), (CAUSE, 10))

(R,3) ((CAUSE, 9) (CAUSE, 6), (CAUSE, 7))

(R,4) ((CAUSE, 11) (CAUSE, 6), (CAUSE, 7), (CAUSE, 9))

** Node representation: [negation/-] (<node type>, <sequence number>)

True—-Effect Test Frames:

Frame No. dok ok khok ok Cause No. d* ok ok ok kk ok ok deok ok oh Kk Effect NO-********

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
9 10 11

1 11 1 06 0 0 0 O 11 06 0 0 0 0 O
0 1 1

2 11 1 0 0 0 0 O 11 6 6 0 0 0 O
1 1 1

3 11 1 0 0 1 1 0 1 1 6 0 0 0 0 o
1 1 1

4 1 1 1 0 1 1 1 0O 1 1 0 0 0 0 0 O
1 1 1

5 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0O
1 0 1

6 11 1 0 0 1 1 1 1 1 0 0 6 0 0 O
1 0 1

8 11 1 1 o 1 1 ©O i1 0 0 0 0 0 O
1 0 1
9 i1 1 1 1 1 1 0 1 1 0 0 0 0 0 0
1 0 1
10 o 1 1 1 o 1 1 o ¢ 0 1 1 0 o0 0 O
1 0 1
11 1 0 1 1 0 1 1 0 0o 0 1 0 1 0 0o O
1 0 1
12 i1 1 0 0 0o 0 O o 0 1 0o 0 1 0 o
d 0 d
13 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 o0
1 0 1
14 11 1 1 0 1 o0 o0 o 0 1 0 O 0O 0 1
1 0 1
15 1 1 1 ¢ 0 O 0 O 0O 0 1 0 0 0 0 1
0 1 0O
16 1 1 1 0 1 0 0 0O 60 0 1 0 0 0 0 1
o 1 O
17 i1 1 1 06 0 0 o0 1 0O 0 1 0 0 0 o0 1
0 0 O
18 1 1 1 0o 1 0 o0 1 O 0 1 0 0 0 0 1
0 0 O
19 i1 1 1 0 0 0 0O 0O 0 1 0 O 0 0 1
0 0 O
20 1 1 1 1 1 0 0 o 0 0 1 0 0 0 0 1
0 0 O
Causes:
1 : id? in known
2 : #name? = 1..30
3 : birth year? = 0..1995
4 : birth month? = Feb
5 : mod{birth_year?/4) =0
6 : birth day? = 1..29
7 : birth day? = 1..28
8 : birth month? in {Apr,May,Jun,Sep,Nov}
9 : birth day? = 1..30
10 : birth_month? in {Jan,Mar,Jul,Aug,Oct, Dec}
11 : birth day? = 1..31
Effects:

1 : birth' =

birth union {id? mapsto
{name?, blrth _month?,birth _day?,birth year?}}

2 rep' = 'New record has been inserted’
3 birth' = birth

4 rep! = ‘'Unknown Id'

5 rep! = 'Invalid name'’

6 rep! = 'Invalid birth month'

7 rep! = ‘Invalid birth year'

8 rep! = 'Invalid birth day'

Node Values:

0 : FALSE
1 : TRUE
d Don't care (Either TRUE or FALSE)

The Number of Computations:

Zeroes-AND Computations : 170
Non Zeroes—-AND Computations : 428

58

59

S
e
D ® @ eﬁ%«'@/&l‘@'
()

' <7
P OO

e-effect graph of the schema AddBirthRecord

Figure 35. The caus

APPENDIX C

PROGRAM LISTING

The source code of the tool is stored in two files: z.h and z.c. File z.h contains the
data definitions and the structure declarations; File z.c contains the procedure codes. The

following pages show the contents of z.h and z.c, respectively.

60

J R R IR AR N A IHRA R IR IR R RE R AR IR AR RTA IR AR RNA R R R AR A ARR N AR R I AR Ak R RN NN,
Y 12220y e e Ry T F TS T2 R T2 TR T 3
File: z.h
This file contains the definition of data and the declaration of structures
used by the test frame data generator procedures.
P R R R T A TR TR TR R e A R 2 Ry R T 2R R T LRSI EE 2 2
iiitt**ii*tti*iiii***t*ittt**tit*ii*ti*l'tﬁ**tiii**t*tit**ttt*i**i***t******i**l

#define NOOPER 0

#define AND 1

#define OR 2

#idefine E 3 /* ExXclusive constraint */
#define R 4 /* Requires constraint */
f#idefine RR 5 /* Similar predicate indicator */
fidefine CAUSE 10

#define INV_CAUSE 11 /* State invariant cause */
#define EFFECT 20

fidefine INV_EFFECT 21 /* State invariant effect */

typedef struct graph_node {
int type:; /* The node type:
1: AND intermediate node
2: OR intermediate node
3: E constraint node
4: R constraint node
10: Cause node
11: Invariant cause node
20: Effect node
21: Invariant effect node */
int number; /* The sequence node number */
int scope; /* The node scope level */
struct graph_link *forw, *bakw;
/* Pointer to the first forward and
backward links */
struct graph node *next:; /* Pointer to the next sequence similar node */
} GRPNODE;

typedef struct graph_link {
int negation; /* Link negation:
0: NOT link
1: IDENTITY link */
struct graph node *node; /* Pointer to an adjacent node */
struct graph_link *next;
} LINK;

typedef struct graph header {

GRPNODE *cause; /* Pointer to the first cause node */

GRPNODE *effect; /* Pointer to the first effect node */

GRPNODE *rightmost inter; /* Pointer to the first rightmost intermediate
node */

GRPNODE *constraint; /* Pointer to the first constraint node */

int ncause, ninter, neffect:
/* The number of cause, intermediate, and
effect node */
} GRAPH;

typedef struct str 80 { /* 8tring of BO characters */
char str{80]:;
} STR 80;

61

typedef struct value boundary {

int bound type: /* The type of boundary */

int n elm; /* The element number of the value list */
STR_80 *striist: /* Pointer to a string value list */
float ‘*numlist:; /* Pointer to a numeric value 1list */
float lower:; /* The lower boundary value */

float upper:; /* The upper boundary value */

char val_type(5}; /* The boundary value type */

} BOUND_ELM;

typedef struct cause effect record {

int number; /* The sequence number of cause or effect
predicates */

char pred part{3][80]; /* The three predicate parts */

BOUND_ELM *boundary; /* Pointer to a variable boundary record */

struct cause effect record *next;
/* Pointer to the next cause (precondition)/
effect (postcondition) record */

} TBL_REC;
typedef struct table { /* The precondition (cause) and postcondition
(effect) table header */
TBL _REC *cause; /* Pointer to the first precondition predicate
record */
TBL_REC *effect; /* Pointer to the first postcondition predicate
record */
} TABLE:’

typedef struct predicate {

char part[3]([80]: /* The tree predicate parts */
int type, scope: /* The type and scope level of the predicate */
} PRED;

typedef struct operator {
int type, scope; /* The type and scope level of a logical
connective operator */
} OPER;

typedef struct scope node { /* The element of the list of the scope level
of the rightmost intermediate nodes */
int scope; /* The scope level */
GRPNODE *node; /* Pointer to an intermediate node */
struct scope node “prev; /* Pointer to the previous element */
struct scope node *next; /* Pointer to the next element */
} SCOPENODE;

typedef struct scope list {
SCOPENODE *head; /* Pointer to the first list element */
SCOPENODE *last; /* Pointer to the last list element */
} SCOPELIST:

typedef struct test frame {

int +*cause; /* Pointer to the array of cause node values */

int *inter; /* Pointer to the array of intermediate node
values */

int *derive: /* Pointer to the array of intermediate node
derivation status %/

int t“effect:; /* Pointer to the array of effect node values */

struct test frame *next; /* Pointer to the next test frame */
} TEST_ FRAME;

62

typedef struct test list {
TEST_FRAME *head; /* Pointer to the first test frame */
TEST_FRAME *tail; /* Pointer to the last test frame */
struct test_list *next; /* Pointer to the next test fame list */
} TEST_LIST;

typedef struct constraint element {
int node no; /* The related cause node number */
int type; /* The constraint type */
struct constraint element *next;
/* Pointer to the next constraint element */

} CST_ELM;
typedef struct constraint list {
CST_ELM *head; /* Pointer to the first constraint element */
CST_ELM *tail; /* Pointer to the last constraint element */
} CST_LIST;

typedef struct constrained causes element {
GRPNODE *node; /* Pointer to a constrained cause node */
struct constrained causes element *next;
/* Pointer to the next element */

} CC_ELM;

typedef struct constrained cause list {
CC_ELM thead; /* Pointer to the first constrained cause element */
CC_ELM *tail; /* Pointer to the last constrained cause element */

} CC_LIST:

63

64

VAL R R et e et e s s sasty
2222022222222ty e e e e I e R T N 2 2 2 2R TR R T2 L 2y
File: z.c.
This file contains all procedures for generating test frames from Z

specifications.
T A Y I T e T T R R P R R e R e R R ey T R Y T YT T2 T

*i*i*i*i**it*i*i******i***i*i*iii*itit*i***ﬁ*iﬁiii****i*iii**i*i**i*it*i****ti*/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

$#include "z.h"

/***tt*******t*ii**tt*ti******iﬁ**i**i**ii***t*****i****i*****i*i**i***i*i*i*iti

* PROTOTYPE
2 L R e et ettt st el et ialley)

voild print_spec() ; /* Print the tool input */

void construct_graph(): /* Construct a cause-effect graph */

int scan_schema_predicate() ; /* Scan a schema predicate and the following
connective operator */

int 1lookup_ table():; /* Look a predicate record up in a predicate
table */

int examine negation(): /* Examine the negation of a predicate %/

int insert table(): /* Insert a new record to the predicate
table */

void derive val_ boundaries(); /* Derive the boundary value of a variable
declared in a predicate */

vold set value list(); /* Set a boundary value list */

void set_single value(); /* Set a single boundary value */

void set_range values(): /* Set a boundary range value */

BOUND_ELM* alloc boundary elm(); /* Allocate a boundary element */

void add cause effect node(): /* Add a cause or an effect node in a cause-
effect graph */

GRPNODE+* create node() /* Create a graph node */

void mk_1link():; /* Link a graph node to the other node */

void place inter node(); /* Place/insert a new intermediate node */

void rm ineffect_inter(); /* Remove an ineffective intermediate node */

int count_link_number() ; /* Count the number of forward/backward links

of a node */
void maintain_rightmost inter_scplist();
/* Add a new element to the rightmost inter-
mediate node list */
void arrange rightmost inter links():;
/* Arrange the links of the rightmost inter-
mediate nodes */

vold cp_forw_link(): /* Copy the forward links of a node to
another node %/

void cp bakw_link(); /* Copy the backward links of a node to
another node */

void sub _cp link(); /* Subroutine to copy the node links */

void rm forw link(); /* Remove the forward links of a node */

void rm bakw link(); /* Remove the backward links of a node *%/

void sub_rm link(): /* Subroutine to remove a node links */

void replace rightmost inter(): /* Replace one of the rightmost intermediate
node with the new one */

void rm rightmost_inter(): /* Remove one of the rightmost intermediate
nodes */

CST_LIST* search constraints():; /* Search any constraint relation of a node */

void add constraint list(): /* Add a constraint list element */

int compare boundary(); /* Compare the boundary of a variable

declared in two different predicates */
int sub_compare boundary 1(): /* Subroutine 1 to compare a variable
boundaries */

int sub compare boundary 2(); /* Subroutine 2 to compare a variable
boundaries */

int sub compare boundary 3(); /* Subroutine 3 to compare a variable
boundaries */

int sub compare boundary 4():; /* Subroutine 4 to compare a variable
boundaries */

int sub compare boundary 5(): /* Subroutine 5 to compare a variable

boundaries */
int sub compare boundary 6(); /* Subroutine 6 to compare a variable

int

int

void

GRPNODE* search existing_ecst():

/t
/*

search_strval();
search _numval () ;
add constraint node link(); /*

/*

65

boundaries */

Search all values of one string list in
another string list */

Search all values of one numeric values in
another numeric list */

Add a constraint node to a cause-effect
graph */

Search a constraint relation in a cause-
effect graph */

void remove inter node duplication():

int

void

void

void

void

TEST_LIST *derive_pest_frame();

/t
/*

/*
/*
/*

/t
/*

compare two_inter();
print graph() ;
print_graph forw():;
print_graph bakw() ;

print _graph node() ;

Remove any intermediate node duplication
Compare the backward links of two inter-
mediate node */

Print the traversals of a cause-effect
graph */

Print the forward traversals of a cause-
effect graph */

Print the backward traversals of a cause-
effect graph */

Print a graph node */

Derive test frames from a cause-effect
graph */

*/

TEST_LIST *trace one rightmost_ inter backward()

VA
TEST_LIST *alloc test list(); /*
TEST_FRAME *add test frame(); /*

void

void

void
int

int

int

int

int

int

void

int

int

void

int

/i
/t

copy_test frame();
trace one node backward() ;

derive node input values(): /¥
derive one_ input node val():;
/*

examine forward conflict(); /*

derive effected node values():

/t

Trace a cause-effect graph starting from
one of the rightmost intermediate nodes */
Allocate a test list header */

Add a test frame to a test list */

Copy the element values of one test frame
to another test frame */

Trace a graph backward one step from a
graph node */

Derive a node input value combinations */

Derive a node input value */
Examine any conflict on a forward value
transformation */

Derive the value of effect nodes */

derive false AND input values()

/*

derive true OR input values();

/t

set zeroes AND input values();

/t

search constrained causes();
/*
set_zeroes AND cause values();

/*

Derive the input value combinations of an
AND node */

Derive the input value combinations of an
OR node */

Set a node input value combination effecting
all zeroes AND node input values */

Find constraint causes in a graph */

Set the cause value combination effecting
all zeroes AND node input values */

reset_constrained cause values():

/*

Reset the value of a graph constraint node
values */

derive other rightmost inter values();

T

Derive the value of the other rightmost
intermediate node other than the first
derived node */

derive one rightmost inter val():

/l'

Derive the value of one of the rightmost
intermediate nodes */

void removg_tes;_framq_ﬁuplication();

/*

Remove any test frame duplication */

TEST _FRAME *delete test frame(); /* Delete a test frame */

void

void print test frame():

derive effect values():

/i
/t

Derive the values of a graph effect
nodes */
Print test frames */

66

/tﬁtiiii*itiiii*iiit**tii*i*t***t*iiii***ttiit*ii*ii*iti*****itttt****tt*t*tti*

GLOBAL VARIABLES
L g e L R e 2 LY
int compute 0=0; /* Normal derivation computation */
int compute 1=0; /* All zeroes AND inputs computation */

/*i**i***it*i*ﬁ**itt***tt*i*t**t*ii*t*****i*ii**itt*iittii***ﬁ***i********i*****

* MAIN ()
* The main procedure for generating test frames from a Z specification.
R L Yy

main ()
{
FILE *fp; /* Input file */
GRAPH graph; /* Cause-effect graph */
TABLE table: /* Predicates table */
TEST_LIST *true test; /* Test frame lists */
Y4 Tt r—— e e e o e e e e e e e e
* Open the input file
*/

if ((fp=fopen("dtest" , "r"))==NULL) {
printf ("\nCan not open input file\n"):
exit(l);

}

[- ————
* Set the initial value of the graph and the table elements
*/

graph.cause = NULL;

graph.effect = NULL;

graph.constraint = NULL;
graph.iightmost_inter = NULL;

graph.ncause = 0;

graph.ninter = 0;

graph.neffect = 0;

table.cause = NULL;

table.effect = NULL;

/* - e —m—————————————
* The main processes
*/
print spec("dtest"); /* Print the specification */

construct graph(fp, &graph, &table);

/* Construct the cause-effect graph */
print_graph (&graph) ; /* Print the cause-effect graph */
true test=derive test frame(&graph, 1);

/* Derive the test frames */
print_test frame(true test, &graph, &table, 1):;

/* Print the test frames */

/t*i***i*i**i*tt**ﬁﬁ*tt*i*ii*t'*t*titt***ti***Qi**'ttQ**t*****tﬁ*tt*ttttitittﬁ**

* VOID PRINT_ SPEC()
* This procedure is used to print the input Z specification.
L L L e L T Ly
void print_ spec()
{
printf ("Specification:\n"):
printf (" =r—r——me——————x\n\n") ;
££1lush (stdout) ;
system("cat dtest"):;
print£("\n\n\n") ;

é
|
;
|
z

/**iittt*tittit*t*itt*titti**t*tﬁti*i**tt*t*tfi*t**t*tttittt****ti*tt*i**t'*t***
* VOID CONSTRUCT GRAPH()

* This procedure is used to construct the cause-effect graph by scanning

* the schema predicate of the Z specification and adding the graph components
* for each scanning of a predicate and any operator that follows the predi-

* cate.
i*i***ﬁtitﬁitttttt***t*i*tit***t**t***ii****tit*tti***it*itt*t*tt***t**tititt'*/
void construct_graph(fp, graph, table)

FILE *fp:

GRAPH *graph;

TABLE *table;

{

PRED pred; /* Predicate */

OPER oper; /* Predicate operator */

int node number; /* Cause/effect node number */
CST_LIST *constraint=NULL; /* Cause constraints list */

while (scan_schema predicate(fp, &pred, &oper)) {
/* Loop for adding the graph components
while there is a scanned predicate */

if ((node_numbeFlookup_table(table, pred)) = 0) {
/* The scanned predicate is not in the table

yet */

node number = insert table(table, pred);
if (pred.type =— EFFECT || pred.type == INV_EFFECT) {
/* The scanned predicate is an effect
predicate */

