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CHAPTER I

INTRODUCTION

Hydrologic/water quality models are developed to represent nature in its simplified

form. Modeling is much· more than reading data from tables and graphs and inputing

them into a file in a computer. Models range in complexity from representing one or two

processes with a few parameters to complex models which group the hydrologic processes

into modules with many parameters. Models are used as an analysis and design tool and

to improve our understanding of hydrologic systems (Barfield et al., 1989).

Any model consists of a number of parameters which are based on many pQysical

processes and/or numbers representing the state of nature. There are many uncertainties

involved in modeling. Vicens et ale (1975) classifies hydrologic uncertainty into three

categories: inherent variability in natural processes which the modelers are trying to

represent, uncertainty involved in physical representation of the processes in the model

itself and uncertainty due to parameters that reflects incomplete models, incomplete

information and inadequate estimation techniques. It is this later source of uncertainty

that is addressed in this work.

1
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Given so much uncertainty associated with a modeling effort, an evaluation of the

model to determine how well it predicts the output is of immense interest to model users.

A rigorous validation of models is called for. Validation refers to the process of

determining the ability of the model to estimate the quantities the model was designed to

estimate. Likewise verification refers to a process of demonstrating that the model

algorithms perform as they were intended to perform. Calibration is a procedure

whereby model parameters are varied, manually or otherwise, to produce parameter

estimates that meet some criteria regarding the error in the predictions being made by the

model (Haan et al., 1993).

When a model is being developed it will be tested in a research setting.

DeCoursey (1988) notes that from a series of papers at an International Symposium,

u •• Only one paper shows performance of the model against real data". The causes for

this lack of model evaluation is analyzed by an ASCE task committee (1993). It notes

that" ... Such work (validating and/or field testing) is not as interesting as trying new

concepts and models. Finally good testing is a lot of work... will probably not reinforce

previous claims ".

To be fair to the model developers, the actual processes occurring in the field are

more complex and variable than currently represented in the most sophisticated models.

Algorithms are included in a model that are designed to represent processes that are not

included in the model or are partially represented in the model. The estimation of even

physically based parameters from data measured to represent these physical processes may

not yield the best estimates for the parameters (Haan et al., 1993).
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Summing up, the fruitful transfer of models to the end user requires some kind

of assessment of the model. Many researchers have evaluated models based on some

statistical tests. These evaluations suffer from a number of limitations. Morever the

scientific community has not come to any unanimous conclusions about the validity of

these tests.



CHAPTER II

REVIEW OF LITERATURE

Literature reviewed in support of this study included works which addressed model

evaluation, model validation and model calibration. While the literature concerned with

the model evaluation effort is given more attention and reviewed in detail, it was felt the

review of literature on calibration, validation and verification is important as they

constitute a major part of model evaluation effort. Literature pertaining to sensitivity

analysis and Monte Carlo Analysis are reviewed in later chapters.

The last task in model development is the validation of the model. This is usually

done by cemparing the model simulated values with observed values. Generally the

validation is done for individual sites. The comparisons are summarized in tables and/or

graphs. Some peer groups have tried to establish some standards in model testing.

An ASCE task committee (1993) discussed criteria for evaluation of watershed

management models. Their recommendations for accomplishing this task were concerned

with functions of the differences between observed and predicted data. They used mainly

hydrograph models for illustration purposes. They reviewed some of the statistical tests

used by some researchers (Martinec and Rango, 1989; Green and Stephenson, 1986).

Even though they recommended some simple statistical tests, there were no criteria to

4
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identify acceptable models from unacceptable models. They also did not address the

problem of separating model evaluation from parameter estimation. Since there is no

agreement at this stage in the research community concerning model evaluation, the

statistical evaluations suggested by the committee may not be adaptable for standardization

in scientific journals.

Shaeffer (1980) has presented a good treatise on the model evaluation

methodology. This approach consists of six major tasks. Model examination, data

evaluation, sensitivity analysis, validation studies and code comparison studies. He

recommends validation should be part of model development. Validation types can be

defined as statistical, deviative and qualitative. If the output is statistical in nature, the

accuracy and precision of the predicted and measured quantities should match. Deviation

validation can be applied in cases where the output can not be termed statistical, as the

data are insufficient. A deviation coefficient, which measures deviation of the pr~icted

values from the measured values can be employed. Qualitative validity depends on the

modelers or users judgement and can help in terming the model as good, fair, poor or

such. For some models, validation may not be feasible. In such a case, an attempt

should be made to quantify the uncertainties in the model predictions due to the error

associated with each of the input parameters.

James and Burges (1982) also discuss model development in detail, focussing on

model calibration and testing. They recommend steps to be carried out in model building,

development, calibration, parameter estimation, evaluation etc.. They recognize the

importance of sensitivity analysis in model evaluation. When a model is calibrated, the



6

model results should match the recorded data, and the estimates of parameter values

should be consistent with the watershed characteristics. They recommend that model

calibration be done in subsets of parameters because some parameters have greater effect

on certain outputs than on others.

One method of calibration is a systematic search pattern, changing parameters one

at a time to check for errors, until all the parameters are tested. Another method

incorporates sensi tivi ty analysi sand j udgement of the modeler and parameters are adjusted

depending on the error in predictions. The disadvantage with these methods, according

to the authors, is that the parameter estimation process varies with the local hydrologic

conditions and are difficult to program and are very sensitive to data errors.

The authors also recommend that model developers incorporate means for

computing both a) the error associated with the estimated values of the parameters (for

assessment of the calibration) and b) the error associated with the quantities estimated by

the model. They recognize that the scattergram plot can be an aid in some model

calibration. For example, in modeling runoff, the plots will show whether low and high

flows are modeled correctly. Logarithmic plots of flows tend to show poor model

performance at low flows. These procedures can be expanded to model testing too.

Papers by Clarke (1973), Loehle (1983) and Ditmars et ale (1987) explain the

semantics involved in the model development and testing. Clarke (1973) classifies

models broadly into different types like stochastic and deterministic which are further

subdivided into stochastic-conceptual, stochastic-empirical, deterministic-conceptual,

deterministic-empiricaL The feature, according to Clarke, that all the models appear to
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have in common is that the observed values deviate from the fitted values by a residual

amount (EJ. The respects in which they differ are in the assumptions made about fitted

values and the assumptions made about £t. According to Loehle (1983), there are two

kinds of models: theoretical (which corroborates the law of nature) and predictive models

(which are calculation tools to predict certain aspects of real world). While evaluating

the theoretical models, sometimes it might be that the theory fails to •fit 1 the data. But

then the data itself might be wrong or the experiment might have been done incorrectly.

In case of predictive models, there can also be two distinctions. Application

models are based on well established laws and theories in which laws are applied to solve

a problem and calculation tools which are methods for obtaining answers which may not

be based on any laws at all.

The author claims that with some of the calculation tools it is possible to modify

the structure and form of the applicable equations progressively till the error is neg~igible.

In case of application models, the things subject to adjustment are the boundary conditions

and input parameters, while taking into account the inherent noise, which may not be

always detectable. The type of test applied for model evaluation should consider these

factors.

Ditmars et al. (1987), divide model users into three separate groups. They are

modelers, general model users and decision makers. Model users are more output

oriented, i.e using models to solve problems. Modelers, who design the model, need to

evaluate whether the basic simulated process matches the real world behavior. Decision

makers are more concerned with the reliability of model results and their cost
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effectiveness. The authors also point out the difference between verification and

validation and also evaluation. They divide model development into six elements: (1)

Identification of the problem, (2) Relationship of the model to the problem, (3) Solution

scheme examination, (4) Model response studies, (5) Model calibration, and (6) Model

validation.

The authors emphasize the need for critical evaluation of the code which

constitutes the model and also the ultimate model outputs vis-a-vis the model users. They

point out the need to take into account the physical processes involved, the dimensional

aspects (for example, the growth of phytoplankton and nutrient distribution in a lake

eutrophication model necessitates the use of two or three dimensions), the time and space

scale involved, and the boundary conditions.

The problem in model validation according to the authors, is that as the number

of model dimensions and variables increase, the number of possible combinations of

predictions and data becomes very large. As for the output analysis, when scattergram

regressions are used, obtaining a regression coefficient of one is clearly not sufficient to

guarantee agreement.

These papers lack analysis of statistical tests that can be used for model evaluation.

They do not explore the area of parametric uncertainty nor the uncertainty in measured

data itsel f.

A number of researchers (Luis and McLaughlin, 1992; Martinec and Rango, 1989;

Reckhow et aI., 1990; Thomann, 1982; Loague and Green, 1991; Garrick et al., 1978;
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Chiew et al., 1993; Reckhow and Chapra, 1983) evaluated models on the basis of

statistical tests. They use various models for illustration.

Luis and McLaughlin (1992) state that the errors which contribute towards

differences in prediction from a model and the actual observations can be grouped in three

distinct sources. They illustrate this by using a model which predicts the moisture

movement through an unsaturated porous medium. The objective of the model is to

predict the mean distribution of moisture content over time and space. The three error

sources in this context are (i) measurement error or the difference between the measured

and the true small scale values of moisture content, (ii) spatial heterogeneity or the

difference between the large scale trend to be predicted and the true small scale values

of moisture content, and (iii) model error or the differences between the model t s

prediction and the actual large scale trend.

They further note the difference between model validation which addresses the

question of whether or not a model adequately represents observed phenomena and

accuracy assessment which pertains to the larger question of how well a model will

perform under conditions that have not yet been observed. They observe that if the

model I s basic structure (set of governing equations) is correct, then accuracy assessment

reduces to an evaluation of the effects of parameter estimation errors.

Model validation proceeds in such a way as to first estimate the effects of

measurement error and spacial heterogeneity and then assumes that discrepancies between

measurements and predictions which can not be explained by these factors must be due

to the model error. The null hypothesis to test the model is that model error is negligible.
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The authors use some statistical tests to test this hypothesis.

(i) Mean Residual Test - A sample mean computed from many measurement residuals

should be close to zero if hypothesis Ho is true. The assumptions are that the

measurements are sufficiently far apart for the residuals to be uncorrelated and normally

distributed.

(ii) Mean Squared Residual Test - In this test, confidence bounds are put on these

measurement residuals and if a significant number of measurements lie outside this region

then the hypothesis would be rejected. If the measurements are closely spaced then the

number of degrees of freedom can be reduced.

(iii) Spatial Structure Test - If there is some correlation between the measurement

residuals, then it is possible to check whether or not the measurement residuals have a

statistically, stationary spectral density, by passing the residuals through a spatial

whitening filter. The output of this should be an uncorrelated series of adjusted

measurement residuals, if the hypothesis Ho that the residuals are independent is true.

The mean residual test checks for systematic biases, while the mean squared

residual test checks for overall fit and the spatial structure test checks for more subtle

spatial features. The authors note that these tests can be applied to all available

measurements or to selected subsets such as all measurements taken at a particular time

or along a particular transect. They caution, that this range of possibilities complicates

the task of reaching an unequivocal yes or no conclusion about the results of a model

validation.
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This introduces considerable ambiguity in the model validation. As the authors

themselves state, a particular method relies on some assumptions which can not be readily

justifiable, such as knowledge of means, variances and correlation scales. If the

uncertainties in soil property statistics that are used to compute the covariances and other

quantities are taken into account, the validation confidence intervals will widen and the

tests will become less stringent. These kind of tests need a lot of data which may be hard

to obtain.

Model verification, according to Recknow et ale (1990), aims for a quantitative

statement that the model adequately describes observed behavior so that it can be used as

a prediction tool. They propose some statistical tests which augment the evaluation

procedures which were used before, like graphical comparisons, professional reputation

of models and also the judgement of the modelers. They state that as hypothesis testing

is basically a decision process about the acceptance or rejection of a proposed hypothesis,

it should be used together with other tools. For example, if the data are highly variable

or the sample size is small or the residuals are also highly variable, then it can result in

statistics that would favor the acceptance of null hypothesis. Graphical comparisons will

indicate the likely cause of the hypothesis results like a good fit or inadequate data. If the

sample data size is small, even though the statistical tests are favorable, the small data

size will be apparent on a graph and indicate inadequacies in the testing approach.

The assumptions considered in these statistical tests are that the data have the

properties of normali ty, equality of variances and independence. As for normality, it is

generally believed that some natural data, such as contamination data, can be described
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with a lognormal distribution. The lognormal transformation is generally recommended.

Many tests are robust to mild violations of equality of variance. But the statistical

procedures are not robust to the violation of independence assumption.

The tests recommended are the t-test, Wilcoxon test, regression test and

Kolmogorov-Smirnov test. The t-test has limited robustness to violations of normality and

equality of variances while there will be problems if the observations are dependent. The

Wilcoxon test is designed to test the hypothesis that two random samples are drawn from

identical continuous distribution with the same center against the alternative hypothesis

that they are offset but otherwise identical. The Wilcoxon test is relatively powerful, and

while not requiring normality, violations of independence is serious.

For the intercept, U, a hypothesis test with Ho: a=O, could indicate a bias

(constant overprediction or underprediction) in the predictions if the null hypothesis is

rejected. For the slope f), a hypothesis test with Ho: P = 1 could indicate increasing or

decreasing error in the predictions if the null hypothesis is rejected. An important

assumption for regression is the lack of covariance in the error term. In case of positive

autocorrelation, the regression slope is inflated leading to false results. The authors argue

that for the Kolmogorov-Smirnov test, there is no restrictive assumption of normality.

While it is desirable to run these tests along with graphical analysis and the

judgement of the modelers, these tests suffer a number of limitations. First of all, it is

up to the user to decide on the level of significance to conduct the tests. Secondly, the

tests generally require a large sample size. It might be irrelevant to predict annual runoff,

sediment, etc., and then compare it to the predicted value for conducting these tests.
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Thirdly, when the assumptions outlined in these tests no longer hold, the alternative is not

very clear. Nevertheless the authors make significant contribution towards the traps to

be avoided in evaluating models.

Martinec and Rango (1989) emphasize three criteria used to evaluate hydrologic

models. The criteria used are (i) The'Nash-Sutcliff coefficient, R2 (ii) Coefficient of gain

from daily means, DG, and (iii) The volumetric difference between the total measured

and computed runoff, Dv • For evaluation purposes, the authors compared nine rainfall

runoff models.

The Nash-Sutcliff coefficient, R2 is

n

L(Qi-Q/)2
1- _i=_I _

n

L(Qi-?2)2
i== 1

(2-1)

where Qi is measured daily discharge, Qii is computed daily discharge, n is the ~umber

of daily discharge values and {2 is average measured discharge.

When the R2 values are compared for a wet and dry year, the R2 value for dry

year is lower than the wet year. The reasoning advocated by the authors is that "Q is low

for the dry year. DG is given by

DG

n

L(Qi-Q/)2
1- _i=_I _

n

L(Qi-ID2

i=1 '}

(2-2)
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where ~ is the average measured discharge from past years for each day of the period.

Dv is given by

v-v' x 100
V

(2-3)

where V is the measured yearly or seasonal runoff volume and VI is the computed yearly

or seasonal runoff volume.

The analysis of R2 is done by using different time periods and different seasons.

Thus in method I, the average value "Q consisted of all the years in question. For

method 2, the average value is only for the year considered. The R2 values for method

2 is consistently less in drier years than in wetter years from method 1. The authors

conclude that use of proper yearly values (method 2) gives a more realistic R2
•

Similarly the interrelation between R2 and DG was explored minutely using

different models and for different years for a basin. DG compared favorably in most of

the occasions which can be attributed to the fact that the model results are compared to

"Q. Finally the authors use all three criteria of model performance, R2
, DG and D v to

indicate the maximum inaccuracies of the individual models.

But the refrain is that there are numerous possible combination of yearly values

that can be considered in a model evaluation which can lead to manipulation of evaluation

results. Models where the underlying physical structure is as important as the output

results can be misleadingly ranked by these statistic~ test. Furthermore the tests can

confuse a user when the visual plot of observed and measured values can be comfortingly
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close but when the statistical tests show that the model is not good enough, i.e. the test

results are inadequate.

Along these lines Thomann (1982) also proposes some statistical tests to illustrate

model verification. Those are (i) regression analysis, (ii) relative error, (iii) comparison

of means, and (iv) root mean square error.

In regression analysis, the square of correlation coefficient, r2
, the standard error

of estimate (representing the residual error between model and data), slope (b) and

intercept (a) are used. Thomman notes that the evaluation of r2
, b and a together with

residual standard error of estimate, can provide an additional level of insight into the

comparison of model and data.

Relative error is given by e == x - c I, where x is the observed mean

and c predicted mean. Aggregations of the relative error can be made across space or

time. Also the cumulative frequency of error over space or over time can be computed.

One problem with this statistic is the relatively poor behavior at low values of x and the

fact that it does not recognize the variability in the data.

The comparison of means is given by

t (2-4)
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in which 8 is the true difference between model and data, d is the average and Sd is

the standard deviation of the difference given by a pooled variance of observed and model

variability.

