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PREFACE

The chemical Process Industries rely heavily on pattern based information utilization.

Process trends and patterns contain virtually all the information about the process and

provide the operators a basis to determine the process condition. It is based on changes in

these ratterns that operators make the necessary adjustments to the process operating

conditions, depending on their interpretation. In general, process condition can

confidently be judged only by monitoring multiple signals simultaneously and by context

dependent pattern recognition. A simple example of a exothermic CSTR can be used to

illustrate this. When the rector temperature rises and the coolant flow rate remains

constant or decreases, the operator may take it as a premonition of impending doom, but

if the coolant flow rate also goes up to accommodate for this increase in reactor

temperature, the operator might take no prophylactic measures. It can easily be concluded

that good signal processing techniques are necessary to develop the next generation of

automated process monitoring techniques.

Sensor signals samples are periodically collected by data collecting techniques that

usually introduce sensor noise to the already noisy raw signal from the process. This raw

signal has to be converted to a useful form before it can actually be used further. The

challenge is to provide a signal processing technique that can process a signal on-line and

feed it to a process monitoring technique. Howev~r, the catch is that all signal processing

cause signal distortion at least to some extent. This cannot be tolerated, especially

distortions towards the end of the signal, samples that correspond to the most recent

juncture in time. This is because it is these samples that trigger off a process monitoring

technique into predicting the process as normal or abnormal. Prediction of a normal state
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as abnormal can probably tolerated but predicting an abnormal state as normal can prove

catastrophic.

In this work a novel signal processing method using Wavelets is discussed. Wavelet

Transforms are similar to the age old Fourier Transforms, but outmatches the Fourier

Transforms in many desired attributes. Wavelets not only provide a powerful signal

processing/analysis technique, they are also capable of providing significant data

compression. In this work data compression's of the order of 90% were achieved without

significant loss in the information content of the signals.

This work to our knowledge is the first to emphasize the importance of signal

extension techniques for an applications like pattern recognition. A new signal extension

technique (NET) is described and its superiority over other signal extension techniques is

demonstrated.
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CHAPTER I

INTRODUCTION

The process industries rely heavily on pattern-based information utilization. Robust

featur~ extraction and pattern recognition techniques are essential for the successful

automation of a chemical process plant. Pattern based monitoring techniques require

compact representation of the sensor data. In this work we describe a wavelet technique

that provides efficient signal representation and trend pattern extraction.

Sensor signals in general are heavily marred by noise. Noise can mask the actual

signal trend and make pattern recognition and feature extraction difficult. To enable

better trend resolution, signals are analyzed using different techniques, e.g. the Fourier

transform. The disadvantage of using conventional signal processing techniques such as

the Fourier transform is that they are ineffective at handling localized signal behavior.

Loss of a vital piece of infonnation can be unacceptable for monitoring and control

purposes. Wavelet transforms provide localized signal processing capability and better

trend pattern representation.

All signal extension methods require the signal to be extended to prevent trend

distortions. This work identifies the drawbacks of common signal extension methods and

recommends a more effective method of signal extension.

Critical factors such as the wavelet family used, the number of levels of signal

decomposition, and possible data compression techniques have also been explored. A

detailed description of these topics is beyond the scope of this work, however.
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Thesis Outline

The organization of this thesis is as follows, Chapter II describes signal analysis

techniques in general with special emphasis on Fourier and wavelet transfonns. This

chapter also discusses time-frequency relationships and introduces the concept of multi­

resolution analysis.

Chapter III discusses general mathematical details of wavelets and wavelet

transforms. Special mention is made of the Daubechies family of wavelets. This wavelet

family is used extensively in this work. This chapter also presents the concept of multi­

resoiution analysis from a theoretical perspective.

Chapter IV is the main body of this work. It presents an overview of common signal

extension methods and describes their shortcomings when used with wavelet transforms

for pattern recognition and feature extraction applications. New signal extension methods

are presented which avoid the problems with traditional techniques. Perfonnance of

these new methods is illustrated with case studies.

Chapter V concludes with a summary of this work and sets forth recommendations

for future study.



CHAPTER II

SIGNAL ANALYSIS

Introduction

Signals are commonly analyzed by decomposing them into their frequency

components. Frequency components are portions of the signal with different energies.

Portions with higher energies correspond to the higher frequencies and, likewise, lower

frequencies correspond to lower energy. A sound method for signal analysis requires

detection and explicit representation of the temporal features in a joint time-frequency

space. The ultimate objective of signal processing is to provide a unique signal

representation.

The high frequency part of a signal is generally measurement noise and can be

eliminated to the desired degree by passing it through a low pass filter. Filtering, in

signal processing parlance, is analogous to physical filtering, e.g. separation of suspended

impurities from a liquid. A low pass filter is one that allows the low frequency

components of the signal to pass through. Low frequencies form the basic trend patterns

of the signal. High pass filters do the opposite.

Signal processing techniques should avoid distortion of process trend, otherwise the

interpretation of the trend by a process monitoring technique may be erroneous.

Desirable qualities of a signal processing technique for trend extraction include the

following:

3
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• The technique should have the ability to analyze a signal over numerous resolution

levels and capture the essential features of the process trend.

• The processing technique should ensure that there is neither (a) over-sampling which

results in information redundancy, or (b) under-sampling which could result in

information loss.

• The technique should be able to treat local behavior as a local, not global event. For

example, if a sudden impulse in the process trend shows up sharply on the sensor

reading, this is generally indicative of a valve failure, etc. Analyzed using a global

technique, e.g. the Fourier transforms, the processed signal could show a more

sluggish change like a load change. This representation is misleading.

• The signal analysis technique should provide a unique signal representation immune

to signal translations i.e., the signal translated in time should provide a representation

identical to the original representation, but translated appropriately.

Signal Representation

If "I' is a sampled data representation of a sensor trend pattern containing N samples,

thenfcan be expressed as shown below:

N-l

f(t) = .LPn8(t-n) ,t=O....N-l
n=O

and where 8(n) is defined as a unit impulse response and has a value

(1)

8(X) = {~ ifx=O
otherwise

(2)
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f(t)

6

Sensor Value

4

2

o 2 3 4 5 6 7

t

Figure 1: A sampled process signal.

In Figure 1, an 8 point signal is depicted. The trend pattern can be expressed using a

time domain representation by a vector of coefficients Pn.

7

l(t)= LPnD(t-n),
n=O

T
where p=[l 2 3 3 2 4 5 6] .

(3)

The signal in Figure 1 is localized in time using a time domain representation because it

is expressed as a series of impulses in time. The magnitude (the sensor reading in this

case) of an impulse gives the exact signal value at that instant of time. Frequency

localization can be achieved by employing a Fourier transform to identify the frequency

components that constitute the signal.

There are a number of other ways this signal can be represented. In general, the

signal can be expressed by a pair of basis functions a. and p. The signal can be

expressed as the sum of its decomposition products, or

where k is an index that defines the length of the signal.

(4)
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The basis functions vary depending on the nature of the decomposition method adopted,

and gk and hk are the decomposition coefficients associated with ex. (t) and P(t),

respectively.

The most common signal analysis techniques are discrete Fourier transforms, discrete

cosine transforms and, more recently, discrete wavelet transforms. The remainder of this

chapter describes two methods: Fourier transforms and wavelet transfonns. The Fourier

transform [Bracewell, 1965; Brigham, 1974; Weaver, 1983] is described in detail to

facilitate easier understanding of wavelet transforms.

The Fourier transform

In the Fourier transform, the basis functions in equation (4) are sine and cosine

functions. The Fourier transform decomposes the signal into sines and cosines of

different frequencies and amplitudes, and these functions collectively form the original

signal. For Fourier transforms, h and g in equation (4) are sine and cosine amplitude

coefficients.