(graph~>neffect) ++:;
add cause effect node(graph, pred, node number, oper, 1)/

}
else {
/* The scanned predicate is a cause
predicate */
(graph->ncause) ++;
add cause effect node(graph, pred, node number, oper, 1);
if (graph->ncause > 1 && strchr(pred.part[0], '?') = NULL) {
/* The process for searching constraints of
the cause node and adding the graph
constraint components */
constraint=search constraints(graph->ncause, table):
if (constraint != NULL)
add constraint node link(constraint, graph):
}
}
}
else /* The scanned predicate is already in the

table */

add cause effect node(graph, pred, node number, oper, 0);

}
remove inter node duplication(graph);
/* Remove any intermediate node
duplication */

/*tt**iitttitttti*i*ttitttittit***ttt*t*t**t*i*t#**t*ti***t**tt*tt**tt'*t*tiﬁt**
* INT SCAN SCHEMA PREDICATE ()

* This procedure is used to scan a predicate and any operator that follows

* the predicate from the input specification. The procedure returns 1 if a

* predicate is scanned and 0 if no predicate is scanned.
t*tt*tt*ititt*iitﬁttittt****t**tit*****ttttt**itttitt**t****iitt*i***ttit*i**t*/
int scan_schema_ predicate(fp, predicate, operator)

FILE *fp;

PRED *predicate;

OPER *operator;

67

int i, j, ipart=0; /* Counters */

char str[80)], temp[80]: /* Working and temporary string */

static int curr scope=0; /* Current predicate or operator scope */
int prev_pred type=0; /* Previous predicate type */

2 e

* Set the initial value of the predicate and operator elements
*/

predicate->scope = curr_scope;

operator->scope = curr_scope;

operator->type = NOOPER;

for (i=0; i<=2; 1++) memset (predicate->part{i],'\0',80):

while(fscanf(fp, "%s", str) != BOF || ipart != 0) {
/* Loop for getting a predicate and any operator
that follows the predicate by scanning a
string from the input */

if (ipart=0 && (stromp(str,"in")==0 || stromp(str, "notin")=0 ||
strcmp (str,"=")=—=0 || stramp(str,"not=")==0 ||
stroemp (str,"subset")==0 || strcmp(str,"notsubset")==0 ||
strecmp (str, "subseteq")=—0 || stromp(str,"notsubseteq")=0)) {
/* The following are processes if a comparison
or membership operator is scanned:
- Copies the string to the second predicate
part
- Derives the predicate type ¥/

strepy (predicate->partil], str) ;

ipart = 2;
if (predicate->part[0][j=strlen(predicate->part{0])-1]l='1"' ||
strnemp (predicate->part[0]+), "'",1)==0)

/* The following processes are accomplished if
the end of the first predicate part is
decorated with a prime or exclamation mark */

if (prev_pred type=—INV CAUSE)
predicate->type = INV_EFFECT;
else
predicate->type = EFFECT;
else
/* The end of the first predicate part is not
decorated with a prime or exclamation mark */

if (strchr(predicate->parti0O],'?')=NULL)
/* If the end of the first predicate part is not
an input predicate */

predicate->type = INV_CAUSE;
else
predicate->type = CAUSE;

else {
/* The following processes are accomplished if
a comparison or membership operator is not
scanned */
if (str[0]i='&' && str[0]!'='|'&& str[0]!='\0") {

/* The following are processes if a predicate
operator and the end of line is not scanned:
- Decrease the predicate and operator scope
if the first character of the string is
open bracket
- Copy the string into the appropriate
predicate part
*/
while (str[0]=='(') {
/* Loop for decreasing the predicate and operator
scope and eliminating the first character of
the string */

68

69

predicate->scope--;
operator->scope--;

strncpy (temp, str+l, strlen(str)):
strecpy (str,temp) ;
}

if (predicate->part[ipart) (0] != '\0') {
/* If this predicate part is not empty */
predicate->part[ipart] [strlen(predicate->part([ipart]))=' ';
strecat (predicate->part[ipart], str):

}
else
/* This predicate part is empty */
strcpy (predicate->part(ipart], str):
str{o]l='\0"';
}
else {

/* The following are processes if a predicate
operator or the end of line is scanned:
~ 8Set the operator type
- Increase the operator scope if the end of
the string is a close bracket
- Set the current scope
*/
if (str{o]='&"')
operator->type = AND:;
else
if (str[0]l=='{"')
operator->type = OR;

while (predicate->part[2][j=strlen(predicate->part[2])-1] = ')'){
/* Loop for increasing the operator scope */
predicate->part[2][j] = '\0';
++operator->scope;
}
curr scope = operator->scope;
return(l) ;
}
}
prev_pred type = predicate->type:
/* Set the previous predicate type */
}
return(0) ;

/****tt*tittttt**iittiittt*t**ttiitt********it*i*i*ttﬁtt**t*t******t**i*t***i***
INT LOOKUP_ TABLE()

This procedure is used to search for a predicate in the predicate table.

If the same predicate is found, the procedure returns the sequence number
of the same predicate. If the negation of the predicate is found, the
procedure returns the negation number of the negation predicate.

Otherwise, the procedure returns 0.
*t*I*t*it*t******i*i**********iii***ittt*tttttt*it*i*i**tt**i********t*****i*i*/
int lookup table(table, pred)

TABLE *table:;

* % ¥ * * %

PRED pred;
{
TBL_REC *gearch; /* Current predicate in the table */
TBL _REC *templ, *temp2; /* Working records */
int match=0, /* Match indicator */
no, /* The sequence predicate number */
negation=0, /* Negation indicator */
cause rec=0; /* Cause record indicator */
[t —mm e - _— -

* Return 0 if the predicate table is empty
*/

70

if ((pred.type=CAUSE || pred.type=—INV_CAUSE) && table->cause==NULL | |
(pred. type—EFFECT || pred.type=—INV_EFFECT) && table->effect=—NULL)
return (0);

/*= —_—— S - _—
* Initialize the current table predicate to be compared
*/

if (pred.type=—CAUSE || pred.type=—INV_ CAUSE) {

search = table->cause;
cause rec=1;

}

else

search = table->effect;

do {
/* Searching loop */

if (strcmp(search->pred part[0], pred.part[0])==0) {
/* If the first part of the two predicate are the
same */

1f (strcmp(search->pred part[2], pred.part(2])==0)
/* If the third part of the two predicate are the
same */

if (strcmp(search->pred part{l], pred.part[1])=0)
/* The second part of the two predicate are also
the same */
match = 1;
else
/* If the second part of the two predicates are
not the same, examine the negation between
these parts */
match = examine negation(search->pred part[l], pred.part(1]):

else
if (strcmp(search->pred part[l], pred.part[1])=0 ||
strcmp (search->pred part[l], "in")=—=0 &&
strstr (pred.part{l], "in") {=NULL) {

/* 1f the second part of the two predicate are the
same or the two predicate are specify the set
membership, compare the boundaries of the
variable specified by the two predicates. If
the two boundaries are the same, the same or
the negation of the predicate is found. */

/* Derive the boundary value stated by each
predicate */

if (cause_rec)
templ = search;

else {
templ = (TBL REC *) malloc (sizeof(TBL REC));
strcpy (templ->pred part[0], search->pred part{0]):;
strcpy (templ->pred part{l], search->pred part[1]):
strcpy (templ->pred part[2], search->pred part[2]);
derive val boundaries(templ) :

}

temp2 = (TBL_REC *) malloc (sizeof (TBL_REC)):

strcpy (temp2->pred part[0], pred.part([0]);

strecpy (temp2->pred part[l], pred.part[l]):

strcpy (temp2->pred part[2], pred.part(2]):

derive val boundaries(temp2) ;

/* Compare the two boundaries */
if (compare boundary(templ->boundary, temp2->boundary)=RR)
if (strcomp(pred.part[l], "notin")==0)

match = 2;
else
match = 1;

/* Free the working space */
1f (!cause rec) {

if (templ->boundary->numlist)
free (templ->boundary->numlist) ;
if (templ-~>boundary->strlist)
free (templ->boundary->striist):;
free (templ->boundary)
free(templ) ;
}
if (temp2->boundary->numlist)
free (temp2-~->boundary->numlist) ;
if (temp2->boundary->strlist)
free (temp2->boundary->strlist) ;
free (temp2->boundary) ;
free (temp2) ;
}
}
no = search->number;
search = search->next;
} while (match=—=0 && search != NULL):

if (match = 0)
return (0);
else
if (match==1)
return (no):
else
return (-no):;

P L L e e e T e L
* INT EXAMINE NEGATION ()

* This procedure is used to examine the negation between two comparison or

* set membership operators. If one operator is the negation of the other,

* then the procedure returns 2. Otherwise the procedure returns 0.

hhkh kR ke hkhh Rk hddddd ok ok kkh o dddkdkdkded ok khddkhkkkhkddddhkhhhd ke kkkkhdddkhhhhddds/
int examine negation(pred search, pred in)

char *pred search, *pred in;

{

if (strncmp(pred search,"in",2)==0 && strncmp(pred in,"notin",5)=0 ||
strncmp (pred_search,"=",1)==0 && strncmp (pred_in,"not=",4)=—0 ||
strnamp (pred_search,">",1)==0 && strncmp(pred in,"<=",2)==0 ||
strncmp (pred_search,"<=",2)==0 && strncmp(pred in,">",1)=0 ||
strncmp (pred_search,">=", 2)==0 && strncmp(pred in,"<",1)==0 ||
strncmp (pred_search,"<",1)==0 && strncmp(pred in,">=",62)==0 ||
strnomp (pred search, "subset",6)==0&& strncmp (pred in,"notsubset",h 9)==0)
return(2) ;

else
return (0) ;

PR e L e e e a s e e e a
INT INSERT TABLE()

This procedure is used to insert a new record (predicate) into the predicate
table. If the new record is same as the input predicate, the procedure
returns the sequence number of the new record. If the new record is the
negation of the input predicate, then the procedure returns the negation

of the record number.

T L L L T e e 2 e sl s
int insert table(table, pred)

TABLE *table;

* % % ¥ * *

PRED pred;

{
TBL_REC *prev, *curr, *new; /* Previous, current, and new record */
int negation=0; /* Negation indicator */
Jh e e e

* Allocate a new record and stores the first and third predicate
* parts

71

72

>/
new = (TBL REC *) malloc (sizeof (TBL_REC));
strcpy (new->pred part[0], pred.parti0]l):
strcpy (new->pred part[2], pred.part(2]);
new->boundary = NULL;
new->next = NULL;

* Store the second predicate part
*/
if (strncomp (pred.part[l],'not”,3)=0) {

/* If the beginning of the second part of the
input predicate is a string "not", then
eliminates the string "not" and sets the
negation indicator */

strepy (new->pred part[l], pred.part[1]+3);
negation = 1;

}

else
strcpy (new->pred part{l], pred.part[1]):

/* - —— ————
* The insertion of a new record into the cause or effect table
*/
if ((pred.type=—CAUSE || pred.type==INV_CAUSE) &&
(curr = table->cause)==NULL ||
(pred. type==EFFECT || pred.type==INV_EFFECT) &&
(curr = table->effect)=NULL) {
/* The cause or effect table is empty */

if (pred.type==CAUSE || pred.type=—INV_CAUSE)
/* Insert the new record into the cause table,
if the predicate type is CAUSE or
INV_CAUSE */
table->cause = new;
else
/* Insert the new record into the effect
table, if the predicate type is EFFECT */
table->effect = new;
new->number = 1; /* Sets the new record number */
}
else {
/* The insertion of the new record if the
table is not empty */

do {
/* Loop for getting the last record in the
table */
prev = curr;
curr = curr->next;
} while (curr != NULL):;
prev->next = new;
new->number = prev->number + 1;
}

if (pred.type=—=CAUSE)

/* If the predicate is a cause predicate,
set any variable value boundaries stated
in the cause predicate */

derive val boundaries(new) ;

/* - -
* Return the process result code
*/

if (negation)

return (-new->number) ;
else
return (new->number);

P L e e s d g
* VOID DERIVE VAL BOUNDARIES ()

* This procedure is used to add the table record with any variable boundary

* information stated in the predicate.

L e e s Ty}
void derive val boundaries(rec)

TBL_REC *rec;

{

if (strstr(rec->pred part(l], "in") !=NULL &&
strncmp (rec->pred part[2], "{", 1)=0)

/* If the variable (stored as the first
predicate part) is a set member, call the
procedure to set the list of the member */

se;;value_list(rec);
else
if (strcmp(rec->pred part[l], "=")==0 &&
strstr(rec—>pred_part[2] , " .. ")==NULL)

/* If the variable is equal to a certain
value, call the procedure to store the
value */

set_single value(rec);
else
if (atof(rec—>preq_part[2])!=0 ||
strcmp (rec->pred part[2],"0")==0 ||
(stromp (rec->pred part[l], "=")==0 &&
strstr(rec->preq_part[2],"..")!=NULL))
/* If the variable is in a certain value
range, call procedure to store the lower
and/or the upper boundary value(s) */

set_range values(rec);
else
if (strcmp(rec->pred part(1l],"in")=—0 &&
(stromp (rec->pred part(2],"R")==0 ||
stromp (rec->pred part[2], "2")==0 ||
stromp (rec->pred part[2], "N")==0 ||
strcomp (rec->pred part{2], "N1")==0)) {
/* If the variable value is in a certain
number type, stores the boundary type */

rec->boundary = alloc_boundary elm(6):
strcpy (rec->boundary->val type, rec->pred part[2]):

A L e L I T
* VOID SET VALUE LIST()
* This procedure is used to derive and record the member list of a value

* set.
t*iiitittt'iiiﬁw**tﬁﬂ****ttt*t***i*iﬁ*ttt***ﬁ****’t***w*ttﬁ***t*t't*t*ttt*t/

void set value list(rec)
TBL_REC *rec;

{
char set[B80), str[B80], *p; /* Working strings and a character pointer */
int i=0, n; /* Counters */
[¥ e e e e e
* The process to obtain the number of the set member
*/

strepy(set, rec->pred part([2]+1);

set[strlen(set)-1]='\0"';

for (p=strtok(set,","), n=1; p != NULL; n++)
p = strtok('\0', ",");

/* ——————————————— e
* Get the first member

*/

73

strcpy (set, rec->pred part[2]+1):
set[strlen(set)-1}1='\0";
p=strtok(set,”,");

A T T rara, e ——— -
* The process to set the member list

*/
if (atof(p) = 0 && stramp(set, "0") !'= 0) {

/* The following processes are accomplished
if the value set is a set of strings */

rec->boundary = alloc boundary elm(1);
rec->boundary->strlist= (STR 80 *) malloc (n * sizeof (STR 80));
do {
/* Loop to obtain a member of the set and to
store the member as the boundary list
element */

strcpy (str,p) ;

while (strncmp(str," ",1)=0)strcpy(str, str+l):
while (str[strlen(str)-1]J== ' ') str[strlen(str)-1]1='\0';
strcpy (rec->boundary->strlistii] .str, str);
p = strtok('\0', ",");
i++;
} while (p!=NULL):

}

else {

/* The following processes are accomplished

if the value set is a set of numbers */
rec->boundary = alloc boundary elm(2);
rec->boundary->numlist= (float *) malloc (n * sizeof(float)):
do {

/* Loop to obtain a member of the set and to
store the member as the boundary list
element */

rec->boundary->numlist[i]=atof (p) ;
if (strcamp(rec->boundary->val type,"N")==0 && strstr(p,".") !=NULL)
strcpy (rec->boundary->val_ type,"R")
p = strtok('\0', ",");
144
} while (p!=NULL):;
}
/* mmmmmmmmmes --- -
* Set the number of the boundary list element
*/

rec->boundary->n elm = n;

/ttt****ti*t**t*-ﬁtttt*tttttt*tttQ*itiﬁ*ti*tﬁit**iit*i**i*ti*t***tt*t*******tt***
* VOID SET_ SINGLE_VALUE ()

* This procedure is used to derive and record the value of the variable

» stated in the predicate.
ti*itt*****t*t*i't**t*tt*t*tﬁ*tt*t*l'**tt*tt*t*ttt*t*t*t*t*ti**tt*tttt*t*ttt*t*t/
void set single value(rec)

TBL_REC *rec:;

{

if (atof(rec->pred part(2])== 0 &&
stromp (rec->pred part[2], "O")!=0) {
/* The value is a string */

rec~->boundary = alloc_boundary elm(l):
rec->boundary->strlist= (STR 80 *) malloc (sizeof (STR 80)):
strcpy(rec->boundary->str11st[0] str, rec—>pred_part[2]),
}
else {
/* The value is a number */

rec->boundary = alloc _boundary elm(2);

rec->boundary->numlist= (float *) malloc (sizeof(float)):;
*rec->boundary->numlist= atof (rec->pred part(2]):
if (stromp(rec->boundary->val_type,"N")=0 &&
strstr(rec->pred part{2],".") {=NULL)
strcpy (rec->boundary->val_type,"R") ;
}

/* Set the element number of the boundary

rec->boundary->n elm = 1:;
list */

P L e e L e L T
* VOID SET RANGE VALUES ()

* This procedure is used to derive and record the lower and/or upper

* boundary of the variable stated in the predicate

L e L g L e e A ey
void set range values(rec)

TBL REC *rec;