(2-5)

where Sx is the standard error of estimate of the observed data and equal to S2/N .
x

Root mean square (rms) error is given by er

L (xj-cf
N and it provides a direct

measure of model error. If it is expressed as a ratio of the mean value, it represents a

second type of relative error. The disadvantage, according to author, is that the rms

error does not readily lend itself to pooling across variables to assess overall model

credibility.

The problem with these above tests is that they do not determine whether a model

is considered verified. For this, the specification of given criteria would be required

without which evaluations of I110dels are very subjective. The issue of model evaluation

often boils do\vn to single measures of verification on which too much reliance is placed.

It might happen that model credibility is relegated to such things as .. this model has a

correlation coefficient of this much and the median relative error is n and .. the root mean

square of this model is better than that one .. and so it is good. A modeler's judgement

always has a role to play in model evaluation.
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Reckhow and Chapra (1983) stress that the tests used for evaluation/validation

should be different considering the characteristics of prediction (mean, extreme values

etc.) and whether the model is descriptive or predictive, etc.. They also advocate the use

of sensitivity analysis in the confirmation and evaluation of simulation models. They list

some of the common statistical tests used for model confirmation for deterministic and

stochastic modeling.

These authors note the need for looking for autocorrelation in a data series of

some models. They list some of the steps to be taken to quantify the autocorrelation like

the prewhitening process of the Box-Jenkins method. Some of the tests mentioned for

model evaluation are relative error between observed and predicted values, the squared

error and' t' test, along with graphical tests of goodness of fit. Box plots are particularly

useful in model results dealing with order statistics. For stochastic models, Chi-square

and Kolmogorov-Smirnov tests might also be used. Finally the authors caution that

proposed confirmation criteria may not be feasible for all models. Therefore along with

these tests, the modelers judgement and intuition might also be used in model analysis.

Loague and Green (1991) review model evaluation efforts in three steps: (1) An

overview of various aspects of mathematical modeling focused upon solute transport

models, (2) An introduction to statistical criteria and graphical displays that can be useful

for model evaluation, and (3) An illustration of evaluation using the PRZM model.

According to the authors, complete model evaluation requires both operational and

scienti fic examination. The operational component consists of assessment of accuracy and

precision of model results. The scientific component of model evaluation is the
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assessment of consistency between model predicted results and the prevailing scientific

theory.

The statistical tests proposed are maxImum error, root mean square error,

coefficient of determination, modeling efficiency and coefficient of residual mass. Some

of the statistical tests are sensitive to a few large errors especially in small data sets. The

authors concede that the standards for model evaluation using these tests have not yet

been established. The graphical displays that can be used for solute transport model are

(1) the comparison of observed and predicted concentration profiles, (2) comparison of

ranges and medians of integrated values of predicted and observed data, (3) comparison

of matched predicted and observed integrated values, and (4) comparison of cumulative

distribution functions for integrated values. The first graphical technique can be used to

judge the quality of model performance at specific sites. The remaining methods can be

used to evaluate model performance for several sites at once and are, therefore, n9t one

to-one tests. Systematic error in the form of over- or under- prediction can be detected

from (2) and (3) while spatial variation in observation and model prediction are

represented by (4).

The authors note that the application of these tests on PRZM show that the model

is not up to the standard. In the absence of standards or hypothesis testing, this opinion

is questionable. Even in the case of graphical displays, the question remains to be asked

as to how good is the fit. The assumptions of independence and equality of variance are

not discussed by the authors. The tests are also not conducted on different models for

comparIson purposes.
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Pennel et ale (1990) evaluated five pesticide simulation models (CMLS, MOUSE,

PRZM, GLEAMS, LEACHCMP) using a comprehensive data set from a single study.

Model evaluations were based on water mass balance, the transport of a non-reactive

tracer (bromide) and the transport and degradation of a reactive solute (aldicrab). They

kept model calibrations to a minimum. The objective criteria used to validate and

compare the models included the Root-Mean-Square Error (RMSE) , Normalized

Objective Function (NOF) and Reduced Error Estimate (REE). Besides these, graphical

comparisons were also made. The test statistics are given by

RMSE
(2-6)

NOF
RMSE
-- lvhere ~
~

1 n, 1 n j

- L- LMtin 1=1 n. i=l
I I

(2-7)

REE
RMSE

n n.

~t~t (M~·-MJ2
nt i=l ni i=l

(2-8)

where M is the measured value, P is the predicted value, nt is the number of sampling

dates and ni is the number of measured values. The RMSE is the overall sum of squares

of differences normalized to the number of observations. The NOF is the RMSE
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normalized to the overall mean which yields a term similar to the coefficient of variation.

REE is the RMSE normalized with respect to a term similar to the standard deviation.

GLEAMS, MOUSE and PRZM were minimally calibrated. On the basis of the

observed and predicted data, parameters like the SCS curve number and

evapotranspiration parameters were calibrated.

On the basis of graphical comparisons and objective functions analysis, CMLS,

PRZM and LEACHCMP predicted similar bromide, aldicrab and TSR leaching. The

NOF indicated that these models predicted these outputs within approximately 30, 45 and

70 percent of the measured values respectively.

The authors conclude that as far as statistical tests are concerned, RMSE has the

advantage of retaining units of measure, but can be overwhelmed by a single large

di fference between measured and predicted data. RMSE is only normalized with respect

to number of observations, so there is difficulty in comparing across the different data

sets. The authors contend that the ability of models to predict measured values of several

compounds can be evaluated using NOF. They also observe that the REE criteria might

correct for the differences in the variability of measured data. But if the variability of

solutes is similar, the advantage of REE over NOF is lost. The authors caution that the

use of these different objective functions should be taken with knowledge of limitations

and along with other tests like graphical evaluation.

Chiew et ale (1993) also compared six hydrologic models with different approaches

using objective functions and graphical comparisons. The two objective functions used

were
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(2-9)

(2-10)

where SM i and REC i are the simulated and recorded stream flows over period i and n is

the number of time periods simulated. OBI1 places more importance on the high flows

and is useful in reflecting the ability of the models to estimate catchment yields. OBI2

provides weighting to reflect the simulation of low flows as well as high flows.

The authors note that it is difficult to find a true optimum. First, discontinuities

are common in the response surface of rainfall-runoff models caused by the use of

constraints to prevent parameters from taking unrealistic values and an optimization run

may get trapped at one of the discontinuities to form a local optimum. Second, there is

usually interdependence between various parameters. Third, the least squares assu~ptions

of error terms (SM i - RECJ is that they have zero mean and constant variance, are

mutually uncorrelated and are normally distributed, are seldom satisfied. The exponent

0.2 used in the objective ensures that the error term has a constant variance (values of

SM i 0.2 - REC i 0.2 are similar for all flow values). Also the ratio of objective functions

for six modeling approaches for different catchments, relative to the lowest value obtained

for that simulation, were plotted. The plots were more useful than a direct comparison

of the objective function as these values are dependent on flow volumes and can differ

by several orders of magnitude.
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In a series of papers originating from Virginia Polytechnic and State University

very interesting studies on model evaluations were discussed. Zacharias and Heatwole

(1993) evaluated the model 'OPUS' on the basis of its prediction of runoff, sediment loss

and pesticide movements in three steps. Runoff volume and sediment loss predicted by

the model were compared with observed data. They used the actual runoff volume and

sediment loss measured at the field in subsequent steps to calibrate the soil water and

chemical components of OPUS. In the second step these field measured runoff volumes

and sediment losses were input to the model. The third step involved the use of field

measured pesticide dissipation half-life to represent degradation of soil instead of literature

values. The evaluation of model performance was based on graphical displays and

statistical techniques. The quantitative techniques provide an objective assessment by

quantifying the difference between observed and predicted values.

To evaluate predicted pesticide concentration distribution in soil, the factor of 2

criteria is used. The null and alternative hypothesis are :

Ho : Model predicts pesticide concentration in the soil profile within a factor of

2 of the observed data for all sampling dates and depths.

Ha : Model does not predict concentrations within a factor of 2 for all

sampling dates and depths.

This was tested by a non parametric method based on confidence intervals. The

confidence interval corresponding to the median of the ith date-depth combination is

denoted by Li • and U i•. For these combinations the corresponding confidence internals

are (1/2)/lpi and 2/lpi , where /lpi represents the model predicted value for the i th date-depth
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paIr. The hypothesis is rejected if any case results in either U j - < (1/f)J.'Pi or ~- > fp,pi

for f equal to 2.

The model capacity index Ci - is defined as

C j - = {Li- / Jlpi , if Jlpi < Li -

1, if Li - ~ Jlpi ~ Ui -

Jlp/ Ui-, if Jlpi > Ui - }

The hypothesis is rejected in all depth-date pairs when Cj - > 2. The overall

model performance over the study period can also be expressed in terms of the number

of percentage of date-depth pairs, where the hypothesis was not rejected.

The authors note that this method takes into account the variability in the observed

data. The limitation is that where the lower limit is zero, the Ci- is not defined, which

was treated as rejected.

As for the results, the model grossly overpredicted both the runoff voluIJ.1e and

sediment loss, even after changing the curve numbers using the observed rainfall-runoff

data. The soil water distribution was predicted fairly well at the site. The hypothesis

was rejected for both atrazine and metolachlor in the two simulations involving literature

and field dissipation half-lives. The authors speculate that the lack of agreement between

observed and predicted pesticide concentration may be due to the fact the model did not

represent the rapid movement of pesticides following large rainfall events early in the

season.

Parrish and Smith (1990) discussed the hypothesis testing as outlined by zacharias

and Heatwole(1993). Parrish and Smith (1990) illustrate model validation by using a
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multivariate case using PRZM model. They note that it is desirable to test the models

predictive ability with respect to an array of parameters in space or time. Then the

hypothesis would be,

Ho : Model predicts concentrations in the soil profile within a factor of 2 for all

depths.

Ha : Model does not predict within a factor of 2 at all locations in the soil profile.

A confidence interval is computed for each mean at a specific time-depth, so that

taken jointly the confidence level is controlled at a specific value. The lower L i and

upper Ui confidence intervals are given by

Ts.
L. = r-_'

I i 111n (2-14)

(2-15)

where x: and Si are sample mean and standard deviation of the ith parameter,. based

on multivariate sample size n and T t where k is the number of parameters.
l-al2k,n -1

The capacity index was given earlier (equation 2-13). If any C i exceeds the

acceptability criterion of being within a factor of two, then the null hypothesis would be

rejected. A single index Cmax , could be defined as the maximum of the C i values. When

this procedure was applied for the PRZM model the C j values calculated were 1.01 for

day 20, 1.69 for day 48 and 1.28 for day 86. But on day 83, and for third depth, the

index of overprediction was 6.83 so the hypothesis was rejected.
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The authors caution that the choice of outputs actually determine the specific

model needs. Sometimes, as in groundwater leaching models, the depth would be of

importance, where as sampling time may be critical in some cases. Sample size should

be carefully chosen so that the test has a good chance of detecting a situation for which

the null hypothesis is false.

Garrick et ale (1978) proposed two criteria for evaluating the efficiency of

conceptual rainfall-discharge models. The first assesses the model as a means of

converting the input factors into discharge by comparison with a forecast based only on

the seasonal regime of the river. The second criteria expresses the efficiency of the

model under the assumption that it is to be used with an updating procedure to provide

a forecast of discharge over a prescribed lead time.

When these criteria are applied to the SSARR model and a seasonal forecast based

only on date is made, the result is that the SSARR model is less efficient than the simple

seasonal prediction. The authors do not make any effort to check the site specificity of

the model involved, and the fact that part of data was used in calibrating the model makes

the results all the more suspect.

Zacharias et ale (1993) analyzed the model OPUS USIng the same principal

proposed by Parrish and Smith (1990). They have adapted non parametric methods so

that when the data distribution is non-Gaussian or unknown, it can be applied to model

validation.

The authors note that comparing simulated values against the data distribution may

be more appropriate when the output variable is pesticide concentration, as it takes into
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account the large variability in the data. If the underlying structure is non-Gaussian, the

sample median may be a more appropriate measure of location than the sample mean and

the measure of dispersion should be the range, inter-quartile range or median absolute

deviation.

The Median Absolute Deviation (MAD) is given by

s* == 1.4826 x median { IX i - x I i == 1,2 ... n} (2-16)

where S* is the median absolute deviation, Xi is the ith observation, x is the sample

median, n is the sample size and 1.4826 is for consistency with the Gaussian distribution.

The method computes the confidence interval based on the rank based on the sign

statistic instead of the t-statistic. The sign statistic assumes neither normality nor

symmetry.

For the univariate case, if j is such that P (x ~ j) == a/2 from the binomial table,

B(n, 0.5), then the (I-a) 100% confidence interval for the population median is given by

equations (2-17) and (2-18) c

L*==XG+l)

U* == X (n-j)

(2-17)

(2-18)

where n is the sample size, XCi + 1) is the G+ l)th smallest observation sample. Using

this, C* max (equation 2-13) can be found and used to test the hypothesis. Along with

this, other quantitative methods proposed by the authors are, Median Absolute Error

(MdAE), Coefficient of Determination (CD*) and Modeling Efficiency (EF*).
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(2-19)

CD· (2-20)

n n

EIOi-V(-EIPi-VI
i-I i-I (2-21)

where Oi are the observed values and Pi are the predicted values, n is the number of

samples and V is the median of the observed data.

According to the authors, a field study can be carried such that a large field is

subdivided into several sites for modeling purposes and hypothesis testing carried out.

When the model is used to simulate the whole set of the large field, then a model can be

used in a probabilistic mode.

In yet another paper, Zacharias et ale (1993) evaluated models GLEAMS and

PRZM for their ability to predict pesticide leaching. The comparisons of simulated

versus observed data were made considering (1) bromide, atrazine and metolachlor

concentration distributions in the root zone, (2) mass of atrazine and metolachlor

remaining in the root zone, (3) depth of solute peak concentration, and (4) depth of solute

center of mass.
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The authors contend that the first output option would. help to evaluate the

appropriateness of model theory and assumptions in describing field situations while the

third and fourth goals assess the ability of the model to simulate pesticide leaching.

The authors follow the quantitative measures as described by Zacharias et ala

(1993) (reviewed earlier) for evaluating chemical concentration predicted by the model

at different sampling depths and dates. The evaluation of the mass remaining in the root

zone and the depth of solute center of mass was based on the root mean square error

(RMSE) and normalized objective function (NOF) as outlined by Green and Stephenson

(1986).

As for the model simulation results, the hydrology results with the uncalibrated

model indicate that both models overpredicted the observed monthly runoff. Both models

underpredicted the leaching of bromide, atrazine and metalachlor. To remedy this, leaf

area index, curve numbers in GLEAMS and the parameter ANTED in PRZM along with

curve number were calibrated. After this run, it was noted by the authors that GLEAMS

had predicted chemical concentration profile and pesticide prediction better than PRZM.

Finally the authors conclude that both models are adequate for management

purposes. They do not back this with solid statistical criteria. Although the results of the

RMSE, NOF and other statistical test results are given for individual results, it is not

concluded with any degree of confidence using statements like .. since this figure is better

than the other, the model can be concluded to predict this output well...

Likewise Mamillapalli et al (1994) have also validated GLEAMS (nutrient

component) using a variety of statistical tests. They also report calibration results are not
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particularly satisfying. To test whether the model has achieved better results after

calibrating, the authors use different criteria as outlined by other authors whose work is

also reviewed earlier.

The majority of the work reviewed in this chapter deals with model evaluation

where observed data were compared with predicted data. Some researchers use part of

the observed data to calibrate the model and then model simulations are compared with

another part of observed data. There is a scarsity of work on model evaluation for the

case where observed data are lacking. This study is an attempt to lay a basic foundation

for model evaluation where observed data are missing or scarse.



CHAPTER III

OUTLINE OF THE STUDY

OBJECTIVE

The objective of this study is to evaluate a statistical model evaluation protocol.

EPIC (Erosion Productivity Impact Calculator) and AGNPS (AGricultural NonPoint

Source) models were chosen for this evaluation. The models are explained in greater

detail in the next chapter. It is to be recognized that a complete model evaluation

protocol requires the comparison of observed data with predicted values. The.model

evaluation procedure outlined by Haan et ale (1993) and used in this study is an effort to

evaluate these models in some applications where observed data are lacking and thus get

an estimate of the model accuracy under these conditions. This is not an attempt to

evaluate the models in some specific application.

It is to be recognized that a complete model evaluation requires a critical

assessment of the algorithms involved and model runs involving many field settings,

among other things. This study does not attempt to evaluate models in this sense. Rather

30
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it is an attempt to apply a particular model evaluation procedure to assess the suitability

of a model for use in a situation where calibration data do not exit.

PROCEDURE

The evaluation starts with sensitivity analysis of the model. This is to identify the

input parameters that have the greatest impact on model predictions. Either absolute or

relative sensitivity coefficients can be used. These coefficients are defined as

s ao
81

ao I
81 0

(3-1)

where S is the absolute sensitivity, Sr is the relative sensitivity (dimensionless), 0

represents a particular output and I represents a particular input. Relative sensitivity gives

the percent change in 0 for a one percent change in I (Coleman and DeCoursey,.1976).