The mathematical representation of Fourier decomposition of a signalf(t) is

f(t) =Lgk cos(tk) +Lhk sin(tk)
k k

An alternative representation of the Fourier transforms (FT) is

(5)

(6)

Though powerful and popular, Fourier representations have some serious limitations

[Bracewell, 1965; Brigham, 1974; Weaver, 1983]. They do not provide easy insight into

the time domain behavior of the original signal which is essential for trend pattern

representation. Figure 2 shows the time domain decomposition representation of the
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process signal in Figure 1. This representation is generally inadequate for trend pattern

representation and process monitoring for applications other than vibration monitoring.

This limitation comes about from the fact that the analyzing functions in the Fourier

transform are global in nature.

Cosine Coefficients Sine Coefficients
Figure 2: Fourier coefficients of the process signal in Figure 1

There are at least two ways to overcome this drawback. The first solution is to

introduce time dependency in Fourier transforms so that the signal is analyzed, not on a

global scale, but within windows in time [Akansu and Haddad, 1993; Chui, 1992b].

Another way of handling this problem is to use other basis functions that are more

concentrated in time. This is where wavelet transforms come into the picture. They use

analyzing functions that are localized in time.

Discrete wavelet transforms

Wavelet transforms [Chui, 1992a; Chui, 1992b; Cohen et al., 1992a; Daubechies,

1988; Daubechies, 1990; Daubechies, 1992; Mallat, 1989a; Mallat, 1989b; Strang, 1989]

enable analysis in both time and frequency.

Analogy to Fourier transforms: In the same manner as sines and cosines in the

Fourier transfonns, wavelets and scaling functions form the basis functions in the wavelet
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transforms. A key difference is that while sines and cosines have simple analytic

expressions, scaling functions·and wavelets are complex functions which are derived

rather than naturally occurring. Wavelet decomposition of a signal is also represented by

equation (4), where

a. k V) is the scalingfunction

Pk V) is the wavelet

A sample scaling function and wavelet is shown in Figure 3.

2

O+,-__--+-_--#-~ _

4 5 6 7

-1

2

o

-1

-1

6 7

(a) (b)
Figure 3: (a) Fourth order Daubechies family scaling function and (b) wavelet

Wavelet transforms provide variable frequency analysis capability instead of constant

frequency analysis as in Fourier transforms [Strang, 1993]. The analysis frequency can

be varied on a logarithmic scale as shown in Figure 4. Since time and frequency are

inversely related, time resolution improves at higher frequencies. Two closely spaced

impulses in a real time representation of the signal can be distinguished by a wavelet

decomposition.
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J~'

I -1 I I

--o

k

fre~uency

n time

Figure 4: Wavelet transform on a time frequency scale

A comparison of a Fourier decomposition of a signal and a wavelet decomposition of

the signal can be seen in Figure 5. The time domain representation of the Fourier

transform provides a poor trend pattern representation of the original signaL Its wavelet

counterpart on the other hand, provides an excellent trend pattern representation of the

original signal. This representation is a replica of the original signal, but on a coarser

scale. The second part of the wavelet decomposition contains signal details present in the

original signal but lost in the coarse representation. It can be inferred that wavelet

transforms provide better time-frequency localization than Fourier transforms.



0.80

0.76~ _

time

(a)

10

(b)

0.80 0.004

0.002
0.78

0

0.76 -0.002

(c)

Figure 5: Comparison of Fourier decomposition and wavelet decomposition (a) original

signal, (b) Fourier decomposition and (c) wavelet decomposition down one level using

the third order Daubechies family.



This chapter introduced two important signal processing techniques. Fourier

transforms were described, and their shortcomings were discussed. Fourier transforms

work well for stationary signals but not for process signals which are generally not

stationary. Wavelet transforms were introduced and their advantages over Fourier

transforms were outlined. The next chapter deals with wavelet transforms in greater

detail.

11



CHAPTER III

WAVELET TRANSFORMS

Introduction

Though wavelet transforms are relatively simple to implement, the mathematics are

somewhat complex. This chapter discusses the mathematics of wavelet transforms. The

general methodology is discussed, and the Daubchies wavelet family is specifically

illustrated [Cohen et al., 1992a; Daubechies, 1992; Daubechies, 1988]. The finer

mathematical aspects of multi-resolution analysis are discussed as well as various

methods of applying wavelet transforms for multi-resolution analysis. The first subject

presented is the dilation equations that constitute the mother functions of both scaling

functions and wavelets. Computation of the scaling function and wavelet coefficients is

discussed, and the actual synthesis of scaling functions and wavelets is described.

Dilation Equations

Scaling functions and wavelets are represented by special types ofequations called

dilation equations [Daubechies, 1992; Daubechies and Lagarias, 1992a; Daubechies and

Lagarias, 1992b; Strang, 1989]. The general form is

Tl(t) = I1kTl(mt - k)
k

12

(7)
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Here, I is a vector of dilation function coefficients which represents the impulse

response of the filter associated with the dilation equation. Consequently the Ik's are

referred to as the filter coefficients.

The general equation for the scaling function is

cp(t) = L ckCP(2 j t - k),
k

where Ck is the scaling function coefficient. Similarly the wavelet equation is given by

\II (t) = L dk<P(2 j t - k) ·
k

where dk is the wavelet coefficient.

(8)

(9)

Note that the scaling functions are expressed as a sum of dilations and translations of the

function. Wavelets are defined as functions of the scaling functions, because the

decomposition basis functions have to be interdependent.

In equation (7), the term m provides the ability to dilate depending on the analysis

level. Frequency localization is thus obtained. Hence, m is called the dilation coefficient.

The function constricts for high frequencies, and dilates to capture lower frequencies.

Figure 6 illustrates the dilations and translations of a wavelet. As the level of analysis

increases, the functions dilate and span a wider frequency range. During analysis,

frequency is gradually sliced in a logarithmic fashion. When m equals 2, the dilation is

binary.
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"I.
I •

• I

• I.
I.

I

I

I..

--original wavelet

- - - dilated and transated

• • • • • dilated and translated

Figure 6: Illustration of a wavelet at different dilations and translations.

The other parameter, k, is the translation coefficient that provides translation in time

and thus time localization. This translating coefficient can assume any range of values,

though a finite range is generally adopted for computational ease.

Together these parameters provide the necessary time-frequency localization, the

most attractive feature of the wavelet method. Generally translations are dyadic. This

means that signal sampling after wavelet transform is dyadic, and every alternate

decomposition coefficient is sufficient to obtain perfect reconstruction. A uniform

sampling grid is maintained in a dyadic wavelet transform [Daubechies, 1990; Oslen and

Seip, 1992; Walter, 1992]. Figure 7 shows a sampling grid for wavelet transforms.

..
xxx XXXXX XXX

X X

x

X x

x

X

Figure 7: The dyadic sampling of a V ""1velet grid.
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It can be seen that the number of coefficients at any level is half the number of

coefficients at the previous level.

Wavelets provide the ability to analyze a signal at multiple resolutions. To resolve

the finer details, the resolution is increased. Similarly, when resolution is gradually

decreased, the object becomes more and more blurred [Cohen et al., 1992b; Daubechies,

1991; Mallat, 1989a; Mallat, 1989b; Mallat, 1989c]. The coefficients from a wavelet

analysis are representative of the original signal, but across different resolution levels.

Since a variety of scaling functions and wavelets are possible, we retain the liberty to

experiment with different basis functions and to use the decomposition that best suits our

needs. The different types of wavelets come about from the fact that in equation (7), 11

can be different functions and k can take on different values.

A variety of wavelets [Battle, 1987; Chui, 1992; Chui and Wang, 1991; Chui and

Wang, 1992; Cohen et al., 1992a; Daubechies, 1992; Daubechies, 1993; Lemarie, 1990;

Lemarie, 1988; Meyer, 1985] can be constructed depending on conditions imposed

during their construction. Wavelets are broadly classified into families, based on their

nature. These families of wavelets are further sub-divided into orders, depending on the

order of filters, i.e. the filter lengths. Similar to the sines and cosines, wavelets with

infInite support can be defined. Recent advances in wavelet technology have led to the

development of finitely supported wavelets. Finite length wavelets are advantageous in

computational ease over their infinitely supported counterparts, but cause translation

variance. Some common wavelet families (Figure 8) are:

• The Daubechies family [Daubechies, 1988] and coiflets [Daubechies, 1992];

• The Battle-Lemarie family [Battle, 1987; Lemarie, 1988];

• The Meyer family [Meyer, 1985];

• Biorthogonal wavelet [Cohen et al., 1992a];



• Wavelets from Cardinal Splines by Chui [Chui, 1992a; Chui and Wang, 1991;

Chui and Wang, 1992;" Chui and Wang, 1993].