{
char *p, str[80], lower_ str[40], upper_ str[40];

float upper, lower;

if (stromp(rec->pred part[l], ">")=0) {
/* Set the lower boundary if the comparison

operator is ">" */

rec->boundary = alloc_boundary elm(3):
rec->boundary->lower= atof (rec->pred part[2])+0.000001;
if (strstr(rec—>pred_part[2],".")!=NULL)
strepy (rec->boundary->val_type,"R") ;
}
else

if (strcmp(rec->pred part[l], "<")==0) {
/* Set the upper boundary if the comparison

operator is "<" */

rec->boundary = alloc boundary elm(4):

rec~->boundary->upper= atof (rec->pred part[2])-0.000001;

if (strstr(rec->pred part{2],".") !=NULL)

strcpy (rec->boundary->val_type,"R") ;

}
else

if (stromp(rec->pred part(1l], ">=")==0) {

/* Set the lower boundary if the comparison

operator is ">=" %/

rec->boundary = alloc boundary elm(3):;
rec->boundary->lover= atof (rec->pred part[2]);
if (strstr(rec->pred part[2],".") !=NULL)
strepy (rec->boundary->val_type,"R") ;
}
else
if (stramp(rec->pred part[l], "<=")==0) {
/* Set the upper boundary if the comparison
operator is "<=" %/

rec->boundary = alloc boundary elm(4):
rec->boundary->upper= atof (rec->pred part[2]);
if (strstr(rec->pred part[2],".") !=NULL)
strcpy (rec->boundary->val_type,"R"):
}

else (

/* Observe the lower and upper boundary of
the range stated in the third predicate

part */
strcpy(str, rec->pred part(2]):
p = strtok(str, "..");

strepy(lower_str, p);
strepy (str, rec->pred part[2]):

75

76

strcpy (upper_str, str+strlen(lower str)+2);

lower = atof (lower_str) H

upper = atof (upper_str):

if ((lower != 0 || strcmp(lower str,"0")==0) &&

(upper = 0 || strcmp(upper__str,"O")=0)) {
/* Set the lower and upper boundary if the

third part of the predicate is a range of
numbers */

rec->boundary = alloc boundary elm(5) ;
rec->boundary->lower= lower;
rec->boundary->upper= upper;
if (strstr(lower_ str,".")!=NULL ||
strstr(upper_str,".") !=NULL)
strepy (rec->boundary->val_type,"R"):

PR e L e L e
* BOUND ELM *ALLOC BOUNDARY ELM()

* This ;rocednre is used to allocate and initialize a boundary element of a

* record of the cause predicate table.
L L L e I LY
BOUND_ELM *alloc boundary elm(bound_ type)

int bound type:;

{
BOUND_ELM *new;

new = (BOUND_ELM *) malloc (sizeof (BOUND_ ELM));
new->strlist = NULL’
new->numlist = NULL;
new->bound type = bound_type;
if (bound type==1)
strcpy (new->val type,"STR");
else
stropy (new->val type,"N");/* Default numeric type */
return (new) ;

/iii*iit*ittt*ttttti****tittttﬁt*tiﬁ'ﬁ'ﬁ**ttﬁﬁi*i***t*tttttit*it*ttt*ttﬁ*tititt*tt
* VOID ADD_CAUSE EFFECT NODE()

* This procedure is used to link a new or an existing cause/effect (predicate)
* node with a new or an existing intermediate (operator) node of the cause-

* effect graph.
L R L T Ty

void add cause effect node(graph, pred, node number, oper, add node)
GRAPH *graph;

PRED pred;

int node number, add node;
OPER oper;

{

static GRPNODE *prev inter=NULL, *last cause=NULL,
*last effect=NULL, *last rightmost inter=NULL,
*rightmost inter=NULL:;
/* Intermediate node that is connected to
(an) effect node(s) */

static SCOPELIST *rmi_scope=NULL;
/* Right most intermediate node scope list */
static PRED prev_pred;
static OPER prev_oper;
int negation=0;
GRPNODE *new ce, *curr ce, *new_inter, *curr inter;

/* -

* Set negation indicator
*/
if (node number < 0) {
node number = -node number;
negation = 1i;
}

[Jp— gy
* Determine the current cause/effect node to be linked
*/

if (add node) {

/* A new node is required */

new _ce = create node(pred.type, node number, 0);
if (pred.type == CAUSE || pred.type= INV_CAUSE) {
/* Link the new node to the graph-cause
link list */
if (last cause=NULL)
graph->cause = new_ce;
else
last cause->next = new_ce;
last_cause = new_ce;
}
else {
/* Add the new node to the graph-effect
link list */

if (last effect==NULL)
graph->effect = new_ce;
else
last effect->next = new_ce;
last effect = new_ce;
}
curr_ce = new_ce;
}

else {
/* Search an appropriate existing node to be

linked */

if (pred.type==CAUSE || pred.type=—INV_CAUSE)
curr ce = graph->cause;

else
curr ce = graph->effect;

while (curr ce->number != node number) curr ce = curr_ce->next;
}
/*= e - -
* Determine the current intermediate node to be linked
*/

if (pred.type=—INV CAUSE || pred.type==CAUSE && oper.type!=NOOPER &&
(last_cause=—NULL || oper.type!=prev oper.type ||
prev_pred.type = EFFECT || prev pred.type == INV_EFFECT ||
pred. scope < prev_oper.scope)) {
/* A new intermediate node is reguired */

(graph->ninter) ++;
nevw_inter = create node (oper.type,graph->ninter,oper. scope) ;
curr_inter = new_inter;
if (rightmost inter=NULL || prev pred.type == EFFECT ||
prev_pred.type == INV_EFFECT)
rightmost_inter = curr inter;

else
/* Use the previous node */

curr_inter = prev inter;

2 - —_— -
* Link the cause/effect and the intermediate nodes
*/

if (pred.type = CAUSE || pred.type = INV_CAUSE) {

/* Link a cause node %/

if (prev_inter != NULL && prev_inter != curr inter &&
prev_pred.type = CAUSE) {
/* The previous node is a cause node and
the current and previous intermediate node
are different */

if (pred.scope = prev inter->scope && prev_inter->type=—=AND) {
/* Link the current cause node with the
previous intermediate AND node; call a
procedure to link the current intermediate
node and the other intermediate nodes */

mk_link(curr_ce, prev_inter, negation);

place_inter node(graph, prev_inter, &curr_ inter, &rightmost inter);
}
else {

/* Link the current cause node with the
current intermediate node; Link the current
intermediate node and the previous
intermediate nodes */

mk_link (curr ce, curr_inter, negation);
mk_link(curr inter, prev_inter, 0):

else
/* The previous and current intermediate node
are the same */

mk_1link (curr ce, curr_ inter, negation):;

else {
/* Link an effect node */

if (prev_pred.type=—CAUSE || prev pred.type=INV_CAUSE) ({
/* The following are processes if the previous
node is a cause node:
~ Add an element to the graph rightmost
intermediate node list
- Remove any ineffective previous
intermediate AND node
- Add an element to the rightmost
intermediate scope list
*/

if (last_rightmost_ inter==NULL)
graph~>rightmost inter = rightmost inter;
else
last rightmost_inter->next = rightmost_inter:;

last rightmost inter = rightmost_ inter:;

maintain rightmost intexr scplist(&rmi_scope, rightmost_inter) ;
rightmost inter->scope = prev_oper. scope;
mk_link (rightmost_inter, curr_ce, negation):
' /* Link the rightmost intermediate node and
the effect node */
if (rightmost inter != prev inter &&
count_link_ number (prev_inter->bakw)==1 &&
count_link number (prev_inter->forw)=—1 &&
prev_inter->type == prev_ inter->forw->node->type) {
m_ineffect inter(prev_inter);
prev_inter = NULL;
}
}
else
mk_link(rightmost inter, curr ce, negation);
/* Link the rightmost intermediate node and
the effect node */

78

79

L et et D e S
* Check if this is the last call for this procedure. If so,
* then call a procedure to arrange the rightmost intermediate
* node links. Otherwise, set the working variables.

*/

if (rmi_scope->head != rmi_scope->last && last rightmost inter->scope < 0 &&
oper.scope—0 && oper.type=—NOOPER)
arrange rightmost inter links(rmi_scope, graph):
else {
if (prev_inter != curr_inter)
prev_inter = curr_inter:;
Prev_oper.scope = oper.scope;
prev_oper. type = oper.type;
prev_pred.type = pred.type;

/i**ii*i*****tiiti**t**i*****i*ti********i**i*****ti*ﬁ*i****ii*iitt**t*t**iii’k**

* GRPNODE* CREATE NODE ()
* This procedure is used to allocate and initialize a new graph node.
L g e L e L L L Y
GRPNODE* create node(type, number, scope)
int type, number, scope;
{

GRPNODE *new;

new = (GRPNODE *) malloc (sizeof (GRPNODE)) ;
new->number = number;

new->type = type:

new->scope = scope;

new->forw = NULL:
new->bakw = NULL;
new->next = NULL;
return (new) ;

VAR L R e e e L e e e el o
* VOID MK LINK()

* This procedure is used toc make two direction (forward and backward) links

* between two graph nodes.

R L e I L R e a2 ey
void mk_link(node 1, node 2, negation)

GRPNODE *node 1, *node 2;

int negation:
{
LINK *new_link, *curr;
int i;
4 T T - - - _——
* Make the forward link (from the node 1 to the node 2)
*/

nev_link = (LINK *) malloc (sizeof(LINK)):
nev_link->negation = negation;
nevw_link->next = NULL;
if (node 1->forw == NULL)
node l->forw = nevw_link;
else {
curr = node_ l->forw;
while (curr->next != NULL) curr=curr->next;
curr->next = new_link:;

}

new_link->node = node 2;

/* _ ———— - - i
* Make the backward link (from the node 2 to the node 1)
*/

new_1link = (LINK *) malloc (sizeof (LINK))
nev_link->negation = negation;

new_link->next = NULL:
if (node_ 2->bakw == NULL)
node 2->bakw = new_link;

else |
curr = node 2->bakw;
while (curr->next != NULL) curr=curr->next;

curr->next = new_link;

}
new_link->node = node 1;

/**i*i***ﬁt**t*i*t*t*tiiiﬁ*iitﬁii*ﬁ****iii***i*****tt*i***i*t***ti*it*ﬁi*****t**

* VOID PLACE_INTER NODE()
* This procedure is used to arrange the links of a new intermediate node and

* the other intermediate nodes.
L A L e e I I

void place inter node(graph, leftmost inter, new, rightmost_ inter)

GRAPH* graph:;
GRPNODE *leftmost inter, **new, **rightmost inter;

{
GRPNODE *curr, *prev;

/*= - _—— J—
* Search (an) intermediate node(s) in the graph to be linked with
* a new inter node
*/
curr = leftmost inter;
prev = NULL;
while (curr->forw != NULL && (curr->scope < (*new)->scope ||
curr->scope==(*nevw) ->scope && (*new)->type==OR && curr->type=AND)) {
/* Loop while the scope of the inter node is
greater than the scope of the search node
and the next forward node is not NULL */
prev = curr;
curr = curr->forw->node;
}

if ((*new)->type==curr->type && (*new)->scope=—=curr->scope) {

/* The current and the new intermediate node
have the same scope and type; Free the
new intermediate node */

free(*new) ;

*new = curr;

graph->ninter--;
}

else {
/* Insert the new inter node */

if (curr->scope > (*new)->scope) {

/* The current intermediate node scope is
greater than the new inter mediate node
scope */

rm_forw_link (prev);

mk_link (prev, *new, 0);

mk_}ink(*new, curr, 0);
}

else {
/* The current intermediate node scope is

less than the new intermediate node scope */

if (curr->forw != NULL) {

mk_link(*new, curr->forw->node, 0);

rm _forw_link (curr) ;
}
mk_link (curr, *new, 0);
if (curr==*rightmost inter)

*rightmost inter = *new;

80

/ttt***itt****i**tt***t*ii***t*itti****ttt*i*tt*tﬁ***t*tt*it*itt**t***i**t*tﬁtt*

* INT COUNT_ LINK NUMBER()

* This procedure is used to count the number of one direction node links.
*****tt*ititt*t**tt*iiit***tit**it**tiitii*tit'kii***iit*tttt*ittﬁit***iitttiitt/
int count_link_ number (link)

LINK *link;

{
int count=0:
while (link != NULL) {
++count;
link = link->next;
}
return (count) ;
}

FAa 22 e e e e R L e L L e L 2]
* VOID RM INEFFECT INTER()

* This procedure is used to remove an ineffective intermediate node that only
* be linked to one backward node and one forward node and the type of the

* node and the forward node are the same.

AR TR KRR AT E RN IR AR R IR R AR RN R R KRR R R XA A AR RA R RN NI RA IR IR T RN,/
void rm_ineffect_inter (node)

GRPNODE *node;

{
LINK *flink, *blink;

flink = node->forw;

blink = node->bakw;

mk_link(blink->node, flink->node, abs(blink->negation-flink->negation))
free(£flink) ;

free(blink) ;

free(node) ;

PR L L e e e e T 2
* VOID MAINTAIN RIGHTMOST INTER SCPLIST ()

* This procedure is used to add a new element to the rightmost intermediate

* scope list.

P L g g e A I 2L ys
void maintain rightmost inter scplist(rmi_scope, rightmost inter)

SCOPELIST **rmi_scope;

GRPNODE *rightmost inter;

{
SCOPENODE *new_scp;
[——
* Allocate and initialize a new scopelist element
*/

new_scp =(SCOPENODE *) malloc (sizeof (SCOPENODE)) :;
new_scp->scope = rightmost inter->scope;
nevw_scp->node = rightmost inter;

new_scp->next = NULL;

/*
* Add the element to the end of the list
*/
if (*rmi_scope == NULL) {
/* The list is NULL */

*rmi scope = (SCOPELIST *) malloc (sizeof (SCOPELIST));
(*rmi_scope) ->head = new_scp;
(*rmi_scope)->last = (*rmi_ scope)->head;
new_scp->prev = NULL;
}
else {
/* The list is not NULL */

(*rmi_scope) ->last->next = new_scp;

81

new_scp->prev = (*rmi_scope)->last;
(*rmi_sccpe) ->last = new_scp;

/t***iiit*******iﬁ*tti*i**ii*i**ii*tii*t*ti*t*****it*iﬁi**t***i**t***i*iii***t*t
VOID ARRANGE RIGHTMOST_ INTER LINKS ()

This procedure is used to arrange any link between any "global" rightmost
intermediate node with any effected rightmost intermediate node. The right-
most intermediate scopelist that records the working scope relation among
the rightmost intermediate nodes is used to make this arrangement.
R L L e Y
void arrange rightmost inter links(rmi_scope, graph)

SCOPELIST *rmi_scope;

GRAPH

* % * *

*

{

*graph;

SCOPENODE *curr_sc, *prev_sc;

int

done_scope, bkw_c curr, bkw_c higher;

GRPNODE *new_rmi, *curr_ rmi;

while

(rmi_scope->head != NULL) {
/* Loop until the scope list is empty */

/* Set the working variables; The current scope
element is the last element of the list. */

curr sc = rmi_scope->last;
curr rmi = curr_ sc->node;
done_scope = curr_sc->scope;
prev_sc = curr_sc;

do

/* Process loop to find any previous scope list
element that effects the current element, i.e.,
any previous element that has greater scope
number than the current element and the previous
effect elements; Based on their effect scopes,
link the intermediate nodes that are pointed to
by the current element with intermediate nodes
that are pointed to by the effect elements. */

/* Search the effect element */
prev_sc = prev_sc->prev;
while (prev_sc->scope <= done_ scope) prev_sc = prev_sc->prev;
if (prev_sc->scope != prev_sc->prev->scope)
done_scope = prev_sc->scope;

/* Arrange the links necessary to connect the
rightmost intermediate node pointed to by the
current element and the rightmost intermediate
node pointed to by the effect element */

bkvw_c curr=count_ link number (curr_: rmi->bakw) ;
if ((bkw c_ curr=conm: link number(curr _rmi->bakw)) > 1)

/* The current rightmost intermediate node has more
than one backward links; Inserts the new
rightmost intermediate node between the current
right most intermediate node and the effect
node(s) that previously is/are connected to the
current rightmost intermediate node; Replace the
current rightmost intermediate node by the new
rightmost intermediate node */

(graph->ninter) ++;

new_rmi=create_node (AND, graph->ninter, 0);

cp_: forw link(new rmi, curr rmi);

rm_fozw_link (curr_rmi) H

mk_link(curr rmi, new_rmi, O);

replace rightmost inter(curr rmi, new_rmi, graph):;
curr_rmi = new_rmi;

/* Link the (new) current rightmost intermediate
node and the effect node */

82

if ((bkw_c_higher=count_ link number (prev_sc->node->bakw)) = 1) {

- /* The rightmost intermediate node pointed to by the
effect element has only one backward link; Copy
the forward links of the effect rightmost inter-
mediate node to the current rightmost intermediate
node; If the forward node of the effect rightmost
intermediate node is not an effect invariant node,
copies the backward links of the effect rightmost
intermediate node to the current rightmost
intermediate node */

if (prev_sc->node->forw->node->type!=INV_EFFECT)
cp_forw_link(curr rmi, prev_sc->node) ;
cp_bakw_link{(curr rmi, prev_sc->node);
}
else {