When the sensitivity with respect to one parameter is being determined, the other

parameters will be held constant at values determined to be the most appropriate for the

watershed under study. For this study six or seven important sensitive physical

parameters will the receive bulk of the attention.

The next step is to generate probability distributions of these sensitive parameters.

Equations describing the probability of occurrence of random events are known as

probability density functions (pdf) or cumulative distribution functions (cdt). A pdf can

be used to evaluate the probability of a random event in a specified interval. A cdf can

be used to evaluate the probability of an event less than or equal to a given value (Haan
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et al., 1993). The uncertainty associated with the parameters of a model can be

quantified in the form of a pdf. The pdf of an input parameter provides information on

the variability of an input parameter and the sensitivity coefficient provides information

on the impact of this variability on model predictions.

The next step is to generate output pdf's by either of two techniques, Monte Carlo

Simulation (MCS) and First Order Analysis (FaA). FOA has been shown to produce

good estimates of the mean and variance of a model response if the coefficient of

variation of the input parameter is small and the model response is linear with respect to

the parameter in the range of interest (Stevens, 1993). When FOA is not appropriate,

MCS can be performed by sampling the multivariate input distribution and performing

a model simulation with the sampled parameter values to produce estimates of model

output. For MCS, the output pdfs will be based on the input pdfs.

The output pdfs can then be used to place confidence intervals (CIs) on ,model

predictions. The width of t_he CIs d~pend on the level of significance and the applicable

_pdf. The comparison of model predictions with measured watershed response is

performed at this stage. These data are plotted on the pdf of the model response and

compared to the CIs. If the measured data fall within the CIs, the model may be judged

to have performed satisfactorily from a statistical point of view. CIs that are so wide as

to judge the model predictions of little use, even though the predictions are within the

CIs, indicates that the model structure and uncertainty in input Para~eters combine in

such a way as to render the model predictions too uncertain. Thus it is possible for a

statistically acceptable solution to be unacceptable in application (Haan et al., 1993).
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There is also uncertainty associated with the measured response of a watershed.

This uncertainty can also be quantified in the form of a pdf. If the pdfs of the model

response and the watershed measured values are plotted together, the degree of overlap

of the pdfs indicates the predictive ability of the model. If some criteria of model

acceptability is given, then it is possible to determine the probability that the model will

fulfill that criteria.

The above model evaluation protocol is based on statistical procedures designed

to minimize personal bias and to help distinguish between uncertainties associated with

parameter estimation and problems associated with the structure of the model (Haan et

al., 1993). This procedure was followed for the evaluation of EPIC and AGNPS and

recommendations developed regarding the predictive ability of these two models.

Uncertainty in measured response was not considered.



CHAPTER IV

DESCRIPTIONS OF MODELS AND THE DATASET

DESCRIPTIONS OF THE DATASET

The data used in this study are from a research field in northwestern Arkansas

(lat. 36° N long. 94° W). These data were provided by researchers at the University of

Arkansas and are explained in detail in Edwards et ale (1993). The data were collected

from four fields namely RA, RB, WA, WB. The model simulations in this study were

done using the data from the field WA. The crop cover for this field is predom~nantly

tall fescue. The details of the field are given in the Table 4.1.

The area of the field is 1.46 ha and it has predominantly Linker Loam soil. The

Linker series consist of well-drained, moderately permeable soils. The runoff is medium

and the erosion hazard is severe with these soils. The slopes are usually 3 to 8 percent

and have five layers of soil (Soil Survey, Washington County, Arkansas).

The field WA was used for both grazing and hay production during the study

period. The field was grazed from September 1991 through January 1992 and from

September through December 1992. It was also cut for hay on July 7, 1992. Inorganic

fertilizer (ammonium nitrate) was surface applied on March 23, 1992, at 138 kg N/ha and

34
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April 13, 1993, at 226 kg N/ha. Phosphorous was not applied on any occasion. There

were no erosion control practice in the field (Edwards et al., 1993).

Edwards et ale (1993) also outlined the steps taken to monitor the rainfall events.

Tipping bucket rain gauges were used and data logging software were used to record

rainfall occurring during five minute increments. The daily maximum and minimum

temperatures were also recorded. The output data collected were runoff volul!l..~,

sediment yield, N03 in surface runoff, organic N loss with sediment and P loss in

sediment and runoff. The total time period for which the data were collected was from

September 1, 1991, to April 30, 1993. The parameters used in Edwards et ale (1993) are

also used in this simulation study (Table 4.1).

DESCRIPTION OF THE MODELS

Erosion Productivity Impact Calculator

Erosion Productivity Impact Calculator (EPIC) (Sharpley and Williams, 1990) was

developed by USDA-ARS in cooperation with Texas Agricultural Experiment Station,

Texas A & M University_



Table 4.1. Parameters and their values used in model-simulations.

PARAMETERS VALUES

Area (ha) 1.46

Curve Number 79

Distance from outlet to furthest point (m) 194

Channel slope mlm 0.04

Channel roughness factor 0.24

Surface roughness factor 0.24

Average elevation (m) 460

Latitude 96.6

Organic Carbon (%) 1.0

Labile P, ppm 393

Slope length (m) 194

36
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This model is composed of physically based components for simulating erosion,

plant growth and related processes and economic components for assessing the cost of

erosion and developed to be a particularly helpful tool for determining optimal

management strategies.

EPIC is a comprehensive model consisting of hydrology, weather, an

erosion/production relationship, soil temperature, tillage, economics, nutrients and plant

environmental control components. It was developed specifically for application to the

erosion/productivity problem. The management components that can be changed are crop

rotation, tillage operations, irrigation scheduling, nutrient and pesticide application rates

and timing.

E~IC operates 5nl.'!9<J.!I'yst.<::p.p_a..~is.,__.The drainage area considered by the model

is generally small because soil and management are assumed to be spatially homogeneous.

In the vertical direction, the model is capable of working with a variation in soil

properties and the soil profile is divided into a maximum of ten layers. When erosion

occurs on the first layer and it is removed, the second layer thickness is reduced by the

amount of eroded thickness, and the top layer properties are adjusted by interpolation and

this process is carried on to subsequent layers (Williams et al., 1984).

EPIC Model Algorithm

This section contains the details of the model components along with outputs and

the processes that are involved in the model. Emphasis is given to the outputs that are

used in this study. The majority of this discussion is taken from Williams et al, (1984).
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Hydrology

Runoff, percolation, lateral subsurface flow and snow melt are simulated.

Runoff: The runoff model simulates surface runoff volume and peak runoff rates,

given daily rainfall amounts. Runoff volume is estimated by using a modification of the

Soil Conservation Service (SCS) curve number (eN) technique (Soil Conservation

Service, 1972).

Runoff volume, Q, is given by

Q
(R- 0.25)2

R+ 0.85

when R > 0.25

(4-1)

Q == 0.0 when R ~ 0.2S (4-2)

where Q is the daily runoff, R is the daily rainfall and S is the retention parameter. The

parameter S is related to CN by

s 254( 1000 - 10)
eN

(4-3)

The constant 254 gives S in millimeters. eN is the curve number for antecedent

moisture condition 2 and represents an average curve number which can be obtained for

most areas in the US from SCS handbooks.

EPIC assumes that the handbook values for CN are appropriate for a 5% slope.

Equations for adjusting that value for other slopes are contained in the model. Fluctuation

in soil water content causes the retention parameter to change. The retention parameter

depends on the field capacity and wilting point among other parameters.
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Peak runoff rate: Peak runoff rate prediction is based on.the proportion of total

rainfall that occurs during the time of concentration, runoff volume and area of the

watershed.

Percolation : The percolation component of EPIC uses a storage routing technique

combined with a crack-flow model to predict flow through each soil layer in the root

zone. It is based on the percolation rate through a layer, soil water content at the

beginning of the day, travel interval (24 h) and travel time.

The travel time is dependent on hydraulic conductivity, field capacity and soil

water content. The flow through a soil layer may be reduced by a saturated lower soil

layer. If the layer immediately below the layer being considered is saturated, then no

flow can occur regardless of the percolation rate calculated from upper layer.

Evapotranspiration: This component is based on daily solar radiation, albedo and

slope of the saturation vapor pressure curve at the mean air temperature. The albedo is

evaluated considering the soil, crop and snow cover.

The model computes soil and plant evaporation separately. Actual soil evaporation

is completed in two stages. In the first stage it is equal to the potential soil evaporation.

Stage two is predicted with a square root function of time.

Weather

The weather variables necessary for the model are precipitation, air temperature,

solar radiation and wind. There is provision in the model to input daily precipitation,

minimum and maximum temperature and solar radiation data directly. Otherwise it can

be generated stochastically.
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Air temperature and solar radiation : The residuals of daily maximum and

minimum temperature and solar radiation are generated from a multivariate normal

distribution. The means and coefficients of variation for each variable should be input.

As these variables are affected by rainfall, the me<ms and coefficients of variation must

be input separately for wet and dry days. The wind simulation model uses two variables.

They are average daily velocity and daily direction. Wind direction is expressed in

radians from north in a clockwise direction and is generated from an empirical

distribution specific for each location.

Erosion

Water erosion : The water erosion component of EPIC uses a modification of

USLE. This equation t s energy factor is composed of both rainfall and runoff variables.

It is given by

Y == (0.646 EI + 0.45 (Q) (qp)O.833) (K) (CE) (PE) (LS), Q > 0

Y == 0, Q ~ 0

(4-4)

(4-5)

where Y is the sediment yield in t/ha, EI is the rainfall energy factor in metric units, Q

is the runoff volume in mm, qp is the peak runoff rate in mm/h, K is the soil erodibility

factor, CE is the crop management factor, PE is the erosion control practice factor and

LS is the slope length and steepness factor and is calculated with the equation

LS = (~)~ (65.4182 + 4.568+ 0.065)
226

(4-6)

where S is the land surface slope in mlm, A is the slope length in ffi, ~ is the parameter

dependent on slope and is given by



~ = 0.6(1- exp( - 35.8355))
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(4-7)

The crop management factor is evaluated for all days when runoff occurs using the

equation

CE == (0.8 - CEmn,j) exp (- 0.00115 cv ) + C~,j (4-8)

where CEmn, j is the minimum value of the crop management factor for crop j and cv is

the soil cover (above ground biomass plus residue). The factors Q and qp are supplied

by the hydrology component.

The erosion caused by applying irrigation water in furrows is estimated with the

Modified Universal Soil Loss Equation (MUSLE). Wind erosion depends on the climatic

factor, soil ridge roughness factor, field length, quantity of vegetative cover and soil

erodibility index.

Nutrients

The model simulates nitrogen and phosphorous fertilization, transformations, crop

uptake and nutrient movement. Nutrients can be applied as mineral fertilizers, in

irrigation water or as animal manures.

-Nitrate loss in surface runoff: The amount of N03-N in funoff is estimated by

considering the top soil layer only. The average concentration can be obtained by

integrating the exponential function (which simulates the decrease in N03-N

concentration) to give N03-N yield and dividing by the volume of water leaving the layer.

The resulting relationships are
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(4-9)

(4-10)

where WN03 is the weight of N03-N contained in the soil layer at the start of a day, QT

is the total water lost from the first layer, VL is the upper limit of water storage in the

layer, VN03 is the amount of N03-N lost from the first layer and CNo3 is the

concentration of N03-N in the first layer.

Organic N transport by sediment: The loading function for estimating organic N

loss is given by

YON = 0.001 (Y) (CoJ (ER) (4-11)

where YON is the organic N runoff loss kg/ha, Con is the concentration of organic N in

the top soil layer in glt, Y is the sediment yield in t/ha and ER is the enrichment ratio.

The enrichment ratio is the concentration of organic N in the sediment divided by that of

the soil.

Denitrification: This depends on temperature, water content and organic carbon

content in the soil and is considered a microbial process.

Mineralization: This model considers fresh organic N associated with crop residue

and microbial bio'mass and the stable organic N associated with the soil humus pool as

sources of mineralization. Immobilization is also an important process as it determines

the residue decomposition rate which has an important effect on erosion. The daily
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amount of immobilization is computed by subtracting the amount of N contained in the

crop residue from the amount assimilated by the microorganisms.

Soluble Phosphorous loss in surface runoff: The EPIC approach to P loss is based

on the concept of partitioning phosphorus into solution and sediment phases. Soluble P

in runoff can be expressed as

YSP (4-12)

where YSP is the soluble P in Kg/ha lost in runoff volume Q in mm, CLP1 is the

concentration of labile P in soil layer one in g/t and kd is the P concentration in the

sediment divided by that of the water.

P transport by sediment: P loss in sediment is simulated by

YP == 0.001 (Y) (Cp) (ER) (4-13)

Where YP is the sediment phase P loss in runoff in Kg/ha and Cp is the concentration of

P in the top soil layer in glt and ER is the amount of residue. Mineralization,

immobilization and crop uptake are other P outputs in EPIC and are similar to that of N

loss.

EPIC Dataset Description

This section describes the parameters used in building the data file for EPIC.

Some of the important parameters like CN and Slope are taken from Edwards et ale

(1993) which is described in the third chapter.
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For this model the number of years of simulation is taken as four, starting in

1990. This enables the model to simulate fully grown grass at the start of study period

(from Sept 1, 1991) which is actually the case. The simulation is started from January

1, 1990.

The maximum and minimum temperature and rain are input into the model. There

is a provision for including the file containing the weather data at the end of the data file

in ASCII format. The format is specified in the help option for the weather parameters.

The rest of the parameters like solar radiation and wind are generated stochastically as

those data were not available. Since weather data is available from Sept. 1, 1991 to April

30, 1993, for the rest of the simulation period the weather data from year 1992 are used

(for corresponding periods) to fill in the gaps for which the data is not available. For the

analysis part, only the data from Sept. 1, 1991 to April 30, 1993 are used.

For other weather parameters like maximum and minimum air temperature,

average manthly precipitation, probability of wet day after dry day, etc., EPIC command

called 'locweat' is used. The user has to give the latitude and longitude along with the

command. A list of weather stations which are close to the field will appear on the

screen. Eureka Springs (36.4° L latitude and 93.75° W longitude) is used. Various wind

parameters are also accessed by this command. Likewise the soil parameters like field

capacity, bulk density, soil albedo, etc. can be obtained by the command called 'getsoil '

along with the soil number. The soil numbers are given in the user manual. Linker

Loam A corresponds to the soil number 412. The labile P value was changed to 393 ppm
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and organic Carbon was changed to 1.0 %, which are field measured values, rather than

using the model default values.

For tillage practices, a four-year crop rotation was assumed. For simulation, it

is assumed that grass is planted on April 1, 1990. The clastil.dat file is used as the tillage

file. Similarly clascrop.dat is used for crop parameters. In that file grass is listed as

range. At the end of the data file, the file containing weather parameters is listed. The

complete list of input parameters for EPIC is given in Appendix A.

AGricultural Non Point Source

The AGNPS model was developed by the Agricultural Research Service (ARS)

in cooperation with the Minnesota Pollution Control Agency and the Soil Conservation

Service (SCS). The model was developed to analyze and provide runoff water quality

from agricultural watersheds ranging in size from few hectares to upwards of 20,000 ha

(Young et al., 1989).

AGNPS is event based. It operates on a cell basis. Cells are uniform square

areas subdividing the watersheds allowing analysis near any point within the watershed.

P9~.~_Il~i(l1 pollutants are routed through cells from the watershed divide to the outlet in a

stepwise manner so that flow at any point between the cells may be examined. All

watershed characteristics and inputs are expressed at the cell level. Accuracy of results

can be increased by reducing the cell size, but this increases the time to run the model

(Young et al., 1989).
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The model simulates runoff, sediment and nutrient (N and P) movement in soil.

Model components are hydrology, erosion and sediment and chemical transport. The

model also considers point sources of sediment from gullies and input of water, sediment,

nutrients and chemical oxygen demand from animal feedlots, springs and other point

sources.

AGNPS Model Algorithm

Hydrology

Runoff volume and peak flow rate are calculated in this part of the model. Runoff

volume estimates are based on SCS curve number method as explained in EPIC hydrology

component. In AGNPS there is a provision to input the state of the antecedent condition

for an event. Peak runoff rate is based on drainage area, channel slope, runoff volume

and watershed length-width ratio parameters.

Erosion and sediment transport

A modified form of Universal Soil Loss Equation (USLE) is used to estimate

upland erosion for single storms and is given by

SL == (El) KLSCP (SSP) (4-14)

where SL is the soil loss, EI is the rainfall energy-intensity, K is the soil erodibility

factor, L is the topographic factor, C is the cover and management factor and SSF is

factor to adjust for slope shape within the cell.
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Using a steady-state continuity equation the detached sediment is routed from cell

to cell through the watershed to the outlet. The sediment discharge at the downstream

end of a channel reach depends on lateral sediment inflow rate, downstream distance,

reach length, channel width and the deposition rate.