16

scaling function

(a)

(b)

(c)

(d)

wavelet

Figure 8: Figure showing some wavelet families, (a) the Daubechies family, (b)
biorthogonal wavelets, (c) Battle-Lemarie wavelet and (d) coiflets.
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Wavelet Construction

Before we delve into the actual construction of wavelets, a few terms are defined to

facilitate easier understanding of this topic.

Orthogonality: A function ~(t) is said to be orthogonal if the following relationship

is satisfied;

(10)

where "c" is a constant. When c is unity, the function is both orthogonal and normalized,

i.e., it is orthonormal.

In wavelet construction the first step involves computation of the scaling function

coefficients in equation (8), the wavelet coefficients in equations (9), and, finally, the

actual scaling function and wavelet function.

Computing the scaling function and wavelet coefficients: We consider the simplest

form of wavelets, called the Haar wavelets.

Case 1: The Haar case

The Haar wavelet is constructed from the simple box function shown in Figure 9.

The scaling function is a simple box function.

{
I 0 ~ t ~ 1

<pet) = 0
otherwise

(11)
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o-...._-~o-~.5~-----------

Figure 9: The box function.

This satisfies the dilation equation

<pet) = coq>(2t) +c1<P(2t -1). (12)

Comparing equation (8) with equation (12) gives co=l, cl=1. These are the scaling

function coefficients for the Haar wavelet. In this case, the box function is a sum of two

half sized boxes, both of unifonn dilation. The difference between them is that one box is

translated by a unit value. Since the box function is defined by two non-zero coefficients,

it is called a filter of length two.

The wavelet corresponding to the box like scaling function in Figure 9 is depicted

below along with a dilated version and a dilated and translated version.
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1 - ~

0 0
1 1/2 1/2 1

-1 - --
Figure 10: The Haar wavelet \J1(t) and dilated and translated versions,

w(2t), \J1(2t -1).

The Haar wavelet is given by

where do =1, d l =-1. It can also be defined as

(13)

1,

o/(t) = -1,

0,

05: t < 1/2

1/2 ::; t ::; 1

otherwise

(14)

Case 2: A linear spline case:

This example is a wavelet constructed from the simple hat function shown in Figure

11

t, °::; t ::; 1

<p (t) = 2 - t, 1~ t S 2

0, otherwise

(15)
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I ,,/' \

Figure 10: The hat function.
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(16)

Equation (16) is satisfied for co=c2=1/2, cl=l. In this case the scaling function is the

sum of three dilated and translated versions. Thus, a variety of combinations of dilated

and translated versions of these functions can be used to generate wavelets starting from

different basis functions. This is possible, provided the basis functions meet certain

requirements documented in the following sections.

The wavelet for the hat function is shown in Figure 12. This wavelet is expressed in

Figure 12: Wavelet associated with the Hat function

the form of a dilation equation as follows:
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\11 (t) =do<p(2t) + d1<P(2t -1) + d2<P(2t + 1) (17)

where dO=l,dl =d2= -1/2.

In case 2, the scaling function is composed of combinations ofpolynomials that are

piecewise linear; case 1 is satisfied using simple constants. Piecewise linear polynomials

are not effective at approximating [Rice, 1964] stochastic signals like sensor signals.

Higher order polynomials can also be used [Daubechies, 1988] and are better for

approximating these kinds of behavior. Polynomials that provide both orthogonality and

compact support are preferred over other kinds of approximating functions. This was not

achieved until Daubechies constructed such functions [Daubechies, 1988]. The beauty of

Daubchies wavelets is that they are not only orthogonal but are compactly supported as

well. It was previously believed that orthogonality could only be achieved at the expense

of compact support. The next section extends the procedure for the Daubechies family.

The Daubechies Family: Wavelet construction is actually preferred in the frequency

domain because dilation and translation parameters are more easily handled in the

frequency domain than in the time domain. In the general methodology [Chui, 1992a;

Daubechies, 1992; Daubechies, 1993; Strichartz, 1993] , translates of the scaling function

are approximated by a polynomial. The coefficients of the polynomial are the scaling

function coefficients ck's .

Depending on the nature of the wavelet desired, constraints are imposed during the

construction of the scaling function. For instance, the orthonormality condition imposed

is

f<p(t)dt =1

and for orthogonality,

f\V (t)dt = 0 ·

(18)

(19)
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Orthogonality is necessary fot perfect signal reconstruction.

A limit is imposed on the number of finite non-zero Ck to ensure that the scaling

function and wavelet are compactly supported or span a finite range. Support is defined

as the span of the scaling function or the wavelet; i.e. the spread or expanse over which

the function has a non-zero value.

Once the scaling function is constructed, the wavelet is then constructed from the

dilation equation (9). Constraints imposed on scaling functions and wavelets are actually

constraints on their respective coefficients, as is evident from the equations below.

Integrating equation (8) and comparing the orthonormality condition (equation 18)

I<p(t)dt = IICk<P(2t - k)dt = 1

and

(20)

Similarly, integrating equation (9) with the orthogonal condition described by equation

19

Iw (t)dt = IIdk<P (2t - k )dt = 0

or,

(21)

The condition for a set of wavelet functions to be orthogonal is that the sum of its

scaling function coefficients should be two (from equation (20)). For the wavelet

functions to be orthonormal as well, the sum of the wavelet coefficients should be zero.



23

There is a special relationship between the ck and dk when the scaling function and

wavelet function are Quadrature Mirror Filters (QMF's) of each other [Akansu et al.,

1993; Cohen et al., 1992a; Daubechies, 1988]. This relationship is given by

(22)

Simply stated, the wavelet coefficients are obtained from the scaling function coefficients

by reversing the order and changing the signs on every alternate coefficient. This way,

we need not calculate the wavelet coefficients (the dk'S) separately. They can be obtained

directly from the scaling function coefficients (ck'S).

This procedure is illustrated further by an example [Daubechies, 1988]. The

construction of the Daubechies family of compactly supported orthonormal wavelets is

briefly discussed in the following paragraphs. Only an abstract of the construction

method is discussed in this work. The full treatment of this topic can be obtained from

[Akansu and Haddad, 1993; Chui, 1992a; Daubechies, 1992; Daubechies, 1993; Haykin,

1991; Strang, 1989]. The conditions imposed for the construction of the Daubechies

family of wavelets are that the scaling function has 2N coefficients and lies supported

between 0 and 2N-l, where N is the order of the wavelet within the family. This means

that the coefficients, other than those lying in the region between 0 and 2N-l, are zero in

value. This gives rise to the following condition:

Cn= 0 for n <0 or n>2N-l (23)

Also, they form an orthonormal family of wavelets. Since there are only a finite number

of coefficients, equations (20) and (21) yield



2N-l

~>k =2
k=O

2N-l

Ldk =0.
k=O

24

(24)

As mentioned previously, actual construction of scaling functions is performed in the

frequency domain. The Fourier transform of a functionf(x) is defined as

(25)

Note that this is the continuous Fourier transform. The previously described equation (5)

is the discrete version of this transform.

The Fourier transform of the scaling function is

Simplifying,

<p(~) = t LCke-i~/2<p(~).
k

This equation can now be expressed as function of another simple equation. Define

then equation (26) can be expressed as

(26)

(27)

(28)
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Also, equation (28) can be further extended as

(29)

Equation (29) indicates that the translates of <pet) can be approximated by an infinite

length polynomial. For the Daubechies case, however, approximation is attempted using

a finite length polynomial. Obviously, not all finite length polynomials meet the

orthonormality requirements. Only special types of polynomials can possibly satisfy all

the requirements. This polynomial should also provide the best approximation for the

desired scaling function. From equation (27) it can be seen that the coefficients of the

polynomial directly yield the scaling function coefficients. Since real coefficients are

preferred, the polynomial in equation (27) is a cosine polynomial, the reason being that

the polynomial in equation (27) is expressed as a function of e-i~ whose real part is the

cosine part. The proof that this polynomial is periodic is given in Appendix A. Using

z=e-i~, the polynomial is transformed into a function of z.