/* The rightmost intermediate node pointed to by
the effect element has more than one backward
link; Link the current rightmost intermediate
node and the effect rightmost intermediate node;
Copy the forward links of the effect rightmost
intermediate node to the current rightmost
intermediate node */

mk_link (prev_sc->node, curr rmi, 0);
cp_forw link(curr rmi, prev sc->node);
}

if (prev_sc = curr_sc->prev) {

/* The previous(effect) element is directly linked
to the current element */

if (bkw_c higher = 1) {

/* The rightmost intermediate node pointed to by
the effect element has only one backward link */

if (prev_sc->node->forw->node->type!=INV_EFFECT) {

/* The node pointed to by the forward link of the
effect rightmost intermediate node is not an
invariant cause node; Removes the rightmost
intermediate node (all links of the effect
rightmost intermediate node have been copied
before) ; Remove the forward link of the effect
rightmost intermediate node and remove the
element of the graph rightmost intermediate 1list
that links to the effect rightmost intermediate
node */

rm_forw_ link(prev_sc->node) ;

rm bakw_link (prev_sc->node) ;
rm_rightmost inter (prev_sc->node, graph);
free(prev_sc->node) ;

else {

/* The rightmost intermediate node pointed to by
the effect element has more than one backward
link; Remove the forward link of the effect
rightmost intermediate node and remove the
element of the graph rightmost intermediate node
list that links to the effect rightmost
intermediate node */

rm_forw_;ink(prev;sc—>node);
rm rightmost inter(prev_sc->node, graph);

/* Remove the previous element */
if (prev_sc==rmi_ scope->head) {
rmi_scope->head = NULL;
rmi_scope->last = NULL;

}

else {
prev_sc->prev->next
prev_sc->next->prev

pPrev_sc->next;
prev_sc->prev;

free(prev_sc);

}
} while (rmi_scope->head != NULL && prev_sc != rmi_scope->head);
Y T _—— J—
* Remove the current scope list element
*/

if (rmi_scope->head != NULL)
rmi_scope->last = curr_sc->prev;
free(curr_sc);

/ti***ti*****ti****i*t***t*'tit*ttit***i******ttttttittitt**i*ti'*titi***i*t***t

* VOID CP_FORW_ LINK()
* This procedure is used to copy any forward link of a node to another node.
R e i e e ey
void cp_forw_link(d node, s node)
GRPNODE *d node, *s node;
{
sub cp_link(d node, s node, d node->forw, s node->forw):
}

/**t*iﬁ****ti*tt**iiiiiit*it*tt*i*i***i*t***t*****ttﬁ*tt*ii***tti*itii*'*ttiti**

* VOID CP_BAKW_LINK()
* This procedure is used tc copy any backward link of a node to another node.
R R et ey
void cp bakw_link(d node, s_node)
GRPNODE *d node, *s_ node;
{
sub cp_link(d node, s node, d node->bakw, S node->bakw) ;
}

/*******tt*t*ttt*tt**ttti**ttttttt*tt*tttt**tttttwtttttt**tt*t*tttttt*tt*tt't'it
* VOID SUB_CP_LINK()
* This procedure is a subroutine called by "cp_forw_link" and "cp bakw_link"
* to copy one direction links of a node ("source node") to another node
* ("destinatiocn node") .
*****tti**i*itit*ttttttittti*ttttﬁttitti*t*tttttitiit**ttti*tttttttttt't*it*t*i/
void sub_cp link(d node, s node, d link, s _link)
GRPNODE *d node, *s node;
LINK *s link, *d link;
{
int forw=0;
LINK *curr_s link, *curr_d link, *prev_d link=d link;

o e ————————
* Determine link direction

*/

if ((curr_s_link=s link) == s node->forw)

forw=1;

Y2 T TSI - cmm—m——ccc -
* The copying process
*/

while (curr_ s link != NULL) {
/* Loop for all of the determined direction links
of the source node:

- Observe if the connection to the node linked
by the current source node link is already
exist at the destination node,

- Copy the current source link if the connection
does not exist. */

for (curr_d link=d link; prev_d link != NULL && curr _d link != NULL;
curr d link=curr & link->next)
if (curr_s link->node->number==curr_d link->node->number &&
curr s link->node->type == curr_d_ link->node->type)

84

/* The connection is already exist at the
destination node */
break;

if (prev_d link==NULL || curr_d 1link=NULL)
/* The connection does not exist at the destination
node, copy the node link */
if (forw)
mk_link (4 node, curr s link->node, curr_s_link->negation);
else
mk_link (curr_s link->node, d node, curr_ s_link->negation);

curr_s_link = curr_s_link->next;

/ii*i*ttit't*i**tit***it*****iitit**t*ii****t**i*i**i**ittttttt****it**tt****i*t

* VOID RM FORW LINK()
* This procedure is used to remove all forward links of a node
ti’*ﬁittti*tt*t**i*t***t*******t*tii**ttti*ti*******t*tt*****t*i*iiittt*t**/
void rm forw_link (node)
GRPNODE *node:;
{
sub_rm link(node, &(node->forw)):;
}

/it*******'*ittitt***ﬁiitt*tit****titii********i**tii**ii*tti'i*t**titt*t**'tt**

* VOID RM _BAKW LINK()
* This procedure is used to remove all backward links of a node
R g e e e L e L LY
void rm _bakw_link (node)
GRPNODE *node;
{
sub_rm _link (node, & (node~->bakw)) ;
}

A L L e e T L
* VOID SUB_RM LINK()
* This prozedure is a subroutine called by "rm forw link" and "rm bakw_link"
* to remove all of the specified direction links of a node. - -
R L L e L g e ety
void sub rm link(node, first 1link)
GRPNODE *node;
LINK **first link;
{
LINK *cuzr_iq_link, *prev_in link, *out link;
GRPNODE *] node;
int forw=0:;

[- e — e —————
* Determine the link direction

*/
if (*flrst_link=node—>forw)

forw=l;

/* e - -
* Deletion process loop

*/

while ((out link= *first link) != NULL) {

/* Search the pair link from the linked node to
the node */
i_node = out link->node;
if (forw)
curr _in link = 1 node->bakw;
else
curr in link = 1_node->forw:;

86

prev_in link = curr_in_ link;

while(curr_in link->node != node) {
prev_in_link = curr_in link;
curr in link = curr_in link->next;

/* Update the link list of the linked node */

if (forw && curr_in link == 1 node->bakw)
1_node->bakw = curr_in link->next;

else
if (!forw && curr in link == 1 node->forw)
1 _node->forw = curr_in link->next;
else

prev_in link->next = curr in link->next;

/* Free the link from the linked node to the node */
free(curr_in link);

/* Determine the node next link and free the node
current link */
*first link = out link->next;
free(out_1link);

/t**i******iittt*i***i*tt*t**i**t*tt****i**'ttttittttttt**it*tit**titttttrtti***
* VOID REPLACE RIGHTMOST_ INTER()

* This procedure is used to replace the position of the former rightmost

* intermediate node in the graph rightmost intermediate node list with the

* new (current) rightmost intermediate node.
itiii**ii*i*i*t****i*tt*t*t*ti*ttt*tttt*i**ttt't*ttitttttiti***t**t*tttiitti*t*/
void replace rightmost inter(old rmi, new_rmi, graph)

GRPNODE *old:rmi, *new:rmi;

GRAPH *graph;

{
GRPNODE *curr, ¥“prev;
[Kmm e ——— gy
* Search the old rmi in the graph rightmost intermediate node list
*/
for (curr=graph->rightmost_inter,prev=curr; curr!=old rmi;
prev=curr,curr=curr->next) ;
YA L
* Replace the old node in the list with the new node
*/
if (curr = graph->rightmost_ inter)
graph->rightmost_inter = new_rmi;
else
prev->next = new_rmi;
new_rmi->next = old rmi->next;
/* - -
* Remove the link of the old node to the next rightmost intermediate
* node
*/
old rmi->next = NULL;
}

/ti***t*t****i********t*i*titﬁii*ttﬁﬁﬁ****ti*tﬁitttﬁ**titiiiﬁ*ﬁt*t**tﬁiiittttttﬁ
* VOID RM RIGHTMOST INTER()

* This procedure is used to remove one rightmost intermediate node from the

* graph rightmost intermediate node list.
ttt*****tt*t*i*****ﬁ**t*itt*ti*t**ﬁii*tttt*itt**tttiti*tﬁ*tkit*t*tﬁﬁtttti**/
void rm _rightmost inter(rm rmi, graph)

GRPNODE *rm rmi;

GRAPH *graph;

{

GRPNODE *curr, *prev:;

/N e e e e - -
* Search the specified node in the graph rightmost intermediate node
* list
*/

for (curr=graph->rightmost inter,prev=curr; curr!=rm rmi;
prev=curr,curr=curr->next) ;

[mmm—————— S -
* Disconnect the specified node from the graph rmi list
*/

if (curr = graph->rightmost inter)

graph->rightmost inter = rm rmi->next;
else

prev->next = rm_rmi->next;
rm_rmi-~>next = NULL;

PRl L e E e s
* CST_LIST *SEARCH CONSTRAINTS ()
* This procedure is used to search any constraint between the specified cause
* node and the other cause node.
e e e e 2Ly
CST_LIST *search_constraints(node number, table)
int node number:;
TABLE *table;
{
TBL_REC *curr, *prev:
CST_LIST *cstlist=NULL:;
char pred part(80], dom set[BO], ran set[80], dom in[80], ran_in[BO], *p;
int dom=0, ran=0, bound cmp;

[Rm———— —_ - - _
* Get the specified number cause node
*/
for (curr=table->cause; curr->number!=node number; curr=curr->next):;
[e e e
* Searching process
*/
if (strstr(curr->pred part{0], "mapsto") != NULL &&
strnomp (curr->pred part[l}, "in", 2)==0 &&
strnemp (curr->pred partf2], "{", 1) != 0) {
/* The specified cause is a relation set membership
predicate:

- Find out if there are other causes which
specify that the set domain is the subset of
the relation domain,

- Find out if there are other causes which
specify that the set range is the subset of
the relation set, If so, call a procedure to
make a constraint relation between the
specified cause node and the other cause node
that specifies the membership of the relation
domain/range. */

/* Get the relation domain and range name */
strcpy(pred part, curr->pred part[0]);

p = strtok(pred part, " ");
strcpy(dom_in, p);

p = strtok('\0', " ");

p = strtok('\0', " ");

strcpy(ran_in, p):

for (prev=table->cause; prev != curr; prev=prev->next) ({
/* Process loop for all other cause node */
if (dom && strcmp(prev->pred part[0],dom in)==0 &&
strcmp (prev->pred part[2],dom set)=0 &&

87

stremp (prev->pred part[1},"in")==0)
/* The set domain is the subset of the relation
domain */
add constraint_list(&cstlist, prev->number, R);
else
if (ran &&strcmp(prev->pred part[0],ran _in)=—0 &&
strcomp (prev->pred part[2],ran set)=0 &&
stromp (prev->pred part[1l],"in")==0)
/* The set range is the subset of the relation

range */
add constraint list(&cstlist, prev->number, R):
else
if (dom—0 && strncmp (prev->pred part[0], "dom", 3)=0 &&
strstr(prev->pred part[0], curr->pred part[2]) != NULL &&
strncmp (prev->pred part[l], "subset", 6)==0) {
/* This other cause node specifies the membership of
the set domain */
dom = 1;
strcpy (dom_set, prev->pred part[2]);
}
else

if (ran==0 && strncmp (prev->pred part[0], "ran", 3)==0 &&
strstr(prev->pred part[0],curr->pred part[2]) !=NULL &&
strnoemp (prev->pred part(l}, "subset", 6)==0) {
/* This other cause node specifies the membership of
the set range */
ran = 1;
strcpy (ran_set, prev->pred part(2]):;

else {
/* The specified cause is not a relation set

membership predicate */

if (curr->boundary != NULL)
/* 1If the specified cause specifies the boundary of
a variable, finds out if there is any other cause
node that also specifies the boundary of the
variable. If so, add a constraint relation of
the specified cause node */
for (prev=table->cause; prev != curr; prev=prev->next) {
if (strcmp(curr->pred part[0], prev->pred part[0])==0) {
bound cmp = compare boundary(curr->boundary, prev->boundary);
1if (bound cmp != 0)
add_constraint list(&estlist, prev->number, bound cmp) ;

}

}
return (cstlist);

/*tﬁtiitit*t*ttttttt***tttt****tﬁt**i*iit'k*t*ti*ﬁt**tit*ﬁiﬁiﬁﬁl‘tﬁﬁtittttttﬁtﬁitt
* VOID ADD_CONSTRAINT_LIST()
* This procedure is used to add an element to the constraints list of a cause
* node.
tt**it******t'*t**ii***iit**t**itt*t**ttiﬁti*t***tt**tttttttti**tt*tt*titt**iﬁt/
void add constraint list(cstlist, node no, type)
CST_LIST **cstlist;
int node no;
int type;
{

CST_ELM *new;

new = (CST_ELM *) malloc (sizeof (CST_ELM)) ;

if (*cstlist=NULL) {
*cstlist = (CST_LIST *) malloc (sizeof (CST_LIST));
(*estlist) ->head = new;
(*cstlist)->tail = new;

else {
(*cstlist) ->tail->next = new;
(*cstlist) ->tail = new;
}
nev->node no = node no;
new->type = type;

P e R e st e L
* VOID COMPARE_ BOUNDARY ()

* This procedure is used to compare two value boundaries of a variable. This
* procedure returns 0 if one of the boundaries is empty. Othexwise, the

* procedure returns the value of cause constraints (E, R, or RR).
ti*ii*iiii****ii**t***iiiit*ttit'tttﬁ*i***iit*iﬁii**ti**i**ttitii*t**tt**i**itt/
int compare boundary (boundl, bound?)

BOUND_ELM *boundl, *bound2;

{

i1f (boundi=NULL || bound2=—=NULL) return(0):
/* Return 0 if one of the boundaries is empty */

* Compare the two boundaries based on the type of the first boundary
*/
switch (boundl->bound type) {

case 1: return(sub_ compare boundary 1 (boundl, bound?));
case 2: return(sub_compare_poundary_z(boundl, bound?)) ;
case 3: return(sub_ compare boundary 3(boundl, bound2)) ;
case 4: return(sub compare boundary 4 (boundl, bound2));
case 5: return(sub_compare boundary 5(boundl, bound2)):;
case 6: return(sub compare boundary 6(boundl, bound2)) ;

FAR R L gt I Y]
* INT SUB_COMPARE BOUNDARY 1 ()

* This procedure is called by "compare boundary" to compare a type 1 boundary
* (boundary value is a single or a set of string(s)) with another boundary

* of a variable.

HRRARIRARRRRERRRR TR RRR AR EERRRN R RRAA IR RN AR R RRRIRRERNRK AR ARRRRRRNR RO RR N K/
int sub_compare_poundary_l(boundl, bound?2)

BOUND_ELM *boundl, *bound2;

{

* Process the comparison based on the type of the second boundary
*/
if (bound2->bound type = 1) {
/* The second boundary is also the type 1 boundary */

if (boundl->n_elm = bound2->n_elm)
/* The element number of the two boundary are the
same */
if (search_strval (boundl, bound2))
/* The two boundaries are the same */
return (RR) ;
else
/* The two boundaries are not the same */
return(E) ;
else
if (boundl->n elm > bound2->n_elm)
/* The boundary 1 element number is greater than the
boundary 2 element number */
if (search strval (bound2, boundl))
/* The boundary 2 is subset of the boundary 1 */
return(-R) ;
else
/* The boundary 2 is not subset of the boundary 1 */

89

return (E) ;

else
/* The boundary 1 element number is less than the

boundary 2 element number */
if (search_strval (boundl, bound2))
/* The boundary 1 is subset of the boundary 2 */

return(R) ;
else
/* The boundary 1 is not subset of the boundary 2 */
return (E) ;
}
else
/* The second boundary is not the type 1 boundary */
return(E) ;

/i***i**********ﬁii*****iiii****i*t*iﬁ*i**i*i***i**ttt**t*i*tti*tit*tﬁ**ii*tt***

*
*
*
*

INT SUB_COMPARE BOUNDARY 2 ()
This procedure is called by "compare boundary" to compare a type 2 boundary
{(boundary value is a single or a set of number(s)) with another boundary

of a variable.

t*iiiit*****tttiii*ti**ﬁ*i***ii**t*i*iii**'iii*iit*ti*iiii***iiti*ttt*****ii***/

int sub_compare boundary 2(boundl, bound2)
BOUND_ELM *boundl, *bound2;

{

Y T T .
* Process the comparison based on the type of the second boundary
*/
if (bound2->bound type == 2) {
/* The second boundary is also the type 2 boundary */
if (boundl->n_elm == bound2->n_elm)
/* The element number of the two boundary are the
same */
if (search numval (boundl, bound2))
/* The two boundaries are the same */
return (RR) ;
else
/* The two boundaries are not the same %/
return(E) ;
else
if (boundl->n_elm > bound2->n_elm)
/* The boundary 1 element number is greater than the
boundary 2 element number */
if (search_ numval (bound2, boundl))
/* The boundary 2 is subset of the boundary 1 */
return(-R) ;
else
/* The boundary 2 is not subset of the boundary 1 */
return(E) ;
else
/* The boundary 1 element number is less than the
boundary 2 element number */
if (search numval (boundl, bound2))
/* The boundary 1 is subset of the boundary 2 */
return(R) ;
else
/* The boundary 1 is not subset of the boundary 2 */
return(E) ;
}
else
if (bound2->bound type = 1)
/* The second boundary is the type 1 boundary */
return (EB);
else
/* The other cases */
if (search numval (boundl, bound2))
/* The boundary 1 is subset of the boundary 2 */

90

return (R)
else
/* The boundary 1 is not subset of the boundary 2 */
return (E)

A L L R e a2 e
* INT SUB_COMPARE BOUNDARY 3()

* This procedure is called by "compare boundary" to compare a type 3 boundary
* (the lower boundary of integer or float numbers) with another boundary

* of a variable.
R et e 2Ly

int sub compare boundary 3(boundl, bound2)
BOUND_ELM *boundl, *boundZ2;

{
2 T e Taadat e
* Process the comparison based on the boundary and the value types
*/
if (bound2->bound type = 3 &&
strcmp(bound1—>val_type,bound2->val_type)==0) {
/* The second boundary is also the type 3 boundary */
if (boundl->lower = bound2->lower)
/* The boundary 1 is the same as the boundary 2 */
return(RR) ;
else
/* The boundary 1 is not the same as the
boundary 2 */
if (boundl->lower > bound2->lower)
/* The boundary 1 is greater than the boundary 2 */
return(R) ;
else
/* The boundary 1 is than the boundary 2 */
return(-R) ;
}
else
1f (bound2->bound type = 6) {
/* The second boundary is the type 6 boundary */
if (search numval (boundl, bound2))
/* The boundary 1 is subset of the boundary 2 */
return (R);
else
/* The boundary 1 is not subset of the boundary 2 */
return(E) ;
}
else
/* The other cases */
return(E) ;
}

AL s g L e ey L
* INT SUB_COMPARE_BOUNDARY 4 ()

* This procedure is called by "compare boundary" to compare a type 4 boundary
* (the upper boundary of integer or float numbers) with another boundary

* of a variable.