Chemical transport

The chemical transport part of the model estimates transport of N, P and COD

throughout the watershed. Chemical transport calculations are divided into soluble and

sediment adsorbed phases. Nutrient yield in the sediment absorbed phase is calculated

using total sediment yield from a cell as given by

(4-15)

where Nutsed is N or P transported by sediment, Nutr is N or P content in the field soil

and ER is the enrichment ratio, Qs(x) is the sediment yield.

Soluble nutrient estimates consider the effects of nutrient levels in rainfall,

fertilization and leaching. Soluble nutrients contained in runoff are estimated by

(4-16)

where Nutso1 is the concentration of soluble N or P in the runoff, Cnut is the mean

concentration of soluble N or P at the soil surface during runoff, Nuten is an extraction

coefficient of Nand P for movement into runoff and Q is the total runoff.
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AGNPS Dataset Description

For simulation purposes the entire 3.61 acres is considered as a single cell. This

simplifies the sensitivity analysis and the simulations in that multiple cells would require

multiple parameter sets.

Since AGNPS is an event based model, a precipitation event of 3.76 inches on

July 30, 1992 is used in the model. That rainfall event had a preceding event of 0.39

inches on July 28, 1992. It was assumed that antecedent condition would require that CN

value to be changed. So a CN value of 70 is used which is the average of eN values at

CN(I) and CN(II) conditions. CN(I) may be computed based on CN(II) from Haan et ale

(1994) as

CN(l)
4.2 eN(/I)

10- 0.058 eN(/I)
(4-17)

From Edwards et al. (1993) the CN(II) value is 79.

CN(I)
10- 0.058*79

61.74

The average value of these two conditions is 70 and that value is used as eN.

The event is assumed to be of 24 hour duration. For peak flow calculations, AGNPS

option is chosen. For the hydrograph shape factor, which allows the user to choose the

method for calculating the triangular hydrograph, the k coefficient method is chosen and

the default value of 484 is chosen for k coefficient.



49

The shape of the slope is assumed to be uniform. For soil parameters, the K

factor is estimated from the soil erodibility nomograph of Agriculture Handbook number

537, "Predicting Rainfall Erosion Losses" (Wishmeir and Smith, 1978). The percentage

of soil particles are obtained from the EPIC data file. The percentage of silt is 35.6.

The very fine sand particle percentage is assumed to be negligible. The percentage of

sand is 56.3. The percentage of organic matter is assumed to be 2 as the soil is brown

in color (Soil survey, Washington county, AR). The soil structure has a medium granular

structure and has moderate permeability (Soil Survey Washington County, AR). With

these parameters the K value is derived as 0.24 ( Fig 4.1).

From Table 10 (Agriculture Handbook 537, Wishmeir and Smith, 1978) for "tall

weeds or short bushes" category and a percent cover of 50 % and percent ground cover

of 80 %, the C value is assumed to be 0.012 for type G (grass) (Table 4.2).

For the surface condition constant, good pasture is assumed with a value of 0.22.

For the COD factor, the pasture value of 60 is input. The soil texture number is 3 for

56 percent of sand and 35 percent of silt and the soil triangle is given as fig 4.2. For

this soil texture a number of default values regarding the Nand P coefficients were

accessed. The soil P value was 0.0005 lb P/lb soil. The approximate actual field

measured value is 0.0004 atld test run indicated that there is not much difference in the

P outputs. There are no point sources or impoundments in the field. The channel type

is taken as the one without a definitive channel. The complete list of AGNPS dataset is

given in Appendix C.
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FIGURE 4.2 The soil triangle
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CHAPTER V

SENSITIVITY ANALYSIS

Sensitivity analysis identifies the parameters that have the greatest impact on model

predictions. A number of methods have been employed by researchers for the purpose

of sensitivity analysis. The most commonly used method was proposed by Coleman and

Decoursey (1976). When sensitivity with respect to one parameter is being .determined,

the other parameters will be held constant at values determined to be the most appropriate

for the watershed being studied.

Majkowski et al. (1981) argue that sensitivity analysis and its extensions ,enable

the modelers to examine the influence of input parameter errors on predictions made by

the model. The acceptance level of output uncertainty depends on the system under

consideration, the modeling objectives and the modeler's knowledge of the system.

They extend the sensitivity analysis to parameter estimation by means of so called

addictive sensitivity analysis. They analyzed the uncertainties in outputs produced by the

uncertainties in the input parameters and defined the deviance measure, D. Using linear

"theory, the variance of the distribution of the logarithm of D can be found. They contend

that by comparing the magnitude of the components of the variance, the particular input
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errors which contribute to the total variance can be found. This will lead to identify

parameters which require more accurate determinations of their value.

Tiscareno-Lopez et al. (1993) conducted stochastic sensitivity analysis on the

WEPP model. They argue that for any assessment situations, model parameters are best

represented by a frequency distribution (or range) of values. They performed multiple

linear regression analysis using model inputs generated by the MCS method and model

outputs. The uncertainty in model parameters was finally assessed from the regression

coefficients of the linear equation. They used regression models to estimate probability

distributions, as very few samples of parameters were available. They did not use some

of the parameters in the model in their study as those parameters were derived from other

parameters, and thus are correlated.

Deer-Ascough and Nearing (1994) calculated sensitivity analysis on the WEPP

model using parameters for three soil types and three different management practices.

They used deterministic sensitivity analysis (which is outlined later in the chapter). They

contend that with this approach, the absolute sensitivity coefficient, while still reflecting

linear response, would provide a better examination of the nonlinearity of responses

between series of input and output parameters.

Nofziger et al. (1993) evaluated a number of unsaturated vadose zone models for

important parameters using sensitivity and. uncertainty analysis. They defined the

sensitivity coefficient, S, as
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(5-1)

where 0 represents the output of interest and I represents the input parameter. If the

model output can be written in a symbolic form, the sensitivity can be applied by

differentiating 0 symbolically. If the models are too complex for this approach, the

sensitivity can be calculated by using the difference equation

s _ /10
D.I

(5-2)

The value of S calculated from these equations has units associated with it. This

makes it difficult to compare sensitivities for different input parameters. This can be

overcome by using the relative sensitivity, Sf) given by

/10 I
-*-
/11 0

(5-3)

The relative sensitivity is a measure of the relative change in model output,

corresponding to a relative change in the input parameter. Sf gives the percentage change

in model response for one percent change in an input parameter. If the absolute value

of Sr is greater than one, the absolute value of the relative change in model output will

be greater than the absolute value of the relative change in input parameter. If the

absolute value of Sf is less than one, the absolute value of the relative change in model

output will be less than the absolute value of the relative change in input. Here the

sensitivity coefficients reflect the change in output function due to a single input



56

parameter. Uncertainty analysis is used to incorporate simultaneous changes in more than

one parameter and variability of the parameters (Nofziger et al., 1993).

SENSITIVITY ANALYSIS OF EPIC

Sensitivity analysis of EPIC was conducted using all parameters except weather

parameters. There were a total of 43 parameters. The percent change in input

parameters was one percent across the base value. The outputs studied are runoff,

sediment, nitrogen in sediment and runoff and phosphorous in runoff. The most sensitive

parameters were chosen for the study and are given below along with their relative

sensitivities for a particular output. The complete sensitivity analysis is given in

Appendix B.

TABLE 5-1. Relative sensitivity values for runoff for EPIC

Parameter ReI. seno

Curve number 5.19

Field capacity 0.28

Slope 0.19



TABLE 5-2. Relative sensitivity values for sediment for EPIC

Parameter ReI. sen.

Curve number 5.29

Slope 1.8

p- factor 1.11

Silt 0.52

TABLE 5-3. Relative sensitivity values for N loss in sediment for EPIC

Parameter ReI. sen.

Curve number 4.30

slope 1.68

P - factor 1.05

Org. N 0.97

silt 0.47



TABLE 5-4. Relative sensitivity values for N03 loss in surface runoff for EPIC

Parameter ReI. sen.

Curve number 11.38

Bulk density 3.44

Field capacity 0.57

Slope 0.48

TABLE 5-5. Relative sensitivity values for P loss in runoff for EPIC

Parameter ReI. sen.

Curve number 7.68

Bulk Density 1.54

Field Capacity 0.37

Slope 0.29
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SENSITIVITY ANALYSIS OF AGNPS

Sensitivity analysis of AGNPS model was conducted using 28 parameters. Even

though precipitation was found to be a sensitive parameter, it is not used in simulations.

In AGNPS some of the input parameters had to be changed more than one percent,

because of program input limitations. The input parameters of AGNPS used for

sensitivity analysis and the percent changes are given in Appendix C. As in EPIC, tables

5-6 to 5-10 contain the relative sensitivity index of the parameters used in the study. The

complete list of sensitivity analysis of the model is given in Appendix D.

TABLE 5-6. Relative sensitivity values for runoff for AGNPS

Parameter

Curve number

Rei. sen.

5.17



TABLE 5-7. Relative sensitivity values for sediment yield for AGNPS

Parameter ReI. sen.

Curve number 2.5

Land slope 5

K - factor 1.25

C - factor 1.25

P - factor 1.25

TABLE 5-8. Relative sensitive values for N loss in sediment for AGNPS

Parameter ReI. sen.

Curve number 1.56

Land slope 4.17

K - factor 1.17

C - factor 1.17

P - factor 1.17

soil N 2.18
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TABLE 5-9. Relative sensitive values for N in runoff for AGNPS

Parameter Rei. sen.

Curve number 10

N extr. runoff 3.33

N extr. leaching 3.33

TABLE 5-10. Relative sensitive values for P in sediment for AGNPS

parameter ReI. sen.

Land slope 4.17

k - factor 1.56

C - factor 1.56

P - factor 1.56
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CHAPTER VI

DISTRIBUTIONS OF THE PARAMETERS

The sensitivity analysis of EPIC indicates the curve number, bulk density, field

capacity, slope, percentage silt, organic nitrogen and erosion control practice factor are

the most sensitive parameters. For AGNPS, besides curve number, slope and the erosion

control practice factor, the other important factors are soil erodibility factor, cover and

management factor, soil nitrogen, nitrogen extraction coefficient for runoff and nitrogen

extraction coefficient for leaching. For the Monte Carlo simulation, there is need to find

the distribution of these variables. The choice of a distribution to represent a p~ysical

system is generally motivated by an understanding of the nature of the underlying

phenomenon and is verified by the available data. After a distribution is chosen, its

parameters must be determined. Also for the MCS it is very important to determine if

there is correlation among the input parameters. Using the limited data available, the

correlations among the various input parameters were investigated. Although data were

insufficient for rigorous testing, independence among the parameters was assumed.

There are a number of different types of probability distributions. Prominent

among them is the normal distribution. The lognormal (LN), exponential, gamma and

Weibul are other types of distributions which can describe hydrologic and physical
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variables. The Central Limit Theorem states the general result that if X is mad

the sum of the many small effects, then X might be expected to be normally distl

Similarly if X is equal to the product of many small effects, then InX can be expl

be normally distributed (Haan, 1977).

Data published in the literature were used to determine appropriate pdfs

various parameters. Also the data used in fitting the distribution were chos(

different sources. Even for the same soil, the samples were taken from differe

An Analysis of Yariance (ANOYA) was used to test whether datasets from differ

can be grouped together. The hypothesis tested is that the means of the different

do not differ significantly from each other. The probability distributions of the

either be tested by plotting them on probability paper and comparing the data I

the best fit commulative distribution or using standard tests like the Kolmogorov-:

or Chi square test.

Bulk density and percentages of sand and clay, along with saturated con,

and water content are some of the soil properties that have received a lot of

from researchers. One widely quoted study was done by Nielsen et al. (1973)

the above soil properties were extensively studied. Another comprehensive lo(

area was by Jury (1986). He compiled information regarding the mean and

of the soil properties. Courtin et al. (1983), Rawls et al. (1982), Cassel aJ

(1975), Yauclin et al. (1983) and Gajem et al. (1981) have also done extensive

this subject. Much of the work was to quantify the lateral variability of

properties and the sample size required to measure the variables. Haan an(
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(1987) and Hjelmfelt (1981) have studied the distribution of the retention parameter, S,

which is a transform of the curve number (CN).

CURVE NUMBER

The curve number is a very sensitive parameter for many of the outputs that are

considered.

The SCS uses the relationships

Q (R-0.25Y
R+0.8S

Q = 0.0

R >0.2S

R ~ 0.2 S

(6-1)

S 25400 -254
eN

,(6-2)

where Q is runoff volume, R is rainfall volume and S is initial abstraction.

Equation (6-1) can be arranged as

(6-3)

For several rainfall - runoff data pairs, Haan and Schulze (1987) estimated, the---_._--- .------_ .._... -.

corresponding value for S from this relationship. The differences in S were attributed to

different antecedent conditions prevalent at the time of precipitation. Hjelmfelt et al.

(1981) have also studied the S values for two watersheds in Iowa for many rainfall -

runoff values. They found that the lognormal distribution described the data. Haan and
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Schulze (1987) found that S has a coefficient of variation, Cv, averaging 0.5 for the

watersheds they investigated. Using this Cv and assuming the value of the curve number

obtained from tables for the existing soils and cover as the mean value, the variance can

be found.

For other soil variaqles, gataare~~tr.~m~Iy)imite9. The following data have

been drawn from many sources. For th~J?llrposeof fitting a distribution, a sample size

of at least ,20 is needed. Reports of this many observations from the same site and from

the same soil are hard to find. ANOVA tests were used to group the data from different

sites and for the same soil. This is illustrated using the bulk density (BD) values for

Cecil soil from Watkinsville, GA (Bruce et al., 1983).

BULK DENSITY

There are six sites with BD values ranging in number from 5 to 8 as given in

Table 6-1. It can be noted that the mean values are close to each other. To determine if

they are statistically different, ANOVA was performed on this data set. The result is

given in the Table 6-2.

The F ratio for this is 3.727 which has a 99.2 % significance level. This is

greater than the Table value of F (3.68 for degree of freedom (dt) 5 (n) and 38 (d) at

99 % Confidence limit)(Cumulative F Distribution table, Haan (1977)) which is

unacce table. By removing the third group, the F-ratio was reduced to 1.243 which is
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b the table value of 4.02 (for df of 4 and 31). The same procedure is adapted for

Ithl layer of 6 to 11 em also.

TABLE 6-1. Bulk density values for Cecil soil from Watkinsville, GA

g/em3 plot 1 plot 2 plot 3 plot 4 plot 5 plot 6

0-6 cm 1.38 1.49 1.23 1.30 1.30 1.53

1.40 1.48 1.23 1.42 1.56 1.65

1.46 1.31 1.35 1.45 1.42 1.37

1.48 1.33 1.34 1.23 1.38 1.32

1.31 1.22 1.25 1.65 1.34
.~

1.39 1.24 1.23 1.31 1.31

1.39 1.28 1.27 1.45

Mean 1.432 1.375 1.259 1.340 1.438 1.433

Yare 0.002 0.006 0.004 0.006 0.014 0.017



TABLE 6-2. ANOVA table for the BD values from the Cecil soil data

WEIGHTED MEANS MODEL
ANALYSIS OF VARIANCE
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SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO p

x

ERROR

0.189

0.385

5

38

0.038

0.010

3.727 0.008

LEAST SQUARES MEANS.

LS MEAN SE N

X = 1.000 1.432 0.045 5

X == 2.000 1.375 0.036 8

X == 3.000 1.259 0.036 8

X = 4.000 1.340 0.036 8

X == 5.000 1.438 0.036 8

X == 6.000 1.433 0.038 7
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TABLE 6-3. K-S test results for BD values of Cecil soil

DIST. K-S TEST

Gamma 0.105

Lognormal 0.106

Weibull 0.174

Normal 0.202

The K-S test results are indicated in table 6-3 for 0 - 6 cm depth. The tabular

value at a significance level of 0.2 is 0.18 (Table E.9 Haan (1977)), so the gamma and

lognormal distributions will qualify. The similar analysis for 7 to 11 em layer bd values

indicate the K-S test ranks the lognormal distribution as first (test value is 0.009). Here

gamma is ranked as first in terms of fit. This gives an idea of the need for caution when

few data are analyzed for purpose of fitting a probability distribution. Table 6-4 gives

a range of values for Cy and means from different sources.

The Cecil data are from Bruce et ale (1983) and is for the first and second layers

of the soil. Sharma and Rogowski (1983) and Carcel et ale (1988) observed that the Cv

for soil properties such as bd and total porosity is less than 0.15. This seems to be

substantiated by the range of values from the Table 6-4.



Table 6-4. The Cv values of BD
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MEAN Cv FIELD SIZE NO OF S~l\1PLES REFERENCE

(Mg 1m3
) (%) (ha)

1.36 7 150 120 Nielson et ale (1973)

1.30 7 15.0 64 Gumma (1978)

1.20 26 3.80 30 Courtin (1983)

1.47 9 1.30 192 Cassel (1975)

1.26 6 0.50 144 Cassel (1975)

1.65 3 0.34 5 Babalola (1978)

1.39 7 - 36 Cecil data

1.59 18 - 36 Cecil data

1.20 15 40 36 Stockton (1971)
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The weighted mean average of Cv with the number of samples is calculated as 8

which is a good estimate. Sharma and Rogowski (1985) also observed that soil properties

exhibiting larger Cv (> 0.40) are frequently found to have a lognormal distribution, while

those with lower Cv « 0.40) may be adequately fitted with a normal distribution.