The polynomial in equation (27) is subsequently defined as

mo(~)=p(Z)=C;Z)NE(z)

Here E(z) is the cosine polynomial and constitutes the real part of the polynomial in

equation (27). Thus only real coefficients will be generated. The periodicity of P(z)

causes it to satisfy equation (31)

(30)

(31)
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The importance of this equation is our attempt to generate functions that are as symmetric

as possible.

The general solution to equation (31) is given by

2 N-l(N - 1+ k) t: )2k fc 'iN
IE(z)j =I \sint + ~in!} 't o(CO;~).

k=O k
(32)

From equation (32), using a technique called spectral factorization [Chui, 1992a;

Daubechies, 1988]), IE(z)l, the absolute value of the polynomial. ·s substituted in

equation (30) which gives the coefficients for the scaling function for the Daubechies

Family. From the QMF relationship described by equation (22), the wavelet coefficients

are computed.

The construction can be summarized as follows :

• The order of the wavelet N is decided and the polynomial in equation (32) is

synthesized.

• The polynomial is spectral factorized and the "square root" of the polynomial is

calculated.

• The polynomial from step (2) is multiplied with another binomial polynomial as in

equation (30) to make the resultant polynomial as regular as possible. Binomial

polynomials are always symmetric.

• A polynomial of order 2N-l results from step (2). Normalization of these coefficients

according to equation (27) gives the scaling function coefficients for the Nth order

Daubechies family of wavelets.

• The wavelet coefficients are calculated from the relationship in equation (22).

A more detailed explanation of this procedure is described in Appendix A. Also

illustrated in Appendix A is the procedure for calculating the scaling function and
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wavelet coefficients for the second order Daubechies family. The next section describes

construction of scaling functions and wavelets from their respective coefficients.

Construction of the scaling function and wavelet: Having generated the scaling

function coefficients and wavelet coefficients, we proceed to calculate the actual function

values using a method adopted from Gilbert Strang's classic article [Strang, 1989].

Scaling function values are calculated at integer points. This is done by constructing a

matrix Mij =C2i- j - l • The left eigenvector for A=I gives the value of the scaling function

at the integer points.

Construction of the scaling function and wavelet for the second order Daubechies

family is described below.

By definition, the following equality holds for the Daubechies second order family:

<p (t) =0 E t ~ 0and t ~ 3. (33a)

The value of the scaling function at t=1 and t=2 must be evaluated. For t=1 and t=2 in

equation (8),

<p(1) = co<p(2) + c1<P(I)

<p(2) = c2<P(2) + c3<P(1)

(33b)

(33c)

Solving these two equations simultaneously is identical to solving the matrix

<p(0) Co 0 0 0 <p(O)

<pel) c2 c1 Co 0 <pel)
= (33d)

<p(2) 0 c3 c2 c1 <p(2)

<p(3) 0 0 0 c3 <p(3)
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equation (8). Inserting zeros between the known values of the scaling function, the

resultant vector is [<p(0) 0 <P(1) 0 <p(2) 0 <p(3)]. This vector is convolved with the

scaling function cr '":'fficients. The resultant vector contains the values

[<p(O) <p(O.5) <pel) <p(1.5) <p(2) <p(2.5) <p(3)].

This operation can be repeated to calculate the scaling function values at any number of

intermediate points.

The wavelet values are computed in the same manner. To compute the wavelet

values at n points, the scaling function values at only half the number of points are

needed, i.e., the values of scaling function at only nl2 points are needed. Zeros are

inserted between each value of scaling function and convolved with the wavelet

coefficients. The first n points of the convolution product are retained and provide the

values of the wavelet at the desired points.

Sample coefficients are shown in Table I. Figures 13 and 14 show some Daubechies

family scaling functions and their corresponding wavelets.
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Scaling function coefficients for the Daubechies family. N is the order of the wavelet

N=2 N=7 N=9
0.48296291314453 0.07785205408501 0.03807794736391
0.83651630373781 0.39653931948193 0.24383467461279
0.22414386804201 0.72913209084625 0.60482312369057

-0.12940952255126 0.46978228740519 0.65728807805169
N=3 -0.14390600392858 0.13319738582482

0.33267055295008 -0.22403618499389 -0.29327378327973
0.80689150931109 0.07130921926683 -0.09684078322325
0.45987750211849 0.08061260915109 0.14854074933814

-0.13501102001025 -0.03802993693502 0.03072568147931
-0.08544127388203 -0.01657454163067 -0.06763282906141
0.03522629188571 0.01255099855610 0.00025094711483

N=4 0.00042957797292 0.02236166212370
0.23037781330890 -0.00180164070405 -0.00472320475776
0.71484657055292 0.00035371379997 -0.00428150368247
0.63088076792986 N=8 0.00184764688306

-0.02798376941686 0.05441584224311 0.00023038576352
-0.18703481171909 0.31287159091434 -0.00025196318894
0.03084138183556 0.67563073629737 0.00003934732032
0.03288301166689 0.58535468365426 N=10

-0.01059740178507 -0.01582910525641 0.02667005790061
N=5 -0.28401554296164 0.18817680007804

0.16010239797420 0.00047248457388 0.52720118893260
0.60382926979720 0.12874742662049 0.68845903945440
0.72430852843778 -0.01736930100181 0.28117234366010
0.13842814590132 -0.04408825393080 -0.24984642432883

-0.24229488706639 0.01398102791740 -0.19594627437823
-0.03224486958464 0.00874609404741 0.12736934033608
0.07757149384005 -0.00487035299345 0.09305736460388

-0.00624149021280 -0.00039174037338 -0.07139414716645
-0.01258075199908 0.00067544940645 -0.02945753682182
0.00333572528547 -0.00011747678412 0.03321267405949

N=6 0.00360655356698
0.11154074335011 -0.01073317548335
0.49462389039846 0.00139535174706
0.75113390802111 0.00199240529519
0.31525035170919 -0.00068585669496

-0.22626469396545 -0.00011646685513
-0.12976686756727 0.00009358867032
0.09750160558732 -0.00001326420289
0.02752286553031

-0.03158203931749
0.00055384220116
0.00477725751095

-0.00107730108531

Table I: Scaling function coefficients for the Daubchies family of wavelets
(Daubechies 1988).
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Figure 13: Scaling functions associated with the Daubechies wavelets for
(a) order = 2, (b) order = 5, (c) order = 8 and (d) order = 15.

31



2

-2

(a)

-2

(c)

(b)

-1

(d)

31

Figure 14: Daubechies wavelets for (a) order = 2, (b) order = 5, (c) order = 8 and (d)
order = 15.
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Computing the decomposition coefficients: Signal filtering is mathematically

performed using convolution.· Signals are convolved with the filter coefficients (in this

case, with the scaling function and the wavelet coefficients) and the resultant product

signal dyadically sampled. If f is the process signal, H and G the high pass filters

(scaling functions) and the bandpass filters (wavelets) respectively, then the signal is

decomposed as follows.

Blurred Signal=H*f

Detail Signal=G*f

where "*,, represents the convolution operation followed by downsampling in which

every alternate value is retained. The detail signal contains infonnation in the original

signal which is missing in the blurred signal. There is no loss of information if the

transformation is orthogonal. The original signal can be reconstructed from any level by

simply reversing this operation.

H'I\(Blurred Signal) +G 'I\(Detail Signal) = Original Signal.

H' and G' are transpose of H and G. In this step, however, the "1\" represents an

upsampling operation. Upsampling is a doubling of the signal length by insertion of

zeros between each value and convolving with the filter coefficients as described earlier.

Figure 15 best represents this whole procedure.