L g L L L e I e L ey
int sub compare boundary 4 (boundl, bound2)

BOUND_ELM *boundl, *bound2;

{

[Rmm _— ———
* Process the comparison based on the boundary and the value types
*/
if (bound2->bound type = 4 &&
strcomp (boundl->val_ type,bound2->val type)==0) {
/* The second boundary is also the type 4 boundary */
if (boundl->upper =— bound2->upper)
/* The boundary 1 is the same as the boundary 2 */
return (RR) ;

91

else
if (boundl->upper > bound2->upper)
/* The boundary 1 is greater than the boundary 2 */
return(-R) ;
else
/* The boundary 1 is less than the boundary 2 */
return(R) ;
}
else
if (bound2->bound type == 2) {
/* The second boundary is the type 2 boundary */
if (search numval (bound2, boundl))
/* The boundary 2 is subset of the boundary 1 */
return (-R):
else
/* The boundary 2 is not subset of the boundary 1 */
return(g) ;
}
else
if (bound2->bound type = 6) {
/* The second boundary is the type 6 boundary */
if (search_numval (boundl, bound2))
/* The boundary 1 is subset of the boundary 2 */
return (R):;

else o = 2 ~ = ~ P P
rab-hmbiar i Aiok-AkiARd Aniphade 2 +/
return (E) ;
}
else
/* The other cases */
return(E) ;

/*******t*ii*iiit**tt*tt*t**t*ti*****i***ii**ii*tiii**it*tit*ti**tt*tﬁ*ii**i***t
* INT SUB_COMPARE BOUNDARY_ 5()

* This procedure is called by "compare boundary" to compare a type 5 boundary
* (the range of integer or float numbers) with another boundary

* of a variable.
ttt*iit*t*t*i*tt*itt**tiit**tt*tiiti*t*i*tt*t**iii**ii*iiiit**i**tiﬁ*titt/
int sub compare boundary 5(boundl, bound?2)

BOUND__ELM *boundl, *bound2;

{

T
* Process the comparison based on the boundary and the value types
*/
if (bound2->bound type == 2) {
/* The second boundary is the type 2 boundary */
if (search_numval (bound2, boundl))
/* The boundary 2 is subset of the boundary 1 */
return (-R):
else
/* The boundary 2 is not subset of the boundary 1 */
return (RB);
}
else
if (bound2->bound type = 5 &&
strcmp (boundl->val type,bound2->val type)=0) {
/* The second boundary is also the type 6 boundary */
if (boundl->lower == bound2->lower) {
/* The lower boundary of the boundary 1 is the same
as the lower boundary of the boundary 2 */
if (boundl->upper = bound2->upper)
/* The upper boundary of the boundary is the same
as the upper boundary of the boundary 2 */
return (RR) ;
else
if (boundl->upper > bound2->upper)
/* The upper boundary of the boundary 1 is greater
than the upper boundary of the boundary 2 */
return(-R) ;

92

93

else
/* The upper boundary of the boundary 1 is less than
the upper boundary of the boundary 2 */
return(R) ;
}
else
if (boundl->lower > bound2->lower) {

/* The lower boundary of the boundary 1 is greater
than the lower boundary of the boundary 2 */

if (boundl->upper <= bound2->upper)

/* The upper boundary of the boundary 1 is less than
than or the same as the upper boundary of the
boundary 2 */

return(R) ;
else

/* The upper boundary of the boundary 1 is greater
than the upper boundary of the boundary 2 */

return(E) ;
}
else {

/* The lower boundary of the boundary 1 is less than
the lower boundary of the boundary 2 */

if (boundl->upper >= bound2->upper)
return(-R) ;

else
return(E) ;

}
else
if (bound2->bound type = 6) {
/* The second boundary is the type 6 boundary */
1f (search numval (boundl, bound?))
/* The boundary 1 is subset of the boundary 2 */
return (R):

else
/* The boundary 1 is not subset of the boundary 2 */
return(E) ;
}
else
/* The other cases */
return(E) ;

SRR R AR KRR AR AR IR IR I I IR R AR AR de ok de ks kR RN A RN RRRRRRRRR AR I IR IR AR
* INT SUB_COMPARE BOUNDARY 6 ()

* This procedure is called by "compare boundary" to compare a type 6 boundary
* (the boundary is specified only by a numeric type) with another boundary

* of a variable.

e L e L L
int sub compare boundary 6 (boundl, bound2)

BOUND_ELM *boundl, *bound2;

{
/* - mmmmmmmmmm oo
* Process the comparison based on the type of the second boundary
*/
switch (bound2->bounq_type) {
case 1: /* The boundary 2 is the type 1 boundary */
return(E) ;
case 6: /* The boundary 2 is also the type 6 boundary */
if (strcmp(boundl->val type, bound2->val_ type)==0)
return (RR) ;
else

if (boundl->val type[0]=='R')
return{(-R) ;
else
if (bound2->val type[0]=='R')
return(R) ;
else
if (boundl->val type[0]=='2Z')

94

return(-R) ;
else
if (bound2->val_type[0}='2"')
return(R) ;
else
if (boundl->val_ type[l]=='1"')
return(R) ;
else
return (-R) ;

default: /* The other cases */
if (search numval (bound2, boundl))
/* The boundary 2 is subset of the boundary 1 */
return (-R);
else
/* The boundary 2 is not subset of the boundary 1 «/
return (E);

/**iwt****iti****t*t*t**iti*ttt*ii*tt*ti*i*it**ii*tt*tit**i*tt*t*t**ti*it*t*itt*
* INT SEARCH STRVAL()

* This procedure is used to search all strings of the boundary 1 stringlist

* in the boundary 2 stringlist. If all strings are found, then the procedure

* returns 1. Otherwise, the procedure returns O.
*******titti*t*tt*t**ttt*ii**tt*t**tii**t******t*i*tt*it*tt**iiii**tti*i**i*tt*/
int search strval (boundl, bound?)

BOUND_ELM *boundl, *bound2;

{
int i, j;
for (i=0; i < boundl->n_elm; i++) {
/* Loop for (all) strings of the boundary 1 */
for (j=0;) < bound2->n_elm; j++)
/* Loop for (all) strings of the boundary 2 */
if (stramp (boundl->strlistf[i].str, bound2->strlist[j].str)=—0)
/* The boundary 1 string is found in the boundary
2 %/
break;
if (j=bound2->n _elm)
/* The string of the boundary 1 is not in the
boundary 2 */
return(0) ;
}
return(l) ;
}

/*t*t***ttt*t****tittt*tt*ti**t*tit**tt*i*i**itt****t***itii****tt*t*i*i*it*t*t*
INT SEARCH NUMVAL()

This procedure is used to search all numeric boundary values specified by
the boundary 1 in the numeric boundary values specified by the boundary 2.
If the boundary 1 numeric values are subset of the boundary 2 numeric
values, then the procedure returns 1. Otherwise, the procedure returns 0.
****ttt*iiiﬁ*tt*t**t*i*tt'*tii*t*tttﬁ*ttt****t****ﬁ**'***it*t*ttit*ttttﬁt*i'*it/
int search numval (boundl, bound2)

BOUND_ELM *boundl, *bound2;

{

* % * % »

int i, j, low_bound2, up bound2:

if (bound2->bound type==6) {
/* The boundary 2 is the type 6 boundary */

if (bound2->val_type[0]='R')
/* The numeric type of the boundary 2 is "R" (real),
the boundary 1 is subset of the boundary 2 */
return (1)
else
i1f (boundl->val typel[0] != 'R') {
/* The numeric type of the boundary 1 is not "R" */

95

/* Derive the lower boundary of the boundary 2 */

if (bound2->val_type[0] != 'N')
low _bound2 = 0;
else

low_bound2 = 1;

if (boundl-~>bound type=2) {
/* The boundary 1 is the type 2 boundary */

/* Check if the numerical list of the boundary 1 is
greater than the lower boundary of the
boundary 2 */

for (i=0; i < boundl->n_elm; i++)

if (boundi->numlist{i] < low_bound2)
return(0) ;

return (1) ;
}
else

if (boundl->bound type==3 || boundl->bound type=5)

/* The boundary 1 is the type 3 or 5 boundary */

/* Check if the lower of the boundary 1 is greater
than the lower boundary of the boundary 2 */
if (boundl->lower < low_bound2)

return(0) ;
else
return(l) ;
else
/* The boundary 1 is the type 4 boundary */
return(0) ;
}
else
/* The numeric type of the boundary 1 is "R" */
return(0) ;

}
else
if (boundl->bound type=2) {
/* The boundary 2 is the type 6 boundary */

if ((boundl->val type[0]=='R' || bound2->val type{[0]=='R') &&
boundl—)va;_type[ﬂ]!=bound2->val_type[0])
/* The numeric type of one boundary is "R" */
return(0) ;
else
/* The numeric type of two boundaries are "R" or are
not "TR" */

if (bound2->bound type=—2) {
/* The boundary 2 is the type 2 boundary */

/* Check if all list values in the boundary 1 are
also in the boundary 2 */
for (i=0; i < boundl->n_elm; i++){
for (3=0; j < bound2->n elm; i++)
if (boundl->numlist{i] == bound2->numlist{j])
break;
if (j=bound2->n_elm)
return(0) ;

return(l)
}
else
if (bound2->bound type==3) ({
/* The boundary 2 is the type 3 boundary */

/* Check if all list values of the boundary 1 are
greater than the lower boundary of the boundary
2 */
for (i=0; i < boundl->n _elm; i++)
if (boundl->numlist[i] < bound2->lower)
return(0) ;

96

return(l) ;
}
else
if (bound2->bound_type=—4) {
/* The boundary 2 is the type 4 boundary */

/* Check if all list values of the boundary 1 are
less than the upper boundary of the boundary 2 */
for (i=0; i < boundl->n_elm; i++)
if (boundl->numiist{i] > bound2->upper)
return(0) ;

return(l) ;
1
else

if (bound2->bound type==5) {

/* The boundary 2 is the type 5 boundary */

/* Check if all list values of the boundary 1 are in
the boundary range of the boundary 2 */
for (i=0; i < boundl->n_elm; i++)
if (boundl->numlist[i] < bound2->lower ||
boundl->numlist[i} > bound2->upper)
return(0) ;
return(l);

}
else
/* The other cases */
return(0) ;

/*t***t*tii*ﬁit*i**t***tttt***ittﬁti*i*t*t*t*i*t*tltﬁttt*t**ﬁtt*tii*ﬁ**t***i*ttt

* * * *

*

VOID ADD_CONSTRAINT NODE LINK()

This procedure is used to link the existing or new created cause node with
a cause node and any other related cause node. The node constraint list
that records the constraint relation between the cause node and the other
cause node is used as the process driver.

R L e I e e 2 LY}
void add constraint node link (constraint list, graph)

CST_LIST *constraint list’

GRAPH *graph;

{

CST_ELM *cst elm;

int curr node, exist code=4;
GRPNODE *curr ce, *prev_ce, *curr _cst;
static GRPNODE *last cst=NULL;

static int cst no=0;

* Search for the current cause node
*/
curr node = graph->ncause;
for (curr ce=graph->cause; curr_ce->number != curr_node;
curr_ce=curr_ce->next);

[H——— - _—
* Process for all constraint list elements
*/

for (cst_glm=constra1nt_list->head; cst_elm!=NULL: cst elm=cst elm->next) {

/* Search for the related cause node */
for (prev_ce=graph->cause; prev_ce->number!=cst_elm->node no;
prev_ce=prev_ce->next) ;

/* Search for the existing constraint node for this
constraint relation. Create new constraint node
if such node does not exist yet */

curr_cst=search existing cst(graph, curr_ce, prev_ce, cst elm->type,
&exist code);

97

if (curr_cst==NULL) {
cst_not++;
curr cst = create node(abs(cst_elm->type), cst no, 0);
if (last_cst==NULL)
graph->constraint = curr_cst;
else
last est->next = curr ecst;
last_cst = curr_cst;

/* Link the cause node(s) and the constraint node if
necessary */
if (exist code != 3)
if (exist_ code==0)
/* The constraint node is a new created node */
if (cst_elm-~>type=—-R) {
mk_link(curr cst, curr ce, 0);
mk_link(curr cst, prev ce, 0);
}
else {
mk_1link (curr_cst, prev ce, 0);
mk_link(curr_cst, curr_ce, 0);
}
else
if (exist code=1l)
/* The link between the related cause node and the
existing constraint node already exists */
mk_link{curr cst, curr ce, 0);
else
/* The link between the cause node and the existing
constraint node already exists */
mk_link (curr cst, prev_ce, 0);

/*t'kiti*ti****i*ittt**ttt*iitttt*t*****i***i**it***titt*t*i**tt**ttti*t**t*tt***
* GRPNODE* SEARCH EXISTING CST()
* This procedure is used to search the existing constraint node and links for
* a specific constraint relation. If the constraint node for the relation
* does not exist yet, the procedure returns NULL.
'ﬁ*ttitt*ttt*t**ttttl't**iti**.*ttt'*******'t*ttttitttttt*ltt*i*tt***tttt**ﬁt/
GRPNODE *search existing cst(graph, curr ce, prev_ce, cst_type, exist code)
GRAPH *graph;
GRPNODE *curr ce, *prev ce;
int cst type, *exist code;
{

GRPNODE *curr_cst;

LINK *link;

int prev=0, curr=0;

/* - e o o e e e e e e
* Searching process
*/

for (curr_cst=graph->constraint; curr cst!=NULL; curr cst=curr_ cst->next) {
/* Loop for all of the existing constraint nodes */

if (curr cst->type=abs(cst_type))
/* The current existing constraint type is the same
or the negation of the specified constraint

type */

if (cst type=R) {
- /* The specified constraint type is "R" */
if (curr_cst->forw->node->number==prev_ce->number) {
/* The link between the existing constraint node and
the related cause node already exists */
prev=l;
break;

98

else
if (cst_type==-R) {
/* The specified constraint type is "-R" */
if (curr_cst->forw—>node—>number==curr_ce->number) {
/* The link between the existing constraint node and
the current cause node already exists */

curr=1;
break;
1
}
else {

/* The constraint type is "E" */

/* Search for the link between the constraint node
and the related cause node or the current cause
node */

for (link=curr cst->forw; link!=NULL; link=link->next) {
if (link->node->number==curr ce->number)
curr=1;
if (link->node->number==prev_ce->number)
prev=1;
}
if (curr || prev)
break;
}

/* Set the variable to record the existing link(s)
finding */
if (prev && curr)
*exist code=3;
else
if (prev)
*exist_ code=l;
else
if (curr)
*exist code=2;
else
*exist code=0;

return(curr_cst) ;

/*ti*i**iii*iiii*tt****t***i**tﬁ*it*t*i***i*******tiiiii*it*****iﬁiti**ii*****t*

* VOID REMOVE_INTER_NODE_pUPLICATION()
* This procedure is used remove any intermediate node duplication.
iiiﬁtttiitttiﬁ*tt****iit**iitt*t*i*t*t**i*t*ttti*t**iti**itiiiti*i**t*lti*i/
void remove inter node duplication(graph)
GRAPH *graph;
{

GRPNODE *cause;

LINK *link, *next link;

/* -
* Compare the backward links of two intermediate nodes, remove one node
* if the links of the two nodes are the same
*/

for (cause=graph->cause; cause->next!=NULL; cause=cause->next)

/* Loop for all of the graph cause nodes */

for (link=cause->forw; link->next!=NULL; link=link->next)
/* Loop for all intermediate nodes that are connected
to the cause node */

/* Search for the next intermediate node that has
similar backward links as the current intermediate
node */

99

for (next link=link->next; next link!=NULL;
next_link=next link->next)
if (compare two_inter(link->node, next link->node)) {
/* The backward links of the two nodes are the
same */

cp_forw_link (link->node, next link->node);

rm_forw link (next_link->node):
rm_bakw_link (next link->node) ;

free(next link->node) ;

/**t**t*ii*it***i*t*itiii**i*i*i**t**t******t**t*iit*t*ttttﬁ*i*tti*ttttt*****it*
* INT COMPARE TWO_INTER()

* This procedure is used to compare the backward links of two intermediate

* nodes. The procedure returns 1 is the backward links of the two nodes are

* the same. Otherwise, the procedure returns 0.