Rogowski (1972) found that a random sample of soils from the northeastern United States

to be normally distributed. Tiscareno-Lopez et ale (1993) also used normal distribution

for bulk density. Thus normal distribution was selected for this study. A plot of normal

distribution for the Cecil soils are given in figure 6-1 and it indicates a straight plot, thus

justifying normal distribution.

FIELD CAPACITY

For the field capacity the data is much more limited. The available literature on

soil properties do not have much on field capacity. The field capacity is not a precisely

defined parameter. In this study the field capacity will be taken as volumetric water

content at 100 cm or 0.15 bar (Haan, 1994a). The data used to examine distributional

forms are for Bethany, Tipton and Konawa soils. Each soil had data from different sites

ranging in number from 3 (Tipton) to 6 (Bethany) with 4 sites for Konawa (Nofziger et

al, 1983). Each site had about 6 readings. The volumetric water content readings were

usually at potentials of -93 and -106 cms. Interpolation of the data were done to calculate

the volumetric water content at a potential of -100 Cffi.
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Figure 6-1. Normal distribution plot of BD of Cecil soil values.
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An ANOVA for testing the hypothesis that the data from different sites have the

same field capacity was conducted. As a result of that test, the data from Bethany soil

is divided into two groups and data for the Tipton soil is considered as a single group.

The Konawa soil can not be grouped according to this test. The result of initial ANOVA

test for the Bethany soil is given in table 6-5.

When the first three datasets are grouped together and ANOVA is conducted

agaIn. The decision regarding the grouping of the first three datasets is taken based on

the observed closeness of the LS MEAN of these three groups. Similarly the last three

datasets are also grouped together. The ANOVA test result for the first three datasets

grouping is given in table 6-6.

The K-S test results which indicate different distributions as the best fitting

distributions and Cy values of these data are given in table 6-7. This dataset has very low

Cy values. Proposing a value of C y based on this small data may not be appropriate.

Carcel et ale (1988) also conducted more extensive studies on variability offield capacity.

Some of the results are given in table 6-8.

The difference in the Cv from the two studies, may be attributed to measurement

of the field capacity in different plots. For the earlier study it is probable that the plots

are closer together and the variability in the plots are limited. The Carcel et. al (1988)

study involved data from different parts of Ohio and reflect the variability in the fields

better. Thus Carcel data were given more importance and the C y (%) value can be taken

as 40.5 (from the weighted mean with the sample size) as representative of the field

capacity. Since this value is close to the limit of Cy == 0.4 as suggested by Sharma and
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Rogowski (1983), the lognormal distribution can be used as the distribution. A plot of

lognormal distribution of the three soils used in the analysis is given in figure 6-2. It can

be seen that data plotted straight, thus justifying lognormal distribution assumption.

The other soil properties like percentage slope and percentage silt are taken from

Rawls' database (Rawls et al., 1982). Even though this database had a lot of soils in its

list, there were very few soils with a large number of sample values. The soils examined

are Rayne, Coshoct, Berks and an unnamed soil. The number of observations was 15 for

Coshoct, 22 for Rayne, 17 for Berks and 16 for Unnamed soil.

PERCENTAGE OF SILT

Normal, Weibul, gamma and lognormal distributions were tested. All of them

qualify for the best fit category when the hypothesis test was conducted. Tiscareno-Lopez

et al. (1993) had assumed normal distribution as the best fitting distribution. The K-S test

values are given in Table 6-9 for the soils considered with the sample size. The mean

and Cv values from a number of sources are given in Table 6-10.

The plot of normal distribution is given in figure 6-3 for some soils from the

Rawls' database. It can be seen that for the most part the data plotted as a straight line

thus justifying the assumption of normal distribution.



SOURCE

TABLE 6-5. ANOVA test for Bethany soil

WEIGHTED MEANS MODEL
ANALYSIS OF VARIANCE

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO

74

p

x

ERROR

0.024

0.011

5

30

0.005

0.000

12.788 0.000

LEAST SQUARES MEANS.

LS MEAN SE N

X 1.000 0.316 0.008 6

X == 2.000 0.310 0.008 6

X == 3.000 0.318 0.008 6

X - 4.000 0.361 0.008 6

X 5.000 0.359 0.008 6

X 6.000 0.376 0.008 6



SOURCE

Table 6-6. ANOVA test for three Bethany soils

WEIGHTED MEANS MODEL
ANALYSIS OF VARIANCE

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO

75

p

x

ERROR

0.000

0.010

2

15

0.000

0.001

0.167 0.848

LEAST SQUARES MEANS.

LS MEAN SE N

x

x

x =

1.000

2.000

3.000

0.316

0.310

0.318

0.010

0.010

0.010

6

6

6



TABLE 6-7. K-S test results for Fe values of various soils.
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SOIL TYPE Cy (%)

Bethany 1 7 DIST. Weibul Normal Gamma

K-S TEST 0.101 0.311 0.322

Bethany 2 3.3 DIST. Gamma Normal

K-S TEST 0.133 0.160

Tipton 4.3 DIST. Normal Gamma

K-S TEST 0.160 0.163

TABLE 6-8. Cv values of FC for several soils (Carcel et al., 1988)

SAMPLE SIZE MEAN Cy (%)

52 11.8 78

459 19.5 42

371 22.4 35

230 24.1 38
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Figure 6-2. Lognormal distribution of Fe of three soils.
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e soils

ces

IT: 6-9. K-S test values of LN and Normal distribution for some of th

for percentage of Silt.

SOIL SAMPLE LOG NORMAL

SIZE NORMAL

Berks 17 0.09 0.13

Coshoct 15 0.165 0.14

Rayne 22 0.14 0.11

Unnamed 16 0.11 0.20

6-10. The Mean and Cv values of Percent Silt from number of sour

MEAN Cv (%) REFERENCE

7.20 44.4 Vaclin et ale (1983)

8.50 16.5 Babalola (1978)

26.8 25.0 Neilson et ale (1973)

64.9 7.0 Coshoct soil*

* Rawls database
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Figure 6-3. Normal distribution of percent silt for several soils from Rawls database.
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Carcel et al. (1988) have analyzed several soils to determine Cv values for percent

sand and clay. Their data indicate that there is not much difference between the standard

deviation values for percent sand and clay. It is not unreasonable to assume, that the

standard deviation for the percent silt is also approximately equal to that for sand and

clay. Since the total of percent sand, silt and clay would be equal to 100, the mean

values for percent silt can be deduced. The standard deviation values for the percent silt

are taken as the average of figures for sand and clay. These are given in table 6-11.

The Cy value for percent silt used by Tiscareno-Lopez et al. (1993) was 14.6 %. This

value is from a single watershed. Considering the values in table 6-11, with most values

ranging from 15 to 36, a value of 25 % as Cv would be a reasonable estimate and normal

distribution can be taken as the best fitting distribution.

SLOPE

The lognormal distribution seems to be a good choice for the distribution for

slopes for three out of four soils analyzed from Ra\vls database. The K-S test values for

the lognormal distribution and Cy values are given in table 6-12. A Cv value of about

0.35 would be a good estimate.

The lognormal distribution of the four soils from Rawls database are plotted in the

figure 6-4. Although this plot indicate that lognormal distribution is justified, this plot

cannot be taken as a sale indicator of the best fit of a distribution. This can be taken as

an aid in illustration of the best of the distributions.
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TABLE 6-11. Cv values deduced from mean and standard deviation values of silt

percentage of different soils (Careel et al., 1988).

MEAN (%) STANDARD DEVIATION Cv

(% SILT ASSUMED)

SAND CLAY SILT SAND CLAY SILT SILT

14.9 55.2 29.9 10.7 10.9 10.8 36.12

29.8 32.6 37.6 5.9 3.7 4.8 12.76

40 19.7 40.3 6.5 5.2 5.8 14.51

80.9 6.4 12.7 3.8 3.2 3.5 27.55

5.8 9.5 84.7 4.5 2.7 3.6 4.2

6.1 46.3 47.6 4.5 4.9 4.7 9.8

47.5 41 11.5 3.9 4.5 4.2 36.52

54.3 27.4 18.3 7.3 4.0 5.6 30.87

63.4 11 . 1 25.5 7.9 4.8 6.3 24.90
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Figure 6-4. Lognormal distribution of slope of four soils from Rawls database.
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Table 6-12. K-S values for LN distribution of slope for three·Rawls database soils

along with Mean and Cv

SOIL l\1EAN (%) Cv K-S TEST

Berks 19.23 24.9 0.39

Coshoct 11.55 49.2 0.25

Rayne 10.61 37.6 0.18

The soil nitrogen and the nitrogen coefficients for runoff and leaching are assumed

to be lognormally distributed with a Cv value of 0.5. The other parameters were

considered to be from triangular distributions. The data for those parameters were taken

from the tables, so the triangular distribution is convenient. The triangular distributions

has the advantage of restricting the values on the left and right. These ranges are

deduced from the nature of the parameters and the data. For the soil erosion control

practice factor, P, which is equal to one (Edwards et al., 1993), the range is. defined as

0.8 to 1. For organic nitrogen the range is assumed to be from 20 to 574 g/t. For other

parameters the range is given in Table 6-13.

The First Order Analysis requires the variance of the input parameters. The

variance of the parameters having triangular distributions can be calculated from



E(X) = f x Px(x)dx
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(6-4)

(6-5)

Since the triangular distribution is limited in left and right ranges, the 00 will be

replaced by the value to the right and -00 will be replaced by the left value. The Px(x) will

be representing the equation of the line which makes up the trianglular distribution. The

variance of the parameters which are represented by triangular distributions are given in

Table 6-14. Appendix F shows the equations for E(X) and Var(X).

In conclusion, the various parameters, their distributions and Cv ' s are given in

Tables 6-15 and in 6-16 for EPIC and AGNPS models.



TABLE 6-13. The Mean and Ranges of triangular distribution parameters.

PARAMETER MEAN LEFf RIGHT

Organic Nitrogen, g/t 297 20 574

Erosion Control Practice Factor (P) 0.93 0.8 1

Soil Erodibility Factor (K) 0.25 0.18 0.36

Cover and Management Factor (C) 0.012 0.006 0.018

TABLE·6-14. The standard deviation of the parameters which are triangular

distributed

PARAMETER SIDnEY.

Organic Nitrogen, g/t 113.08

Erosion Control Practice Factor (P) 0.041

Soil Erodibility Factor (K) 0.037

Cover and Management Factor (C) 0.002
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TABLE 6-15. Distributions and Cv values for input parameters for EPIC model.

PARAMETER DISTRmUTION COEF VAR.

Retention parameter (S) Log normal 0.5

Bulk density Normal 0.08

Field capacity Log normal 0.4

Slope Log normal 0.3

P - factor Triangle 0.05

Silt Normal 0.25

Organic Nitrogen, g/t Triangle 0.38
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TABLE 6-16. Distributions and Cv values for input parameters for AGNPS model

PARAMETER DISTRIBUTION COEFF. VAR.

Retention parameter (8) Log normal 0.5

Slope Log normal 0.3

K - factor Triangle 0.14

C - factor Triangle 0.20

p- factor Triangle 0.05

Soil Nitrogen, Ibs/ac Log normal 0.5

Nit. runoff coeff. Log normal 0.5

Nit leaching coeff. Log normal 0.5



CHAPTER VII

MONTE CARLO AND FIRST ORDER ANALYSIS

MONTE CARLO ANALYSIS

The Monte Carlo analysis is useful in characterizing the uncertainties due to the

parameters. Here the variability or uncertainty in the system is quantified in terms of the

variance and pdfs of the input distribution and the model outputs. In Monte Carlo

Simulation (MCS) the input distributions and the number of simulation runs are very

important.

Monte Carlo simulation has been used widely to characterize uncertainty by a

number of researchers. Coy et ale (1986) used MCS to characterize the propagation of

error. They assigned an error distribution for each recognized error source and

calculated the effects of the several sources of error on true values. After assigning the

true value, random numbers were generated to pick input values within the range of

concern. The corresponding error was then calculated for the source affecting the output

determination. The resulting discrete error was added to or subtracted from the true

value and the resultant used as input to the distribution for the second occurring error

source. Contributions from sources operating simultaneously were calculated and
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summed simultaneously. The process was then repeated to include all the sources and

results in a single output value corresponding to the single random number chosen.

Carcel et ale (1988) used the PRZM model for making a regional assessment of pesticide

leaching incorporating MCS. They calculated 90th
, 95th and 99th percentiles of the amount

of aldicrab residues moving past various depth as a function of sample size. These half

width of confidence intervals were used to provide a measure of uncertainty of interval

estimates. A relative uncertainty value was constructed by dividing the half-width of the

95 % confidence interval for a given percentile by the value of the percentile estimate.

They, however, caution that as the MCS procedure uses generalized distributions for soil

characteristics, the probabilities calculated with this procedure may sometimes

underestimate or overestimate some measurements.

They gave an example of corn cultivation with the output as leaching potential.

As yield of some crops on lighter textured soils is poor, these crops are not usually grown

on soils where leaching potential is highest. In this case, the assessment procedure may

overestimate the probability of significant pesticide movement. According to the authors,

the MCS technique provides little insight into cause and effect relationships.

O'Neill et ale (1980) used triangular distributions for MCS specified by minimum,

mean and maximum values. They claim that the triangular distribution represents a least

biased assumption when the true distribution is unknown. They set the maximum and

minimum values of all parameters equal to + 10 % of the mean with a Cv value of 4.1 %.

The integrated error was calculated as the sum of squares of the differences between the

calculated and expected states. They tested the acceptability of each MCS by defining
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an upper and lower limit as a percent deviation from the expected value. Simulation

values which lay outside these limits were eliminated. According to the authors, the

limits represent the measured variance of field data which the model was expected to

match.

Simulation Procedure

The routine for the generation of random numbers was adapted from Press et al.,

(1986). For curve number (eN), the retention parameter (S) was first generated from a

lognormal distribution and then converted to the curve number using

eN 1000
S+10

(7-1)

For all parameters which have lognormal distributions, random observations first

were generated from a normal distribution and then converted to the lognormal

distribution. For lognormal distribution the expected value and the variance was

estimated from equation 7-2 and 7-3 (Haan, 1977)

(7-2)
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(7-3)

where Cy is the coefficient of variation of the original data and X is the expected value

of the original data. For triangular distributions, the minimum and maximum values were

specified and random numbers were generated within this interval. An example of

computer program for the generation of random numbers is given in Appendix E for

normal, lognormal and trian~ular distributions for AGNPS.

A number of simulation runs were conducted for both EPIC and AGNPS. To

determine the required number of runs, simulations involving only curve numbers were

conducted. The eN was chosen for this simulations because it is the most significant

parameter as defined by the sensitivity analysis. The means of these runs were

determined. The results based on runoff are given in figures 7-1 for EPIC and 7-2 for

AGNPS. For other output parameters similar patterns were detectible. For EPIC the

same observed rainfall and daily temperature was used for all simulations. As mentioned

in chapter III, the outputs from September 1, 1991 to April 30, 1993 were used in

calculating these results. The outputs correspond to the total values for this period. For

AGNPS as it is an event based model, the analysis was confined to a single event of 3.76

inches precipitation on July 30, 1992. Based on these results, it was decided that 1500

simulations are adequate to define the output distributions.



92

EPIC - Monte Carlo Simulations
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FIGURE 7-1. The Mean simulated values of runoff with CN as random variable for

EPIC.
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AGNPS - Monte Carlo Simulation
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The next step was to take all of the parameters shown in Tables 6-15 and 6-16 as

random and perform 1500 simulation runs. The parameters were simultaneously changed,

using the random observations generated from the respective distributions. The expected

values for the input parameters used in the simulations were taken from the mean of the

field values as given in Edwards et ale (1993) and are presented in Appendices A and C.

Descriptive statistics are given for the EPIC simulation outputs are given in Table 7-1 and

for AGNPS it is given in Table 7-2.

Simulation Results

The output results of the 1500 simulation runs were tested for goodness of fit for

various distributions. The Chi-square goodness of fit test was used. This test makes a

comparison between the actual number of observations and the expected number of

observations (expected according to the distribution under test) that fall in various class

intervals (Haan, 1977). The Chi-square test statistics for lognormal and normal

distributions are given for the EPIC outputs in Table 7-3 and for AGNPS it is given in

Table 7-4.

The output distribution is chosen on the basis of the lowest Chi-square value. For

both the models the output distribution is the same i.e for runoff it is normal; sediment,

nitrogen in runoff and sediment it is lognormal; for phosphorus in runoff it is normal; and

for phosphorus in sediment it is lognormal.
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Frequency histograms and best fitting distributions are .. shown in figures 7-3

through 7-7 for EPIC and figures 7-8 through 7-12 for AGNPS.