-®-G-l~ Reconstructed
Signal

~-----I""

Original
Signal

Figure 15: A basic decomposition and reconstruction representation.
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Consider a signal!at its o!iginal resolution, having n samples and whose time domain

representation is vector aO. At this resolution the elements of the vector aO are the

sampled values of the signal itself. The decomposition coefficients generated at the first

level of decomposition are given by

j =1, ... ,!!.-, k =1, ... ,n
2

j =1, ... ,!!.-, k =1, ... ,n,
2

(34a)

(34b)

where the Ck and dk are the scaling function and wavelet coefficients respectively

(computed according to the procedure in the previous section). The 1/2s before the

summations are normalization constants. At any level the signal decomposition

coefficients a and b are computed by recursion from the results at the previous level. The

sequence a~ can be considered as an averaged version of the original signal, but on a

scale twice as large. Equations (34a) and (34b) are equivalent to convolving the signal

with the respective filter coefficients and downsampling them by a factor of two. On the

other hand, sequence b~ contains the difference in information between the signal a~ and

the signal a~, i.e., the information present in the original signal butfiltered out in the

averaged version.

A sample illustration of this decomposition procedure is provided using the Haar

wavelet and a short signal. The Haar family is chosen for simplicity. Consider a signal

vector a~ represented by four sampled values [a1 a2 a3 a4}. Let the scaling function

coefficients be [co ell and the wavelet coefficients be [do dll. The scaling function and

wavelet coefficients are [1 i] and [1 -ii, respectively. Recursion using equations (34a

and 34b) results in



1 1 0 0a l = -Cal CI +a2cO]
2

1 1 0 0a2 = -[a3cI + a4cO]
2

where a l = [a: ~]. Similarly hI = [bi
l

b~] is calculated using equation (34b).

From the decomposition coefficients, it is possible to reconstruct the signal. The

recursion is run in reverse as follows:

a~ = La~C2j-k + Lb~d2j-k k = 1, ...,n.
j j

Consider a signal aO =[2 4 6 8]. From equations (34c) and (34d) we get the

decomposition coefficients:

Reconstruction is performed using equation (35),

af = [lx3 + Ox7] + [lx -1 + Ox -1] = 2 ,

ai =[lx3+0x7]+[-lx-1+0x-1]=4,

a~ = [Ox3 + 1x7] + [Ox -1 + 1x -1] =6 , and

a~ =[Ox3+1x7]+[Ox-l+-1x-1]=8

and provides the original signal aD = [2 4 6 8].

34

(34c)

(34d)

(35)

All these operations can be generalized to handle filters of any order and signals of

any number of samples.
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Multi-Resolution Analysis: The previous example illustrated computing

decomposition coefficients fot the first level and then reconstructing the signal from those

coefficients. However, it is possible to decompose the signal further. Coefficients from

the first level of decomposition can be decomposed repeatedly to further smooth the

signal.

This method of viewing a signal at multiple resolutions is called the Multi-Resolution

Analysis (MRA) [Cohen et al., 1992b; Daubechies, 1991; Mallat, 1989a; MalIat, 1989b;

Mallat, 1989c]. This method provides an excellent tool for feature extraction and pattern

recognition. Compact representation of the trends in the original sensor signal can be

obtained from decomposition results many levels down. However, dropping down too

many decomposition levels yields an overly smoothed trend, so a optimum level must be

selected that gives the most compact representation without sacrificing important trend

information. The basic representation of MRA is given in Figure 16.

Figure. 16: Depiction of the MRA algorithm.

Figure 17 shows the decomposition of a signal down three levels. It is evident that the

signal at any level is the sum of the blurred and detail signals at the previous level.
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A wavelet toolbox for analyzing sensor signals was developed during the course of

this work here at Oklahoma State University, using MATLAB. Program daub.m

generates the Daubechies wavelet coefficients for the order specified. File scale2.m

computes the scaling function and wavelet and plots them. Programs /wI. m and ifwt. m do

the decomposition and reconstruction sequences. All the figures in this chapter were

generated using this very user-friendly toolbox.
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blurred and detail signals at the third level

Figure 17: Representation of a signal decomposition up to three levels
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Chapter Summary

This chapter addressed the important mathematical aspects of wavelets and wavelet

transforms in general and the implementation ofwavelet transforms. Emphasis was

placed on Daubechies wavelets because that wavelet family was used for the results

shown in the next chapter. Not only is this family the most well documented compactly

supported wavelet available, but it also exhibits good trend extraction abilities.

The main objective of this chapter was to present wavelets and wavelet transforms in

a simplified manner stressing more applied methods and less theoretical details. The next

chapter deals with some critical issues in wavelet transfonns and their application for

trend extraction.



CHAPTER IV

SIGNAL EXTENSION

Need for signal extension for sensor signals from chemical processes

For computational reasons, process monitoring techniques generally require

compact representations of process signals. Raw trend patterns are not preferred

for these applications. Therefore, signal processing methods, like wavelet

transforms, are used for obtaining a representation more suitable for monitoring

purposes. Most signal processing techniques adopt convolution operations for

signal analysis and smoothing. An inherent tendency of convolution is to distort

finite length signals at the boundaries. For pattern recognition applications, this is

unacceptable. It is imperative that signal trends remain unaffected and retain

critical features. Signal extension is employed to overcome distortion at the

boundaries.

This chapter highlights the inadequacies of common signal extension methods

and the development of a new signal extension method.
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Common signal extension methods

Common signal extension methods include circular padding or periodic

extension, symmetric extension, extension with zeros, and extension with constant

boundary value.

Circular Extension: The signal is assumed to be periodic (Figure 18) i.e., the

signal is assumed to repeat itself with a period equal to its length.
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( )1
extension
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I

I

(~ (b)
Figure 18: Periodic extension technique, (a) original signal and (b) the extended

signal

This method works fine for cases when signals are steady over a period of time.

The disadvantage ofperiodic extension occurs when the points at the extremities of

the signal differ significantly as shown in Figure 19. The signal in Figure 19a is

decomposed using wavelet transforms and the resultant signal is depicted in Figure

19b. The wavelet decomposition was generated using the sixth order Daubechies

wavelet and shows the signal reconstructed from 9th decomposition level.
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W 00
Figure 19: (a) original signal (b) wavelet decomposition using periodic extension.

The periodic extension introduces sharp differences at the boundaries. For

instance, in Figure 19, the original signal shows a step change that introduces a

significant difference in the sensor value between the two extremities. The

inherent nature of the periodic extension averages out signal trends at the

boundaries. Therefore, this method is inadequate for our purposes because it

seriously distorts trends.

Symmetric Extension: Figure 20 depicts a signal that is symmetrically

extended. The signal is assumed to be symmetric about the boundary sample on

either end.

(t) I(t) extension
6 ( ),

4

extension

I( )

-4 -3 -2 -1 0 1 lirJe 4 5 6 7 8 9 10 11

(~ (b)
Figure 20: Symmetric extension technique, (a) original signal and (b) the

extended signal



Figure 21 depicts a signal with sudden trend changes at the boundaries. The

sensor shows a steady value near the boundaries, but at the boundary itself, there is

a marked change in the signal behavior.
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Figure 21: (a) Original signal (b) wavelet decomposition using symmetric

extension. Note distortion of trend at the boundaries.

In signals where sharp trends (upward or downward) begin to at the boundary,

this signal extension method fails. Symmetric extension flattens the trend at the

ends and provides an erroneous representation. This extension procedure is

therefore inadequate for wavelet transforms. An interesting observation is that

both circular and symmetric extension methods work well for Fourier transforms

and other transforms.

Padding with zeros: In this signal extension procedure, the signal is extended

with zeros as illustrated in Fi ure 22.
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Figure 22: Extension with zeros, (a) original signal and (b) the extended signal

This-method fails totally as is illustrated in figure 23.

0.89 1.2
0.88

0.87

0.86
0.8

0.85 0.6

0.84 t 0.4

0.83 I 0.2 1

(a) (b)
Figure 23: (a) original signal (b) wavelet decomposition using zero padding.

The two plots are ofdifferent scale to illustrate the extent ofdistortion of
trend at the boundaries.