TRARIERAARRREIRARREI RN RA A AR IR AT R TR RN RN A AR RAN IR R RRERKTRRRAERNRRA AR RA RN AR/
int compare two inter(inter_ 1, inter 2)

GRPNODE *inter 1, *inter 2;

{
LINK *link_1, *link_2:

if (count link number(inter l->bakw) != count_ link number (inter_ 2->bakw))
/* Return 0 if the number of the backward links of
the two node are not the same */

return (0);

VAL ———— - _—
* Compare the backward links of the two nodes
*/
for (link_ l=inter 1->bakw; link 1 != NULL;/ link 1=1link 1->next) {
/* Loop for all of the node 1 links */

/* Search for a link of the node 2 that the same
as the node 1 link */
for (link 2=inter_ 2->bakw; link_ 2!=NULL; link_2=1link 2->next)
if (link_1l->node->number==1ink_2->node->number &&
link_ 1->node->type == link_2->node->type &&
link 1->negation == link 2->negation)
/* A link of the node 2 is similar to the node 1
link */
break:;
if (link_2==NULL)
/* No link of the node 2 is the same as the node 1
link */
return(0) ;
}
return(l) ;

/tt*iti**iitiit*t***t**iit**tt**i****t*t***t*tt*iitﬁi#*ﬁtt*ttttt'tt*'tiﬁt*ﬁ****t
* VOID PRINT GRAPH()
* This procedure is used to print a graph forward traversals starting from
* the graph cause nodes, the graph backward traversals starting from the
* graph effect nodes, and the cause constraint relations.
tit*tttttttttttittit**ttttttttttt*ttt*****tt*t***ti***ttti*t*t'tt*tt*t***iitt*t/
void print_graph(graph)
GRAPH *graph:;
{

GRPRODE *node;

int c, i;

LINK *link;

printf("The graph forward traversals starting from a cause node: \n");
printf (" ") ;

100

node = graph->cause;
vwhile (node != NULL) {
printf ("\n\n") ;
c=0;
print_graph forw(node, &c, 0);
node = node->next;
}
printf("\n\n") ;
printf ("** Node representation: [negation/-] (<node type>,");
printf (" <sequence number>)\n") ;

printf ("\n\n\n") ;
printf ("The graph backward traversals starting from an effect node: \n");
printf (" "y
node = graph->effect;
while (node != NULL) {

printf("\n\n") ;

c=0;

print_graph bakw(node, &c, 0):

node = node->next;

}

printf ("\n\n") ;

printf("** Node representation: [negation/-](<node type>,");
printf (" <sequence number>)\n") ;

if ((node = graph->constraint) {=NULL) {
printf ("\n\n\n") ;
printf ("The graph cause constraint connections: \n"):;
printf£(")
while (node !'= NULL) {
printf("\n\n");

c=0;
print_graph node(node, &c, 0);
printf£ (" (")
o+t
for (link=node->forw, i=0; 1link!=NULL; link=link->next, i++) {
if (1>1){
printf(",");
ct+;

}
print_graph_node(link->node, &c, 0);
}
print£(")");
node = node->next;
}
printf ("\n\n") ;
printf ("** Node representation: [negation/-](<node type>,"):
printf (" <sequence number>)\n");

/t***it*'*i***i********t***iﬁ*i**t*f*****t******ﬁit*ﬁiﬁiﬁit**ti*iiii*i*tt*tiiiii

VOID PRINT GRAPH FORW()
This recursive procedure is called by "print graph" to prints all forward

nodes of one cause node.

i*t*ttiiﬁ*i***iitt**iii**'*ﬁ**ﬁ*i******ﬁ*ii**i*ti*****i*iiiiﬁ*iﬁ**iiﬁii*w/

void print graph forw(node, ¢, negation)
GRPNODE *node;

int *c;

int negation;

LINK *link;
int i=0;

print_graph node(node, ¢, negation);
if ((link = node->forw) !=NULL) {
if (*e > 57) {
printf£("\n") ;
*c = 0;
}
printf£(" (") ;

101

(*e)++;
while (link != NULL) {
14+
if (i > 1) {
printf£(",");
(*c)++;
}
print graph forw(link~>node, ¢, link->negation):;
link = link->next;
}
printf£(")");
(*e)++;

JRRRR Rk kR kAR Rk R kA kot ok e Ak Rk AR kR AR R AR A AR AR AN
* VOID PRINT GRAPH BAKW()
* This recursive procedure is called by "print graph" to prints all backward
* nodes of one effect node.
e Ty
void print_graph_bakw(node, c, negation)
GRPNODE *node;
int *ec;
int negation;
{
LINK *link;
int i=0;

print_graph_node(node, ¢, negation):
if ((link = node->bakw) !=NULL) {
if (*c > 57) {
print£("\n") ;
*c = 0Q;
}
print£(" (") ;
(*c)++;
while (link != NULL) {
i++;
if (4 > 1) {
printf(","):
(*c) ++;
}
print_graph bakw(link->node, c, link->negation);
link = link->next;
}
print£(")");
(*c) ++;

/tt*l'l-tttiit**tt**tt*tli*i*t**t*tt*iti***ﬁ*iiti*tiit*'t'i*tit**iit*ittii*ti*t**l
* VOID PRINT GRAPH NODE()

* This procedure is called by "print graph_forw" and "print_ graph bakw"

* to print a graph node.
ﬁiﬂ*ﬁ*ttiii*ﬁtﬁ'*i******i*******tt**i*****i**i*i**i*i#*t***w*t**wﬁi*t-ﬁ*i*\i**t**/
void print graph node(node, c, negation)

GRPNODE *node;

int *c;

int negation:

{

1f (*c > 58) {
printf("\n");

*c = 0;

}

if (negation) {
printf£("-");
(*c)++;

}

printf(" (")’

switch (node->type) {
case AND : printf("AND") ;
*c = %gc + 6;
break;
printf ("OR") ;
*o = g + 5;
break;
printf ("CAUSE") ;
*c = %¢c + B;
break:;
printf("INV_pAUSE");
%o = *c + 11;
break;
printf ("EFFECT") ;
*c = *c + 9;
break;
printf ("INV_EFFECT") ;
*c = %c + 13;
break;
case R : printf("R");
‘o = *c + 4;
break;
case E . printf("E");
*oc = *¢ + 4;
break;
printf (" %d" ,node->type) ;
*c = %c + 5;

case OR

case CAUSE

case INV_CAUSE

case EFFECT

case INV_EFFECT

default

}

printf (", %d)", node->number) ;
if (node->number < 10)
*c = *c + 1;
else
if (node->number < 100)
*e = *c + 2
else
o = *¢c + 3;

PAR L L L R L e e e e LT
TEST_LIST* DERIVE_TEST FRAME ()

This procedure is used to derive test frames from a cause-effect graph. The
derivation is done by setting a value of an intermediate node that is linked

to (an) effect node(s) (the rightmost
ning all other node values by tracing
process is repeated for all rmi nodes.

intermediate node - rmi) and determi-
the graph backward and forward. The
The derivation can be done by using

two kind of setting values, i.e., "1" for the true-effect test frame deri-
vation and "O" for the false-effect test frame derivation.

L L
TEST_LIST *derive test frame(graph, set val)

GRAPH *graph;

int set val;

{

* % ¥ ¥ * ¥ ¥ *

TEST LIST *new_1, *total 1=NULL;
GRPNODE *curr_rmi;
TEST FRAME *new_f;

2 T L - -
* Reset the computation counters

*/

compute 0 = O;

compute 1 = 0;

/* - -
* Derivation processes
*/

for (curr_ rmi=graph->rightmost inter; curr rmi != NULL;

curr_rmi=curr_ rmi->next) {
/* Loop for all of the rightmost intermediate

102

nodes */
if (curr rmi->forw->node->type != INV_EFFECT) {
/* Derive test frames if the node is not a rmi of the
invariant node %/

if (total 1==NULL) {
/* Total test frame list is NULL */

total l=trace one rightmost inter backward(curr_rmi, graph,

set val):;

nev_1 = total 1; -
}
else {

/* Total test frame list is not NULL */
new_l->next = trace one rightmost inter backward(curr rmi, graph,
set val);

nev_1 = new_l->next: -

}

derive other rightmost inter_values(new_l, curr rmi, graph, set val);
remove test frame duplication(new_l, total_ 1, graph);
derive effect values(new_l, graph);
}
}

return(total 1)

/t*t*t**t*******t*itt***tii*i***ltittt**i***tii***t*ti******t**tt**tt*ttt*tt*ttt
* TEST_LIST* TRACE ONE RIGHTMOST INTER BACKWARD ()
* This_procedure is used to derive cause node values for the specific
* rightmost intermediate node value by tracing the graph backward
* from the rightmost intermediate node.
****i**iti*t*ti****it**t*tii****ii***t*iit**t****!i*ﬁ**t***it*t*t*iii*ttitttt*t/
TEST LIST *trace one rightmost inter backward(rmi_node, graph, set val)
GRPNODE *rmi_node;
GRAPH *graph;
int set _val;
{
TEST_LIST *new_1;
TEST_FRAME *new_f£;

nevw_1 = alloc_test list():.

new_f = add test frame(new_l, graph):

new_f —>1nter[rmi_node—>number—1] = get val;
trace one node backward(rmi_node, new_l, graph);
return(new_1);

/******t*t*itti*t*tt*ti*tttiittttttitt*tt*tﬁtiitﬁttﬁit*ii***ﬁitttt*tti*t**ti***t
* TEST_LIST* ALLOC TEST_ LIST()

* This procedure is used to allocate a new test frame list.
******i*t*iﬁ*ttit*tt***k*it***i*ii*tiﬁiit*ti*t**Iti***t*t**ﬁt*itt*****tf**ﬁ*ﬁft/
TEST_LIST *alloc test list()

{
TEST_LIST *new;

new = (TEST_LIST *) malloc (sizeof (TEST_LIST)):
new->head = NULL;

new->tail = NULL;

new->next = NULL;

return (new) ;

/*iiiti*ii*t*i*****ﬁ***i*****ﬁ*ﬁ**it*t*i**#'*i*ﬁiiitti*tittit*itit*iiﬁ‘t**t*tiﬁi

* TEST_LIST* ADD_TEST FRAME ()
* This procedure is used to add a new frame to a specified test frame list.
*i**titti*iti*t**tt***t**it****tit*ttt****i**tt*t*ittit*t*ﬁtititt*tii*tit*ﬁ*ﬁi*/

TEST_FRAME *add test_frame(test, graph)

103

104

TEST_LIST *test;
GRAPH *graph;
{
TEST_FRAME *new;
TEST_FRAME *curr:
int 4i;

YL T e— gy g g gy SO
* Allocate a new frame and initiates the value of the new frame
* elements
*/

new = (TEST_FRAME *) malloc (sizeof (TEST_FRAME)) ;

new->cause = (int *) malloc (graph->ncause * sizeof (int)):;

new~->inter = (int *) malloc (graph->ninter * sizeof (int));

new->derive = (int *) malloc (graph->ninter * sizeof(int));
new->effect = (int *) malloc (graph->neffect * sizeof (int));
new->next = NULL;

for (i=0;1 < graph->ncause; i++) new->cause[i]=-1;

for (i=0;i < graph->ninter; i++){

new->inter{i]=-1;
new->derive[i]=1;

}
for (i=0;1 < graph->neffect; i++) new->effect[i]=-1;
/*—- e e e o e e e e o ot e e
* Add the new frame to the specified list
*/

if (test->head==NULL) {
test->head = new;
test->tail = new;

}

else {
test->tail->next = new;
test->tail = new;

}

return (new) ;

/**i*i****ii****iiiit*ii**itﬁ**iﬁ**i********i***tﬁ******i***ttittt***i*i*iii*i*t

* VOID COPY TEST_ FRAME()
* This procedure is used to copy the element values of one test frame to

* another test frame.
e L e e A s L e T LY
void copy test frame(graph, r_frame, s frame)
GRAPH *graph;
TEST FRAME *r frame, *s_frame;
{
int i, 3;
TEST _FRAME *curr frame;

for (i=0;1i < graph->ncause; i++)
r_frame->cause[i]= s frame->cause[i];
for (i=0;i < graph->ninter; i++) {
r frame->inter[i]= s frame->inter{i]):
r_frame->derive[i]= S_frame->derive(i]:
}
for (i=0:i < graph->neffect; i++)
p_frame—>effect[i]= s_frame->effecti];

/*t*ttttiti***iiit*i*i*iit**iiti**it*it*i*******ittt*it*ti*i**tt*i*tfit*i*ii**ti
* VOID TRACE ONE_NODE BACKWARD ()

* This recursive procedure is used to derive the value of a specific node

* inputs and trace all of the input nodes backward.
t*tt*t*i**tﬁ*******iit*t*****it*tﬁt*i*t**t*tt*tt**t*i**t**ttt*i*i*tt*t***t*tt**/
void trace one node backward(node, test, graph)

GRPNODE *node;

TEST_ LIST *test;

GRAPH *graph;

LINK *link;

if ((node->type = AND || node->type = OR) && test->head!=NULL) {
/* Counduct tracing if the specified node is not a
‘cause node */
derive node input values(node, test, graph):
for (link = node->bakw; link != NULL; link = link->next)
/* Trace all input nodes backward */
trace one node backward(link->nocde, test, graph):

/*i***itiit*i*i*t**iii*t**t*t*ttiit*it**ii***tiitt***t*i*ittitt*i*ti*tt*ﬁ*******

* % % % * * ¥ % ® * * * * *

VOID DERIVE NODE INPUT VALUES ()

This procedure is used to derive the possible combinations of a node

input values that lead the node output to be as specified in a test frame.
If there are more than one input combinations, (a) new test frame(s) is/
are created in attempt to record all input combinations. If the original
test frame "derivation code" is "1", some of the derivation rules are
follows. For an OR node, if the node output is TRUE (=1), consider only
combinations with only one TRUE input; if the node output is FALSE, consi-
der all combinations of input values that lead the node output to be FALSE.
For an AND node, if the node output is FALSE, consider all possible combi-
nations of input. For the last case, the derivation status of a test frame
that record a combination of all false inputs is set to "0", If the origin-
test frame derivation code is "0", only one combination of input values is
conslidered.

R L L g e A I ey
void derive node input values(node, test, graph)

GRPNODE *node;

TEST_LIST *test;

GRAPH *graph;

{

TEST_FRAME *curr, *prev;
TEST LIST *add_ test=NULL;
LINK *link;
int success;

add test = alloc_test list():;
/* Allocate a temporary (working) test list */

if (node->type = AND)
/* The node is an AND intermediate node */

/* Conduct the input value derivation for all test
frames */
for (curr=test->head; curr !'= NULL;) {
prev = curr;

if (curr->derive[node->number-1] > 0) {
/* The derivation for this node is allowed */

if (curr->inter[node->number-ijl==1) {
/* The node output is TRUE %/

/* Set all input values to be "1" %/
for (link = node->bakw, success=1; link != NULL && success;
link = link->next)
success=derive one input node val(graph, curr, link, 1);

if (!success)

/* At least one input value determination is not
successfully conducted (conflict with the existing
input value) */

curr=delete test frame(test, curr):;

else
/* The node output is FALSE ¥/

if (derive false AND input values(curr, node, graph,

105

106

add test)== 0)
/* Delete the current test frame if the derivation
for all zero input is not successfully completed */
curr=de1ete_test_frame(test, curr) ;

}
/* Determine the next test frame to be processed */
if (curr=prev)
curr=curr->next;

else
/* The node is an OR intermediate node */

/* Conduct the input value derivation for all test
frames */
for (curr=test->head; curr != NULL;) {
prev = curr;

if (curr->derive[node-~>number-1] > 0) {
/* The derivation for this node is allowed */

if (curr->inter[node->number-1}==0) {
/* The node output is FALSE */

/* Set all input values to be "0" %/
for (link = node->bakw, success=l; link != NULL && success;
link = link->next)
success=derive one input node val(graph, curr, 1link, 0):

if (!success)
curr=delete test frame(test, curr);
}
else
/* The node output is TRUE */

if (derive true OR input values(curr, node,
graph, add test)= 0)
curr=delete test frame(test, curr):
}
if (curr=prev)
curr=curr->next;

}

if (add test->head != NULL) {
/* Add the temporary list to the test list, if the
temporary list is not empty */
if (test->head==NULL)
test->head = add test->head:
else
test->tail->next = add test->head;
test->tail = add test->tail;
add test->head = NULL;
add test->tail = NULL;
}
free(add _test);
}

/titi**i*it*tttt**ttt********t*t*i'iti'**tt**t*tti*tt****i*t***tti**iit**ttiii*tti
INT DERIVE ONE INPUT NODE VAL()

This procedure is used to derive the value of an input node by combining
the given input value and the value of the link that is connected to the
input node. If the value of the node in the specified test frame has been
set and the value is conflict with the combination result, then the proce-
dure returns 0. If the determination is successfully completed, then

the procedure returns 1. If the input node is a cause node and the node
has (a) constraint relation(s), the the procedure calls a procedure to

* deteminer the value of an/the effected node(s).
*ttt*ttl'ttitit***t**t*iiti*titt*tt*i**ttt*t*i*t***titti*l*t**iﬁ**ti**tttt**i*it/
int derive one input node val(graph, test f, link, in val)

GRAPH *graph:

TEST _FRAME *test f;

LINK *1link;