TABLE 7-1. Descriptive Statistics for the EPIC Simulation outputs.

STATS RUNOFF, SED., SED. N, RUNOFF RUNOFF

mm tonlHa Kg/Ha N, Kg/Ha P, g/Ha

MIN 28.57 0.0 0.0 0.56 219.47

MAX 1305.5 5.64 2.57 19.1 8515.51

MEAN 541.48 1.47 0.55 2.53 3150.05

VAR 6.39 E 04 0.73 0.135 3.56 3.4 E 06

SID DEV 252.78 0.85 0.37 1.89 1839.1

Cv 0.46 0.58 0.67 0.75 0.58

SKEW 0.35 1.52 1.54 3.57 0.59
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TABLE 7-2. Descriptive Statistics for the AGNPS Simulation outputs.

STATS RUNOFF, SED., tons RUNOFF SED. N, SED. P,

inches N,lbs/Ac Ibs/Ac Ibs/Ac

MIN 0.0 0.0 0.0 0.0 0.0

MAX 2.97 1.48 12.37 2.82 0.89

MEAN 1.28 0.28 1.11 0.45 0.23

VAR 0.29 0.03 2.19 0.11 0.014

STDDEV 0.54 0.18 1.48 0.33 0.12

Cv 0.42 0.64 1.33 0.73 0.52

SKEW 0.06 2.06 2.75 2.42 1.46



TABLE 7-3. Chi-square test Statistics for EPIC outputs.

OUTPUTS NORMAL LOGNORMAL

RUNOFF, mm 3.35 E -04 1.34 E -03

SEDIMENT, tons/ha 3.711 0.027

RUNOFF N., Kg/Ha 17.90 0.015

SEDIMENT N., Kg/Ha 1.87 E 09 0.091

RUNOFF P., g/Ha 1.81 E -04 2.03 E -04

TABLE 7-4. Chi-square test Statistics for AGNPS outputs.

OUTPUTS NORMAL LOGNORMAL

RUNOFF, inches 0.211 2.61

SEDIMENT, tons 33.53 3.88

RUNOFF N., Ibs/Ac 1.3 E 03 0.28

SEDIMENT N., lbs/Ac 4.9 1.28

SEDIMENT P., lbs/Ac 18.74 6.74

97
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FIGURE 7-3. Expected normal distribution and simulated relative frequencies for

runoff using EPIC.
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FIGURE 7-5. Expected lognormal distribution and simulated relative frequencies for

nitrogen in runoff using EPIC.
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FIGURE 7-6. Expected lognormal distribution and simulated relative frequencies for

nitrogen in sediment using EPIC.



102

EPIC

Simulated P loss in Runoff and Expected Normal Distribution
0.2

0.18

0.16

0.14

0.12
~

'+- 0.1
(i)
~

0.08

0.06
/

0.04

I
0.02

T
0

425 1275 2125 2975 3825 4675 5525 6375 7225 8075 8925

P loss in Runoff, gm/ha

I C=~sim

FIGURE 7-7. Expected normal distribution and simulated relative frequencies for

phosphorus in runoff using EPIC.
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FIGURE 7-8. Expected normal distribution and simulated relative frequencies for
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FIGURE 7-9. Expected lognormal distribution and simulated relative frequencies for

sediment using AGNPS.
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FIGURE 7-10. Expected lognormal distribution and simulated relative frequencies for

nitrogen in runoff using AGNPS.
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FIGURE 7-11. Expected lognormal distribution and simulated relative frequencies for

nitrogen in sediment using AGNPS.
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FIGURE 7-12. Expected lognormal distribution and simulated relative frequencies for

phosphorus in sediment using AGNPS.
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Analysis of the Simulation Results

If one assumes the model is valid and the uncertainty in model outputs is due to

uncertainty in input parameters, confidence intervals (el) can be computed such that a

given percent of the output distribution is included within these CIs. Letting IOO(l-a) be

the confidence interval in percent, the upper, u, and lower, 1, confidential limits can be

computed from

(7-4)

and

·(7-5)

where Px(x) represents the pdf of the output x in question. For bounded distributions, -00

and 00 are replaced by the lower and upper bounds of the distribution respectively.

For the normal distribution, 1 and u can be determined from

(7-6)
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(7-7)

where zl-afl is the value of Z from standard normal distribution such that the area to

the right of Z is a/2 and x is the mean and ax is the standard deviation of the population

(Haan, 1977).

The 90% and 95% CI are given in Table 7-5 for the EPIC and Table 7-6 for

AGNPS results.

As a next step the observed values i.e, the actual watershed responses measured

from the field are also tabulated and given in table 7-7. The complete list of the observed

field responses is given in Appendix G. These observed values are analyzed to determine

whether they fall within the CIs. The results are shown in figure 7-13 through 7-17 for

EPIC and 7-18 through 7-22 for AGNPS.

From figure 7-13, It can be seen that the observed total runoff falls within both

CIs. It can be inferred in a statistical sense that EPIC predicts the runoff satisfactorily.

However the CIs can be seen to be very wide indicating that the model structure and the

uncertainty in input parameters combine in such a way as to render the EPIC model

predictions regarding the runoff quite uncertain. Loosely interpreted, one might state they

are 90% confident that the runoff lies between 124 and 959 mm. Such a wide interval

may render the results too uncertain for a particular application. If this is the case, the

uncertainty in the model input parameters must be reduced.



TABLE 7-5. CIs for EPIC model outputs.

OUTPUTS 95 % 95 % 90 % 90 %

lower upper lower upper

RUNOFF, 45.98 1036.99 124.35 958.62

mm

SED. tons/ha 0.25 3.37 0.31 2.75

RUNOFF N., 0.14 1.50 0.16 1.24

Kg/ha

SED. N., 0.55 7.48 0.68 6.08

Kg/ha

RUNOFF, P., -454.57 6754.68 115.54 6184.56

g/ha
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TABLE 7-6. CIs for AGNPS model outputs

OUTPUTS 9S % 9S % 90% 90%

lower upper lower upper

RUNOFF, 0.21 2.32 0.38 2.16

inches

SED. tons 0.067 0.76 0.081 0.66

RUNOFF N., 0.10 4.83 0.12 3.53

Ibs/ac

SED. N., 0.09 1.31 0.11 1.07

Ibs/ac

SED. P., 0.07 0.55 0.09 0.45

lbs/ac

1



TABLE 7-7. Measured total watershed response values from the field WA.

OUTPUTS OBSERVED

VALUES

RUNOFF, mm 297.23

SED. tons/ha 0.26

RUNOFF N., Kg/ha 6.40

SED. N., Kg/ha 8.97

RUNOFF, P., g/ha 5055
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CIs of runoff using EPIC.
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FIGURE 7-14. The simulated values, observed total, expected lognormal distribution

and CIs of sediment using EPIC.
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FIGURE 7-16. The simulated values, observed total, expected lognormal distribution

and CIs of nitrogen in sediment using EPIC.
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Figures 7-14, 7-15, 7-16 illustrate that the observed watershed responses fall

outside both the 95 percent and 90 percent CIs. This indicates that either model

algorithm inadequacies or parameter estimation problems for predicting the sediment

yield, nitrogen in runoff and sediment if there exists no data for model calibration.

It can be noted that in case of P loss in runoff, even though the observed mean

falls within the CIs, the CIs are so wide as to make the confidence in the results less than

desirable. Thus the P loss in runoff while statistically satisfactory, needs the uncertainty

in the n10del parameters to be reduced.

A similar analysis was conducted for AGNPS model. As AGNPS is an event

based model, the observed field response used is from a single rainfall event of 3.74

inches and is given in Table 7-8.

TABLE 7-8. The observed mean of a single event response from field WA..

OUTPUTS OBSERVED

I
VALUES

I

RUNOFF, inches 1.13 I

SED. tons 0.192

RUNOFF N., lbs/ac 0.117

SED. N., lbs/ac 0.899

SED., P., lbs/ac 0.566
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FIGURE 7-18. The simulated values, observed mean, expected normal distribution

and CIs of runoff using AGNPS.
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FIGURE 7-20. The simulated values, observed mean, expected lognormal distribution

and CIs of nitrogen in sediment using AGNPS.
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FIGURE 7-21. The simulated values, observed mean, expected lognormal distribution

and CIs of nitrogen loss in runoff using AGNPS.
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FIGURE 7-22. The simulated values, observed mean, expected lognormal distribution

and CIs of phosphorus loss in sediment using AGNPS.
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It can be noted that for runoff, sediment, and nitrogen loss in sediment; the

observed mean falls within both the 95 and 90 percent CIs (figures 7-18 through 7-20).

It,
Figure 7-2{) indicates while for EPIC the observed total nitrogen loss was way over

simulated values. In the case of AGNPS it is seen that the observed mean just falls over

the lower 95 percent limit. In figure 7-22 for phosphorus in sediment the observed mean

value falls outside both the CIs. It can be inferred that the model algorithm is not

satisfactory in predicting this output.

FIRST ORDER ANALYSIS

First Order analysis (FaA) has been shown to produce good estimate of the mean

and variance of model response if the coefficient of variation of the input parameter is

small and the model response is linear with respect to the parameter in the range of

interest. Sensitivity coefficients provide an indication of the linearity in that a linear

response yields an absolute sensitivity coefficient that is constant over a range of values

for the input parameter and a relative sensitivity coefficient that approaches unity as the

intercept term of the linear relation becomes small. Once the expected value and the

variance are estimated, the parameters of an assumed two parameter distribution can be

determined thus specifying the output distribution (Haan et al., 1993). In this study a first

order analysis was conducted involving all the parameters that were used in the MCS

approach. Stevens (1993) outlined the procedure for calculating the output variance given

as equation 7-6



pa PPa ag
var[y] <= ~(--KI i Var[xJ + 2~. ~ .--KI -I COv[X,.,X)

,=1 ax; - 1=1)=1",,) ax; _axj _
~ ~ ~
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(7-6)

Since the parameters are assumed uncorrelated, the covariance between the input

parameters is zero. The variance of the input parameter is estimated using the eve The

expected value of the output parameter is estimated from

- P ag -
E[y] =Efg(x)] +L-I E[(x;-xi)]

i==1 ax; _
x

Since the expected value of (Xi - Xi) is zero, this reduces to Ely] ~g(x).

(7-7)

The function g( i ) is calculated by running the models using the expected values

of the parameters. The var(y) or the variance of the outputs is seen to be a function of

the 8g/Oxj which are the sensitivity coefficients of equations 5-1. These sensitivity

coefficients were calculated for the period Sept. 1, 1990 to Apr. 30, 1992 for EPIC and

for the storm of 3.74 in. for AGNPS. The sensitivity coefficients are shown in Table 7-9

for EPIC and in 7-10 for AGNPS. The Xi represents the parameter means and the

var(x) is the parameter variances given for EPIC in Table 7-11 and for AGNPS in table

7-12. The variable p represents the number of the sensitive parameters investigated. The
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value for p was 7 for EPIC and 8 for AGNPS. The output variance and expected values

are given in Table 7-13 for EPIC and in 7-14 for AGNPS.

TABLE 7-9. The absolute sensitivity coefficient values for FOA for EPIC

PARAMETER RUNOFF SED. RUNOFF SED.N RUNOFF

mm tons/ha N, Kg/ha Kg/ha P, g/ha

S 162.59 0.56 2.55 - 1034.02

BD 7.58 - 5.86 - 1141.72

Fe 159.09 - 4.13 - 1652.89

SILT 0.01 0.01 - - 4.21

Org. N. - - - - -

SLOPE 2050 50 25 25 12500

p- factor 0.55 1.11 - - 166.67



TABLE 7-10. The absolute sensitivity coefficient values for·FOA for AGNPS

127

PARAMETER RUNOFF SED. RUNOFF SED.N SED. P,

In. Ibs/ac N, Ibs/ac Ibs/ac lbs/ac

S 0.14 - 0.093 0.02 0

Land slope - 0.25 - 0.09 0.04

K factor - 1.04 - 0.09 0.097

C factor - 20.83 - 0.11 0.11

P factor - 0.27 - - -

Soil N - - - - -

N run coef - - 50 - -

N leach coef. - - 6 - -
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TABLE 7-11. The variance and expected values of the input parameters for EPIC used

in FOA.

PARAMETER E(X) VAR.

Retention parameter (S) 2.66 1.77

Bulk density 1.45 0.013

Field capacity 0.242 0.009

Slope 0.04 1.4 E -04

P - factor 0.9 0.002

Silt (%) 35.6 79.21

Organic Nitrogen 297 12733.1
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TABLE 7-12. The variance and expected values of the input parameters for AGNPS

used in FOA.

PARAMETER E(X) VAR.

Retention parameter (S) 4.29 4.60

Slope (%) 4.0 1.44

K - factor 0.24 0.0014

C - factor 0.012 6.0 E -06

p- factor 0.9 0.0017

Soil Nitrogen 0.001 2.5 E -07

Nit. runoff coeff. 0.05 6.2 E-04

Nit leaching coeff. 0.25 0.016



TABLE 7-13. Variance and expected values of EPIC outputs for FOA.

OUTPUTS VAR. E(X)

RUNOFF, mm 4.7 E 04 463.3

SED. tons/ha 0.94 0.87

RUNOFF N., Kg/ha 9.83 1.78

SED. N., Kg/ha 0.09 0.44

RUNOFF, P., g/ha 1.9 E 06 2459.07

TABLE 7-14. Variance and expected values of AGNPS outputs for FOA.

OUTPUTS VAR. E(X)

RUNOFF, inches 0.09 1.16

SED., tons 0.09 0.24

RUNOFF N., lbs/ac 2.16 0.38

SED. N., Ibs/ac 0.21 0.42

SED., P., lbs/ac 0.04 0.21
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Comparing the variances of outputs from MCS for EPIC (Table 7-1 to Table 7-

13), it can be noted that the variances of runoff, sediment, N loss in sediment and Ploss

in sediment are quite comparable. For AGNPS, the variances comparison (Table 7-2

and Table 7-14) is also quite favorable.

As a next step, for FOA, the distributions of these outputs are assumed to be same

as from MCS approach. Based on these distributions, the CIs were calculated. For

EPIC, these are given in Table 7-15 and for AGNPS it is given in 7-16.

For EPIC, as in Monte Carlo Simulation results for runoff, the total observed

value falls inside both the 95 and 90 percent CIs and the CIs are comparable. For

sediment, the confidence intervals of FOA are wider than that from MCS. The observed

value falls below the lower limits. For N loss in runoff, the CIs are very wide to be of

much use in a particular application. The N loss in sediment has CIs from FOA which

are not as wide as that from MCS. Likewise the CIs of both MCS and FOA are

comparable for P loss in runoff of EPIC.

The CIs from MCS for runoff of AGNPS are wider than that from FOA. So CIs

of FaA do not contain the observed mean value. But for sediment the CIs of FaA are

wider than that of MCS and thus contain the observed mean. Like that of EPIC, the CIs

of N loss in runoff are very wide. The CIs of both P and N loss in runoff and sediment

the CIs of FaA are wider than that of MCS and thus contain the observed mean.



TABLE 7-15. CIs of outputs from FOA for EPIC.

OUTPUTS 95 % 95 % 90 % 90 %

lower upper lower upper

RUNOFF, 35.68 890.98 103.32 823.34

mm

SED. tons/ha 0.62 9.16 0.77 7.41

RUNOFF N., 0.01 2766.03 0.03 1046.5

Kg/ha

SED. N., 0.86 2.80 0.94 2.56

Kg/ha

RUNOFF, P., -249.14 5167.28 179.20 4738.94

g/ha
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TABLE 7-15. CIs of outputs from FOA for AGNPS.

OUTPUTS 95 % 95 % 90 % 90 %

lower upper lower upper

RUNOFF, -0.50 0.68 -0.41 0.59

inches

SED. tons 0.6 2.00 0.66 1.82

RUNOFF N., 0.49 155.86 0.77 98.77

Ibs/ac

SED. N., 0.5 3.04 0.57 2.63

Ibs/ac

SED. P., 0.69 1.57 0.74 1.48

lbs/ac
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CHAPTER VII

CONCLUSIONS AND FUTURE RECOMMENDATIONS

This study to illustrates a statistical model evaluation protocol. EPIC and AGNPS

models were used for illustration purpose. A major task in modeling is parameter

estimation. This study used probability distribution functions to indicate the input

parameter uncertainty so that output uncertainty could be quantified. Thus the protocol

can be considered as a tool in alerting the modeler towards the need for refinement in

parameter estimation and/or improvement in model algorithms. This protocol in fact can

be used to distinguish whether model unacceptability is due to model algorithms or

parameter estimation. If_iQ~j~p~~J~~ameter uncertainty is reduced to a minimum an9
~-'-' .. -'- .... ' ..-" . _. . .. ' -,- "".- , .•.. ,-.. ",.. \ ~ ",- ",,,"""" -". ,'.'

lby_q!2~e.r:y_~_.m~predictionstill falls outside the CIs, then the model algorithms can be
,~ ,~, ,.". ". ~ . ,- -" "

The protocol can also be used to indicate the degree of confidence on predictive

abilities of the models in settings where the observed data are lacking. For example, in

case of EPIC, for runoff; the protocol indicated the CIs to be very wide and the observed

mean falls within the CIs. This output can be termed as statistically acceptable. But a

model user may not be satisfied because of the width of the CIs. For example, the CIs

on runoff was 100 mm to 600 mm for this particular study.
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This kind of results can be attributed to the uncertainties in the parameters and the

model structure combination. The protocol also indicates that for EPIC, in the case of

sediment yield, N loss in runoff and in sediment, either the parameter estimation or the

modeling approach is not satisfactory. This can be seen by the fact that the observed

mean for these outputs fall outside the CIs. A similar trend is discernible for AGNPS.