It is evident that the zero extension method results in totally misleading trend

patterns. The zero extension method is also inadequate for trend retention.

Padding with a constant value: This method is similar to the zero extension

method, except that the signal is extended to the required length with the boundary

value at either end. This technique is illustrated in Figure 24.
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Figure 24: Extension with the boundary value, (a) original signal and (b) the

extended signal.

Figure 25 shows a signal and the wavelet decomposition when extended using

this method.
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Figure 25: (a) original signal (b) wavelet decomposition using a constant
extension method. Note distortion of trend at the boundaries.

In this case also, signal trends are distorted at the boundaries. The decomposed

signal shows a smooth trend at the boundaries, contrary to the swings in the

original signal.

Summary of conventional signal extension methods

The signal extension methods discussed above are rigid in that they do not take

the signal trend patterns into consideration while extending the signal. Stated

simply, they are not adaptive extension methods and employ the same extension

procedure irrespective of the nature of the signal. A better signal extension



technique would be one which adapts itself to suit the specific signal. A signal

extension technique that best approximates signal behavior towards the boundaries

would provide the best representation.

The New Extension Technique (NET): The basic idea behind the development of

this approach was to provide a technique that would provide an accurate wavelet

decomposition irrespective of the nature of the signaL Unlike the previously

described extension methods, the objective of this technique was to provide a

reliable extension for all cases.

This method uses a statistical approach to provide a good approximation of the

signal outside the boundaries of the signal depending on signal trends at the

boundaries. Different statistical approaches were adopted for this purpose and four

new extension methods are described in this work.

The concept behind these methods is the same. Signal samples close to the

boundary are considered and a mean value is determined. The procedure for

detennining this "mean value" differs for each of these four methods and each is

described in the following sections. The signal is then extended by making it

symmetric it with respect to that mean value and then inverting it.
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NETt: Consider a signal represented by a vector a=[ao aj a2 a3 a4 aj a6 aJ.

A threshold number of samples K is specified by the user. For illustrative purposes

consider K= 1O.

Starting from the first value at the left boundary, ao, this method calculates the

mean

where fo is the mean of the first sample. The swn of the mean squared deviation

(Mo) of sample ao from its meanfo is calculated next.

Mo=(ao-f,)2=0.

Then, the first two samples from the boundary are considered and the mean

calculated

The corresponding mean squared deviation of these samples from the mean is

calculated

M
J
= (ao - h/ + (aJ - h)2 .

2

In this way, the procedure is repeated up to K specified samples, the mean,/;, and

the mean square deviation from the mean, M;, is computed at each step using the

following equations :
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La)
f )=0 • 0 K 1=-- 1= -

i i + 1 ' ,

i

L(a) - fJ2
M. = )==0 , i =0, K -1 .

I i +1

(36)

(37)



A vector ofmeans/=ljj h 13 14 15 16 17 f8 19 fjo··············fK-l}, and a vector

ofmean square deviations from the mean

minimum. Ai; is considered and the signal is flipped around the corresponding};.

When K=10, and M4 is the minimum mean square deviation, the signal is flipped

around14, the mean of the first 4 samples from the boundary. A similar procedure

is adopted for the right boundary. In the NET! method, M] is always zero, so the

signal is basically flipped around the boundary sample on either side.

The logic behind this approach is that signal trends are approximated well

when the signal extension is close to the actual signal trend. The minimum value

of mean square deviation is chosen because it is at this value that the sensor signal

is more or less representing its basic trend, and deviations are minimum. The

signal is flipped and not symmetrically extended because flipping the signal

provides a smoother transition across the boundaries and trends are preserved.

Figure 26 shows the trend preservation capability of this technique. The left side

of the signal follows the downward trend and the right side provides a smooth

upward trend.
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Figure 26: The New Extension Technique, (a) original signal and (b) the extended

signal



NET2: In this technique, the first 40% of the threshold (K) samples are neglected

while computing the mean square deviation from the mean. When K= 10 as in the

previous case, 40% of 10 samples or 4 samples are neglected while computing the

minimum M;. In equation (36) and equation (37), the index i would vary from

O.4K to K-l and not 0 to K-l. The vector for computing the minimum Mi. would

now be M=[ MO.4K MO.4K+1 MO.4K+2 MK-I]. The signal is flipped as in the

earlier case around the mean corresponding to the minimwn M.

The first few samples are neglected while computing the mean to flip the signal

around because in NETl, the signal is always flipped around the boundary value.

This boundary value could contain an unusual amount of noise, and flipping the

signal around this point could provide a poor extension.

NET3: The vector corresponding to the meanf=[fj h 13 14 15 16 f7 18 19

hO !K-l}, and the vector of the sum of the mean square deviations from the

mean

M=[M1 M2 M3 M4 Mj M6 M7 M8 M9 M1o. MK-1], are generated as

described in the NETl method. However, in this method, the maximum value of

the mean square deviation (not the minimum value as in NETl) is considered and

the signal flipped with respect to the corresponding mean. For instance, in vector

M, ifM6 corresponds the maximum value, the signal is flipped around the mean16.

This method is tailored for signals containing a significant amount of noise. By

considering the maximum mean square deviation from the mean, the signal is

flipped about a point such that the extended signal fluctuates to its maximum

possible extent about the mean trend value. Thus the averaged smoothed version

would provide a better representation of the actual trend.

NET4: This method is a hybrid of the NET2 and NET3 techniques. The first 40%

of the threshold number of samples specified are neglected while computing the
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mean around which the signal is f~ :.pped. Analogous to the NET3 method, the

maximum mean square deviation from the mean is used.

Figure 27 illustrates the ways a signal can be extended using the techniques

mentioned above. Figure 27(a) shows the original signal. The windows indicate

the length to which the signal is extended on either side. Figure 27(b) illustrates

the periodic extension method. The signal is extended on the left by using samples

in the right window in the original signal; on the right side the signal is extended

using samples in the left window. The constant extension method in Figure 27(c)

shows extension using the boundary value on either side. Symmetric extension in

Figure 27(d) shows the signal flipped with respect to the boundary value. Figures

27(e)-(t) show the NET extension methods, the difference is explicitly represented.
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Figure 27(a). The original signal, with the left and right hand side sides
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Figure 27(b). Periodic extension on the left and right hand sides
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Figure 27(c). Constant extension method on the left and right hand sides
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Figure 27(d). Symmetric extension on the left and right hand sides.
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Figure 27(e). The left and right hand sides extended using the NETl method
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Figure 27(f). The left and right hand sides extended using the NET2 method
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Figure 27(g). The left and right hand sides extended using the NET3 method

LHS of the Signal

'. '"'~ .,"::";;:.:..";:':\l.~Ll :,"~"..::"~\."Y::~\l~L~","~ .·.;. \. ..·
.. '

RHS of the Signal

.....~ :....':.. .. ,

.. .. ... .·.!·.. :.~"~ !."~ ~". 'V"~";t.. ~, ;~"..'"~".. ~"". ~;. ~~L ..~ / .

Figure 27(h). The left and right hand sides extended using the NETl method

Figure 27. The different extension methods
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Demonstration of NET technique

To compare these techniques, a set of test signals were sliced into two half­

signals, decomposed, reconstructed separately, and reconnected. If this technique

works perfectly, the reconstructed signals should match perfectly the original

signals. Three process signals were used to test signal extension effectiveness.

Case I: A signal with normal swings is considered (Figure 28). This signal is

sliced at the crest of one of its swings. This signal is ideal for symmetric extension

because the signal is symmetric at the midpoint.

In Figure 28b, the periodic extension method tends to distort the trends of the

left slice by raising the pattern above its actual value on the left side of the slice;

and a reverse effect occurs on the right side of the slice. Similar pattern distortions

are included on the right side of the slice. As a consequence, the boundaries trends

to fall either above or below their actual values. When combined, these signals do

not provide a smooth transition. The periodic extension method performs poorly,

as expected.

The symmetric extension (Figure 28c) performs well in this case due to the

nature of the signal. Although this technique provides good representation for the

left slice and the left side of the right slice, it smoothes off the right side of the

right slice. A flat trend is produced instead of the decrease as in the original case.