* % ¥ ¥ ¥ % % #*

107

int in val:
{
int rc:
TEST_LIST *temp 1;
TEST _FRAME *temp f:
GRPNODE *node=link->node;

compute_1++; /* Increase the computation counter by 1 */
if (node->type==INV_CAUSE) ({
/* The input node is a cause invariant node */
if (test_f—>cause[node—>number-1]==—1) {
test f->cause{node->number-1] = 1;
if (abs(in_val-link->negation)==0) {
/* The calculating node value is conflict with the
nature of an invariant */
re=0;
}
}
else
re=1;
}
else
if (node->type==CAUSE) {
/* The input node is a cause node */
if (test_f->cause[node->number-1]==-1) {
test f->cause[node->number-1j=abs(in_val-link->negation) ;
if (node->bakw != NULL && (test_f—)cause[node—>number-1]==1 i1
(test f->cause[node->number-1]==0 && node->bakw->node->type==R
&& n;de—>bakw->node—>forw—>node==node))) {
/* The input node is a cause node and has at least
one constraint link */

/* Create temporary test list and frame */
temp 1 = alloc test list():
temp_f = add test frame(temp 1, graph):
copy test frame(graph, temp f, test f);

if ((rc=derive effected node values(node, temp £f)))
/* Examine if the existing constrained node values
do not conflict with any constraint tranformation
*/
copy test frame(graph, test f, temp f);
else
test f->cause[node->number-1]=0;
/* Delete temporary test list and frame */
delete test frame(temp 1, temp f);
free(temp 1) ;
}
else
re=1;
}
else
if (test_f->cause[node->number-1]t=
abs(1q_val-link->negation)) {
/* The calculating node value is conflict with the
existing node value */

re=0;
}
else
rc=1;
}
else { /* The input node is an intermediate node */
test f->inter([node->number-1] = abs(in_val-link->negation):
re = 1;
}
return(re) ;

PRl A s L g e L I T e T Y
* INT DERIVE EFFECTED NODE VALUES ()
* This recursive procedure is used to derive the value of the other cause

*
*

node(s) that is/are effected by the constraint relation with the specified
cause node.

tit*tt*it**ti*t*ﬁ*t*t***i*t*ttii***t**t*itiittt*ittt*ﬁi*it*tt*tti*i*i*titt*t*t*/
int derive effected node values(node, test f)

GRPNODE *node;
TEST FRAME *test £;

{

}

/*tit**t***it******iiii**iiiit*****i*t**ilii*.****ii*iiﬁi*tt****t*ii**tit*t*tiit

* % % ¥ %

tt**tiit*t*ti**ti*tii**iﬁ*itﬁi****i**ﬁ****tiit**i**i*****tiiti**ttii***iiit*itt/

LINK *link, *c_ link;
int rc=1;

for (link=node->bakw; rc && link!=NULL; link=link->next) {
/* Loop for all of the specified node constraint
links */
c link=link->node->forw;
1f (link->node->type=R && c_link->node != node &&
test f->cause[node->number-1}=1) {

- /* The node requires another node; If the
node value is "1", then the required cause
node must be "1" */

if (test_f-)cause[q_link->node—>number—1]==—1) {
test_f—>cause[q_link-)node—)number-l]=1;
rc=der1ve_effected_nodq;values(c_;ink->node, test_f):
}
else
if (test_f—>cause[c_link—>node—>number-1]==0)
rc=0;
else
rc=der1ve_effecteq_node_values(q_link->node, test_f);

}

else
if ((link->node->type=R && test f->cause[node->number-1]==0 &&
c_link->node=—=node) || (link~->node->type=—E &&
test_f—)cause[node—>number—1]==1))
/* If the constraint type is E and the node value is
"l" or the constraint type is R and the node is
required by the other nodes and the node value is
"0", then the other cause nodes must be "0" */
for (;rc & c_link!=NULL;c link=c link->next)
if (c_link->node != node)
if (test f->causel[c link->node->number-1]==~1) {
test f->cause[c_link->node->number-1]= 0;
zc=derive_effecteq_nodg;values(c_;ink->node, test f);
}
else
if (test f->cause[c link->node->number-1]=1)
re=0;
else
re=derive effected node values(c_ link->node, test f);
}
return{rc) ;

INT EXAMINE FORWARD CONFLICT ()

This recursive procedure is used to examine whether the forward transforma-
tion of a node value is conflict with the forward node value or not. If the
values are conflict then the procedure returns 1; Otherwise, the procedure
returns 0.

int examine forward conflict(test £, node, node val, node 0)
TEST FRAME *test f;

GRPNODE *node, *node 0;

int node val;

{

LINK *link;

GRPNODE *f node;

int f node in, rec;

/* _— - - ——— ——— -
* Search for the forward node
*/

for (link=node->forw; link != NULL && (f node=link->node) |=node 0 &&
test f->inter{f node->number-1]==-1; link=1link->next) ;

108

109

* Examination process
*/
if (1ink==NULL || f_node = node 0) {
/* The forward node is the originator AND node that
changed the derivation code to "0" or is not set
*/
if (link=NULL)}
rc=0;
else
re=1;
}

else {
/* The forward node is not the originator AND node

that changed the derivation code to "0" */

/* Examine the conflict */

if (f_node->type=—OR)
/* The forward node is an OR node ¥/

if (test_ﬁ—)inter[f_node->number—1]==0) {
/* The forward node value is 0 */

test f->inter[f node->number-1]=1;
rc=examine forward conflict(test f, f node, 1, node 0):
}
else {
/* The forward node is 1; Check if the value of the
forward node is not effected by the change of the
node value */

for (link=f node->bakw; link != NULL; link=link->next) {
if (link->node->type=AND || link->node->type==OR)
f_node in=test f->inter[link->node->number-1];
else
f node in=test f->cause[link->node->number-1j};

if (f_node in==-1 || abs(f_node in-link->negation)==1)
break:

if (link=—=NULL) {
test f->inter{f node->number-1]=0;
rc=examine forward conflict(test £, f node, 0, node 0);
}
else
re=0;

else
/* The forward node is an AND node */

if (test f->inter[f node->number-1]==1) {
/* The forward node value is 1 */

test f->inter{f node->number-11=0;
rc=examine forward conflict(test f, f node, 0, node 0):
}
else {
/* The forward node is 0; Check if the value of the
forward node is not effected by the change of the
node value */

for (link=f node->bakw; link != NULL; link=link->next) ({
if (link->node->type=—AND || link->node->type=OR)
f_node_ in=test f->inter{link->node->number-1]:;
else
£ _node in=test f->cause[link->node->number-1];

if (f node in==-1 || abs(f_node in-link->negation)==0)
break;

110

if (1ink=NULL) {
test f—>1nter[f_node-)number—l]:l;
rc=e;amine_:orwa:q_confl1ct(test_f, f node, 1, node 0);
}
else
re=0;
}
}
return(re) ;
/* Return the examination result */

/*tﬁ**t*t****itt**ti*i***ii'ﬁ*i*t*i*t*t**tii*i*ittti**'ttttttiitiii*i*ttttttti**t
* INT DERIVE FALSE AND INPUT VALUES ()
* This procedure is used to derive the combinations of the input values of
* a false AND node and the possible input node values for each combination.
P I R e L L e ae Ly
int derive_false_pND_;nput_values(curr, node, graph, add test)
TEST_FRAME *curr;
GRPNODE *node;
TEST_LIST *add test;
GRAPH *graph;
{
LINK *link;
TEST_FRAME *new;
int i,), nlink, ne=l1l, *val, success;

[*——= S —
* Determine the number of combinations
*/
for (nlink=0, link=node->bakw; link != NULL; nlink++, link=link->next) {
nec = nc * 2;

}

VAL ———————— e o —————— e e e e e e
* Allocate working variables and initiate the variable values
*/

val = (int *) malloc (nlink * sizeof(int)):
for (i=0; i < nlink; i++) val[i] = O;

/¥ o e e e e o e e e

* The derivation for all input value combination but the first:

* Set the input values of each combination and derive the value of

* the input nodes and store them in a new test frame. If the determi-
* nations are not succesfully completed, delete the new test frame.

for (i=2; 1 < nec; i++) |
/* Loop to process all combinations but the first */

new=add test frame(add test, graph);
copy test frame(graph, new, curr);

for (j=nlink-1; 3 >= 0 ; j--)
/* Loop to set input values of a combination */
1f (val{j]==0) {

val[j] = 1;
break:;

}

else
val[j] = 0

for (link=node->bakw, 3J=0, success=l; link != NULL && success;
link=link~->next, j++)
/* Loop to derive the value of the input nodes */
if (val[)j] && (success=derive one_input node val(graph, new,
link, val{3iD))
new->derive[link->node~>number-1] = 2;

if (!success)
/* Delete the new test frame if the determinations
are not successfully completed */

111

delete test frame(add test, new) ;

* The derivation of the first combination (using the input test frame)
*/

return (set_zeroes_AND_input_values(graph,curr,node));

/tt*iiti**ttii**t***t**ttt*i*it*ti*t*tiiti*t**iiti**ttttt*tt*tt*i*tiii*tt*t**ti*
* INT DERIVE_TRUE_QR_INPUT_VALUES()
* This procedure is used to derive the combinations of the input values of a
* true OR node and the possible input node values for each combination.
*********iit**itt*tt****iit*tt*ti**t***-ﬁtﬁtti*t*t*ttt**ttt*tt*tiititt*t***t*i*i/
int derive_true OR input values(curr, node, graph, add test)
TEST _FRAME *curr;
GRPNODE *node;
TEST_LIST *add test;
GRAPH *graph;
{

LINK *link;

TEST_FRAME *new;

int i, j, nlink, *val, success;

2 Lt TR E LR ————————————
* Determine the number of node inputs

*/

for (nlink=0, link=node->bakw; link != NULL; nlink++, link=link->next);

Jx== _— — - ——————————
* Allocate the working variables and initiate the working values
*/

val = (int *) malloc (nlink * sizeof(int)):

for (i=0; i1 < nlink; i++) wval{i] = O:

AL -— ——— e o e e e e e
* The derivation for all input value combination but the first
*/

for (i=1; i < nlink; i++) {

/* Create a new test frame and initiate the frame
element values */
new=add test frame(add test, graph):
copy_test frame(graph, new, curr);

/* Set the combination input values */
valli]l = 1;
vall[i-1l] = 0;

for (link=node->bakw, j=0, success=1l; link!=NULL && success;
link=link->next, j++)
/* Loop to derive the value of input nodes */
success=derive one input node val(graph, new, link, val{j]):

if (!success)
/* Delete the new test frame if the determinations
are not successfully completed */
delete test frame(add test, new);

}

Jh== - e
* The derivation of the first combination (using the input test frame)
*/

val[0] = 1;

valinlink-1] = 0;
for (link=node->bakw, j=0, success=1l; link != NULL && success;
link=link->next, Jj++)
/* Loop to derive the input node values of the
first combination */
success=derive one input node val (graph, curr, link, vall[j]l):

/i********itii*ti*****i********i*****ii*i***tt*tiit***i***i*iiiittt**i*i*****ﬁt*

*
*
*

t*tii*iti***iit*****iii**it***ii*ﬁfﬁiiﬁi***tit*t*i*tt*ti****ii'i*'*t*i**i**/

int

if (success)

/* The determinations for the first combination are

succeeded */
return(i) ;
else

/* The determinations for the first combination are

not succeeded */
return(0) ;

INT SET_ZEROES AND_INPUT_VALUES ()

This procedure is used to set all zero input values and the cause value

combinations of a false AND node.

set zerces AND input values(graph, test f, node)

GRAPH *graph;
TEST_FRAME *test f;
GRPNODE *node;

{

/tﬁ*ii**t*iiiitii**ﬁ*i*i***itit*i**ti*iii****i******t*****iiii**i*itt******tii**

*
*
*

itiiiitiii*i*tﬁiiti**#*tt*iit**t*ii**iiii**ttiii*it***ﬁ*ﬁ***i**ﬁi***iﬁttitt/

LINK *link;
CC_LIST *cclist=NULL;
int rec;

for (link=node->bakw, rc=1l; rc && link!=NULL; link=link->next) {
/* Loop for all input nodes;
procedure to set initial value of the cause nodes

*/
if (set zeroes_AND_ cause values(test f, link, 0, node)==0)
re=0;
}
if (re) |

/* The initial cause value setting is successfully
completed; Search for constrained causes that
effect the AND node; If the constrained causes
are found, then reset the value of the nodes for
neglecting the later value conflict with the

related node(s). */
search_constrained causes(&cclist, node);
if (ceclist != NULL)

re=reset constrained cause values(graph, test £, cclist, node);

}

return(rc) ;

VOID SEARCH CONSTRAINED CAUSES()

This recursive procedure is used to search for constrained causes that

effect a false AND node.

void search constrained causes(cclist, node)
CC_LIST **cclist:
GRPNODE *node;

{

LINK *link;
CC_ELM *new;

if (node->type==CAUSE || node->type==INV_CAUSE) {

/* The specified node is a cause node */

if (node->bakw!=NULL) {

/* The node has at least one constraint relation;
Add an element to the constrained cause list */

new = (cq_SLM *) malloc (sizeof(cc_;LM));
if (*cclist==NULL) {

*celist = (CC_LIST *) malloc (sizeof (CC_LIST));

(*celist) ->head
(*ceclist) ->tail

new;
new;

}
else {

Call a recursive

112

113

(*celist) ->tail->next = new;
(*cclist) ->tail = new;
}
new->node=node;
new~>next=NULL;
}
}
else
for (link=node->bakw; link!=NULL:; link=link->next)
/* Call this procedure recursively for all backward
nodes */
search_constrained causes(cclist, link~>node) ;

JHR R AR R R AR AR AR TR AR R AR AR IR AR IR R AR IR AR AR IR IRA AR RA RN KR E RN RN RN RN AR R R A bk ok
* INT SET_ZERDES_AND_CAUSE_VALUES()
* This recursive procedure is used to set the initial value of cause nodes
* that effect all input of an AND node to be zeroes.
P st e T e e R e 2L
int set zeroes_AND cause values(test_f,link,val, node 0)
TEST_ FRAME *test £;
LINK *link;
int wval;
GRPNODE *node 0;
{
LINK *blink:;
int re=1;

compute O0++; /* Increase the computation counter by 1 */

if (link->node~>type==INV_CAUSE) ({

/* The linked node is a cause node; Check if the
transformed AND node value is not conflict with
the existing/mandatory cause value; If the
values are conflict, then call the procedure to
examine whether the change of the cause node will
change the affected AND input value or not. */

test f->cause([link->node->number-1]=1;
if (abs(link->negation-val) != 1)
if (examine forward conflict(test f, link->node, 1, node 0))
rc=0;
}
else
if (link->node->type=CAUSE) {
if (test_f—>cause[11nk—>node—>number—1]!=-1 &&
test f->cause[link->node->number-1]!=abs(link->negation-val)) {
if (examine forward conflict(test f, link->node,
test f->cause(link->node->number-1], node 0))

re=0;
}
else
test f->cause[link->node->number-1]=abs(link->negation-val);
}
else {

/* The linked node is an intermediate node:; Set
the intermediate node value and call this
procedure recursively for all backward links */

test_f->derive{link->node->number-1)=0;
test_f->1nter[1ink->node->number-1]=abs(link—)negation—val);

if (link->node->type==0OR) {
for (blink=link->node->bakw, rc=0; blink!=NULL; blink=blink->next){
if (set zeroes AND cause values(test £, blink,

test f->inter[link->node->number-1], node 0)==1)
re=1l;

else

114

for (blink=link->node->bakw, rc=1l; rc && blink!=NULL:
blink=blink->next) {
if (set_zeroes AND cause_values(test f, blink,
test_f—>inter[link->node->number—1], node 0)==0)
re=0;

}

return(rc) ;

/i**tttt*i*t*ttt*t*tit*ti*t**i**t*t*iitt*it*tt*t***ttt*iitt****ttttii*t**i**tt*t
INT RESET_ CONSTRAINED_CAUSE VALUES ()

This procedure is used to reset the value of the constrained cause values
that effect a zeroes AND node inputs to neglect the later value conflict
with the related node(s). If the cause nodes are connected to E constraint,
then tries to reset the cause values to 0 (if the initial values is 1):

If the node is constrained by an R constraint, then tries to reset the
cause node to 1 (if the initial cause value is 0); If the node effects

a related R constrained node, then tries to reset the cause value to 0O

* (1f the initial value is 1).
tt**it*ti**t*it***ttti*i*t*ti*tti*i*i*tt**t*ttit******t**tt****ttitttt*ﬁttt**t*/
int reset constrained cause values(graph, test £, cclist, node 0)

GRAPH *graph;

TEST FRAME *test £

CC_LIST *cclist;

GRPNODE *node 0;

{

* % % * * * ¥ #*

CC ELM *cc elm;

TE§T_LIST _*new_l, *temp 1:
TEST _FRAME *new_f, *curr f, *prev f;

LINK *link;
int et val, rf val, rt val;

* Create a new and a temporary test list
*/

new 1 = alloc test list();

temp 1 = alloc_test list():

new f = add test frame(new_ 1, graph):

copy_ test frame(graph, new_f, test f);

/i ———————————————————————————— -]

* Reset the constrained cause values; If the constrained cause value
* is 1 and the node has E constraint or RO (requires) constraint, then

* reset the value to 0. If the constrained cause value is 0 and the
* node has Rl (required) constraint, then the value is reset to 1.
*/

for (cc_elm = cclist->head; cc_elm != NULL; cc_elm=cc_elm->next) {

/* Loop for all constrained cause nodes */

/* Determine the constraint types */
et val=0;
rf val=0;
rt val=0;

for (link=cc_elm->node->bakw; 1link!=NULL; link=link->next) {
/* Loop for all constraint nodes linked to the cause
node %/

if (link->node->type=—R) {
if (1ink—>node->forw->node==cq_elm—>node)

rt val=1;
else
rf val=1;
}
else
et _val=l;