For example, in case of runoff one can tell that parameter estimation process and

modeling approach is adequate by the fact that the observed mean falls within the CIs.

Likewise in case of N loss in runoff and P loss in sediment the modeling approach and/or

parameter estimation technique may be termed as unsatisfactory. The point to be

remembered is that AGNPS was run for a single event and also considering the whole

area as a single cell which is not the normal case.

There is a need to use these models in different settings and take a comprehensive

look at the model algorithms to come to any conclusion regarding the acceptability of the

models themselves. Also there are many assumptions including that the field variability

can be represented by a particular distribution and its parameters. These assumptions also

need to be tested before arriving at a firm conclusion regarding model performance.

The protocol lays basic foundation for research regarding models performance.

The strength of the protocol lies in the fact that the observed values were not used during

the evaluation stage. Thus the possibility ofconfounding model evaluation with parameter

estimation is avoided. There is scope for making this protocol a regular tool in assessing

model performance following further research on the parameter distribution. At least the
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protocol gives a feel for the uncertainties involved in model output estimation. Testing

of this protocol on many models can be foreseen.

Regarding the simulation techniques, the variances of the MCS and the FOA

approach compare favorably. But there is a need for further study to be confident about

the use of FOA to make it an effective tool in model simulations. Also it should be noted

many assumptions about the use of FOA were violated in this study.

It is also important to remember that the measured values can also be uncertain.

If this uncertainty can also be quantified in the form of a pdf and plotted on the model

response, the degree of overlap will indicate the predictive ability of the models. Finally

an overhaul of the model structure might be needed to better represent the field variability

so that input parameters should be represented by a distribution rather than a single value.

Model output could then be indicated by a range of values with a degree of confidence

indicated on them.



American Society of Civil Engineers, 1993, "Criteria for Evaluation of Watershed
Models", ASCE Task Committee of the Watershed Management Committee, Journal
of Irrigation and Drainage Engineering, 119(3), 429-443.

Babalola, 0., 1978, "Spacial Variability of Soil Water Properties in Tropical Soils of
Nigeria", Soil Sci. 126, 269-279.

Barfield, B. J., C. T. Haan and D. E. Storm, 1989, "Why Model", Proceedings of
the CREAMS/GLEAMS Symposium, Sept. 27 - 29, 1989, Athens, GA.

Bruce, R. R., J. H. Dane, V. L. Quinsenburry, N. L. Powel and A. W. Thomas,
1983, "Physical Characteristics of Soils in the Southern Region: Cecil, Southern
Cooperative Series, Bul. no. 267, Georgia Ag. Exp. Station and University of
Georgia, Athens, GA.

Carcel, R. F., R. S. Parish, R. L. Jones, J. L. Hansen and R. L. Lamb, 1988,
"Characterizing the Uncertainty of Pesticide Leaching in Agricultural Soils", J.
Contaminant Hydr., 2, 111-124.

Cassel, D. K. and A. Bauer, 1975, "Spatial Variability in Soils below Depth of
Tillage: Bulk Density and Fifteen Atmosphere Percentage" Soil Sci. Soc. Amer.
Proc., 39,247-250.

Chiew, F. H. S., M. J. Stewardson and T. A. McMahon, 1993, "Comparison of Six
Rainfall-Runoff Modelling Approaches", Journal of Hydrology, 147, 1-36.

Clarke, R. T., 1973, "A Review of sonle mathematical models used in Hydrology,
with Observations on their Calibration and use", Journal of Hydrology, 19, 1-20.

Coleman, G. and D. G. Decoursey, 1976, " Sensitivity and Model Variance Analysis
applied to some Evaporation and Evapotranspiration Models", Water Resources
research, 12(5), 873 - 879.

Courtin, P., M. C. Feller and K. Klimba, 1983, "Lateral Variability in Some
Properties of Disturbed Forest Soils in SW British Columbia ", Canad. J. Soil Sci.,
63, 529-539.

137



138

Coy, D. W., G. A. Kew, M. E. Mullins and P. V. Piserchia, 1986, "Determining
Uncertainty in Physical Parameter Measurements by Monte Carlo simulation",
Evaluation of Pesticides in Groundwater, Symposium sponsored by the Division of
Pesticide Chemistry at the 189th meeting of American Chemical Society, Miami
Beach, FL, April 28 - May 3, 1985, pp 39-60.

Decoursey, D. G., 1988, "A Critical Assessment of Hydrologic Modeling",
Proceedings International Symposium on Modeling Agricultural, Forest and Rangeland
Hydrology. ASAE, Dec 12 - 13, Chicago, IL.

Deer-Ascough, L. A. and M. A. Nearing, 1994, "Sensitivity Analysis in Erosion
Prediction Modeling", presented at the ASAE International summer meeting as paper
no. 942154, June 19-22, 1994, Kansas City, Missouri.

Ditmars, J. D., E. E. Adams, D. W. Bedford and D. E. Ford, 1987, "Performance
Evaluation of Surface Water Transport and Dispersion Models" Journal of Hydraulic
Engineering, 113(8),961-980.

Edwards, D. R., V. W. Benson, J. R. Williams, T. C. Daniel, J. Lemunyon and R.
G. Gilbert, 1993, "Use of the Epic Model to Predict Runoff Transport of Surface
Applied Animal Manure Constituents", presented at the ASAE International Summer
meeting as paper no. 932075, June 20-23, 1993, Spokane, Washington.

Gajem, Y. M., A. W. Warrick, and D. E. Myers, 1981, "Spacial Variability of
Unsaturated Hydraulic Conductivity", Soil Sci. Soc. Amer. J., 36, 847-849.

Garrick, M., C. Cunnane and J. E. Nash, 1978, "A Criterion of Efficiency for
Rainfall-Runoff Models u

, Journal of Hydrology, 36, 375-381.

Green, I. R. A. and D. Stephenson, 1986, " Criteria for Comparison of Single Event
Models", Journal of Hydrological Sciences, 31(3),395-411.

Gumaa, G. A., 1978, "Spacial Variability of In, Situ Available Water", Ph. D. Thesis,
University of Arizona, Tucson (Available as 78-24365 from Xerox University
Microfilms, Ann Arbor, MI).

Haan, C. T., 1977, Statistical Methods in Hydrology, Iowa State University Press,
Ames, Iowa.

Haan, C. T., B. J. Barfield and J. C. Hayes, 1994b, Design Hydrology and
Sedimentalogy For Small Catchments, Academic Press, San Diago, CA.

Haan, C.T. and R. E. Schulze, 1987, "Return Period Flow Prediction with Uncertain
Parameters tf

, Transactions of ASAE, 30(3), 665-557.



139

Haan, C. T., 1994a, Personal Communication, Oklahoma State University, Stillwater,
OK.

Haan C. T., B. Allred, D. E. Storm, G. Sabbagh and S. Prabhu, 1993, It Evaluation
of Hydrology/Water Quality Models, A Statistical procedure", presented at the ASAE
International Winter Meeting as paper no. 932505. Submitted to Transactions of
ASAE for publication.

Hjelmfelt, A. T., L. A. Kramer and R. E. Buswell, 1981, "Curve numbers as
Random Variables It , In Rainfall-Runoff Relationships, Proc. International Symposium
on Rainfall-Runoff Modelling, May 18-21, Mississippi State University, Water
Resources Publication, Littleton, CO.

James L. D. and S. J. Burges, 1982, "Selection, Calibration, and Testing of
Hydrologic Models", Hydrologic Modeling of Small Watersheds, ed : C. T. Haan, H.
P. Jonson and D. L. Brakensiek, ASAE monograph no. 5, ASAE, St. Joseph,
Michigan.

Jury W. A., 1986, "Spatial Variability of Soil Properties", Vadose Zone Modeling of
Organic Pollutants, editors Stephen C. Hern and Susan M. Melancon, 245-269, Lewis
Publishers, Chelsea, Michigan.

Loague, K. and R. E. Green, 1991, "Statistical and Graphical Methods for Evaluating
Solute Transport Models: Overview and Application", Journal of Contaminant
Hydrology, 7, 51-73.

Loehle, C., 1983, "Evaluation of Theories and Calculation Tools in Ecology",
Ecological Modelling, 19, 239-247.

Luis, S. J. and D. McLaughlin, 1992, "A Stochastic Approach to Model Validation",
Advances in Water Resources, 15, 15-32.

Majkowski,J., J. M. Ridgeway and D. R. Miller, 1981, "Multiplicative Sensitivity
Analysis and its Role in Development of Sin1ulation 1\1odels", Ecological Modelling,
12, 191-208.

Mamillapalli, S., B. A. Engel and E. J. Kladivko, 1994, "Validation of GLEAMS
Nutrient Component for Midwestern Conditions 1l

, presented at the ASAE International
summer meeting as paper no. 942090, June 19~22, 1994, Kansas City, Missouri.

Martinec, J. and A. Rango, 1989, "Merits of Statistical Criteria for the Performance
of Hydrological Models", Water Resources Bulletin, 25(2), 421-432.

Nielsen, D. R., J. W. Bigger and K. T. Erh, 1973, "Spatial Variability of Field



140

Measured Soil Water Properties", Hilgardia, 42, 215-259.

Nofziger, D. L., J. R. Williams, A. G. Hornsby, and A. L. Wood, 1983, Physical
Characteristics of Soils of the Southern Region, Southern Cooperative Series, Bul. no.
265, Ag. Exp. Station, Oklahoma State University, Stillwater, OK.

Nofziger, D. L., J. Chen and C. T. Haan, 1994, "Evaluation of Unsaturated/Vadose
Zone models for Superfund Sites", report from USEPA as EPA/600/R-93/184,
Washington, DC.

O'Neil, R. V., R. H. Gardner and J. B. Mankin, 1980, "Analysis of Parameter Error
in a Nonlinear Model", Ecological Modelling, 8, 297-311.

Parrish, R. S. and C. N. Smith, 1990. itA Method for Testing Whether Model
Predictions Fall Within a Prescribed Factor of True values, with an Application to
Pesticide Leaching", Ecological Modelling, 51, 59-72.

Pennel, K. D., A. G. Hornsby, R. E. Jessup and P. S. C. Rao, 1990, tt Evaluation of
Five Simulation Models for Predicting Aldicrab and Bromide Behavior Under Field
Conditions tt, Water Resources Research, 26(11), 2679-2693.

Press W. H., Flannery B. P., S. A. Teusolsy and W. T. Vetterling, 1986, Numerical
Recipes, Cambridge College Press, New York, NY.

Rawls, W. J. et al., 1982, "Estimation of Soil Water Properties" Transactions of
ASAE, 25(3), 1316-1320.

Reckhow, K. H., J. T. Clements and R. C. Dodd, 1990, "Statistical Evaluation of
Mechanistic Water-Quality Models", Journal of Environmental Engineering, 116(2),
250-268.

Reckhow, K. H. and S. C. Chapra, 1983, "Confirmation of Water Quality Models",
Ecological Modelling, 20, 113-133.

Rogowski, A. S., 1972, "Watershed Physics: Soil Variability Criteria", Water
Resources Research, 8(4), 1015-1023.

Shaeffer, L. D., 1980, "A Model Evaluation Methodology Applicable to
Environmental Assessment Models", Ecological Modelling, 8, 275-295.

Sharma, M. L. and A. S. Rogowski, 1983, " Hydrological Characterization of
Watersheds", Proceedings of the Natural Resources Modeling symposium, Pingre
Park, CO, Oct. 16-21, 291-296.



141

Sharpley, A. N., and J. R. Williams, 1990, EPIC - Erosion/Productivity Impact
Calculator: Model Documentation USDA Technical Bulletin No. 1768.

Soil Conservation Service, 1972, Hydrology, Section 4, National engineering
Handbook, Soil Conservation Service, USDA, Washington, DC.

Stevens E. W., 1993, A Method to Predict the Accuracy of a First Order
Approximation of Model Output Variance, Ph. D. Dissertation, Oklahoma State
University, Stillwater, OK.

Stockton, J. G. and A. W. Walrick, 1971, "Spatial Variability of Unsaturated
Hydraulic Conductivity", Soil Sci. Soc. Amer. J. 36, 847-849.

Thomann, R. V., 1982, "Verification of water Quality Models" Proceedings of the
American Society of Civil Engineers, 108(EE5), 923-940.

Tiscareno-Lopez, M., V. L. Lopes, J. J. Stone and L. J. Lane, 1993, "Sensitivity
Analysis of the WEPP Watershed Model for Rangeland Applications", Transactions of
the ASAE, 36(6), 1659-1672.

US Dept. of Agriculture (unknown), Soil Survey Washington County, Arkansas,
USDA, Soil Conservation Service, Washinton County, AR.

Vauclin, M., S. R. Vieira, G. Vachaud and D. R. Nielson, 1983, "Use of Co-Kriging
with Limited Field Soil Observations", Soil Sci. Soc. Amer. J., 47, 175-184.

Vicens, G. J., I. Rodrigueze-Iturbe and J. C. Schaake, Jr., 1975," A Bayesian
Framework for the use of Regional Information in Hydrology", Water Resources
Research, 11(3), 405-414.

Williams, J. R., C. A. Jones and P. T. Dyke, 1984, "A Modeling Approach to
Determining the Relationship Between Erosion and Soil Productivity", Transactions of
the ASAE, 129-144.

Wischmeier, W. H., and D. D. Smith, 1978, "Predicting Rainfall Erosion Losses-A
Guide to Conservation Planning", USDA, Agriculture Handbook No. 537.

Young R. A., D. D. Bosch and W. P. Andeerson, 1994, "Agricultural Non Point
Source Pollution Model, AGNPS user's guide It, Model documentation, Minnesota
Pollution Control Agency, St. Paul, MN.

Young, R. A., C. A. Onstad, D. D. Bosch and W. P. Anderson, 1989, "AGNPS: A
Nonpoint-Source Pollution Model for Evaluating Agricultural Watersheds", Journal of
Soil and Water Conservation, March-April, 44(2), 168-173.



142

zacharias, S., C. D. Heatwole and W. Coakley, 1993, "Comparision of Quantitative
Techniques used for Pesticide Model Validation", presented at the ASAE International
Winter Meeting as paper no. 932506, Dec. 14-17, 1993, Chicago, IL.

Zacharias, S., and C. Heatwole, 1993, It Predicting Tillage Treatment Effects on
Pesticide Transport: A Validation Study tI, presented at the ASAE International Winter
meeting as paper no. 932592, Dec. 14-17, 1993, Chicago, IL.

zacharias, S., C. Heatwole, T. Dillaha and S. Mostaghimi, 1992, " Evaluation of
GLEAMS and PRZM for Predicting Pesticide Leaching Under Field Conditions",
presented at the ASAE International Winter Meeting as paper no. 922541, Dec. 15-18,
1992, Nashville, TN.