This distortion is unacceptable for the intended monitoring applications.

The NETI method is implemented by specifying the threshold number of

samples as 1.25% of the total number of samples. Signals in all these test cases

each contained 4096 samples, so the domain of search for the mean to flip the

signal around was approximately 50 samples. The same threshold is specified for

all the NET techniques. Figure 28d shows distortion on left side of the left slice
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mainly because there is a high level of noise at the point. Instead of taking the true

trend into consideration only signal behavior at the ends is considered.

Consequently, the wavelet decomposition shows a sudden drop on the left side

when the true signal trend is flat.

NET2 (Figure 28e) however does a good job of retaining all the trends. In the

NET2 method, 40% of the 50 threshold samples or 20 samples are not considered

while computing the mean.

NET3 does not provide accurate signal reproduction on the right side of the left

slice and the left side of the right slice, resulting in a rough transition at the

midpoint in Figure 28f. This technique also shows a slightly rising trend on the

left side of the first slice which is contrary to the flat trend in the original signal.

NET4 (Figure 28g) provides an adequate reconstruction, but on the left side of

the left hand slice it shows a slightly decreasing trend instead of a flat trend.

For this case, the NET2 was most satisfactory. Only this method retained the

essential trend at all the boundaries and provided good reconnection of the two

slices.
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(a)

(b)

(c)

(d)

Figure 28: Representation of effect of signal extension on signal
combination, (a) original signal (b) using the peridoic extension
(c) using the symmetric extension and (d) the New Extension
Technique, NET1(threshold is 1.25% of the total signal length)
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(e)

(f)

(g)

Figure 28: (contd) (e). using NET2 (f) using NET3 and
(g) using NET4
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Case II: A signal with different characteristics is considered in this case (Figure

29). This signal is split into tWo parts. The first part of the signal has ends that

differ significantly. The second part is sliced at points where there are marked

changes in the direction of trends. These are analyzed using the afore mentioned

techniques and recombined.

Figure 29b shows the periodic extension case. The left boundary of the left

slice is significantly above the right boundary, so the trend on the left side of the

slice shows a more marked downward change than there actually is. The right side

of this slice originally is at a steady value, but is now distorted to indicate a sharp

upward change. The direction of the trend on the right side of the right slice is

reversed. The periodic extension performs poorly, as expected.

The symmetric extension in Figure 29c performs even worse than the periodic

extension method. The left side of the left side does not reflect the gradual rise in

the original signal, but shows a sharp rise. The right side of the this slice

approaches a constant value when it actually should show a rise. The right slice

shows a more gradual drop on the left side of the slice than it actually should. The

right side of this slice starts to show a slight rise, where there is none in the original

signal. Once again this method is inadequate for our purposes.

The NET! method in Figure 29d provides excellent trend representation on

both sides of the right and the left slices.

The right side of the left slice in NET2 in Figure 2ge does not rise as sharply as

it should. When the two slices are reconnected, the representation is marginally

poorer than in the NET! case.

NET3 (Figure 29t) also performs poorly on the right side of the left slice. The

trend levels off to a greater degree than it actually should, so this method fails for

this case.

NET4, shown in Figure 29g, provides a representation comparable to NET2.
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Figure 29: Representation of effect of signal extension on signal
combination, (a) original signal (b) using the periodic
extension (c) using the symmetric extension and
(d) The New Extension Technique
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Figure 29 (contd) (e) using NET2 (t) using NET3 and
(g) using NET4
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For Case 2, NET2 and NET1 provide the best representation. The reason

NET! provides a marginally better representation than NET! is that the trend on

the right hand side of the left slice is guided more by samples at the boundary.

Since NET2 does not take the immediate vicinity of the boundary into

consideration, it fails to replicate the steep trend perfectly but still provides a good

representation.

CASE III: The right boundary of the process signal in Figure 30 is actually a

stray sample, away from the actual process trend. The signal is sliced into half at

its midpoint, where the right side of the left slice shows an upward trend.

Since the right and left sides of the left slice are not at identical levels, the left

side shows a flat trend when the actual trend is rising. The right hand side of this

slice gradually levels off, when actually, it should show a constantly rising trend.

The boundaries of the right hand slice are at identical levels, so no significant trend

distortion is noticed (Figure 30b) on this side.

The symmetric extension method (Figure 30c) fails in this case. The left side

of the left slice shows a more gradual rise than exists in the original signal. The

right side of the slice flattens when it should actually shown an increasing trend.

The left side of the right slice shows a marginal drop when actually there is a steep

one. Its right side also flattens, when it should show a marginal rise.

The NETl technique shown in Figure 30d shows perfect trend reconstruction

on both sides of the left slice and on the left side of the right slice. However, on

the right side of the right slice the influence of the stray boundary sample reflects a

sharper trend than there actually is.

Figure 30e illustrates the NET2 extension method. On the left and right sides

of the left slice, trends are represented well. However, at the point of reconnection
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(a)

(b)

(c)

(d)

Figure 30: Representation of effect of signal extension on signal
combination, (a) original signal (4096 samples) (b) using the
periodic extension (c) using the symmetric extension and
(d) The New Extension Technique, NETl
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(e)

(f)

(g)

Figure 30: (contd) (e) using NET2 (f) using NET3 and
(g) using NET4
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of these slices, it performs marginally poorer. This method provides a more

accurate representation than NET! on the right side of the right hand slice, because

this method ignores samples at the immediate boundaries of the signal.

NET3 (Figure 30t) and NET4 (Figure 30g) provide identical representations

because the mean around which the signal is flipped is identical in both cases.

They provide good trend representation on both sides of both slices, although at the

midpoint they provide a marginally poorer reconnection than NET! or the NET2

methods.

Considering the fact that the signal extension technique must provide good

signal representation and trend retention capability for any signal, it recommended

that the NET2 technique be used for compact representation of sensor data used for

monitoring and control purposes. NET2 has proved to be a good signal extension

method for many cases similar to the test cases presented here.
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CHAPTER V

CONCLUSIONS

Though wavelets are new, they have contributed much to signal processing. Most

importantly, they provide a much needed alternative to Fourier transforms for certain

applications such as pattern based monitoring and control. I have attempted to present

the applied aspects of wavelets to the process engineer.

The usefulness of wavelet transforms has been compared and contrasted to Fourier

transforms. Effort has been made to provide a technique to extract essential trends from

process signals and provide a compact representation. The effectiveness of a signal

processing technique depends to a large extent on the nature of the signals involved. One

technique that works for specific signal trends might not be effective in dealing with other

signal trends. In the pre-processing stage, signal extension has been identified as the

critical factor influencing signal representation and retention of trends.

Signal extension is especially important when the application is real-time process

monitoring. The signal analysis technique should provide an accurate yet compact

representation of the process trend. The ability of a pattern recognition technique to

recognize abnormal trends depends on how efficiently the signal is represented and to

what extent trend losses are minimized. Trends towards the boundaries are generally

indicative of process condition changes and these patterns flag the monitoring technique

to detect the change. Thus end effects thus have to be minimized for this technique to be

successful.
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Some conclusions can also be made about the signal extension techniques when used

with wavelet transforms. Periodic extension is simple to implement, but causes serious

edge distortions as illustrated in the test cases discussed in the previous chapter. This

signal extension technique is completely inappropriate for our needs.

On the other hand, making the signal symmetric at its ends can help minimize the

problem of end distortions when the boundaries differ significantly. However, this signal

extension technique has a tendency to smooth and flatten trends at the boundaries

especially when a process change is just occurring and the direction of the trend is

changing. In this case, this method results in a trend that erroneously shows a steady

process behavior, masking the trend. This is also unacceptable.

Zero padding and the boundary value extension methods are also inappropriate for

our application. Zero padding always results in sharp boundary distortions. while the

constant extension method results in the flattening of trends at the boundaries leading to

erroneous trend representations.

The NET techniques provide better signal extension than the conventional methods.

Their adaptability to signals make them a better proposition for monitoring applications

than general techniques like symmetric extension methods.