/* Resetting process */
for (curr_ f=new_l->head; curr_ f{=NULL;) {
/* Loop for all test frames */

if (curr_f->causelcc elm->node->number-1] == 0) {
/* The cause value is 0 */

if (rt val) {

/* Create a test frame variation */
new_f = add test frame(temp 1, graph):
copy test frame(graph, new_f, curr f);
new_f—>cause[cq_elm—)node—)number-l] =1;

/* Examine if the existing constrained node value
does not conflict with the false AND input node
value */

if (!'examine forward conflict(new f , cc_elm->node, 1,
node 0)) {
if ('et_val && !'xf_val) {
copy test frame(graph, curr f, new _f);
delete test frame(temp 1, new_f);
}
}
else
delete test frame(temp 1, new_f);

else
/* The cause value is 1 */

if (et _val (|| rf_val) {

/* Create a test frame variation */
nev_f = add test frame(temp 1, graph);
copy test frame(graph, new_f, curr f);
new_f->cause[cc_elm->node->number-1] = 0;

/* Examine if the existing constrained node value
does not conflict with the false AND input node
value */

if ('examine forward conflict(new_f£ , cc_elm->node, O,
node 0)) {
if (!'rt_val) {
copy_test frame(graph, curr f, new_f);
delete_test frame(temp 1, new f);
}
}
else
delete test frame(temp 1, new f);

/* Add any valid new test frame and determine the
next test frame to be processed */
if (temp_l->head!=NULL) {

/* Insert the test frame variation into the original

test list =/
new_f->next = curr f->next;
curr_f->next = new_f£;
temp_1->head=NULL;
curr_f = new_f->next;
}
else
curr £ = curr_f->next;
}
}
free(temp_ 1)

/*-_

* Examine whether the constraint transformation of the reset cause

115

116

* values conflict with the existing related cause node values. If so,
* delete the test frame contains the conflict values.
*/
for (cur;_f=new_;->head; curr f!=NULL:) {
/* Loop for all test frames */

prev_f = curr_ f;

for (cc_elm=cclist->head; cc_elm!=NULL;cc elm=cc_ elm->next)
/* Loop for all constrained cause nodes */

/* Examine if the existing constrained node values
do not conflict with any constraint transformation

*/
if (curr_f—>cause[cc_elm—>node->number—1] = 1 &&
derive effected node values(cc elm->node, curr f) == 0) {
curr_f = delete_ test frame(new_l, curr f):

break;
}

if (curr_ f==prev_f)
curr f=curr_ f->next’

}
YA RS . ——————— e e e ———— - - -
* Delete the constrained cause list

*/

while(cclist->head!=NULL) {
cc_elm = cclist->head;
ceclist->head=cc_elm~>next;
free(cc_elm) ;

}

free(cclist) ;

/* i - -
* If there are valid test frames, then get one of them and returns 1.
* Otherwise, return O.

*/
if (new_l->head!=NULL) {
copy test frame(graph, test f, new_l->head);

while (new_l->head!=NULL)
delete test frame(new_1, new_1l->head);
free(new_1):
return(l) ;
}
else {
free(new_1):
return(0) ;

/****ti*ii*itiittii*tt*ii*i*ii*i*#**i*i*iit**t'h***ﬁi*t*i*Qi##tt***i**iit*i‘i**i**

VOID DERIVE OTHER RIGHTMOST INTER VALUES ()
This procedure is used to derive the other rightmost intermediate values.

L L L R e I A Y
void derive other rightmost inter values(test 1, curr rmi, graph, set val)
TEST_LIST *test 1;

GRPNODE *curr rmi;

GRAPH *graph:

int set val;

GRPNODE *other rmi:;
TEST FRAME *curr f, *next f:;
int i, rmi_val, default val;

* Process the derivation for all test frames

117

for (curr f = test_1->head; curr £ != NULL; curr_ f = curr_f£->next) {

/* Derive all other rmi; The default value of
the nodes are the negation of the current rmi
*/
for (other rmi=graph->rightmost_inter; other_rmi!=NULL;
other_rmi=other_rmi—>next)
if (other rmi != curr_rmi &&
other_rmi—>forw—>node->type t= INV_EFFECT) {
default val = l-set_val;
cur;_f-)inter[other_rmi-)number—1]=
derive one rightmost_inter val(curr f, other_ rmi,
default val, graph):

/*****it*ti**i****i******i**t***i*tt*****i**t*ii****it*********tﬁi**i**i*ﬁiit#i*

* * % ¥ *

*

VOID DERIVE ONE_RIGHTMOST INTER VAL()

This recursive procedure is used to derive the value of one rightmost
intermediate node other than the test driver node. The derivation is first
derivation cannot give the (rmi) node value, the other (rmi) node is set to
default value and the cause node values are then derived by propagating

the value backward.

*i**i***itii*i**i*iii**t**t*iii*****i*****i*ttit*t***tt*tii*ttt*tt**t****iﬁ***t/

int

derive one rightmost inter val(test f, node, default_ val, graph)

TEST_FRAME *test £;
GRPNODE *node;

int

default val;

GRAPH *graph;

{

int bkwnode val:

LINK *link, *prev_ link;
GRPNODE *bkwnode;

static int first try = 1;

£ T — o e e e 2 e e e e e
* Derive the node value by propagating the existing node values
* forward
*/

for (link=node->bakw; first try; link=link->next) {

/* Loop for all backward links */

/* Get the value of a backward node */
if ((bkxwnode=link->node)~->type=CAUSE | |
(bkwnode=link->node) ->type==INV_CAUSE)
/* The link is connected to a cause node; Get the
node value */
bkwnode val=test f->cause[bkwnode->number-1]};
else
/* The link is connected to an intermediate node;
Calls a procedure to derive the node value, if
the node value is not set yet */
if ((bkwnode val=test f->inter[bkwnode->number-1])=—-1)
bkwnode val=derive one rightmost inter val (test £, bkwnode,
abs(default val-link->negation), graph):
else
bkwnode val=test f->inter[bkwnode->number-1];

/* Examine the derivation result */
1f (node->type==AND && abs(bkwnode val-link->negation)==0 ||
node->type==OR && abs(bkwnode val-link->negation)==1)
/* The backward node value can be used to determine
the node value */
return (abs(bkwnode val-link->negation)) ;

if (link->next==NULL)
first try = 0;

/i ————————————— ———— -

/******tt*tt*t*i**i*i***i**iiit*i****i**i*i**ti**tiit*iitt***it*itﬁi**ii***ti***

*
*
*

i***it*****ti*t***i*ﬁt*********it*****i**i***itiit*i****i*******t******ii******/

*
*

*/

Set the node value to default value; Derive any related
cause node value

for (link=node->bakw; link t= NULL; link=link->next) {

¥

/* Loop for all backward links %/
if ((bkwnode=link->node)->type=—CAUSE | |
(bkwnode=1ink->node) ->type==INV_CAUSE) {
/* The linked node is a cause node; Set the node
value if the node value is not set yet */
if (test_f—)cause[bkwnode—>number-1]==—1) {

bkwnode val = abs(default : val-link->negation) ;

test f—>cause[bkwnode—>number 1]=bkwnode val:;

if (bkwnode->bakw!=NULL)

derive effected node values(bkwnode, test _£):

else
/* The linked node is an intermediate node; Call

this procedure to set the node value, if the node
value is not set yet */
if (test f->inter[bkwnode- >number-1]=-1) {
bkwnode val = abs(default val-link->negation) ;
test f->1nter[bkwnode->number-1]—bkwnode val;
derivg_pne_rightmos;_inte;;val(tesq_f bkwnode,
bkwnode val, graph);
}

first try =
return (default val):

VOID REMOVE TEST FRAME DUPLICATION()
This procedure is used to remove any test frame duplication in the test
frame list.

void remove test frame duplication{(curr_ 1, test, graph)
TEST_LIST *curr l *test;
GRAPH *graph;

{

TEST_LIST *other 1=NULL;
TEST_FRAME *othe:_f *curr £, *prev_f£, *prev other f;
int 1, j, curr_dntcare, other dntcare;

for (other_ l=test; other 1 != NULL; other 1—other 1->next)

/* Loop for all test lists */

for (curr f = curr l->head; curr f != NULL;) {
/* Loop for all test frame in the current test
list */

prev_f = curr f;
for (other : f—other 1->head; other f!=NULL && other f != curr f;){
/* Loop for all other test frames before the current
test frame */

/* Compare the current frame with the other test
frame cause node values */
prev other f = other £;

for (1=0, j=0; i < graph->ninter; i++) {
/* Loop for all intermediate nodes */
if (other f£->inter(i] != curr_f->inter[i])
/* The cause node value of the two frames are not
the same */
break;
if (other f->derive[i]==2 && curr f->derive[i]=—2)
/* The derivation value of the two frames are
the same and equal to two */
I=1;

118

/****i**i***itt********i**t*i*it**itiitﬁti*it*iii*t***ttt**ittt*tiiii*******tt**

*
*
*
*

ii**i*****i**itiiiiiii*iiit*i*ti****ti**tit*t*t**ﬁ*ti*****iitttiiiiii**t***i**i/

}
if (i==graph->ninter && Jj) {
/* The two frames are identical */
other f=delete test_frame(other_1, other_ f);
break;
}

curr_dntcare = 0;
other dntcare = 0;
for (i=0; 1 < graph->ncause; i++) {
/* Loop for all cause nodes */

if (other f->cause[i] != curr f->cause(i])
/*_The cause node value of the two frames are not
the same */
if (other_ f->cause[i]==-1) {
/* The node value of the other frame is not set */
other dntcare++;
if (curr_dntcare != 0)
break;
}
else
if (curr_ f->causel[i]==-1) {
/* The node value of the current frame is not
set *x/
curr dntcare++;
if (other_dntcare t= 0)
break;
}
else
break;

/* Examine the comparison result; If the frames
are identical, delete the frame that has smaller
number of unset values. */

if (i = graph->ncause) {
/* The two frames are identical */

if (curr_dntcare <= other dntcare)

curr f = delete_test frame(curr 1, curx f);
else {

other f=delete test frame(other 1, other f):
}
break;

/* Determine the (next) other frame */
if (other_ f == prev_other_f)
other f = other f->next;

/* Determine the (next) current frame */

if (curr f == prev f)

curr f = curr_ f->next;

TEST_FRAME* DELETE TEST FRAME ()
This procedure is used to delete a test frame and returns the pointer to
previous test frame or a test list head (if there is no previous test

£frame) .

TEST FRAME *delete test frame(test 1, del f)
TEST_LIST *test 1;
TEST_FRAME *del f;

{

TEST FRAME *curr f, *prev_f.;

/*__

* Search for the frame to be deleted

*/

119

120

for (curr f=test l->head, prev_f=curr_f; curr_f != del f; prev_f=curr_f,
curr_f=curr_f—>next);

* Determine the previous frame , the test head and tail
*/
if (curr f=test l->head) {
test I->head = curr f->next;
prev:f = test l->head;
}
else
prev_f->next = curr_f->next;

if (curr_ﬁ==test_1—>tail)
test_1->tail = prev £f;

Jr=-— - ——————e— i — e —————
* Delete the specified frame
*/

free(curr_f-)cause);

free(curr_f->inter) ;

free(curr_ f->derive):;

free(curr f->effect);

free(curr_f);

/* - e ————————
* Return the previous frame pointer
*/

return(prev_f);

/i‘t**ii*****iti*i*iii**tii**tit*t****i***ii****t*i*tt***i*****i**i*t**t*i*i**ttt
* VOID DERIVE_ EFFECT_VALUES ()
* This procedure is used to derive the unassigned effect node values in all test
* frames of a test frame list.
L L 2L LT i
void derive effect values(test 1, graph)
TEST _LIST *test 1;
GRAPH *graph:
{

TEST_FRAME *test f;

GRPNODE *effect;

LINK *link;

for (test f = test l->head; test f != NULL; test f = test f->next)
/* Loop for all test frames */

for (effect=graph->effect: effect != NULL: effect=effect->next){
/* Loop for all effect nodes */

if (effect->type==INV_EFFECT)
/* The node is an invariant node */
test_f->effect[effect->number-1] = 1;
else {
/* The node is not an invariant node; Set the
effect node value to 1 if there is a linked node
(an intermediate node) that has value = 1 */
for (link=effect->bakw; link != NULL ; link=link->next)
if (test_f->inter[link->node->number-1}==1) {
test f->effect[effect->number-1] = 1;
break:
}
if (test f->effect|[effect->number-1] = -1)
/* Set the effect node value to 0 if the node is
unassigned %/
test f->effect[effect->number-1] = 0;

JRER AR AR R AR R ARk ARk R e R Rk R R RNk RN Rk Rk k
* VOID PRINT_TEST FRAME ()
* This procedure is used to print all test frame values (cause and effect
* values) .
L e e e ey
void print test frame(test, graph, table, default val)
TEST LIST *test:;
GRAPH *graph;
TABLE *table;
int default val;
{
TEST_LIST *curr_l;
TEST FRAME *curr f;
TBL REC *curr _c, *curr_e;
int nc, ne, i, j, ¢, e, k, £;

FALS LTS TP - e e 1 e e e e e e
* Print the test frame table header
*/
if (default val==1) {
printf ("\n\n\nTrue-Effect Test Frames:\n");

printf (" A\n\n") ;
}
else {
printf ("\n\n\nFalse-Effect Test Frames:\n");
printf (" \n\n") ;
}
printf (" - \n") ;

printf("Frame No. #*#*tkx** Cause No. *h¥kku¥ *xxkkkd Effect No.*k*kxkxd\n") ;

nc = graph->ncause;
ne = graph->neffect;
Y4 TP - -—— ———— e mc s e ———

* Print the cause and effect node numbers in the table header
* (maximum 8 numbers in one row)
*/
for (c=0, e=0; nc-c > 0 || ne-e > 0;) {
printf (" "y
for (k=0; k < B, k++) {
if (nc-c > 0) {
c++;
printf("s2d ", c);
}
else
printf (" "):
}
printf (" ")
for (k=0; k < B8; k++) {
if (ne-e > 0) {
(=X 2
printf("%2d ", e);

}
else
printf (" "),
}
printf£("\n");
}
printf (" - - \n") ;
A
* Print all test frame cause and effect node values
*/
for (curr 1 = test, f=1; curr 1 '= NULL; curr 1 = curr_l->next)

/* Loop for all test list */

for (curr_f=curr_l—>head; curr f!=NULL; curr_f=curq_f—>next, £++) {

121

122

/* Loop for all test frame in the current test
list */

printf (" %3d v, £);
for (¢e=0, e=0; nc-c > 0 || ne-e > 0;) {
/* Loop for all cause and effect nodes */

/* Print the value of cause nodes */

for (k=0; k < B; k+t+) {
if (nec-c > 0) {
if (curr f->causefc]==-1)

printf(" 4 ");
else

printf(" %1d ", curr f->causelc]):
o+t -
}
else
printf (" ")
}
printf (" "y

/* Print the value of effect nodes */

for (k=0; k < 8; k++) {
if (ne-e > 0) {
if (curr_ f->effectle]==-1)

printf(" d ");

else
printf(" %1d ", curr f->effect[e]):
et++;
}
else
printf (" ")
}
printf ("\n ")
}
printf£("\n");
}
printf (" - SES=SsSS=sss=ss=—== ——— —-—— \n") ;
YA LT ————— -
* Print the legend of the cause nodes
*/

printf£("\n Causes:\n");
for (c=0, curr_c=table->cause; curr_c != NULL ; c++, curr_c=curr_c->next) {

printf£("\n %2d : ", c+l);

for (1 = 0; 1 < 3; 1i++) {
if (i==2 & strlen(cuxr_c—>pred;part[0])+stxlen(curr_p->preq_part[1])+

strlen(curr_c->pred part[2]) > 60)
print£("\n vy
printf("%s ", curr c->pred part[i]);

}

*==-
* Print the legend of the effect nodes
*/
printf ("\n\n Effects:\n"):;
for (e=0, curr_e=tab1e—>effect; curr_e = NULL ; e++, curr e=curr_e->next) {

printf("\n $2d : ", e+l);
for (1 =0; 1 < 3; 1i++) {
if (i=2 & strlen(cuzg_e—>pred;part[0])+strlen(curr_g—)preq_patt[ll)+

strlen(curr e->pred part[2]) > 60)
printf ("\n ")
printf("%s ", curr_e->pred part[i]):

/*

* Print the legend of the nod values
*/

printf ("\n\n Node Values:\n"):

123

printf("\n 0 : FALSE");

print£("\n 1 : TRUE"):

printf("\n d : Don't care (Either TRUE or FALSE)")
[—— - ———— - -
* Print the number of computations
*/

printf ("\n\n\n The Number of Computations:\n");

printf("\n Zeroes-AND Computations ¢ %6d", compute 0):

printf ("\n Non Zeroes-AND Computations : %6d\n\n\n", compute 1);

VITA
Teguh Rahardjo
Candidate for the Degree of

Master of Science

Thesis: TEST FRAME GENERATION FROM Z SPECIFICATIONS
Major Field: Computer Science
Biographical:

Personal Data: Born in Yogyakarta, Indonesia, On October 21, 1956, son of Soetar
Reksoatmodjo and Roekminah.

Education: Graduated from Sekolah Menengah Atas Negeri III, Yogyakarta,
Indonesia in December 1975; received Bachelor of Engineering in Electrical
Power Engineering from Institut Teknologi Bandung, Bandung, Indonesia in
March 1983. Completed the requirements for the Master of Science degree in
Computer Science in July 1995.

Experience. Employed as Systems Analyst by the Computing Center of Nusantara
Aircraft Industries Ltd., Bandung, Indonesia, 1983 to 1992.

Professional Membership: IEEE Computer Society.