APPENDIX A

EPIC INPUT PARAMETERS

No. of year of simulation duration . . . . . . .. 4
Beginning year of simulation 90
Beginning month of simulation 1
Beginning day of simulation 1
Weather input code . . . . . . . . . .. 12
No of times random no generator c.ycles .... 0
Potential ET equation . . . . . . . . . . . . . . .. 1
Peak rate estimate code . . . . . . . . . . . . . .. 0
Soil profile code . . . . . . . . . . . . . . .. 0
Automatic heat scheduling code . . . . . . . . .. 0
Watershed drainage area . . . . . . .. 1.46 ha
Curve no. . . . . . . . . . . . . . . .. 79
Distance from outlet to most distant point on wtsd... 0.194 m
Average channel slope 0.04 m 1m
Channel roughness factor. . . . . . . . . . . . .. 0.24
Surface roughness factor . . . . . . . . . . . . .. 0.24
Energy rainfall adjustment factor . . . . . . . .. 1.0
Latitude of watershed . . . . . . . . . . . . . . .. 36.6
Average watershed elevation . . . . . . . . . . .. 460
Water content of snow on ground at start of sim. 0
A verage concentration of N in rainfall . . . . .. 1.0
No of years of cultivation before simulation .. 50
CO2 concentration in atmosphere . . . . . . . .. 330 ppm
eN03 concentration irrigation water . . . . . .. 0
Channel depth . . . . . . . . . . . . . . .. 0 m
Slope length . . . . . . . . . . . . . . .. 194 m
Slope steepness . . . . . . . . . . . . . . .. 0.04 m/m
Erosion control practice factor 1.0
Equation for water erosion . . . . . . . . . . . .. 3
No of years of max. monthly
0.5 hr rainfall record . . . . . . . . .. 8.0
Field length . . . . . . . . . . . . . . .. 0.0
Field width . . . . . . . . . . . . . . .. 0.0
Clockwise angle of field length
from north . . . . . . . . . . . . . . .. 0.0
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Standing crop residue . . . . . . . . . . . . . . .. 0.0
Parameter of modified exp dist of wind . . . .. 0.5
Soil particle diameter . . . . . . . . . . . . . . .. 0.0
wind erosion factor 0.0
Soil albedo . . . . . . . . . . . . . . .. 0.15
Depth from surface to the
bottom of the soil layer . . . . . . . . . . . . . .. 0.01,0.15,0.23,0.61,0.89
Bulk density of the soil layer (tlm3

) ••••••• 1.45 (all layers)
Wilting point . . . . . . . . . . . . . . .. 0.093, 0.093, 0.118, 0.160, 0.136
Field capacity . . . . . . . . . . . . . . .. 0.242, 0.242, 0.259, 0.289, 0.284
Sand content (%) . . . . . . . . . . . . . . .. 56.3, 56.3, 45.8, 38.5, 55.1
Silt content (%) . . . . . . . . . . . . . . .. 36.0, 35.6, 39.3, 35.8, 26.5
organic N concentration 297, 297, 250, 240, 50
Soil Ph . . . . . . . . . . . . . . 6.2, 6.2, 5.6, 5.0, 4.8
Sum of bases . . . . . . . . . . . . . . .. 2.6, 2.6, 3.4, 3.0, 0.8, 0.0
Organic carbon . . . . . . . . . . . . . . .. 1.0, 1.0,0.21,0.15,0.1
Calcium carbonate . . . . . . . . . . . . . . .. 0.0 (aillayersO
Cation exchange capacity. . . . . . . . . . . . .. 3.1,3.1,4.6, 8.9,6.1
Coarse fragment content 0.0 (all layers)
Nitrate concentration 10, 10, 5, 5, 5
Labile P concentration 393, 393, 10, 10, 30
Crop residue . . . . . . . . . . . . . . .. 0.034, 0.434, 0.445, 0.513, 0.001
Bulk density dry . . . . . . . . . . . .. . . .. 1.55 (all layers)
P sorption ratio . . . . . . . . . . . . . . .. 0.0 (all layers)
Saturated conductivity . . . . . . . . . . . . . . 0.0 (all layers)
Crop rotation duration 4
Irrigation code . . . . . . . . . . . . . . .. 1
Liming code . . . . . . . . . . . . . . .. 1



APP£NOIX B

RfLATlV( SENSITIVITY VALUES fOR EPIC

OUTPUT CODES

a Runoff,mm
MUST Sediment, tons
YON Nitrogen 10•• in ••diment. Kglh.
YON3 Nitrogen 10.. in runoff, Kglha
YAP PhOSphoUIUS 10.. in ..d~nt. OJb.

P.rameter a P.uMn.ter MUST P.rameter YON P.ram4lte. YN03 PII•.",.ta. YAP

CN2 5.19 CN2 5.29 CN2 11.38 CN2 4.30 042 4.26
FC 0.28 S 1.80 80 3.44 S 1.68 S 1.74
S 0.19 PEC 1.11 FC 0.57 PEC 1.05 PEC 0.97
U 0.11 SIL 0.52 S 0.48 SlL 0.47 WN 0.97
Z 0.09 SPlG 0.39 U 0.19 SPlG 0.37 Sll 0.58
BO 0.09 FC 0.29 2 0.19 FC 0.26 SPlG 0.39
CO2 0.08 C8N 0.18 CO2 0.10 CBN 0.16 80 0.19
WN 0.03 U 0.12 RTN 0.10 WN 0.10 CBN 0.19
RTN 0.03 1 0.10 WN 0.10 CO2 0.00 FC 0.19
SID 0.02 BO 0.10 AP 0.00 Z 0.08 U 0.19
HC 0.02 CHN 0.10 BOO 0.00 Ywt 0.05 Z 0.19
WSA 0.00 CO2 0.08 C8N 0.00 CEC 0.03 AP 0.00
CHl 0.00 CHS 0.04 crc 0.00 FFC 0.03 800 0.00
CHS 0.00 WN 0.03 CHO 0.00 RTN 0.03 CEC 0.00
CHN 0.00 RTN 0.03 CHl 0.00 AP 0.00 010 0.00
SN 0.00 YWI 0.03 CHN 0.00 BO 0.00 O1l 0.00
£lEV 0.00 HC 0.02 CHS 0.00 800 0.00 CHN 0.00
SNO 0.00 CfC 0.02 OIAM 0.00 010 0.00 CHS 0.00
RCN 0.00 SID 0.01 £lEV 0.00 CHL 0.00 CO2 0.00
Ct10 0.00 WSA 0.00 HC 0.00 CHN 0.00 OIAM 0.00
SPlG 0.00 CHL 0.00 fl 0.00 CHS 0.00 ELEV 0.00
ffC 0.00 SN 0.00 fW 0.00 OIAM 0.00 HC 0.00
YWI 0.00 fLEV 0.00 ffC 0.00 ELEV 0.00 Fl 0.00
fl 0.00 SNQ 0.00 PH 0.00 FL 0.00 FW 0.00
fW 0.00 RCN 0.00 RCN 0.00 FW 0.00 PH 0.00
OIAM 0.00 CHO 0.00 RFTT 0.00 PH 0.00 RCN 0.00
SAlB 0.00 fl 0.00 RSO 0.00 RCN 0.00 RfTT 0.00
20T 0.00 FW 0.00 SAl8 0.00 RFTT 0.00 RSO 0.00
WTMN 0.00 olAM 0.00 SA~ 0.00 RSO 0.00 SAl8 0.00
WTBX 0.00 SALB 0.00 SC 0.00 SAl8 0.00 SAN 0.00
WTBl 0.00 lOT 0.00 SIL 0.00 SAN 0.00 SC 0.00
RfTT 0.00 WTMN 0.00 5MB 0.00 SC 0.00 5MB 0.00
SAN 0.00 WT8X 0.00 SN 0.00 5MB 0.00 SN 0.00
Sit 0.00 WTSl 0.00 SNO 0.00 SN 0.00 SNO 0.00
PH 0.00 RfTT 0.00 SPLG 0.00 SNO 0.00 STD 0.00
5MB 0.00 SAN 0.00 STO 0.00 STD 0.00 RTN 0.00
CBN 0.00 PH 0.00 WN03 0.00 U 0.00 WN03 0.00
crc 0.00 5MB 0.00 WSA 0.00 WN03 0.00 WSA 0.00
WN03 0.00 WN03 0.00 WT61 0.00 WSA 0.00 WTBl 0.00
AP 0.00 AP 0.00 WTBX 0.00 WTBL 0.00 WT8X 0.00
RSO 0.00 RSO 0.00 WTMN 0.00 WTBX 0.00 WTMN 0.00
BOO 0.00 800 0.00 YWI 0.00 WTMN 0.00 YWI 0.00
SC 0.00 SC 0.00 lOT 0.00 ZOT 0.00 ZOT 0.00

For Input parameter details EPIC usefS manual can be coollutted.
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APPENDIX C

Input parameters and changes in the input parameters for AGNPS

Parameters

Area of each cell, Acres
Prcipitation, inches
Nit. conc. in rainfall, ppm
Energy intensity value
Duration, hours
K coefficient
Flow direction
SCS curve number
Land slope, %
Stope length, ft
Overland Manning's
K-factor
C-factor
P-factor
Surf cond. constant
COD factor
Soil Nt Ib N/lb soil
Soil P, Ib P/lb soil
Pore water N conc., ppm
Pore water P conc., ppm
N extr. coef. for runoff
P extr. coef. for runoff
N extr. coef. for leaching
P extr. coef. for leaching
% Org matter in soil

The other parameters

Storm type (I, lA, II, III)
Slope shape
Soil Texture #

% changes

1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
1%
4%
4%
4%
1%
1%

10%
10%
1%
1%
1%
1%
1%
1%
1%
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Values

3.61
3.74

0.8
85.08

24
484

5
70

4
636

0.24
0.24

0.012
0.9

0.22
60

0.001
0.0005

5
2

0.05
0.025

0.25
0.25

20

2
1
3



APPENDIX D

AGNPS SENSITIVITY ANALYSIS RESULTS (RELATIVE SENSITIVITY)

Output Runoff Sed Nit-sed Nit runoff Phop-sed
Input
SCS # 70 5.172414 2.083333 1.190476 11.84211 0
Land slope 4.0 0 4.166667 3.174603 0 3.174603
Slope length 63 0 0 0 0 0
K-factor 4% 0 1.041667 0.892857 0 1.190476
C-factor 4% 0 1.041667 0.892857 0 1.190476
P-factor 4 % 0 1.041667 0.892857 0 1.190476
Soil N 10% 0 0 0.952381 0 0
N extr. runoff 0 0 0 0.657895 0
N extr leach 1% 0 0 0 3.947368 0
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APPENDIX E

COMPUTER PROGRAM FOR THE GENERATION OF
RANDOM NUMBERS FOR AGNPS MODEL

c This program generates the random numbers for
C curve #, kcp and N parameters and plugs those values in the input file
C for the AGNPS.

Integer slength,curve,celll ,divl ,celI2,div2,dir,cn,shape
Integer cod, orgmat
Character*80 data, dumm
Real sval,mann,kfact,cfact,pfact, surfcon
Real slope,slrnor,kval,cval,pval,nitval,nrval,nlval
Real soil,sonit,sophop,poren,porep
Real nruoff,prunoff,nleach,pleach

Open (1, file = "wa.dat", status = "old")
Open (2, file = "wa sim.dat", status == "unknown")
Open (7, file = tfscratchtt)
open (3, file = 'la_alIIS.dat', status = 'unknown')

call gettim(ihr,imin,isec,iIOOth)
call seed(i lOath*i1OOth)

Call1ognorm(1.343, 0.4722, sval)

Call1ognorm(1.343, 0.2935, slrnor)

Call1ognorm(-7.02, 0.4722, nitval)

Call1ognorm(-3.107, 0.4722, nrval)

Call1ognorm(-1.497, 0.4722, nlval)

Call kcp(0.18, 0.24, 0.36, kval)

Call kcp(0.OO6, 0.012, 0.018, eva!)

148



Call p(O.8, 1.0, 1.0, pval)

c The curve number is equal to the 10001 (s+ 10)

curve = 10001 (sval+ 10)

ide = 0
do 705 mi=1,10000

read(3,702,end=706) dumm
idc=idc+l

702 format(a80)
write(7,702) dumm

705 continue
706 continue

rewind (7)
rewind (3)
do 780 mi = 1,idc

read(7,702) dumm
write(3,702) dumm

780 continue

write (3, 50)curve,slrnor,kval,cval,pval,nitval,nrval,nlval

50 format(i2,3x,f3.1,3x,f4.2,3x,f6.4,3x,f4.2,3x,
+ f6. 4 ,3x, f5. 3,3x,f5. 3)

Do 10 i == 1, 6
Read (1, 60) data
Write(2, 60) data

10 continue

Read (1, 61) cellI, divl, ce112, div2, dir, cn, slope, shape
write(2, 61) cellI, divl, cel12, div2, dir,curve, slrnor, shape

Read (1, 62) slength,mann,kfact,cfact,pfact,surfcon,cod
write(2, 62)slength,mann,kval,cval,pval,surfcon,cod

Read (1, 60) data
write(2, 60) data

Read (1, 63)soil,sonit,sophop,poren,porep
Write(2, 63)soil,nitval,sophop,poren,porep
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Read (1, 64)nruoff,prunoff,nleach,pleach,orgmat
write(2, 64)nrval,prunoff,nlval,pleach,orgmat

Do 20 j == 1, 10
Read (1, 60, end=90) data
write(2, 60) data

20 continue

60 Format (a80)
61 format(t8,il, t14,a3, t24,i1,t30,a3, t40,il, t47,i2,154,fJ.1, t64,il)
62 Format(t14,i3, t20, f5. 3, t29, f4. 2, t35, f6.4, t45, f4. 2,153,f4 .2, t63, i2)
63 Format (a6,tl1,f6.4,t19,f6.4,t29,f4.2,t37,f4.2)
64 Format (tI2, f5 .3, t20,f5 .3, t28,f5 .3, t36,f5 .3, t47 ,i2)

90 stop
End

Subroutine lognorm(avval, stddev, finval)
Real s, r1, r2, avval, stddev, rnn, rnor, finval

s == 2
do while ( s .ge. 1 )

call random(ranval)
r1 == 2*ranval - 1
call random(ranval)
r2 == 2*ranval - 1
s == r1 *r1 +r2*r2

end do

rnn == r1 *sqrt(-2. *log(s)/s)
rnor == avval + rnn * stddev

C The random value rnor would be converted to the
c lognormal distribution by using exp function

finval == exp(rnor)

end

Subroutine kcp(a1, a2, a3, val)
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Real aI, a2, a3, val,ranval

call random(ranval)
If (ranva! .le. 0.5) then

val = al + sqrt«a3-al)*(a2-al)*ranval)
else

val = a3 - sqrt«a3-a2)*(a3-al)*(1-ranval))
endif
end

Subroutine p(al, a2, a3, pval)

Real al, a2, a3, pval,ranval

call random(ranval)
pval = al + sqrt«a3-al)*(a2-al)*ranval)

end
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APPENDIX F

EQUATIONS FOR VARIANCE OF TRIANGULARLY DISTRIBUTED
PARAMETERS

(82.b2)

(81.b 1)

b2 == 2 / (a3 - al)
bi == 0
b3 == 0

where E(x) is given by

E(x) = f xPxdx

For line I p(x) corresponds to

Pl(X) == b2. xl (a2 -al) + (-alb2)/(a2-al)
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For line 2 p(x) corresponds to

P2(X) = -b2. x/(a3-a2) + a3b2/(a3-b2)

E(x2
) becomes

a2
E(x2

) = f x2 [b2. X / (a2 -al) + (-alb2)/ (a2 -al)] dx +
al

a3
f x2[(-b2.x)/ (a3-a2) + a3b2 / (a3 - a2) ] dx

a2

In E(x), x takes the place of x2
,

Substituting these equations in (1)

Var(x) = b2 (a24
- a14)/4.(a2 - al) - alb2 (a23-a13

)/ 3.(a2-al)
- b2 (a34

- a2 4) / 4.(a3 - a2) + a3b2 (a33-a23
) / 3. (a3 - a2)

- { b2 (a23
- a1 3

) / 3. (al - al) - b2al (al2 - a1 2
) / 2. (a2-al)

- b2 (a33 - a23)/ 3(a3-a2) + a3b2 (a32 - a22)/ 2. (a3-a2)}2
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APPENDIX G

THE OBSERVED DATA FROM WA FIELD

Month Date Year Q No3 -N p. runoff Tot- P Org- N Sediment
mm Kg I Ha Kg! Ha Kg!Ha Kg! Ha Kg

10 24 91 1.88 0.066 0.06 0.046 0.045 0.378
10 26 91 31.14 0.828 0.732 0.63 1.053 96.483
10 28 91 16.39 0.621 0.385 0.163 0.53 4.846
10 30 91 0.28 0 0 0 0 0
10 31 91 19.4 0.75 0.427 0.348 0.357 2.818
, 1 17 91 15.45 0.791 0.404 0.325 0.465 0.776
11 19 91 1.26 0.055 0.023 0.019 0.044 0.101
12 12 91 0.27 0.008 0.003 0.003 0.006 0.238
6 6 92 15.81 0.392 0.511 0.401 3.768 3.192
7 5 92 0.67 0.011 0.014 0.02 0.019 0.425
7 30 92 28.78 0.132 0.368 0.636 1.01 131.794
8 5 92 24.31 0.037 0.425 0.422 0.392 3.44
8 11 92 0.1 0.001 0.002 0.002 0.003 0.014
11 11 92 8.84 0.046 0.183 0.205 0.121 1.352
11 21 92 40.92 0.128 0.698 0.686 0.464 0
12 9 92 1.79 0.005 0.024 0.027 0.021 0.358
12 14 92 67.85 0.088 0.619 0.686 0.418 15.13
12 16 92 0.45 0 0 0 0 0
1 4 93 1.58 0.004 0.014 0.018 0.024 0.741
1 9 93 2.5 0 0 0 0 0
4 14 93 17.56 2.442 0.163 0.179 0.235 1.842

Total 297.23 6.405 5.055 4.816 8.975 264.528

Q Runoff

N03 - N Nitrogen loss in runoff

P - runoff Phosphorus loss in runoff

Org -N Nitrogen loss in sediment

Bold lettered outputs correspond to AGNPS observed output.

Bold italic coresponds to the total outputs used in EPIC.
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