I have also concluded that NET2 is the best signal extension technique to use in our

applications. NET3 and NET4 perform reasonably well in some cases, especially when

the signal shows sharp deviations towards the boundaries. The NETt method performs

well in cases that do not exhibit sharp unusual deviations at the ends of the signal. This

work recommends the use ofNET2 because it provides reasonably accurate

reconstruction under any circumstance.
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Recommendations and Future work

Future work is required to provide a more theoretical basis to the empirical approach

adopted here. The results presented in this work employed parameters based purely on

experience and knowledge of the sensor signal behavior. A more generalized technique

with a mathematical basis needs to be developed.

Some recommendations are

• More wavelet families need to be studied. This work focused mainly on the

Daubechies family of wavelets. Other wavelet families are available and can be used

for this purpose. A generalized technique could be developed that determines the

most appropriate wavelet family depending on the signal or application.

• At present, the order of wavelet is empirically determined. An automated technique

could be developed that takes into account the trend pattern and determines the

appropriate order of the wavelet.

• The level of decomposition used for trend pattern extraction is also empirically

determined at present. The optimum decomposition level should to be determined

and an automated procedure developed.

• To provide better decomposition, the wavelet order could be adaptively modified with

the level of decomposition. At the initial stages of decomposition, higher order

wavelets can be used. Further down the decomposition tree, lower order wavelets

could be applied. This would further minimize distortions due to convolution.

• Currently, the NET technique employs mean square deviation of the signal from the

cumulative mean to determine the point with respect to which the signal is extended

symmetrically and inverted. A more rigorous statistical technique could provide

better signal extension by approximating future samples more accurately. Not only

can signal end distortions be avoided this way, but smoother transitions across slices

can also be obtained.
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• Wavelet packets [Motard and Joseph, 1994] could be investigated to check their

performance with the norrilal decomposition procedures. In the wavelet packet

procedure, the detail signal at each level is decomposed further, just like the blurred

signal, into two components. After the decomposition is carried to the lowest level,

coefficients with the maximum entropy are retained and the remaining deleted. This

way data compression is achieved, and signal reconstruction is also accomplished. It

needs to be verified though if the reconstruction quality is comparable to the scheme

adopted here. The disadvantage is that location of the non-zero coefficients need to be

known.

• Instead of using regular decomposition methods, zero crossings of wavelets [Mallat,

1991] can be used to decompose signals. This technique is translation invariant.
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APPENDIX A

Computing the scaling function and wavelet coefficients

for the Daubechies family of wavelets
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The Fourier transform of a functionf(t) is defined as

The Fourier transform of (6) gives,

<p(~) = t L cke-ik~/2<p(t)
k

D fi (~)- 1~ -ik~elnemo ,", -IL.Jcke ,
k

(38)

(39)

(40)

(41)

equation (40) indicates that mo(~) is a function, a periodic function with a period 2n.

It also gives another set of boundary conditions, for ~ = 0 and. ~ =1t For ~ =0, equation

(40) gives

mO(O) =t Lcke-i.O.k =tLck·{cos(O)- isin(O)}
k k

=tLck ·l=1
k

because L Ck = 2. Similarly, for ~ = 7t , (40) gives
k

moen) =tL cke-i
.1tk =tI Ck {cos(nk) - isin(nk)}

k k

=tIck·(-I)k =tIdk =0
k k
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So,

(42)

The orthonormality of<p also yields the following relationship, explanation for this

can be found in p132 of [Daubechies, 1992].

~]p(s +27tZt =(27tt
I

substitute (41) into (43), the result is

(43)

(44)

Split (44) into odd and even terms. The following equation results from the LHS of

(44)

The fact that mo is periodic is used now to simplify the expression given above. The

simplification is of the form

(46)

(47)
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Therefore the result is

Define z = e-il; , also define

rno(~) =t LCkZ
k

= P(z)
k

It is possible to define (48) in terms ofP(z) as

(48)

(49)

(50)

To form an orthonormal basis of wavelets, rnO is defined as in equation (51). The

mathematically sophisticated reader is referred to corollary 5.5.4 on pp. 155-156 in

[Daubechies, 1992].

mo(~)= P(z) = e; z) N E(z) (51)

where E(1) = 1, and E(z) is the Polynomial with real coefficients. The reason why

real coefficients are chosen is because real numbers are easier to deal with. Therefore

IE(e-iE, )1
2

is a cosine polynomial. Taking

(52)

where R is a polynomial, again with real coefficients. Take t=cos~ = sin2~
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R(t) =R(cos~) =R(l- 2t) (53)

since Ip(z)1
2 + Ip(_z)1

2 = from (50), on substituting the value of P(z) from (51), the

result is

put t=cos~,

(I-t)N R(t)+tN R(I-t)=1

The general solution to an equation like (55) is

N-t(N-I+kl
R(t) =LI ,Ik + t N1:(t)

k=O f\. k.A

where 1: (1- t) = -'t (t) and 1: 0(t) = 1: (1-221 •

(54)

(55)

(56)

For further mathematical details, the reader is directed to pp. 175-176 in [Chui,

1992a]. So,

I

-iE;, 1
2 - ~(N -1 + k\-;;. ~'ik t:- ~)2N cosE;,

E(e ) - 6k k A~m2) +~m2 1: 0(-2-) (57)

~ 0 is an odd polynomial. Choosing ~ 0 equal to zero gives scaling functions with

minimum number of coefficients for any given N. Due to this assumption, (57) narrows

down to



I

-i~ 1
2 _ ~(N -l+k)",. ~)2kE(e ) - L...J \sln"2

k=O k
(58)
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the problem now is to solve (58) for E(e-iS ) • To do this the Riesz Lemma is used. A

proof of this lemma can be found in pp. 232-233 in [Chui, 1992a]. Once E(e-i~) is

calculated, then P(z) is calculated by equation (51) which then gives the values of the

coefficients of the scaling function.

Then the wavelet filter coefficients are calculated from the QMF relationship. This

procedure is elucidated for the construction of a wavelet of the Daubechies family.

I

-i~ 1
2 _ ~ ( 2 - 1+ k11> S'i k

E(e ) - L...Jl J~ln2J
k=O f\. k A

= + 2sin
2 t·

Now sin2
-} is -cos~ = 1-~+( . So,

The roots of this equation are z = 2 ±J3, the root within the unit circle is chosen.

Then IE(e-iS)1 is calculated as shown

Then from equation (51), P(z) is calculated as follows



P(z) =e;zr ±((~ -1)-(~ +1)

1(l+~ 3+~ 3-~ 2 l-~ 3)= - + z+ z + z
2 4 4 4 4

comparing with equation (49) the coefficients are obtained.

l+~ 3+~ 3-J3. _1-J3
Co = 4 ;c1 = 4 ;c2 = 4 ,c3 - -~-4-·

The wavelet coefficients are obtained by the QMF relationship, to give

d =1-J3' d = 3-J3' d =3+J3' d =_I+J3
o 4' 1 4' 2 4' 3 4

Similarly the coefficients can be calculated for higher orders of wavelets.
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Computing signal decomposition coefficients
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Consider an infinitely long signal. The signal is approximated as given in

equation (1).

OJ

fo(t) = ~>~<p~(t)
k=-ex>

OJ 00

= L a~<p~(t)+ Ib~\jI~(t)
k=-OJ k=-ex>

(59)

(60)

Here a~ is the vector that approximates the signal at the original resolution, a~ and b~ are

the blurred and detail coefficients at the first level.

Multiply both sides by <p1(t) and integrate,

co ex>

ai = L aZ f<p ~ (t)<p i (t) dt
k=-ex> -00

Similarly on multiplying by \fI ~ (t) and integrating

00 ex>

hi = IaZ f<p~(t)\jIi(t)dt
k=-«> -«>

ex> ex>

Since Ck = f<p ~ (t)<p i (t) dt and dk = f<p ~ (t)\jI i (t) dt, the resultant equation

(61)

(62)

-00 -ex>

(63)

For finite length sequences, the limits on the summation are also finite.
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